Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#undef TRACE_SYSTEM
3#define TRACE_SYSTEM sched
4
5#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6#define _TRACE_SCHED_H
7
8#include <linux/kthread.h>
9#include <linux/sched/numa_balancing.h>
10#include <linux/tracepoint.h>
11#include <linux/binfmts.h>
12
13/*
14 * Tracepoint for calling kthread_stop, performed to end a kthread:
15 */
16TRACE_EVENT(sched_kthread_stop,
17
18 TP_PROTO(struct task_struct *t),
19
20 TP_ARGS(t),
21
22 TP_STRUCT__entry(
23 __array( char, comm, TASK_COMM_LEN )
24 __field( pid_t, pid )
25 ),
26
27 TP_fast_assign(
28 memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
29 __entry->pid = t->pid;
30 ),
31
32 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
33);
34
35/*
36 * Tracepoint for the return value of the kthread stopping:
37 */
38TRACE_EVENT(sched_kthread_stop_ret,
39
40 TP_PROTO(int ret),
41
42 TP_ARGS(ret),
43
44 TP_STRUCT__entry(
45 __field( int, ret )
46 ),
47
48 TP_fast_assign(
49 __entry->ret = ret;
50 ),
51
52 TP_printk("ret=%d", __entry->ret)
53);
54
55/**
56 * sched_kthread_work_queue_work - called when a work gets queued
57 * @worker: pointer to the kthread_worker
58 * @work: pointer to struct kthread_work
59 *
60 * This event occurs when a work is queued immediately or once a
61 * delayed work is actually queued (ie: once the delay has been
62 * reached).
63 */
64TRACE_EVENT(sched_kthread_work_queue_work,
65
66 TP_PROTO(struct kthread_worker *worker,
67 struct kthread_work *work),
68
69 TP_ARGS(worker, work),
70
71 TP_STRUCT__entry(
72 __field( void *, work )
73 __field( void *, function)
74 __field( void *, worker)
75 ),
76
77 TP_fast_assign(
78 __entry->work = work;
79 __entry->function = work->func;
80 __entry->worker = worker;
81 ),
82
83 TP_printk("work struct=%p function=%ps worker=%p",
84 __entry->work, __entry->function, __entry->worker)
85);
86
87/**
88 * sched_kthread_work_execute_start - called immediately before the work callback
89 * @work: pointer to struct kthread_work
90 *
91 * Allows to track kthread work execution.
92 */
93TRACE_EVENT(sched_kthread_work_execute_start,
94
95 TP_PROTO(struct kthread_work *work),
96
97 TP_ARGS(work),
98
99 TP_STRUCT__entry(
100 __field( void *, work )
101 __field( void *, function)
102 ),
103
104 TP_fast_assign(
105 __entry->work = work;
106 __entry->function = work->func;
107 ),
108
109 TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
110);
111
112/**
113 * sched_kthread_work_execute_end - called immediately after the work callback
114 * @work: pointer to struct work_struct
115 * @function: pointer to worker function
116 *
117 * Allows to track workqueue execution.
118 */
119TRACE_EVENT(sched_kthread_work_execute_end,
120
121 TP_PROTO(struct kthread_work *work, kthread_work_func_t function),
122
123 TP_ARGS(work, function),
124
125 TP_STRUCT__entry(
126 __field( void *, work )
127 __field( void *, function)
128 ),
129
130 TP_fast_assign(
131 __entry->work = work;
132 __entry->function = function;
133 ),
134
135 TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
136);
137
138/*
139 * Tracepoint for waking up a task:
140 */
141DECLARE_EVENT_CLASS(sched_wakeup_template,
142
143 TP_PROTO(struct task_struct *p),
144
145 TP_ARGS(__perf_task(p)),
146
147 TP_STRUCT__entry(
148 __array( char, comm, TASK_COMM_LEN )
149 __field( pid_t, pid )
150 __field( int, prio )
151 __field( int, target_cpu )
152 ),
153
154 TP_fast_assign(
155 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
156 __entry->pid = p->pid;
157 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
158 __entry->target_cpu = task_cpu(p);
159 ),
160
161 TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
162 __entry->comm, __entry->pid, __entry->prio,
163 __entry->target_cpu)
164);
165
166/*
167 * Tracepoint called when waking a task; this tracepoint is guaranteed to be
168 * called from the waking context.
169 */
170DEFINE_EVENT(sched_wakeup_template, sched_waking,
171 TP_PROTO(struct task_struct *p),
172 TP_ARGS(p));
173
174/*
175 * Tracepoint called when the task is actually woken; p->state == TASK_RUNNING.
176 * It is not always called from the waking context.
177 */
178DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
179 TP_PROTO(struct task_struct *p),
180 TP_ARGS(p));
181
182/*
183 * Tracepoint for waking up a new task:
184 */
185DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
186 TP_PROTO(struct task_struct *p),
187 TP_ARGS(p));
188
189#ifdef CREATE_TRACE_POINTS
190static inline long __trace_sched_switch_state(bool preempt,
191 unsigned int prev_state,
192 struct task_struct *p)
193{
194 unsigned int state;
195
196#ifdef CONFIG_SCHED_DEBUG
197 BUG_ON(p != current);
198#endif /* CONFIG_SCHED_DEBUG */
199
200 /*
201 * Preemption ignores task state, therefore preempted tasks are always
202 * RUNNING (we will not have dequeued if state != RUNNING).
