Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
 
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation (includes suggestions from
   9 *		Rusty Russell).
  10 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  11 *		hlists and exceptions notifier as suggested by Andi Kleen.
  12 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  13 *		interface to access function arguments.
  14 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  15 *		exceptions notifier to be first on the priority list.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 */
  20
  21#define pr_fmt(fmt) "kprobes: " fmt
  22
  23#include <linux/kprobes.h>
  24#include <linux/hash.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/stddef.h>
  28#include <linux/export.h>
  29#include <linux/moduleloader.h>
  30#include <linux/kallsyms.h>
  31#include <linux/freezer.h>
  32#include <linux/seq_file.h>
  33#include <linux/debugfs.h>
  34#include <linux/sysctl.h>
  35#include <linux/kdebug.h>
  36#include <linux/memory.h>
  37#include <linux/ftrace.h>
  38#include <linux/cpu.h>
  39#include <linux/jump_label.h>
  40#include <linux/static_call.h>
  41#include <linux/perf_event.h>
  42
  43#include <asm/sections.h>
  44#include <asm/cacheflush.h>
  45#include <asm/errno.h>
  46#include <linux/uaccess.h>
  47
  48#define KPROBE_HASH_BITS 6
  49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  50
  51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
  52#define kprobe_sysctls_init() do { } while (0)
  53#endif
  54
  55static int kprobes_initialized;
  56/* kprobe_table can be accessed by
  57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
  58 * Or
  59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  60 */
  61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
 
  62
  63/* NOTE: change this value only with 'kprobe_mutex' held */
  64static bool kprobes_all_disarmed;
  65
  66/* This protects 'kprobe_table' and 'optimizing_list' */
  67static DEFINE_MUTEX(kprobe_mutex);
  68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
 
 
 
  69
  70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  71					unsigned int __unused)
  72{
  73	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  74}
  75
  76/*
  77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
  78 * kprobes can not probe.
  79 */
 
 
  80static LIST_HEAD(kprobe_blacklist);
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
  98#define KPROBE_INSN_PAGE_SIZE(slots)			\
  99	(offsetof(struct kprobe_insn_page, slot_used) +	\
 100	 (sizeof(char) * (slots)))
 101
 102static int slots_per_page(struct kprobe_insn_cache *c)
 103{
 104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 105}
 106
 107enum kprobe_slot_state {
 108	SLOT_CLEAN = 0,
 109	SLOT_DIRTY = 1,
 110	SLOT_USED = 2,
 111};
 112
 113void __weak *alloc_insn_page(void)
 114{
 115	/*
 116	 * Use module_alloc() so this page is within +/- 2GB of where the
 117	 * kernel image and loaded module images reside. This is required
 118	 * for most of the architectures.
 119	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
 120	 */
 121	return module_alloc(PAGE_SIZE);
 122}
 123
 124static void free_insn_page(void *page)
 125{
 126	module_memfree(page);
 127}
 128
 129struct kprobe_insn_cache kprobe_insn_slots = {
 130	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 131	.alloc = alloc_insn_page,
 132	.free = free_insn_page,
 133	.sym = KPROBE_INSN_PAGE_SYM,
 134	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 135	.insn_size = MAX_INSN_SIZE,
 136	.nr_garbage = 0,
 137};
 138static int collect_garbage_slots(struct kprobe_insn_cache *c);
 139
 140/**
 141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 142 * We allocate an executable page if there's no room on existing ones.
 143 */
 144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 145{
 146	struct kprobe_insn_page *kip;
 147	kprobe_opcode_t *slot = NULL;
 148
 149	/* Since the slot array is not protected by rcu, we need a mutex */
 150	mutex_lock(&c->mutex);
 151 retry:
 152	rcu_read_lock();
 153	list_for_each_entry_rcu(kip, &c->pages, list) {
 154		if (kip->nused < slots_per_page(c)) {
 155			int i;
 156
 157			for (i = 0; i < slots_per_page(c); i++) {
 158				if (kip->slot_used[i] == SLOT_CLEAN) {
 159					kip->slot_used[i] = SLOT_USED;
 160					kip->nused++;
 161					slot = kip->insns + (i * c->insn_size);
 162					rcu_read_unlock();
 163					goto out;
 164				}
 165			}
 166			/* kip->nused is broken. Fix it. */
 167			kip->nused = slots_per_page(c);
 168			WARN_ON(1);
 169		}
 170	}
 171	rcu_read_unlock();
 172
 173	/* If there are any garbage slots, collect it and try again. */
 174	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 175		goto retry;
 176
 177	/* All out of space.  Need to allocate a new page. */
 178	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 179	if (!kip)
 180		goto out;
 181
 
 
 
 
 
 182	kip->insns = c->alloc();
 183	if (!kip->insns) {
 184		kfree(kip);
 185		goto out;
 186	}
 187	INIT_LIST_HEAD(&kip->list);
 188	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 189	kip->slot_used[0] = SLOT_USED;
 190	kip->nused = 1;
 191	kip->ngarbage = 0;
 192	kip->cache = c;
 193	list_add_rcu(&kip->list, &c->pages);
 194	slot = kip->insns;
 195
 196	/* Record the perf ksymbol register event after adding the page */
 197	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 198			   PAGE_SIZE, false, c->sym);
 199out:
 200	mutex_unlock(&c->mutex);
 201	return slot;
 202}
 203
 204/* Return true if all garbages are collected, otherwise false. */
 205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
 206{
 207	kip->slot_used[idx] = SLOT_CLEAN;
 208	kip->nused--;
 209	if (kip->nused == 0) {
 210		/*
 211		 * Page is no longer in use.  Free it unless
 212		 * it's the last one.  We keep the last one
 213		 * so as not to have to set it up again the
 214		 * next time somebody inserts a probe.
 215		 */
 216		if (!list_is_singular(&kip->list)) {
 217			/*
 218			 * Record perf ksymbol unregister event before removing
 219			 * the page.
 220			 */
 221			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 222					   (unsigned long)kip->insns, PAGE_SIZE, true,
 223					   kip->cache->sym);
 224			list_del_rcu(&kip->list);
 225			synchronize_rcu();
 226			kip->cache->free(kip->insns);
 227			kfree(kip);
 228		}
 229		return true;
 230	}
 231	return false;
 232}
 233
 234static int collect_garbage_slots(struct kprobe_insn_cache *c)
 235{
 236	struct kprobe_insn_page *kip, *next;
 237
 238	/* Ensure no-one is interrupted on the garbages */
 239	synchronize_rcu();
 240
 241	list_for_each_entry_safe(kip, next, &c->pages, list) {
 242		int i;
 243
 244		if (kip->ngarbage == 0)
 245			continue;
 246		kip->ngarbage = 0;	/* we will collect all garbages */
 247		for (i = 0; i < slots_per_page(c); i++) {
 248			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 249				break;
 250		}
 251	}
 252	c->nr_garbage = 0;
 253	return 0;
 254}
 255
 256void __free_insn_slot(struct kprobe_insn_cache *c,
 257		      kprobe_opcode_t *slot, int dirty)
 258{
 259	struct kprobe_insn_page *kip;
 260	long idx;
 261
 262	mutex_lock(&c->mutex);
 263	rcu_read_lock();
 264	list_for_each_entry_rcu(kip, &c->pages, list) {
 265		idx = ((long)slot - (long)kip->insns) /
 266			(c->insn_size * sizeof(kprobe_opcode_t));
 267		if (idx >= 0 && idx < slots_per_page(c))
 268			goto out;
 269	}
 270	/* Could not find this slot. */
 271	WARN_ON(1);
 272	kip = NULL;
 273out:
 274	rcu_read_unlock();
 275	/* Mark and sweep: this may sleep */
 276	if (kip) {
 277		/* Check double free */
 278		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 279		if (dirty) {
 280			kip->slot_used[idx] = SLOT_DIRTY;
 281			kip->ngarbage++;
 282			if (++c->nr_garbage > slots_per_page(c))
 283				collect_garbage_slots(c);
 284		} else {
 285			collect_one_slot(kip, idx);
 286		}
 287	}
 288	mutex_unlock(&c->mutex);
 289}
 290
 291/*
 292 * Check given address is on the page of kprobe instruction slots.
 293 * This will be used for checking whether the address on a stack
 294 * is on a text area or not.
 295 */
 296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 297{
 298	struct kprobe_insn_page *kip;
 299	bool ret = false;
 300
 301	rcu_read_lock();
 302	list_for_each_entry_rcu(kip, &c->pages, list) {
 303		if (addr >= (unsigned long)kip->insns &&
 304		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 305			ret = true;
 306			break;
 307		}
 308	}
 309	rcu_read_unlock();
 310
 311	return ret;
 312}
 313
 314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 315			     unsigned long *value, char *type, char *sym)
 316{
 317	struct kprobe_insn_page *kip;
 318	int ret = -ERANGE;
 319
 320	rcu_read_lock();
 321	list_for_each_entry_rcu(kip, &c->pages, list) {
 322		if ((*symnum)--)
 323			continue;
 324		strscpy(sym, c->sym, KSYM_NAME_LEN);
 325		*type = 't';
 326		*value = (unsigned long)kip->insns;
 327		ret = 0;
 328		break;
 329	}
 330	rcu_read_unlock();
 331
 332	return ret;
 333}
 334
 335#ifdef CONFIG_OPTPROBES
 336void __weak *alloc_optinsn_page(void)
 337{
 338	return alloc_insn_page();
 339}
 340
 341void __weak free_optinsn_page(void *page)
 342{
 343	free_insn_page(page);
 344}
 345
 346/* For optimized_kprobe buffer */
 347struct kprobe_insn_cache kprobe_optinsn_slots = {
 348	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 349	.alloc = alloc_optinsn_page,
 350	.free = free_optinsn_page,
 351	.sym = KPROBE_OPTINSN_PAGE_SYM,
 352	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 353	/* .insn_size is initialized later */
 354	.nr_garbage = 0,
 355};
 356#endif
 357#endif
 358
 359/* We have preemption disabled.. so it is safe to use __ versions */
 360static inline void set_kprobe_instance(struct kprobe *kp)
 361{
 362	__this_cpu_write(kprobe_instance, kp);
 363}
 364
 365static inline void reset_kprobe_instance(void)
 366{
 367	__this_cpu_write(kprobe_instance, NULL);
 368}
 369
 370/*
 371 * This routine is called either:
 372 *	- under the 'kprobe_mutex' - during kprobe_[un]register().
 373 *				OR
 374 *	- with preemption disabled - from architecture specific code.
 375 */
 376struct kprobe *get_kprobe(void *addr)
 377{
 378	struct hlist_head *head;
 379	struct kprobe *p;
 380
 381	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 382	hlist_for_each_entry_rcu(p, head, hlist,
 383				 lockdep_is_held(&kprobe_mutex)) {
 384		if (p->addr == addr)
 385			return p;
 386	}
 387
 388	return NULL;
 389}
 390NOKPROBE_SYMBOL(get_kprobe);
 391
 392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 393
 394/* Return true if 'p' is an aggregator */
 395static inline bool kprobe_aggrprobe(struct kprobe *p)
 396{
 397	return p->pre_handler == aggr_pre_handler;
 398}
 399
 400/* Return true if 'p' is unused */
 401static inline bool kprobe_unused(struct kprobe *p)
 402{
 403	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 404	       list_empty(&p->list);
 405}
 406
 407/* Keep all fields in the kprobe consistent. */
 
 
 408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 409{
 410	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 411	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 412}
 413
 414#ifdef CONFIG_OPTPROBES
 415/* NOTE: This is protected by 'kprobe_mutex'. */
 416static bool kprobes_allow_optimization;
 417
 418/*
 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
 420 * This must be called from arch-dep optimized caller.
 421 */
 422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 423{
 424	struct kprobe *kp;
 425
 426	list_for_each_entry_rcu(kp, &p->list, list) {
 427		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 428			set_kprobe_instance(kp);
 429			kp->pre_handler(kp, regs);
 430		}
 431		reset_kprobe_instance();
 432	}
 433}
 434NOKPROBE_SYMBOL(opt_pre_handler);
 435
 436/* Free optimized instructions and optimized_kprobe */
 437static void free_aggr_kprobe(struct kprobe *p)
 438{
 439	struct optimized_kprobe *op;
 440
 441	op = container_of(p, struct optimized_kprobe, kp);
 442	arch_remove_optimized_kprobe(op);
 443	arch_remove_kprobe(p);
 444	kfree(op);
 445}
 446
 447/* Return true if the kprobe is ready for optimization. */
 448static inline int kprobe_optready(struct kprobe *p)
 449{
 450	struct optimized_kprobe *op;
 451
 452	if (kprobe_aggrprobe(p)) {
 453		op = container_of(p, struct optimized_kprobe, kp);
 454		return arch_prepared_optinsn(&op->optinsn);
 455	}
 456
 457	return 0;
 458}
 459
 460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
 461static inline bool kprobe_disarmed(struct kprobe *p)
 462{
 463	struct optimized_kprobe *op;
 464
 465	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 466	if (!kprobe_aggrprobe(p))
 467		return kprobe_disabled(p);
 468
 469	op = container_of(p, struct optimized_kprobe, kp);
 470
 471	return kprobe_disabled(p) && list_empty(&op->list);
 472}
 473
 474/* Return true if the probe is queued on (un)optimizing lists */
 475static bool kprobe_queued(struct kprobe *p)
 476{
 477	struct optimized_kprobe *op;
 478
 479	if (kprobe_aggrprobe(p)) {
 480		op = container_of(p, struct optimized_kprobe, kp);
 481		if (!list_empty(&op->list))
 482			return true;
 483	}
 484	return false;
 485}
 486
 487/*
 488 * Return an optimized kprobe whose optimizing code replaces
 489 * instructions including 'addr' (exclude breakpoint).
 490 */
 491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
 492{
 493	int i;
 494	struct kprobe *p = NULL;
 495	struct optimized_kprobe *op;
 496
 497	/* Don't check i == 0, since that is a breakpoint case. */
 498	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
 499		p = get_kprobe(addr - i);
 500
 501	if (p && kprobe_optready(p)) {
 502		op = container_of(p, struct optimized_kprobe, kp);
 503		if (arch_within_optimized_kprobe(op, addr))
 504			return p;
 505	}
 506
 507	return NULL;
 508}
 509
 510/* Optimization staging list, protected by 'kprobe_mutex' */
 511static LIST_HEAD(optimizing_list);
 512static LIST_HEAD(unoptimizing_list);
 513static LIST_HEAD(freeing_list);
 514
 515static void kprobe_optimizer(struct work_struct *work);
 516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 517#define OPTIMIZE_DELAY 5
 518
 519/*
 520 * Optimize (replace a breakpoint with a jump) kprobes listed on
 521 * 'optimizing_list'.
 522 */
 523static void do_optimize_kprobes(void)
 524{
 525	lockdep_assert_held(&text_mutex);
 526	/*
 527	 * The optimization/unoptimization refers 'online_cpus' via
 528	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
 529	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
 530	 * This combination can cause a deadlock (cpu-hotplug tries to lock
 531	 * 'text_mutex' but stop_machine() can not be done because
 532	 * the 'online_cpus' has been changed)
 533	 * To avoid this deadlock, caller must have locked cpu-hotplug
 534	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
 535	 */
 536	lockdep_assert_cpus_held();
 537
 538	/* Optimization never be done when disarmed */
 539	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 540	    list_empty(&optimizing_list))
 541		return;
 542
 543	arch_optimize_kprobes(&optimizing_list);
 544}
 545
 546/*
 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 548 * if need) kprobes listed on 'unoptimizing_list'.
 549 */
 550static void do_unoptimize_kprobes(void)
 551{
 552	struct optimized_kprobe *op, *tmp;
 553
 554	lockdep_assert_held(&text_mutex);
 555	/* See comment in do_optimize_kprobes() */
 556	lockdep_assert_cpus_held();
 557
 558	/* Unoptimization must be done anytime */
 559	if (list_empty(&unoptimizing_list))
 560		return;
 561
 562	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 563	/* Loop on 'freeing_list' for disarming */
 564	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 565		/* Switching from detour code to origin */
 566		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 567		/* Disarm probes if marked disabled */
 568		if (kprobe_disabled(&op->kp))
 569			arch_disarm_kprobe(&op->kp);
 570		if (kprobe_unused(&op->kp)) {
 571			/*
 572			 * Remove unused probes from hash list. After waiting
 573			 * for synchronization, these probes are reclaimed.
 574			 * (reclaiming is done by do_free_cleaned_kprobes().)
 575			 */
 576			hlist_del_rcu(&op->kp.hlist);
 577		} else
 578			list_del_init(&op->list);
 579	}
 580}
 581
 582/* Reclaim all kprobes on the 'freeing_list' */
 583static void do_free_cleaned_kprobes(void)
 584{
 585	struct optimized_kprobe *op, *tmp;
 586
 587	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 588		list_del_init(&op->list);
 589		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 590			/*
 591			 * This must not happen, but if there is a kprobe
 592			 * still in use, keep it on kprobes hash list.
 593			 */
 594			continue;
 595		}
 596		free_aggr_kprobe(&op->kp);
 597	}
 598}
 599
 600/* Start optimizer after OPTIMIZE_DELAY passed */
 601static void kick_kprobe_optimizer(void)
 602{
 603	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 604}
 605
 606/* Kprobe jump optimizer */
 607static void kprobe_optimizer(struct work_struct *work)
 608{
 609	mutex_lock(&kprobe_mutex);
 610	cpus_read_lock();
 611	mutex_lock(&text_mutex);
 
 
 612
 613	/*
 614	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 615	 * kprobes before waiting for quiesence period.
 616	 */
 617	do_unoptimize_kprobes();
 618
 619	/*
 620	 * Step 2: Wait for quiesence period to ensure all potentially
 621	 * preempted tasks to have normally scheduled. Because optprobe
 622	 * may modify multiple instructions, there is a chance that Nth
 623	 * instruction is preempted. In that case, such tasks can return
 624	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 625	 * Note that on non-preemptive kernel, this is transparently converted
 626	 * to synchronoze_sched() to wait for all interrupts to have completed.
 627	 */
 628	synchronize_rcu_tasks();
 629
 630	/* Step 3: Optimize kprobes after quiesence period */
 631	do_optimize_kprobes();
 632
 633	/* Step 4: Free cleaned kprobes after quiesence period */
 634	do_free_cleaned_kprobes();
 635
 
 636	mutex_unlock(&text_mutex);
 637	cpus_read_unlock();
 
 638
 639	/* Step 5: Kick optimizer again if needed */
 640	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 641		kick_kprobe_optimizer();
 642
 643	mutex_unlock(&kprobe_mutex);
 644}
 645
 646/* Wait for completing optimization and unoptimization */
 647void wait_for_kprobe_optimizer(void)
 648{
 649	mutex_lock(&kprobe_mutex);
 650
 651	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 652		mutex_unlock(&kprobe_mutex);
 653
 654		/* This will also make 'optimizing_work' execute immmediately */
 655		flush_delayed_work(&optimizing_work);
 656		/* 'optimizing_work' might not have been queued yet, relax */
 657		cpu_relax();
 658
 659		mutex_lock(&kprobe_mutex);
 660	}
 661
 662	mutex_unlock(&kprobe_mutex);
 663}
 664
 665static bool optprobe_queued_unopt(struct optimized_kprobe *op)
 666{
 667	struct optimized_kprobe *_op;
 668
 669	list_for_each_entry(_op, &unoptimizing_list, list) {
 670		if (op == _op)
 671			return true;
 672	}
 673
 674	return false;
 675}
 676
 677/* Optimize kprobe if p is ready to be optimized */
 678static void optimize_kprobe(struct kprobe *p)
 679{
 680	struct optimized_kprobe *op;
 681
 682	/* Check if the kprobe is disabled or not ready for optimization. */
 683	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 684	    (kprobe_disabled(p) || kprobes_all_disarmed))
 685		return;
 686
 687	/* kprobes with 'post_handler' can not be optimized */
 688	if (p->post_handler)
 689		return;
 690
 691	op = container_of(p, struct optimized_kprobe, kp);
 692
 693	/* Check there is no other kprobes at the optimized instructions */
 694	if (arch_check_optimized_kprobe(op) < 0)
 695		return;
 696
 697	/* Check if it is already optimized. */
 698	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 699		if (optprobe_queued_unopt(op)) {
 700			/* This is under unoptimizing. Just dequeue the probe */
 701			list_del_init(&op->list);
 702		}
 703		return;
 704	}
 705	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 706
 707	/*
 708	 * On the 'unoptimizing_list' and 'optimizing_list',
 709	 * 'op' must have OPTIMIZED flag
 710	 */
 711	if (WARN_ON_ONCE(!list_empty(&op->list)))
 712		return;
 713
 714	list_add(&op->list, &optimizing_list);
 715	kick_kprobe_optimizer();
 716}
 717
 718/* Short cut to direct unoptimizing */
 719static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 720{
 721	lockdep_assert_cpus_held();
 722	arch_unoptimize_kprobe(op);
 723	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 724}
 725
 726/* Unoptimize a kprobe if p is optimized */
 727static void unoptimize_kprobe(struct kprobe *p, bool force)
 728{
 729	struct optimized_kprobe *op;
 730
 731	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 732		return; /* This is not an optprobe nor optimized */
 733
 734	op = container_of(p, struct optimized_kprobe, kp);
 735	if (!kprobe_optimized(p))
 736		return;
 737
 738	if (!list_empty(&op->list)) {
 739		if (optprobe_queued_unopt(op)) {
 740			/* Queued in unoptimizing queue */
 741			if (force) {
 742				/*
 743				 * Forcibly unoptimize the kprobe here, and queue it
 744				 * in the freeing list for release afterwards.
 745				 */
 746				force_unoptimize_kprobe(op);
 747				list_move(&op->list, &freeing_list);
 748			}
 749		} else {
 750			/* Dequeue from the optimizing queue */
 751			list_del_init(&op->list);
 752			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 753		}
 754		return;
 755	}
 756
 
