Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   4 *
   5 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
   6 *
   7 *  Meant to be mostly used for locally generated traffic :
   8 *  Fast classification depends on skb->sk being set before reaching us.
   9 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  10 *  All packets belonging to a socket are considered as a 'flow'.
  11 *
  12 *  Flows are dynamically allocated and stored in a hash table of RB trees
  13 *  They are also part of one Round Robin 'queues' (new or old flows)
  14 *
  15 *  Burst avoidance (aka pacing) capability :
  16 *
  17 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  18 *  bunch of packets, and this packet scheduler adds delay between
  19 *  packets to respect rate limitation.
  20 *
  21 *  enqueue() :
  22 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  23 *     If non existent flow, create it, add it to the tree.
  24 *     Add skb to the per flow list of skb (fifo).
  25 *   - Use a special fifo for high prio packets
  26 *
  27 *  dequeue() : serves flows in Round Robin
  28 *  Note : When a flow becomes empty, we do not immediately remove it from
  29 *  rb trees, for performance reasons (its expected to send additional packets,
  30 *  or SLAB cache will reuse socket for another flow)
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/jiffies.h>
  37#include <linux/string.h>
  38#include <linux/in.h>
  39#include <linux/errno.h>
  40#include <linux/init.h>
  41#include <linux/skbuff.h>
  42#include <linux/slab.h>
  43#include <linux/rbtree.h>
  44#include <linux/hash.h>
  45#include <linux/prefetch.h>
  46#include <linux/vmalloc.h>
  47#include <net/netlink.h>
  48#include <net/pkt_sched.h>
  49#include <net/sock.h>
  50#include <net/tcp_states.h>
  51#include <net/tcp.h>
  52
  53struct fq_skb_cb {
  54	u64	        time_to_send;
  55};
  56
  57static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
  58{
  59	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
  60	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
  61}
  62
  63/*
  64 * Per flow structure, dynamically allocated.
  65 * If packets have monotically increasing time_to_send, they are placed in O(1)
  66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
  67 */
  68struct fq_flow {
  69/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
  70	struct rb_root	t_root;
  71	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
  72	union {
  73		struct sk_buff *tail;	/* last skb in the list */
  74		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
  75	};
  76	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
  77	struct sock	*sk;
  78	u32		socket_hash;	/* sk_hash */
  79	int		qlen;		/* number of packets in flow queue */
  80
  81/* Second cache line, used in fq_dequeue() */
  82	int		credit;
  83	/* 32bit hole on 64bit arches */
  84
  85	struct fq_flow *next;		/* next pointer in RR lists */
  86
  87	struct rb_node  rate_node;	/* anchor in q->delayed tree */
  88	u64		time_next_packet;
  89} ____cacheline_aligned_in_smp;
  90
  91struct fq_flow_head {
  92	struct fq_flow *first;
  93	struct fq_flow *last;
  94};
  95
  96struct fq_sched_data {
  97	struct fq_flow_head new_flows;
  98
  99	struct fq_flow_head old_flows;
 100
 101	struct rb_root	delayed;	/* for rate limited flows */
 102	u64		time_next_delayed_flow;
 103	u64		ktime_cache;	/* copy of last ktime_get_ns() */
 104	unsigned long	unthrottle_latency_ns;
 105
 106	struct fq_flow	internal;	/* for non classified or high prio packets */
 107	u32		quantum;
 108	u32		initial_quantum;
 109	u32		flow_refill_delay;
 110	u32		flow_plimit;	/* max packets per flow */
 111	unsigned long	flow_max_rate;	/* optional max rate per flow */
 112	u64		ce_threshold;
 113	u64		horizon;	/* horizon in ns */
 114	u32		orphan_mask;	/* mask for orphaned skb */
 115	u32		low_rate_threshold;
 116	struct rb_root	*fq_root;
 117	u8		rate_enable;
 118	u8		fq_trees_log;
 119	u8		horizon_drop;
 120	u32		flows;
 121	u32		inactive_flows;
 122	u32		throttled_flows;
 123
 124	u64		stat_gc_flows;
 125	u64		stat_internal_packets;
 126	u64		stat_throttled;
 127	u64		stat_ce_mark;
 128	u64		stat_horizon_drops;
 129	u64		stat_horizon_caps;
 130	u64		stat_flows_plimit;
 131	u64		stat_pkts_too_long;
 132	u64		stat_allocation_errors;
 133
 134	u32		timer_slack; /* hrtimer slack in ns */
 135	struct qdisc_watchdog watchdog;
 136};
 137
 138/*
 139 * f->tail and f->age share the same location.
 140 * We can use the low order bit to differentiate if this location points
 141 * to a sk_buff or contains a jiffies value, if we force this value to be odd.
 142 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
 143 */
 144static void fq_flow_set_detached(struct fq_flow *f)
 145{
 146	f->age = jiffies | 1UL;
 
 147}
 148
 149static bool fq_flow_is_detached(const struct fq_flow *f)
 150{
 151	return !!(f->age & 1UL);
 152}
 153
 154/* special value to mark a throttled flow (not on old/new list) */
 155static struct fq_flow throttled;
 156
 157static bool fq_flow_is_throttled(const struct fq_flow *f)
 158{
 159	return f->next == &throttled;
 160}
 161
 162static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 163{
 164	if (head->first)
 165		head->last->next = flow;
 166	else
 167		head->first = flow;
 168	head->last = flow;
 169	flow->next = NULL;
 170}
 171
 172static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
 173{
 174	rb_erase(&f->rate_node, &q->delayed);
 175	q->throttled_flows--;
 176	fq_flow_add_tail(&q->old_flows, f);
 177}
 178
 179static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 180{
 181	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 182
 183	while (*p) {
 184		struct fq_flow *aux;
 185
 186		parent = *p;
 187		aux = rb_entry(parent, struct fq_flow, rate_node);
 188		if (f->time_next_packet >= aux->time_next_packet)
 189			p = &parent->rb_right;
 190		else
 191			p = &parent->rb_left;
 192	}
 193	rb_link_node(&f->rate_node, parent, p);
 194	rb_insert_color(&f->rate_node, &q->delayed);
 195	q->throttled_flows++;
 196	q->stat_throttled++;
 197
 198	f->next = &throttled;
 199	if (q->time_next_delayed_flow > f->time_next_packet)
 200		q->time_next_delayed_flow = f->time_next_packet;
 201}
 202
 203
 204static struct kmem_cache *fq_flow_cachep __read_mostly;
 205
 206
 207/* limit number of collected flows per round */
 208#define FQ_GC_MAX 8
 209#define FQ_GC_AGE (3*HZ)
 210
 211static bool fq_gc_candidate(const struct fq_flow *f)
 212{
 213	return fq_flow_is_detached(f) &&
 214	       time_after(jiffies, f->age + FQ_GC_AGE);
 215}
 216
 217static void fq_gc(struct fq_sched_data *q,
 218		  struct rb_root *root,
 219		  struct sock *sk)
 220{
 
 221	struct rb_node **p, *parent;
 222	void *tofree[FQ_GC_MAX];
 223	struct fq_flow *f;
 224	int i, fcnt = 0;
 225
 226	p = &root->rb_node;
 227	parent = NULL;
 228	while (*p) {
 229		parent = *p;
 230
 231		f = rb_entry(parent, struct fq_flow, fq_node);
 232		if (f->sk == sk)
 233			break;
 234
 235		if (fq_gc_candidate(f)) {
 236			tofree[fcnt++] = f;
 237			if (fcnt == FQ_GC_MAX)
 238				break;
 239		}
 240
 241		if (f->sk > sk)
 242			p = &parent->rb_right;
 243		else
 244			p = &parent->rb_left;
 245	}
 246
 247	if (!fcnt)
 248		return;
 249
 250	for (i = fcnt; i > 0; ) {
 251		f = tofree[--i];
 252		rb_erase(&f->fq_node, root);
 253	}
 254	q->flows -= fcnt;
 255	q->inactive_flows -= fcnt;
 256	q->stat_gc_flows += fcnt;
 