203 */
204 if (preempt)
205 return TASK_REPORT_MAX;
206
207 /*
208 * task_state_index() uses fls() and returns a value from 0-8 range.
209 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
210 * it for left shift operation to get the correct task->state
211 * mapping.
212 */
213 state = __task_state_index(prev_state, p->exit_state);
214
215 return state ? (1 << (state - 1)) : state;
216}
217#endif /* CREATE_TRACE_POINTS */
218
219/*
220 * Tracepoint for task switches, performed by the scheduler:
221 */
222TRACE_EVENT(sched_switch,
223
224 TP_PROTO(bool preempt,
225 struct task_struct *prev,
226 struct task_struct *next,
227 unsigned int prev_state),
228
229 TP_ARGS(preempt, prev, next, prev_state),
230
231 TP_STRUCT__entry(
232 __array( char, prev_comm, TASK_COMM_LEN )
233 __field( pid_t, prev_pid )
234 __field( int, prev_prio )
235 __field( long, prev_state )
236 __array( char, next_comm, TASK_COMM_LEN )
237 __field( pid_t, next_pid )
238 __field( int, next_prio )
239 ),
240
241 TP_fast_assign(
242 memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
243 __entry->prev_pid = prev->pid;
244 __entry->prev_prio = prev->prio;
245 __entry->prev_state = __trace_sched_switch_state(preempt, prev_state, prev);
246 memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
247 __entry->next_pid = next->pid;
248 __entry->next_prio = next->prio;
249 /* XXX SCHED_DEADLINE */
250 ),
251
252 TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
253 __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
254
255 (__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
256 __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
257 { TASK_INTERRUPTIBLE, "S" },
258 { TASK_UNINTERRUPTIBLE, "D" },
259 { __TASK_STOPPED, "T" },
260 { __TASK_TRACED, "t" },
261 { EXIT_DEAD, "X" },
262 { EXIT_ZOMBIE, "Z" },
263 { TASK_PARKED, "P" },
264 { TASK_DEAD, "I" }) :
265 "R",
266
267 __entry->prev_state & TASK_REPORT_MAX ? "+" : "",
268 __entry->next_comm, __entry->next_pid, __entry->next_prio)
269);
270
271/*
272 * Tracepoint for a task being migrated:
273 */
274TRACE_EVENT(sched_migrate_task,
275
276 TP_PROTO(struct task_struct *p, int dest_cpu),
277
278 TP_ARGS(p, dest_cpu),
279
280 TP_STRUCT__entry(
281 __array( char, comm, TASK_COMM_LEN )
282 __field( pid_t, pid )
283 __field( int, prio )
284 __field( int, orig_cpu )
285 __field( int, dest_cpu )
286 ),
287
288 TP_fast_assign(
289 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
290 __entry->pid = p->pid;
291 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
292 __entry->orig_cpu = task_cpu(p);
293 __entry->dest_cpu = dest_cpu;
294 ),
295
296 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
297 __entry->comm, __entry->pid, __entry->prio,
298 __entry->orig_cpu, __entry->dest_cpu)
299);
300
301DECLARE_EVENT_CLASS(sched_process_template,
302
303 TP_PROTO(struct task_struct *p),
304
305 TP_ARGS(p),
306
307 TP_STRUCT__entry(
308 __array( char, comm, TASK_COMM_LEN )
309 __field( pid_t, pid )
310 __field( int, prio )
311 ),
312
313 TP_fast_assign(
314 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
315 __entry->pid = p->pid;
316 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
317 ),
318
319 TP_printk("comm=%s pid=%d prio=%d",
320 __entry->comm, __entry->pid, __entry->prio)
321);
322
323/*
324 * Tracepoint for freeing a task:
325 */
326DEFINE_EVENT(sched_process_template, sched_process_free,
327 TP_PROTO(struct task_struct *p),
328 TP_ARGS(p));
329
330/*
331 * Tracepoint for a task exiting:
332 */
333DEFINE_EVENT(sched_process_template, sched_process_exit,
334 TP_PROTO(struct task_struct *p),
335 TP_ARGS(p));
336
337/*
338 * Tracepoint for waiting on task to unschedule:
339 */
340DEFINE_EVENT(sched_process_template, sched_wait_task,
341 TP_PROTO(struct task_struct *p),
342 TP_ARGS(p));
343
344/*
345 * Tracepoint for a waiting task:
346 */
347TRACE_EVENT(sched_process_wait,
348
349 TP_PROTO(struct pid *pid),
350
351 TP_ARGS(pid),
352
353 TP_STRUCT__entry(
354 __array( char, comm, TASK_COMM_LEN )
355 __field( pid_t, pid )
356 __field( int, prio )
357 ),
358
359 TP_fast_assign(
360 memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
361 __entry->pid = pid_nr(pid);
362 __entry->prio = current->prio; /* XXX SCHED_DEADLINE */
363 ),
364
365 TP_printk("comm=%s pid=%d prio=%d",
366 __entry->comm, __entry->pid, __entry->prio)
367);
368
369/*
370 * Tracepoint for kernel_clone:
371 */
372TRACE_EVENT(sched_process_fork,
373
374 TP_PROTO(struct task_struct *parent, struct task_struct *child),
375
376 TP_ARGS(parent, child),
377
378 TP_STRUCT__entry(
379 __array( char, parent_comm, TASK_COMM_LEN )
