Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for Alauda-based card readers
   4 *
   5 * Current development and maintenance by:
   6 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   7 *
   8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   9 *
  10 * Alauda implements a vendor-specific command set to access two media reader
  11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  12 * which are accepted by these devices.
  13 *
  14 * The driver was developed through reverse-engineering, with the help of the
  15 * sddr09 driver which has many similarities, and with some help from the
  16 * (very old) vendor-supplied GPL sma03 driver.
  17 *
  18 * For protocol info, see http://alauda.sourceforge.net
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/slab.h>
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_device.h>
  27
  28#include "usb.h"
  29#include "transport.h"
  30#include "protocol.h"
  31#include "debug.h"
  32#include "scsiglue.h"
  33
  34#define DRV_NAME "ums-alauda"
  35
  36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  38MODULE_LICENSE("GPL");
  39MODULE_IMPORT_NS(USB_STORAGE);
  40
  41/*
  42 * Status bytes
  43 */
  44#define ALAUDA_STATUS_ERROR		0x01
  45#define ALAUDA_STATUS_READY		0x40
  46
  47/*
  48 * Control opcodes (for request field)
  49 */
  50#define ALAUDA_GET_XD_MEDIA_STATUS	0x08
  51#define ALAUDA_GET_SM_MEDIA_STATUS	0x98
  52#define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
  53#define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
  54#define ALAUDA_GET_XD_MEDIA_SIG		0x86
  55#define ALAUDA_GET_SM_MEDIA_SIG		0x96
  56
  57/*
  58 * Bulk command identity (byte 0)
  59 */
  60#define ALAUDA_BULK_CMD			0x40
  61
  62/*
  63 * Bulk opcodes (byte 1)
  64 */
  65#define ALAUDA_BULK_GET_REDU_DATA	0x85
  66#define ALAUDA_BULK_READ_BLOCK		0x94
  67#define ALAUDA_BULK_ERASE_BLOCK		0xa3
  68#define ALAUDA_BULK_WRITE_BLOCK		0xb4
  69#define ALAUDA_BULK_GET_STATUS2		0xb7
  70#define ALAUDA_BULK_RESET_MEDIA		0xe0
  71
  72/*
  73 * Port to operate on (byte 8)
  74 */
  75#define ALAUDA_PORT_XD			0x00
  76#define ALAUDA_PORT_SM			0x01
  77
  78/*
  79 * LBA and PBA are unsigned ints. Special values.
  80 */
  81#define UNDEF    0xffff
  82#define SPARE    0xfffe
  83#define UNUSABLE 0xfffd
  84
  85struct alauda_media_info {
  86	unsigned long capacity;		/* total media size in bytes */
  87	unsigned int pagesize;		/* page size in bytes */
  88	unsigned int blocksize;		/* number of pages per block */
  89	unsigned int uzonesize;		/* number of usable blocks per zone */
  90	unsigned int zonesize;		/* number of blocks per zone */
  91	unsigned int blockmask;		/* mask to get page from address */
  92
  93	unsigned char pageshift;
  94	unsigned char blockshift;
  95	unsigned char zoneshift;
  96
  97	u16 **lba_to_pba;		/* logical to physical block map */
  98	u16 **pba_to_lba;		/* physical to logical block map */
  99};
 100
 101struct alauda_info {
 102	struct alauda_media_info port[2];
 103	int wr_ep;			/* endpoint to write data out of */
 104
 105	unsigned char sense_key;
 106	unsigned long sense_asc;	/* additional sense code */
 107	unsigned long sense_ascq;	/* additional sense code qualifier */
 108};
 109
 110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 111#define LSB_of(s) ((s)&0xFF)
 112#define MSB_of(s) ((s)>>8)
 113
 114#define MEDIA_PORT(us) us->srb->device->lun
 115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 116
 117#define PBA_LO(pba) ((pba & 0xF) << 5)
 118#define PBA_HI(pba) (pba >> 3)
 119#define PBA_ZONE(pba) (pba >> 11)
 120
 121static int init_alauda(struct us_data *us);
 122
 123
 124/*
 125 * The table of devices
 126 */
 127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 128		    vendorName, productName, useProtocol, useTransport, \
 129		    initFunction, flags) \
 130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 131  .driver_info = (flags) }
 132
 133static struct usb_device_id alauda_usb_ids[] = {
 134#	include "unusual_alauda.h"
 135	{ }		/* Terminating entry */
 136};
 137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 138
 139#undef UNUSUAL_DEV
 140
 141/*
 142 * The flags table
 143 */
 144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 145		    vendor_name, product_name, use_protocol, use_transport, \
 146		    init_function, Flags) \
 147{ \
 148	.vendorName = vendor_name,	\
 149	.productName = product_name,	\
 150	.useProtocol = use_protocol,	\
 151	.useTransport = use_transport,	\
 152	.initFunction = init_function,	\
 153}
 154
 155static struct us_unusual_dev alauda_unusual_dev_list[] = {
 156#	include "unusual_alauda.h"
 157	{ }		/* Terminating entry */
 158};
 159
 160#undef UNUSUAL_DEV
 161
 162
 163/*
 164 * Media handling
 165 */
 166
 167struct alauda_card_info {
 168	unsigned char id;		/* id byte */
 169	unsigned char chipshift;	/* 1<<cs bytes total capacity */
 170	unsigned char pageshift;	/* 1<<ps bytes in a page */
 171	unsigned char blockshift;	/* 1<<bs pages per block */
 172	unsigned char zoneshift;	/* 1<<zs blocks per zone */
 173};
 174
 175static struct alauda_card_info alauda_card_ids[] = {
 176	/* NAND flash */
 177	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
 178	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
 179	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
 180	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
 181	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
 182	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
 183	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
 184	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
 185	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
 186	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
 187	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
 188	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
 189	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
 190	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
 191
 192	/* MASK ROM */
 193	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
 194	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
 195	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
 196	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
 197	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
 198	{ 0,}
 199};
 200
 201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
 202{
 203	int i;
 204
 205	for (i = 0; alauda_card_ids[i].id != 0; i++)
 206		if (alauda_card_ids[i].id == id)
 207			return &(alauda_card_ids[i]);
 208	return NULL;
 209}
 210
 211/*
 212 * ECC computation.
