Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	linux/mm/madvise.c
   4 *
   5 * Copyright (C) 1999  Linus Torvalds
   6 * Copyright (C) 2002  Christoph Hellwig
   7 */
   8
   9#include <linux/mman.h>
  10#include <linux/pagemap.h>
  11#include <linux/syscalls.h>
  12#include <linux/mempolicy.h>
  13#include <linux/page-isolation.h>
  14#include <linux/page_idle.h>
  15#include <linux/userfaultfd_k.h>
  16#include <linux/hugetlb.h>
  17#include <linux/falloc.h>
  18#include <linux/fadvise.h>
  19#include <linux/sched.h>
  20#include <linux/sched/mm.h>
  21#include <linux/mm_inline.h>
  22#include <linux/string.h>
  23#include <linux/uio.h>
  24#include <linux/ksm.h>
  25#include <linux/fs.h>
  26#include <linux/file.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagewalk.h>
  30#include <linux/swap.h>
  31#include <linux/swapops.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/mmu_notifier.h>
  34
  35#include <asm/tlb.h>
  36
  37#include "internal.h"
  38#include "swap.h"
  39
  40struct madvise_walk_private {
  41	struct mmu_gather *tlb;
  42	bool pageout;
  43};
  44
  45/*
  46 * Any behaviour which results in changes to the vma->vm_flags needs to
  47 * take mmap_lock for writing. Others, which simply traverse vmas, need
  48 * to only take it for reading.
  49 */
  50static int madvise_need_mmap_write(int behavior)
  51{
  52	switch (behavior) {
  53	case MADV_REMOVE:
  54	case MADV_WILLNEED:
  55	case MADV_DONTNEED:
  56	case MADV_DONTNEED_LOCKED:
  57	case MADV_COLD:
  58	case MADV_PAGEOUT:
  59	case MADV_FREE:
  60	case MADV_POPULATE_READ:
  61	case MADV_POPULATE_WRITE:
  62	case MADV_COLLAPSE:
  63		return 0;
  64	default:
  65		/* be safe, default to 1. list exceptions explicitly */
  66		return 1;
  67	}
  68}
  69
  70#ifdef CONFIG_ANON_VMA_NAME
  71struct anon_vma_name *anon_vma_name_alloc(const char *name)
  72{
  73	struct anon_vma_name *anon_name;
  74	size_t count;
  75
  76	/* Add 1 for NUL terminator at the end of the anon_name->name */
  77	count = strlen(name) + 1;
  78	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
  79	if (anon_name) {
  80		kref_init(&anon_name->kref);
  81		memcpy(anon_name->name, name, count);
  82	}
  83
  84	return anon_name;
  85}
  86
  87void anon_vma_name_free(struct kref *kref)
  88{
  89	struct anon_vma_name *anon_name =
  90			container_of(kref, struct anon_vma_name, kref);
  91	kfree(anon_name);
  92}
  93
  94struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
  95{
  96	mmap_assert_locked(vma->vm_mm);
  97
  98	return vma->anon_name;
  99}
 100
 101/* mmap_lock should be write-locked */
 102static int replace_anon_vma_name(struct vm_area_struct *vma,
 103				 struct anon_vma_name *anon_name)
 104{
 105	struct anon_vma_name *orig_name = anon_vma_name(vma);
 106
 107	if (!anon_name) {
 108		vma->anon_name = NULL;
 109		anon_vma_name_put(orig_name);
 110		return 0;
 111	}
 112
 113	if (anon_vma_name_eq(orig_name, anon_name))
 114		return 0;
 115
 116	vma->anon_name = anon_vma_name_reuse(anon_name);
 117	anon_vma_name_put(orig_name);
 118
 119	return 0;
 120}
 121#else /* CONFIG_ANON_VMA_NAME */
 122static int replace_anon_vma_name(struct vm_area_struct *vma,
 123				 struct anon_vma_name *anon_name)
 124{
 125	if (anon_name)
 126		return -EINVAL;
 127
 128	return 0;
 129}
 130#endif /* CONFIG_ANON_VMA_NAME */
 131/*
 132 * Update the vm_flags on region of a vma, splitting it or merging it as
 133 * necessary.  Must be called with mmap_lock held for writing;
 134 * Caller should ensure anon_name stability by raising its refcount even when
 135 * anon_name belongs to a valid vma because this function might free that vma.
 136 */
 137static int madvise_update_vma(struct vm_area_struct *vma,
 138			      struct vm_area_struct **prev, unsigned long start,
 139			      unsigned long end, unsigned long new_flags,
 140			      struct anon_vma_name *anon_name)
 141{
 142	struct mm_struct *mm = vma->vm_mm;
 143	int error;
 144	pgoff_t pgoff;
 
 145
 146	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147		*prev = vma;
 148		return 0;
 149	}
 150
 151	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 152	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
 153			  vma->vm_file, pgoff, vma_policy(vma),
 154			  vma->vm_userfaultfd_ctx, anon_name);
 155	if (*prev) {
 156		vma = *prev;
 157		goto success;
 158	}
 159
 160	*prev = vma;
 161
 162	if (start != vma->vm_start) {
 163		if (unlikely(mm->map_count >= sysctl_max_map_count))
 164			return -ENOMEM;
 
 
 165		error = __split_vma(mm, vma, start, 1);
 166		if (error)
 167			return error;
 168	}
 169
 170	if (end != vma->vm_end) {
 171		if (unlikely(mm->map_count >= sysctl_max_map_count))
 172			return -ENOMEM;
 
 
 173		error = __split_vma(mm, vma, end, 0);
 174		if (error)
 175			return error;
 176	}
 177
 178success:
 179	/*
 180	 * vm_flags is protected by the mmap_lock held in write mode.
 181	 */
 182	vma->vm_flags = new_flags;
 183	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
 184		error = replace_anon_vma_name(vma, anon_name);
 185		if (error)
 186			return error;
 187	}
 188
 189	return 0;
 
 
 
 
 
 
 
 
 190}
 191
 192#ifdef CONFIG_SWAP
 193static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
 194	unsigned long end, struct mm_walk *walk)
 195{
 
 196	struct vm_area_struct *vma = walk->private;
 197	unsigned long index;
 198	struct swap_iocb *splug = NULL;
 199
 200	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 201		return 0;
 202
 203	for (index = start; index != end; index += PAGE_SIZE) {
 204		pte_t pte;
 205		swp_entry_t entry;
 206		struct page *page;
 207		spinlock_t *ptl;
 208		pte_t *ptep;
 209
 210		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
 211		pte = *ptep;
 212		pte_unmap_unlock(ptep, ptl);
 213
 214		if (!is_swap_pte(pte))
 215			continue;
 216		entry = pte_to_swp_entry(pte);
 217		if (unlikely(non_swap_entry(entry)))
 218			continue;
 219
 220		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
 221					     vma, index, false, &splug);
 222		if (page)
 223			put_page(page);
 224	}
 225	swap_read_unplug(splug);
 226	cond_resched();
 227
 228	return 0;
 229}
 230
 231static const struct mm_walk_ops swapin_walk_ops = {
 232	.pmd_entry		= swapin_walk_pmd_entry,
 233};
 234
 235static void force_shm_swapin_readahead(struct vm_area_struct *vma,
 236		unsigned long start, unsigned long end,
 237		struct address_space *mapping)
 238{
 239	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
 240	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
 241	struct page *page;
 242	struct swap_iocb *splug = NULL;
 243
 244	rcu_read_lock();
 245	xas_for_each(&xas, page, end_index) {
 246		swp_entry_t swap;
 247
 248		if (!xa_is_value(page))
 
 
 
 249			continue;
 
 250		swap = radix_to_swp_entry(page);
 251		/* There might be swapin error entries in shmem mapping. */
 252		if (non_swap_entry(swap))
 253			continue;
 254		xas_pause(&xas);
 255		rcu_read_unlock();
 256
 257		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
 258					     NULL, 0, false, &splug);
 259		if (page)
 260			put_page(page);
 261
 262		rcu_read_lock();
 263	}
 264	rcu_read_unlock();
 265	swap_read_unplug(splug);
 266
 267	lru_add_drain();	/* Push any new pages onto the LRU now */
 268}
 269#endif		/* CONFIG_SWAP */
 270
 271/*
 272 * Schedule all required I/O operations.  Do not wait for completion.
 273 */
 274static long madvise_willneed(struct vm_area_struct *vma,
 275			     struct vm_area_struct **prev,
 276			     unsigned long start, unsigned long end)
 277{
 278	struct mm_struct *mm = vma->vm_mm;
 279	struct file *file = vma->vm_file;
 280	loff_t offset;
 281
 282	*prev = vma;
 283#ifdef CONFIG_SWAP
 284	if (!file) {
 285		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
 286		lru_add_drain(); /* Push any new pages onto the LRU now */
 287		return 0;
 288	}
 289
 290	if (shmem_mapping(file->f_mapping)) {
 291		force_shm_swapin_readahead(vma, start, end,
 292					file->f_mapping);
 293		return 0;
 294	}
 295#else
 296	if (!file)
 297		return -EBADF;
 298#endif
 299
 300	if (IS_DAX(file_inode(file))) {
 301		/* no bad return value, but ignore advice */
 302		return 0;
 303	}
 304
 305	/*
 306	 * Filesystem's fadvise may need to take various locks.  We need to
 307	 * explicitly grab a reference because the vma (and hence the
 308	 * vma's reference to the file) can go away as soon as we drop
 309	 * mmap_lock.
 310	 */
 311	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
 312	get_file(file);
 