 
 257
 258	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
 
 
 259}
 260
 261static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 262{
 263	struct rb_node **p, *parent;
 264	struct sock *sk = skb->sk;
 265	struct rb_root *root;
 266	struct fq_flow *f;
 267
 268	/* warning: no starvation prevention... */
 269	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 270		return &q->internal;
 271
 272	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
 273	 * or a listener (SYNCOOKIE mode)
 274	 * 1) request sockets are not full blown,
 275	 *    they do not contain sk_pacing_rate
 276	 * 2) They are not part of a 'flow' yet
 277	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
 278	 *    especially if the listener set SO_MAX_PACING_RATE
 279	 * 4) We pretend they are orphaned
 280	 */
 281	if (!sk || sk_listener(sk)) {
 282		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 283
 284		/* By forcing low order bit to 1, we make sure to not
 285		 * collide with a local flow (socket pointers are word aligned)
 286		 */
 287		sk = (struct sock *)((hash << 1) | 1UL);
 288		skb_orphan(skb);
 289	} else if (sk->sk_state == TCP_CLOSE) {
 290		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 291		/*
 292		 * Sockets in TCP_CLOSE are non connected.
 293		 * Typical use case is UDP sockets, they can send packets
 294		 * with sendto() to many different destinations.
 295		 * We probably could use a generic bit advertising
 296		 * non connected sockets, instead of sk_state == TCP_CLOSE,
 297		 * if we care enough.
 298		 */
 299		sk = (struct sock *)((hash << 1) | 1UL);
 300	}
 301
 302	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
 303
 304	if (q->flows >= (2U << q->fq_trees_log) &&
 305	    q->inactive_flows > q->flows/2)
 306		fq_gc(q, root, sk);
 307
 308	p = &root->rb_node;
 309	parent = NULL;
 310	while (*p) {
 311		parent = *p;
 312
 313		f = rb_entry(parent, struct fq_flow, fq_node);
 314		if (f->sk == sk) {
 315			/* socket might have been reallocated, so check
 316			 * if its sk_hash is the same.
 317			 * It not, we need to refill credit with
 318			 * initial quantum
 319			 */
 320			if (unlikely(skb->sk == sk &&
 321				     f->socket_hash != sk->sk_hash)) {
 322				f->credit = q->initial_quantum;
 323				f->socket_hash = sk->sk_hash;
 324				if (q->rate_enable)
 325					smp_store_release(&sk->sk_pacing_status,
 326							  SK_PACING_FQ);
 327				if (fq_flow_is_throttled(f))
 328					fq_flow_unset_throttled(q, f);
 329				f->time_next_packet = 0ULL;
 330			}
 331			return f;
 332		}
 333		if (f->sk > sk)
 334			p = &parent->rb_right;
 335		else
 336			p = &parent->rb_left;
 337	}
 338
 339	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 340	if (unlikely(!f)) {
 341		q->stat_allocation_errors++;
 342		return &q->internal;
 343	}
 344	/* f->t_root is already zeroed after kmem_cache_zalloc() */
 345
 346	fq_flow_set_detached(f);
 347	f->sk = sk;
 348	if (skb->sk == sk) {
 349		f->socket_hash = sk->sk_hash;
 350		if (q->rate_enable)
 351			smp_store_release(&sk->sk_pacing_status,
 352					  SK_PACING_FQ);
 353	}
 354	f->credit = q->initial_quantum;
 355
 356	rb_link_node(&f->fq_node, parent, p);
 357	rb_insert_color(&f->fq_node, root);
 358
 359	q->flows++;
 360	q->inactive_flows++;
 361	return f;
 362}
 363
 364static struct sk_buff *fq_peek(struct fq_flow *flow)
 365{
 366	struct sk_buff *skb = skb_rb_first(&flow->t_root);
 367	struct sk_buff *head = flow->head;
 368
 369	if (!skb)
 370		return head;
 371
 372	if (!head)
 373		return skb;
 374
 375	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
 376		return skb;
 377	return head;
 378}
 379
 380static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
 381			  struct sk_buff *skb)
 382{
 383	if (skb == flow->head) {
 384		flow->head = skb->next;
 385	} else {
 386		rb_erase(&skb->rbnode, &flow->t_root);
 387		skb->dev = qdisc_dev(sch);
 388	}
 389}
 390
 391/* Remove one skb from flow queue.
 392 * This skb must be the return value of prior fq_peek().
 393 */
 394static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
 395			   struct sk_buff *skb)
 396{
 397	fq_erase_head(sch, flow, skb);
 398	skb_mark_not_on_list(skb);
 399	flow->qlen--;
 400	qdisc_qstats_backlog_dec(sch, skb);
 401	sch->q.qlen--;
 
 
 402}
 403
 404static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 405{
 406	struct rb_node **p, *parent;
 407	struct sk_buff *head, *aux;
 408
 
 
 409	head = flow->head;
 410	if (!head ||
 411	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
 412		if (!head)
 413			flow->head = skb;
 414		else
 415			flow->tail->next = skb;
 416		flow->tail = skb;
 417		skb->next = NULL;
 418		return;
 419	}
 420
 421	p = &flow->t_root.rb_node;
 422	parent = NULL;
 423
 424	while (*p) {
 425		parent = *p;
 426		aux = rb_to_skb(parent);
 427		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
 428			p = &parent->rb_right;
 429		else
 430			p = &parent->rb_left;
 431	}
 432	rb_link_node(&skb->rbnode, parent, p);
 433	rb_insert_color(&skb->rbnode, &flow->t_root);
 434}
 435
 436static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
 437				    const struct fq_sched_data *q)
 438{
 439	return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
 440}
 441
 442static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 443		      struct sk_buff **to_free)
 444{
 445	struct fq_sched_data *q = qdisc_priv(sch);
 446	struct fq_flow *f;
 447
 448	if (unlikely(sch->q.qlen >= sch->limit))
 449		return qdisc_drop(skb, sch, to_free);
 450
 451	if (!skb->tstamp) {
 452		fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
 453	} else {
 454		/* Check if packet timestamp is too far in the future.
 455		 * Try first if our cached value, to avoid ktime_get_ns()
 456		 * cost in most cases.
 457		 */
 458		if (fq_packet_beyond_horizon(skb, q)) {
 459			/* Refresh our cache and check another time */
 460			q->ktime_cache = ktime_get_ns();
 461			if (fq_packet_beyond_horizon(skb, q)) {
 462				if (q->horizon_drop) {
 463					q->stat_horizon_drops++;
 464					return qdisc_drop(skb, sch, to_free);
 465				}
 466				q->stat_horizon_caps++;
 467				skb->tstamp = q->ktime_cache + q->horizon;
 468			}
 469		}
 470		fq_skb_cb(skb)->time_to_send = skb->tstamp;
 471	}
 472
 473	f = fq_classify(skb, q);
 474	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 475		q->stat_flows_plimit++;
 476		return qdisc_drop(skb, sch, to_free);
 477	}
 478
 479	f->qlen++;
 480	qdisc_qstats_backlog_inc(sch, skb);
 481	if (fq_flow_is_detached(f)) {
 
 
 482		fq_flow_add_tail(&q->new_flows, f);
 483		if (time_after(jiffies, f->age + q->flow_refill_delay))
 484			f->credit = max_t(u32, f->credit, q->quantum);
 
 
 
 
 