 
 
 
 
 
 757	/* Optimized kprobe case */
 758	if (force) {
 759		/* Forcibly update the code: this is a special case */
 760		force_unoptimize_kprobe(op);
 761	} else {
 762		list_add(&op->list, &unoptimizing_list);
 763		kick_kprobe_optimizer();
 764	}
 765}
 766
 767/* Cancel unoptimizing for reusing */
 768static int reuse_unused_kprobe(struct kprobe *ap)
 769{
 770	struct optimized_kprobe *op;
 771
 772	/*
 773	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 774	 * there is still a relative jump) and disabled.
 775	 */
 776	op = container_of(ap, struct optimized_kprobe, kp);
 777	WARN_ON_ONCE(list_empty(&op->list));
 778	/* Enable the probe again */
 779	ap->flags &= ~KPROBE_FLAG_DISABLED;
 780	/* Optimize it again. (remove from 'op->list') */
 781	if (!kprobe_optready(ap))
 782		return -EINVAL;
 783
 784	optimize_kprobe(ap);
 785	return 0;
 786}
 787
 788/* Remove optimized instructions */
 789static void kill_optimized_kprobe(struct kprobe *p)
 790{
 791	struct optimized_kprobe *op;
 792
 793	op = container_of(p, struct optimized_kprobe, kp);
 794	if (!list_empty(&op->list))
 795		/* Dequeue from the (un)optimization queue */
 796		list_del_init(&op->list);
 797	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 798
 799	if (kprobe_unused(p)) {
 800		/* Enqueue if it is unused */
 801		list_add(&op->list, &freeing_list);
 802		/*
 803		 * Remove unused probes from the hash list. After waiting
 804		 * for synchronization, this probe is reclaimed.
 805		 * (reclaiming is done by do_free_cleaned_kprobes().)
 806		 */
 807		hlist_del_rcu(&op->kp.hlist);
 808	}
 809
 810	/* Don't touch the code, because it is already freed. */
 811	arch_remove_optimized_kprobe(op);
 812}
 813
 814static inline
 815void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 816{
 817	if (!kprobe_ftrace(p))
 818		arch_prepare_optimized_kprobe(op, p);
 819}
 820
 821/* Try to prepare optimized instructions */
 822static void prepare_optimized_kprobe(struct kprobe *p)
 823{
 824	struct optimized_kprobe *op;
 825
 826	op = container_of(p, struct optimized_kprobe, kp);
 827	__prepare_optimized_kprobe(op, p);
 828}
 829
 830/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
 831static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 832{
 833	struct optimized_kprobe *op;
 834
 835	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 836	if (!op)
 837		return NULL;
 838
 839	INIT_LIST_HEAD(&op->list);
 840	op->kp.addr = p->addr;
 841	__prepare_optimized_kprobe(op, p);
 842
 843	return &op->kp;
 844}
 845
 846static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 847
 848/*
 849 * Prepare an optimized_kprobe and optimize it.
 850 * NOTE: 'p' must be a normal registered kprobe.
 851 */
 852static void try_to_optimize_kprobe(struct kprobe *p)
 853{
 854	struct kprobe *ap;
 855	struct optimized_kprobe *op;
 856
 857	/* Impossible to optimize ftrace-based kprobe. */
 858	if (kprobe_ftrace(p))
 859		return;
 860
 861	/* For preparing optimization, jump_label_text_reserved() is called. */
 862	cpus_read_lock();
 863	jump_label_lock();
 864	mutex_lock(&text_mutex);
 865
 866	ap = alloc_aggr_kprobe(p);
 867	if (!ap)
 868		goto out;
 869
 870	op = container_of(ap, struct optimized_kprobe, kp);
 871	if (!arch_prepared_optinsn(&op->optinsn)) {
 872		/* If failed to setup optimizing, fallback to kprobe. */
 873		arch_remove_optimized_kprobe(op);
 874		kfree(op);
 875		goto out;
 876	}
 877
 878	init_aggr_kprobe(ap, p);
 879	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
 880
 881out:
 882	mutex_unlock(&text_mutex);
 883	jump_label_unlock();
 884	cpus_read_unlock();
 885}
 886
 
 887static void optimize_all_kprobes(void)
 888{
 889	struct hlist_head *head;
 890	struct kprobe *p;
 891	unsigned int i;
 892
 893	mutex_lock(&kprobe_mutex);
 894	/* If optimization is already allowed, just return. */
 895	if (kprobes_allow_optimization)
 896		goto out;
 897
 898	cpus_read_lock();
 899	kprobes_allow_optimization = true;
 900	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 901		head = &kprobe_table[i];
 902		hlist_for_each_entry(p, head, hlist)
 903			if (!kprobe_disabled(p))
 904				optimize_kprobe(p);
 905	}
 906	cpus_read_unlock();
 907	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
 908out:
 909	mutex_unlock(&kprobe_mutex);
 910}
 911
 912#ifdef CONFIG_SYSCTL
 913static void unoptimize_all_kprobes(void)
 914{
 915	struct hlist_head *head;
 916	struct kprobe *p;
 917	unsigned int i;
 918
 919	mutex_lock(&kprobe_mutex);
 920	/* If optimization is already prohibited, just return. */
 921	if (!kprobes_allow_optimization) {
 922		mutex_unlock(&kprobe_mutex);
 923		return;
 924	}
 925
 926	cpus_read_lock();
 927	kprobes_allow_optimization = false;
 928	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 929		head = &kprobe_table[i];
 930		hlist_for_each_entry(p, head, hlist) {
 931			if (!kprobe_disabled(p))
 932				unoptimize_kprobe(p, false);
 933		}
 934	}
 935	cpus_read_unlock();
 936	mutex_unlock(&kprobe_mutex);
 937
 938	/* Wait for unoptimizing completion. */
 939	wait_for_kprobe_optimizer();
 940	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
 941}
 942
 943static DEFINE_MUTEX(kprobe_sysctl_mutex);
 944static int sysctl_kprobes_optimization;
 945static int proc_kprobes_optimization_handler(struct ctl_table *table,
 946					     int write, void *buffer,
 947					     size_t *length, loff_t *ppos)
 948{
 949	int ret;
 950
 951	mutex_lock(&kprobe_sysctl_mutex);
 952	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 953	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 954
 955	if (sysctl_kprobes_optimization)
 956		optimize_all_kprobes();
 957	else
 958		unoptimize_all_kprobes();
 959	mutex_unlock(&kprobe_sysctl_mutex);
 960
 961	return ret;
 962}
 963
 964static struct ctl_table kprobe_sysctls[] = {
 965	{
 966		.procname	= "kprobes-optimization",
 967		.data		= &sysctl_kprobes_optimization,
 968		.maxlen		= sizeof(int),
 969		.mode		= 0644,
 970		.proc_handler	= proc_kprobes_optimization_handler,
 971		.extra1		= SYSCTL_ZERO,
 972		.extra2		= SYSCTL_ONE,
 973	},
 974	{}
 975};
 976
 977static void __init kprobe_sysctls_init(void)
 978{
 979	register_sysctl_init("debug", kprobe_sysctls);
 980}
 981#endif /* CONFIG_SYSCTL */
 982
 983/* Put a breakpoint for a probe. */
 984static void __arm_kprobe(struct kprobe *p)
 985{
 986	struct kprobe *_p;
 987
 988	lockdep_assert_held(&text_mutex);
 989
 990	/* Find the overlapping optimized kprobes. */
 991	_p = get_optimized_kprobe(p->addr);
 992	if (unlikely(_p))
 993		/* Fallback to unoptimized kprobe */
 994		unoptimize_kprobe(_p, true);
 995
 996	arch_arm_kprobe(p);
 997	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 998}
 999
1000/* Remove the breakpoint of a probe. */
1001static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002{
1003	struct kprobe *_p;
1004
1005	lockdep_assert_held(&text_mutex);
1006
1007	/* Try to unoptimize */
1008	unoptimize_kprobe(p, kprobes_all_disarmed);
1009
1010	if (!kprobe_queued(p)) {
1011		arch_disarm_kprobe(p);
1012		/* If another kprobe was blocked, re-optimize it. */
1013		_p = get_optimized_kprobe(p->addr);
1014		if (unlikely(_p) && reopt)
1015			optimize_kprobe(_p);
1016	}
1017	/*
1018	 * TODO: Since unoptimization and real disarming will be done by
1019	 * the worker thread, we can not check whether another probe are
1020	 * unoptimized because of this probe here. It should be re-optimized
1021	 * by the worker thread.
1022	 */
1023}
1024
1025#else /* !CONFIG_OPTPROBES */
1026
1027#define optimize_kprobe(p)			do {} while (0)
1028#define unoptimize_kprobe(p, f)			do {} while (0)
1029#define kill_optimized_kprobe(p)		do {} while (0)
1030#define prepare_optimized_kprobe(p)		do {} while (0)
1031#define try_to_optimize_kprobe(p)		do {} while (0)
1032#define __arm_kprobe(p)				arch_arm_kprobe(p)
1033#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1034#define kprobe_disarmed(p)			kprobe_disabled(p)
1035#define wait_for_kprobe_optimizer()		do {} while (0)
1036
1037static int reuse_unused_kprobe(struct kprobe *ap)
1038{
1039	/*
1040	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041	 * released at the same time that the last aggregated kprobe is
1042	 * unregistered.
1043	 * Thus there should be no chance to reuse unused kprobe.
1044	 */
1045	WARN_ON_ONCE(1);
1046	return -EINVAL;
1047}
1048
1049static void free_aggr_kprobe(struct kprobe *p)
1050{
1051	arch_remove_kprobe(p);
1052	kfree(p);
1053}
1054
1055static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056{
1057	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058}
1059#endif /* CONFIG_OPTPROBES */
1060
1061#ifdef CONFIG_KPROBES_ON_FTRACE
1062static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063	.func = kprobe_ftrace_handler,
1064	.flags = FTRACE_OPS_FL_SAVE_REGS,
1065};
1066
1067static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068	.func = kprobe_ftrace_handler,
1069	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070};
1071
1072static int kprobe_ipmodify_enabled;
1073static int kprobe_ftrace_enabled;
1074
 
 
 
 
 
 
 
 
 
 
1075static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076			       int *cnt)
1077{
1078	int ret = 0;
1079
1080	lockdep_assert_held(&kprobe_mutex);
1081
1082	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
 
 
1084		return ret;
 
1085
1086	if (*cnt == 0) {
1087		ret = register_ftrace_function(ops);
1088		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
 
1089			goto err_ftrace;
 
1090	}
1091
1092	(*cnt)++;
1093	return ret;
1094
1095err_ftrace:
1096	/*
1097	 * At this point, sinec ops is not registered, we should be sefe from
1098	 * registering empty filter.
1099	 */
1100	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101	return ret;
1102}
1103
1104static int arm_kprobe_ftrace(struct kprobe *p)
1105{
1106	bool ipmodify = (p->post_handler != NULL);
1107
1108	return __arm_kprobe_ftrace(p,
1109		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111}
1112
 
1113static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114				  int *cnt)
1115{
1116	int ret = 0;
1117
1118	lockdep_assert_held(&kprobe_mutex);
1119
1120	if (*cnt == 1) {
1121		ret = unregister_ftrace_function(ops);
1122		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123			return ret;
1124	}
1125
1126	(*cnt)--;
1127
1128	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130		  p->addr, ret);
1131	return ret;
1132}
1133
1134static int disarm_kprobe_ftrace(struct kprobe *p)
1135{
1136	bool ipmodify = (p->post_handler != NULL);
1137
1138	return __disarm_kprobe_ftrace(p,
1139		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141}
1142#else	/* !CONFIG_KPROBES_ON_FTRACE */
1143static inline int arm_kprobe_ftrace(struct kprobe *p)
1144{
1145	return -ENODEV;
1146}
1147
1148static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149{
1150	return -ENODEV;
1151}
1152#endif
1153
1154static int prepare_kprobe(struct kprobe *p)
1155{
1156	/* Must ensure p->addr is really on ftrace */
1157	if (kprobe_ftrace(p))
1158		return arch_prepare_kprobe_ftrace(p);
1159
1160	return arch_prepare_kprobe(p);
1161}
1162
1163static int arm_kprobe(struct kprobe *kp)
1164{
1165	if (unlikely(kprobe_ftrace(kp)))
1166		return arm_kprobe_ftrace(kp);
1167
1168	cpus_read_lock();
1169	mutex_lock(&text_mutex);
1170	__arm_kprobe(kp);
1171	mutex_unlock(&text_mutex);
1172	cpus_read_unlock();
1173
1174	return 0;
1175}
1176
 
1177static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178{
1179	if (unlikely(kprobe_ftrace(kp)))
1180		return disarm_kprobe_ftrace(kp);
1181
1182	cpus_read_lock();
1183	mutex_lock(&text_mutex);
1184	__disarm_kprobe(kp, reopt);
1185	mutex_unlock(&text_mutex);
1186	cpus_read_unlock();
1187
1188	return 0;
1189}
1190
1191/*
1192 * Aggregate handlers for multiple kprobes support - these handlers
1193 * take care of invoking the individual kprobe handlers on p->list
1194 */
1195static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196{
1197	struct kprobe *kp;
1198
1199	list_for_each_entry_rcu(kp, &p->list, list) {
1200		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201			set_kprobe_instance(kp);
1202			if (kp->pre_handler(kp, regs))
1203				return 1;
1204		}
1205		reset_kprobe_instance();
1206	}
1207	return 0;
1208}
1209NOKPROBE_SYMBOL(aggr_pre_handler);
1210
1211static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212			      unsigned long flags)
1213{
1214	struct kprobe *kp;
1215
1216	list_for_each_entry_rcu(kp, &p->list, list) {
1217		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218			set_kprobe_instance(kp);
1219			kp->post_handler(kp, regs, flags);
1220			reset_kprobe_instance();
1221		}
1222	}
1223}
1224NOKPROBE_SYMBOL(aggr_post_handler);
1225
1226/* Walks the list and increments 'nmissed' if 'p' has child probes. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227void kprobes_inc_nmissed_count(struct kprobe *p)
1228{
1229	struct kprobe *kp;
1230
1231	if (!kprobe_aggrprobe(p)) {
1232		p->nmissed++;
1233	} else {
1234		list_for_each_entry_rcu(kp, &p->list, list)
1235			kp->nmissed++;
1236	}
 
1237}
1238NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239
1240static struct kprobe kprobe_busy = {
1241	.addr = (void *) get_kprobe,
1242};
 
1243
1244void kprobe_busy_begin(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245{
1246	struct kprobe_ctlblk *kcb;
 
1247
1248	preempt_disable();
1249	__this_cpu_write(current_kprobe, &kprobe_busy);
1250	kcb = get_kprobe_ctlblk();
1251	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252}
 
1253
1254void kprobe_busy_end(void)
 
 
1255{
1256	__this_cpu_write(current_kprobe, NULL);
1257	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258}
 
1259
1260/* Add the new probe to 'ap->list'. */
1261static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262{
1263	if (p->post_handler)
1264		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1265
1266	list_add_rcu(&p->list, &ap->list);
1267	if (p->post_handler && !ap->post_handler)
1268		ap->post_handler = aggr_post_handler;
1269
1270	return 0;
1271}
1272
1273/*
1274 * Fill in the required fields of the aggregator kprobe. Replace the
1275 * earlier kprobe in the hlist with the aggregator kprobe.
1276 */
1277static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279	/* Copy the insn slot of 'p' to 'ap'. */
1280	copy_kprobe(p, ap);
1281	flush_insn_slot(ap);
1282	ap->addr = p->addr;
1283	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284	ap->pre_handler = aggr_pre_handler;
 
1285	/* We don't care the kprobe which has gone. */
1286	if (p->post_handler && !kprobe_gone(p))
1287		ap->post_handler = aggr_post_handler;
1288
1289	INIT_LIST_HEAD(&ap->list);
1290	INIT_HLIST_NODE(&ap->hlist);
1291
1292	list_add_rcu(&p->list, &ap->list);
1293	hlist_replace_rcu(&p->hlist, &ap->hlist);
1294}
1295
1296/*
1297 * This registers the second or subsequent kprobe at the same address.
 
1298 */
1299static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1300{
1301	int ret = 0;
1302	struct kprobe *ap = orig_p;
1303
1304	cpus_read_lock();
1305
1306	/* For preparing optimization, jump_label_text_reserved() is called */
1307	jump_label_lock();
1308	mutex_lock(&text_mutex);
1309
1310	if (!kprobe_aggrprobe(orig_p)) {
1311		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312		ap = alloc_aggr_kprobe(orig_p);
1313		if (!ap) {
1314			ret = -ENOMEM;
1315			goto out;
1316		}
1317		init_aggr_kprobe(ap, orig_p);
1318	} else if (kprobe_unused(ap)) {
1319		/* This probe is going to die. Rescue it */
1320		ret = reuse_unused_kprobe(ap);
1321		if (ret)
1322			goto out;
1323	}
1324
1325	if (kprobe_gone(ap)) {
1326		/*
1327		 * Attempting to insert new probe at the same location that
1328		 * had a probe in the module vaddr area which already
1329		 * freed. So, the instruction slot has already been
1330		 * released. We need a new slot for the new probe.
1331		 */
1332		ret = arch_prepare_kprobe(ap);
1333		if (ret)
1334			/*
1335			 * Even if fail to allocate new slot, don't need to
1336			 * free the 'ap'. It will be used next time, or
1337			 * freed by unregister_kprobe().
1338			 */
1339			goto out;
1340
1341		/* Prepare optimized instructions if possible. */
1342		prepare_optimized_kprobe(ap);
1343
1344		/*
1345		 * Clear gone flag to prevent allocating new slot again, and
1346		 * set disabled flag because it is not armed yet.
1347		 */
1348		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349			    | KPROBE_FLAG_DISABLED;
1350	}
1351
1352	/* Copy the insn slot of 'p' to 'ap'. */
1353	copy_kprobe(ap, p);
1354	ret = add_new_kprobe(ap, p);
1355
1356out:
1357	mutex_unlock(&text_mutex);
1358	jump_label_unlock();
1359	cpus_read_unlock();
1360
1361	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362		ap->flags &= ~KPROBE_FLAG_DISABLED;
1363		if (!kprobes_all_disarmed) {
1364			/* Arm the breakpoint again. */
1365			ret = arm_kprobe(ap);
1366			if (ret) {
1367				ap->flags |= KPROBE_FLAG_DISABLED;
1368				list_del_rcu(&p->list);
1369				synchronize_rcu();
1370			}
1371		}
1372	}
1373	return ret;
1374}
1375
1376bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377{
1378	/* The '__kprobes' functions and entry code must not be probed. */
1379	return addr >= (unsigned long)__kprobes_text_start &&
1380	       addr < (unsigned long)__kprobes_text_end;
1381}
1382
1383static bool __within_kprobe_blacklist(unsigned long addr)
1384{
1385	struct kprobe_blacklist_entry *ent;
1386
1387	if (arch_within_kprobe_blacklist(addr))
1388		return true;
1389	/*
1390	 * If 'kprobe_blacklist' is defined, check the address and
1391	 * reject any probe registration in the prohibited area.
1392	 */
1393	list_for_each_entry(ent, &kprobe_blacklist, list) {
1394		if (addr >= ent->start_addr && addr < ent->end_addr)
1395			return true;
1396	}
1397	return false;
1398}
1399
1400bool within_kprobe_blacklist(unsigned long addr)
1401{
1402	char symname[KSYM_NAME_LEN], *p;
1403
1404	if (__within_kprobe_blacklist(addr))
1405		return true;
1406
1407	/* Check if the address is on a suffixed-symbol */
1408	if (!lookup_symbol_name(addr, symname)) {
1409		p = strchr(symname, '.');
1410		if (!p)
1411			return false;
1412		*p = '\0';
1413		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414		if (addr)
1415			return __within_kprobe_blacklist(addr);
1416	}
1417	return false;
1418}
1419
1420/*
1421 * arch_adjust_kprobe_addr - adjust the address
1422 * @addr: symbol base address
1423 * @offset: offset within the symbol
1424 * @on_func_entry: was this @addr+@offset on the function entry
1425 *
1426 * Typically returns @addr + @offset, except for special cases where the
1427 * function might be prefixed by a CFI landing pad, in that case any offset
1428 * inside the landing pad is mapped to the first 'real' instruction of the
1429 * symbol.
1430 *
1431 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432 * instruction at +0.
1433 */
1434kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435						unsigned long offset,
1436						bool *on_func_entry)
1437{
1438	*on_func_entry = !offset;
1439	return (kprobe_opcode_t *)(addr + offset);
1440}
1441
1442/*
1443 * If 'symbol_name' is specified, look it up and add the 'offset'
1444 * to it. This way, we can specify a relative address to a symbol.
1445 * This returns encoded errors if it fails to look up symbol or invalid
1446 * combination of parameters.
1447 */
1448static kprobe_opcode_t *
1449_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450	     unsigned long offset, bool *on_func_entry)
1451{
1452	if ((symbol_name && addr) || (!symbol_name && !addr))
1453		goto invalid;
1454
1455	if (symbol_name) {
1456		/*
1457		 * Input: @sym + @offset
1458		 * Output: @addr + @offset
1459		 *
1460		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461		 *       argument into it's output!
1462		 */
1463		addr = kprobe_lookup_name(symbol_name, offset);
1464		if (!addr)
1465			return ERR_PTR(-ENOENT);
1466	}
1467
1468	/*
1469	 * So here we have @addr + @offset, displace it into a new
1470	 * @addr' + @offset' where @addr' is the symbol start address.
1471	 */
1472	addr = (void *)addr + offset;
1473	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474		return ERR_PTR(-ENOENT);
1475	addr = (void *)addr - offset;
1476
1477	/*
1478	 * Then ask the architecture to re-combine them, taking care of
1479	 * magical function entry details while telling us if this was indeed
1480	 * at the start of the function.
1481	 */
1482	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483	if (addr)
1484		return addr;
1485
1486invalid:
1487	return ERR_PTR(-EINVAL);
1488}
1489
1490static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491{
1492	bool on_func_entry;
1493	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494}
1495
1496/*
1497 * Check the 'p' is valid and return the aggregator kprobe
1498 * at the same address.
1499 */
1500static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501{
1502	struct kprobe *ap, *list_p;
1503
1504	lockdep_assert_held(&kprobe_mutex);
1505
1506	ap = get_kprobe(p->addr);
1507	if (unlikely(!ap))
1508		return NULL;
1509
1510	if (p != ap) {
1511		list_for_each_entry(list_p, &ap->list, list)
1512			if (list_p == p)
1513			/* kprobe p is a valid probe */
1514				goto valid;
1515		return NULL;
1516	}
1517valid:
1518	return ap;
1519}
1520
1521/*
1522 * Warn and return error if the kprobe is being re-registered since
1523 * there must be a software bug.
1524 */
1525static inline int warn_kprobe_rereg(struct kprobe *p)
1526{
1527	int ret = 0;
1528
1529	mutex_lock(&kprobe_mutex);
1530	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531		ret = -EINVAL;
1532	mutex_unlock(&kprobe_mutex);
1533
1534	return ret;
1535}
1536
1537static int check_ftrace_location(struct kprobe *p)
1538{
1539	unsigned long addr = (unsigned long)p->addr;
1540
1541	if (ftrace_location(addr) == addr) {
 