 313	offset = (loff_t)(start - vma->vm_start)
 314			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 315	mmap_read_unlock(mm);
 316	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
 317	fput(file);
 318	mmap_read_lock(mm);
 319	return 0;
 320}
 321
 322static inline bool can_do_file_pageout(struct vm_area_struct *vma)
 323{
 324	if (!vma->vm_file)
 325		return false;
 326	/*
 327	 * paging out pagecache only for non-anonymous mappings that correspond
 328	 * to the files the calling process could (if tried) open for writing;
 329	 * otherwise we'd be including shared non-exclusive mappings, which
 330	 * opens a side channel.
 331	 */
 332	return inode_owner_or_capable(&init_user_ns,
 333				      file_inode(vma->vm_file)) ||
 334	       file_permission(vma->vm_file, MAY_WRITE) == 0;
 335}
 336
 337static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
 338				unsigned long addr, unsigned long end,
 339				struct mm_walk *walk)
 340{
 341	struct madvise_walk_private *private = walk->private;
 342	struct mmu_gather *tlb = private->tlb;
 343	bool pageout = private->pageout;
 344	struct mm_struct *mm = tlb->mm;
 345	struct vm_area_struct *vma = walk->vma;
 346	pte_t *orig_pte, *pte, ptent;
 347	spinlock_t *ptl;
 348	struct page *page = NULL;
 349	LIST_HEAD(page_list);
 350	bool pageout_anon_only_filter;
 351
 352	if (fatal_signal_pending(current))
 353		return -EINTR;
 354
 355	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
 356					!can_do_file_pageout(vma);
 357
 358#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 359	if (pmd_trans_huge(*pmd)) {
 360		pmd_t orig_pmd;
 361		unsigned long next = pmd_addr_end(addr, end);
 362
 363		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 364		ptl = pmd_trans_huge_lock(pmd, vma);
 365		if (!ptl)
 366			return 0;
 367
 368		orig_pmd = *pmd;
 369		if (is_huge_zero_pmd(orig_pmd))
 370			goto huge_unlock;
 371
 372		if (unlikely(!pmd_present(orig_pmd))) {
 373			VM_BUG_ON(thp_migration_supported() &&
 374					!is_pmd_migration_entry(orig_pmd));
 375			goto huge_unlock;
 376		}
 377
 378		page = pmd_page(orig_pmd);
 379
 380		/* Do not interfere with other mappings of this page */
 381		if (page_mapcount(page) != 1)
 382			goto huge_unlock;
 383
 384		if (pageout_anon_only_filter && !PageAnon(page))
 385			goto huge_unlock;
 386
 387		if (next - addr != HPAGE_PMD_SIZE) {
 388			int err;
 389
 
 
 
 390			get_page(page);
 391			spin_unlock(ptl);
 392			lock_page(page);
 393			err = split_huge_page(page);
 394			unlock_page(page);
 395			put_page(page);
 396			if (!err)
 397				goto regular_page;
 398			return 0;
 399		}
 400
 401		if (pmd_young(orig_pmd)) {
 402			pmdp_invalidate(vma, addr, pmd);
 403			orig_pmd = pmd_mkold(orig_pmd);
 404
 405			set_pmd_at(mm, addr, pmd, orig_pmd);
 406			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 407		}
 408
 409		ClearPageReferenced(page);
 410		test_and_clear_page_young(page);
 411		if (pageout) {
 412			if (!isolate_lru_page(page)) {
 413				if (PageUnevictable(page))
 414					putback_lru_page(page);
 415				else
 416					list_add(&page->lru, &page_list);
 417			}
 418		} else
 419			deactivate_page(page);
 420huge_unlock:
 421		spin_unlock(ptl);
 422		if (pageout)
 423			reclaim_pages(&page_list);
 424		return 0;
 425	}
 426
 427regular_page:
 428	if (pmd_trans_unstable(pmd))
 429		return 0;
 
 430#endif
 431	tlb_change_page_size(tlb, PAGE_SIZE);
 432	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 433	flush_tlb_batched_pending(mm);
 434	arch_enter_lazy_mmu_mode();
 435	for (; addr < end; pte++, addr += PAGE_SIZE) {
 436		ptent = *pte;
 437
 438		if (pte_none(ptent))
 439			continue;
 440
 441		if (!pte_present(ptent))
 442			continue;
 443
 444		page = vm_normal_page(vma, addr, ptent);
 445		if (!page || is_zone_device_page(page))
 446			continue;
 447
 448		/*
 449		 * Creating a THP page is expensive so split it only if we
 450		 * are sure it's worth. Split it if we are only owner.
 451		 */
 452		if (PageTransCompound(page)) {
 453			if (page_mapcount(page) != 1)
 454				break;
 455			if (pageout_anon_only_filter && !PageAnon(page))
 456				break;
 457			get_page(page);
 458			if (!trylock_page(page)) {
 459				put_page(page);
 460				break;
 461			}
 462			pte_unmap_unlock(orig_pte, ptl);
 463			if (split_huge_page(page)) {
 464				unlock_page(page);
 465				put_page(page);
 466				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 467				break;
 468			}
 469			unlock_page(page);
 470			put_page(page);
 471			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 472			pte--;
 473			addr -= PAGE_SIZE;
 474			continue;
 475		}
 476
 477		/*
 478		 * Do not interfere with other mappings of this page and
 479		 * non-LRU page.
 480		 */
 481		if (!PageLRU(page) || page_mapcount(page) != 1)
 482			continue;
 483
 484		if (pageout_anon_only_filter && !PageAnon(page))
 485			continue;
 486
 487		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 488
 489		if (pte_young(ptent)) {
 490			ptent = ptep_get_and_clear_full(mm, addr, pte,
 491							tlb->fullmm);
 492			ptent = pte_mkold(ptent);
 493			set_pte_at(mm, addr, pte, ptent);
 494			tlb_remove_tlb_entry(tlb, pte, addr);
 495		}
 496
 497		/*
 498		 * We are deactivating a page for accelerating reclaiming.
 499		 * VM couldn't reclaim the page unless we clear PG_young.
 500		 * As a side effect, it makes confuse idle-page tracking
 501		 * because they will miss recent referenced history.
 502		 */
 503		ClearPageReferenced(page);
 504		test_and_clear_page_young(page);
 505		if (pageout) {
 506			if (!isolate_lru_page(page)) {
 507				if (PageUnevictable(page))
 508					putback_lru_page(page);
 509				else
 510					list_add(&page->lru, &page_list);
 511			}
 512		} else
 513			deactivate_page(page);
 514	}
 515
 516	arch_leave_lazy_mmu_mode();
 517	pte_unmap_unlock(orig_pte, ptl);
 518	if (pageout)
 519		reclaim_pages(&page_list);
 520	cond_resched();
 521
 522	return 0;
 523}
 524
 525static const struct mm_walk_ops cold_walk_ops = {
 526	.pmd_entry = madvise_cold_or_pageout_pte_range,
 527};
 528
 529static void madvise_cold_page_range(struct mmu_gather *tlb,
 530			     struct vm_area_struct *vma,
 531			     unsigned long addr, unsigned long end)
 532{
 533	struct madvise_walk_private walk_private = {
 534		.pageout = false,
 535		.tlb = tlb,
 536	};
 537
 538	tlb_start_vma(tlb, vma);
 539	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 540	tlb_end_vma(tlb, vma);
 541}
 542
 543static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
 544{
 545	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
 546}
 547
 548static long madvise_cold(struct vm_area_struct *vma,
 549			struct vm_area_struct **prev,
 550			unsigned long start_addr, unsigned long end_addr)
 551{
 552	struct mm_struct *mm = vma->vm_mm;
 553	struct mmu_gather tlb;
 554
 555	*prev = vma;
 556	if (!can_madv_lru_vma(vma))
 557		return -EINVAL;
 558
 559	lru_add_drain();
 560	tlb_gather_mmu(&tlb, mm);
 561	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
 562	tlb_finish_mmu(&tlb);
 563
 564	return 0;
 565}
 566
 567static void madvise_pageout_page_range(struct mmu_gather *tlb,
 568			     struct vm_area_struct *vma,
 569			     unsigned long addr, unsigned long end)
 570{
 571	struct madvise_walk_private walk_private = {
 572		.pageout = true,
 573		.tlb = tlb,
 574	};
 575
 576	tlb_start_vma(tlb, vma);
 577	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 578	tlb_end_vma(tlb, vma);
 579}
 580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581static long madvise_pageout(struct vm_area_struct *vma,
 582			struct vm_area_struct **prev,
 583			unsigned long start_addr, unsigned long end_addr)
 584{
 585	struct mm_struct *mm = vma->vm_mm;
 586	struct mmu_gather tlb;
 587
 588	*prev = vma;
 589	if (!can_madv_lru_vma(vma))
 590		return -EINVAL;
 591
 592	/*
 593	 * If the VMA belongs to a private file mapping, there can be private
 594	 * dirty pages which can be paged out if even this process is neither
 595	 * owner nor write capable of the file. We allow private file mappings
 596	 * further to pageout dirty anon pages.
 597	 */
 598	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
 599				(vma->vm_flags & VM_MAYSHARE)))
 600		return 0;
 601
 602	lru_add_drain();
 603	tlb_gather_mmu(&tlb, mm);
 604	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
 605	tlb_finish_mmu(&tlb);
 606
 607	return 0;
 608}
 609
 610static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
 611				unsigned long end, struct mm_walk *walk)
 612
 613{
 614	struct mmu_gather *tlb = walk->private;
 615	struct mm_struct *mm = tlb->mm;
 616	struct vm_area_struct *vma = walk->vma;
 617	spinlock_t *ptl;
 618	pte_t *orig_pte, *pte, ptent;
 619	struct folio *folio;
 620	struct page *page;
 621	int nr_swap = 0;
 622	unsigned long next;
 623
 624	next = pmd_addr_end(addr, end);
 625	if (pmd_trans_huge(*pmd))
 626		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
 627			goto next;
 628
 629	if (pmd_trans_unstable(pmd))
 630		return 0;
 631
 632	tlb_change_page_size(tlb, PAGE_SIZE);
 633	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 634	flush_tlb_batched_pending(mm);
 635	arch_enter_lazy_mmu_mode();
 636	for (; addr != end; pte++, addr += PAGE_SIZE) {
 637		ptent = *pte;
 638
 639		if (pte_none(ptent))
 640			continue;
 641		/*
 642		 * If the pte has swp_entry, just clear page table to
 643		 * prevent swap-in which is more expensive rather than
 644		 * (page allocation + zeroing).
 645		 */
 646		if (!pte_present(ptent)) {
 647			swp_entry_t entry;
 648
 649			entry = pte_to_swp_entry(ptent);
 650			if (!non_swap_entry(entry)) {
 651				nr_swap--;
 652				free_swap_and_cache(entry);
 653				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 654			} else if (is_hwpoison_entry(entry) ||
 655				   is_swapin_error_entry(entry)) {
 656				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 657			}
 658			continue;
 659		}
 660
 661		page = vm_normal_page(vma, addr, ptent);
 662		if (!page || is_zone_device_page(page))
 663			continue;
 664		folio = page_folio(page);
 665
 666		/*
 667		 * If pmd isn't transhuge but the folio is large and
 668		 * is owned by only this process, split it and
 669		 * deactivate all pages.
 670		 */
 671		if (folio_test_large(folio)) {
 672			if (folio_mapcount(folio) != 1)
 673				goto out;
 674			folio_get(folio);
 675			if (!folio_trylock(folio)) {
 676				folio_put(folio);
 677				goto out;
 678			}
 679			pte_unmap_unlock(orig_pte, ptl);
 680			if (split_folio(folio)) {
 681				folio_unlock(folio);
 682				folio_put(folio);
 683				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 684				goto out;
 685			}
 686			folio_unlock(folio);
 687			folio_put(folio);
 688			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 689			pte--;
 690			addr -= PAGE_SIZE;
 691			continue;
 692		}
 693
 694		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
 695			if (!folio_trylock(folio))
 
