Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! String representations.
  4
  5use alloc::vec::Vec;
  6use core::fmt::{self, Write};
  7use core::ops::{self, Deref, Index};
  8
  9use crate::{
 10    bindings,
 11    error::{code::*, Error},
 12};
 13
 14/// Byte string without UTF-8 validity guarantee.
 15///
 16/// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
 17pub type BStr = [u8];
 18
 19/// Creates a new [`BStr`] from a string literal.
 20///
 21/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
 22/// characters can be included.
 23///
 24/// # Examples
 25///
 26/// ```
 27/// # use kernel::b_str;
 28/// # use kernel::str::BStr;
 29/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
 30/// ```
 31#[macro_export]
 32macro_rules! b_str {
 33    ($str:literal) => {{
 34        const S: &'static str = $str;
 35        const C: &'static $crate::str::BStr = S.as_bytes();
 36        C
 37    }};
 38}
 39
 40/// Possible errors when using conversion functions in [`CStr`].
 41#[derive(Debug, Clone, Copy)]
 42pub enum CStrConvertError {
 43    /// Supplied bytes contain an interior `NUL`.
 44    InteriorNul,
 45
 46    /// Supplied bytes are not terminated by `NUL`.
 47    NotNulTerminated,
 48}
 49
 50impl From<CStrConvertError> for Error {
 51    #[inline]
 52    fn from(_: CStrConvertError) -> Error {
 53        EINVAL
 54    }
 55}
 56
 57/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
 58/// end.
 59///
 60/// Used for interoperability with kernel APIs that take C strings.
 61#[repr(transparent)]
 62pub struct CStr([u8]);
 63
 64impl CStr {
 65    /// Returns the length of this string excluding `NUL`.
 66    #[inline]
 67    pub const fn len(&self) -> usize {
 68        self.len_with_nul() - 1
 69    }
 70
 71    /// Returns the length of this string with `NUL`.
 72    #[inline]
 73    pub const fn len_with_nul(&self) -> usize {
 74        // SAFETY: This is one of the invariant of `CStr`.
 75        // We add a `unreachable_unchecked` here to hint the optimizer that
 76        // the value returned from this function is non-zero.
 77        if self.0.is_empty() {
 78            unsafe { core::hint::unreachable_unchecked() };
 79        }
 80        self.0.len()
 81    }
 82
 83    /// Returns `true` if the string only includes `NUL`.
 84    #[inline]
 85    pub const fn is_empty(&self) -> bool {
 86        self.len() == 0
 87    }
 88
 89    /// Wraps a raw C string pointer.
 90    ///
 91    /// # Safety
 92    ///
 93    /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
 94    /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
 95    /// must not be mutated.
 96    #[inline]
 97    pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
 98        // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
 99        // to a `NUL`-terminated C string.
100        let len = unsafe { bindings::strlen(ptr) } + 1;
101        // SAFETY: Lifetime guaranteed by the safety precondition.
102        let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
103        // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
104        // As we have added 1 to `len`, the last byte is known to be `NUL`.
105        unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
106    }
107
108    /// Creates a [`CStr`] from a `[u8]`.
109    ///
110    /// The provided slice must be `NUL`-terminated, does not contain any
111    /// interior `NUL` bytes.
112    pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
113        if bytes.is_empty() {
114            return Err(CStrConvertError::NotNulTerminated);
115        }
116        if bytes[bytes.len() - 1] != 0 {
117            return Err(CStrConvertError::NotNulTerminated);
118        }
119        let mut i = 0;
120        // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
121        // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
122        while i + 1 < bytes.len() {
123            if bytes[i] == 0 {
124                return Err(CStrConvertError::InteriorNul);
125            }
126            i += 1;
127        }
128        // SAFETY: We just checked that all properties hold.
129        Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
130    }
131
132    /// Creates a [`CStr`] from a `[u8]` without performing any additional
133    /// checks.