1542#ifdef CONFIG_KPROBES_ON_FTRACE
 
 
 
1543		p->flags |= KPROBE_FLAG_FTRACE;
1544#else	/* !CONFIG_KPROBES_ON_FTRACE */
1545		return -EINVAL;
1546#endif
1547	}
1548	return 0;
1549}
1550
1551static int check_kprobe_address_safe(struct kprobe *p,
1552				     struct module **probed_mod)
1553{
1554	int ret;
1555
1556	ret = check_ftrace_location(p);
1557	if (ret)
1558		return ret;
1559	jump_label_lock();
1560	preempt_disable();
1561
1562	/* Ensure it is not in reserved area nor out of text */
1563	if (!(core_kernel_text((unsigned long) p->addr) ||
1564	    is_module_text_address((unsigned long) p->addr)) ||
1565	    in_gate_area_no_mm((unsigned long) p->addr) ||
1566	    within_kprobe_blacklist((unsigned long) p->addr) ||
1567	    jump_label_text_reserved(p->addr, p->addr) ||
1568	    static_call_text_reserved(p->addr, p->addr) ||
1569	    find_bug((unsigned long)p->addr)) {
1570		ret = -EINVAL;
1571		goto out;
1572	}
1573
1574	/* Check if 'p' is probing a module. */
1575	*probed_mod = __module_text_address((unsigned long) p->addr);
1576	if (*probed_mod) {
1577		/*
1578		 * We must hold a refcount of the probed module while updating
1579		 * its code to prohibit unexpected unloading.
1580		 */
1581		if (unlikely(!try_module_get(*probed_mod))) {
1582			ret = -ENOENT;
1583			goto out;
1584		}
1585
1586		/*
1587		 * If the module freed '.init.text', we couldn't insert
1588		 * kprobes in there.
1589		 */
1590		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591		    (*probed_mod)->state != MODULE_STATE_COMING) {
1592			module_put(*probed_mod);
1593			*probed_mod = NULL;
1594			ret = -ENOENT;
1595		}
1596	}
1597out:
1598	preempt_enable();
1599	jump_label_unlock();
1600
1601	return ret;
1602}
1603
1604int register_kprobe(struct kprobe *p)
1605{
1606	int ret;
1607	struct kprobe *old_p;
1608	struct module *probed_mod;
1609	kprobe_opcode_t *addr;
1610	bool on_func_entry;
1611
1612	/* Adjust probe address from symbol */
1613	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614	if (IS_ERR(addr))
1615		return PTR_ERR(addr);
1616	p->addr = addr;
1617
1618	ret = warn_kprobe_rereg(p);
1619	if (ret)
1620		return ret;
1621
1622	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623	p->flags &= KPROBE_FLAG_DISABLED;
1624	p->nmissed = 0;
1625	INIT_LIST_HEAD(&p->list);
1626
1627	ret = check_kprobe_address_safe(p, &probed_mod);
1628	if (ret)
1629		return ret;
1630
1631	mutex_lock(&kprobe_mutex);
1632
1633	if (on_func_entry)
1634		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635
1636	old_p = get_kprobe(p->addr);
1637	if (old_p) {
1638		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639		ret = register_aggr_kprobe(old_p, p);
1640		goto out;
1641	}
1642
1643	cpus_read_lock();
1644	/* Prevent text modification */
1645	mutex_lock(&text_mutex);
1646	ret = prepare_kprobe(p);
1647	mutex_unlock(&text_mutex);
1648	cpus_read_unlock();
1649	if (ret)
1650		goto out;
1651
1652	INIT_HLIST_NODE(&p->hlist);
1653	hlist_add_head_rcu(&p->hlist,
1654		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655
1656	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657		ret = arm_kprobe(p);
1658		if (ret) {
1659			hlist_del_rcu(&p->hlist);
1660			synchronize_rcu();
1661			goto out;
1662		}
1663	}
1664
1665	/* Try to optimize kprobe */
1666	try_to_optimize_kprobe(p);
1667out:
1668	mutex_unlock(&kprobe_mutex);
1669
1670	if (probed_mod)
1671		module_put(probed_mod);
1672
1673	return ret;
1674}
1675EXPORT_SYMBOL_GPL(register_kprobe);
1676
1677/* Check if all probes on the 'ap' are disabled. */
1678static bool aggr_kprobe_disabled(struct kprobe *ap)
1679{
1680	struct kprobe *kp;
1681
1682	lockdep_assert_held(&kprobe_mutex);
1683
1684	list_for_each_entry(kp, &ap->list, list)
1685		if (!kprobe_disabled(kp))
1686			/*
1687			 * Since there is an active probe on the list,
1688			 * we can't disable this 'ap'.
1689			 */
1690			return false;
1691
1692	return true;
1693}
1694
 
1695static struct kprobe *__disable_kprobe(struct kprobe *p)
1696{
1697	struct kprobe *orig_p;
1698	int ret;
1699
1700	lockdep_assert_held(&kprobe_mutex);
1701
1702	/* Get an original kprobe for return */
1703	orig_p = __get_valid_kprobe(p);
1704	if (unlikely(orig_p == NULL))
1705		return ERR_PTR(-EINVAL);
1706
1707	if (!kprobe_disabled(p)) {
1708		/* Disable probe if it is a child probe */
1709		if (p != orig_p)
1710			p->flags |= KPROBE_FLAG_DISABLED;
1711
1712		/* Try to disarm and disable this/parent probe */
1713		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714			/*
1715			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1716			 * is false, 'orig_p' might not have been armed yet.
1717			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1718			 * on the best effort basis.
1719			 */
1720			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721				ret = disarm_kprobe(orig_p, true);
1722				if (ret) {
1723					p->flags &= ~KPROBE_FLAG_DISABLED;
1724					return ERR_PTR(ret);
1725				}
1726			}
1727			orig_p->flags |= KPROBE_FLAG_DISABLED;
1728		}
1729	}
1730
1731	return orig_p;
1732}
1733
1734/*
1735 * Unregister a kprobe without a scheduler synchronization.
1736 */
1737static int __unregister_kprobe_top(struct kprobe *p)
1738{
1739	struct kprobe *ap, *list_p;
1740
1741	/* Disable kprobe. This will disarm it if needed. */
1742	ap = __disable_kprobe(p);
1743	if (IS_ERR(ap))
1744		return PTR_ERR(ap);
1745
1746	if (ap == p)
1747		/*
1748		 * This probe is an independent(and non-optimized) kprobe
1749		 * (not an aggrprobe). Remove from the hash list.
1750		 */
1751		goto disarmed;
1752
1753	/* Following process expects this probe is an aggrprobe */
1754	WARN_ON(!kprobe_aggrprobe(ap));
1755
1756	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757		/*
1758		 * !disarmed could be happen if the probe is under delayed
1759		 * unoptimizing.
1760		 */
1761		goto disarmed;
1762	else {
1763		/* If disabling probe has special handlers, update aggrprobe */
1764		if (p->post_handler && !kprobe_gone(p)) {
1765			list_for_each_entry(list_p, &ap->list, list) {
1766				if ((list_p != p) && (list_p->post_handler))
1767					goto noclean;
1768			}
1769			/*
1770			 * For the kprobe-on-ftrace case, we keep the
1771			 * post_handler setting to identify this aggrprobe
1772			 * armed with kprobe_ipmodify_ops.
1773			 */
1774			if (!kprobe_ftrace(ap))
1775				ap->post_handler = NULL;
1776		}
1777noclean:
1778		/*
1779		 * Remove from the aggrprobe: this path will do nothing in
1780		 * __unregister_kprobe_bottom().
1781		 */
1782		list_del_rcu(&p->list);
1783		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1784			/*
1785			 * Try to optimize this probe again, because post
1786			 * handler may have been changed.
1787			 */
1788			optimize_kprobe(ap);
1789	}
1790	return 0;
1791
1792disarmed:
1793	hlist_del_rcu(&ap->hlist);
1794	return 0;
1795}
1796
1797static void __unregister_kprobe_bottom(struct kprobe *p)
1798{
1799	struct kprobe *ap;
1800
1801	if (list_empty(&p->list))
1802		/* This is an independent kprobe */
1803		arch_remove_kprobe(p);
1804	else if (list_is_singular(&p->list)) {
1805		/* This is the last child of an aggrprobe */
1806		ap = list_entry(p->list.next, struct kprobe, list);
1807		list_del(&p->list);
1808		free_aggr_kprobe(ap);
1809	}
1810	/* Otherwise, do nothing. */
1811}
1812
1813int register_kprobes(struct kprobe **kps, int num)
1814{
1815	int i, ret = 0;
1816
1817	if (num <= 0)
1818		return -EINVAL;
1819	for (i = 0; i < num; i++) {
1820		ret = register_kprobe(kps[i]);
1821		if (ret < 0) {
1822			if (i > 0)
1823				unregister_kprobes(kps, i);
1824			break;
1825		}
1826	}
1827	return ret;
1828}
1829EXPORT_SYMBOL_GPL(register_kprobes);
1830
1831void unregister_kprobe(struct kprobe *p)
1832{
1833	unregister_kprobes(&p, 1);
1834}
1835EXPORT_SYMBOL_GPL(unregister_kprobe);
1836
1837void unregister_kprobes(struct kprobe **kps, int num)
1838{
1839	int i;
1840
1841	if (num <= 0)
1842		return;
1843	mutex_lock(&kprobe_mutex);
1844	for (i = 0; i < num; i++)
1845		if (__unregister_kprobe_top(kps[i]) < 0)
1846			kps[i]->addr = NULL;
1847	mutex_unlock(&kprobe_mutex);
1848
1849	synchronize_rcu();
1850	for (i = 0; i < num; i++)
1851		if (kps[i]->addr)
1852			__unregister_kprobe_bottom(kps[i]);
1853}
1854EXPORT_SYMBOL_GPL(unregister_kprobes);
1855
1856int __weak kprobe_exceptions_notify(struct notifier_block *self,
1857					unsigned long val, void *data)
1858{
1859	return NOTIFY_DONE;
1860}
1861NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1862
1863static struct notifier_block kprobe_exceptions_nb = {
1864	.notifier_call = kprobe_exceptions_notify,
1865	.priority = 0x7fffffff /* we need to be notified first */
1866};
1867
1868#ifdef CONFIG_KRETPROBES
1869
1870#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1871static void free_rp_inst_rcu(struct rcu_head *head)
1872{
1873	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874
1875	if (refcount_dec_and_test(&ri->rph->ref))
1876		kfree(ri->rph);
1877	kfree(ri);
1878}
1879NOKPROBE_SYMBOL(free_rp_inst_rcu);
1880
1881static void recycle_rp_inst(struct kretprobe_instance *ri)
1882{
1883	struct kretprobe *rp = get_kretprobe(ri);
1884
1885	if (likely(rp))
1886		freelist_add(&ri->freelist, &rp->freelist);
1887	else
1888		call_rcu(&ri->rcu, free_rp_inst_rcu);
1889}
1890NOKPROBE_SYMBOL(recycle_rp_inst);
1891
1892/*
1893 * This function is called from delayed_put_task_struct() when a task is
1894 * dead and cleaned up to recycle any kretprobe instances associated with
1895 * this task. These left over instances represent probed functions that
1896 * have been called but will never return.
1897 */
1898void kprobe_flush_task(struct task_struct *tk)
1899{
1900	struct kretprobe_instance *ri;
1901	struct llist_node *node;
1902
1903	/* Early boot, not yet initialized. */
1904	if (unlikely(!kprobes_initialized))
1905		return;
1906
1907	kprobe_busy_begin();
1908
1909	node = __llist_del_all(&tk->kretprobe_instances);
1910	while (node) {
1911		ri = container_of(node, struct kretprobe_instance, llist);
1912		node = node->next;
1913
1914		recycle_rp_inst(ri);
1915	}
1916
1917	kprobe_busy_end();
1918}
1919NOKPROBE_SYMBOL(kprobe_flush_task);
1920
1921static inline void free_rp_inst(struct kretprobe *rp)
1922{
1923	struct kretprobe_instance *ri;
1924	struct freelist_node *node;
1925	int count = 0;
1926
1927	node = rp->freelist.head;
1928	while (node) {
1929		ri = container_of(node, struct kretprobe_instance, freelist);
1930		node = node->next;
1931
1932		kfree(ri);
1933		count++;
1934	}
1935
1936	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1937		kfree(rp->rph);
1938		rp->rph = NULL;
1939	}
1940}
1941
1942/* This assumes the 'tsk' is the current task or the is not running. */
1943static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1944						  struct llist_node **cur)
1945{
1946	struct kretprobe_instance *ri = NULL;
1947	struct llist_node *node = *cur;
1948
1949	if (!node)
1950		node = tsk->kretprobe_instances.first;
1951	else
1952		node = node->next;
1953
1954	while (node) {
1955		ri = container_of(node, struct kretprobe_instance, llist);
1956		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1957			*cur = node;
1958			return ri->ret_addr;
1959		}
1960		node = node->next;
1961	}
1962	return NULL;
1963}
1964NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1965
1966/**
1967 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1968 * @tsk: Target task
1969 * @fp: A frame pointer
1970 * @cur: a storage of the loop cursor llist_node pointer for next call
1971 *
1972 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1973 * long type. If it finds the return address, this returns that address value,
1974 * or this returns 0.
1975 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1976 * to get the currect return address - which is compared with the
1977 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1978 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1979 * first call, but '@cur' itself must NOT NULL.
1980 */
1981unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1982				      struct llist_node **cur)
1983{
1984	struct kretprobe_instance *ri = NULL;
1985	kprobe_opcode_t *ret;
1986
1987	if (WARN_ON_ONCE(!cur))
1988		return 0;
1989
1990	do {
1991		ret = __kretprobe_find_ret_addr(tsk, cur);
1992		if (!ret)
1993			break;
1994		ri = container_of(*cur, struct kretprobe_instance, llist);
1995	} while (ri->fp != fp);
1996
1997	return (unsigned long)ret;
1998}
1999NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2000
2001void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2002					kprobe_opcode_t *correct_ret_addr)
2003{
2004	/*
2005	 * Do nothing by default. Please fill this to update the fake return
2006	 * address on the stack with the correct one on each arch if possible.
2007	 */
2008}
2009
2010unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2011					     void *frame_pointer)
2012{
2013	kprobe_opcode_t *correct_ret_addr = NULL;
2014	struct kretprobe_instance *ri = NULL;
2015	struct llist_node *first, *node = NULL;
2016	struct kretprobe *rp;
2017
2018	/* Find correct address and all nodes for this frame. */
2019	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2020	if (!correct_ret_addr) {
2021		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2022		BUG_ON(1);
2023	}
2024
2025	/*
2026	 * Set the return address as the instruction pointer, because if the
2027	 * user handler calls stack_trace_save_regs() with this 'regs',
2028	 * the stack trace will start from the instruction pointer.
2029	 */
2030	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2031
2032	/* Run the user handler of the nodes. */
2033	first = current->kretprobe_instances.first;
2034	while (first) {
2035		ri = container_of(first, struct kretprobe_instance, llist);
2036
2037		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2038			break;
2039
2040		rp = get_kretprobe(ri);
2041		if (rp && rp->handler) {
2042			struct kprobe *prev = kprobe_running();
2043
2044			__this_cpu_write(current_kprobe, &rp->kp);
2045			ri->ret_addr = correct_ret_addr;
2046			rp->handler(ri, regs);
2047			__this_cpu_write(current_kprobe, prev);
2048		}
2049		if (first == node)
2050			break;
2051
2052		first = first->next;
2053	}
2054
2055	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2056
2057	/* Unlink all nodes for this frame. */
2058	first = current->kretprobe_instances.first;
2059	current->kretprobe_instances.first = node->next;
2060	node->next = NULL;
2061
2062	/* Recycle free instances. */
2063	while (first) {
2064		ri = container_of(first, struct kretprobe_instance, llist);
2065		first = first->next;
2066
2067		recycle_rp_inst(ri);
2068	}
2069
2070	return (unsigned long)correct_ret_addr;
2071}
2072NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2073
 
2074/*
2075 * This kprobe pre_handler is registered with every kretprobe. When probe
2076 * hits it will set up the return probe.
2077 */
2078static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2079{
2080	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
 
2081	struct kretprobe_instance *ri;
2082	struct freelist_node *fn;
2083
2084	fn = freelist_try_get(&rp->freelist);
2085	if (!fn) {
 
 
 
 
 
2086		rp->nmissed++;
2087		return 0;
2088	}
2089
2090	ri = container_of(fn, struct kretprobe_instance, freelist);
2091
2092	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2093		freelist_add(&ri->freelist, &rp->freelist);
2094		return 0;
2095	}
2096
2097	arch_prepare_kretprobe(ri, regs);
2098
2099	__llist_add(&ri->llist, &current->kretprobe_instances);
2100
2101	return 0;
2102}
2103NOKPROBE_SYMBOL(pre_handler_kretprobe);
2104#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2105/*
2106 * This kprobe pre_handler is registered with every kretprobe. When probe
2107 * hits it will set up the return probe.
2108 */
2109static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2110{
2111	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2112	struct kretprobe_instance *ri;
2113	struct rethook_node *rhn;
2114
2115	rhn = rethook_try_get(rp->rh);
2116	if (!rhn) {
2117		rp->nmissed++;
2118		return 0;
2119	}
2120
2121	ri = container_of(rhn, struct kretprobe_instance, node);
2122
2123	if (rp->entry_handler && rp->entry_handler(ri, regs))
2124		rethook_recycle(rhn);
2125	else
2126		rethook_hook(rhn, regs, kprobe_ftrace(p));
2127
2128	return 0;
2129}
2130NOKPROBE_SYMBOL(pre_handler_kretprobe);
2131
2132static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2133				      struct pt_regs *regs)
2134{
2135	struct kretprobe *rp = (struct kretprobe *)data;
2136	struct kretprobe_instance *ri;
2137	struct kprobe_ctlblk *kcb;
2138
2139	/* The data must NOT be null. This means rethook data structure is broken. */
2140	if (WARN_ON_ONCE(!data) || !rp->handler)
2141		return;
2142
2143	__this_cpu_write(current_kprobe, &rp->kp);
2144	kcb = get_kprobe_ctlblk();
2145	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2146
2147	ri = container_of(rh, struct kretprobe_instance, node);
2148	rp->handler(ri, regs);
2149
2150	__this_cpu_write(current_kprobe, NULL);
2151}
2152NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2153
2154#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2155
2156/**
2157 * kprobe_on_func_entry() -- check whether given address is function entry
2158 * @addr: Target address
2159 * @sym:  Target symbol name
2160 * @offset: The offset from the symbol or the address
2161 *
2162 * This checks whether the given @addr+@offset or @sym+@offset is on the
2163 * function entry address or not.
2164 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2165 * And also it returns -ENOENT if it fails the symbol or address lookup.
2166 * Caller must pass @addr or @sym (either one must be NULL), or this
2167 * returns -EINVAL.
2168 */
2169int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2170{
2171	bool on_func_entry;
2172	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2173
2174	if (IS_ERR(kp_addr))
2175		return PTR_ERR(kp_addr);
2176
2177	if (!on_func_entry)
2178		return -EINVAL;
 