 
 485		q->inactive_flows--;
 486	}
 487
 488	/* Note: this overwrites f->age */
 489	flow_queue_add(f, skb);
 490
 491	if (unlikely(f == &q->internal)) {
 492		q->stat_internal_packets++;
 493	}
 494	sch->q.qlen++;
 495
 496	return NET_XMIT_SUCCESS;
 497}
 498
 499static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 500{
 501	unsigned long sample;
 502	struct rb_node *p;
 503
 504	if (q->time_next_delayed_flow > now)
 505		return;
 506
 507	/* Update unthrottle latency EWMA.
 508	 * This is cheap and can help diagnosing timer/latency problems.
 509	 */
 510	sample = (unsigned long)(now - q->time_next_delayed_flow);
 511	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
 512	q->unthrottle_latency_ns += sample >> 3;
 513
 514	q->time_next_delayed_flow = ~0ULL;
 515	while ((p = rb_first(&q->delayed)) != NULL) {
 516		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
 517
 518		if (f->time_next_packet > now) {
 519			q->time_next_delayed_flow = f->time_next_packet;
 520			break;
 521		}
 522		fq_flow_unset_throttled(q, f);
 523	}
 524}
 525
 526static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 527{
 528	struct fq_sched_data *q = qdisc_priv(sch);
 529	struct fq_flow_head *head;
 530	struct sk_buff *skb;
 531	struct fq_flow *f;
 532	unsigned long rate;
 533	u32 plen;
 534	u64 now;
 535
 536	if (!sch->q.qlen)
 537		return NULL;
 538
 539	skb = fq_peek(&q->internal);
 540	if (unlikely(skb)) {
 541		fq_dequeue_skb(sch, &q->internal, skb);
 542		goto out;
 543	}
 544
 545	q->ktime_cache = now = ktime_get_ns();
 546	fq_check_throttled(q, now);
 547begin:
 548	head = &q->new_flows;
 549	if (!head->first) {
 550		head = &q->old_flows;
 551		if (!head->first) {
 552			if (q->time_next_delayed_flow != ~0ULL)
 553				qdisc_watchdog_schedule_range_ns(&q->watchdog,
 554							q->time_next_delayed_flow,
 555							q->timer_slack);
 556			return NULL;
 557		}
 558	}
 559	f = head->first;
 560
 561	if (f->credit <= 0) {
 562		f->credit += q->quantum;
 563		head->first = f->next;
 564		fq_flow_add_tail(&q->old_flows, f);
 565		goto begin;
 566	}
 567
 568	skb = fq_peek(f);
 569	if (skb) {
 570		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
 571					     f->time_next_packet);
 572
 573		if (now < time_next_packet) {
 574			head->first = f->next;
 575			f->time_next_packet = time_next_packet;
 576			fq_flow_set_throttled(q, f);
 577			goto begin;
 578		}
 579		prefetch(&skb->end);
 580		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
 581			INET_ECN_set_ce(skb);
 582			q->stat_ce_mark++;
 583		}
 584		fq_dequeue_skb(sch, f, skb);
 585	} else {
 
 
 586		head->first = f->next;
 587		/* force a pass through old_flows to prevent starvation */
 588		if ((head == &q->new_flows) && q->old_flows.first) {
 589			fq_flow_add_tail(&q->old_flows, f);
 590		} else {
 591			fq_flow_set_detached(f);
 592			q->inactive_flows++;
 593		}
 594		goto begin;
 595	}
 
 596	plen = qdisc_pkt_len(skb);
 597	f->credit -= plen;
 598
 599	if (!q->rate_enable)
 600		goto out;
 601
 602	rate = q->flow_max_rate;
 603
 604	/* If EDT time was provided for this skb, we need to
 605	 * update f->time_next_packet only if this qdisc enforces
 606	 * a flow max rate.
 607	 */
 608	if (!skb->tstamp) {
 609		if (skb->sk)
 610			rate = min(skb->sk->sk_pacing_rate, rate);
 611
 612		if (rate <= q->low_rate_threshold) {
 613			f->credit = 0;
 614		} else {
 615			plen = max(plen, q->quantum);
 616			if (f->credit > 0)
 617				goto out;
 618		}
 619	}
 620	if (rate != ~0UL) {
 621		u64 len = (u64)plen * NSEC_PER_SEC;
 622
 623		if (likely(rate))
 624			len = div64_ul(len, rate);
 625		/* Since socket rate can change later,
 626		 * clamp the delay to 1 second.
 627		 * Really, providers of too big packets should be fixed !
 628		 */
 629		if (unlikely(len > NSEC_PER_SEC)) {
 630			len = NSEC_PER_SEC;
 631			q->stat_pkts_too_long++;
 632		}
 633		/* Account for schedule/timers drifts.
 634		 * f->time_next_packet was set when prior packet was sent,
 635		 * and current time (@now) can be too late by tens of us.
 636		 */
 637		if (f->time_next_packet)
 638			len -= min(len/2, now - f->time_next_packet);
 639		f->time_next_packet = now + len;
 640	}
 641out:
 642	qdisc_bstats_update(sch, skb);
 643	return skb;
 644}
 645
 646static void fq_flow_purge(struct fq_flow *flow)
 647{
 648	struct rb_node *p = rb_first(&flow->t_root);
 649
 650	while (p) {
 651		struct sk_buff *skb = rb_to_skb(p);
 652
 653		p = rb_next(p);
 654		rb_erase(&skb->rbnode, &flow->t_root);
 655		rtnl_kfree_skbs(skb, skb);
 656	}
 657	rtnl_kfree_skbs(flow->head, flow->tail);
 658	flow->head = NULL;
 659	flow->qlen = 0;
 660}
 661
 662static void fq_reset(struct Qdisc *sch)
 663{
 664	struct fq_sched_data *q = qdisc_priv(sch);
 665	struct rb_root *root;
 666	struct rb_node *p;
 667	struct fq_flow *f;
 668	unsigned int idx;
 669
 670	sch->q.qlen = 0;
 671	sch->qstats.backlog = 0;
 672
 673	fq_flow_purge(&q->internal);
 674
 675	if (!q->fq_root)
 676		return;
 677
 678	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 679		root = &q->fq_root[idx];
 680		while ((p = rb_first(root)) != NULL) {
 681			f = rb_entry(p, struct fq_flow, fq_node);
 682			rb_erase(p, root);
 683
 684			fq_flow_purge(f);
 685
 686			kmem_cache_free(fq_flow_cachep, f);
 687		}
 688	}
 689	q->new_flows.first	= NULL;
 690	q->old_flows.first	= NULL;
 691	q->delayed		= RB_ROOT;
 692	q->flows		= 0;
 693	q->inactive_flows	= 0;
 694	q->throttled_flows	= 0;
 695}
 696
 697static void fq_rehash(struct fq_sched_data *q,
 698		      struct rb_root *old_array, u32 old_log,
 699		      struct rb_root *new_array, u32 new_log)
 700{
 701	struct rb_node *op, **np, *parent;
 702	struct rb_root *oroot, *nroot;
 703	struct fq_flow *of, *nf;
 704	int fcnt = 0;
 705	u32 idx;
 706
 707	for (idx = 0; idx < (1U << old_log); idx++) {
 708		oroot = &old_array[idx];
 709		while ((op = rb_first(oroot)) != NULL) {
 710			rb_erase(op, oroot);
 711			of = rb_entry(op, struct fq_flow, fq_node);
 712			if (fq_gc_candidate(of)) {
 713				fcnt++;
 714				kmem_cache_free(fq_flow_cachep, of);
 715				continue;
 716			}
 717			nroot = &new_array[hash_ptr(of->sk, new_log)];
 718
 719			np = &nroot->rb_node;
 720			parent = NULL;
 721			while (*np) {
 722				parent = *np;
 723
 724				nf = rb_entry(parent, struct fq_flow, fq_node);
 725				BUG_ON(nf->sk == of->sk);
 726
 727				if (nf->sk > of->sk)
 728					np = &parent->rb_right;
 729				else
 730					np = &parent->rb_left;
 731			}
 732
 733			rb_link_node(&of->fq_node, parent, np);
 734			rb_insert_color(&of->fq_node, nroot);
 735		}
 736	}
 737	q->flows -= fcnt;
 738	q->inactive_flows -= fcnt;
 739	q->stat_gc_flows += fcnt;
 740}
 741
 742static void fq_free(void *addr)
 743{
 744	kvfree(addr);
 745}
 746
 747static int fq_resize(struct Qdisc *sch, u32 log)
 748{
 749	struct fq_sched_data *q = qdisc_priv(sch);
 750	struct rb_root *array;
 751	void *old_fq_root;
 752	u32 idx;
 753
 754	if (q->fq_root && log == q->fq_trees_log)
 755		return 0;
 756
 757	/* If XPS was setup, we can allocate memory on right NUMA node */
 758	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
 759			      netdev_queue_numa_node_read(sch->dev_queue));
 760	if (!array)
 761		return -ENOMEM;
 762
 763	for (idx = 0; idx < (1U << log); idx++)
 764		array[idx] = RB_ROOT;
 765
 766	sch_tree_lock(sch);
 767
 768	old_fq_root = q->fq_root;
 769	if (old_fq_root)
 770		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 771
 772	q->fq_root = array;
 773	q->fq_trees_log = log;
 774
 775	sch_tree_unlock(sch);
 776
 777	fq_free(old_fq_root);
 778
 779	return 0;
 780}
 781
 782static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 783	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
 784
 785	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
 786	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
 787	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
 788	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
 789	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
 790	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
 791	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
 792	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
 793	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
 794	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
 795	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
 796	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
 797	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
 798	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
 799	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
 800};
 801
 802static int fq_change(struct Qdisc *sch, struct nlattr *opt,
 803		     struct netlink_ext_ack *extack)
 804{
 805	struct fq_sched_data *q = qdisc_priv(sch);
 806	struct nlattr *tb[TCA_FQ_MAX + 1];
 807	int err, drop_count = 0;
 808	unsigned drop_len = 0;
 809	u32 fq_log;
 810
 