 213 */
 214
 215static unsigned char parity[256];
 216static unsigned char ecc2[256];
 217
 218static void nand_init_ecc(void)
 219{
 220	int i, j, a;
 221
 222	parity[0] = 0;
 223	for (i = 1; i < 256; i++)
 224		parity[i] = (parity[i&(i-1)] ^ 1);
 225
 226	for (i = 0; i < 256; i++) {
 227		a = 0;
 228		for (j = 0; j < 8; j++) {
 229			if (i & (1<<j)) {
 230				if ((j & 1) == 0)
 231					a ^= 0x04;
 232				if ((j & 2) == 0)
 233					a ^= 0x10;
 234				if ((j & 4) == 0)
 235					a ^= 0x40;
 236			}
 237		}
 238		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 239	}
 240}
 241
 242/* compute 3-byte ecc on 256 bytes */
 243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
 244{
 245	int i, j, a;
 246	unsigned char par = 0, bit, bits[8] = {0};
 247
 248	/* collect 16 checksum bits */
 249	for (i = 0; i < 256; i++) {
 250		par ^= data[i];
 251		bit = parity[data[i]];
 252		for (j = 0; j < 8; j++)
 253			if ((i & (1<<j)) == 0)
 254				bits[j] ^= bit;
 255	}
 256
 257	/* put 4+4+4 = 12 bits in the ecc */
 258	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 259	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 260
 261	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 262	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 263
 264	ecc[2] = ecc2[par];
 265}
 266
 267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
 268{
 269	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 270}
 271
 272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
 273{
 274	memcpy(data, ecc, 3);
 275}
 276
 277/*
 278 * Alauda driver
 279 */
 280
 281/*
 282 * Forget our PBA <---> LBA mappings for a particular port
 283 */
 284static void alauda_free_maps (struct alauda_media_info *media_info)
 285{
 286	unsigned int shift = media_info->zoneshift
 287		+ media_info->blockshift + media_info->pageshift;
 288	unsigned int num_zones = media_info->capacity >> shift;
 289	unsigned int i;
 290
 291	if (media_info->lba_to_pba != NULL)
 292		for (i = 0; i < num_zones; i++) {
 293			kfree(media_info->lba_to_pba[i]);
 294			media_info->lba_to_pba[i] = NULL;
 295		}
 296
 297	if (media_info->pba_to_lba != NULL)
 298		for (i = 0; i < num_zones; i++) {
 299			kfree(media_info->pba_to_lba[i]);
 300			media_info->pba_to_lba[i] = NULL;
 301		}
 302}
 303
 304/*
 305 * Returns 2 bytes of status data
 306 * The first byte describes media status, and second byte describes door status
 307 */
 308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 309{
 310	int rc;
 311	unsigned char command;
 312
 313	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 314		command = ALAUDA_GET_XD_MEDIA_STATUS;
 315	else
 316		command = ALAUDA_GET_SM_MEDIA_STATUS;
 317
 318	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 319		command, 0xc0, 0, 1, data, 2);
 320
 321	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
 322
 323	return rc;
 324}
 325
 326/*
 327 * Clears the "media was changed" bit so that we know when it changes again
 328 * in the future.
 329 */
 330static int alauda_ack_media(struct us_data *us)
 331{
 332	unsigned char command;
 333
 334	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 335		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 336	else
 337		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 338
 339	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 340		command, 0x40, 0, 1, NULL, 0);
 341}
 342
 343/*
 344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 345 * and some other details.
 346 */
 347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 348{
 349	unsigned char command;
 350
 351	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 352		command = ALAUDA_GET_XD_MEDIA_SIG;
 353	else
 354		command = ALAUDA_GET_SM_MEDIA_SIG;
 355
 356	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 357		command, 0xc0, 0, 0, data, 4);
 358}
 359
 360/*
 361 * Resets the media status (but not the whole device?)
 362 */
 363static int alauda_reset_media(struct us_data *us)
 364{
 365	unsigned char *command = us->iobuf;
 366
 367	memset(command, 0, 9);
 368	command[0] = ALAUDA_BULK_CMD;
 369	command[1] = ALAUDA_BULK_RESET_MEDIA;
 370	command[8] = MEDIA_PORT(us);
 371
 372	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 373		command, 9, NULL);
 374}
 375
 376/*
 377 * Examines the media and deduces capacity, etc.
 378 */
 379static int alauda_init_media(struct us_data *us)
 380{
 381	unsigned char *data = us->iobuf;
 382	int ready = 0;
 383	struct alauda_card_info *media_info;
 384	unsigned int num_zones;
 385
 386	while (ready == 0) {
 387		msleep(20);
 388
 389		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 390			return USB_STOR_TRANSPORT_ERROR;
 391
 392		if (data[0] & 0x10)
 393			ready = 1;
 394	}
 395
 396	usb_stor_dbg(us, "We are ready for action!\n");
 397
 398	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 399		return USB_STOR_TRANSPORT_ERROR;
 400
 401	msleep(10);
 402
 403	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 404		return USB_STOR_TRANSPORT_ERROR;
 405
 406	if (data[0] != 0x14) {
 407		usb_stor_dbg(us, "Media not ready after ack\n");
 408		return USB_STOR_TRANSPORT_ERROR;
 409	}
 410
 411	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 412		return USB_STOR_TRANSPORT_ERROR;
 413
 414	usb_stor_dbg(us, "Media signature: %4ph\n", data);
 415	media_info = alauda_card_find_id(data[1]);
 416	if (media_info == NULL) {
 417		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
 418			data);
 419		return USB_STOR_TRANSPORT_ERROR;
 420	}
 421
 422	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 423	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
 424		     MEDIA_INFO(us).capacity >> 20);
 425
 426	MEDIA_INFO(us).pageshift = media_info->pageshift;
 427	MEDIA_INFO(us).blockshift = media_info->blockshift;
 428	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 429
 430	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 431	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 432	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 433
 434	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 435	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 436
 437	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 438		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 439	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 440	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 441	if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
 442		return USB_STOR_TRANSPORT_ERROR;
 443
 444	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 445		return USB_STOR_TRANSPORT_ERROR;
 446
 447	return USB_STOR_TRANSPORT_GOOD;
 448}
 449
 450/*
 451 * Examines the media status and does the right thing when the media has gone,
 452 * appeared, or changed.
 453 */
 454static int alauda_check_media(struct us_data *us)
 455{
 456	struct alauda_info *info = (struct alauda_info *) us->extra;
 457	unsigned char status[2];
 
 458
 459	alauda_get_media_status(us, status);
 460
 461	/* Check for no media or door open */
 462	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 463		|| ((status[1] & 0x01) == 0)) {
 464		usb_stor_dbg(us, "No media, or door open\n");
 465		alauda_free_maps(&MEDIA_INFO(us));
 466		info->sense_key = 0x02;
 467		info->sense_asc = 0x3A;
 468		info->sense_ascq = 0x00;
 469		return USB_STOR_TRANSPORT_FAILED;
 470	}
 471
 472	/* Check for media change */
 473	if (status[0] & 0x08) {
 474		usb_stor_dbg(us, "Media change detected\n");
 475		alauda_free_maps(&MEDIA_INFO(us));
 476		alauda_init_media(us);
 477
 478		info->sense_key = UNIT_ATTENTION;
 479		info->sense_asc = 0x28;
 480		info->sense_ascq = 0x00;
 481		return USB_STOR_TRANSPORT_FAILED;
 482	}
 483
 484	return USB_STOR_TRANSPORT_GOOD;
 485}
 486
 487/*
 488 * Checks the status from the 2nd status register
 489 * Returns 3 bytes of status data, only the first is known
 490 */
 491static int alauda_check_status2(struct us_data *us)
 492{
 493	int rc;
 494	unsigned char command[] = {
 495		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 496		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 497	};
 498	unsigned char data[3];
 499
 500	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 501		command, 9, NULL);
 502	if (rc != USB_STOR_XFER_GOOD)
 503		return rc;
 504
 505	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 506		data, 3, NULL);
 507	if (rc != USB_STOR_XFER_GOOD)
 508		return rc;
 509
 510	usb_stor_dbg(us, "%3ph\n", data);
 511	if (data[0] & ALAUDA_STATUS_ERROR)
 512		return USB_STOR_XFER_ERROR;
 513
 514	return USB_STOR_XFER_GOOD;
 515}
 516
 517/*
 518 * Gets the redundancy data for the first page of a PBA
 519 * Returns 16 bytes.