2179
2180	return 0;
2181}
2182
2183int register_kretprobe(struct kretprobe *rp)
2184{
2185	int ret;
2186	struct kretprobe_instance *inst;
2187	int i;
2188	void *addr;
2189
2190	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2191	if (ret)
2192		return ret;
2193
2194	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2195	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2196		return -EINVAL;
2197
2198	if (kretprobe_blacklist_size) {
2199		addr = kprobe_addr(&rp->kp);
2200		if (IS_ERR(addr))
2201			return PTR_ERR(addr);
2202
2203		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204			if (kretprobe_blacklist[i].addr == addr)
2205				return -EINVAL;
2206		}
2207	}
2208
2209	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2210		return -E2BIG;
2211
2212	rp->kp.pre_handler = pre_handler_kretprobe;
2213	rp->kp.post_handler = NULL;
 
2214
2215	/* Pre-allocate memory for max kretprobe instances */
2216	if (rp->maxactive <= 0)
 
2217		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2218
2219#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2220	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2221	if (!rp->rh)
2222		return -ENOMEM;
2223
2224	for (i = 0; i < rp->maxactive; i++) {
2225		inst = kzalloc(sizeof(struct kretprobe_instance) +
2226			       rp->data_size, GFP_KERNEL);
2227		if (inst == NULL) {
2228			rethook_free(rp->rh);
2229			rp->rh = NULL;
2230			return -ENOMEM;
2231		}
2232		rethook_add_node(rp->rh, &inst->node);
2233	}
2234	rp->nmissed = 0;
2235	/* Establish function entry probe point */
2236	ret = register_kprobe(&rp->kp);
2237	if (ret != 0) {
2238		rethook_free(rp->rh);
2239		rp->rh = NULL;
2240	}
2241#else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2242	rp->freelist.head = NULL;
2243	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2244	if (!rp->rph)
2245		return -ENOMEM;
2246
2247	rp->rph->rp = rp;
2248	for (i = 0; i < rp->maxactive; i++) {
2249		inst = kzalloc(sizeof(struct kretprobe_instance) +
2250			       rp->data_size, GFP_KERNEL);
2251		if (inst == NULL) {
2252			refcount_set(&rp->rph->ref, i);
2253			free_rp_inst(rp);
2254			return -ENOMEM;
2255		}
2256		inst->rph = rp->rph;
2257		freelist_add(&inst->freelist, &rp->freelist);
2258	}
2259	refcount_set(&rp->rph->ref, i);
2260
2261	rp->nmissed = 0;
2262	/* Establish function entry probe point */
2263	ret = register_kprobe(&rp->kp);
2264	if (ret != 0)
2265		free_rp_inst(rp);
2266#endif
2267	return ret;
2268}
2269EXPORT_SYMBOL_GPL(register_kretprobe);
2270
2271int register_kretprobes(struct kretprobe **rps, int num)
2272{
2273	int ret = 0, i;
2274
2275	if (num <= 0)
2276		return -EINVAL;
2277	for (i = 0; i < num; i++) {
2278		ret = register_kretprobe(rps[i]);
2279		if (ret < 0) {
2280			if (i > 0)
2281				unregister_kretprobes(rps, i);
2282			break;
2283		}
2284	}
2285	return ret;
2286}
2287EXPORT_SYMBOL_GPL(register_kretprobes);
2288
2289void unregister_kretprobe(struct kretprobe *rp)
2290{
2291	unregister_kretprobes(&rp, 1);
2292}
2293EXPORT_SYMBOL_GPL(unregister_kretprobe);
2294
2295void unregister_kretprobes(struct kretprobe **rps, int num)
2296{
2297	int i;
2298
2299	if (num <= 0)
2300		return;
2301	mutex_lock(&kprobe_mutex);
2302	for (i = 0; i < num; i++) {
2303		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2304			rps[i]->kp.addr = NULL;
2305#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2306		rethook_free(rps[i]->rh);
2307#else
2308		rps[i]->rph->rp = NULL;
2309#endif
2310	}
2311	mutex_unlock(&kprobe_mutex);
2312
2313	synchronize_rcu();
2314	for (i = 0; i < num; i++) {
2315		if (rps[i]->kp.addr) {
2316			__unregister_kprobe_bottom(&rps[i]->kp);
2317#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2318			free_rp_inst(rps[i]);
2319#endif
2320		}
2321	}
2322}
2323EXPORT_SYMBOL_GPL(unregister_kretprobes);
2324
2325#else /* CONFIG_KRETPROBES */
2326int register_kretprobe(struct kretprobe *rp)
2327{
2328	return -EOPNOTSUPP;
2329}
2330EXPORT_SYMBOL_GPL(register_kretprobe);
2331
2332int register_kretprobes(struct kretprobe **rps, int num)
2333{
2334	return -EOPNOTSUPP;
2335}
2336EXPORT_SYMBOL_GPL(register_kretprobes);
2337
2338void unregister_kretprobe(struct kretprobe *rp)
2339{
2340}
2341EXPORT_SYMBOL_GPL(unregister_kretprobe);
2342
2343void unregister_kretprobes(struct kretprobe **rps, int num)
2344{
2345}
2346EXPORT_SYMBOL_GPL(unregister_kretprobes);
2347
2348static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2349{
2350	return 0;
2351}
2352NOKPROBE_SYMBOL(pre_handler_kretprobe);
2353
2354#endif /* CONFIG_KRETPROBES */
2355
2356/* Set the kprobe gone and remove its instruction buffer. */
2357static void kill_kprobe(struct kprobe *p)
2358{
2359	struct kprobe *kp;
2360
2361	lockdep_assert_held(&kprobe_mutex);
2362
2363	/*
2364	 * The module is going away. We should disarm the kprobe which
2365	 * is using ftrace, because ftrace framework is still available at
2366	 * 'MODULE_STATE_GOING' notification.
2367	 */
2368	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2369		disarm_kprobe_ftrace(p);
2370
2371	p->flags |= KPROBE_FLAG_GONE;
2372	if (kprobe_aggrprobe(p)) {
2373		/*
2374		 * If this is an aggr_kprobe, we have to list all the
2375		 * chained probes and mark them GONE.
2376		 */
2377		list_for_each_entry(kp, &p->list, list)
2378			kp->flags |= KPROBE_FLAG_GONE;
2379		p->post_handler = NULL;
2380		kill_optimized_kprobe(p);
2381	}
2382	/*
2383	 * Here, we can remove insn_slot safely, because no thread calls
2384	 * the original probed function (which will be freed soon) any more.
2385	 */
2386	arch_remove_kprobe(p);
2387}
2388
2389/* Disable one kprobe */
2390int disable_kprobe(struct kprobe *kp)
2391{
2392	int ret = 0;
2393	struct kprobe *p;
2394
2395	mutex_lock(&kprobe_mutex);
2396
2397	/* Disable this kprobe */
2398	p = __disable_kprobe(kp);
2399	if (IS_ERR(p))
2400		ret = PTR_ERR(p);
2401
2402	mutex_unlock(&kprobe_mutex);
2403	return ret;
2404}
2405EXPORT_SYMBOL_GPL(disable_kprobe);
2406
2407/* Enable one kprobe */
2408int enable_kprobe(struct kprobe *kp)
2409{
2410	int ret = 0;
2411	struct kprobe *p;
2412
2413	mutex_lock(&kprobe_mutex);
2414
2415	/* Check whether specified probe is valid. */
2416	p = __get_valid_kprobe(kp);
2417	if (unlikely(p == NULL)) {
2418		ret = -EINVAL;
2419		goto out;
2420	}
2421
2422	if (kprobe_gone(kp)) {
2423		/* This kprobe has gone, we couldn't enable it. */
2424		ret = -EINVAL;
2425		goto out;
2426	}
2427
2428	if (p != kp)
2429		kp->flags &= ~KPROBE_FLAG_DISABLED;
2430
2431	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2432		p->flags &= ~KPROBE_FLAG_DISABLED;
2433		ret = arm_kprobe(p);
2434		if (ret) {
2435			p->flags |= KPROBE_FLAG_DISABLED;
2436			if (p != kp)
2437				kp->flags |= KPROBE_FLAG_DISABLED;
2438		}
2439	}
2440out:
2441	mutex_unlock(&kprobe_mutex);
2442	return ret;
2443}
2444EXPORT_SYMBOL_GPL(enable_kprobe);
2445
2446/* Caller must NOT call this in usual path. This is only for critical case */
2447void dump_kprobe(struct kprobe *kp)
2448{
2449	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
 
2450	       kp->symbol_name, kp->offset, kp->addr);
2451}
2452NOKPROBE_SYMBOL(dump_kprobe);
2453
2454int kprobe_add_ksym_blacklist(unsigned long entry)
2455{
2456	struct kprobe_blacklist_entry *ent;
2457	unsigned long offset = 0, size = 0;
2458
2459	if (!kernel_text_address(entry) ||
2460	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2461		return -EINVAL;
2462
2463	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2464	if (!ent)
2465		return -ENOMEM;
2466	ent->start_addr = entry;
2467	ent->end_addr = entry + size;
2468	INIT_LIST_HEAD(&ent->list);
2469	list_add_tail(&ent->list, &kprobe_blacklist);
2470
2471	return (int)size;
2472}
2473
2474/* Add all symbols in given area into kprobe blacklist */
2475int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2476{
2477	unsigned long entry;
2478	int ret = 0;
2479
2480	for (entry = start; entry < end; entry += ret) {
2481		ret = kprobe_add_ksym_blacklist(entry);
2482		if (ret < 0)
2483			return ret;
2484		if (ret == 0)	/* In case of alias symbol */
2485			ret = 1;
2486	}
2487	return 0;
2488}
2489
2490/* Remove all symbols in given area from kprobe blacklist */
2491static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2492{
2493	struct kprobe_blacklist_entry *ent, *n;
2494
2495	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2496		if (ent->start_addr < start || ent->start_addr >= end)
2497			continue;
2498		list_del(&ent->list);
2499		kfree(ent);
2500	}
2501}
2502
2503static void kprobe_remove_ksym_blacklist(unsigned long entry)
2504{
2505	kprobe_remove_area_blacklist(entry, entry + 1);
2506}
2507
2508int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2509				   char *type, char *sym)
2510{
2511	return -ERANGE;
2512}
2513
2514int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2515		       char *sym)
2516{
2517#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2518	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2519		return 0;
2520#ifdef CONFIG_OPTPROBES
2521	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2522		return 0;
2523#endif
2524#endif
2525	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2526		return 0;
2527	return -ERANGE;
2528}
2529
2530int __init __weak arch_populate_kprobe_blacklist(void)
2531{
2532	return 0;
2533}
2534
2535/*
2536 * Lookup and populate the kprobe_blacklist.
2537 *
2538 * Unlike the kretprobe blacklist, we'll need to determine
2539 * the range of addresses that belong to the said functions,
2540 * since a kprobe need not necessarily be at the beginning
2541 * of a function.
2542 */
2543static int __init populate_kprobe_blacklist(unsigned long *start,
2544					     unsigned long *end)
2545{
2546	unsigned long entry;
2547	unsigned long *iter;
2548	int ret;
2549
2550	for (iter = start; iter < end; iter++) {
2551		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2552		ret = kprobe_add_ksym_blacklist(entry);
2553		if (ret == -EINVAL)
2554			continue;
2555		if (ret < 0)
2556			return ret;
2557	}
2558
2559	/* Symbols in '__kprobes_text' are blacklisted */
2560	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2561					(unsigned long)__kprobes_text_end);
2562	if (ret)
2563		return ret;
2564
2565	/* Symbols in 'noinstr' section are blacklisted */
2566	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2567					(unsigned long)__noinstr_text_end);
2568
2569	return ret ? : arch_populate_kprobe_blacklist();
2570}
2571
2572static void add_module_kprobe_blacklist(struct module *mod)
2573{
2574	unsigned long start, end;
2575	int i;
2576
2577	if (mod->kprobe_blacklist) {
2578		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2579			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2580	}
2581
2582	start = (unsigned long)mod->kprobes_text_start;
2583	if (start) {
2584		end = start + mod->kprobes_text_size;
2585		kprobe_add_area_blacklist(start, end);
2586	}
2587
2588	start = (unsigned long)mod->noinstr_text_start;
2589	if (start) {
2590		end = start + mod->noinstr_text_size;
2591		kprobe_add_area_blacklist(start, end);
2592	}
2593}
2594
2595static void remove_module_kprobe_blacklist(struct module *mod)
2596{
2597	unsigned long start, end;
2598	int i;
2599
2600	if (mod->kprobe_blacklist) {
2601		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2602			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2603	}
2604
2605	start = (unsigned long)mod->kprobes_text_start;
2606	if (start) {
2607		end = start + mod->kprobes_text_size;
2608		kprobe_remove_area_blacklist(start, end);
2609	}
2610
2611	start = (unsigned long)mod->noinstr_text_start;
2612	if (start) {
2613		end = start + mod->noinstr_text_size;
2614		kprobe_remove_area_blacklist(start, end);
2615	}
2616}
2617
2618/* Module notifier call back, checking kprobes on the module */
2619static int kprobes_module_callback(struct notifier_block *nb,
2620				   unsigned long val, void *data)
2621{
2622	struct module *mod = data;
2623	struct hlist_head *head;
2624	struct kprobe *p;
2625	unsigned int i;
2626	int checkcore = (val == MODULE_STATE_GOING);
2627
2628	if (val == MODULE_STATE_COMING) {
2629		mutex_lock(&kprobe_mutex);
2630		add_module_kprobe_blacklist(mod);
2631		mutex_unlock(&kprobe_mutex);
2632	}
2633	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2634		return NOTIFY_DONE;
2635
2636	/*
2637	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2638	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2639	 * notified, only '.init.text' section would be freed. We need to
2640	 * disable kprobes which have been inserted in the sections.
2641	 */
2642	mutex_lock(&kprobe_mutex);
2643	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2644		head = &kprobe_table[i];
2645		hlist_for_each_entry(p, head, hlist)
2646			if (within_module_init((unsigned long)p->addr, mod) ||
2647			    (checkcore &&
2648			     within_module_core((unsigned long)p->addr, mod))) {
2649				/*
2650				 * The vaddr this probe is installed will soon
2651				 * be vfreed buy not synced to disk. Hence,
2652				 * disarming the breakpoint isn't needed.
2653				 *
2654				 * Note, this will also move any optimized probes
2655				 * that are pending to be removed from their
2656				 * corresponding lists to the 'freeing_list' and
2657				 * will not be touched by the delayed
2658				 * kprobe_optimizer() work handler.
2659				 */
2660				kill_kprobe(p);
2661			}
2662	}
2663	if (val == MODULE_STATE_GOING)
2664		remove_module_kprobe_blacklist(mod);
2665	mutex_unlock(&kprobe_mutex);
2666	return NOTIFY_DONE;
2667}
2668
2669static struct notifier_block kprobe_module_nb = {
2670	.notifier_call = kprobes_module_callback,
2671	.priority = 0
2672};
2673
2674void kprobe_free_init_mem(void)
2675{
2676	void *start = (void *)(&__init_begin);
2677	void *end = (void *)(&__init_end);
2678	struct hlist_head *head;
2679	struct kprobe *p;
2680	int i;
2681
2682	mutex_lock(&kprobe_mutex);
2683
2684	/* Kill all kprobes on initmem because the target code has been freed. */
2685	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2686		head = &kprobe_table[i];
2687		hlist_for_each_entry(p, head, hlist) {
2688			if (start <= (void *)p->addr && (void *)p->addr < end)
2689				kill_kprobe(p);
2690		}
2691	}
2692
2693	mutex_unlock(&kprobe_mutex);
2694}
2695
2696static int __init init_kprobes(void)
2697{
2698	int i, err = 0;
2699
2700	/* FIXME allocate the probe table, currently defined statically */
2701	/* initialize all list heads */
2702	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2703		INIT_HLIST_HEAD(&kprobe_table[i]);
 
 
 
2704
2705	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2706					__stop_kprobe_blacklist);
2707	if (err)
2708		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
 
 
2709
2710	if (kretprobe_blacklist_size) {
2711		/* lookup the function address from its name */
2712		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2713			kretprobe_blacklist[i].addr =
2714				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2715			if (!kretprobe_blacklist[i].addr)
2716				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2717				       kretprobe_blacklist[i].name);
2718		}
2719	}
2720
2721	/* By default, kprobes are armed */
2722	kprobes_all_disarmed = false;
2723
2724#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2725	/* Init 'kprobe_optinsn_slots' for allocation */
2726	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2727#endif
 
 
 
 
 
 
2728
2729	err = arch_init_kprobes();
2730	if (!err)
2731		err = register_die_notifier(&kprobe_exceptions_nb);
2732	if (!err)
2733		err = register_module_notifier(&kprobe_module_nb);
2734
2735	kprobes_initialized = (err == 0);
2736	kprobe_sysctls_init();
2737	return err;
2738}
2739early_initcall(init_kprobes);
2740
2741#if defined(CONFIG_OPTPROBES)
2742static int __init init_optprobes(void)
2743{
2744	/*
2745	 * Enable kprobe optimization - this kicks the optimizer which
2746	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2747	 * not spawned in early initcall. So delay the optimization.
2748	 */
2749	optimize_all_kprobes();
2750
2751	return 0;
 
 
2752}
2753subsys_initcall(init_optprobes);
2754#endif
2755
2756#ifdef CONFIG_DEBUG_FS
2757static void report_probe(struct seq_file *pi, struct kprobe *p,
2758		const char *sym, int offset, char *modname, struct kprobe *pp)
2759{
2760	char *kprobe_type;
2761	void *addr = p->addr;
2762
2763	if (p->pre_handler == pre_handler_kretprobe)
2764		kprobe_type = "r";
2765	else
2766		kprobe_type = "k";
2767
2768	if (!kallsyms_show_value(pi->file->f_cred))
2769		addr = NULL;
2770
2771	if (sym)
2772		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2773			addr, kprobe_type, sym, offset,
2774			(modname ? modname : " "));
2775	else	/* try to use %pS */
2776		seq_printf(pi, "%px  %s  %pS ",
2777			addr, kprobe_type, p->addr);
2778
2779	if (!pp)
2780		pp = p;
2781	seq_printf(pi, "%s%s%s%s\n",
2782		(kprobe_gone(p) ? "[GONE]" : ""),
2783		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2784		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2785		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2786}
2787
2788static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2789{
2790	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2791}
2792
2793static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2794{
2795	(*pos)++;
2796	if (*pos >= KPROBE_TABLE_SIZE)
2797		return NULL;
2798	return pos;
2799}
2800
2801static void kprobe_seq_stop(struct seq_file *f, void *v)
2802{
2803	/* Nothing to do */
2804}
2805
2806static int show_kprobe_addr(struct seq_file *pi, void *v)
2807{
2808	struct hlist_head *head;
2809	struct kprobe *p, *kp;
2810	const char *sym = NULL;
2811	unsigned int i = *(loff_t *) v;
2812	unsigned long offset = 0;
2813	char *modname, namebuf[KSYM_NAME_LEN];
2814
2815	head = &kprobe_table[i];
2816	preempt_disable();
2817	hlist_for_each_entry_rcu(p, head, hlist) {
2818		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2819					&offset, &modname, namebuf);
2820		if (kprobe_aggrprobe(p)) {
2821			list_for_each_entry_rcu(kp, &p->list, list)
2822				report_probe(pi, kp, sym, offset, modname, p);
2823		} else
2824			report_probe(pi, p, sym, offset, modname, NULL);
2825	}
2826	preempt_enable();
2827	return 0;
2828}
2829
2830static const struct seq_operations kprobes_sops = {
2831	.start = kprobe_seq_start,
2832	.next  = kprobe_seq_next,
2833	.stop  = kprobe_seq_stop,
2834	.show  = show_kprobe_addr
2835};
2836
2837DEFINE_SEQ_ATTRIBUTE(kprobes);
 