380 __field( pid_t, parent_pid )
381 __array( char, child_comm, TASK_COMM_LEN )
382 __field( pid_t, child_pid )
383 ),
384
385 TP_fast_assign(
386 memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
387 __entry->parent_pid = parent->pid;
388 memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
389 __entry->child_pid = child->pid;
390 ),
391
392 TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
393 __entry->parent_comm, __entry->parent_pid,
394 __entry->child_comm, __entry->child_pid)
395);
396
397/*
398 * Tracepoint for exec:
399 */
400TRACE_EVENT(sched_process_exec,
401
402 TP_PROTO(struct task_struct *p, pid_t old_pid,
403 struct linux_binprm *bprm),
404
405 TP_ARGS(p, old_pid, bprm),
406
407 TP_STRUCT__entry(
408 __string( filename, bprm->filename )
409 __field( pid_t, pid )
410 __field( pid_t, old_pid )
411 ),
412
413 TP_fast_assign(
414 __assign_str(filename, bprm->filename);
415 __entry->pid = p->pid;
416 __entry->old_pid = old_pid;
417 ),
418
419 TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
420 __entry->pid, __entry->old_pid)
421);
422
423
424#ifdef CONFIG_SCHEDSTATS
425#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
426#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
427#else
428#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
429#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
430#endif
431
432/*
433 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
434 * adding sched_stat support to SCHED_FIFO/RR would be welcome.
435 */
436DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
437
438 TP_PROTO(struct task_struct *tsk, u64 delay),
439
440 TP_ARGS(__perf_task(tsk), __perf_count(delay)),
441
442 TP_STRUCT__entry(
443 __array( char, comm, TASK_COMM_LEN )
444 __field( pid_t, pid )
445 __field( u64, delay )
446 ),
447
448 TP_fast_assign(
449 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
450 __entry->pid = tsk->pid;
451 __entry->delay = delay;
452 ),
453
454 TP_printk("comm=%s pid=%d delay=%Lu [ns]",
455 __entry->comm, __entry->pid,
456 (unsigned long long)__entry->delay)
457);
458
459/*
460 * Tracepoint for accounting wait time (time the task is runnable
461 * but not actually running due to scheduler contention).
462 */
463DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
464 TP_PROTO(struct task_struct *tsk, u64 delay),
465 TP_ARGS(tsk, delay));
466
467/*
468 * Tracepoint for accounting sleep time (time the task is not runnable,
469 * including iowait, see below).
470 */
471DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
472 TP_PROTO(struct task_struct *tsk, u64 delay),
473 TP_ARGS(tsk, delay));
474
475/*
476 * Tracepoint for accounting iowait time (time the task is not runnable
477 * due to waiting on IO to complete).
478 */
479DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
480 TP_PROTO(struct task_struct *tsk, u64 delay),
481 TP_ARGS(tsk, delay));
482
483/*
484 * Tracepoint for accounting blocked time (time the task is in uninterruptible).
485 */
486DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
487 TP_PROTO(struct task_struct *tsk, u64 delay),
488 TP_ARGS(tsk, delay));
489
490/*
491 * Tracepoint for accounting runtime (time the task is executing
492 * on a CPU).
493 */
494DECLARE_EVENT_CLASS(sched_stat_runtime,
495
496 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
497
498 TP_ARGS(tsk, __perf_count(runtime), vruntime),
499
500 TP_STRUCT__entry(
501 __array( char, comm, TASK_COMM_LEN )
502 __field( pid_t, pid )
503 __field( u64, runtime )
504 __field( u64, vruntime )
505 ),
506
507 TP_fast_assign(
508 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
509 __entry->pid = tsk->pid;
510 __entry->runtime = runtime;
511 __entry->vruntime = vruntime;
512 ),
513
514 TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
515 __entry->comm, __entry->pid,
516 (unsigned long long)__entry->runtime,
517 (unsigned long long)__entry->vruntime)
518);
519
520DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
521 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
522 TP_ARGS(tsk, runtime, vruntime));
523
524/*
525 * Tracepoint for showing priority inheritance modifying a tasks
526 * priority.
527 */
528TRACE_EVENT(sched_pi_setprio,
529
530 TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
531
532 TP_ARGS(tsk, pi_task),
533
534 TP_STRUCT__entry(
535 __array( char, comm, TASK_COMM_LEN )
536 __field( pid_t, pid )
537 __field( int, oldprio )
538 __field( int, newprio )
539 ),
540
541 TP_fast_assign(
542 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
543 __entry->pid = tsk->pid;
544 __entry->oldprio = tsk->prio;
545 __entry->newprio = pi_task ?