 520 */
 521static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 522{
 523	int rc;
 524	unsigned char command[] = {
 525		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 526		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 527	};
 528
 529	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 530		command, 9, NULL);
 531	if (rc != USB_STOR_XFER_GOOD)
 532		return rc;
 533
 534	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 535		data, 16, NULL);
 536}
 537
 538/*
 539 * Finds the first unused PBA in a zone
 540 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 541 */
 542static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 543	unsigned int zone)
 544{
 545	u16 *pba_to_lba = info->pba_to_lba[zone];
 546	unsigned int i;
 547
 548	for (i = 0; i < info->zonesize; i++)
 549		if (pba_to_lba[i] == UNDEF)
 550			return (zone << info->zoneshift) + i;
 551
 552	return 0;
 553}
 554
 555/*
 556 * Reads the redundancy data for all PBA's in a zone
 557 * Produces lba <--> pba mappings
 558 */
 559static int alauda_read_map(struct us_data *us, unsigned int zone)
 560{
 561	unsigned char *data = us->iobuf;
 562	int result;
 563	int i, j;
 564	unsigned int zonesize = MEDIA_INFO(us).zonesize;
 565	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 566	unsigned int lba_offset, lba_real, blocknum;
 567	unsigned int zone_base_lba = zone * uzonesize;
 568	unsigned int zone_base_pba = zone * zonesize;
 569	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 570	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 571	if (lba_to_pba == NULL || pba_to_lba == NULL) {
 572		result = USB_STOR_TRANSPORT_ERROR;
 573		goto error;
 574	}
 575
 576	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
 577
 578	/* 1024 PBA's per zone */
 579	for (i = 0; i < zonesize; i++)
 580		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 581
 582	for (i = 0; i < zonesize; i++) {
 583		blocknum = zone_base_pba + i;
 584
 585		result = alauda_get_redu_data(us, blocknum, data);
 586		if (result != USB_STOR_XFER_GOOD) {
 587			result = USB_STOR_TRANSPORT_ERROR;
 588			goto error;
 589		}
 590
 591		/* special PBAs have control field 0^16 */
 592		for (j = 0; j < 16; j++)
 593			if (data[j] != 0)
 594				goto nonz;
 595		pba_to_lba[i] = UNUSABLE;
 596		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
 597		continue;
 598
 599	nonz:
 600		/* unwritten PBAs have control field FF^16 */
 601		for (j = 0; j < 16; j++)
 602			if (data[j] != 0xff)
 603				goto nonff;
 604		continue;
 605
 606	nonff:
 607		/* normal PBAs start with six FFs */
 608		if (j < 6) {
 609			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
 610				     blocknum,
 611				     data[0], data[1], data[2], data[3],
 612				     data[4], data[5]);
 613			pba_to_lba[i] = UNUSABLE;
 614			continue;
 615		}
 616
 617		if ((data[6] >> 4) != 0x01) {
 618			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
 619				     blocknum, data[6], data[7],
 620				     data[11], data[12]);
 621			pba_to_lba[i] = UNUSABLE;
 622			continue;
 623		}
 624
 625		/* check even parity */
 626		if (parity[data[6] ^ data[7]]) {
 627			printk(KERN_WARNING
 628			       "alauda_read_map: Bad parity in LBA for block %d"
 629			       " (%02X %02X)\n", i, data[6], data[7]);
 630			pba_to_lba[i] = UNUSABLE;
 631			continue;
 632		}
 633
 634		lba_offset = short_pack(data[7], data[6]);
 635		lba_offset = (lba_offset & 0x07FF) >> 1;
 636		lba_real = lba_offset + zone_base_lba;
 637
 638		/*
 639		 * Every 1024 physical blocks ("zone"), the LBA numbers
 640		 * go back to zero, but are within a higher block of LBA's.
 641		 * Also, there is a maximum of 1000 LBA's per zone.
 642		 * In other words, in PBA 1024-2047 you will find LBA 0-999
 643		 * which are really LBA 1000-1999. This allows for 24 bad
 644		 * or special physical blocks per zone.
 645		 */
 646
 647		if (lba_offset >= uzonesize) {
 648			printk(KERN_WARNING
 649			       "alauda_read_map: Bad low LBA %d for block %d\n",
 650			       lba_real, blocknum);
 651			continue;
 652		}
 653
 654		if (lba_to_pba[lba_offset] != UNDEF) {
 655			printk(KERN_WARNING
 656			       "alauda_read_map: "
 657			       "LBA %d seen for PBA %d and %d\n",
 658			       lba_real, lba_to_pba[lba_offset], blocknum);
 659			continue;
 660		}
 661
 662		pba_to_lba[i] = lba_real;
 663		lba_to_pba[lba_offset] = blocknum;
 664		continue;
 665	}
 666
 667	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 668	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 669	result = 0;
 670	goto out;
 671
 672error:
 673	kfree(lba_to_pba);
 674	kfree(pba_to_lba);
 675out:
 676	return result;
 677}
 678
 679/*
 680 * Checks to see whether we have already mapped a certain zone
 681 * If we haven't, the map is generated
 682 */
 683static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 684{
 685	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 686		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 687		alauda_read_map(us, zone);
 688}
 689
 690/*
 691 * Erases an entire block
 692 */
 693static int alauda_erase_block(struct us_data *us, u16 pba)
 694{
 695	int rc;
 696	unsigned char command[] = {
 697		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 698		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 699	};
 700	unsigned char buf[2];
 701
 702	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
 703
 704	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 705		command, 9, NULL);
 706	if (rc != USB_STOR_XFER_GOOD)
 707		return rc;
 708
 709	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 710		buf, 2, NULL);
 711	if (rc != USB_STOR_XFER_GOOD)
 712		return rc;
 713
 714	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
 715	return rc;
 716}
 717
 718/*
 719 * Reads data from a certain offset page inside a PBA, including interleaved
 720 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 721 */
 722static int alauda_read_block_raw(struct us_data *us, u16 pba,
 723		unsigned int page, unsigned int pages, unsigned char *data)
 724{
 725	int rc;
 726	unsigned char command[] = {
 727		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 728		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 729	};
 730
 731	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
 732
 733	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 734		command, 9, NULL);
 735	if (rc != USB_STOR_XFER_GOOD)
 736		return rc;
 737
 738	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 739		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 740}
 741
 742/*
 743 * Reads data from a certain offset page inside a PBA, excluding redundancy
 744 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 745 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 746 * trailing bytes outside this function.
 747 */
 748static int alauda_read_block(struct us_data *us, u16 pba,
 749		unsigned int page, unsigned int pages, unsigned char *data)
 750{
 751	int i, rc;
 752	unsigned int pagesize = MEDIA_INFO(us).pagesize;
 753
 754	rc = alauda_read_block_raw(us, pba, page, pages, data);
 755	if (rc != USB_STOR_XFER_GOOD)
 756		return rc;
 757
 758	/* Cut out the redundancy data */
 759	for (i = 0; i < pages; i++) {
 760		int dest_offset = i * pagesize;
 761		int src_offset = i * (pagesize + 64);
 762		memmove(data + dest_offset, data + src_offset, pagesize);
 763	}
 764
 765	return rc;
 766}
 767
 768/*
 769 * Writes an entire block of data and checks status after write.
 770 * Redundancy data must be already included in data. Data should be
 771 * (pagesize+64)*blocksize bytes in length.
 772 */
 773static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 774{
 775	int rc;
 776	struct alauda_info *info = (struct alauda_info *) us->extra;
 777	unsigned char command[] = {
 778		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 779		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 780	};
 781
 782	usb_stor_dbg(us, "pba %d\n", pba);
 783
 784	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 785		command, 9, NULL);
 786	if (rc != USB_STOR_XFER_GOOD)
 787		return rc;
 788
 789	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 790		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 791		NULL);
 792	if (rc != USB_STOR_XFER_GOOD)
 793		return rc;
 794
 795	return alauda_check_status2(us);
 796}
 797
 798/*
 799 * Write some data to a specific LBA.
 800 */
 801static int alauda_write_lba(struct us_data *us, u16 lba,
 802		 unsigned int page, unsigned int pages,
 803		 unsigned char *ptr, unsigned char *blockbuffer)
 804{
 805	u16 pba, lbap, new_pba;
 806	unsigned char *bptr, *cptr, *xptr;
 807	unsigned char ecc[3];
 808	int i, result;
 809	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 810	unsigned int zonesize = MEDIA_INFO(us).zonesize;
 811	unsigned int pagesize = MEDIA_INFO(us).pagesize;
 812	unsigned int blocksize = MEDIA_INFO(us).blocksize;
 813	unsigned int lba_offset = lba % uzonesize;
 814	unsigned int new_pba_offset;
 815	unsigned int zone = lba / uzonesize;
 816
 817	alauda_ensure_map_for_zone(us, zone);
 818
 819	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 820	if (pba == 1) {
 821		/*
 822		 * Maybe it is impossible to write to PBA 1.