 
 696				continue;
 697			/*
 698			 * If folio is shared with others, we mustn't clear
 699			 * the folio's dirty flag.
 700			 */
 701			if (folio_mapcount(folio) != 1) {
 702				folio_unlock(folio);
 703				continue;
 704			}
 705
 706			if (folio_test_swapcache(folio) &&
 707			    !folio_free_swap(folio)) {
 708				folio_unlock(folio);
 709				continue;
 710			}
 711
 712			folio_clear_dirty(folio);
 713			folio_unlock(folio);
 714		}
 715
 716		if (pte_young(ptent) || pte_dirty(ptent)) {
 717			/*
 718			 * Some of architecture(ex, PPC) don't update TLB
 719			 * with set_pte_at and tlb_remove_tlb_entry so for
 720			 * the portability, remap the pte with old|clean
 721			 * after pte clearing.
 722			 */
 723			ptent = ptep_get_and_clear_full(mm, addr, pte,
 724							tlb->fullmm);
 725
 726			ptent = pte_mkold(ptent);
 727			ptent = pte_mkclean(ptent);
 728			set_pte_at(mm, addr, pte, ptent);
 729			tlb_remove_tlb_entry(tlb, pte, addr);
 730		}
 731		mark_page_lazyfree(&folio->page);
 732	}
 733out:
 734	if (nr_swap) {
 735		if (current->mm == mm)
 736			sync_mm_rss(mm);
 737
 738		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
 739	}
 740	arch_leave_lazy_mmu_mode();
 741	pte_unmap_unlock(orig_pte, ptl);
 742	cond_resched();
 743next:
 744	return 0;
 745}
 746
 747static const struct mm_walk_ops madvise_free_walk_ops = {
 748	.pmd_entry		= madvise_free_pte_range,
 749};
 750
 751static int madvise_free_single_vma(struct vm_area_struct *vma,
 752			unsigned long start_addr, unsigned long end_addr)
 753{
 754	struct mm_struct *mm = vma->vm_mm;
 755	struct mmu_notifier_range range;
 756	struct mmu_gather tlb;
 757
 758	/* MADV_FREE works for only anon vma at the moment */
 759	if (!vma_is_anonymous(vma))
 760		return -EINVAL;
 761
 762	range.start = max(vma->vm_start, start_addr);
 763	if (range.start >= vma->vm_end)
 764		return -EINVAL;
 765	range.end = min(vma->vm_end, end_addr);
 766	if (range.end <= vma->vm_start)
 767		return -EINVAL;
 768	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
 769				range.start, range.end);
 770
 771	lru_add_drain();
 772	tlb_gather_mmu(&tlb, mm);
 773	update_hiwater_rss(mm);
 774
 775	mmu_notifier_invalidate_range_start(&range);
 776	tlb_start_vma(&tlb, vma);
 777	walk_page_range(vma->vm_mm, range.start, range.end,
 778			&madvise_free_walk_ops, &tlb);
 779	tlb_end_vma(&tlb, vma);
 780	mmu_notifier_invalidate_range_end(&range);
 781	tlb_finish_mmu(&tlb);
 782
 783	return 0;
 784}
 785
 786/*
 787 * Application no longer needs these pages.  If the pages are dirty,
 788 * it's OK to just throw them away.  The app will be more careful about
 789 * data it wants to keep.  Be sure to free swap resources too.  The
 790 * zap_page_range_single call sets things up for shrink_active_list to actually
 791 * free these pages later if no one else has touched them in the meantime,
 792 * although we could add these pages to a global reuse list for
 793 * shrink_active_list to pick up before reclaiming other pages.
 794 *
 795 * NB: This interface discards data rather than pushes it out to swap,
 796 * as some implementations do.  This has performance implications for
 797 * applications like large transactional databases which want to discard
 798 * pages in anonymous maps after committing to backing store the data
 799 * that was kept in them.  There is no reason to write this data out to
 800 * the swap area if the application is discarding it.
 801 *
 802 * An interface that causes the system to free clean pages and flush
 803 * dirty pages is already available as msync(MS_INVALIDATE).
 804 */
 805static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
 806					unsigned long start, unsigned long end)
 807{
 808	zap_page_range_single(vma, start, end - start, NULL);
 809	return 0;
 810}
 811
 812static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
 813					    unsigned long start,
 814					    unsigned long *end,
 815					    int behavior)
 816{
 817	if (!is_vm_hugetlb_page(vma)) {
 818		unsigned int forbidden = VM_PFNMAP;
 819
 820		if (behavior != MADV_DONTNEED_LOCKED)
 821			forbidden |= VM_LOCKED;
 822
 823		return !(vma->vm_flags & forbidden);
 824	}
 825
 826	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
 827		return false;
 828	if (start & ~huge_page_mask(hstate_vma(vma)))
 829		return false;
 830
 831	/*
 832	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
 833	 * boundaries, and may be unaware that this VMA uses huge pages.
 834	 * Avoid unexpected data loss by rounding down the number of
 835	 * huge pages freed.
 836	 */
 837	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
 838
 839	return true;
 840}
 841
 842static long madvise_dontneed_free(struct vm_area_struct *vma,
 843				  struct vm_area_struct **prev,
 844				  unsigned long start, unsigned long end,
 845				  int behavior)
 846{
 847	struct mm_struct *mm = vma->vm_mm;
 848
 849	*prev = vma;
 850	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
 851		return -EINVAL;
 852
 853	if (start == end)
 854		return 0;
 855
 856	if (!userfaultfd_remove(vma, start, end)) {
 857		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
 858
 859		mmap_read_lock(mm);
 860		vma = find_vma(mm, start);
 861		if (!vma)
 862			return -ENOMEM;
 863		if (start < vma->vm_start) {
 864			/*
 865			 * This "vma" under revalidation is the one
 866			 * with the lowest vma->vm_start where start
 867			 * is also < vma->vm_end. If start <
 868			 * vma->vm_start it means an hole materialized
 869			 * in the user address space within the
 870			 * virtual range passed to MADV_DONTNEED
 871			 * or MADV_FREE.
 872			 */
 873			return -ENOMEM;
 874		}
 875		/*
 876		 * Potential end adjustment for hugetlb vma is OK as
 877		 * the check below keeps end within vma.
 878		 */
 879		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
 880						     behavior))
 881			return -EINVAL;
 882		if (end > vma->vm_end) {
 883			/*
 884			 * Don't fail if end > vma->vm_end. If the old
 885			 * vma was split while the mmap_lock was
 886			 * released the effect of the concurrent
 887			 * operation may not cause madvise() to
 888			 * have an undefined result. There may be an
 889			 * adjacent next vma that we'll walk
 890			 * next. userfaultfd_remove() will generate an
 891			 * UFFD_EVENT_REMOVE repetition on the
 892			 * end-vma->vm_end range, but the manager can
 893			 * handle a repetition fine.
 894			 */
 895			end = vma->vm_end;
 896		}
 897		VM_WARN_ON(start >= end);
 898	}
 899
 900	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
 901		return madvise_dontneed_single_vma(vma, start, end);
 902	else if (behavior == MADV_FREE)
 903		return madvise_free_single_vma(vma, start, end);
 904	else
 905		return -EINVAL;
 906}
 907
 908static long madvise_populate(struct vm_area_struct *vma,
 909			     struct vm_area_struct **prev,
 910			     unsigned long start, unsigned long end,
 911			     int behavior)
 912{
 913	const bool write = behavior == MADV_POPULATE_WRITE;
 914	struct mm_struct *mm = vma->vm_mm;
 915	unsigned long tmp_end;
 916	int locked = 1;
 917	long pages;
 918
 919	*prev = vma;
 920
 921	while (start < end) {
 922		/*
 923		 * We might have temporarily dropped the lock. For example,
 924		 * our VMA might have been split.
 925		 */
 926		if (!vma || start >= vma->vm_end) {
 927			vma = vma_lookup(mm, start);
 928			if (!vma)
 929				return -ENOMEM;
 930		}
 931
 932		tmp_end = min_t(unsigned long, end, vma->vm_end);
 933		/* Populate (prefault) page tables readable/writable. */
 934		pages = faultin_vma_page_range(vma, start, tmp_end, write,
 935					       &locked);
 936		if (!locked) {
 937			mmap_read_lock(mm);
 938			locked = 1;
 939			*prev = NULL;
 940			vma = NULL;
 941		}
 942		if (pages < 0) {
 943			switch (pages) {
 944			case -EINTR:
 945				return -EINTR;
 946			case -EINVAL: /* Incompatible mappings / permissions. */
 947				return -EINVAL;
 948			case -EHWPOISON:
 949				return -EHWPOISON;
 950			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
 951				return -EFAULT;
 952			default:
 953				pr_warn_once("%s: unhandled return value: %ld\n",
 954					     __func__, pages);
 955				fallthrough;
 956			case -ENOMEM:
 957				return -ENOMEM;
 958			}
 959		}
 960		start += pages * PAGE_SIZE;
 961	}
 962	return 0;
 963}
 964
 965/*
 966 * Application wants to free up the pages and associated backing store.
 967 * This is effectively punching a hole into the middle of a file.
 968 */
 969static long madvise_remove(struct vm_area_struct *vma,
 970				struct vm_area_struct **prev,
 971				unsigned long start, unsigned long end)
 972{
 973	loff_t offset;
 974	int error;
 975	struct file *f;
 976	struct mm_struct *mm = vma->vm_mm;
 977
 978	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
 979
 980	if (vma->vm_flags & VM_LOCKED)
 981		return -EINVAL;
 982
 983	f = vma->vm_file;
 984
 985	if (!f || !f->f_mapping || !f->f_mapping->host) {
 986			return -EINVAL;
 987	}
 988
 989	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
 990		return -EACCES;
 991
 992	offset = (loff_t)(start - vma->vm_start)
 993			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 994
 995	/*
 996	 * Filesystem's fallocate may need to take i_rwsem.  We need to
 997	 * explicitly grab a reference because the vma (and hence the
 998	 * vma's reference to the file) can go away as soon as we drop
 999	 * mmap_lock.
1000	 */
1001	get_file(f);
1002	if (userfaultfd_remove(vma, start, end)) {
1003		/* mmap_lock was not released by userfaultfd_remove() */
1004		mmap_read_unlock(mm);
1005	}
1006	error = vfs_fallocate(f,
1007				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1008				offset, end - start);
1009	fput(f);
1010	mmap_read_lock(mm);
1011	return error;
1012}
1013
1014/*
1015 * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1016 * will handle splitting a vm area into separate areas, each area with its own
1017 * behavior.
1018 */
1019static int madvise_vma_behavior(struct vm_area_struct *vma,
1020				struct vm_area_struct **prev,
1021				unsigned long start, unsigned long end,
1022				unsigned long behavior)
1023{
1024	int error;
1025	struct anon_vma_name *anon_name;
1026	unsigned long new_flags = vma->vm_flags;
1027
1028	switch (behavior) {
1029	case MADV_REMOVE:
1030		return madvise_remove(vma, prev, start, end);
1031	case MADV_WILLNEED:
1032		return madvise_willneed(vma, prev, start, end);
1033	case MADV_COLD:
1034		return madvise_cold(vma, prev, start, end);
1035	case MADV_PAGEOUT:
1036		return madvise_pageout(vma, prev, start, end);
1037	case MADV_FREE:
1038	case MADV_DONTNEED:
1039	case MADV_DONTNEED_LOCKED:
1040		return madvise_dontneed_free(vma, prev, start, end, behavior);
1041	case MADV_POPULATE_READ:
1042	case MADV_POPULATE_WRITE:
1043		return madvise_populate(vma, prev, start, end, behavior);
1044	case MADV_NORMAL:
1045		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1046		break;
1047	case MADV_SEQUENTIAL:
1048		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1049		break;
1050	case MADV_RANDOM:
1051		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1052		break;
1053	case MADV_DONTFORK:
1054		new_flags |= VM_DONTCOPY;
1055		break;
1056	case MADV_DOFORK:
1057		if (vma->vm_flags & VM_IO)
1058			return -EINVAL;
1059		new_flags &= ~VM_DONTCOPY;
1060		break;
1061	case MADV_WIPEONFORK:
1062		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1063		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1064			return -EINVAL;
1065		new_flags |= VM_WIPEONFORK;
1066		break;
1067	case MADV_KEEPONFORK:
1068		new_flags &= ~VM_WIPEONFORK;
1069		break;
1070	case MADV_DONTDUMP:
1071		new_flags |= VM_DONTDUMP;
1072		break;
1073	case MADV_DODUMP:
1074		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1075			return -EINVAL;
1076		new_flags &= ~VM_DONTDUMP;
1077		break;
1078	case MADV_MERGEABLE:
1079	case MADV_UNMERGEABLE:
1080		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1081		if (error)
1082			goto out;
1083		break;
1084	case MADV_HUGEPAGE:
1085	case MADV_NOHUGEPAGE:
1086		error = hugepage_madvise(vma, &new_flags, behavior);
1087		if (error)
1088			goto out;
1089		break;
1090	case MADV_COLLAPSE:
1091		return madvise_collapse(vma, prev, start, end);
1092	}
1093
1094	anon_name = anon_vma_name(vma);
1095	anon_vma_name_get(anon_name);
1096	error = madvise_update_vma(vma, prev, start, end, new_flags,
1097				   anon_name);
1098	anon_vma_name_put(anon_name);
1099
1100out:
1101	/*
1102	 * madvise() returns EAGAIN if kernel resources, such as
1103	 * slab, are temporarily unavailable.
1104	 */
1105	if (error == -ENOMEM)
1106		error = -EAGAIN;
1107	return error;
1108}
1109
1110#ifdef CONFIG_MEMORY_FAILURE
1111/*
1112 * Error injection support for memory error handling.
1113 */
1114static int madvise_inject_error(int behavior,
1115		unsigned long start, unsigned long end)
1116{
1117	unsigned long size;
 