134    ///
135    /// # Safety
136    ///
137    /// `bytes` *must* end with a `NUL` byte, and should only have a single
138    /// `NUL` byte (or the string will be truncated).
139    #[inline]
140    pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
141        // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
142        unsafe { core::mem::transmute(bytes) }
143    }
144
145    /// Returns a C pointer to the string.
146    #[inline]
147    pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
148        self.0.as_ptr() as _
149    }
150
151    /// Convert the string to a byte slice without the trailing 0 byte.
152    #[inline]
153    pub fn as_bytes(&self) -> &[u8] {
154        &self.0[..self.len()]
155    }
156
157    /// Convert the string to a byte slice containing the trailing 0 byte.
158    #[inline]
159    pub const fn as_bytes_with_nul(&self) -> &[u8] {
160        &self.0
161    }
162
163    /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
164    ///
165    /// If the contents of the [`CStr`] are valid UTF-8 data, this
166    /// function will return the corresponding [`&str`] slice. Otherwise,
167    /// it will return an error with details of where UTF-8 validation failed.
168    ///
169    /// # Examples
170    ///
171    /// ```
172    /// # use kernel::str::CStr;
173    /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
174    /// assert_eq!(cstr.to_str(), Ok("foo"));
175    /// ```
176    #[inline]
177    pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
178        core::str::from_utf8(self.as_bytes())
179    }
180
181    /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
182    /// valid UTF-8.
183    ///
184    /// # Safety
185    ///
186    /// The contents must be valid UTF-8.
187    ///
188    /// # Examples
189    ///
190    /// ```
191    /// # use kernel::c_str;
192    /// # use kernel::str::CStr;
193    /// // SAFETY: String literals are guaranteed to be valid UTF-8
194    /// // by the Rust compiler.
195    /// let bar = c_str!("ツ");
196    /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
197    /// ```
198    #[inline]
199    pub unsafe fn as_str_unchecked(&self) -> &str {
200        unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
201    }
202}
203
204impl fmt::Display for CStr {
205    /// Formats printable ASCII characters, escaping the rest.
206    ///
207    /// ```
208    /// # use kernel::c_str;
209    /// # use kernel::str::CStr;
210    /// # use kernel::str::CString;
211    /// let penguin = c_str!("🐧");
212    /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
213    /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
214    ///
215    /// let ascii = c_str!("so \"cool\"");
216    /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
217    /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
218    /// ```
219    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
220        for &c in self.as_bytes() {
221            if (0x20..0x7f).contains(&c) {
222                // Printable character.
223                f.write_char(c as char)?;
224            } else {
225                write!(f, "\\x{:02x}", c)?;
226            }
227        }
228        Ok(())
229    }
230}
231
232impl fmt::Debug for CStr {
233    /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
234    ///
235    /// ```
236    /// # use kernel::c_str;
237    /// # use kernel::str::CStr;
238    /// # use kernel::str::CString;
239    /// let penguin = c_str!("🐧");
240    /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
241    /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
242    ///
243    /// // Embedded double quotes are escaped.
244    /// let ascii = c_str!("so \"cool\"");
245    /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
246    /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
247    /// ```
248    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
249        f.write_str("\"")?;
250        for &c in self.as_bytes() {
251            match c {
252                // Printable characters.
253                b'\"' => f.write_str("\\\"")?,
254                0x20..=0x7e => f.write_char(c as char)?,
255                _ => write!(f, "\\x{:02x}", c)?,
256            }
257        }
258        f.write_str("\"")
259    }
260}
261
262impl AsRef<BStr> for CStr {
263    #[inline]
264    fn as_ref(&self) -> &BStr {
265        self.as_bytes()
266    }
267}
268
269impl Deref for CStr {
270    type Target = BStr;
271
272    #[inline]
273    fn deref(&self) -> &Self::Target {
274        self.as_bytes()
275    }
276}
277
278impl Index<ops::RangeFrom<usize>> for CStr {
279    type Output = CStr;
280
281    #[inline]
282    fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
283        // Delegate bounds checking to slice.