 823		 * Fake success, but don't do anything.
 824		 */
 825		printk(KERN_WARNING
 826		       "alauda_write_lba: avoid writing to pba 1\n");
 827		return USB_STOR_TRANSPORT_GOOD;
 828	}
 829
 830	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 831	if (!new_pba) {
 832		printk(KERN_WARNING
 833		       "alauda_write_lba: Out of unused blocks\n");
 834		return USB_STOR_TRANSPORT_ERROR;
 835	}
 836
 837	/* read old contents */
 838	if (pba != UNDEF) {
 839		result = alauda_read_block_raw(us, pba, 0,
 840			blocksize, blockbuffer);
 841		if (result != USB_STOR_XFER_GOOD)
 842			return result;
 843	} else {
 844		memset(blockbuffer, 0, blocksize * (pagesize + 64));
 845	}
 846
 847	lbap = (lba_offset << 1) | 0x1000;
 848	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 849		lbap ^= 1;
 850
 851	/* check old contents and fill lba */
 852	for (i = 0; i < blocksize; i++) {
 853		bptr = blockbuffer + (i * (pagesize + 64));
 854		cptr = bptr + pagesize;
 855		nand_compute_ecc(bptr, ecc);
 856		if (!nand_compare_ecc(cptr+13, ecc)) {
 857			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 858				     i, pba);
 859			nand_store_ecc(cptr+13, ecc);
 860		}
 861		nand_compute_ecc(bptr + (pagesize / 2), ecc);
 862		if (!nand_compare_ecc(cptr+8, ecc)) {
 863			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 864				     i, pba);
 865			nand_store_ecc(cptr+8, ecc);
 866		}
 867		cptr[6] = cptr[11] = MSB_of(lbap);
 868		cptr[7] = cptr[12] = LSB_of(lbap);
 869	}
 870
 871	/* copy in new stuff and compute ECC */
 872	xptr = ptr;
 873	for (i = page; i < page+pages; i++) {
 874		bptr = blockbuffer + (i * (pagesize + 64));
 875		cptr = bptr + pagesize;
 876		memcpy(bptr, xptr, pagesize);
 877		xptr += pagesize;
 878		nand_compute_ecc(bptr, ecc);
 879		nand_store_ecc(cptr+13, ecc);
 880		nand_compute_ecc(bptr + (pagesize / 2), ecc);
 881		nand_store_ecc(cptr+8, ecc);
 882	}
 883
 884	result = alauda_write_block(us, new_pba, blockbuffer);
 885	if (result != USB_STOR_XFER_GOOD)
 886		return result;
 887
 888	new_pba_offset = new_pba - (zone * zonesize);
 889	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 890	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 891	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
 892
 893	if (pba != UNDEF) {
 894		unsigned int pba_offset = pba - (zone * zonesize);
 895		result = alauda_erase_block(us, pba);
 896		if (result != USB_STOR_XFER_GOOD)
 897			return result;
 898		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 899	}
 900
 901	return USB_STOR_TRANSPORT_GOOD;
 902}
 903
 904/*
 905 * Read data from a specific sector address
 906 */
 907static int alauda_read_data(struct us_data *us, unsigned long address,
 908		unsigned int sectors)
 909{
 910	unsigned char *buffer;
 911	u16 lba, max_lba;
 912	unsigned int page, len, offset;
 913	unsigned int blockshift = MEDIA_INFO(us).blockshift;
 914	unsigned int pageshift = MEDIA_INFO(us).pageshift;
 915	unsigned int blocksize = MEDIA_INFO(us).blocksize;
 916	unsigned int pagesize = MEDIA_INFO(us).pagesize;
 917	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 918	struct scatterlist *sg;
 919	int result;
 920
 921	/*
 922	 * Since we only read in one block at a time, we have to create
 923	 * a bounce buffer and move the data a piece at a time between the
 924	 * bounce buffer and the actual transfer buffer.
 925	 * We make this buffer big enough to hold temporary redundancy data,
 926	 * which we use when reading the data blocks.
 927	 */
 928
 929	len = min(sectors, blocksize) * (pagesize + 64);
 930	buffer = kmalloc(len, GFP_NOIO);
 931	if (!buffer)
 932		return USB_STOR_TRANSPORT_ERROR;
 933
 934	/* Figure out the initial LBA and page */
 935	lba = address >> blockshift;
 936	page = (address & MEDIA_INFO(us).blockmask);
 937	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 938
 939	result = USB_STOR_TRANSPORT_GOOD;
 940	offset = 0;
 941	sg = NULL;
 942
 943	while (sectors > 0) {
 944		unsigned int zone = lba / uzonesize; /* integer division */
 945		unsigned int lba_offset = lba - (zone * uzonesize);
 946		unsigned int pages;
 947		u16 pba;
 948		alauda_ensure_map_for_zone(us, zone);
 949
 950		/* Not overflowing capacity? */
 951		if (lba >= max_lba) {
 952			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 953				     lba, max_lba);
 954			result = USB_STOR_TRANSPORT_ERROR;
 955			break;
 956		}
 957
 958		/* Find number of pages we can read in this block */
 959		pages = min(sectors, blocksize - page);
 960		len = pages << pageshift;
 961
 962		/* Find where this lba lives on disk */
 963		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 964
 965		if (pba == UNDEF) {	/* this lba was never written */
 966			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 967				     pages, lba, page);
 968
 969			/*
 970			 * This is not really an error. It just means
 971			 * that the block has never been written.
 972			 * Instead of returning USB_STOR_TRANSPORT_ERROR
 973			 * it is better to return all zero data.
 974			 */
 975
 976			memset(buffer, 0, len);
 977		} else {
 978			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 979				     pages, pba, lba, page);
 980
 981			result = alauda_read_block(us, pba, page, pages, buffer);
 982			if (result != USB_STOR_TRANSPORT_GOOD)
 983				break;
 984		}
 985
 986		/* Store the data in the transfer buffer */
 987		usb_stor_access_xfer_buf(buffer, len, us->srb,
 988				&sg, &offset, TO_XFER_BUF);
 989
 990		page = 0;
 991		lba++;
 992		sectors -= pages;
 993	}
 994
 995	kfree(buffer);
 996	return result;
 997}
 998
 999/*
1000 * Write data to a specific sector address
1001 */
1002static int alauda_write_data(struct us_data *us, unsigned long address,
1003		unsigned int sectors)
1004{
1005	unsigned char *buffer, *blockbuffer;
1006	unsigned int page, len, offset;
1007	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1008	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1009	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1010	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1011	struct scatterlist *sg;
1012	u16 lba, max_lba;
1013	int result;
1014
1015	/*
1016	 * Since we don't write the user data directly to the device,
1017	 * we have to create a bounce buffer and move the data a piece
1018	 * at a time between the bounce buffer and the actual transfer buffer.