 
1118
1119	if (!capable(CAP_SYS_ADMIN))
1120		return -EPERM;
1121
1122
1123	for (; start < end; start += size) {
1124		unsigned long pfn;
1125		struct page *page;
1126		int ret;
1127
1128		ret = get_user_pages_fast(start, 1, 0, &page);
1129		if (ret != 1)
1130			return ret;
1131		pfn = page_to_pfn(page);
1132
1133		/*
1134		 * When soft offlining hugepages, after migrating the page
1135		 * we dissolve it, therefore in the second loop "page" will
1136		 * no longer be a compound page.
1137		 */
1138		size = page_size(compound_head(page));
 
 
 
 
 
1139
1140		if (behavior == MADV_SOFT_OFFLINE) {
1141			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1142				 pfn, start);
1143			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1144		} else {
1145			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1146				 pfn, start);
1147			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1148			if (ret == -EOPNOTSUPP)
1149				ret = 0;
1150		}
1151
 
 
 
 
 
 
 
 
 
 
 
1152		if (ret)
1153			return ret;
1154	}
1155
 
 
 
 
1156	return 0;
1157}
1158#endif
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160static bool
1161madvise_behavior_valid(int behavior)
1162{
1163	switch (behavior) {
1164	case MADV_DOFORK:
1165	case MADV_DONTFORK:
1166	case MADV_NORMAL:
1167	case MADV_SEQUENTIAL:
1168	case MADV_RANDOM:
1169	case MADV_REMOVE:
1170	case MADV_WILLNEED:
1171	case MADV_DONTNEED:
1172	case MADV_DONTNEED_LOCKED:
1173	case MADV_FREE:
1174	case MADV_COLD:
1175	case MADV_PAGEOUT:
1176	case MADV_POPULATE_READ:
1177	case MADV_POPULATE_WRITE:
1178#ifdef CONFIG_KSM
1179	case MADV_MERGEABLE:
1180	case MADV_UNMERGEABLE:
1181#endif
1182#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1183	case MADV_HUGEPAGE:
1184	case MADV_NOHUGEPAGE:
1185	case MADV_COLLAPSE:
1186#endif
1187	case MADV_DONTDUMP:
1188	case MADV_DODUMP:
1189	case MADV_WIPEONFORK:
1190	case MADV_KEEPONFORK:
1191#ifdef CONFIG_MEMORY_FAILURE
1192	case MADV_SOFT_OFFLINE:
1193	case MADV_HWPOISON:
1194#endif
1195		return true;
1196
1197	default:
1198		return false;
1199	}
1200}
1201
1202static bool process_madvise_behavior_valid(int behavior)
1203{
1204	switch (behavior) {
1205	case MADV_COLD:
1206	case MADV_PAGEOUT:
1207	case MADV_WILLNEED:
1208	case MADV_COLLAPSE:
1209		return true;
1210	default:
1211		return false;
1212	}
1213}
1214
1215/*
1216 * Walk the vmas in range [start,end), and call the visit function on each one.
1217 * The visit function will get start and end parameters that cover the overlap
1218 * between the current vma and the original range.  Any unmapped regions in the
1219 * original range will result in this function returning -ENOMEM while still
1220 * calling the visit function on all of the existing vmas in the range.
1221 * Must be called with the mmap_lock held for reading or writing.
1222 */
1223static
1224int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1225		      unsigned long end, unsigned long arg,
1226		      int (*visit)(struct vm_area_struct *vma,
1227				   struct vm_area_struct **prev, unsigned long start,
1228				   unsigned long end, unsigned long arg))
1229{
1230	struct vm_area_struct *vma;
1231	struct vm_area_struct *prev;
1232	unsigned long tmp;
1233	int unmapped_error = 0;
1234
1235	/*
1236	 * If the interval [start,end) covers some unmapped address
1237	 * ranges, just ignore them, but return -ENOMEM at the end.
1238	 * - different from the way of handling in mlock etc.
1239	 */
1240	vma = find_vma_prev(mm, start, &prev);
1241	if (vma && start > vma->vm_start)
1242		prev = vma;
1243
1244	for (;;) {
1245		int error;
1246
1247		/* Still start < end. */
1248		if (!vma)
1249			return -ENOMEM;
1250
1251		/* Here start < (end|vma->vm_end). */
1252		if (start < vma->vm_start) {
1253			unmapped_error = -ENOMEM;
1254			start = vma->vm_start;
1255			if (start >= end)
1256				break;
1257		}
1258
1259		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1260		tmp = vma->vm_end;
1261		if (end < tmp)
1262			tmp = end;
1263
1264		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1265		error = visit(vma, &prev, start, tmp, arg);
1266		if (error)
1267			return error;
1268		start = tmp;
1269		if (prev && start < prev->vm_end)
1270			start = prev->vm_end;
1271		if (start >= end)
1272			break;
1273		if (prev)
1274			vma = find_vma(mm, prev->vm_end);
1275		else	/* madvise_remove dropped mmap_lock */
1276			vma = find_vma(mm, start);
1277	}
1278
1279	return unmapped_error;
1280}
1281
1282#ifdef CONFIG_ANON_VMA_NAME
1283static int madvise_vma_anon_name(struct vm_area_struct *vma,
1284				 struct vm_area_struct **prev,
1285				 unsigned long start, unsigned long end,
1286				 unsigned long anon_name)
1287{
1288	int error;
1289
1290	/* Only anonymous mappings can be named */
1291	if (vma->vm_file && !vma_is_anon_shmem(vma))
1292		return -EBADF;
1293
1294	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1295				   (struct anon_vma_name *)anon_name);
1296
1297	/*
1298	 * madvise() returns EAGAIN if kernel resources, such as
1299	 * slab, are temporarily unavailable.
1300	 */
1301	if (error == -ENOMEM)
1302		error = -EAGAIN;
1303	return error;
1304}
1305
1306int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1307			  unsigned long len_in, struct anon_vma_name *anon_name)
1308{
1309	unsigned long end;
1310	unsigned long len;
1311
1312	if (start & ~PAGE_MASK)
1313		return -EINVAL;
1314	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1315
1316	/* Check to see whether len was rounded up from small -ve to zero */
1317	if (len_in && !len)
1318		return -EINVAL;
1319
1320	end = start + len;
1321	if (end < start)
1322		return -EINVAL;
1323
1324	if (end == start)
1325		return 0;
1326
1327	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1328				 madvise_vma_anon_name);
1329}
1330#endif /* CONFIG_ANON_VMA_NAME */
1331/*
1332 * The madvise(2) system call.
1333 *
1334 * Applications can use madvise() to advise the kernel how it should
1335 * handle paging I/O in this VM area.  The idea is to help the kernel
1336 * use appropriate read-ahead and caching techniques.  The information
1337 * provided is advisory only, and can be safely disregarded by the
1338 * kernel without affecting the correct operation of the application.
1339 *
1340 * behavior values:
1341 *  MADV_NORMAL - the default behavior is to read clusters.  This
1342 *		results in some read-ahead and read-behind.
1343 *  MADV_RANDOM - the system should read the minimum amount of data
1344 *		on any access, since it is unlikely that the appli-
1345 *		cation will need more than what it asks for.
1346 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1347 *		once, so they can be aggressively read ahead, and
1348 *		can be freed soon after they are accessed.
1349 *  MADV_WILLNEED - the application is notifying the system to read
1350 *		some pages ahead.
1351 *  MADV_DONTNEED - the application is finished with the given range,
1352 *		so the kernel can free resources associated with it.
1353 *  MADV_FREE - the application marks pages in the given range as lazy free,
1354 *		where actual purges are postponed until memory pressure happens.
1355 *  MADV_REMOVE - the application wants to free up the given range of
1356 *		pages and associated backing store.
1357 *  MADV_DONTFORK - omit this area from child's address space when forking:
1358 *		typically, to avoid COWing pages pinned by get_user_pages().
1359 *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1360 *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1361 *              range after a fork.
1362 *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1363 *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1364 *		were corrupted by unrecoverable hardware memory failure.
1365 *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1366 *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1367 *		this area with pages of identical content from other such areas.
1368 *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1369 *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1370 *		huge pages in the future. Existing pages might be coalesced and
1371 *		new pages might be allocated as THP.
1372 *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1373 *		transparent huge pages so the existing pages will not be
1374 *		coalesced into THP and new pages will not be allocated as THP.
1375 *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1376 *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1377 *		from being included in its core dump.
1378 *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1379 *  MADV_COLD - the application is not expected to use this memory soon,
1380 *		deactivate pages in this range so that they can be reclaimed
1381 *		easily if memory pressure happens.
1382 *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1383 *		page out the pages in this range immediately.
1384 *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1385 *		triggering read faults if required
1386 *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1387 *		triggering write faults if required
1388 *
1389 * return values:
1390 *  zero    - success
1391 *  -EINVAL - start + len < 0, start is not page-aligned,
1392 *		"behavior" is not a valid value, or application
1393 *		is attempting to release locked or shared pages,
1394 *		or the specified address range includes file, Huge TLB,
1395 *		MAP_SHARED or VMPFNMAP range.
1396 *  -ENOMEM - addresses in the specified range are not currently
1397 *		mapped, or are outside the AS of the process.
1398 *  -EIO    - an I/O error occurred while paging in data.
1399 *  -EBADF  - map exists, but area maps something that isn't a file.
1400 *  -EAGAIN - a kernel resource was temporarily unavailable.
1401 */
1402int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1403{
1404	unsigned long end;
1405	int error;
 