284        // Assign to _ to mute clippy's unnecessary operation warning.
285        let _ = &self.as_bytes()[index.start..];
286        // SAFETY: We just checked the bounds.
287        unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
288    }
289}
290
291impl Index<ops::RangeFull> for CStr {
292    type Output = CStr;
293
294    #[inline]
295    fn index(&self, _index: ops::RangeFull) -> &Self::Output {
296        self
297    }
298}
299
300mod private {
301    use core::ops;
302
303    // Marker trait for index types that can be forward to `BStr`.
304    pub trait CStrIndex {}
305
306    impl CStrIndex for usize {}
307    impl CStrIndex for ops::Range<usize> {}
308    impl CStrIndex for ops::RangeInclusive<usize> {}
309    impl CStrIndex for ops::RangeToInclusive<usize> {}
310}
311
312impl<Idx> Index<Idx> for CStr
313where
314    Idx: private::CStrIndex,
315    BStr: Index<Idx>,
316{
317    type Output = <BStr as Index<Idx>>::Output;
318
319    #[inline]
320    fn index(&self, index: Idx) -> &Self::Output {
321        &self.as_bytes()[index]
322    }
323}
324
325/// Creates a new [`CStr`] from a string literal.
326///
327/// The string literal should not contain any `NUL` bytes.
328///
329/// # Examples
330///
331/// ```
332/// # use kernel::c_str;
333/// # use kernel::str::CStr;
334/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
335/// ```
336#[macro_export]
337macro_rules! c_str {
338    ($str:expr) => {{
339        const S: &str = concat!($str, "\0");
340        const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
341            Ok(v) => v,
342            Err(_) => panic!("string contains interior NUL"),
343        };
344        C
345    }};
346}
347
348#[cfg(test)]
349mod tests {
350    use super::*;
351
352    #[test]
353    fn test_cstr_to_str() {
354        let good_bytes = b"\xf0\x9f\xa6\x80\0";
355        let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
356        let checked_str = checked_cstr.to_str().unwrap();
357        assert_eq!(checked_str, "🦀");
358    }
359
360    #[test]
361    #[should_panic]
362    fn test_cstr_to_str_panic() {
363        let bad_bytes = b"\xc3\x28\0";
364        let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
365        checked_cstr.to_str().unwrap();
366    }
367
368    #[test]
369    fn test_cstr_as_str_unchecked() {
370        let good_bytes = b"\xf0\x9f\x90\xA7\0";
371        let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
372        let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
373        assert_eq!(unchecked_str, "🐧");
374    }
375}
376
377/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
378///
379/// It does not fail if callers write past the end of the buffer so that they can calculate the
380/// size required to fit everything.
381///
382/// # Invariants
383///
384/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
385/// is less than `end`.
386pub(crate) struct RawFormatter {
387    // Use `usize` to use `saturating_*` functions.
388    beg: usize,
389    pos: usize,
390    end: usize,
391}
392
393impl RawFormatter {
394    /// Creates a new instance of [`RawFormatter`] with an empty buffer.
395    fn new() -> Self {
396        // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
397        Self {
398            beg: 0,
399            pos: 0,
400            end: 0,
401        }
402    }
403
404    /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
405    ///
406    /// # Safety
407    ///
408    /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
409    /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
410    pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
411        // INVARIANT: The safety requierments guarantee the type invariants.
412        Self {
413            beg: pos as _,
414            pos: pos as _,
415            end: end as _,
416        }
417    }
418
419    /// Creates a new instance of [`RawFormatter`] with the given buffer.
420    ///
421    /// # Safety
422    ///
423    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
424    /// for the lifetime of the returned [`RawFormatter`].
425    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
426        let pos = buf as usize;
427        // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
428        // guarantees that the memory region is valid for writes.
429        Self {
430            pos,
431            beg: pos,
432            end: pos.saturating_add(len),
433        }
434    }
435
436    /// Returns the current insert position.