 
 
 811	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
 812					  NULL);
 813	if (err < 0)
 814		return err;
 815
 816	sch_tree_lock(sch);
 817
 818	fq_log = q->fq_trees_log;
 819
 820	if (tb[TCA_FQ_BUCKETS_LOG]) {
 821		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 822
 823		if (nval >= 1 && nval <= ilog2(256*1024))
 824			fq_log = nval;
 825		else
 826			err = -EINVAL;
 827	}
 828	if (tb[TCA_FQ_PLIMIT])
 829		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 830
 831	if (tb[TCA_FQ_FLOW_PLIMIT])
 832		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 833
 834	if (tb[TCA_FQ_QUANTUM]) {
 835		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 836
 837		if (quantum > 0 && quantum <= (1 << 20)) {
 838			q->quantum = quantum;
 839		} else {
 840			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
 841			err = -EINVAL;
 842		}
 843	}
 844
 845	if (tb[TCA_FQ_INITIAL_QUANTUM])
 846		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 847
 848	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 849		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 850				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 851
 852	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
 853		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 854
 855		q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
 856	}
 857	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
 858		q->low_rate_threshold =
 859			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
 860
 861	if (tb[TCA_FQ_RATE_ENABLE]) {
 862		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 863
 864		if (enable <= 1)
 865			q->rate_enable = enable;
 866		else
 867			err = -EINVAL;
 868	}
 869
 870	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 871		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 872
 873		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 874	}
 875
 876	if (tb[TCA_FQ_ORPHAN_MASK])
 877		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
 878
 879	if (tb[TCA_FQ_CE_THRESHOLD])
 880		q->ce_threshold = (u64)NSEC_PER_USEC *
 881				  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
 882
 883	if (tb[TCA_FQ_TIMER_SLACK])
 884		q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
 885
 886	if (tb[TCA_FQ_HORIZON])
 887		q->horizon = (u64)NSEC_PER_USEC *
 888				  nla_get_u32(tb[TCA_FQ_HORIZON]);
 889
 890	if (tb[TCA_FQ_HORIZON_DROP])
 891		q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
 892
 893	if (!err) {
 894
 895		sch_tree_unlock(sch);
 896		err = fq_resize(sch, fq_log);
 897		sch_tree_lock(sch);
 898	}
 899	while (sch->q.qlen > sch->limit) {
 900		struct sk_buff *skb = fq_dequeue(sch);
 901
 902		if (!skb)
 903			break;
 904		drop_len += qdisc_pkt_len(skb);
 905		rtnl_kfree_skbs(skb, skb);
 906		drop_count++;
 907	}
 908	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
 909
 910	sch_tree_unlock(sch);
 911	return err;
 912}
 913
 914static void fq_destroy(struct Qdisc *sch)
 915{
 916	struct fq_sched_data *q = qdisc_priv(sch);
 917
 918	fq_reset(sch);
 919	fq_free(q->fq_root);
 920	qdisc_watchdog_cancel(&q->watchdog);
 921}
 922
 923static int fq_init(struct Qdisc *sch, struct nlattr *opt,
 924		   struct netlink_ext_ack *extack)
 925{
 926	struct fq_sched_data *q = qdisc_priv(sch);
 927	int err;
 928
 929	sch->limit		= 10000;
 930	q->flow_plimit		= 100;
 931	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
 932	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
 933	q->flow_refill_delay	= msecs_to_jiffies(40);
 934	q->flow_max_rate	= ~0UL;
 935	q->time_next_delayed_flow = ~0ULL;
 936	q->rate_enable		= 1;
 937	q->new_flows.first	= NULL;
 938	q->old_flows.first	= NULL;
 939	q->delayed		= RB_ROOT;
 940	q->fq_root		= NULL;
 941	q->fq_trees_log		= ilog2(1024);
 942	q->orphan_mask		= 1024 - 1;
 943	q->low_rate_threshold	= 550000 / 8;
 944
 945	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
 946
 947	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
 948	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
 949
 950	/* Default ce_threshold of 4294 seconds */
 951	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
 952
 953	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
 954
 955	if (opt)
 956		err = fq_change(sch, opt, extack);
 957	else
 958		err = fq_resize(sch, q->fq_trees_log);
 959
 960	return err;
 961}
 962
 963static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 964{
 965	struct fq_sched_data *q = qdisc_priv(sch);
 966	u64 ce_threshold = q->ce_threshold;
 967	u64 horizon = q->horizon;
 968	struct nlattr *opts;
 969
 970	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
 971	if (opts == NULL)
 972		goto nla_put_failure;
 973
 974	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 975
 976	do_div(ce_threshold, NSEC_PER_USEC);
 977	do_div(horizon, NSEC_PER_USEC);
 978
 979	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 980	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 981	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 982	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 983	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 984	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
 985			min_t(unsigned long, q->flow_max_rate, ~0U)) ||
 986	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 987			jiffies_to_usecs(q->flow_refill_delay)) ||
 988	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
 989	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
 990			q->low_rate_threshold) ||
 991	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
 992	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
 993	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
 994	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
 995	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
 996		goto nla_put_failure;
 997
 998	return nla_nest_end(skb, opts);
 999
1000nla_put_failure:
1001	return -1;
1002}
1003
1004static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1005{
1006	struct fq_sched_data *q = qdisc_priv(sch);
1007	struct tc_fq_qd_stats st;
1008
1009	sch_tree_lock(sch);
1010
1011	st.gc_flows		  = q->stat_gc_flows;
1012	st.highprio_packets	  = q->stat_internal_packets;
1013	st.tcp_retrans		  = 0;
1014	st.throttled		  = q->stat_throttled;
1015	st.flows_plimit		  = q->stat_flows_plimit;
1016	st.pkts_too_long	  = q->stat_pkts_too_long;
1017	st.allocation_errors	  = q->stat_allocation_errors;
1018	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1019				    ktime_get_ns();
1020	st.flows		  = q->flows;
1021	st.inactive_flows	  = q->inactive_flows;
1022	st.throttled_flows	  = q->throttled_flows;
1023	st.unthrottle_latency_ns  = min_t(unsigned long,
1024					  q->unthrottle_latency_ns, ~0U);
1025	st.ce_mark		  = q->stat_ce_mark;
1026	st.horizon_drops	  = q->stat_horizon_drops;
1027	st.horizon_caps		  = q->stat_horizon_caps;
1028	sch_tree_unlock(sch);
1029
1030	return gnet_stats_copy_app(d, &st, sizeof(st));
1031}
1032
1033static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1034	.id		=	"fq",
1035	.priv_size	=	sizeof(struct fq_sched_data),
1036
1037	.enqueue	=	fq_enqueue,
1038	.dequeue	=	fq_dequeue,
1039	.peek		=	qdisc_peek_dequeued,
1040	.init		=	fq_init,
1041	.reset		=	fq_reset,
1042	.destroy	=	fq_destroy,
1043	.change		=	fq_change,
1044	.dump		=	fq_dump,
1045	.dump_stats	=	fq_dump_stats,
1046	.owner		=	THIS_MODULE,
1047};
1048
1049static int __init fq_module_init(void)
1050{
1051	int ret;
1052
1053	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1054					   sizeof(struct fq_flow),
1055					   0, 0, NULL);
1056	if (!fq_flow_cachep)
1057		return -ENOMEM;
1058
1059	ret = register_qdisc(&fq_qdisc_ops);
1060	if (ret)
1061		kmem_cache_destroy(fq_flow_cachep);
1062	return ret;
1063}
1064
1065static void __exit fq_module_exit(void)
1066{
1067	unregister_qdisc(&fq_qdisc_ops);
1068	kmem_cache_destroy(fq_flow_cachep);
1069}
1070
1071module_init(fq_module_init)
1072module_exit(fq_module_exit)
1073MODULE_AUTHOR("Eric Dumazet");
1074MODULE_LICENSE("GPL");
1075MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   4 *
   5 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
   6 *
   7 *  Meant to be mostly used for locally generated traffic :
   8 *  Fast classification depends on skb->sk being set before reaching us.
   9 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  10 *  All packets belonging to a socket are considered as a 'flow'.
  11 *
  12 *  Flows are dynamically allocated and stored in a hash table of RB trees
  13 *  They are also part of one Round Robin 'queues' (new or old flows)
  14 *
  15 *  Burst avoidance (aka pacing) capability :
  16 *
  17 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  18 *  bunch of packets, and this packet scheduler adds delay between
  19 *  packets to respect rate limitation.
  20 *
  21 *  enqueue() :
  22 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  23 *     If non existent flow, create it, add it to the tree.
  24 *     Add skb to the per flow list of skb (fifo).
  25 *   - Use a special fifo for high prio packets
  26 *
  27 *  dequeue() : serves flows in Round Robin
  28 *  Note : When a flow becomes empty, we do not immediately remove it from
  29 *  rb trees, for performance reasons (its expected to send additional packets,
  30 *  or SLAB cache will reuse socket for another flow)
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/jiffies.h>
  37#include <linux/string.h>
  38#include <linux/in.h>
  39#include <linux/errno.h>
  40#include <linux/init.h>
  41#include <linux/skbuff.h>
  42#include <linux/slab.h>
  43#include <linux/rbtree.h>
  44#include <linux/hash.h>
  45#include <linux/prefetch.h>
  46#include <linux/vmalloc.h>
  47#include <net/netlink.h>
  48#include <net/pkt_sched.h>
  49#include <net/sock.h>
  50#include <net/tcp_states.h>
  51#include <net/tcp.h>
  52
  53struct fq_skb_cb {
  54	u64	        time_to_send;
  55};
  56
  57static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
  58{
  59	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
  60	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
  61}
  62
  63/*
  64 * Per flow structure, dynamically allocated.
  65 * If packets have monotically increasing time_to_send, they are placed in O(1)
  66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
  67 */
  68struct fq_flow {
 