 
1406	int write;
1407	size_t len;
1408	struct blk_plug plug;
1409
1410	start = untagged_addr(start);
1411
1412	if (!madvise_behavior_valid(behavior))
1413		return -EINVAL;
1414
1415	if (!PAGE_ALIGNED(start))
1416		return -EINVAL;
1417	len = PAGE_ALIGN(len_in);
1418
1419	/* Check to see whether len was rounded up from small -ve to zero */
1420	if (len_in && !len)
1421		return -EINVAL;
1422
1423	end = start + len;
1424	if (end < start)
1425		return -EINVAL;
1426
 
1427	if (end == start)
1428		return 0;
1429
1430#ifdef CONFIG_MEMORY_FAILURE
1431	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1432		return madvise_inject_error(behavior, start, start + len_in);
1433#endif
1434
1435	write = madvise_need_mmap_write(behavior);
1436	if (write) {
1437		if (mmap_write_lock_killable(mm))
1438			return -EINTR;
1439	} else {
1440		mmap_read_lock(mm);
1441	}
1442
1443	blk_start_plug(&plug);
1444	error = madvise_walk_vmas(mm, start, end, behavior,
1445			madvise_vma_behavior);
1446	blk_finish_plug(&plug);
1447	if (write)
1448		mmap_write_unlock(mm);
1449	else
1450		mmap_read_unlock(mm);
1451
1452	return error;
1453}
1454
1455SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1456{
1457	return do_madvise(current->mm, start, len_in, behavior);
1458}
1459
1460SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1461		size_t, vlen, int, behavior, unsigned int, flags)
1462{
1463	ssize_t ret;
1464	struct iovec iovstack[UIO_FASTIOV], iovec;
1465	struct iovec *iov = iovstack;
1466	struct iov_iter iter;
1467	struct task_struct *task;
1468	struct mm_struct *mm;
1469	size_t total_len;
1470	unsigned int f_flags;
1471
1472	if (flags != 0) {
1473		ret = -EINVAL;
1474		goto out;
1475	}
 
 
 
1476
1477	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1478	if (ret < 0)
1479		goto out;
 
1480
1481	task = pidfd_get_task(pidfd, &f_flags);
1482	if (IS_ERR(task)) {
1483		ret = PTR_ERR(task);
1484		goto free_iov;
1485	}
1486
1487	if (!process_madvise_behavior_valid(behavior)) {
1488		ret = -EINVAL;
1489		goto release_task;
1490	}
1491
1492	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1493	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1494	if (IS_ERR_OR_NULL(mm)) {
1495		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1496		goto release_task;
1497	}
1498
1499	/*
1500	 * Require CAP_SYS_NICE for influencing process performance. Note that
1501	 * only non-destructive hints are currently supported.
1502	 */
1503	if (!capable(CAP_SYS_NICE)) {
1504		ret = -EPERM;
1505		goto release_mm;
1506	}
1507
1508	total_len = iov_iter_count(&iter);
1509
1510	while (iov_iter_count(&iter)) {
1511		iovec = iov_iter_iovec(&iter);
1512		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1513					iovec.iov_len, behavior);
1514		if (ret < 0)
1515			break;
1516		iov_iter_advance(&iter, iovec.iov_len);
1517	}
1518
1519	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1520
1521release_mm:
1522	mmput(mm);
1523release_task:
1524	put_task_struct(task);
1525free_iov:
1526	kfree(iov);
1527out:
1528	return ret;
 
 
 
 
 
 
1529}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	linux/mm/madvise.c
   4 *
   5 * Copyright (C) 1999  Linus Torvalds
   6 * Copyright (C) 2002  Christoph Hellwig
   7 */
   8
   9#include <linux/mman.h>
  10#include <linux/pagemap.h>
  11#include <linux/syscalls.h>
  12#include <linux/mempolicy.h>
  13#include <linux/page-isolation.h>
  14#include <linux/page_idle.h>
  15#include <linux/userfaultfd_k.h>
  16#include <linux/hugetlb.h>
  17#include <linux/falloc.h>
  18#include <linux/fadvise.h>
  19#include <linux/sched.h>
 
 
 
 
  20#include <linux/ksm.h>
  21#include <linux/fs.h>
  22#include <linux/file.h>
  23#include <linux/blkdev.h>
  24#include <linux/backing-dev.h>
  25#include <linux/pagewalk.h>
  26#include <linux/swap.h>
  27#include <linux/swapops.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/mmu_notifier.h>
  30
  31#include <asm/tlb.h>
  32
  33#include "internal.h"
 
  34
  35struct madvise_walk_private {
  36	struct mmu_gather *tlb;
  37	bool pageout;
  38};
  39
  40/*
  41 * Any behaviour which results in changes to the vma->vm_flags needs to
  42 * take mmap_sem for writing. Others, which simply traverse vmas, need
  43 * to only take it for reading.
  44 */
  45static int madvise_need_mmap_write(int behavior)
  46{
  47	switch (behavior) {
  48	case MADV_REMOVE:
  49	case MADV_WILLNEED:
  50	case MADV_DONTNEED:
 
  51	case MADV_COLD:
  52	case MADV_PAGEOUT:
  53	case MADV_FREE:
 
 
 
  54		return 0;
  55	default:
  56		/* be safe, default to 1. list exceptions explicitly */
  57		return 1;
  58	}
  59}
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61/*
  62 * We can potentially split a vm area into separate
  63 * areas, each area with its own behavior.
 
 
  64 */
  65static long madvise_behavior(struct vm_area_struct *vma,
  66		     struct vm_area_struct **prev,
  67		     unsigned long start, unsigned long end, int behavior)
 
  68{
  69	struct mm_struct *mm = vma->vm_mm;
  70	int error = 0;
  71	pgoff_t pgoff;
  72	unsigned long new_flags = vma->vm_flags;
  73
  74	switch (behavior) {
  75	case MADV_NORMAL:
  76		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
  77		break;
  78	case MADV_SEQUENTIAL:
  79		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
  80		break;
  81	case MADV_RANDOM:
  82		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
  83		break;
  84	case MADV_DONTFORK:
  85		new_flags |= VM_DONTCOPY;
  86		break;
  87	case MADV_DOFORK:
  88		if (vma->vm_flags & VM_IO) {
  89			error = -EINVAL;
  90			goto out;
  91		}
  92		new_flags &= ~VM_DONTCOPY;
  93		break;
  94	case MADV_WIPEONFORK:
  95		/* MADV_WIPEONFORK is only supported on anonymous memory. */
  96		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
  97			error = -EINVAL;
  98			goto out;
  99		}
 100		new_flags |= VM_WIPEONFORK;
 101		break;
 102	case MADV_KEEPONFORK:
 103		new_flags &= ~VM_WIPEONFORK;
 104		break;
 105	case MADV_DONTDUMP:
 106		new_flags |= VM_DONTDUMP;
 107		break;
 108	case MADV_DODUMP:
 109		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
 110			error = -EINVAL;
 111			goto out;
 112		}
 113		new_flags &= ~VM_DONTDUMP;
 114		break;
 115	case MADV_MERGEABLE:
 116	case MADV_UNMERGEABLE:
 117		error = ksm_madvise(vma, start, end, behavior, &new_flags);
 118		if (error)
 119			goto out_convert_errno;
 120		break;
 121	case MADV_HUGEPAGE:
 122	case MADV_NOHUGEPAGE:
 123		error = hugepage_madvise(vma, &new_flags, behavior);
 124		if (error)
 125			goto out_convert_errno;
 126		break;
 127	}
 128
 129	if (new_flags == vma->vm_flags) {
 130		*prev = vma;
 131		goto out;
 132	}
 133
 134	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 135	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
 136			  vma->vm_file, pgoff, vma_policy(vma),
 137			  vma->vm_userfaultfd_ctx);
 138	if (*prev) {
 139		vma = *prev;
 140		goto success;
 141	}
 142
 143	*prev = vma;
 144
 145	if (start != vma->vm_start) {
 146		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 147			error = -ENOMEM;
 148			goto out;
 149		}
 150		error = __split_vma(mm, vma, start, 1);
 151		if (error)
 152			goto out_convert_errno;
 153	}
 154
 155	if (end != vma->vm_end) {
 156		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
 157			error = -ENOMEM;
 158			goto out;
 159		}
 160		error = __split_vma(mm, vma, end, 0);
 161		if (error)
 162			goto out_convert_errno;
 163	}
 164
 165success:
 166	/*
 167	 * vm_flags is protected by the mmap_sem held in write mode.
 168	 */
 169	vma->vm_flags = new_flags;
 