546 min(tsk->normal_prio, pi_task->prio) :
547 tsk->normal_prio;
548 /* XXX SCHED_DEADLINE bits missing */
549 ),
550
551 TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
552 __entry->comm, __entry->pid,
553 __entry->oldprio, __entry->newprio)
554);
555
556#ifdef CONFIG_DETECT_HUNG_TASK
557TRACE_EVENT(sched_process_hang,
558 TP_PROTO(struct task_struct *tsk),
559 TP_ARGS(tsk),
560
561 TP_STRUCT__entry(
562 __array( char, comm, TASK_COMM_LEN )
563 __field( pid_t, pid )
564 ),
565
566 TP_fast_assign(
567 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
568 __entry->pid = tsk->pid;
569 ),
570
571 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
572);
573#endif /* CONFIG_DETECT_HUNG_TASK */
574
575/*
576 * Tracks migration of tasks from one runqueue to another. Can be used to
577 * detect if automatic NUMA balancing is bouncing between nodes.
578 */
579TRACE_EVENT(sched_move_numa,
580
581 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
582
583 TP_ARGS(tsk, src_cpu, dst_cpu),
584
585 TP_STRUCT__entry(
586 __field( pid_t, pid )
587 __field( pid_t, tgid )
588 __field( pid_t, ngid )
589 __field( int, src_cpu )
590 __field( int, src_nid )
591 __field( int, dst_cpu )
592 __field( int, dst_nid )
593 ),
594
595 TP_fast_assign(
596 __entry->pid = task_pid_nr(tsk);
597 __entry->tgid = task_tgid_nr(tsk);
598 __entry->ngid = task_numa_group_id(tsk);
599 __entry->src_cpu = src_cpu;
600 __entry->src_nid = cpu_to_node(src_cpu);
601 __entry->dst_cpu = dst_cpu;
602 __entry->dst_nid = cpu_to_node(dst_cpu);
603 ),
604
605 TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
606 __entry->pid, __entry->tgid, __entry->ngid,
607 __entry->src_cpu, __entry->src_nid,
608 __entry->dst_cpu, __entry->dst_nid)
609);
610
611DECLARE_EVENT_CLASS(sched_numa_pair_template,
612
613 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
614 struct task_struct *dst_tsk, int dst_cpu),
615
616 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
617
618 TP_STRUCT__entry(
619 __field( pid_t, src_pid )
620 __field( pid_t, src_tgid )
621 __field( pid_t, src_ngid )
622 __field( int, src_cpu )
623 __field( int, src_nid )
624 __field( pid_t, dst_pid )
625 __field( pid_t, dst_tgid )
626 __field( pid_t, dst_ngid )
627 __field( int, dst_cpu )
628 __field( int, dst_nid )
629 ),
630
631 TP_fast_assign(
632 __entry->src_pid = task_pid_nr(src_tsk);
633 __entry->src_tgid = task_tgid_nr(src_tsk);
634 __entry->src_ngid = task_numa_group_id(src_tsk);
635 __entry->src_cpu = src_cpu;
636 __entry->src_nid = cpu_to_node(src_cpu);
637 __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0;
638 __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0;
639 __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0;
640 __entry->dst_cpu = dst_cpu;
641 __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
642 ),
643
644 TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
645 __entry->src_pid, __entry->src_tgid, __entry->src_ngid,
646 __entry->src_cpu, __entry->src_nid,
647 __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
648 __entry->dst_cpu, __entry->dst_nid)
649);
650
651DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
652
653 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
654 struct task_struct *dst_tsk, int dst_cpu),
655
656 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
657);
658
659DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
660
661 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
662 struct task_struct *dst_tsk, int dst_cpu),
663
664 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
665);
666
667
668/*
669 * Tracepoint for waking a polling cpu without an IPI.
670 */
671TRACE_EVENT(sched_wake_idle_without_ipi,
672
673 TP_PROTO(int cpu),
674
675 TP_ARGS(cpu),
676
677 TP_STRUCT__entry(
678 __field( int, cpu )
679 ),
680
681 TP_fast_assign(
682 __entry->cpu = cpu;
683 ),
684
685 TP_printk("cpu=%d", __entry->cpu)
686);
687
688/*
689 * Following tracepoints are not exported in tracefs and provide hooking
690 * mechanisms only for testing and debugging purposes.
691 *
692 * Postfixed with _tp to make them easily identifiable in the code.