 
 
 
 
 
 
 
 
 
2838
2839/* kprobes/blacklist -- shows which functions can not be probed */
2840static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2841{
2842	mutex_lock(&kprobe_mutex);
2843	return seq_list_start(&kprobe_blacklist, *pos);
2844}
2845
2846static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2847{
2848	return seq_list_next(v, &kprobe_blacklist, pos);
2849}
2850
2851static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2852{
2853	struct kprobe_blacklist_entry *ent =
2854		list_entry(v, struct kprobe_blacklist_entry, list);
2855
2856	/*
2857	 * If '/proc/kallsyms' is not showing kernel address, we won't
2858	 * show them here either.
2859	 */
2860	if (!kallsyms_show_value(m->file->f_cred))
2861		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2862			   (void *)ent->start_addr);
2863	else
2864		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2865			   (void *)ent->end_addr, (void *)ent->start_addr);
2866	return 0;
2867}
2868
2869static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2870{
2871	mutex_unlock(&kprobe_mutex);
2872}
2873
2874static const struct seq_operations kprobe_blacklist_sops = {
2875	.start = kprobe_blacklist_seq_start,
2876	.next  = kprobe_blacklist_seq_next,
2877	.stop  = kprobe_blacklist_seq_stop,
2878	.show  = kprobe_blacklist_seq_show,
2879};
2880DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
 
 
 
 
 
 
 
 
 
 
 
2881
2882static int arm_all_kprobes(void)
2883{
2884	struct hlist_head *head;
2885	struct kprobe *p;
2886	unsigned int i, total = 0, errors = 0;
2887	int err, ret = 0;
2888
2889	mutex_lock(&kprobe_mutex);
2890
2891	/* If kprobes are armed, just return */
2892	if (!kprobes_all_disarmed)
2893		goto already_enabled;
2894
2895	/*
2896	 * optimize_kprobe() called by arm_kprobe() checks
2897	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2898	 * arm_kprobe.
2899	 */
2900	kprobes_all_disarmed = false;
2901	/* Arming kprobes doesn't optimize kprobe itself */
2902	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2903		head = &kprobe_table[i];
2904		/* Arm all kprobes on a best-effort basis */
2905		hlist_for_each_entry(p, head, hlist) {
2906			if (!kprobe_disabled(p)) {
2907				err = arm_kprobe(p);
2908				if (err)  {
2909					errors++;
2910					ret = err;
2911				}
2912				total++;
2913			}
2914		}
2915	}
2916
2917	if (errors)
2918		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2919			errors, total);
2920	else
2921		pr_info("Kprobes globally enabled\n");
2922
2923already_enabled:
2924	mutex_unlock(&kprobe_mutex);
2925	return ret;
2926}
2927
2928static int disarm_all_kprobes(void)
2929{
2930	struct hlist_head *head;
2931	struct kprobe *p;
2932	unsigned int i, total = 0, errors = 0;
2933	int err, ret = 0;
2934
2935	mutex_lock(&kprobe_mutex);
2936
2937	/* If kprobes are already disarmed, just return */
2938	if (kprobes_all_disarmed) {
2939		mutex_unlock(&kprobe_mutex);
2940		return 0;
2941	}
2942
2943	kprobes_all_disarmed = true;
2944
2945	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2946		head = &kprobe_table[i];
2947		/* Disarm all kprobes on a best-effort basis */
2948		hlist_for_each_entry(p, head, hlist) {
2949			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2950				err = disarm_kprobe(p, false);
2951				if (err) {
2952					errors++;
2953					ret = err;
2954				}
2955				total++;
2956			}
2957		}
2958	}
2959
2960	if (errors)
2961		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2962			errors, total);
2963	else
2964		pr_info("Kprobes globally disabled\n");
2965
2966	mutex_unlock(&kprobe_mutex);
2967
2968	/* Wait for disarming all kprobes by optimizer */
2969	wait_for_kprobe_optimizer();
2970
2971	return ret;
2972}
2973
2974/*
2975 * XXX: The debugfs bool file interface doesn't allow for callbacks
2976 * when the bool state is switched. We can reuse that facility when
2977 * available
2978 */
2979static ssize_t read_enabled_file_bool(struct file *file,
2980	       char __user *user_buf, size_t count, loff_t *ppos)
2981{
2982	char buf[3];
2983
2984	if (!kprobes_all_disarmed)
2985		buf[0] = '1';
2986	else
2987		buf[0] = '0';
2988	buf[1] = '\n';
2989	buf[2] = 0x00;
2990	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2991}
2992
2993static ssize_t write_enabled_file_bool(struct file *file,
2994	       const char __user *user_buf, size_t count, loff_t *ppos)
2995{
2996	bool enable;
2997	int ret;
 
2998
2999	ret = kstrtobool_from_user(user_buf, count, &enable);
3000	if (ret)
3001		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3002
3003	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3004	if (ret)
3005		return ret;
3006
3007	return count;
3008}
3009
3010static const struct file_operations fops_kp = {
3011	.read =         read_enabled_file_bool,
3012	.write =        write_enabled_file_bool,
3013	.llseek =	default_llseek,
3014};
3015
3016static int __init debugfs_kprobe_init(void)
3017{
3018	struct dentry *dir;
 
3019
3020	dir = debugfs_create_dir("kprobes", NULL);
3021
3022	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
 
3023
3024	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3025
3026	debugfs_create_file("blacklist", 0400, dir, NULL,
3027			    &kprobe_blacklist_fops);
3028
3029	return 0;
3030}
3031
3032late_initcall(debugfs_kprobe_init);
3033#endif /* CONFIG_DEBUG_FS */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *  kernel/kprobes.c
   5 *
   6 * Copyright (C) IBM Corporation, 2002, 2004
   7 *
   8 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   9 *		Probes initial implementation (includes suggestions from
  10 *		Rusty Russell).
  11 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  12 *		hlists and exceptions notifier as suggested by Andi Kleen.
  13 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  14 *		interface to access function arguments.
  15 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  16 *		exceptions notifier to be first on the priority list.
  17 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  18 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  19 *		<prasanna@in.ibm.com> added function-return probes.
  20 */
 
 
 
  21#include <linux/kprobes.h>
  22#include <linux/hash.h>
  23#include <linux/init.h>
  24#include <linux/slab.h>
  25#include <linux/stddef.h>
  26#include <linux/export.h>
  27#include <linux/moduleloader.h>
  28#include <linux/kallsyms.h>
  29#include <linux/freezer.h>
  30#include <linux/seq_file.h>
  31#include <linux/debugfs.h>
  32#include <linux/sysctl.h>
  33#include <linux/kdebug.h>
  34#include <linux/memory.h>
  35#include <linux/ftrace.h>
  36#include <linux/cpu.h>
  37#include <linux/jump_label.h>
 
 
  38
  39#include <asm/sections.h>
  40#include <asm/cacheflush.h>
  41#include <asm/errno.h>
  42#include <linux/uaccess.h>
  43
  44#define KPROBE_HASH_BITS 6
  45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  46
 
 
 
  47
  48static int kprobes_initialized;
 
 
 
 
 
  49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  51
  52/* NOTE: change this value only with kprobe_mutex held */
  53static bool kprobes_all_disarmed;
  54
  55/* This protects kprobe_table and optimizing_list */
  56static DEFINE_MUTEX(kprobe_mutex);
  57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  58static struct {
  59	raw_spinlock_t lock ____cacheline_aligned_in_smp;
  60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  61
  62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  63					unsigned int __unused)
  64{
  65	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  66}
  67
  68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  69{
  70	return &(kretprobe_table_locks[hash].lock);
  71}
  72
  73/* Blacklist -- list of struct kprobe_blacklist_entry */
  74static LIST_HEAD(kprobe_blacklist);
  75
  76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  77/*
  78 * kprobe->ainsn.insn points to the copy of the instruction to be
  79 * single-stepped. x86_64, POWER4 and above have no-exec support and
  80 * stepping on the instruction on a vmalloced/kmalloced/data page
  81 * is a recipe for disaster
  82 */
  83struct kprobe_insn_page {
  84	struct list_head list;
  85	kprobe_opcode_t *insns;		/* Page of instruction slots */
  86	struct kprobe_insn_cache *cache;
  87	int nused;
  88	int ngarbage;
  89	char slot_used[];
  90};
  91
  92#define KPROBE_INSN_PAGE_SIZE(slots)			\
  93	(offsetof(struct kprobe_insn_page, slot_used) +	\
  94	 (sizeof(char) * (slots)))
  95
  96static int slots_per_page(struct kprobe_insn_cache *c)
  97{
  98	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
  99}
 100
 101enum kprobe_slot_state {
 102	SLOT_CLEAN = 0,
 103	SLOT_DIRTY = 1,
 104	SLOT_USED = 2,
 105};
 106
 107void __weak *alloc_insn_page(void)
 108{
 
 
 
 
 
 
 109	return module_alloc(PAGE_SIZE);
 110}
 111
 112void __weak free_insn_page(void *page)
 113{
 114	module_memfree(page);
 115}
 116
 117struct kprobe_insn_cache kprobe_insn_slots = {
 118	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 119	.alloc = alloc_insn_page,
 120	.free = free_insn_page,
 
 121	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 122	.insn_size = MAX_INSN_SIZE,
 123	.nr_garbage = 0,
 124};
 125static int collect_garbage_slots(struct kprobe_insn_cache *c);
 126
 127/**
 128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 129 * We allocate an executable page if there's no room on existing ones.
 130 */
 131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 132{
 133	struct kprobe_insn_page *kip;
 134	kprobe_opcode_t *slot = NULL;
 135
 136	/* Since the slot array is not protected by rcu, we need a mutex */
 137	mutex_lock(&c->mutex);
 138 retry:
 139	rcu_read_lock();
 140	list_for_each_entry_rcu(kip, &c->pages, list) {
 141		if (kip->nused < slots_per_page(c)) {
 142			int i;
 
 143			for (i = 0; i < slots_per_page(c); i++) {
 144				if (kip->slot_used[i] == SLOT_CLEAN) {
 145					kip->slot_used[i] = SLOT_USED;
 146					kip->nused++;
 147					slot = kip->insns + (i * c->insn_size);
 148					rcu_read_unlock();
 149					goto out;
 150				}
 151			}
 152			/* kip->nused is broken. Fix it. */
 153			kip->nused = slots_per_page(c);
 154			WARN_ON(1);
 155		}
 156	}
 157	rcu_read_unlock();
 158
 159	/* If there are any garbage slots, collect it and try again. */
 160	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 161		goto retry;
 162
 163	/* All out of space.  Need to allocate a new page. */
 164	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 165	if (!kip)
 166		goto out;
 167
 168	/*
 169	 * Use module_alloc so this page is within +/- 2GB of where the
 170	 * kernel image and loaded module images reside. This is required
 171	 * so x86_64 can correctly handle the %rip-relative fixups.
 172	 */
 173	kip->insns = c->alloc();
 174	if (!kip->insns) {
 175		kfree(kip);
 176		goto out;
 177	}
 178	INIT_LIST_HEAD(&kip->list);
 179	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 180	kip->slot_used[0] = SLOT_USED;
 181	kip->nused = 1;
 182	kip->ngarbage = 0;
 183	kip->cache = c;
 184	list_add_rcu(&kip->list, &c->pages);
 185	slot = kip->insns;
 
 
 
 
 186out:
 187	mutex_unlock(&c->mutex);
 188	return slot;
 189}
 190
 191/* Return 1 if all garbages are collected, otherwise 0. */
 192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 193{
 194	kip->slot_used[idx] = SLOT_CLEAN;
 195	kip->nused--;
 196	if (kip->nused == 0) {
 197		/*
 198		 * Page is no longer in use.  Free it unless
 199		 * it's the last one.  We keep the last one
 200		 * so as not to have to set it up again the
 201		 * next time somebody inserts a probe.
 202		 */
 203		if (!list_is_singular(&kip->list)) {
 
 
 
 
 
 
 
 204			list_del_rcu(&kip->list);
 205			synchronize_rcu();
 206			kip->cache->free(kip->insns);
 207			kfree(kip);
 208		}
 209		return 1;
 210	}
 211	return 0;
 212}
 213
 214static int collect_garbage_slots(struct kprobe_insn_cache *c)
 215{
 216	struct kprobe_insn_page *kip, *next;
 217
 218	/* Ensure no-one is interrupted on the garbages */
 219	synchronize_rcu();
 220
 221	list_for_each_entry_safe(kip, next, &c->pages, list) {
 222		int i;
 
 223		if (kip->ngarbage == 0)
 224			continue;
 225		kip->ngarbage = 0;	/* we will collect all garbages */
 226		for (i = 0; i < slots_per_page(c); i++) {
 227			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 228				break;
 229		}
 230	}
 231	c->nr_garbage = 0;
 232	return 0;
 233}
 234
 235void __free_insn_slot(struct kprobe_insn_cache *c,
 236		      kprobe_opcode_t *slot, int dirty)
 237{
 238	struct kprobe_insn_page *kip;
 239	long idx;
 240
 241	mutex_lock(&c->mutex);
 242	rcu_read_lock();
 243	list_for_each_entry_rcu(kip, &c->pages, list) {
 244		idx = ((long)slot - (long)kip->insns) /
 245			(c->insn_size * sizeof(kprobe_opcode_t));
 246		if (idx >= 0 && idx < slots_per_page(c))
 247			goto out;
 248	}
 249	/* Could not find this slot. */
 250	WARN_ON(1);
 251	kip = NULL;
 252out:
 253	rcu_read_unlock();
 254	/* Mark and sweep: this may sleep */
 255	if (kip) {
 256		/* Check double free */
 257		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 258		if (dirty) {
 259			kip->slot_used[idx] = SLOT_DIRTY;
 260			kip->ngarbage++;
 261			if (++c->nr_garbage > slots_per_page(c))
 262				collect_garbage_slots(c);
 263		} else {
 264			collect_one_slot(kip, idx);
 265		}
 266	}
 267	mutex_unlock(&c->mutex);
 268}
 269
 270/*
 271 * Check given address is on the page of kprobe instruction slots.
 272 * This will be used for checking whether the address on a stack
 273 * is on a text area or not.
 274 */
 275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 276{
 277	struct kprobe_insn_page *kip;
 278	bool ret = false;
 279
 280	rcu_read_lock();
 281	list_for_each_entry_rcu(kip, &c->pages, list) {
 282		if (addr >= (unsigned long)kip->insns &&
 283		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 284			ret = true;
 285			break;
 286		}
 287	}
 288	rcu_read_unlock();
 289
 290	return ret;
 291}
 292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293#ifdef CONFIG_OPTPROBES
 
 
 
 
 
 
 
 
 
 
 294/* For optimized_kprobe buffer */
 295struct kprobe_insn_cache kprobe_optinsn_slots = {
 296	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 297	.alloc = alloc_insn_page,
 298	.free = free_insn_page,
 
 299	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 300	/* .insn_size is initialized later */
 301	.nr_garbage = 0,
 302};
 303#endif
 304#endif
 305
 306/* We have preemption disabled.. so it is safe to use __ versions */
 307static inline void set_kprobe_instance(struct kprobe *kp)
 308{
 309	__this_cpu_write(kprobe_instance, kp);
 310}
 311
 312static inline void reset_kprobe_instance(void)
 313{
 314	__this_cpu_write(kprobe_instance, NULL);
 315}
 316
 317/*
 318 * This routine is called either:
 319 * 	- under the kprobe_mutex - during kprobe_[un]register()
 320 * 				OR
 321 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 322 */
 323struct kprobe *get_kprobe(void *addr)
 324{
 325	struct hlist_head *head;
 326	struct kprobe *p;
 327
 328	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 329	hlist_for_each_entry_rcu(p, head, hlist) {
 
 330		if (p->addr == addr)
 331			return p;
 332	}
 333
 334	return NULL;
 335}
 336NOKPROBE_SYMBOL(get_kprobe);
 337
 338static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 339
 340/* Return true if the kprobe is an aggregator */
 341static inline int kprobe_aggrprobe(struct kprobe *p)
 342{
 343	return p->pre_handler == aggr_pre_handler;
 344}
 345
 346/* Return true(!0) if the kprobe is unused */
 347static inline int kprobe_unused(struct kprobe *p)
 348{
 349	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 350	       list_empty(&p->list);
 351}
 352
 353/*
 354 * Keep all fields in the kprobe consistent
 355 */
 356static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 357{
 358	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 359	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 360}
 361
 362#ifdef CONFIG_OPTPROBES
 363/* NOTE: change this value only with kprobe_mutex held */
 364static bool kprobes_allow_optimization;
 365
 366/*
 367 * Call all pre_handler on the list, but ignores its return value.
 368 * This must be called from arch-dep optimized caller.
 369 */
 370void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 371{
 372	struct kprobe *kp;
 373
 374	list_for_each_entry_rcu(kp, &p->list, list) {
 375		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 376			set_kprobe_instance(kp);
 377			kp->pre_handler(kp, regs);
 378		}
 379		reset_kprobe_instance();
 380	}
 381}
 382NOKPROBE_SYMBOL(opt_pre_handler);
 383
 384/* Free optimized instructions and optimized_kprobe */
 385static void free_aggr_kprobe(struct kprobe *p)
 386{
 387	struct optimized_kprobe *op;
 388
 389	op = container_of(p, struct optimized_kprobe, kp);
 390	arch_remove_optimized_kprobe(op);
 391	arch_remove_kprobe(p);
 392	kfree(op);
 393}
 394
 395/* Return true(!0) if the kprobe is ready for optimization. */
 396static inline int kprobe_optready(struct kprobe *p)
 397{
 398	struct optimized_kprobe *op;
 399
 400	if (kprobe_aggrprobe(p)) {
 401		op = container_of(p, struct optimized_kprobe, kp);
 402		return arch_prepared_optinsn(&op->optinsn);
 403	}
 404
 405	return 0;
 406}
 407
 408/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 409static inline int kprobe_disarmed(struct kprobe *p)
 410{
 411	struct optimized_kprobe *op;
 412
 413	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 414	if (!kprobe_aggrprobe(p))
 415		return kprobe_disabled(p);
 416
 417	op = container_of(p, struct optimized_kprobe, kp);
 418
 419	return kprobe_disabled(p) && list_empty(&op->list);
 420}
 421
 422/* Return true(!0) if the probe is queued on (un)optimizing lists */
 423static int kprobe_queued(struct kprobe *p)
 424{
 425	struct optimized_kprobe *op;
 426
 427	if (kprobe_aggrprobe(p)) {
 428		op = container_of(p, struct optimized_kprobe, kp);
 429		if (!list_empty(&op->list))
 430			return 1;
 431	}
 432	return 0;
 433}
 434
 435/*
 436 * Return an optimized kprobe whose optimizing code replaces
 437 * instructions including addr (exclude breakpoint).
 438 */
 439static struct kprobe *get_optimized_kprobe(unsigned long addr)
 440{
 441	int i;
 442	struct kprobe *p = NULL;
 443	struct optimized_kprobe *op;
 444
 445	/* Don't check i == 0, since that is a breakpoint case. */
 446	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 447		p = get_kprobe((void *)(addr - i));
 448
 449	if (p && kprobe_optready(p)) {
 450		op = container_of(p, struct optimized_kprobe, kp);
 451		if (arch_within_optimized_kprobe(op, addr))
 452			return p;
 453	}
 454
 455	return NULL;
 456}
 457
 458/* Optimization staging list, protected by kprobe_mutex */
 459static LIST_HEAD(optimizing_list);
 460static LIST_HEAD(unoptimizing_list);
 461static LIST_HEAD(freeing_list);
 462
 463static void kprobe_optimizer(struct work_struct *work);
 464static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 465#define OPTIMIZE_DELAY 5
 466
 467/*
 468 * Optimize (replace a breakpoint with a jump) kprobes listed on
 469 * optimizing_list.
 470 */
 471static void do_optimize_kprobes(void)
 472{
 473	lockdep_assert_held(&text_mutex);
 474	/*
 475	 * The optimization/unoptimization refers online_cpus via
 476	 * stop_machine() and cpu-hotplug modifies online_cpus.
 477	 * And same time, text_mutex will be held in cpu-hotplug and here.
 478	 * This combination can cause a deadlock (cpu-hotplug try to lock
 479	 * text_mutex but stop_machine can not be done because online_cpus
 480	 * has been changed)
 481	 * To avoid this deadlock, caller must have locked cpu hotplug
 482	 * for preventing cpu-hotplug outside of text_mutex locking.
 483	 */
 484	lockdep_assert_cpus_held();
 485
 486	/* Optimization never be done when disarmed */
 487	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 488	    list_empty(&optimizing_list))
 489		return;
 490
 491	arch_optimize_kprobes(&optimizing_list);
 492}
 493
 494/*
 495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 496 * if need) kprobes listed on unoptimizing_list.
 497 */
 498static void do_unoptimize_kprobes(void)
 499{
 500	struct optimized_kprobe *op, *tmp;
 501
 502	lockdep_assert_held(&text_mutex);
 503	/* See comment in do_optimize_kprobes() */
 504	lockdep_assert_cpus_held();
 505
 506	/* Unoptimization must be done anytime */
 507	if (list_empty(&unoptimizing_list))
 508		return;
 509
 510	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 511	/* Loop free_list for disarming */
 512	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 
 513		/* Disarm probes if marked disabled */
 514		if (kprobe_disabled(&op->kp))
 515			arch_disarm_kprobe(&op->kp);
 516		if (kprobe_unused(&op->kp)) {
 517			/*
 518			 * Remove unused probes from hash list. After waiting
 519			 * for synchronization, these probes are reclaimed.
 520			 * (reclaiming is done by do_free_cleaned_kprobes.)
 521			 */
 522			hlist_del_rcu(&op->kp.hlist);
 523		} else
 524			list_del_init(&op->list);
 525	}
 526}
 527
 528/* Reclaim all kprobes on the free_list */
 529static void do_free_cleaned_kprobes(void)
 530{
 531	struct optimized_kprobe *op, *tmp;
 532
 533	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 534		list_del_init(&op->list);
 535		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 536			/*
 537			 * This must not happen, but if there is a kprobe
 538			 * still in use, keep it on kprobes hash list.
 539			 */
 540			continue;
 541		}
 542		free_aggr_kprobe(&op->kp);
 543	}
 544}
 545
 546/* Start optimizer after OPTIMIZE_DELAY passed */
 547static void kick_kprobe_optimizer(void)
 548{
 549	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 550}
 551
 552/* Kprobe jump optimizer */
 553static void kprobe_optimizer(struct work_struct *work)
 554{
 555	mutex_lock(&kprobe_mutex);
 556	cpus_read_lock();
 557	mutex_lock(&text_mutex);
 558	/* Lock modules while optimizing kprobes */
 559	mutex_lock(&module_mutex);
 560
 561	/*
 562	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 563	 * kprobes before waiting for quiesence period.
 564	 */
 565	do_unoptimize_kprobes();
 566
 567	/*
 568	 * Step 2: Wait for quiesence period to ensure all potentially
 569	 * preempted tasks to have normally scheduled. Because optprobe
 570	 * may modify multiple instructions, there is a chance that Nth
 571	 * instruction is preempted. In that case, such tasks can return
 572	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 573	 * Note that on non-preemptive kernel, this is transparently converted
 574	 * to synchronoze_sched() to wait for all interrupts to have completed.
 575	 */
 576	synchronize_rcu_tasks();
 577
 578	/* Step 3: Optimize kprobes after quiesence period */
 579	do_optimize_kprobes();
 580
 581	/* Step 4: Free cleaned kprobes after quiesence period */
 582	do_free_cleaned_kprobes();
 583
 584	mutex_unlock(&module_mutex);
 585	mutex_unlock(&text_mutex);
 586	cpus_read_unlock();
 587	mutex_unlock(&kprobe_mutex);
 588
 589	/* Step 5: Kick optimizer again if needed */
 590	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 591		kick_kprobe_optimizer();
 