 
 
 
 
 170
 171out_convert_errno:
 172	/*
 173	 * madvise() returns EAGAIN if kernel resources, such as
 174	 * slab, are temporarily unavailable.
 175	 */
 176	if (error == -ENOMEM)
 177		error = -EAGAIN;
 178out:
 179	return error;
 180}
 181
 182#ifdef CONFIG_SWAP
 183static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
 184	unsigned long end, struct mm_walk *walk)
 185{
 186	pte_t *orig_pte;
 187	struct vm_area_struct *vma = walk->private;
 188	unsigned long index;
 
 189
 190	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 191		return 0;
 192
 193	for (index = start; index != end; index += PAGE_SIZE) {
 194		pte_t pte;
 195		swp_entry_t entry;
 196		struct page *page;
 197		spinlock_t *ptl;
 
 198
 199		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
 200		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
 201		pte_unmap_unlock(orig_pte, ptl);
 202
 203		if (pte_present(pte) || pte_none(pte))
 204			continue;
 205		entry = pte_to_swp_entry(pte);
 206		if (unlikely(non_swap_entry(entry)))
 207			continue;
 208
 209		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
 210							vma, index, false);
 211		if (page)
 212			put_page(page);
 213	}
 
 
 214
 215	return 0;
 216}
 217
 218static const struct mm_walk_ops swapin_walk_ops = {
 219	.pmd_entry		= swapin_walk_pmd_entry,
 220};
 221
 222static void force_shm_swapin_readahead(struct vm_area_struct *vma,
 223		unsigned long start, unsigned long end,
 224		struct address_space *mapping)
 225{
 226	pgoff_t index;
 
 227	struct page *page;
 228	swp_entry_t swap;
 229
 230	for (; start < end; start += PAGE_SIZE) {
 231		index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 232
 233		page = find_get_entry(mapping, index);
 234		if (!xa_is_value(page)) {
 235			if (page)
 236				put_page(page);
 237			continue;
 238		}
 239		swap = radix_to_swp_entry(page);
 
 
 
 
 
 
 240		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
 241							NULL, 0, false);
 242		if (page)
 243			put_page(page);
 
 
 244	}
 
 
 245
 246	lru_add_drain();	/* Push any new pages onto the LRU now */
 247}
 248#endif		/* CONFIG_SWAP */
 249
 250/*
 251 * Schedule all required I/O operations.  Do not wait for completion.
 252 */
 253static long madvise_willneed(struct vm_area_struct *vma,
 254			     struct vm_area_struct **prev,
 255			     unsigned long start, unsigned long end)
 256{
 
 257	struct file *file = vma->vm_file;
 258	loff_t offset;
 259
 260	*prev = vma;
 261#ifdef CONFIG_SWAP
 262	if (!file) {
 263		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
 264		lru_add_drain(); /* Push any new pages onto the LRU now */
 265		return 0;
 266	}
 267
 268	if (shmem_mapping(file->f_mapping)) {
 269		force_shm_swapin_readahead(vma, start, end,
 270					file->f_mapping);
 271		return 0;
 272	}
 273#else
 274	if (!file)
 275		return -EBADF;
 276#endif
 277
 278	if (IS_DAX(file_inode(file))) {
 279		/* no bad return value, but ignore advice */
 280		return 0;
 281	}
 282
 283	/*
 284	 * Filesystem's fadvise may need to take various locks.  We need to
 285	 * explicitly grab a reference because the vma (and hence the
 286	 * vma's reference to the file) can go away as soon as we drop
 287	 * mmap_sem.
 288	 */
 289	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
 290	get_file(file);
 291	up_read(&current->mm->mmap_sem);
 292	offset = (loff_t)(start - vma->vm_start)
 293			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 
 294	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
 295	fput(file);
 296	down_read(&current->mm->mmap_sem);
 297	return 0;
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
 301				unsigned long addr, unsigned long end,
 302				struct mm_walk *walk)
 303{
 304	struct madvise_walk_private *private = walk->private;
 305	struct mmu_gather *tlb = private->tlb;
 306	bool pageout = private->pageout;
 307	struct mm_struct *mm = tlb->mm;
 308	struct vm_area_struct *vma = walk->vma;
 309	pte_t *orig_pte, *pte, ptent;
 310	spinlock_t *ptl;
 311	struct page *page = NULL;
 312	LIST_HEAD(page_list);
 
 313
 314	if (fatal_signal_pending(current))
 315		return -EINTR;
 316
 
 
 
 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 318	if (pmd_trans_huge(*pmd)) {
 319		pmd_t orig_pmd;
 320		unsigned long next = pmd_addr_end(addr, end);
 321
 322		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 323		ptl = pmd_trans_huge_lock(pmd, vma);
 324		if (!ptl)
 325			return 0;
 326
 327		orig_pmd = *pmd;
 328		if (is_huge_zero_pmd(orig_pmd))
 329			goto huge_unlock;
 330
 331		if (unlikely(!pmd_present(orig_pmd))) {
 332			VM_BUG_ON(thp_migration_supported() &&
 333					!is_pmd_migration_entry(orig_pmd));
 334			goto huge_unlock;
 335		}
 336
 337		page = pmd_page(orig_pmd);
 
 
 
 
 
 
 
 
 338		if (next - addr != HPAGE_PMD_SIZE) {
 339			int err;
 340
 341			if (page_mapcount(page) != 1)
 342				goto huge_unlock;
 343
 344			get_page(page);
 345			spin_unlock(ptl);
 346			lock_page(page);
 347			err = split_huge_page(page);
 348			unlock_page(page);
 349			put_page(page);
 350			if (!err)
 351				goto regular_page;
 352			return 0;
 353		}
 354
 355		if (pmd_young(orig_pmd)) {
 356			pmdp_invalidate(vma, addr, pmd);
 357			orig_pmd = pmd_mkold(orig_pmd);
 358
 359			set_pmd_at(mm, addr, pmd, orig_pmd);
 360			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 361		}
 362
 363		ClearPageReferenced(page);
 364		test_and_clear_page_young(page);
 365		if (pageout) {
 366			if (!isolate_lru_page(page)) {
 367				if (PageUnevictable(page))
 368					putback_lru_page(page);
 369				else
 370					list_add(&page->lru, &page_list);
 371			}
 372		} else
 373			deactivate_page(page);
 374huge_unlock:
 375		spin_unlock(ptl);
 376		if (pageout)
 377			reclaim_pages(&page_list);
 378		return 0;
 379	}
 380
 
 381	if (pmd_trans_unstable(pmd))
 382		return 0;
 383regular_page:
 384#endif
 385	tlb_change_page_size(tlb, PAGE_SIZE);
 386	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 387	flush_tlb_batched_pending(mm);
 388	arch_enter_lazy_mmu_mode();
 389	for (; addr < end; pte++, addr += PAGE_SIZE) {
 390		ptent = *pte;
 391
 392		if (pte_none(ptent))
 393			continue;
 394
 395		if (!pte_present(ptent))
 396			continue;
 397
 398		page = vm_normal_page(vma, addr, ptent);
 399		if (!page)
 400			continue;
 401
 402		/*
 403		 * Creating a THP page is expensive so split it only if we
 404		 * are sure it's worth. Split it if we are only owner.
 405		 */
 406		if (PageTransCompound(page)) {
 407			if (page_mapcount(page) != 1)
 408				break;
 
 
 409			get_page(page);
 410			if (!trylock_page(page)) {
 411				put_page(page);
 412				break;
 413			}
 414			pte_unmap_unlock(orig_pte, ptl);
 415			if (split_huge_page(page)) {
 416				unlock_page(page);
 417				put_page(page);
 418				pte_offset_map_lock(mm, pmd, addr, &ptl);
 419				break;
 420			}
 421			unlock_page(page);
 422			put_page(page);
 423			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 424			pte--;
 425			addr -= PAGE_SIZE;
 426			continue;
 427		}
 428
 
 
 
 
 
 
 
 
 
 
 429		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 430
 431		if (pte_young(ptent)) {
 432			ptent = ptep_get_and_clear_full(mm, addr, pte,
 433							tlb->fullmm);
 434			ptent = pte_mkold(ptent);
 435			set_pte_at(mm, addr, pte, ptent);
 436			tlb_remove_tlb_entry(tlb, pte, addr);
 437		}
 438
 439		/*
 440		 * We are deactivating a page for accelerating reclaiming.
 441		 * VM couldn't reclaim the page unless we clear PG_young.
 442		 * As a side effect, it makes confuse idle-page tracking
 443		 * because they will miss recent referenced history.
 444		 */
 445		ClearPageReferenced(page);
 446		test_and_clear_page_young(page);
 447		if (pageout) {
 448			if (!isolate_lru_page(page)) {
 449				if (PageUnevictable(page))
 450					putback_lru_page(page);
 451				else
 452					list_add(&page->lru, &page_list);
 453			}
 454		} else
 455			deactivate_page(page);
 456	}
 457
 458	arch_leave_lazy_mmu_mode();
 459	pte_unmap_unlock(orig_pte, ptl);
 460	if (pageout)
 461		reclaim_pages(&page_list);
 462	cond_resched();
 463
 464	return 0;
 465}
 466
 467static const struct mm_walk_ops cold_walk_ops = {
 468	.pmd_entry = madvise_cold_or_pageout_pte_range,
 469};
 470
 471static void madvise_cold_page_range(struct mmu_gather *tlb,
 472			     struct vm_area_struct *vma,
 473			     unsigned long addr, unsigned long end)
 474{
 475	struct madvise_walk_private walk_private = {
 476		.pageout = false,
 477		.tlb = tlb,
 478	};
 479
 480	tlb_start_vma(tlb, vma);
 481	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 482	tlb_end_vma(tlb, vma);
 483}
 484
 
 
 
 
 