693 */
694DECLARE_TRACE(pelt_cfs_tp,
695 TP_PROTO(struct cfs_rq *cfs_rq),
696 TP_ARGS(cfs_rq));
697
698DECLARE_TRACE(pelt_rt_tp,
699 TP_PROTO(struct rq *rq),
700 TP_ARGS(rq));
701
702DECLARE_TRACE(pelt_dl_tp,
703 TP_PROTO(struct rq *rq),
704 TP_ARGS(rq));
705
706DECLARE_TRACE(pelt_thermal_tp,
707 TP_PROTO(struct rq *rq),
708 TP_ARGS(rq));
709
710DECLARE_TRACE(pelt_irq_tp,
711 TP_PROTO(struct rq *rq),
712 TP_ARGS(rq));
713
714DECLARE_TRACE(pelt_se_tp,
715 TP_PROTO(struct sched_entity *se),
716 TP_ARGS(se));
717
718DECLARE_TRACE(sched_cpu_capacity_tp,
719 TP_PROTO(struct rq *rq),
720 TP_ARGS(rq));
721
722DECLARE_TRACE(sched_overutilized_tp,
723 TP_PROTO(struct root_domain *rd, bool overutilized),
724 TP_ARGS(rd, overutilized));
725
726DECLARE_TRACE(sched_util_est_cfs_tp,
727 TP_PROTO(struct cfs_rq *cfs_rq),
728 TP_ARGS(cfs_rq));
729
730DECLARE_TRACE(sched_util_est_se_tp,
731 TP_PROTO(struct sched_entity *se),
732 TP_ARGS(se));
733
734DECLARE_TRACE(sched_update_nr_running_tp,
735 TP_PROTO(struct rq *rq, int change),
736 TP_ARGS(rq, change));
737
738#endif /* _TRACE_SCHED_H */
739
740/* This part must be outside protection */
741#include <trace/define_trace.h>
1/* SPDX-License-Identifier: GPL-2.0 */
2#undef TRACE_SYSTEM
3#define TRACE_SYSTEM sched
4
5#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6#define _TRACE_SCHED_H
7
8#include <linux/sched/numa_balancing.h>
9#include <linux/tracepoint.h>
10#include <linux/binfmts.h>
11
12/*
13 * Tracepoint for calling kthread_stop, performed to end a kthread:
14 */
15TRACE_EVENT(sched_kthread_stop,
16
17 TP_PROTO(struct task_struct *t),
18
19 TP_ARGS(t),
20
21 TP_STRUCT__entry(
22 __array( char, comm, TASK_COMM_LEN )
23 __field( pid_t, pid )
24 ),
25
26 TP_fast_assign(
27 memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
28 __entry->pid = t->pid;
29 ),
30
31 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
32);
33
34/*
35 * Tracepoint for the return value of the kthread stopping:
36 */
37TRACE_EVENT(sched_kthread_stop_ret,
38
39 TP_PROTO(int ret),
40
41 TP_ARGS(ret),
42
43 TP_STRUCT__entry(
44 __field( int, ret )
45 ),
46
47 TP_fast_assign(
48 __entry->ret = ret;
49 ),
50
51 TP_printk("ret=%d", __entry->ret)
52);
53
54/*
55 * Tracepoint for waking up a task:
56 */
57DECLARE_EVENT_CLASS(sched_wakeup_template,
58
59 TP_PROTO(struct task_struct *p),
60
61 TP_ARGS(__perf_task(p)),
62
63 TP_STRUCT__entry(
64 __array( char, comm, TASK_COMM_LEN )
65 __field( pid_t, pid )
66 __field( int, prio )
67 __field( int, success )
68 __field( int, target_cpu )
69 ),
70
71 TP_fast_assign(
72 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
73 __entry->pid = p->pid;
74 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
75 __entry->success = 1; /* rudiment, kill when possible */
76 __entry->target_cpu = task_cpu(p);
77 ),
78
79 TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
80 __entry->comm, __entry->pid, __entry->prio,
81 __entry->target_cpu)
82);
83
84/*
85 * Tracepoint called when waking a task; this tracepoint is guaranteed to be
86 * called from the waking context.
87 */
88DEFINE_EVENT(sched_wakeup_template, sched_waking,
89 TP_PROTO(struct task_struct *p),
90 TP_ARGS(p));
91
92/*
93 * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG.
94 * It it not always called from the waking context.
95 */
96DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
97 TP_PROTO(struct task_struct *p),
98 TP_ARGS(p));
99
100/*
101 * Tracepoint for waking up a new task:
102 */
103DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
104 TP_PROTO(struct task_struct *p),
105 TP_ARGS(p));
106
107#ifdef CREATE_TRACE_POINTS
108static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p)
109{
110 unsigned int state;
111
112#ifdef CONFIG_SCHED_DEBUG
113 BUG_ON(p != current);
114#endif /* CONFIG_SCHED_DEBUG */
115
116 /*
117 * Preemption ignores task state, therefore preempted tasks are always
118 * RUNNING (we will not have dequeued if state != RUNNING).
119 */
120 if (preempt)
121 return TASK_REPORT_MAX;
122
123 /*
124 * task_state_index() uses fls() and returns a value from 0-8 range.
125 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
126 * it for left shift operation to get the correct task->state
127 * mapping.