 
 592}
 593
 594/* Wait for completing optimization and unoptimization */
 595void wait_for_kprobe_optimizer(void)
 596{
 597	mutex_lock(&kprobe_mutex);
 598
 599	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 600		mutex_unlock(&kprobe_mutex);
 601
 602		/* this will also make optimizing_work execute immmediately */
 603		flush_delayed_work(&optimizing_work);
 604		/* @optimizing_work might not have been queued yet, relax */
 605		cpu_relax();
 606
 607		mutex_lock(&kprobe_mutex);
 608	}
 609
 610	mutex_unlock(&kprobe_mutex);
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 613/* Optimize kprobe if p is ready to be optimized */
 614static void optimize_kprobe(struct kprobe *p)
 615{
 616	struct optimized_kprobe *op;
 617
 618	/* Check if the kprobe is disabled or not ready for optimization. */
 619	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 620	    (kprobe_disabled(p) || kprobes_all_disarmed))
 621		return;
 622
 623	/* kprobes with post_handler can not be optimized */
 624	if (p->post_handler)
 625		return;
 626
 627	op = container_of(p, struct optimized_kprobe, kp);
 628
 629	/* Check there is no other kprobes at the optimized instructions */
 630	if (arch_check_optimized_kprobe(op) < 0)
 631		return;
 632
 633	/* Check if it is already optimized. */
 634	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 635		return;
 
 636	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 637
 638	if (!list_empty(&op->list))
 639		/* This is under unoptimizing. Just dequeue the probe */
 640		list_del_init(&op->list);
 641	else {
 642		list_add(&op->list, &optimizing_list);
 643		kick_kprobe_optimizer();
 644	}
 
 
 645}
 646
 647/* Short cut to direct unoptimizing */
 648static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 649{
 650	lockdep_assert_cpus_held();
 651	arch_unoptimize_kprobe(op);
 652	if (kprobe_disabled(&op->kp))
 653		arch_disarm_kprobe(&op->kp);
 654}
 655
 656/* Unoptimize a kprobe if p is optimized */
 657static void unoptimize_kprobe(struct kprobe *p, bool force)
 658{
 659	struct optimized_kprobe *op;
 660
 661	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 662		return; /* This is not an optprobe nor optimized */
 663
 664	op = container_of(p, struct optimized_kprobe, kp);
 665	if (!kprobe_optimized(p)) {
 666		/* Unoptimized or unoptimizing case */
 667		if (force && !list_empty(&op->list)) {
 668			/*
 669			 * Only if this is unoptimizing kprobe and forced,
 670			 * forcibly unoptimize it. (No need to unoptimize
 671			 * unoptimized kprobe again :)
 672			 */
 
 
 
 
 
 
 
 
 673			list_del_init(&op->list);
 674			force_unoptimize_kprobe(op);
 675		}
 676		return;
 677	}
 678
 679	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 680	if (!list_empty(&op->list)) {
 681		/* Dequeue from the optimization queue */
 682		list_del_init(&op->list);
 683		return;
 684	}
 685	/* Optimized kprobe case */
 686	if (force)
 687		/* Forcibly update the code: this is a special case */
 688		force_unoptimize_kprobe(op);
 689	else {
 690		list_add(&op->list, &unoptimizing_list);
 691		kick_kprobe_optimizer();
 692	}
 693}
 694
 695/* Cancel unoptimizing for reusing */
 696static int reuse_unused_kprobe(struct kprobe *ap)
 697{
 698	struct optimized_kprobe *op;
 699
 700	/*
 701	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 702	 * there is still a relative jump) and disabled.
 703	 */
 704	op = container_of(ap, struct optimized_kprobe, kp);
 705	WARN_ON_ONCE(list_empty(&op->list));
 706	/* Enable the probe again */
 707	ap->flags &= ~KPROBE_FLAG_DISABLED;
 708	/* Optimize it again (remove from op->list) */
 709	if (!kprobe_optready(ap))
 710		return -EINVAL;
 711
 712	optimize_kprobe(ap);
 713	return 0;
 714}
 715
 716/* Remove optimized instructions */
 717static void kill_optimized_kprobe(struct kprobe *p)
 718{
 719	struct optimized_kprobe *op;
 720
 721	op = container_of(p, struct optimized_kprobe, kp);
 722	if (!list_empty(&op->list))
 723		/* Dequeue from the (un)optimization queue */
 724		list_del_init(&op->list);
 725	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 726
 727	if (kprobe_unused(p)) {
 728		/* Enqueue if it is unused */
 729		list_add(&op->list, &freeing_list);
 730		/*
 731		 * Remove unused probes from the hash list. After waiting
 732		 * for synchronization, this probe is reclaimed.
 733		 * (reclaiming is done by do_free_cleaned_kprobes().)
 734		 */
 735		hlist_del_rcu(&op->kp.hlist);
 736	}
 737
 738	/* Don't touch the code, because it is already freed. */
 739	arch_remove_optimized_kprobe(op);
 740}
 741
 742static inline
 743void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 744{
 745	if (!kprobe_ftrace(p))
 746		arch_prepare_optimized_kprobe(op, p);
 747}
 748
 749/* Try to prepare optimized instructions */
 750static void prepare_optimized_kprobe(struct kprobe *p)
 751{
 752	struct optimized_kprobe *op;
 753
 754	op = container_of(p, struct optimized_kprobe, kp);
 755	__prepare_optimized_kprobe(op, p);
 756}
 757
 758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 760{
 761	struct optimized_kprobe *op;
 762
 763	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 764	if (!op)
 765		return NULL;
 766
 767	INIT_LIST_HEAD(&op->list);
 768	op->kp.addr = p->addr;
 769	__prepare_optimized_kprobe(op, p);
 770
 771	return &op->kp;
 772}
 773
 774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 775
 776/*
 777 * Prepare an optimized_kprobe and optimize it
 778 * NOTE: p must be a normal registered kprobe
 779 */
 780static void try_to_optimize_kprobe(struct kprobe *p)
 781{
 782	struct kprobe *ap;
 783	struct optimized_kprobe *op;
 784
 785	/* Impossible to optimize ftrace-based kprobe */
 786	if (kprobe_ftrace(p))
 787		return;
 788
 789	/* For preparing optimization, jump_label_text_reserved() is called */
 790	cpus_read_lock();
 791	jump_label_lock();
 792	mutex_lock(&text_mutex);
 793
 794	ap = alloc_aggr_kprobe(p);
 795	if (!ap)
 796		goto out;
 797
 798	op = container_of(ap, struct optimized_kprobe, kp);
 799	if (!arch_prepared_optinsn(&op->optinsn)) {
 800		/* If failed to setup optimizing, fallback to kprobe */
 801		arch_remove_optimized_kprobe(op);
 802		kfree(op);
 803		goto out;
 804	}
 805
 806	init_aggr_kprobe(ap, p);
 807	optimize_kprobe(ap);	/* This just kicks optimizer thread */
 808
 809out:
 810	mutex_unlock(&text_mutex);
 811	jump_label_unlock();
 812	cpus_read_unlock();
 813}
 814
 815#ifdef CONFIG_SYSCTL
 816static void optimize_all_kprobes(void)
 817{
 818	struct hlist_head *head;
 819	struct kprobe *p;
 820	unsigned int i;
 821
 822	mutex_lock(&kprobe_mutex);
 823	/* If optimization is already allowed, just return */
 824	if (kprobes_allow_optimization)
 825		goto out;
 826
 827	cpus_read_lock();
 828	kprobes_allow_optimization = true;
 829	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 830		head = &kprobe_table[i];
 831		hlist_for_each_entry_rcu(p, head, hlist)
 832			if (!kprobe_disabled(p))
 833				optimize_kprobe(p);
 834	}
 835	cpus_read_unlock();
 836	printk(KERN_INFO "Kprobes globally optimized\n");
 837out:
 838	mutex_unlock(&kprobe_mutex);
 839}
 840
 
 841static void unoptimize_all_kprobes(void)
 842{
 843	struct hlist_head *head;
 844	struct kprobe *p;
 845	unsigned int i;
 846
 847	mutex_lock(&kprobe_mutex);
 848	/* If optimization is already prohibited, just return */
 849	if (!kprobes_allow_optimization) {
 850		mutex_unlock(&kprobe_mutex);
 851		return;
 852	}
 853
 854	cpus_read_lock();
 855	kprobes_allow_optimization = false;
 856	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 857		head = &kprobe_table[i];
 858		hlist_for_each_entry_rcu(p, head, hlist) {
 859			if (!kprobe_disabled(p))
 860				unoptimize_kprobe(p, false);
 861		}
 862	}
 863	cpus_read_unlock();
 864	mutex_unlock(&kprobe_mutex);
 865
 866	/* Wait for unoptimizing completion */
 867	wait_for_kprobe_optimizer();
 868	printk(KERN_INFO "Kprobes globally unoptimized\n");
 869}
 870
 871static DEFINE_MUTEX(kprobe_sysctl_mutex);
 872int sysctl_kprobes_optimization;
 873int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 874				      void __user *buffer, size_t *length,
 875				      loff_t *ppos)
 876{
 877	int ret;
 878
 879	mutex_lock(&kprobe_sysctl_mutex);
 880	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 881	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 882
 883	if (sysctl_kprobes_optimization)
 884		optimize_all_kprobes();
 885	else
 886		unoptimize_all_kprobes();
 887	mutex_unlock(&kprobe_sysctl_mutex);
 888
 889	return ret;
 890}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891#endif /* CONFIG_SYSCTL */
 892
 893/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 894static void __arm_kprobe(struct kprobe *p)
 895{
 896	struct kprobe *_p;
 897
 898	/* Check collision with other optimized kprobes */
 899	_p = get_optimized_kprobe((unsigned long)p->addr);
 
 
 900	if (unlikely(_p))
 901		/* Fallback to unoptimized kprobe */
 902		unoptimize_kprobe(_p, true);
 903
 904	arch_arm_kprobe(p);
 905	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 906}
 907
 908/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 909static void __disarm_kprobe(struct kprobe *p, bool reopt)
 910{
 911	struct kprobe *_p;
 912
 
 
 913	/* Try to unoptimize */
 914	unoptimize_kprobe(p, kprobes_all_disarmed);
 915
 916	if (!kprobe_queued(p)) {
 917		arch_disarm_kprobe(p);
 918		/* If another kprobe was blocked, optimize it. */
 919		_p = get_optimized_kprobe((unsigned long)p->addr);
 920		if (unlikely(_p) && reopt)
 921			optimize_kprobe(_p);
 922	}
 923	/* TODO: reoptimize others after unoptimized this probe */
 
 
 
 
 
 924}
 925
 926#else /* !CONFIG_OPTPROBES */
 927
 928#define optimize_kprobe(p)			do {} while (0)
 929#define unoptimize_kprobe(p, f)			do {} while (0)
 930#define kill_optimized_kprobe(p)		do {} while (0)
 931#define prepare_optimized_kprobe(p)		do {} while (0)
 932#define try_to_optimize_kprobe(p)		do {} while (0)
 933#define __arm_kprobe(p)				arch_arm_kprobe(p)
 934#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 935#define kprobe_disarmed(p)			kprobe_disabled(p)
 936#define wait_for_kprobe_optimizer()		do {} while (0)
 937
 938static int reuse_unused_kprobe(struct kprobe *ap)
 939{
 940	/*
 941	 * If the optimized kprobe is NOT supported, the aggr kprobe is
 942	 * released at the same time that the last aggregated kprobe is
 943	 * unregistered.
 944	 * Thus there should be no chance to reuse unused kprobe.
 945	 */
 946	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 947	return -EINVAL;
 948}
 949
 950static void free_aggr_kprobe(struct kprobe *p)
 951{
 952	arch_remove_kprobe(p);
 953	kfree(p);
 954}
 955
 956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 957{
 958	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 959}
 960#endif /* CONFIG_OPTPROBES */
 961
 962#ifdef CONFIG_KPROBES_ON_FTRACE
 963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 964	.func = kprobe_ftrace_handler,
 965	.flags = FTRACE_OPS_FL_SAVE_REGS,
 966};
 967
 968static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
 969	.func = kprobe_ftrace_handler,
 970	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 971};
 972
 973static int kprobe_ipmodify_enabled;
 974static int kprobe_ftrace_enabled;
 975
 976/* Must ensure p->addr is really on ftrace */
 977static int prepare_kprobe(struct kprobe *p)
 978{
 979	if (!kprobe_ftrace(p))
 980		return arch_prepare_kprobe(p);
 981
 982	return arch_prepare_kprobe_ftrace(p);
 983}
 984
 985/* Caller must lock kprobe_mutex */
 986static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
 987			       int *cnt)
 988{
 989	int ret = 0;
 990
 
 
 991	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
 992	if (ret) {
 993		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
 994			 p->addr, ret);
 995		return ret;
 996	}
 997
 998	if (*cnt == 0) {
 999		ret = register_ftrace_function(ops);
1000		if (ret) {
1001			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002			goto err_ftrace;
1003		}
1004	}
1005
1006	(*cnt)++;
1007	return ret;
1008
1009err_ftrace:
1010	/*
1011	 * At this point, sinec ops is not registered, we should be sefe from
1012	 * registering empty filter.
1013	 */
1014	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015	return ret;
1016}
1017
1018static int arm_kprobe_ftrace(struct kprobe *p)
1019{
1020	bool ipmodify = (p->post_handler != NULL);
1021
1022	return __arm_kprobe_ftrace(p,
1023		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025}
1026
1027/* Caller must lock kprobe_mutex */
1028static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029				  int *cnt)
1030{
1031	int ret = 0;
1032
 
 
1033	if (*cnt == 1) {
1034		ret = unregister_ftrace_function(ops);
1035		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036			return ret;
1037	}
1038
1039	(*cnt)--;
1040
1041	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043		  p->addr, ret);
1044	return ret;
1045}
1046
1047static int disarm_kprobe_ftrace(struct kprobe *p)
1048{
1049	bool ipmodify = (p->post_handler != NULL);
1050
1051	return __disarm_kprobe_ftrace(p,
1052		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054}
1055#else	/* !CONFIG_KPROBES_ON_FTRACE */
1056#define prepare_kprobe(p)	arch_prepare_kprobe(p)
1057#define arm_kprobe_ftrace(p)	(-ENODEV)
1058#define disarm_kprobe_ftrace(p)	(-ENODEV)
 
 
 
 
 
 
1059#endif
1060
1061/* Arm a kprobe with text_mutex */
 
 
 
 
 
 
 
 
1062static int arm_kprobe(struct kprobe *kp)
1063{
1064	if (unlikely(kprobe_ftrace(kp)))
1065		return arm_kprobe_ftrace(kp);
1066
1067	cpus_read_lock();
1068	mutex_lock(&text_mutex);
1069	__arm_kprobe(kp);
1070	mutex_unlock(&text_mutex);
1071	cpus_read_unlock();
1072
1073	return 0;
1074}
1075
1076/* Disarm a kprobe with text_mutex */
1077static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078{
1079	if (unlikely(kprobe_ftrace(kp)))
1080		return disarm_kprobe_ftrace(kp);
1081
1082	cpus_read_lock();
1083	mutex_lock(&text_mutex);
1084	__disarm_kprobe(kp, reopt);
1085	mutex_unlock(&text_mutex);
1086	cpus_read_unlock();
1087
1088	return 0;
1089}
1090
1091/*
1092 * Aggregate handlers for multiple kprobes support - these handlers
1093 * take care of invoking the individual kprobe handlers on p->list
1094 */
1095static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096{
1097	struct kprobe *kp;
1098
1099	list_for_each_entry_rcu(kp, &p->list, list) {
1100		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101			set_kprobe_instance(kp);
1102			if (kp->pre_handler(kp, regs))
1103				return 1;
1104		}
1105		reset_kprobe_instance();
1106	}
1107	return 0;
1108}
1109NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112			      unsigned long flags)
1113{
1114	struct kprobe *kp;
1115
1116	list_for_each_entry_rcu(kp, &p->list, list) {
1117		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118			set_kprobe_instance(kp);
1119			kp->post_handler(kp, regs, flags);
1120			reset_kprobe_instance();
1121		}
1122	}
1123}
1124NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127			      int trapnr)
1128{
1129	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131	/*
1132	 * if we faulted "during" the execution of a user specified
1133	 * probe handler, invoke just that probe's fault handler
1134	 */
1135	if (cur && cur->fault_handler) {
1136		if (cur->fault_handler(cur, regs, trapnr))
1137			return 1;
1138	}
1139	return 0;
1140}
1141NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143/* Walks the list and increments nmissed count for multiprobe case */
1144void kprobes_inc_nmissed_count(struct kprobe *p)
1145{
1146	struct kprobe *kp;
 
1147	if (!kprobe_aggrprobe(p)) {
1148		p->nmissed++;
1149	} else {
1150		list_for_each_entry_rcu(kp, &p->list, list)
1151			kp->nmissed++;
1152	}
1153	return;
1154}
1155NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157void recycle_rp_inst(struct kretprobe_instance *ri,
1158		     struct hlist_head *head)
1159{
1160	struct kretprobe *rp = ri->rp;
1161
1162	/* remove rp inst off the rprobe_inst_table */
1163	hlist_del(&ri->hlist);
1164	INIT_HLIST_NODE(&ri->hlist);
1165	if (likely(rp)) {
1166		raw_spin_lock(&rp->lock);
1167		hlist_add_head(&ri->hlist, &rp->free_instances);
1168		raw_spin_unlock(&rp->lock);
1169	} else
1170		/* Unregistering */
1171		hlist_add_head(&ri->hlist, head);
1172}
1173NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175void kretprobe_hash_lock(struct task_struct *tsk,
1176			 struct hlist_head **head, unsigned long *flags)
1177__acquires(hlist_lock)
1178{
1179	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180	raw_spinlock_t *hlist_lock;
1181
1182	*head = &kretprobe_inst_table[hash];
1183	hlist_lock = kretprobe_table_lock_ptr(hash);
1184	raw_spin_lock_irqsave(hlist_lock, *flags);
 