 485static long madvise_cold(struct vm_area_struct *vma,
 486			struct vm_area_struct **prev,
 487			unsigned long start_addr, unsigned long end_addr)
 488{
 489	struct mm_struct *mm = vma->vm_mm;
 490	struct mmu_gather tlb;
 491
 492	*prev = vma;
 493	if (!can_madv_lru_vma(vma))
 494		return -EINVAL;
 495
 496	lru_add_drain();
 497	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
 498	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
 499	tlb_finish_mmu(&tlb, start_addr, end_addr);
 500
 501	return 0;
 502}
 503
 504static void madvise_pageout_page_range(struct mmu_gather *tlb,
 505			     struct vm_area_struct *vma,
 506			     unsigned long addr, unsigned long end)
 507{
 508	struct madvise_walk_private walk_private = {
 509		.pageout = true,
 510		.tlb = tlb,
 511	};
 512
 513	tlb_start_vma(tlb, vma);
 514	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
 515	tlb_end_vma(tlb, vma);
 516}
 517
 518static inline bool can_do_pageout(struct vm_area_struct *vma)
 519{
 520	if (vma_is_anonymous(vma))
 521		return true;
 522	if (!vma->vm_file)
 523		return false;
 524	/*
 525	 * paging out pagecache only for non-anonymous mappings that correspond
 526	 * to the files the calling process could (if tried) open for writing;
 527	 * otherwise we'd be including shared non-exclusive mappings, which
 528	 * opens a side channel.
 529	 */
 530	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
 531		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
 532}
 533
 534static long madvise_pageout(struct vm_area_struct *vma,
 535			struct vm_area_struct **prev,
 536			unsigned long start_addr, unsigned long end_addr)
 537{
 538	struct mm_struct *mm = vma->vm_mm;
 539	struct mmu_gather tlb;
 540
 541	*prev = vma;
 542	if (!can_madv_lru_vma(vma))
 543		return -EINVAL;
 544
 545	if (!can_do_pageout(vma))
 
 
 
 
 
 
 
 546		return 0;
 547
 548	lru_add_drain();
 549	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
 550	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
 551	tlb_finish_mmu(&tlb, start_addr, end_addr);
 552
 553	return 0;
 554}
 555
 556static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
 557				unsigned long end, struct mm_walk *walk)
 558
 559{
 560	struct mmu_gather *tlb = walk->private;
 561	struct mm_struct *mm = tlb->mm;
 562	struct vm_area_struct *vma = walk->vma;
 563	spinlock_t *ptl;
 564	pte_t *orig_pte, *pte, ptent;
 
 565	struct page *page;
 566	int nr_swap = 0;
 567	unsigned long next;
 568
 569	next = pmd_addr_end(addr, end);
 570	if (pmd_trans_huge(*pmd))
 571		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
 572			goto next;
 573
 574	if (pmd_trans_unstable(pmd))
 575		return 0;
 576
 577	tlb_change_page_size(tlb, PAGE_SIZE);
 578	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 579	flush_tlb_batched_pending(mm);
 580	arch_enter_lazy_mmu_mode();
 581	for (; addr != end; pte++, addr += PAGE_SIZE) {
 582		ptent = *pte;
 583
 584		if (pte_none(ptent))
 585			continue;
 586		/*
 587		 * If the pte has swp_entry, just clear page table to
 588		 * prevent swap-in which is more expensive rather than
 589		 * (page allocation + zeroing).
 590		 */
 591		if (!pte_present(ptent)) {
 592			swp_entry_t entry;
 593
 594			entry = pte_to_swp_entry(ptent);
 595			if (non_swap_entry(entry))
 596				continue;
 597			nr_swap--;
 598			free_swap_and_cache(entry);
 599			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 
 
 
 600			continue;
 601		}
 602
 603		page = vm_normal_page(vma, addr, ptent);
 604		if (!page)
 605			continue;
 
 606
 607		/*
 608		 * If pmd isn't transhuge but the page is THP and
 609		 * is owned by only this process, split it and
 610		 * deactivate all pages.
 611		 */
 612		if (PageTransCompound(page)) {
 613			if (page_mapcount(page) != 1)
 614				goto out;
 615			get_page(page);
 616			if (!trylock_page(page)) {
 617				put_page(page);
 618				goto out;
 619			}
 620			pte_unmap_unlock(orig_pte, ptl);
 621			if (split_huge_page(page)) {
 622				unlock_page(page);
 623				put_page(page);
 624				pte_offset_map_lock(mm, pmd, addr, &ptl);
 625				goto out;
 626			}
 627			unlock_page(page);
 628			put_page(page);
 629			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 630			pte--;
 631			addr -= PAGE_SIZE;
 632			continue;
 633		}
 634
 635		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 636
 637		if (PageSwapCache(page) || PageDirty(page)) {
 638			if (!trylock_page(page))
 639				continue;
 640			/*
 641			 * If page is shared with others, we couldn't clear
 642			 * PG_dirty of the page.
 643			 */
 644			if (page_mapcount(page) != 1) {
 645				unlock_page(page);
 646				continue;
 647			}
 648
 649			if (PageSwapCache(page) && !try_to_free_swap(page)) {
 650				unlock_page(page);
 
 651				continue;
 652			}
 653
 654			ClearPageDirty(page);
 655			unlock_page(page);
 656		}
 657
 658		if (pte_young(ptent) || pte_dirty(ptent)) {
 659			/*
 660			 * Some of architecture(ex, PPC) don't update TLB
 661			 * with set_pte_at and tlb_remove_tlb_entry so for
 662			 * the portability, remap the pte with old|clean
 663			 * after pte clearing.
 664			 */
 665			ptent = ptep_get_and_clear_full(mm, addr, pte,
 666							tlb->fullmm);
 667
 668			ptent = pte_mkold(ptent);
 669			ptent = pte_mkclean(ptent);
 670			set_pte_at(mm, addr, pte, ptent);
 671			tlb_remove_tlb_entry(tlb, pte, addr);
 672		}
 673		mark_page_lazyfree(page);
 674	}
 675out:
 676	if (nr_swap) {
 677		if (current->mm == mm)
 678			sync_mm_rss(mm);
 679
 680		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
 681	}
 682	arch_leave_lazy_mmu_mode();
 683	pte_unmap_unlock(orig_pte, ptl);
 684	cond_resched();
 685next:
 686	return 0;
 687}
 688
 689static const struct mm_walk_ops madvise_free_walk_ops = {
 690	.pmd_entry		= madvise_free_pte_range,
 691};
 692
 693static int madvise_free_single_vma(struct vm_area_struct *vma,
 694			unsigned long start_addr, unsigned long end_addr)
 695{
 696	struct mm_struct *mm = vma->vm_mm;
 697	struct mmu_notifier_range range;
 698	struct mmu_gather tlb;
 699
 700	/* MADV_FREE works for only anon vma at the moment */
 701	if (!vma_is_anonymous(vma))
 702		return -EINVAL;
 703
 704	range.start = max(vma->vm_start, start_addr);
 705	if (range.start >= vma->vm_end)
 706		return -EINVAL;
 707	range.end = min(vma->vm_end, end_addr);
 708	if (range.end <= vma->vm_start)
 709		return -EINVAL;
 710	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
 711				range.start, range.end);
 712
 713	lru_add_drain();
 714	tlb_gather_mmu(&tlb, mm, range.start, range.end);
 715	update_hiwater_rss(mm);
 716
 717	mmu_notifier_invalidate_range_start(&range);
 718	tlb_start_vma(&tlb, vma);
 719	walk_page_range(vma->vm_mm, range.start, range.end,
 720			&madvise_free_walk_ops, &tlb);
 721	tlb_end_vma(&tlb, vma);
 722	mmu_notifier_invalidate_range_end(&range);
 723	tlb_finish_mmu(&tlb, range.start, range.end);
 724
 725	return 0;
 726}
 727
 728/*
 729 * Application no longer needs these pages.  If the pages are dirty,
 730 * it's OK to just throw them away.  The app will be more careful about
 731 * data it wants to keep.  Be sure to free swap resources too.  The
 732 * zap_page_range call sets things up for shrink_active_list to actually free
 733 * these pages later if no one else has touched them in the meantime,
 734 * although we could add these pages to a global reuse list for
 735 * shrink_active_list to pick up before reclaiming other pages.
 736 *
 737 * NB: This interface discards data rather than pushes it out to swap,
 738 * as some implementations do.  This has performance implications for
 739 * applications like large transactional databases which want to discard
 740 * pages in anonymous maps after committing to backing store the data
 741 * that was kept in them.  There is no reason to write this data out to
 742 * the swap area if the application is discarding it.
 743 *
 744 * An interface that causes the system to free clean pages and flush
 745 * dirty pages is already available as msync(MS_INVALIDATE).
 746 */
 747static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
 748					unsigned long start, unsigned long end)
 749{
 750	zap_page_range(vma, start, end - start);
 751	return 0;
 752}
 753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754static long madvise_dontneed_free(struct vm_area_struct *vma,
 755				  struct vm_area_struct **prev,
 756				  unsigned long start, unsigned long end,
 757				  int behavior)
 758{
 
 
 759	*prev = vma;
 760	if (!can_madv_lru_vma(vma))
 761		return -EINVAL;
 762
 
 
 
 763	if (!userfaultfd_remove(vma, start, end)) {
 764		*prev = NULL; /* mmap_sem has been dropped, prev is stale */
 765
 766		down_read(&current->mm->mmap_sem);
 767		vma = find_vma(current->mm, start);
 768		if (!vma)
 769			return -ENOMEM;
 770		if (start < vma->vm_start) {
 771			/*
 772			 * This "vma" under revalidation is the one
 773			 * with the lowest vma->vm_start where start
 774			 * is also < vma->vm_end. If start <
 775			 * vma->vm_start it means an hole materialized
 776			 * in the user address space within the
 777			 * virtual range passed to MADV_DONTNEED
 778			 * or MADV_FREE.
 779			 */
 780			return -ENOMEM;
 781		}
 782		if (!can_madv_lru_vma(vma))
 
 
 
 
 
 783			return -EINVAL;
 784		if (end > vma->vm_end) {
 785			/*
 786			 * Don't fail if end > vma->vm_end. If the old
 787			 * vma was splitted while the mmap_sem was
 788			 * released the effect of the concurrent
 789			 * operation may not cause madvise() to
 790			 * have an undefined result. There may be an
 791			 * adjacent next vma that we'll walk
 792			 * next. userfaultfd_remove() will generate an
 793			 * UFFD_EVENT_REMOVE repetition on the
 794			 * end-vma->vm_end range, but the manager can
 795			 * handle a repetition fine.
 796			 */
 797			end = vma->vm_end;
 798		}
 799		VM_WARN_ON(start >= end);
 800	}
 801
 802	if (behavior == MADV_DONTNEED)
 803		return madvise_dontneed_single_vma(vma, start, end);
 804	else if (behavior == MADV_FREE)
 805		return madvise_free_single_vma(vma, start, end);
 806	else
 807		return -EINVAL;
 808}
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810/*
 811 * Application wants to free up the pages and associated backing store.
 812 * This is effectively punching a hole into the middle of a file.
 813 */
 814static long madvise_remove(struct vm_area_struct *vma,
 815				struct vm_area_struct **prev,
 816				unsigned long start, unsigned long end)
 817{
 818	loff_t offset;
 819	int error;
 820	struct file *f;
 