128 */
129 state = task_state_index(p);
130
131 return state ? (1 << (state - 1)) : state;
132}
133#endif /* CREATE_TRACE_POINTS */
134
135/*
136 * Tracepoint for task switches, performed by the scheduler:
137 */
138TRACE_EVENT(sched_switch,
139
140 TP_PROTO(bool preempt,
141 struct task_struct *prev,
142 struct task_struct *next),
143
144 TP_ARGS(preempt, prev, next),
145
146 TP_STRUCT__entry(
147 __array( char, prev_comm, TASK_COMM_LEN )
148 __field( pid_t, prev_pid )
149 __field( int, prev_prio )
150 __field( long, prev_state )
151 __array( char, next_comm, TASK_COMM_LEN )
152 __field( pid_t, next_pid )
153 __field( int, next_prio )
154 ),
155
156 TP_fast_assign(
157 memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
158 __entry->prev_pid = prev->pid;
159 __entry->prev_prio = prev->prio;
160 __entry->prev_state = __trace_sched_switch_state(preempt, prev);
161 memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
162 __entry->next_pid = next->pid;
163 __entry->next_prio = next->prio;
164 /* XXX SCHED_DEADLINE */
165 ),
166
167 TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
168 __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
169
170 (__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
171 __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
172 { TASK_INTERRUPTIBLE, "S" },
173 { TASK_UNINTERRUPTIBLE, "D" },
174 { __TASK_STOPPED, "T" },
175 { __TASK_TRACED, "t" },
176 { EXIT_DEAD, "X" },
177 { EXIT_ZOMBIE, "Z" },
178 { TASK_PARKED, "P" },
179 { TASK_DEAD, "I" }) :
180 "R",
181
182 __entry->prev_state & TASK_REPORT_MAX ? "+" : "",
183 __entry->next_comm, __entry->next_pid, __entry->next_prio)
184);
185
186/*
187 * Tracepoint for a task being migrated:
188 */
189TRACE_EVENT(sched_migrate_task,
190
191 TP_PROTO(struct task_struct *p, int dest_cpu),
192
193 TP_ARGS(p, dest_cpu),
194
195 TP_STRUCT__entry(
196 __array( char, comm, TASK_COMM_LEN )
197 __field( pid_t, pid )
198 __field( int, prio )
199 __field( int, orig_cpu )
200 __field( int, dest_cpu )
201 ),
202
203 TP_fast_assign(
204 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
205 __entry->pid = p->pid;
206 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
207 __entry->orig_cpu = task_cpu(p);
208 __entry->dest_cpu = dest_cpu;
209 ),
210
211 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
212 __entry->comm, __entry->pid, __entry->prio,
213 __entry->orig_cpu, __entry->dest_cpu)
214);
215
216DECLARE_EVENT_CLASS(sched_process_template,
217
218 TP_PROTO(struct task_struct *p),
219
220 TP_ARGS(p),
221
222 TP_STRUCT__entry(
223 __array( char, comm, TASK_COMM_LEN )
224 __field( pid_t, pid )
225 __field( int, prio )
226 ),
227
228 TP_fast_assign(
229 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
230 __entry->pid = p->pid;
231 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
232 ),
233
234 TP_printk("comm=%s pid=%d prio=%d",
235 __entry->comm, __entry->pid, __entry->prio)
236);
237
238/*
239 * Tracepoint for freeing a task:
240 */
241DEFINE_EVENT(sched_process_template, sched_process_free,
242 TP_PROTO(struct task_struct *p),
243 TP_ARGS(p));
244
245/*
246 * Tracepoint for a task exiting:
247 */
248DEFINE_EVENT(sched_process_template, sched_process_exit,
249 TP_PROTO(struct task_struct *p),
250 TP_ARGS(p));
251
252/*
253 * Tracepoint for waiting on task to unschedule:
254 */
255DEFINE_EVENT(sched_process_template, sched_wait_task,
256 TP_PROTO(struct task_struct *p),
257 TP_ARGS(p));
258
259/*
260 * Tracepoint for a waiting task:
261 */
262TRACE_EVENT(sched_process_wait,
263
264 TP_PROTO(struct pid *pid),
265
266 TP_ARGS(pid),
267
268 TP_STRUCT__entry(
269 __array( char, comm, TASK_COMM_LEN )
270 __field( pid_t, pid )
271 __field( int, prio )
272 ),
273
274 TP_fast_assign(
275 memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
276 __entry->pid = pid_nr(pid);
277 __entry->prio = current->prio; /* XXX SCHED_DEADLINE */
278 ),
279
280 TP_printk("comm=%s pid=%d prio=%d",
281 __entry->comm, __entry->pid, __entry->prio)
282);
283
284/*
285 * Tracepoint for do_fork:
286 */
287TRACE_EVENT(sched_process_fork,
288
289 TP_PROTO(struct task_struct *parent, struct task_struct *child),
290
291 TP_ARGS(parent, child),
292
293 TP_STRUCT__entry(
294 __array( char, parent_comm, TASK_COMM_LEN )
295 __field( pid_t, parent_pid )
296 __array( char, child_comm, TASK_COMM_LEN )
297 __field( pid_t, child_pid )
298 ),
299
300 TP_fast_assign(
301 memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
302 __entry->parent_pid = parent->pid;
303 memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
304 __entry->child_pid = child->pid;
305 ),
306
307 TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
308 __entry->parent_comm, __entry->parent_pid,
309 __entry->child_comm, __entry->child_pid)
310);
311
312/*
313 * Tracepoint for exec:
314 */
315TRACE_EVENT(sched_process_exec,
316
317 TP_PROTO(struct task_struct *p, pid_t old_pid,
318 struct linux_binprm *bprm),
319
320 TP_ARGS(p, old_pid, bprm),
321
322 TP_STRUCT__entry(
323 __string( filename, bprm->filename )
324 __field( pid_t, pid )
325 __field( pid_t, old_pid )
326 ),
327
328 TP_fast_assign(
329 __assign_str(filename, bprm->filename);
330 __entry->pid = p->pid;
331 __entry->old_pid = old_pid;
332 ),
333
334 TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
335 __entry->pid, __entry->old_pid)
336);
337
338
339#ifdef CONFIG_SCHEDSTATS
340#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
341#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
342#else
343#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
344#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
345#endif
346
347/*
348 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
349 * adding sched_stat support to SCHED_FIFO/RR would be welcome.