1019	 */
1020
1021	len = min(sectors, blocksize) * pagesize;
1022	buffer = kmalloc(len, GFP_NOIO);
1023	if (!buffer)
1024		return USB_STOR_TRANSPORT_ERROR;
1025
1026	/*
1027	 * We also need a temporary block buffer, where we read in the old data,
1028	 * overwrite parts with the new data, and manipulate the redundancy data
1029	 */
1030	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1031	if (!blockbuffer) {
1032		kfree(buffer);
1033		return USB_STOR_TRANSPORT_ERROR;
1034	}
1035
1036	/* Figure out the initial LBA and page */
1037	lba = address >> blockshift;
1038	page = (address & MEDIA_INFO(us).blockmask);
1039	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1040
1041	result = USB_STOR_TRANSPORT_GOOD;
1042	offset = 0;
1043	sg = NULL;
1044
1045	while (sectors > 0) {
1046		/* Write as many sectors as possible in this block */
1047		unsigned int pages = min(sectors, blocksize - page);
1048		len = pages << pageshift;
1049
1050		/* Not overflowing capacity? */
1051		if (lba >= max_lba) {
1052			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1053				     lba, max_lba);
1054			result = USB_STOR_TRANSPORT_ERROR;
1055			break;
1056		}
1057
1058		/* Get the data from the transfer buffer */
1059		usb_stor_access_xfer_buf(buffer, len, us->srb,
1060				&sg, &offset, FROM_XFER_BUF);
1061
1062		result = alauda_write_lba(us, lba, page, pages, buffer,
1063			blockbuffer);
1064		if (result != USB_STOR_TRANSPORT_GOOD)
1065			break;
1066
1067		page = 0;
1068		lba++;
1069		sectors -= pages;
1070	}
1071
1072	kfree(buffer);
1073	kfree(blockbuffer);
1074	return result;
1075}
1076
1077/*
1078 * Our interface with the rest of the world
1079 */
1080
1081static void alauda_info_destructor(void *extra)
1082{
1083	struct alauda_info *info = (struct alauda_info *) extra;
1084	int port;
1085
1086	if (!info)
1087		return;
1088
1089	for (port = 0; port < 2; port++) {
1090		struct alauda_media_info *media_info = &info->port[port];
1091
1092		alauda_free_maps(media_info);
1093		kfree(media_info->lba_to_pba);
1094		kfree(media_info->pba_to_lba);
1095	}
1096}
1097
1098/*
1099 * Initialize alauda_info struct and find the data-write endpoint
1100 */
1101static int init_alauda(struct us_data *us)
1102{
1103	struct alauda_info *info;
1104	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1105	nand_init_ecc();
1106
1107	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1108	if (!us->extra)
1109		return -ENOMEM;
1110
1111	info = (struct alauda_info *) us->extra;
1112	us->extra_destructor = alauda_info_destructor;
1113
1114	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1115		altsetting->endpoint[0].desc.bEndpointAddress
1116		& USB_ENDPOINT_NUMBER_MASK);
1117
1118	return 0;
1119}
1120
1121static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1122{
1123	int rc;
1124	struct alauda_info *info = (struct alauda_info *) us->extra;
1125	unsigned char *ptr = us->iobuf;
1126	static unsigned char inquiry_response[36] = {
1127		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1128	};
1129
1130	if (srb->cmnd[0] == INQUIRY) {
1131		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1132		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1133		fill_inquiry_response(us, ptr, 36);
1134		return USB_STOR_TRANSPORT_GOOD;
1135	}
1136
1137	if (srb->cmnd[0] == TEST_UNIT_READY) {
1138		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1139		return alauda_check_media(us);
1140	}
1141
1142	if (srb->cmnd[0] == READ_CAPACITY) {
1143		unsigned int num_zones;
1144		unsigned long capacity;
1145
1146		rc = alauda_check_media(us);
1147		if (rc != USB_STOR_TRANSPORT_GOOD)
1148			return rc;
1149
1150		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1151			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1152
1153		capacity = num_zones * MEDIA_INFO(us).uzonesize
1154			* MEDIA_INFO(us).blocksize;
1155
1156		/* Report capacity and page size */
1157		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1158		((__be32 *) ptr)[1] = cpu_to_be32(512);
1159
1160		usb_stor_set_xfer_buf(ptr, 8, srb);
1161		return USB_STOR_TRANSPORT_GOOD;
1162	}
1163
1164	if (srb->cmnd[0] == READ_10) {
1165		unsigned int page, pages;
1166
1167		rc = alauda_check_media(us);
1168		if (rc != USB_STOR_TRANSPORT_GOOD)
1169			return rc;
1170
1171		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1172		page <<= 16;
1173		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1174		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1175
1176		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1177
1178		return alauda_read_data(us, page, pages);
1179	}
1180
1181	if (srb->cmnd[0] == WRITE_10) {
1182		unsigned int page, pages;
1183
1184		rc = alauda_check_media(us);
1185		if (rc != USB_STOR_TRANSPORT_GOOD)
1186			return rc;
1187
1188		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1189		page <<= 16;
1190		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1191		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1192
1193		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1194
1195		return alauda_write_data(us, page, pages);
1196	}
1197
1198	if (srb->cmnd[0] == REQUEST_SENSE) {
1199		usb_stor_dbg(us, "REQUEST_SENSE\n");
1200
1201		memset(ptr, 0, 18);
1202		ptr[0] = 0xF0;
1203		ptr[2] = info->sense_key;
1204		ptr[7] = 11;
1205		ptr[12] = info->sense_asc;
1206		ptr[13] = info->sense_ascq;
1207		usb_stor_set_xfer_buf(ptr, 18, srb);
1208
1209		return USB_STOR_TRANSPORT_GOOD;
1210	}
1211
1212	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1213		/*
1214		 * sure.  whatever.  not like we can stop the user from popping
1215		 * the media out of the device (no locking doors, etc)
1216		 */
1217		return USB_STOR_TRANSPORT_GOOD;
1218	}
1219
1220	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1221		     srb->cmnd[0], srb->cmnd[0]);
1222	info->sense_key = 0x05;
1223	info->sense_asc = 0x20;
1224	info->sense_ascq = 0x00;
1225	return USB_STOR_TRANSPORT_FAILED;
1226}
1227
1228static struct scsi_host_template alauda_host_template;
1229
1230static int alauda_probe(struct usb_interface *intf,
1231			 const struct usb_device_id *id)
1232{
1233	struct us_data *us;
1234	int result;
1235
1236	result = usb_stor_probe1(&us, intf, id,
1237			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1238			&alauda_host_template);
1239	if (result)
1240		return result;
1241
1242	us->transport_name  = "Alauda Control/Bulk";
1243	us->transport = alauda_transport;
1244	us->transport_reset = usb_stor_Bulk_reset;
1245	us->max_lun = 1;
1246
1247	result = usb_stor_probe2(us);
1248	return result;
1249}
1250
1251static struct usb_driver alauda_driver = {
1252	.name =		DRV_NAME,
1253	.probe =	alauda_probe,
1254	.disconnect =	usb_stor_disconnect,
1255	.suspend =	usb_stor_suspend,
1256	.resume =	usb_stor_resume,
1257	.reset_resume =	usb_stor_reset_resume,
1258	.pre_reset =	usb_stor_pre_reset,
1259	.post_reset =	usb_stor_post_reset,
1260	.id_table =	alauda_usb_ids,
1261	.soft_unbind =	1,
1262	.no_dynamic_id = 1,
1263};
1264
1265module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for Alauda-based card readers
   4 *
   5 * Current development and maintenance by:
   6 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   7 *
   8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   9 *
  10 * Alauda implements a vendor-specific command set to access two media reader
  11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  12 * which are accepted by these devices.
  13 *
  14 * The driver was developed through reverse-engineering, with the help of the
  15 * sddr09 driver which has many similarities, and with some help from the
  16 * (very old) vendor-supplied GPL sma03 driver.