 821
 822	*prev = NULL;	/* tell sys_madvise we drop mmap_sem */
 823
 824	if (vma->vm_flags & VM_LOCKED)
 825		return -EINVAL;
 826
 827	f = vma->vm_file;
 828
 829	if (!f || !f->f_mapping || !f->f_mapping->host) {
 830			return -EINVAL;
 831	}
 832
 833	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
 834		return -EACCES;
 835
 836	offset = (loff_t)(start - vma->vm_start)
 837			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 838
 839	/*
 840	 * Filesystem's fallocate may need to take i_mutex.  We need to
 841	 * explicitly grab a reference because the vma (and hence the
 842	 * vma's reference to the file) can go away as soon as we drop
 843	 * mmap_sem.
 844	 */
 845	get_file(f);
 846	if (userfaultfd_remove(vma, start, end)) {
 847		/* mmap_sem was not released by userfaultfd_remove() */
 848		up_read(&current->mm->mmap_sem);
 849	}
 850	error = vfs_fallocate(f,
 851				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 852				offset, end - start);
 853	fput(f);
 854	down_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855	return error;
 856}
 857
 858#ifdef CONFIG_MEMORY_FAILURE
 859/*
 860 * Error injection support for memory error handling.
 861 */
 862static int madvise_inject_error(int behavior,
 863		unsigned long start, unsigned long end)
 864{
 865	struct page *page;
 866	struct zone *zone;
 867	unsigned int order;
 868
 869	if (!capable(CAP_SYS_ADMIN))
 870		return -EPERM;
 871
 872
 873	for (; start < end; start += PAGE_SIZE << order) {
 874		unsigned long pfn;
 
 875		int ret;
 876
 877		ret = get_user_pages_fast(start, 1, 0, &page);
 878		if (ret != 1)
 879			return ret;
 880		pfn = page_to_pfn(page);
 881
 882		/*
 883		 * When soft offlining hugepages, after migrating the page
 884		 * we dissolve it, therefore in the second loop "page" will
 885		 * no longer be a compound page, and order will be 0.
 886		 */
 887		order = compound_order(compound_head(page));
 888
 889		if (PageHWPoison(page)) {
 890			put_page(page);
 891			continue;
 892		}
 893
 894		if (behavior == MADV_SOFT_OFFLINE) {
 895			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
 896					pfn, start);
 897
 898			ret = soft_offline_page(page, MF_COUNT_INCREASED);
 899			if (ret)
 900				return ret;
 901			continue;
 
 
 902		}
 903
 904		pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
 905				pfn, start);
 906
 907		/*
 908		 * Drop the page reference taken by get_user_pages_fast(). In
 909		 * the absence of MF_COUNT_INCREASED the memory_failure()
 910		 * routine is responsible for pinning the page to prevent it
 911		 * from being released back to the page allocator.
 912		 */
 913		put_page(page);
 914		ret = memory_failure(pfn, 0);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	/* Ensure that all poisoned pages are removed from per-cpu lists */
 920	for_each_populated_zone(zone)
 921		drain_all_pages(zone);
 922
 923	return 0;
 924}
 925#endif
 926
 927static long
 928madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
 929		unsigned long start, unsigned long end, int behavior)
 930{
 931	switch (behavior) {
 932	case MADV_REMOVE:
 933		return madvise_remove(vma, prev, start, end);
 934	case MADV_WILLNEED:
 935		return madvise_willneed(vma, prev, start, end);
 936	case MADV_COLD:
 937		return madvise_cold(vma, prev, start, end);
 938	case MADV_PAGEOUT:
 939		return madvise_pageout(vma, prev, start, end);
 940	case MADV_FREE:
 941	case MADV_DONTNEED:
 942		return madvise_dontneed_free(vma, prev, start, end, behavior);
 943	default:
 944		return madvise_behavior(vma, prev, start, end, behavior);
 945	}
 946}
 947
 948static bool
 949madvise_behavior_valid(int behavior)
 950{
 951	switch (behavior) {
 952	case MADV_DOFORK:
 953	case MADV_DONTFORK:
 954	case MADV_NORMAL:
 955	case MADV_SEQUENTIAL:
 956	case MADV_RANDOM:
 957	case MADV_REMOVE:
 958	case MADV_WILLNEED:
 959	case MADV_DONTNEED:
 
 960	case MADV_FREE:
 961	case MADV_COLD:
 962	case MADV_PAGEOUT:
 
 
 963#ifdef CONFIG_KSM
 964	case MADV_MERGEABLE:
 965	case MADV_UNMERGEABLE:
 966#endif
 967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 968	case MADV_HUGEPAGE:
 969	case MADV_NOHUGEPAGE:
 
 970#endif
 971	case MADV_DONTDUMP:
 972	case MADV_DODUMP:
 973	case MADV_WIPEONFORK:
 974	case MADV_KEEPONFORK:
 975#ifdef CONFIG_MEMORY_FAILURE
 976	case MADV_SOFT_OFFLINE:
 977	case MADV_HWPOISON:
 978#endif
 979		return true;
 980
 981	default:
 982		return false;
 983	}
 984}
 985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986/*
 987 * The madvise(2) system call.
 988 *
 989 * Applications can use madvise() to advise the kernel how it should
 990 * handle paging I/O in this VM area.  The idea is to help the kernel
 991 * use appropriate read-ahead and caching techniques.  The information
 992 * provided is advisory only, and can be safely disregarded by the
 993 * kernel without affecting the correct operation of the application.
 994 *
 995 * behavior values:
 996 *  MADV_NORMAL - the default behavior is to read clusters.  This
 997 *		results in some read-ahead and read-behind.
 998 *  MADV_RANDOM - the system should read the minimum amount of data
 999 *		on any access, since it is unlikely that the appli-
1000 *		cation will need more than what it asks for.
1001 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1002 *		once, so they can be aggressively read ahead, and
1003 *		can be freed soon after they are accessed.
1004 *  MADV_WILLNEED - the application is notifying the system to read
1005 *		some pages ahead.
1006 *  MADV_DONTNEED - the application is finished with the given range,
1007 *		so the kernel can free resources associated with it.
1008 *  MADV_FREE - the application marks pages in the given range as lazy free,
1009 *		where actual purges are postponed until memory pressure happens.
1010 *  MADV_REMOVE - the application wants to free up the given range of
1011 *		pages and associated backing store.
1012 *  MADV_DONTFORK - omit this area from child's address space when forking:
1013 *		typically, to avoid COWing pages pinned by get_user_pages().
1014 *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1015 *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1016 *              range after a fork.
1017 *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1018 *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1019 *		were corrupted by unrecoverable hardware memory failure.
1020 *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1021 *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1022 *		this area with pages of identical content from other such areas.
1023 *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1024 *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1025 *		huge pages in the future. Existing pages might be coalesced and
1026 *		new pages might be allocated as THP.
1027 *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1028 *		transparent huge pages so the existing pages will not be
1029 *		coalesced into THP and new pages will not be allocated as THP.
 
1030 *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1031 *		from being included in its core dump.
1032 *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
 
 
 
 
 
 
 
 
 
1033 *
1034 * return values:
1035 *  zero    - success
1036 *  -EINVAL - start + len < 0, start is not page-aligned,
1037 *		"behavior" is not a valid value, or application
1038 *		is attempting to release locked or shared pages,
1039 *		or the specified address range includes file, Huge TLB,
1040 *		MAP_SHARED or VMPFNMAP range.
1041 *  -ENOMEM - addresses in the specified range are not currently
1042 *		mapped, or are outside the AS of the process.
1043 *  -EIO    - an I/O error occurred while paging in data.
1044 *  -EBADF  - map exists, but area maps something that isn't a file.
1045 *  -EAGAIN - a kernel resource was temporarily unavailable.
1046 */
1047SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1048{
1049	unsigned long end, tmp;
1050	struct vm_area_struct *vma, *prev;
1051	int unmapped_error = 0;
1052	int error = -EINVAL;
1053	int write;
1054	size_t len;
1055	struct blk_plug plug;
1056
1057	start = untagged_addr(start);
1058
1059	if (!madvise_behavior_valid(behavior))
1060		return error;
1061
1062	if (start & ~PAGE_MASK)
1063		return error;
1064	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1065
1066	/* Check to see whether len was rounded up from small -ve to zero */
1067	if (len_in && !len)
1068		return error;
1069
1070	end = start + len;
1071	if (end < start)
1072		return error;
1073
1074	error = 0;
1075	if (end == start)
1076		return error;
1077
1078#ifdef CONFIG_MEMORY_FAILURE
1079	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1080		return madvise_inject_error(behavior, start, start + len_in);
1081#endif
1082
1083	write = madvise_need_mmap_write(behavior);
1084	if (write) {
1085		if (down_write_killable(&current->mm->mmap_sem))
1086			return -EINTR;
1087	} else {
1088		down_read(&current->mm->mmap_sem);
1089	}
1090
1091	/*
1092	 * If the interval [start,end) covers some unmapped address
1093	 * ranges, just ignore them, but return -ENOMEM at the end.
1094	 * - different from the way of handling in mlock etc.
1095	 */
1096	vma = find_vma_prev(current->mm, start, &prev);
1097	if (vma && start > vma->vm_start)
1098		prev = vma;
 
 
 
 
 
 
 
 
1099
1100	blk_start_plug(&plug);
1101	for (;;) {
1102		/* Still start < end. */
1103		error = -ENOMEM;
1104		if (!vma)
1105			goto out;
 
 
 
 
 
1106
1107		/* Here start < (end|vma->vm_end). */
1108		if (start < vma->vm_start) {
1109			unmapped_error = -ENOMEM;
1110			start = vma->vm_start;
1111			if (start >= end)
1112				goto out;
1113		}
1114
1115		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1116		tmp = vma->vm_end;
1117		if (end < tmp)
1118			tmp = end;
1119
1120		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1121		error = madvise_vma(vma, &prev, start, tmp, behavior);
1122		if (error)
1123			goto out;
1124		start = tmp;
1125		if (prev && start < prev->vm_end)
1126			start = prev->vm_end;
1127		error = unmapped_error;
1128		if (start >= end)
1129			goto out;
1130		if (prev)
1131			vma = prev->vm_next;
1132		else	/* madvise_remove dropped mmap_sem */
1133			vma = find_vma(current->mm, start);
 
 
1134	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135out:
1136	blk_finish_plug(&plug);
1137	if (write)
1138		up_write(&current->mm->mmap_sem);
1139	else
1140		up_read(&current->mm->mmap_sem);
1141
1142	return error;
1143}