  69	struct rb_root	t_root;
  70	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
  71	union {
  72		struct sk_buff *tail;	/* last skb in the list */
  73		unsigned long  age;	/* jiffies when flow was emptied, for gc */
  74	};
  75	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
  76	struct sock	*sk;
 
  77	int		qlen;		/* number of packets in flow queue */
 
 
  78	int		credit;
  79	u32		socket_hash;	/* sk_hash */
  80	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
 
  81
  82	struct rb_node  rate_node;	/* anchor in q->delayed tree */
  83	u64		time_next_packet;
  84};
  85
  86struct fq_flow_head {
  87	struct fq_flow *first;
  88	struct fq_flow *last;
  89};
  90
  91struct fq_sched_data {
  92	struct fq_flow_head new_flows;
  93
  94	struct fq_flow_head old_flows;
  95
  96	struct rb_root	delayed;	/* for rate limited flows */
  97	u64		time_next_delayed_flow;
 
  98	unsigned long	unthrottle_latency_ns;
  99
 100	struct fq_flow	internal;	/* for non classified or high prio packets */
 101	u32		quantum;
 102	u32		initial_quantum;
 103	u32		flow_refill_delay;
 104	u32		flow_plimit;	/* max packets per flow */
 105	unsigned long	flow_max_rate;	/* optional max rate per flow */
 106	u64		ce_threshold;
 
 107	u32		orphan_mask;	/* mask for orphaned skb */
 108	u32		low_rate_threshold;
 109	struct rb_root	*fq_root;
 110	u8		rate_enable;
 111	u8		fq_trees_log;
 112
 113	u32		flows;
 114	u32		inactive_flows;
 115	u32		throttled_flows;
 116
 117	u64		stat_gc_flows;
 118	u64		stat_internal_packets;
 119	u64		stat_throttled;
 120	u64		stat_ce_mark;
 
 
 121	u64		stat_flows_plimit;
 122	u64		stat_pkts_too_long;
 123	u64		stat_allocation_errors;
 
 
 124	struct qdisc_watchdog watchdog;
 125};
 126
 127/* special value to mark a detached flow (not on old/new list) */
 128static struct fq_flow detached, throttled;
 129
 
 
 
 130static void fq_flow_set_detached(struct fq_flow *f)
 131{
 132	f->next = &detached;
 133	f->age = jiffies;
 134}
 135
 136static bool fq_flow_is_detached(const struct fq_flow *f)
 137{
 138	return f->next == &detached;
 139}
 140
 
 
 
 141static bool fq_flow_is_throttled(const struct fq_flow *f)
 142{
 143	return f->next == &throttled;
 144}
 145
 146static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 147{
 148	if (head->first)
 149		head->last->next = flow;
 150	else
 151		head->first = flow;
 152	head->last = flow;
 153	flow->next = NULL;
 154}
 155
 156static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
 157{
 158	rb_erase(&f->rate_node, &q->delayed);
 159	q->throttled_flows--;
 160	fq_flow_add_tail(&q->old_flows, f);
 161}
 162
 163static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 164{
 165	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 166
 167	while (*p) {
 168		struct fq_flow *aux;
 169
 170		parent = *p;
 171		aux = rb_entry(parent, struct fq_flow, rate_node);
 172		if (f->time_next_packet >= aux->time_next_packet)
 173			p = &parent->rb_right;
 174		else
 175			p = &parent->rb_left;
 176	}
 177	rb_link_node(&f->rate_node, parent, p);
 178	rb_insert_color(&f->rate_node, &q->delayed);
 179	q->throttled_flows++;
 180	q->stat_throttled++;
 181
 182	f->next = &throttled;
 183	if (q->time_next_delayed_flow > f->time_next_packet)
 184		q->time_next_delayed_flow = f->time_next_packet;
 185}
 186
 187
 188static struct kmem_cache *fq_flow_cachep __read_mostly;
 189
 190
 191/* limit number of collected flows per round */
 192#define FQ_GC_MAX 8
 193#define FQ_GC_AGE (3*HZ)
 194
 195static bool fq_gc_candidate(const struct fq_flow *f)
 196{
 197	return fq_flow_is_detached(f) &&
 198	       time_after(jiffies, f->age + FQ_GC_AGE);
 199}
 200
 201static void fq_gc(struct fq_sched_data *q,
 202		  struct rb_root *root,
 203		  struct sock *sk)
 204{
 205	struct fq_flow *f, *tofree[FQ_GC_MAX];
 206	struct rb_node **p, *parent;
 207	int fcnt = 0;
 
 
 208
 209	p = &root->rb_node;
 210	parent = NULL;
 211	while (*p) {
 212		parent = *p;
 213
 214		f = rb_entry(parent, struct fq_flow, fq_node);
 215		if (f->sk == sk)
 216			break;
 217
 218		if (fq_gc_candidate(f)) {
 219			tofree[fcnt++] = f;
 220			if (fcnt == FQ_GC_MAX)
 221				break;
 222		}
 223
 224		if (f->sk > sk)
 225			p = &parent->rb_right;
 226		else
 227			p = &parent->rb_left;
 228	}
 229
 