1185}
1186NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188static void kretprobe_table_lock(unsigned long hash,
1189				 unsigned long *flags)
1190__acquires(hlist_lock)
1191{
1192	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193	raw_spin_lock_irqsave(hlist_lock, *flags);
1194}
1195NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197void kretprobe_hash_unlock(struct task_struct *tsk,
1198			   unsigned long *flags)
1199__releases(hlist_lock)
1200{
1201	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202	raw_spinlock_t *hlist_lock;
1203
1204	hlist_lock = kretprobe_table_lock_ptr(hash);
1205	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206}
1207NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209static void kretprobe_table_unlock(unsigned long hash,
1210				   unsigned long *flags)
1211__releases(hlist_lock)
1212{
1213	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215}
1216NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
1218/*
1219 * This function is called from finish_task_switch when task tk becomes dead,
1220 * so that we can recycle any function-return probe instances associated
1221 * with this task. These left over instances represent probed functions
1222 * that have been called but will never return.
1223 */
1224void kprobe_flush_task(struct task_struct *tk)
1225{
1226	struct kretprobe_instance *ri;
1227	struct hlist_head *head, empty_rp;
1228	struct hlist_node *tmp;
1229	unsigned long hash, flags = 0;
1230
1231	if (unlikely(!kprobes_initialized))
1232		/* Early boot.  kretprobe_table_locks not yet initialized. */
1233		return;
1234
1235	INIT_HLIST_HEAD(&empty_rp);
1236	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237	head = &kretprobe_inst_table[hash];
1238	kretprobe_table_lock(hash, &flags);
1239	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240		if (ri->task == tk)
1241			recycle_rp_inst(ri, &empty_rp);
1242	}
1243	kretprobe_table_unlock(hash, &flags);
1244	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245		hlist_del(&ri->hlist);
1246		kfree(ri);
1247	}
1248}
1249NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251static inline void free_rp_inst(struct kretprobe *rp)
1252{
1253	struct kretprobe_instance *ri;
1254	struct hlist_node *next;
1255
1256	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257		hlist_del(&ri->hlist);
1258		kfree(ri);
1259	}
1260}
1261
1262static void cleanup_rp_inst(struct kretprobe *rp)
1263{
1264	unsigned long flags, hash;
1265	struct kretprobe_instance *ri;
1266	struct hlist_node *next;
1267	struct hlist_head *head;
1268
1269	/* No race here */
1270	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271		kretprobe_table_lock(hash, &flags);
1272		head = &kretprobe_inst_table[hash];
1273		hlist_for_each_entry_safe(ri, next, head, hlist) {
1274			if (ri->rp == rp)
1275				ri->rp = NULL;
1276		}
1277		kretprobe_table_unlock(hash, &flags);
1278	}
1279	free_rp_inst(rp);
1280}
1281NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283/* Add the new probe to ap->list */
1284static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285{
1286	if (p->post_handler)
1287		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1288
1289	list_add_rcu(&p->list, &ap->list);
1290	if (p->post_handler && !ap->post_handler)
1291		ap->post_handler = aggr_post_handler;
1292
1293	return 0;
1294}
1295
1296/*
1297 * Fill in the required fields of the "manager kprobe". Replace the
1298 * earlier kprobe in the hlist with the manager kprobe
1299 */
1300static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301{
1302	/* Copy p's insn slot to ap */
1303	copy_kprobe(p, ap);
1304	flush_insn_slot(ap);
1305	ap->addr = p->addr;
1306	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307	ap->pre_handler = aggr_pre_handler;
1308	ap->fault_handler = aggr_fault_handler;
1309	/* We don't care the kprobe which has gone. */
1310	if (p->post_handler && !kprobe_gone(p))
1311		ap->post_handler = aggr_post_handler;
1312
1313	INIT_LIST_HEAD(&ap->list);
1314	INIT_HLIST_NODE(&ap->hlist);
1315
1316	list_add_rcu(&p->list, &ap->list);
1317	hlist_replace_rcu(&p->hlist, &ap->hlist);
1318}
1319
1320/*
1321 * This is the second or subsequent kprobe at the address - handle
1322 * the intricacies
1323 */
1324static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325{
1326	int ret = 0;
1327	struct kprobe *ap = orig_p;
1328
1329	cpus_read_lock();
1330
1331	/* For preparing optimization, jump_label_text_reserved() is called */
1332	jump_label_lock();
1333	mutex_lock(&text_mutex);
1334
1335	if (!kprobe_aggrprobe(orig_p)) {
1336		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337		ap = alloc_aggr_kprobe(orig_p);
1338		if (!ap) {
1339			ret = -ENOMEM;
1340			goto out;
1341		}
1342		init_aggr_kprobe(ap, orig_p);
1343	} else if (kprobe_unused(ap)) {
1344		/* This probe is going to die. Rescue it */
1345		ret = reuse_unused_kprobe(ap);
1346		if (ret)
1347			goto out;
1348	}
1349
1350	if (kprobe_gone(ap)) {
1351		/*
1352		 * Attempting to insert new probe at the same location that
1353		 * had a probe in the module vaddr area which already
1354		 * freed. So, the instruction slot has already been
1355		 * released. We need a new slot for the new probe.
1356		 */
1357		ret = arch_prepare_kprobe(ap);
1358		if (ret)
1359			/*
1360			 * Even if fail to allocate new slot, don't need to
1361			 * free aggr_probe. It will be used next time, or
1362			 * freed by unregister_kprobe.
1363			 */
1364			goto out;
1365
1366		/* Prepare optimized instructions if possible. */
1367		prepare_optimized_kprobe(ap);
1368
1369		/*
1370		 * Clear gone flag to prevent allocating new slot again, and
1371		 * set disabled flag because it is not armed yet.
1372		 */
1373		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374			    | KPROBE_FLAG_DISABLED;
1375	}
1376
1377	/* Copy ap's insn slot to p */
1378	copy_kprobe(ap, p);
1379	ret = add_new_kprobe(ap, p);
1380
1381out:
1382	mutex_unlock(&text_mutex);
1383	jump_label_unlock();
1384	cpus_read_unlock();
1385
1386	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387		ap->flags &= ~KPROBE_FLAG_DISABLED;
1388		if (!kprobes_all_disarmed) {
1389			/* Arm the breakpoint again. */
1390			ret = arm_kprobe(ap);
1391			if (ret) {
1392				ap->flags |= KPROBE_FLAG_DISABLED;
1393				list_del_rcu(&p->list);
1394				synchronize_rcu();
1395			}
1396		}
1397	}
1398	return ret;
1399}
1400
1401bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402{
1403	/* The __kprobes marked functions and entry code must not be probed */
1404	return addr >= (unsigned long)__kprobes_text_start &&
1405	       addr < (unsigned long)__kprobes_text_end;
1406}
1407
1408static bool __within_kprobe_blacklist(unsigned long addr)
1409{
1410	struct kprobe_blacklist_entry *ent;
1411
1412	if (arch_within_kprobe_blacklist(addr))
1413		return true;
1414	/*
1415	 * If there exists a kprobe_blacklist, verify and
1416	 * fail any probe registration in the prohibited area
1417	 */
1418	list_for_each_entry(ent, &kprobe_blacklist, list) {
1419		if (addr >= ent->start_addr && addr < ent->end_addr)
1420			return true;
1421	}
1422	return false;
1423}
1424
1425bool within_kprobe_blacklist(unsigned long addr)
1426{
1427	char symname[KSYM_NAME_LEN], *p;
1428
1429	if (__within_kprobe_blacklist(addr))
1430		return true;
1431
1432	/* Check if the address is on a suffixed-symbol */
1433	if (!lookup_symbol_name(addr, symname)) {
1434		p = strchr(symname, '.');
1435		if (!p)
1436			return false;
1437		*p = '\0';
1438		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439		if (addr)
1440			return __within_kprobe_blacklist(addr);
1441	}
1442	return false;
1443}
1444
1445/*
1446 * If we have a symbol_name argument, look it up and add the offset field
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447 * to it. This way, we can specify a relative address to a symbol.
1448 * This returns encoded errors if it fails to look up symbol or invalid
1449 * combination of parameters.
1450 */
1451static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452			const char *symbol_name, unsigned int offset)
 
1453{
1454	if ((symbol_name && addr) || (!symbol_name && !addr))
1455		goto invalid;
1456
1457	if (symbol_name) {
 
 
 
 
 
 
 
1458		addr = kprobe_lookup_name(symbol_name, offset);
1459		if (!addr)
1460			return ERR_PTR(-ENOENT);
1461	}
1462
1463	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464	if (addr)
1465		return addr;
1466
1467invalid:
1468	return ERR_PTR(-EINVAL);
1469}
1470
1471static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472{
1473	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
 
1474}
1475
1476/* Check passed kprobe is valid and return kprobe in kprobe_table. */
 
 
 
1477static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478{
1479	struct kprobe *ap, *list_p;
1480
 
 
1481	ap = get_kprobe(p->addr);
1482	if (unlikely(!ap))
1483		return NULL;
1484
1485	if (p != ap) {
1486		list_for_each_entry_rcu(list_p, &ap->list, list)
1487			if (list_p == p)
1488			/* kprobe p is a valid probe */
1489				goto valid;
1490		return NULL;
1491	}
1492valid:
1493	return ap;
1494}
1495
1496/* Return error if the kprobe is being re-registered */
1497static inline int check_kprobe_rereg(struct kprobe *p)
 
 
 
1498{
1499	int ret = 0;
1500
1501	mutex_lock(&kprobe_mutex);
1502	if (__get_valid_kprobe(p))
1503		ret = -EINVAL;
1504	mutex_unlock(&kprobe_mutex);
1505
1506	return ret;
1507}
1508
1509int __weak arch_check_ftrace_location(struct kprobe *p)
1510{
1511	unsigned long ftrace_addr;
1512
1513	ftrace_addr = ftrace_location((unsigned long)p->addr);
1514	if (ftrace_addr) {
1515#ifdef CONFIG_KPROBES_ON_FTRACE
1516		/* Given address is not on the instruction boundary */
1517		if ((unsigned long)p->addr != ftrace_addr)
1518			return -EILSEQ;
1519		p->flags |= KPROBE_FLAG_FTRACE;
1520#else	/* !CONFIG_KPROBES_ON_FTRACE */
1521		return -EINVAL;
1522#endif
1523	}
1524	return 0;
1525}
1526
1527static int check_kprobe_address_safe(struct kprobe *p,
1528				     struct module **probed_mod)
1529{
1530	int ret;
1531
1532	ret = arch_check_ftrace_location(p);
1533	if (ret)
1534		return ret;
1535	jump_label_lock();
1536	preempt_disable();
1537
1538	/* Ensure it is not in reserved area nor out of text */
1539	if (!kernel_text_address((unsigned long) p->addr) ||
 
 
1540	    within_kprobe_blacklist((unsigned long) p->addr) ||
1541	    jump_label_text_reserved(p->addr, p->addr) ||
 
1542	    find_bug((unsigned long)p->addr)) {
1543		ret = -EINVAL;
1544		goto out;
1545	}
1546
1547	/* Check if are we probing a module */
1548	*probed_mod = __module_text_address((unsigned long) p->addr);
1549	if (*probed_mod) {
1550		/*
1551		 * We must hold a refcount of the probed module while updating
1552		 * its code to prohibit unexpected unloading.
1553		 */
1554		if (unlikely(!try_module_get(*probed_mod))) {
1555			ret = -ENOENT;
1556			goto out;
1557		}
1558
1559		/*
1560		 * If the module freed .init.text, we couldn't insert
1561		 * kprobes in there.
1562		 */
1563		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564		    (*probed_mod)->state != MODULE_STATE_COMING) {
1565			module_put(*probed_mod);
1566			*probed_mod = NULL;
1567			ret = -ENOENT;
1568		}
1569	}
1570out:
1571	preempt_enable();
1572	jump_label_unlock();
1573
1574	return ret;
1575}
1576
1577int register_kprobe(struct kprobe *p)
1578{
1579	int ret;
1580	struct kprobe *old_p;
1581	struct module *probed_mod;
1582	kprobe_opcode_t *addr;
 
1583
1584	/* Adjust probe address from symbol */
1585	addr = kprobe_addr(p);
1586	if (IS_ERR(addr))
1587		return PTR_ERR(addr);
1588	p->addr = addr;
1589
1590	ret = check_kprobe_rereg(p);
1591	if (ret)
1592		return ret;
1593
1594	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595	p->flags &= KPROBE_FLAG_DISABLED;
1596	p->nmissed = 0;
1597	INIT_LIST_HEAD(&p->list);
1598
1599	ret = check_kprobe_address_safe(p, &probed_mod);
1600	if (ret)
1601		return ret;
1602
1603	mutex_lock(&kprobe_mutex);
1604
 
 
 
1605	old_p = get_kprobe(p->addr);
1606	if (old_p) {
1607		/* Since this may unoptimize old_p, locking text_mutex. */
1608		ret = register_aggr_kprobe(old_p, p);
1609		goto out;
1610	}
1611
1612	cpus_read_lock();
1613	/* Prevent text modification */
1614	mutex_lock(&text_mutex);
1615	ret = prepare_kprobe(p);
1616	mutex_unlock(&text_mutex);
1617	cpus_read_unlock();
1618	if (ret)
1619		goto out;
1620
1621	INIT_HLIST_NODE(&p->hlist);
1622	hlist_add_head_rcu(&p->hlist,
1623		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626		ret = arm_kprobe(p);
1627		if (ret) {
1628			hlist_del_rcu(&p->hlist);
1629			synchronize_rcu();
1630			goto out;
1631		}
1632	}
1633
1634	/* Try to optimize kprobe */
1635	try_to_optimize_kprobe(p);
1636out:
1637	mutex_unlock(&kprobe_mutex);
1638
1639	if (probed_mod)
1640		module_put(probed_mod);
1641
1642	return ret;
1643}
1644EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646/* Check if all probes on the aggrprobe are disabled */
1647static int aggr_kprobe_disabled(struct kprobe *ap)
1648{
1649	struct kprobe *kp;
1650
1651	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1652		if (!kprobe_disabled(kp))
1653			/*
1654			 * There is an active probe on the list.
1655			 * We can't disable this ap.
1656			 */
1657			return 0;
1658
1659	return 1;
1660}
1661
1662/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663static struct kprobe *__disable_kprobe(struct kprobe *p)
1664{
1665	struct kprobe *orig_p;
1666	int ret;
1667
 
 
1668	/* Get an original kprobe for return */
1669	orig_p = __get_valid_kprobe(p);
1670	if (unlikely(orig_p == NULL))
1671		return ERR_PTR(-EINVAL);
1672
1673	if (!kprobe_disabled(p)) {
1674		/* Disable probe if it is a child probe */
1675		if (p != orig_p)
1676			p->flags |= KPROBE_FLAG_DISABLED;
1677
1678		/* Try to disarm and disable this/parent probe */
1679		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680			/*
1681			 * If kprobes_all_disarmed is set, orig_p
1682			 * should have already been disarmed, so
1683			 * skip unneed disarming process.
 
1684			 */
1685			if (!kprobes_all_disarmed) {
1686				ret = disarm_kprobe(orig_p, true);
1687				if (ret) {
1688					p->flags &= ~KPROBE_FLAG_DISABLED;
1689					return ERR_PTR(ret);
1690				}
1691			}
1692			orig_p->flags |= KPROBE_FLAG_DISABLED;
1693		}
1694	}
1695
1696	return orig_p;
1697}
1698
1699/*
1700 * Unregister a kprobe without a scheduler synchronization.
1701 */
1702static int __unregister_kprobe_top(struct kprobe *p)
1703{
1704	struct kprobe *ap, *list_p;
1705
1706	/* Disable kprobe. This will disarm it if needed. */
1707	ap = __disable_kprobe(p);
1708	if (IS_ERR(ap))
1709		return PTR_ERR(ap);
1710
1711	if (ap == p)
1712		/*
1713		 * This probe is an independent(and non-optimized) kprobe
1714		 * (not an aggrprobe). Remove from the hash list.
1715		 */
1716		goto disarmed;
1717
1718	/* Following process expects this probe is an aggrprobe */
1719	WARN_ON(!kprobe_aggrprobe(ap));
1720
1721	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722		/*
1723		 * !disarmed could be happen if the probe is under delayed
1724		 * unoptimizing.
1725		 */
1726		goto disarmed;
1727	else {
1728		/* If disabling probe has special handlers, update aggrprobe */
1729		if (p->post_handler && !kprobe_gone(p)) {
1730			list_for_each_entry_rcu(list_p, &ap->list, list) {
1731				if ((list_p != p) && (list_p->post_handler))
1732					goto noclean;
1733			}
1734			ap->post_handler = NULL;
 
 
 
 
 
 
1735		}
1736noclean:
1737		/*
1738		 * Remove from the aggrprobe: this path will do nothing in
1739		 * __unregister_kprobe_bottom().
1740		 */
1741		list_del_rcu(&p->list);
1742		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743			/*
1744			 * Try to optimize this probe again, because post
1745			 * handler may have been changed.
1746			 */
1747			optimize_kprobe(ap);
1748	}
1749	return 0;
1750
1751disarmed:
1752	hlist_del_rcu(&ap->hlist);
1753	return 0;
1754}
1755
1756static void __unregister_kprobe_bottom(struct kprobe *p)
1757{
1758	struct kprobe *ap;
1759
1760	if (list_empty(&p->list))
1761		/* This is an independent kprobe */
1762		arch_remove_kprobe(p);
1763	else if (list_is_singular(&p->list)) {
1764		/* This is the last child of an aggrprobe */
1765		ap = list_entry(p->list.next, struct kprobe, list);
1766		list_del(&p->list);
1767		free_aggr_kprobe(ap);
1768	}
1769	/* Otherwise, do nothing. */
1770}
1771
1772int register_kprobes(struct kprobe **kps, int num)
1773{
1774	int i, ret = 0;
1775
1776	if (num <= 0)
1777		return -EINVAL;
1778	for (i = 0; i < num; i++) {
1779		ret = register_kprobe(kps[i]);
1780		if (ret < 0) {
1781			if (i > 0)
1782				unregister_kprobes(kps, i);
1783			break;
1784		}
1785	}
1786	return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790void unregister_kprobe(struct kprobe *p)
1791{
1792	unregister_kprobes(&p, 1);
1793}
1794EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796void unregister_kprobes(struct kprobe **kps, int num)
1797{
1798	int i;
1799
1800	if (num <= 0)
1801		return;
1802	mutex_lock(&kprobe_mutex);
1803	for (i = 0; i < num; i++)
1804		if (__unregister_kprobe_top(kps[i]) < 0)
1805			kps[i]->addr = NULL;
1806	mutex_unlock(&kprobe_mutex);
1807
1808	synchronize_rcu();
1809	for (i = 0; i < num; i++)
1810		if (kps[i]->addr)
1811			__unregister_kprobe_bottom(kps[i]);
1812}
1813EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816					unsigned long val, void *data)
1817{
1818	return NOTIFY_DONE;
1819}
1820NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822static struct notifier_block kprobe_exceptions_nb = {
1823	.notifier_call = kprobe_exceptions_notify,
1824	.priority = 0x7fffffff /* we need to be notified first */
1825};
1826
1827unsigned long __weak arch_deref_entry_point(void *entry)
 
 
 
1828{
1829	return (unsigned long)entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831
1832#ifdef CONFIG_KRETPROBES
1833/*
1834 * This kprobe pre_handler is registered with every kretprobe. When probe
1835 * hits it will set up the return probe.
1836 */
1837static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838{
1839	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840	unsigned long hash, flags = 0;
1841	struct kretprobe_instance *ri;
 
1842
1843	/*
1844	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1845	 * just skip the probe and increase the (inexact) 'nmissed'
1846	 * statistical counter, so that the user is informed that
1847	 * something happened:
1848	 */
1849	if (unlikely(in_nmi())) {
1850		rp->nmissed++;
1851		return 0;
1852	}
1853
1854	/* TODO: consider to only swap the RA after the last pre_handler fired */
1855	hash = hash_ptr(current, KPROBE_HASH_BITS);
1856	raw_spin_lock_irqsave(&rp->lock, flags);
1857	if (!hlist_empty(&rp->free_instances)) {
1858		ri = hlist_entry(rp->free_instances.first,
1859				struct kretprobe_instance, hlist);
1860		hlist_del(&ri->hlist);
1861		raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863		ri->rp = rp;
1864		ri->task = current;
1865
1866		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867			raw_spin_lock_irqsave(&rp->lock, flags);
1868			hlist_add_head(&ri->hlist, &rp->free_instances);
1869			raw_spin_unlock_irqrestore(&rp->lock, flags);
1870			return 0;
1871		}
1872
1873		arch_prepare_kretprobe(ri, regs);
1874
1875		/* XXX(hch): why is there no hlist_move_head? */
1876		INIT_HLIST_NODE(&ri->hlist);
1877		kretprobe_table_lock(hash, &flags);
1878		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879		kretprobe_table_unlock(hash, &flags);
1880	} else {
1881		rp->nmissed++;
1882		raw_spin_unlock_irqrestore(&rp->lock, flags);
1883	}
 
 
 
 
 
 
 
 
1884	return 0;
1885}
1886NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888bool __weak arch_kprobe_on_func_entry(unsigned long offset)
 