437    ///
438    /// N.B. It may point to invalid memory.
439    pub(crate) fn pos(&self) -> *mut u8 {
440        self.pos as _
441    }
442
443    /// Return the number of bytes written to the formatter.
444    pub(crate) fn bytes_written(&self) -> usize {
445        self.pos - self.beg
446    }
447}
448
449impl fmt::Write for RawFormatter {
450    fn write_str(&mut self, s: &str) -> fmt::Result {
451        // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
452        // don't want it to wrap around to 0.
453        let pos_new = self.pos.saturating_add(s.len());
454
455        // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
456        let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
457
458        if len_to_copy > 0 {
459            // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
460            // yet, so it is valid for write per the type invariants.
461            unsafe {
462                core::ptr::copy_nonoverlapping(
463                    s.as_bytes().as_ptr(),
464                    self.pos as *mut u8,
465                    len_to_copy,
466                )
467            };
468        }
469
470        self.pos = pos_new;
471        Ok(())
472    }
473}
474
475/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
476///
477/// Fails if callers attempt to write more than will fit in the buffer.
478pub(crate) struct Formatter(RawFormatter);
479
480impl Formatter {
481    /// Creates a new instance of [`Formatter`] with the given buffer.
482    ///
483    /// # Safety
484    ///
485    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
486    /// for the lifetime of the returned [`Formatter`].
487    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
488        // SAFETY: The safety requirements of this function satisfy those of the callee.
489        Self(unsafe { RawFormatter::from_buffer(buf, len) })
490    }
491}
492
493impl Deref for Formatter {
494    type Target = RawFormatter;
495
496    fn deref(&self) -> &Self::Target {
497        &self.0
498    }
499}
500
501impl fmt::Write for Formatter {
502    fn write_str(&mut self, s: &str) -> fmt::Result {
503        self.0.write_str(s)?;
504
505        // Fail the request if we go past the end of the buffer.
506        if self.0.pos > self.0.end {
507            Err(fmt::Error)
508        } else {
509            Ok(())
510        }
511    }
512}
513
514/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
515///
516/// Used for interoperability with kernel APIs that take C strings.
517///
518/// # Invariants
519///
520/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
521///
522/// # Examples
523///
524/// ```
525/// use kernel::str::CString;
526///
527/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
528/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
529///
530/// let tmp = "testing";
531/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
532/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
533///
534/// // This fails because it has an embedded `NUL` byte.
535/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
536/// assert_eq!(s.is_ok(), false);
537/// ```
538pub struct CString {
539    buf: Vec<u8>,
540}
541
542impl CString {
543    /// Creates an instance of [`CString`] from the given formatted arguments.
544    pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
545        // Calculate the size needed (formatted string plus `NUL` terminator).
546        let mut f = RawFormatter::new();
547        f.write_fmt(args)?;
548        f.write_str("\0")?;
549        let size = f.bytes_written();
550
551        // Allocate a vector with the required number of bytes, and write to it.
552        let mut buf = Vec::try_with_capacity(size)?;
553        // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
554        let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
555        f.write_fmt(args)?;
556        f.write_str("\0")?;
557
558        // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
559        // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
560        unsafe { buf.set_len(f.bytes_written()) };
561
562        // Check that there are no `NUL` bytes before the end.
563        // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
564        // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
565        // so `f.bytes_written() - 1` doesn't underflow.
566        let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
567        if !ptr.is_null() {
568            return Err(EINVAL);
569        }
570
571        // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
572        // exist in the buffer.
573        Ok(Self { buf })
574    }
575}
576
577impl Deref for CString {
578    type Target = CStr;
579
580    fn deref(&self) -> &Self::Target {
581        // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
582        // other `NUL` bytes exist.
583        unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
584    }
585}
586
587/// A convenience alias for [`core::format_args`].
588#[macro_export]
589macro_rules! fmt {
590    ($($f:tt)*) => ( core::format_args!($($f)*) )
591}