 
 
 
 
 
 
 230	q->flows -= fcnt;
 231	q->inactive_flows -= fcnt;
 232	q->stat_gc_flows += fcnt;
 233	while (fcnt) {
 234		struct fq_flow *f = tofree[--fcnt];
 235
 236		rb_erase(&f->fq_node, root);
 237		kmem_cache_free(fq_flow_cachep, f);
 238	}
 239}
 240
 241static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 242{
 243	struct rb_node **p, *parent;
 244	struct sock *sk = skb->sk;
 245	struct rb_root *root;
 246	struct fq_flow *f;
 247
 248	/* warning: no starvation prevention... */
 249	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 250		return &q->internal;
 251
 252	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
 253	 * or a listener (SYNCOOKIE mode)
 254	 * 1) request sockets are not full blown,
 255	 *    they do not contain sk_pacing_rate
 256	 * 2) They are not part of a 'flow' yet
 257	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
 258	 *    especially if the listener set SO_MAX_PACING_RATE
 259	 * 4) We pretend they are orphaned
 260	 */
 261	if (!sk || sk_listener(sk)) {
 262		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 263
 264		/* By forcing low order bit to 1, we make sure to not
 265		 * collide with a local flow (socket pointers are word aligned)
 266		 */
 267		sk = (struct sock *)((hash << 1) | 1UL);
 268		skb_orphan(skb);
 269	} else if (sk->sk_state == TCP_CLOSE) {
 270		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
 271		/*
 272		 * Sockets in TCP_CLOSE are non connected.
 273		 * Typical use case is UDP sockets, they can send packets
 274		 * with sendto() to many different destinations.
 275		 * We probably could use a generic bit advertising
 276		 * non connected sockets, instead of sk_state == TCP_CLOSE,
 277		 * if we care enough.
 278		 */
 279		sk = (struct sock *)((hash << 1) | 1UL);
 280	}
 281
 282	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
 283
 284	if (q->flows >= (2U << q->fq_trees_log) &&
 285	    q->inactive_flows > q->flows/2)
 286		fq_gc(q, root, sk);
 287
 288	p = &root->rb_node;
 289	parent = NULL;
 290	while (*p) {
 291		parent = *p;
 292
 293		f = rb_entry(parent, struct fq_flow, fq_node);
 294		if (f->sk == sk) {
 295			/* socket might have been reallocated, so check
 296			 * if its sk_hash is the same.
 297			 * It not, we need to refill credit with
 298			 * initial quantum
 299			 */
 300			if (unlikely(skb->sk == sk &&
 301				     f->socket_hash != sk->sk_hash)) {
 302				f->credit = q->initial_quantum;
 303				f->socket_hash = sk->sk_hash;
 
 
 
 304				if (fq_flow_is_throttled(f))
 305					fq_flow_unset_throttled(q, f);
 306				f->time_next_packet = 0ULL;
 307			}
 308			return f;
 309		}
 310		if (f->sk > sk)
 311			p = &parent->rb_right;
 312		else
 313			p = &parent->rb_left;
 314	}
 315
 316	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 317	if (unlikely(!f)) {
 318		q->stat_allocation_errors++;
 319		return &q->internal;
 320	}
 321	/* f->t_root is already zeroed after kmem_cache_zalloc() */
 322
 323	fq_flow_set_detached(f);
 324	f->sk = sk;
 325	if (skb->sk == sk)
 326		f->socket_hash = sk->sk_hash;
 
 
 
 
 327	f->credit = q->initial_quantum;
 328
 329	rb_link_node(&f->fq_node, parent, p);
 330	rb_insert_color(&f->fq_node, root);
 331
 332	q->flows++;
 333	q->inactive_flows++;
 334	return f;
 335}
 336
 337static struct sk_buff *fq_peek(struct fq_flow *flow)
 338{
 339	struct sk_buff *skb = skb_rb_first(&flow->t_root);
 340	struct sk_buff *head = flow->head;
 341
 342	if (!skb)
 343		return head;
 344
 345	if (!head)
 346		return skb;
 347
 348	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
 349		return skb;
 350	return head;
 351}
 352
 353static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
 354			  struct sk_buff *skb)
 355{
 356	if (skb == flow->head) {
 357		flow->head = skb->next;
 358	} else {
 359		rb_erase(&skb->rbnode, &flow->t_root);
 360		skb->dev = qdisc_dev(sch);
 361	}
 362}
 363
 364/* remove one skb from head of flow queue */
 365static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
 366{
 367	struct sk_buff *skb = fq_peek(flow);
 368
 369	if (skb) {
 370		fq_erase_head(sch, flow, skb);
 371		skb_mark_not_on_list(skb);
 372		flow->qlen--;
 373		qdisc_qstats_backlog_dec(sch, skb);
 374		sch->q.qlen--;
 375	}
 376	return skb;
 377}
 378
 379static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 380{
 381	struct rb_node **p, *parent;
 382	struct sk_buff *head, *aux;
 383
 384	fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
 385
 386	head = flow->head;
 387	if (!head ||
 388	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
 389		if (!head)
 390			flow->head = skb;
 391		else
 392			flow->tail->next = skb;
 393		flow->tail = skb;
 394		skb->next = NULL;
 395		return;
 396	}
 397
 398	p = &flow->t_root.rb_node;
 399	parent = NULL;
 400
 401	while (*p) {
 402		parent = *p;
 403		aux = rb_to_skb(parent);
 404		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
 405			p = &parent->rb_right;
 406		else
 407			p = &parent->rb_left;
 408	}
 409	rb_link_node(&skb->rbnode, parent, p);
 410	rb_insert_color(&skb->rbnode, &flow->t_root);
 411}
 412
 
 
 
 
 
 
 413static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 414		      struct sk_buff **to_free)
 415{
 416	struct fq_sched_data *q = qdisc_priv(sch);
 417	struct fq_flow *f;
 418
 419	if (unlikely(sch->q.qlen >= sch->limit))
 420		return qdisc_drop(skb, sch, to_free);
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422	f = fq_classify(skb, q);
 423	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 424		q->stat_flows_plimit++;
 425		return qdisc_drop(skb, sch, to_free);
 426	}
 427
 428	f->qlen++;
 429	qdisc_qstats_backlog_inc(sch, skb);
 430	if (fq_flow_is_detached(f)) {
 431		struct sock *sk = skb->sk;
 432
 433		fq_flow_add_tail(&q->new_flows, f);
 434		if (time_after(jiffies, f->age + q->flow_refill_delay))
 435			f->credit = max_t(u32, f->credit, q->quantum);
 436		if (sk && q->rate_enable) {
 437			if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
 438				     SK_PACING_FQ))
 439				smp_store_release(&sk->sk_pacing_status,
 440						  SK_PACING_FQ);
 441		}
 442		q->inactive_flows--;
 443	}
 444
 445	/* Note: this overwrites f->age */
 446	flow_queue_add(f, skb);
 447
 448	if (unlikely(f == &q->internal)) {
 449		q->stat_internal_packets++;
 450	}
 451	sch->q.qlen++;
 452
 453	return NET_XMIT_SUCCESS;
 454}
 455
 456static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 457{
 458	unsigned long sample;
 459	struct rb_node *p;
 460
 461	if (q->time_next_delayed_flow > now)
 462		return;
 463
 464	/* Update unthrottle latency EWMA.
 465	 * This is cheap and can help diagnosing timer/latency problems.
 466	 */
 467	sample = (unsigned long)(now - q->time_next_delayed_flow);
 468	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
 469	q->unthrottle_latency_ns += sample >> 3;
 470
 471	q->time_next_delayed_flow = ~0ULL;
 472	while ((p = rb_first(&q->delayed)) != NULL) {
 473		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
 474
 475		if (f->time_next_packet > now) {
 476			q->time_next_delayed_flow = f->time_next_packet;
 477			break;
 478		}
 479		fq_flow_unset_throttled(q, f);
 480	}
 481}
 482
 483static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 484{
 485	struct fq_sched_data *q = qdisc_priv(sch);
 486	struct fq_flow_head *head;
 487	struct sk_buff *skb;
 488	struct fq_flow *f;
 489	unsigned long rate;
 490	u32 plen;
 491	u64 now;
 492
 493	if (!sch->q.qlen)
 494		return NULL;
 495
 496	skb = fq_dequeue_head(sch, &q->internal);
 497	if (skb)
 