350 */
351DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
352
353 TP_PROTO(struct task_struct *tsk, u64 delay),
354
355 TP_ARGS(__perf_task(tsk), __perf_count(delay)),
356
357 TP_STRUCT__entry(
358 __array( char, comm, TASK_COMM_LEN )
359 __field( pid_t, pid )
360 __field( u64, delay )
361 ),
362
363 TP_fast_assign(
364 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
365 __entry->pid = tsk->pid;
366 __entry->delay = delay;
367 ),
368
369 TP_printk("comm=%s pid=%d delay=%Lu [ns]",
370 __entry->comm, __entry->pid,
371 (unsigned long long)__entry->delay)
372);
373
374/*
375 * Tracepoint for accounting wait time (time the task is runnable
376 * but not actually running due to scheduler contention).
377 */
378DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
379 TP_PROTO(struct task_struct *tsk, u64 delay),
380 TP_ARGS(tsk, delay));
381
382/*
383 * Tracepoint for accounting sleep time (time the task is not runnable,
384 * including iowait, see below).
385 */
386DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
387 TP_PROTO(struct task_struct *tsk, u64 delay),
388 TP_ARGS(tsk, delay));
389
390/*
391 * Tracepoint for accounting iowait time (time the task is not runnable
392 * due to waiting on IO to complete).
393 */
394DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
395 TP_PROTO(struct task_struct *tsk, u64 delay),
396 TP_ARGS(tsk, delay));
397
398/*
399 * Tracepoint for accounting blocked time (time the task is in uninterruptible).
400 */
401DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
402 TP_PROTO(struct task_struct *tsk, u64 delay),
403 TP_ARGS(tsk, delay));
404
405/*
406 * Tracepoint for accounting runtime (time the task is executing
407 * on a CPU).
408 */
409DECLARE_EVENT_CLASS(sched_stat_runtime,
410
411 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
412
413 TP_ARGS(tsk, __perf_count(runtime), vruntime),
414
415 TP_STRUCT__entry(
416 __array( char, comm, TASK_COMM_LEN )
417 __field( pid_t, pid )
418 __field( u64, runtime )
419 __field( u64, vruntime )
420 ),
421
422 TP_fast_assign(
423 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
424 __entry->pid = tsk->pid;
425 __entry->runtime = runtime;
426 __entry->vruntime = vruntime;
427 ),
428
429 TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
430 __entry->comm, __entry->pid,
431 (unsigned long long)__entry->runtime,
432 (unsigned long long)__entry->vruntime)
433);
434
435DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
436 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
437 TP_ARGS(tsk, runtime, vruntime));
438
439/*
440 * Tracepoint for showing priority inheritance modifying a tasks
441 * priority.
442 */
443TRACE_EVENT(sched_pi_setprio,
444
445 TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
446
447 TP_ARGS(tsk, pi_task),
448
449 TP_STRUCT__entry(
450 __array( char, comm, TASK_COMM_LEN )
451 __field( pid_t, pid )
452 __field( int, oldprio )
453 __field( int, newprio )
454 ),
455
456 TP_fast_assign(
457 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
458 __entry->pid = tsk->pid;
459 __entry->oldprio = tsk->prio;
460 __entry->newprio = pi_task ?