  17 *
  18 * For protocol info, see http://alauda.sourceforge.net
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/slab.h>
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_device.h>
  27
  28#include "usb.h"
  29#include "transport.h"
  30#include "protocol.h"
  31#include "debug.h"
  32#include "scsiglue.h"
  33
  34#define DRV_NAME "ums-alauda"
  35
  36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  38MODULE_LICENSE("GPL");
  39MODULE_IMPORT_NS(USB_STORAGE);
  40
  41/*
  42 * Status bytes
  43 */
  44#define ALAUDA_STATUS_ERROR		0x01
  45#define ALAUDA_STATUS_READY		0x40
  46
  47/*
  48 * Control opcodes (for request field)
  49 */
  50#define ALAUDA_GET_XD_MEDIA_STATUS	0x08
  51#define ALAUDA_GET_SM_MEDIA_STATUS	0x98
  52#define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
  53#define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
  54#define ALAUDA_GET_XD_MEDIA_SIG		0x86
  55#define ALAUDA_GET_SM_MEDIA_SIG		0x96
  56
  57/*
  58 * Bulk command identity (byte 0)
  59 */
  60#define ALAUDA_BULK_CMD			0x40
  61
  62/*
  63 * Bulk opcodes (byte 1)
  64 */
  65#define ALAUDA_BULK_GET_REDU_DATA	0x85
  66#define ALAUDA_BULK_READ_BLOCK		0x94
  67#define ALAUDA_BULK_ERASE_BLOCK		0xa3
  68#define ALAUDA_BULK_WRITE_BLOCK		0xb4
  69#define ALAUDA_BULK_GET_STATUS2		0xb7
  70#define ALAUDA_BULK_RESET_MEDIA		0xe0
  71
  72/*
  73 * Port to operate on (byte 8)
  74 */
  75#define ALAUDA_PORT_XD			0x00
  76#define ALAUDA_PORT_SM			0x01
  77
  78/*
  79 * LBA and PBA are unsigned ints. Special values.
  80 */
  81#define UNDEF    0xffff
  82#define SPARE    0xfffe
  83#define UNUSABLE 0xfffd
  84
  85struct alauda_media_info {
  86	unsigned long capacity;		/* total media size in bytes */
  87	unsigned int pagesize;		/* page size in bytes */
  88	unsigned int blocksize;		/* number of pages per block */
  89	unsigned int uzonesize;		/* number of usable blocks per zone */
  90	unsigned int zonesize;		/* number of blocks per zone */
  91	unsigned int blockmask;		/* mask to get page from address */
  92
  93	unsigned char pageshift;
  94	unsigned char blockshift;
  95	unsigned char zoneshift;
  96
  97	u16 **lba_to_pba;		/* logical to physical block map */
  98	u16 **pba_to_lba;		/* physical to logical block map */
  99};
 100
 101struct alauda_info {
 102	struct alauda_media_info port[2];
 103	int wr_ep;			/* endpoint to write data out of */
 104
 105	unsigned char sense_key;
 106	unsigned long sense_asc;	/* additional sense code */
 107	unsigned long sense_ascq;	/* additional sense code qualifier */
 108};
 109
 110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 111#define LSB_of(s) ((s)&0xFF)
 112#define MSB_of(s) ((s)>>8)
 113
 114#define MEDIA_PORT(us) us->srb->device->lun
 115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 116
 117#define PBA_LO(pba) ((pba & 0xF) << 5)
 118#define PBA_HI(pba) (pba >> 3)
 119#define PBA_ZONE(pba) (pba >> 11)
 120
 121static int init_alauda(struct us_data *us);
 122
 123
 124/*
 125 * The table of devices
 126 */
 127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 128		    vendorName, productName, useProtocol, useTransport, \
 129		    initFunction, flags) \
 130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 131  .driver_info = (flags) }
 132
 133static struct usb_device_id alauda_usb_ids[] = {
 134#	include "unusual_alauda.h"
 135	{ }		/* Terminating entry */
 136};
 137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 138
 139#undef UNUSUAL_DEV
 140
 141/*
 142 * The flags table
 143 */
 144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 145		    vendor_name, product_name, use_protocol, use_transport, \
 146		    init_function, Flags) \
 147{ \
 148	.vendorName = vendor_name,	\
 149	.productName = product_name,	\
 150	.useProtocol = use_protocol,	\
 151	.useTransport = use_transport,	\
 152	.initFunction = init_function,	\
 153}
 154
 155static struct us_unusual_dev alauda_unusual_dev_list[] = {
 156#	include "unusual_alauda.h"
 157	{ }		/* Terminating entry */
 158};
 159
 160#undef UNUSUAL_DEV
 161
 162
 163/*
 164 * Media handling
 165 */
 166
 167struct alauda_card_info {
 168	unsigned char id;		/* id byte */
 169	unsigned char chipshift;	/* 1<<cs bytes total capacity */
 170	unsigned char pageshift;	/* 1<<ps bytes in a page */
 171	unsigned char blockshift;	/* 1<<bs pages per block */
 172	unsigned char zoneshift;	/* 1<<zs blocks per zone */
 173};
 174
 175static struct alauda_card_info alauda_card_ids[] = {
 176	/* NAND flash */
 177	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
 178	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
 179	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
 180	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
 181	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
 182	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
 183	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
 184	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
 185	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
 186	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
 187	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
 188	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
 189	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
 190	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
 191
 192	/* MASK ROM */
 193	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
 194	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
 195	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
 196	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
 197	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
 198	{ 0,}
 199};
 200
 201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
 202{
 203	int i;
 204
 205	for (i = 0; alauda_card_ids[i].id != 0; i++)
 206		if (alauda_card_ids[i].id == id)
 207			return &(alauda_card_ids[i]);
 208	return NULL;
 209}
 210
 211/*
 212 * ECC computation.
 213 */
 214
 215static unsigned char parity[256];
 216static unsigned char ecc2[256];
 217
 218static void nand_init_ecc(void)
 219{
 220	int i, j, a;
 221
 222	parity[0] = 0;
 223	for (i = 1; i < 256; i++)
 224		parity[i] = (parity[i&(i-1)] ^ 1);
 225
 226	for (i = 0; i < 256; i++) {
 227		a = 0;
 228		for (j = 0; j < 8; j++) {
 229			if (i & (1<<j)) {
 230				if ((j & 1) == 0)
 231					a ^= 0x04;
 232				if ((j & 2) == 0)
 233					a ^= 0x10;
 234				if ((j & 4) == 0)
 235					a ^= 0x40;
 236			}
 237		}
 238		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 239	}
 240}
 241
 242/* compute 3-byte ecc on 256 bytes */
 243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
 244{
 245	int i, j, a;
 246	unsigned char par = 0, bit, bits[8] = {0};
 247
 248	/* collect 16 checksum bits */
 249	for (i = 0; i < 256; i++) {
 250		par ^= data[i];
 251		bit = parity[data[i]];
 252		for (j = 0; j < 8; j++)
 253			if ((i & (1<<j)) == 0)
 254				bits[j] ^= bit;
 255	}
 256
 257	/* put 4+4+4 = 12 bits in the ecc */
 258	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 259	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 260
 261	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 262	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 263
 264	ecc[2] = ecc2[par];
 265}
 266
 267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
 268{
 269	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 270}
 271
 272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
 273{
 274	memcpy(data, ecc, 3);
 275}
 276
 277/*
 278 * Alauda driver
 279 */
 280
 281/*
 282 * Forget our PBA <---> LBA mappings for a particular port
 283 */
 284static void alauda_free_maps (struct alauda_media_info *media_info)
 285{
 286	unsigned int shift = media_info->zoneshift
 287		+ media_info->blockshift + media_info->pageshift;
 288	unsigned int num_zones = media_info->capacity >> shift;
 289	unsigned int i;
 290
 291	if (media_info->lba_to_pba != NULL)
 292		for (i = 0; i < num_zones; i++) {
 293			kfree(media_info->lba_to_pba[i]);
 294			media_info->lba_to_pba[i] = NULL;
 295		}
 296
 297	if (media_info->pba_to_lba != NULL)
 298		for (i = 0; i < num_zones; i++) {
 299			kfree(media_info->pba_to_lba[i]);
 300			media_info->pba_to_lba[i] = NULL;
 301		}
 302}
 303
 304/*
 305 * Returns 2 bytes of status data
 306 * The first byte describes media status, and second byte describes door status
 307 */
 308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 309{
 310	int rc;
 311	unsigned char command;
 312
 313	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 314		command = ALAUDA_GET_XD_MEDIA_STATUS;
 315	else
 316		command = ALAUDA_GET_SM_MEDIA_STATUS;
 317
 318	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 319		command, 0xc0, 0, 1, data, 2);
 320
 321	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
 322
 323	return rc;
 324}
 325
 326/*
 327 * Clears the "media was changed" bit so that we know when it changes again
 328 * in the future.