 498		goto out;
 
 499
 500	now = ktime_get_ns();
 501	fq_check_throttled(q, now);
 502begin:
 503	head = &q->new_flows;
 504	if (!head->first) {
 505		head = &q->old_flows;
 506		if (!head->first) {
 507			if (q->time_next_delayed_flow != ~0ULL)
 508				qdisc_watchdog_schedule_ns(&q->watchdog,
 509							   q->time_next_delayed_flow);
 
 510			return NULL;
 511		}
 512	}
 513	f = head->first;
 514
 515	if (f->credit <= 0) {
 516		f->credit += q->quantum;
 517		head->first = f->next;
 518		fq_flow_add_tail(&q->old_flows, f);
 519		goto begin;
 520	}
 521
 522	skb = fq_peek(f);
 523	if (skb) {
 524		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
 525					     f->time_next_packet);
 526
 527		if (now < time_next_packet) {
 528			head->first = f->next;
 529			f->time_next_packet = time_next_packet;
 530			fq_flow_set_throttled(q, f);
 531			goto begin;
 532		}
 533		if (time_next_packet &&
 534		    (s64)(now - time_next_packet - q->ce_threshold) > 0) {
 535			INET_ECN_set_ce(skb);
 536			q->stat_ce_mark++;
 537		}
 538	}
 539
 540	skb = fq_dequeue_head(sch, f);
 541	if (!skb) {
 542		head->first = f->next;
 543		/* force a pass through old_flows to prevent starvation */
 544		if ((head == &q->new_flows) && q->old_flows.first) {
 545			fq_flow_add_tail(&q->old_flows, f);
 546		} else {
 547			fq_flow_set_detached(f);
 548			q->inactive_flows++;
 549		}
 550		goto begin;
 551	}
 552	prefetch(&skb->end);
 553	plen = qdisc_pkt_len(skb);
 554	f->credit -= plen;
 555
 556	if (!q->rate_enable)
 557		goto out;
 558
 559	rate = q->flow_max_rate;
 560
 561	/* If EDT time was provided for this skb, we need to
 562	 * update f->time_next_packet only if this qdisc enforces
 563	 * a flow max rate.
 564	 */
 565	if (!skb->tstamp) {
 566		if (skb->sk)
 567			rate = min(skb->sk->sk_pacing_rate, rate);
 568
 569		if (rate <= q->low_rate_threshold) {
 570			f->credit = 0;
 571		} else {
 572			plen = max(plen, q->quantum);
 573			if (f->credit > 0)
 574				goto out;
 575		}
 576	}
 577	if (rate != ~0UL) {
 578		u64 len = (u64)plen * NSEC_PER_SEC;
 579
 580		if (likely(rate))
 581			len = div64_ul(len, rate);
 582		/* Since socket rate can change later,
 583		 * clamp the delay to 1 second.
 584		 * Really, providers of too big packets should be fixed !
 585		 */
 586		if (unlikely(len > NSEC_PER_SEC)) {
 587			len = NSEC_PER_SEC;
 588			q->stat_pkts_too_long++;
 589		}
 590		/* Account for schedule/timers drifts.
 591		 * f->time_next_packet was set when prior packet was sent,
 592		 * and current time (@now) can be too late by tens of us.
 593		 */
 594		if (f->time_next_packet)
 595			len -= min(len/2, now - f->time_next_packet);
 596		f->time_next_packet = now + len;
 597	}
 598out:
 599	qdisc_bstats_update(sch, skb);
 600	return skb;
 601}
 602
 603static void fq_flow_purge(struct fq_flow *flow)
 604{
 605	struct rb_node *p = rb_first(&flow->t_root);
 606
 607	while (p) {
 608		struct sk_buff *skb = rb_to_skb(p);
 609
 610		p = rb_next(p);
 611		rb_erase(&skb->rbnode, &flow->t_root);
 612		rtnl_kfree_skbs(skb, skb);
 613	}
 614	rtnl_kfree_skbs(flow->head, flow->tail);
 615	flow->head = NULL;
 616	flow->qlen = 0;
 617}
 618
 619static void fq_reset(struct Qdisc *sch)
 620{
 621	struct fq_sched_data *q = qdisc_priv(sch);
 622	struct rb_root *root;
 623	struct rb_node *p;
 624	struct fq_flow *f;
 625	unsigned int idx;
 626
 627	sch->q.qlen = 0;
 628	sch->qstats.backlog = 0;
 629
 630	fq_flow_purge(&q->internal);
 631
 632	if (!q->fq_root)
 633		return;
 634
 635	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 636		root = &q->fq_root[idx];
 637		while ((p = rb_first(root)) != NULL) {
 638			f = rb_entry(p, struct fq_flow, fq_node);
 639			rb_erase(p, root);
 640
 641			fq_flow_purge(f);
 642
 643			kmem_cache_free(fq_flow_cachep, f);
 644		}
 645	}
 646	q->new_flows.first	= NULL;
 647	q->old_flows.first	= NULL;
 648	q->delayed		= RB_ROOT;
 649	q->flows		= 0;
 650	q->inactive_flows	= 0;
 651	q->throttled_flows	= 0;
 652}
 653
 654static void fq_rehash(struct fq_sched_data *q,
 655		      struct rb_root *old_array, u32 old_log,
 656		      struct rb_root *new_array, u32 new_log)
 657{
 658	struct rb_node *op, **np, *parent;
 659	struct rb_root *oroot, *nroot;
 660	struct fq_flow *of, *nf;
 661	int fcnt = 0;
 662	u32 idx;
 663
 664	for (idx = 0; idx < (1U << old_log); idx++) {
 665		oroot = &old_array[idx];
 666		while ((op = rb_first(oroot)) != NULL) {
 667			rb_erase(op, oroot);
 668			of = rb_entry(op, struct fq_flow, fq_node);
 669			if (fq_gc_candidate(of)) {
 670				fcnt++;
 671				kmem_cache_free(fq_flow_cachep, of);
 672				continue;
 673			}
 674			nroot = &new_array[hash_ptr(of->sk, new_log)];
 675
 676			np = &nroot->rb_node;
 677			parent = NULL;
 678			while (*np) {
 679				parent = *np;
 680
 681				nf = rb_entry(parent, struct fq_flow, fq_node);
 682				BUG_ON(nf->sk == of->sk);
 683
 684				if (nf->sk > of->sk)
 685					np = &parent->rb_right;
 686				else
 687					np = &parent->rb_left;
 688			}
 689
 690			rb_link_node(&of->fq_node, parent, np);
 691			rb_insert_color(&of->fq_node, nroot);
 692		}
 693	}
 694	q->flows -= fcnt;
 695	q->inactive_flows -= fcnt;
 696	q->stat_gc_flows += fcnt;
 697}
 698
 699static void fq_free(void *addr)
 700{
 701	kvfree(addr);
 702}
 703
 704static int fq_resize(struct Qdisc *sch, u32 log)
 705{
 706	struct fq_sched_data *q = qdisc_priv(sch);
 707	struct rb_root *array;
 708	void *old_fq_root;
 709	u32 idx;
 710
 711	if (q->fq_root && log == q->fq_trees_log)
 712		return 0;
 713
 714	/* If XPS was setup, we can allocate memory on right NUMA node */
 715	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
 716			      netdev_queue_numa_node_read(sch->dev_queue));
 717	if (!array)
 718		return -ENOMEM;
 719
 720	for (idx = 0; idx < (1U << log); idx++)
 721		array[idx] = RB_ROOT;
 722
 723	sch_tree_lock(sch);
 724
 725	old_fq_root = q->fq_root;
 726	if (old_fq_root)
 727		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 728
 729	q->fq_root = array;
 730	q->fq_trees_log = log;
 731
 732	sch_tree_unlock(sch);
 733
 734	fq_free(old_fq_root);
 735
 736	return 0;
 737}
 738
 739static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 
 