1889{
1890	return !offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891}
 
1892
1893bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894{
1895	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
 
1896
1897	if (IS_ERR(kp_addr))
1898		return false;
1899
1900	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901						!arch_kprobe_on_func_entry(offset))
1902		return false;
1903
1904	return true;
1905}
1906
1907int register_kretprobe(struct kretprobe *rp)
1908{
1909	int ret = 0;
1910	struct kretprobe_instance *inst;
1911	int i;
1912	void *addr;
1913
1914	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
 
 
 
 
 
1915		return -EINVAL;
1916
1917	if (kretprobe_blacklist_size) {
1918		addr = kprobe_addr(&rp->kp);
1919		if (IS_ERR(addr))
1920			return PTR_ERR(addr);
1921
1922		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923			if (kretprobe_blacklist[i].addr == addr)
1924				return -EINVAL;
1925		}
1926	}
1927
 
 
 
1928	rp->kp.pre_handler = pre_handler_kretprobe;
1929	rp->kp.post_handler = NULL;
1930	rp->kp.fault_handler = NULL;
1931
1932	/* Pre-allocate memory for max kretprobe instances */
1933	if (rp->maxactive <= 0) {
1934#ifdef CONFIG_PREEMPTION
1935		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936#else
1937		rp->maxactive = num_possible_cpus();
1938#endif
 
 
 
 
 
 
 
 
 
 
 
 
1939	}
1940	raw_spin_lock_init(&rp->lock);
1941	INIT_HLIST_HEAD(&rp->free_instances);
 
 
 
 
 
 
 
 
 
 
 
 
1942	for (i = 0; i < rp->maxactive; i++) {
1943		inst = kmalloc(sizeof(struct kretprobe_instance) +
1944			       rp->data_size, GFP_KERNEL);
1945		if (inst == NULL) {
 
1946			free_rp_inst(rp);
1947			return -ENOMEM;
1948		}
1949		INIT_HLIST_NODE(&inst->hlist);
1950		hlist_add_head(&inst->hlist, &rp->free_instances);
1951	}
 
1952
1953	rp->nmissed = 0;
1954	/* Establish function entry probe point */
1955	ret = register_kprobe(&rp->kp);
1956	if (ret != 0)
1957		free_rp_inst(rp);
 
1958	return ret;
1959}
1960EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962int register_kretprobes(struct kretprobe **rps, int num)
1963{
1964	int ret = 0, i;
1965
1966	if (num <= 0)
1967		return -EINVAL;
1968	for (i = 0; i < num; i++) {
1969		ret = register_kretprobe(rps[i]);
1970		if (ret < 0) {
1971			if (i > 0)
1972				unregister_kretprobes(rps, i);
1973			break;
1974		}
1975	}
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980void unregister_kretprobe(struct kretprobe *rp)
1981{
1982	unregister_kretprobes(&rp, 1);
1983}
1984EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986void unregister_kretprobes(struct kretprobe **rps, int num)
1987{
1988	int i;
1989
1990	if (num <= 0)
1991		return;
1992	mutex_lock(&kprobe_mutex);
1993	for (i = 0; i < num; i++)
1994		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995			rps[i]->kp.addr = NULL;
 
 
 
 
 
 
1996	mutex_unlock(&kprobe_mutex);
1997
1998	synchronize_rcu();
1999	for (i = 0; i < num; i++) {
2000		if (rps[i]->kp.addr) {
2001			__unregister_kprobe_bottom(&rps[i]->kp);
2002			cleanup_rp_inst(rps[i]);
 
 
2003		}
2004	}
2005}
2006EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008#else /* CONFIG_KRETPROBES */
2009int register_kretprobe(struct kretprobe *rp)
2010{
2011	return -ENOSYS;
2012}
2013EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015int register_kretprobes(struct kretprobe **rps, int num)
2016{
2017	return -ENOSYS;
2018}
2019EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021void unregister_kretprobe(struct kretprobe *rp)
2022{
2023}
2024EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026void unregister_kretprobes(struct kretprobe **rps, int num)
2027{
2028}
2029EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032{
2033	return 0;
2034}
2035NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037#endif /* CONFIG_KRETPROBES */
2038
2039/* Set the kprobe gone and remove its instruction buffer. */
2040static void kill_kprobe(struct kprobe *p)
2041{
2042	struct kprobe *kp;
2043
 
 
 
 
 
 
 
 
 
 
2044	p->flags |= KPROBE_FLAG_GONE;
2045	if (kprobe_aggrprobe(p)) {
2046		/*
2047		 * If this is an aggr_kprobe, we have to list all the
2048		 * chained probes and mark them GONE.
2049		 */
2050		list_for_each_entry_rcu(kp, &p->list, list)
2051			kp->flags |= KPROBE_FLAG_GONE;
2052		p->post_handler = NULL;
2053		kill_optimized_kprobe(p);
2054	}
2055	/*
2056	 * Here, we can remove insn_slot safely, because no thread calls
2057	 * the original probed function (which will be freed soon) any more.
2058	 */
2059	arch_remove_kprobe(p);
2060}
2061
2062/* Disable one kprobe */
2063int disable_kprobe(struct kprobe *kp)
2064{
2065	int ret = 0;
2066	struct kprobe *p;
2067
2068	mutex_lock(&kprobe_mutex);
2069
2070	/* Disable this kprobe */
2071	p = __disable_kprobe(kp);
2072	if (IS_ERR(p))
2073		ret = PTR_ERR(p);
2074
2075	mutex_unlock(&kprobe_mutex);
2076	return ret;
2077}
2078EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080/* Enable one kprobe */
2081int enable_kprobe(struct kprobe *kp)
2082{
2083	int ret = 0;
2084	struct kprobe *p;
2085
2086	mutex_lock(&kprobe_mutex);
2087
2088	/* Check whether specified probe is valid. */
2089	p = __get_valid_kprobe(kp);
2090	if (unlikely(p == NULL)) {
2091		ret = -EINVAL;
2092		goto out;
2093	}
2094
2095	if (kprobe_gone(kp)) {
2096		/* This kprobe has gone, we couldn't enable it. */
2097		ret = -EINVAL;
2098		goto out;
2099	}
2100
2101	if (p != kp)
2102		kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105		p->flags &= ~KPROBE_FLAG_DISABLED;
2106		ret = arm_kprobe(p);
2107		if (ret)
2108			p->flags |= KPROBE_FLAG_DISABLED;
 
 
 
2109	}
2110out:
2111	mutex_unlock(&kprobe_mutex);
2112	return ret;
2113}
2114EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116/* Caller must NOT call this in usual path. This is only for critical case */
2117void dump_kprobe(struct kprobe *kp)
2118{
2119	pr_err("Dumping kprobe:\n");
2120	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121	       kp->symbol_name, kp->offset, kp->addr);
2122}
2123NOKPROBE_SYMBOL(dump_kprobe);
2124
2125int kprobe_add_ksym_blacklist(unsigned long entry)
2126{
2127	struct kprobe_blacklist_entry *ent;
2128	unsigned long offset = 0, size = 0;
2129
2130	if (!kernel_text_address(entry) ||
2131	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2132		return -EINVAL;
2133
2134	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135	if (!ent)
2136		return -ENOMEM;
2137	ent->start_addr = entry;
2138	ent->end_addr = entry + size;
2139	INIT_LIST_HEAD(&ent->list);
2140	list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142	return (int)size;
2143}
2144
2145/* Add all symbols in given area into kprobe blacklist */
2146int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147{
2148	unsigned long entry;
2149	int ret = 0;
2150
2151	for (entry = start; entry < end; entry += ret) {
2152		ret = kprobe_add_ksym_blacklist(entry);
2153		if (ret < 0)
2154			return ret;
2155		if (ret == 0)	/* In case of alias symbol */
2156			ret = 1;
2157	}
2158	return 0;
2159}
2160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161int __init __weak arch_populate_kprobe_blacklist(void)
2162{
2163	return 0;
2164}
2165
2166/*
2167 * Lookup and populate the kprobe_blacklist.
2168 *
2169 * Unlike the kretprobe blacklist, we'll need to determine
2170 * the range of addresses that belong to the said functions,
2171 * since a kprobe need not necessarily be at the beginning
2172 * of a function.
2173 */
2174static int __init populate_kprobe_blacklist(unsigned long *start,
2175					     unsigned long *end)
2176{
2177	unsigned long entry;
2178	unsigned long *iter;
2179	int ret;
2180
2181	for (iter = start; iter < end; iter++) {
2182		entry = arch_deref_entry_point((void *)*iter);
2183		ret = kprobe_add_ksym_blacklist(entry);
2184		if (ret == -EINVAL)
2185			continue;
2186		if (ret < 0)
2187			return ret;
2188	}
2189
2190	/* Symbols in __kprobes_text are blacklisted */
2191	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192					(unsigned long)__kprobes_text_end);
 
 
 
 
 
 
2193
2194	return ret ? : arch_populate_kprobe_blacklist();
2195}
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197/* Module notifier call back, checking kprobes on the module */
2198static int kprobes_module_callback(struct notifier_block *nb,
2199				   unsigned long val, void *data)
2200{
2201	struct module *mod = data;
2202	struct hlist_head *head;
2203	struct kprobe *p;
2204	unsigned int i;
2205	int checkcore = (val == MODULE_STATE_GOING);
2206
 
 
 
 
 
2207	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208		return NOTIFY_DONE;
2209
2210	/*
2211	 * When MODULE_STATE_GOING was notified, both of module .text and
2212	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213	 * notified, only .init.text section would be freed. We need to
2214	 * disable kprobes which have been inserted in the sections.
2215	 */
2216	mutex_lock(&kprobe_mutex);
2217	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218		head = &kprobe_table[i];
2219		hlist_for_each_entry_rcu(p, head, hlist)
2220			if (within_module_init((unsigned long)p->addr, mod) ||
2221			    (checkcore &&
2222			     within_module_core((unsigned long)p->addr, mod))) {
2223				/*
2224				 * The vaddr this probe is installed will soon
2225				 * be vfreed buy not synced to disk. Hence,
2226				 * disarming the breakpoint isn't needed.
2227				 *
2228				 * Note, this will also move any optimized probes
2229				 * that are pending to be removed from their
2230				 * corresponding lists to the freeing_list and
2231				 * will not be touched by the delayed
2232				 * kprobe_optimizer work handler.
2233				 */
2234				kill_kprobe(p);
2235			}
2236	}
 
 
2237	mutex_unlock(&kprobe_mutex);
2238	return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block kprobe_module_nb = {
2242	.notifier_call = kprobes_module_callback,
2243	.priority = 0
2244};
2245
2246/* Markers of _kprobe_blacklist section */
2247extern unsigned long __start_kprobe_blacklist[];
2248extern unsigned long __stop_kprobe_blacklist[];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249
2250static int __init init_kprobes(void)
2251{
2252	int i, err = 0;
2253
2254	/* FIXME allocate the probe table, currently defined statically */
2255	/* initialize all list heads */
2256	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257		INIT_HLIST_HEAD(&kprobe_table[i]);
2258		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260	}
2261
2262	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263					__stop_kprobe_blacklist);
2264	if (err) {
2265		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266		pr_err("Please take care of using kprobes.\n");
2267	}
2268
2269	if (kretprobe_blacklist_size) {
2270		/* lookup the function address from its name */
2271		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272			kretprobe_blacklist[i].addr =
2273				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274			if (!kretprobe_blacklist[i].addr)
2275				printk("kretprobe: lookup failed: %s\n",
2276				       kretprobe_blacklist[i].name);
2277		}
2278	}
2279
2280#if defined(CONFIG_OPTPROBES)
2281#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282	/* Init kprobe_optinsn_slots */
 
 
2283	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284#endif
2285	/* By default, kprobes can be optimized */
2286	kprobes_allow_optimization = true;
2287#endif
2288
2289	/* By default, kprobes are armed */
2290	kprobes_all_disarmed = false;
2291
2292	err = arch_init_kprobes();
2293	if (!err)
2294		err = register_die_notifier(&kprobe_exceptions_nb);
2295	if (!err)
2296		err = register_module_notifier(&kprobe_module_nb);
2297
2298	kprobes_initialized = (err == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299
2300	if (!err)
2301		init_test_probes();
2302	return err;
2303}
2304subsys_initcall(init_kprobes);
 
2305
2306#ifdef CONFIG_DEBUG_FS
2307static void report_probe(struct seq_file *pi, struct kprobe *p,
2308		const char *sym, int offset, char *modname, struct kprobe *pp)
2309{
2310	char *kprobe_type;
2311	void *addr = p->addr;
2312
2313	if (p->pre_handler == pre_handler_kretprobe)
2314		kprobe_type = "r";
2315	else
2316		kprobe_type = "k";
2317
2318	if (!kallsyms_show_value())
2319		addr = NULL;
2320
2321	if (sym)
2322		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2323			addr, kprobe_type, sym, offset,
2324			(modname ? modname : " "));
2325	else	/* try to use %pS */
2326		seq_printf(pi, "%px  %s  %pS ",
2327			addr, kprobe_type, p->addr);
2328
2329	if (!pp)
2330		pp = p;
2331	seq_printf(pi, "%s%s%s%s\n",
2332		(kprobe_gone(p) ? "[GONE]" : ""),
2333		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2334		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336}
2337
2338static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339{
2340	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341}
2342
2343static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344{
2345	(*pos)++;
2346	if (*pos >= KPROBE_TABLE_SIZE)
2347		return NULL;
2348	return pos;
2349}
2350
2351static void kprobe_seq_stop(struct seq_file *f, void *v)
2352{
2353	/* Nothing to do */
2354}
2355
2356static int show_kprobe_addr(struct seq_file *pi, void *v)
2357{
2358	struct hlist_head *head;
2359	struct kprobe *p, *kp;
2360	const char *sym = NULL;
2361	unsigned int i = *(loff_t *) v;
2362	unsigned long offset = 0;
2363	char *modname, namebuf[KSYM_NAME_LEN];
2364
2365	head = &kprobe_table[i];
2366	preempt_disable();
2367	hlist_for_each_entry_rcu(p, head, hlist) {
2368		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369					&offset, &modname, namebuf);
2370		if (kprobe_aggrprobe(p)) {
2371			list_for_each_entry_rcu(kp, &p->list, list)
2372				report_probe(pi, kp, sym, offset, modname, p);
2373		} else
2374			report_probe(pi, p, sym, offset, modname, NULL);
2375	}
2376	preempt_enable();
2377	return 0;
2378}
2379
2380static const struct seq_operations kprobes_seq_ops = {
2381	.start = kprobe_seq_start,
2382	.next  = kprobe_seq_next,
2383	.stop  = kprobe_seq_stop,
2384	.show  = show_kprobe_addr
2385};
2386
2387static int kprobes_open(struct inode *inode, struct file *filp)
2388{
2389	return seq_open(filp, &kprobes_seq_ops);
2390}
2391
2392static const struct file_operations debugfs_kprobes_operations = {
2393	.open           = kprobes_open,
2394	.read           = seq_read,
2395	.llseek         = seq_lseek,
2396	.release        = seq_release,
2397};
2398
2399/* kprobes/blacklist -- shows which functions can not be probed */
2400static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401{
 
2402	return seq_list_start(&kprobe_blacklist, *pos);
2403}
2404
2405static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406{
2407	return seq_list_next(v, &kprobe_blacklist, pos);
2408}
2409
2410static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411{
2412	struct kprobe_blacklist_entry *ent =
2413		list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415	/*
2416	 * If /proc/kallsyms is not showing kernel address, we won't
2417	 * show them here either.
2418	 */
2419	if (!kallsyms_show_value())
2420		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421			   (void *)ent->start_addr);
2422	else
2423		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424			   (void *)ent->end_addr, (void *)ent->start_addr);
2425	return 0;
2426}
2427
2428static const struct seq_operations kprobe_blacklist_seq_ops = {
 
 
 
 
 
2429	.start = kprobe_blacklist_seq_start,
2430	.next  = kprobe_blacklist_seq_next,
2431	.stop  = kprobe_seq_stop,	/* Reuse void function */
2432	.show  = kprobe_blacklist_seq_show,
2433};
2434
2435static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436{
2437	return seq_open(filp, &kprobe_blacklist_seq_ops);
2438}
2439
2440static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441	.open           = kprobe_blacklist_open,
2442	.read           = seq_read,
2443	.llseek         = seq_lseek,
2444	.release        = seq_release,
2445};
2446
2447static int arm_all_kprobes(void)
2448{
2449	struct hlist_head *head;
2450	struct kprobe *p;
2451	unsigned int i, total = 0, errors = 0;
2452	int err, ret = 0;
2453
2454	mutex_lock(&kprobe_mutex);
2455
2456	/* If kprobes are armed, just return */
2457	if (!kprobes_all_disarmed)
2458		goto already_enabled;
2459
2460	/*
2461	 * optimize_kprobe() called by arm_kprobe() checks
2462	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463	 * arm_kprobe.
2464	 */
2465	kprobes_all_disarmed = false;
2466	/* Arming kprobes doesn't optimize kprobe itself */
2467	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468		head = &kprobe_table[i];
2469		/* Arm all kprobes on a best-effort basis */
2470		hlist_for_each_entry_rcu(p, head, hlist) {
2471			if (!kprobe_disabled(p)) {
2472				err = arm_kprobe(p);
2473				if (err)  {
2474					errors++;
2475					ret = err;
2476				}
2477				total++;
2478			}
2479		}
2480	}
2481
2482	if (errors)
2483		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484			errors, total);
2485	else
2486		pr_info("Kprobes globally enabled\n");
2487
2488already_enabled:
2489	mutex_unlock(&kprobe_mutex);
2490	return ret;
2491}
2492
2493static int disarm_all_kprobes(void)
2494{
2495	struct hlist_head *head;
2496	struct kprobe *p;
2497	unsigned int i, total = 0, errors = 0;
2498	int err, ret = 0;
2499
2500	mutex_lock(&kprobe_mutex);
2501
2502	/* If kprobes are already disarmed, just return */
2503	if (kprobes_all_disarmed) {
2504		mutex_unlock(&kprobe_mutex);
2505		return 0;
2506	}
2507
2508	kprobes_all_disarmed = true;
2509
2510	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511		head = &kprobe_table[i];
2512		/* Disarm all kprobes on a best-effort basis */
2513		hlist_for_each_entry_rcu(p, head, hlist) {
2514			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515				err = disarm_kprobe(p, false);
2516				if (err) {
2517					errors++;
2518					ret = err;
2519				}
2520				total++;
2521			}
2522		}
2523	}
2524
2525	if (errors)
2526		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527			errors, total);
2528	else
2529		pr_info("Kprobes globally disabled\n");
2530
2531	mutex_unlock(&kprobe_mutex);
2532
2533	/* Wait for disarming all kprobes by optimizer */
2534	wait_for_kprobe_optimizer();
2535
2536	return ret;
2537}
2538
2539/*
2540 * XXX: The debugfs bool file interface doesn't allow for callbacks
2541 * when the bool state is switched. We can reuse that facility when
2542 * available
2543 */
2544static ssize_t read_enabled_file_bool(struct file *file,
2545	       char __user *user_buf, size_t count, loff_t *ppos)
2546{
2547	char buf[3];
2548
2549	if (!kprobes_all_disarmed)
2550		buf[0] = '1';
2551	else
2552		buf[0] = '0';
2553	buf[1] = '\n';
2554	buf[2] = 0x00;
2555	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556}
2557
2558static ssize_t write_enabled_file_bool(struct file *file,
2559	       const char __user *user_buf, size_t count, loff_t *ppos)
2560{
2561	char buf[32];
2562	size_t buf_size;
2563	int ret = 0;
2564
2565	buf_size = min(count, (sizeof(buf)-1));
2566	if (copy_from_user(buf, user_buf, buf_size))
2567		return -EFAULT;
2568
2569	buf[buf_size] = '\0';
2570	switch (buf[0]) {
2571	case 'y':
2572	case 'Y':
2573	case '1':
2574		ret = arm_all_kprobes();
2575		break;
2576	case 'n':
2577	case 'N':
2578	case '0':
2579		ret = disarm_all_kprobes();
2580		break;
2581	default:
2582		return -EINVAL;
2583	}
2584
 
2585	if (ret)
2586		return ret;
2587
2588	return count;
2589}
2590
2591static const struct file_operations fops_kp = {
2592	.read =         read_enabled_file_bool,
2593	.write =        write_enabled_file_bool,
2594	.llseek =	default_llseek,
2595};
2596
2597static int __init debugfs_kprobe_init(void)
2598{
2599	struct dentry *dir;
2600	unsigned int value = 1;
2601
2602	dir = debugfs_create_dir("kprobes", NULL);
2603
2604	debugfs_create_file("list", 0400, dir, NULL,
2605			    &debugfs_kprobes_operations);
2606
2607	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609	debugfs_create_file("blacklist", 0400, dir, NULL,
2610			    &debugfs_kprobe_blacklist_ops);
2611
2612	return 0;
2613}
2614
2615late_initcall(debugfs_kprobe_init);
2616#endif /* CONFIG_DEBUG_FS */