 329 */
 330static int alauda_ack_media(struct us_data *us)
 331{
 332	unsigned char command;
 333
 334	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 335		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 336	else
 337		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 338
 339	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 340		command, 0x40, 0, 1, NULL, 0);
 341}
 342
 343/*
 344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 345 * and some other details.
 346 */
 347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 348{
 349	unsigned char command;
 350
 351	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 352		command = ALAUDA_GET_XD_MEDIA_SIG;
 353	else
 354		command = ALAUDA_GET_SM_MEDIA_SIG;
 355
 356	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 357		command, 0xc0, 0, 0, data, 4);
 358}
 359
 360/*
 361 * Resets the media status (but not the whole device?)
 362 */
 363static int alauda_reset_media(struct us_data *us)
 364{
 365	unsigned char *command = us->iobuf;
 366
 367	memset(command, 0, 9);
 368	command[0] = ALAUDA_BULK_CMD;
 369	command[1] = ALAUDA_BULK_RESET_MEDIA;
 370	command[8] = MEDIA_PORT(us);
 371
 372	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 373		command, 9, NULL);
 374}
 375
 376/*
 377 * Examines the media and deduces capacity, etc.
 378 */
 379static int alauda_init_media(struct us_data *us)
 380{
 381	unsigned char *data = us->iobuf;
 382	int ready = 0;
 383	struct alauda_card_info *media_info;
 384	unsigned int num_zones;
 385
 386	while (ready == 0) {
 387		msleep(20);
 388
 389		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 390			return USB_STOR_TRANSPORT_ERROR;
 391
 392		if (data[0] & 0x10)
 393			ready = 1;
 394	}
 395
 396	usb_stor_dbg(us, "We are ready for action!\n");
 397
 398	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 399		return USB_STOR_TRANSPORT_ERROR;
 400
 401	msleep(10);
 402
 403	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 404		return USB_STOR_TRANSPORT_ERROR;
 405
 406	if (data[0] != 0x14) {
 407		usb_stor_dbg(us, "Media not ready after ack\n");
 408		return USB_STOR_TRANSPORT_ERROR;
 409	}
 410
 411	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 412		return USB_STOR_TRANSPORT_ERROR;
 413
 414	usb_stor_dbg(us, "Media signature: %4ph\n", data);
 415	media_info = alauda_card_find_id(data[1]);
 416	if (media_info == NULL) {
 417		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
 418			data);
 419		return USB_STOR_TRANSPORT_ERROR;
 420	}
 421
 422	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 423	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
 424		     MEDIA_INFO(us).capacity >> 20);
 425
 426	MEDIA_INFO(us).pageshift = media_info->pageshift;
 427	MEDIA_INFO(us).blockshift = media_info->blockshift;
 428	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 429
 430	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 431	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 432	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 433
 434	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 435	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 436
 437	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 438		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 439	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 440	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 
 
 441
 442	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 443		return USB_STOR_TRANSPORT_ERROR;
 444
 445	return USB_STOR_TRANSPORT_GOOD;
 446}
 447
 448/*
 449 * Examines the media status and does the right thing when the media has gone,
 450 * appeared, or changed.
 451 */
 452static int alauda_check_media(struct us_data *us)
 453{
 454	struct alauda_info *info = (struct alauda_info *) us->extra;
 455	unsigned char status[2];
 456	int rc;
 457
 458	rc = alauda_get_media_status(us, status);
 459
 460	/* Check for no media or door open */
 461	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 462		|| ((status[1] & 0x01) == 0)) {
 463		usb_stor_dbg(us, "No media, or door open\n");
 464		alauda_free_maps(&MEDIA_INFO(us));
 465		info->sense_key = 0x02;
 466		info->sense_asc = 0x3A;
 467		info->sense_ascq = 0x00;
 468		return USB_STOR_TRANSPORT_FAILED;
 469	}
 470
 471	/* Check for media change */
 472	if (status[0] & 0x08) {
 473		usb_stor_dbg(us, "Media change detected\n");
 474		alauda_free_maps(&MEDIA_INFO(us));
 475		alauda_init_media(us);
 476
 477		info->sense_key = UNIT_ATTENTION;
 478		info->sense_asc = 0x28;
 479		info->sense_ascq = 0x00;
 480		return USB_STOR_TRANSPORT_FAILED;
 481	}
 482
 483	return USB_STOR_TRANSPORT_GOOD;
 484}
 485
 486/*
 487 * Checks the status from the 2nd status register
 488 * Returns 3 bytes of status data, only the first is known
 489 */
 490static int alauda_check_status2(struct us_data *us)
 491{
 492	int rc;
 493	unsigned char command[] = {
 494		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 495		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 496	};
 497	unsigned char data[3];
 498
 499	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 500		command, 9, NULL);
 501	if (rc != USB_STOR_XFER_GOOD)
 502		return rc;
 503
 504	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 505		data, 3, NULL);
 506	if (rc != USB_STOR_XFER_GOOD)
 507		return rc;
 508
 509	usb_stor_dbg(us, "%3ph\n", data);
 510	if (data[0] & ALAUDA_STATUS_ERROR)
 511		return USB_STOR_XFER_ERROR;
 512
 513	return USB_STOR_XFER_GOOD;
 514}
 515
 516/*
 517 * Gets the redundancy data for the first page of a PBA
 518 * Returns 16 bytes.