 740	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
 741	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
 742	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
 743	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
 744	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
 745	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
 746	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
 747	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
 748	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
 
 749	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
 750	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
 
 
 
 751};
 752
 753static int fq_change(struct Qdisc *sch, struct nlattr *opt,
 754		     struct netlink_ext_ack *extack)
 755{
 756	struct fq_sched_data *q = qdisc_priv(sch);
 757	struct nlattr *tb[TCA_FQ_MAX + 1];
 758	int err, drop_count = 0;
 759	unsigned drop_len = 0;
 760	u32 fq_log;
 761
 762	if (!opt)
 763		return -EINVAL;
 764
 765	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
 766					  NULL);
 767	if (err < 0)
 768		return err;
 769
 770	sch_tree_lock(sch);
 771
 772	fq_log = q->fq_trees_log;
 773
 774	if (tb[TCA_FQ_BUCKETS_LOG]) {
 775		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 776
 777		if (nval >= 1 && nval <= ilog2(256*1024))
 778			fq_log = nval;
 779		else
 780			err = -EINVAL;
 781	}
 782	if (tb[TCA_FQ_PLIMIT])
 783		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 784
 785	if (tb[TCA_FQ_FLOW_PLIMIT])
 786		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 787
 788	if (tb[TCA_FQ_QUANTUM]) {
 789		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 790
 791		if (quantum > 0)
 792			q->quantum = quantum;
 793		else
 
 794			err = -EINVAL;
 
 795	}
 796
 797	if (tb[TCA_FQ_INITIAL_QUANTUM])
 798		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 799
 800	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 801		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 802				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 803
 804	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
 805		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 806
 807		q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
 808	}
 809	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
 810		q->low_rate_threshold =
 811			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
 812
 813	if (tb[TCA_FQ_RATE_ENABLE]) {
 814		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 815
 816		if (enable <= 1)
 817			q->rate_enable = enable;
 818		else
 819			err = -EINVAL;
 820	}
 821
 822	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 823		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 824
 825		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 826	}
 827
 828	if (tb[TCA_FQ_ORPHAN_MASK])
 829		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
 830
 831	if (tb[TCA_FQ_CE_THRESHOLD])
 832		q->ce_threshold = (u64)NSEC_PER_USEC *
 833				  nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
 834
 
 
 
 
 
 
 
 
 
 
 835	if (!err) {
 
 836		sch_tree_unlock(sch);
 837		err = fq_resize(sch, fq_log);
 838		sch_tree_lock(sch);
 839	}
 840	while (sch->q.qlen > sch->limit) {
 841		struct sk_buff *skb = fq_dequeue(sch);
 842
 843		if (!skb)
 844			break;
 845		drop_len += qdisc_pkt_len(skb);
 846		rtnl_kfree_skbs(skb, skb);
 847		drop_count++;
 848	}
 849	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
 850
 851	sch_tree_unlock(sch);
 852	return err;
 853}
 854
 855static void fq_destroy(struct Qdisc *sch)
 856{
 857	struct fq_sched_data *q = qdisc_priv(sch);
 858
 859	fq_reset(sch);
 860	fq_free(q->fq_root);
 861	qdisc_watchdog_cancel(&q->watchdog);
 862}
 863
 864static int fq_init(struct Qdisc *sch, struct nlattr *opt,
 865		   struct netlink_ext_ack *extack)
 866{
 867	struct fq_sched_data *q = qdisc_priv(sch);
 868	int err;
 869
 870	sch->limit		= 10000;
 871	q->flow_plimit		= 100;
 872	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
 873	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
 874	q->flow_refill_delay	= msecs_to_jiffies(40);
 875	q->flow_max_rate	= ~0UL;
 876	q->time_next_delayed_flow = ~0ULL;
 877	q->rate_enable		= 1;
 878	q->new_flows.first	= NULL;
 879	q->old_flows.first	= NULL;
 880	q->delayed		= RB_ROOT;
 881	q->fq_root		= NULL;
 882	q->fq_trees_log		= ilog2(1024);
 883	q->orphan_mask		= 1024 - 1;
 884	q->low_rate_threshold	= 550000 / 8;
 885
 
 
 
 
 
 886	/* Default ce_threshold of 4294 seconds */
 887	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
 888
 889	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
 890
 891	if (opt)
 892		err = fq_change(sch, opt, extack);
 893	else
 894		err = fq_resize(sch, q->fq_trees_log);
 895
 896	return err;
 897}
 898
 899static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 900{
 901	struct fq_sched_data *q = qdisc_priv(sch);
 902	u64 ce_threshold = q->ce_threshold;
 
 903	struct nlattr *opts;
 904
 905	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
 906	if (opts == NULL)
 907		goto nla_put_failure;
 908
 909	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 910
 911	do_div(ce_threshold, NSEC_PER_USEC);
 
 912
 913	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 914	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 915	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 916	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 917	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 918	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
 919			min_t(unsigned long, q->flow_max_rate, ~0U)) ||
 920	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 921			jiffies_to_usecs(q->flow_refill_delay)) ||
 922	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
 923	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
 924			q->low_rate_threshold) ||
 925	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
 926	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
 
 
 
 927		goto nla_put_failure;
 928
 929	return nla_nest_end(skb, opts);
 930
 931nla_put_failure:
 932	return -1;
 933}
 934
 935static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 936{
 937	struct fq_sched_data *q = qdisc_priv(sch);
 938	struct tc_fq_qd_stats st;
 939
 940	sch_tree_lock(sch);
 941
 942	st.gc_flows		  = q->stat_gc_flows;
 943	st.highprio_packets	  = q->stat_internal_packets;
 944	st.tcp_retrans		  = 0;
 945	st.throttled		  = q->stat_throttled;
 946	st.flows_plimit		  = q->stat_flows_plimit;
 947	st.pkts_too_long	  = q->stat_pkts_too_long;
 948	st.allocation_errors	  = q->stat_allocation_errors;
 949	st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
 
 950	st.flows		  = q->flows;
 951	st.inactive_flows	  = q->inactive_flows;
 952	st.throttled_flows	  = q->throttled_flows;
 953	st.unthrottle_latency_ns  = min_t(unsigned long,
 954					  q->unthrottle_latency_ns, ~0U);
 955	st.ce_mark		  = q->stat_ce_mark;
 
 
 956	sch_tree_unlock(sch);
 957
 958	return gnet_stats_copy_app(d, &st, sizeof(st));
 959}
 960
 961static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
 962	.id		=	"fq",
 963	.priv_size	=	sizeof(struct fq_sched_data),
 964
 965	.enqueue	=	fq_enqueue,
 966	.dequeue	=	fq_dequeue,
 967	.peek		=	qdisc_peek_dequeued,
 968	.init		=	fq_init,
 969	.reset		=	fq_reset,
 970	.destroy	=	fq_destroy,
 971	.change		=	fq_change,
 972	.dump		=	fq_dump,
 973	.dump_stats	=	fq_dump_stats,
 974	.owner		=	THIS_MODULE,
 975};
 976
 977static int __init fq_module_init(void)
 978{
 979	int ret;
 980
 981	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
 982					   sizeof(struct fq_flow),
 983					   0, 0, NULL);
 984	if (!fq_flow_cachep)
 985		return -ENOMEM;
 986
 987	ret = register_qdisc(&fq_qdisc_ops);
 988	if (ret)
 989		kmem_cache_destroy(fq_flow_cachep);
 990	return ret;
 991}
 992
 993static void __exit fq_module_exit(void)
 994{
 995	unregister_qdisc(&fq_qdisc_ops);
 996	kmem_cache_destroy(fq_flow_cachep);
 997}
 998
 999module_init(fq_module_init)
1000module_exit(fq_module_exit)
1001MODULE_AUTHOR("Eric Dumazet");
1002MODULE_LICENSE("GPL");