461 min(tsk->normal_prio, pi_task->prio) :
462 tsk->normal_prio;
463 /* XXX SCHED_DEADLINE bits missing */
464 ),
465
466 TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
467 __entry->comm, __entry->pid,
468 __entry->oldprio, __entry->newprio)
469);
470
471#ifdef CONFIG_DETECT_HUNG_TASK
472TRACE_EVENT(sched_process_hang,
473 TP_PROTO(struct task_struct *tsk),
474 TP_ARGS(tsk),
475
476 TP_STRUCT__entry(
477 __array( char, comm, TASK_COMM_LEN )
478 __field( pid_t, pid )
479 ),
480
481 TP_fast_assign(
482 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
483 __entry->pid = tsk->pid;
484 ),
485
486 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
487);
488#endif /* CONFIG_DETECT_HUNG_TASK */
489
490DECLARE_EVENT_CLASS(sched_move_task_template,
491
492 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
493
494 TP_ARGS(tsk, src_cpu, dst_cpu),
495
496 TP_STRUCT__entry(
497 __field( pid_t, pid )
498 __field( pid_t, tgid )
499 __field( pid_t, ngid )
500 __field( int, src_cpu )
501 __field( int, src_nid )
502 __field( int, dst_cpu )
503 __field( int, dst_nid )
504 ),
505
506 TP_fast_assign(
507 __entry->pid = task_pid_nr(tsk);
508 __entry->tgid = task_tgid_nr(tsk);
509 __entry->ngid = task_numa_group_id(tsk);
510 __entry->src_cpu = src_cpu;
511 __entry->src_nid = cpu_to_node(src_cpu);
512 __entry->dst_cpu = dst_cpu;
513 __entry->dst_nid = cpu_to_node(dst_cpu);
514 ),
515
516 TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
517 __entry->pid, __entry->tgid, __entry->ngid,
518 __entry->src_cpu, __entry->src_nid,
519 __entry->dst_cpu, __entry->dst_nid)
520);
521
522/*
523 * Tracks migration of tasks from one runqueue to another. Can be used to
524 * detect if automatic NUMA balancing is bouncing between nodes
525 */
526DEFINE_EVENT(sched_move_task_template, sched_move_numa,
527 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
528
529 TP_ARGS(tsk, src_cpu, dst_cpu)
530);
531
532DEFINE_EVENT(sched_move_task_template, sched_stick_numa,
533 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
534
535 TP_ARGS(tsk, src_cpu, dst_cpu)
536);
537
538TRACE_EVENT(sched_swap_numa,
539
540 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
541 struct task_struct *dst_tsk, int dst_cpu),
542
543 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
544
545 TP_STRUCT__entry(
546 __field( pid_t, src_pid )
547 __field( pid_t, src_tgid )
548 __field( pid_t, src_ngid )
549 __field( int, src_cpu )
550 __field( int, src_nid )
551 __field( pid_t, dst_pid )
552 __field( pid_t, dst_tgid )
553 __field( pid_t, dst_ngid )
554 __field( int, dst_cpu )
555 __field( int, dst_nid )
556 ),
557
558 TP_fast_assign(
559 __entry->src_pid = task_pid_nr(src_tsk);
560 __entry->src_tgid = task_tgid_nr(src_tsk);
561 __entry->src_ngid = task_numa_group_id(src_tsk);
562 __entry->src_cpu = src_cpu;
563 __entry->src_nid = cpu_to_node(src_cpu);
564 __entry->dst_pid = task_pid_nr(dst_tsk);
565 __entry->dst_tgid = task_tgid_nr(dst_tsk);
566 __entry->dst_ngid = task_numa_group_id(dst_tsk);
567 __entry->dst_cpu = dst_cpu;
568 __entry->dst_nid = cpu_to_node(dst_cpu);
569 ),
570
571 TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
572 __entry->src_pid, __entry->src_tgid, __entry->src_ngid,
573 __entry->src_cpu, __entry->src_nid,
574 __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
575 __entry->dst_cpu, __entry->dst_nid)
576);
577
578/*
579 * Tracepoint for waking a polling cpu without an IPI.
580 */
581TRACE_EVENT(sched_wake_idle_without_ipi,
582
583 TP_PROTO(int cpu),
584
585 TP_ARGS(cpu),
586
587 TP_STRUCT__entry(
588 __field( int, cpu )
589 ),
590
591 TP_fast_assign(
592 __entry->cpu = cpu;
593 ),
594
595 TP_printk("cpu=%d", __entry->cpu)
596);
597
598/*
599 * Following tracepoints are not exported in tracefs and provide hooking
600 * mechanisms only for testing and debugging purposes.
601 *
602 * Postfixed with _tp to make them easily identifiable in the code.
603 */
604DECLARE_TRACE(pelt_cfs_tp,
605 TP_PROTO(struct cfs_rq *cfs_rq),
606 TP_ARGS(cfs_rq));
607
608DECLARE_TRACE(pelt_rt_tp,
609 TP_PROTO(struct rq *rq),
610 TP_ARGS(rq));
611
612DECLARE_TRACE(pelt_dl_tp,
613 TP_PROTO(struct rq *rq),
614 TP_ARGS(rq));
615
616DECLARE_TRACE(pelt_irq_tp,
617 TP_PROTO(struct rq *rq),
618 TP_ARGS(rq));
619
620DECLARE_TRACE(pelt_se_tp,
621 TP_PROTO(struct sched_entity *se),
622 TP_ARGS(se));
623
624DECLARE_TRACE(sched_overutilized_tp,
625 TP_PROTO(struct root_domain *rd, bool overutilized),
626 TP_ARGS(rd, overutilized));
627
628#endif /* _TRACE_SCHED_H */
629
630/* This part must be outside protection */
631#include <trace/define_trace.h>