 519 */
 520static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 521{
 522	int rc;
 523	unsigned char command[] = {
 524		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 525		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 526	};
 527
 528	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 529		command, 9, NULL);
 530	if (rc != USB_STOR_XFER_GOOD)
 531		return rc;
 532
 533	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 534		data, 16, NULL);
 535}
 536
 537/*
 538 * Finds the first unused PBA in a zone
 539 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 540 */
 541static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 542	unsigned int zone)
 543{
 544	u16 *pba_to_lba = info->pba_to_lba[zone];
 545	unsigned int i;
 546
 547	for (i = 0; i < info->zonesize; i++)
 548		if (pba_to_lba[i] == UNDEF)
 549			return (zone << info->zoneshift) + i;
 550
 551	return 0;
 552}
 553
 554/*
 555 * Reads the redundancy data for all PBA's in a zone
 556 * Produces lba <--> pba mappings
 557 */
 558static int alauda_read_map(struct us_data *us, unsigned int zone)
 559{
 560	unsigned char *data = us->iobuf;
 561	int result;
 562	int i, j;
 563	unsigned int zonesize = MEDIA_INFO(us).zonesize;
 564	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 565	unsigned int lba_offset, lba_real, blocknum;
 566	unsigned int zone_base_lba = zone * uzonesize;
 567	unsigned int zone_base_pba = zone * zonesize;
 568	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 569	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 570	if (lba_to_pba == NULL || pba_to_lba == NULL) {
 571		result = USB_STOR_TRANSPORT_ERROR;
 572		goto error;
 573	}
 574
 575	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
 576
 577	/* 1024 PBA's per zone */
 578	for (i = 0; i < zonesize; i++)
 579		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 580
 581	for (i = 0; i < zonesize; i++) {
 582		blocknum = zone_base_pba + i;
 583
 584		result = alauda_get_redu_data(us, blocknum, data);
 585		if (result != USB_STOR_XFER_GOOD) {
 586			result = USB_STOR_TRANSPORT_ERROR;
 587			goto error;
 588		}
 589
 590		/* special PBAs have control field 0^16 */
 591		for (j = 0; j < 16; j++)
 592			if (data[j] != 0)
 593				goto nonz;
 594		pba_to_lba[i] = UNUSABLE;
 595		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
 596		continue;
 597
 598	nonz:
 599		/* unwritten PBAs have control field FF^16 */
 600		for (j = 0; j < 16; j++)
 601			if (data[j] != 0xff)
 602				goto nonff;
 603		continue;
 604
 605	nonff:
 606		/* normal PBAs start with six FFs */
 607		if (j < 6) {
 608			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
 609				     blocknum,
 610				     data[0], data[1], data[2], data[3],
 611				     data[4], data[5]);
 612			pba_to_lba[i] = UNUSABLE;
 613			continue;
 614		}
 615
 616		if ((data[6] >> 4) != 0x01) {
 617			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
 618				     blocknum, data[6], data[7],
 619				     data[11], data[12]);
 620			pba_to_lba[i] = UNUSABLE;
 621			continue;
 622		}
 623
 624		/* check even parity */
 625		if (parity[data[6] ^ data[7]]) {
 626			printk(KERN_WARNING
 627			       "alauda_read_map: Bad parity in LBA for block %d"
 628			       " (%02X %02X)\n", i, data[6], data[7]);
 629			pba_to_lba[i] = UNUSABLE;
 630			continue;
 631		}
 632
 633		lba_offset = short_pack(data[7], data[6]);
 634		lba_offset = (lba_offset & 0x07FF) >> 1;
 635		lba_real = lba_offset + zone_base_lba;
 636
 637		/*
 638		 * Every 1024 physical blocks ("zone"), the LBA numbers
 639		 * go back to zero, but are within a higher block of LBA's.
 640		 * Also, there is a maximum of 1000 LBA's per zone.
 641		 * In other words, in PBA 1024-2047 you will find LBA 0-999
 642		 * which are really LBA 1000-1999. This allows for 24 bad
 643		 * or special physical blocks per zone.
 644		 */
 645
 646		if (lba_offset >= uzonesize) {
 647			printk(KERN_WARNING
 648			       "alauda_read_map: Bad low LBA %d for block %d\n",
 649			       lba_real, blocknum);
 650			continue;
 651		}
 652
 653		if (lba_to_pba[lba_offset] != UNDEF) {
 654			printk(KERN_WARNING
 655			       "alauda_read_map: "
 656			       "LBA %d seen for PBA %d and %d\n",
 657			       lba_real, lba_to_pba[lba_offset], blocknum);
 658			continue;
 659		}
 660
 661		pba_to_lba[i] = lba_real;
 662		lba_to_pba[lba_offset] = blocknum;
 663		continue;
 664	}
 665
 666	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 667	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 668	result = 0;
 669	goto out;
 670
 671error:
 672	kfree(lba_to_pba);
 673	kfree(pba_to_lba);
 674out:
 675	return result;
 676}
 677
 678/*
 679 * Checks to see whether we have already mapped a certain zone
 680 * If we haven't, the map is generated
 681 */
 682static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 683{
 684	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 685		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 686		alauda_read_map(us, zone);
 687}
 688
 689/*
 690 * Erases an entire block
 691 */
 692static int alauda_erase_block(struct us_data *us, u16 pba)
 693{
 694	int rc;
 695	unsigned char command[] = {
 696		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 697		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 698	};
 699	unsigned char buf[2];
 700
 701	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
 702
 703	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 704		command, 9, NULL);
 705	if (rc != USB_STOR_XFER_GOOD)
 706		return rc;
 707
 708	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 709		buf, 2, NULL);
 710	if (rc != USB_STOR_XFER_GOOD)
 711		return rc;
 712
 713	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
 714	return rc;
 715}
 716
 717/*
 718 * Reads data from a certain offset page inside a PBA, including interleaved
 719 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 720 */
 721static int alauda_read_block_raw(struct us_data *us, u16 pba,
 722		unsigned int page, unsigned int pages, unsigned char *data)
 723{
 724	int rc;
 725	unsigned char command[] = {
 726		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 727		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 728	};
 729
 730	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
 731
 732	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 733		command, 9, NULL);
 734	if (rc != USB_STOR_XFER_GOOD)
 735		return rc;
 736
 737	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 738		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 739}
 740
 741/*
 742 * Reads data from a certain offset page inside a PBA, excluding redundancy
 743 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 744 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 745 * trailing bytes outside this function.
 746 */
 747static int alauda_read_block(struct us_data *us, u16 pba,
 748		unsigned int page, unsigned int pages, unsigned char *data)
 749{
 750	int i, rc;
 751	unsigned int pagesize = MEDIA_INFO(us).pagesize;
 752
 753	rc = alauda_read_block_raw(us, pba, page, pages, data);
 754	if (rc != USB_STOR_XFER_GOOD)
 755		return rc;
 756
 757	/* Cut out the redundancy data */
 758	for (i = 0; i < pages; i++) {
 759		int dest_offset = i * pagesize;
 760		int src_offset = i * (pagesize + 64);
 761		memmove(data + dest_offset, data + src_offset, pagesize);
 762	}
 763
 764	return rc;
 765}
 766
 767/*
 768 * Writes an entire block of data and checks status after write.
 769 * Redundancy data must be already included in data. Data should be
 770 * (pagesize+64)*blocksize bytes in length.
 771 */
 772static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 773{
 774	int rc;
 775	struct alauda_info *info = (struct alauda_info *) us->extra;
 776	unsigned char command[] = {
 777		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 778		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 779	};
 780
 781	usb_stor_dbg(us, "pba %d\n", pba);
 782
 783	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 784		command, 9, NULL);
 785	if (rc != USB_STOR_XFER_GOOD)
 786		return rc;
 787
 788	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 789		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 790		NULL);
 791	if (rc != USB_STOR_XFER_GOOD)
 792		return rc;
 793
 794	return alauda_check_status2(us);
 795}
 796
 797/*
 798 * Write some data to a specific LBA.
 799 */
 800static int alauda_write_lba(struct us_data *us, u16 lba,
 801		 unsigned int page, unsigned int pages,
 802		 unsigned char *ptr, unsigned char *blockbuffer)
 803{
 804	u16 pba, lbap, new_pba;
 805	unsigned char *bptr, *cptr, *xptr;
 806	unsigned char ecc[3];
 807	int i, result;
 808	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 809	unsigned int zonesize = MEDIA_INFO(us).zonesize;
 810	unsigned int pagesize = MEDIA_INFO(us).pagesize;
 811	unsigned int blocksize = MEDIA_INFO(us).blocksize;
 812	unsigned int lba_offset = lba % uzonesize;
 813	unsigned int new_pba_offset;
 814	unsigned int zone = lba / uzonesize;
 815
 816	alauda_ensure_map_for_zone(us, zone);
 817
 818	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 819	if (pba == 1) {
 820		/*
 821		 * Maybe it is impossible to write to PBA 1.
 822		 * Fake success, but don't do anything.
 823		 */
 824		printk(KERN_WARNING
 825		       "alauda_write_lba: avoid writing to pba 1\n");
 826		return USB_STOR_TRANSPORT_GOOD;
 827	}
 828
 829	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 830	if (!new_pba) {
 831		printk(KERN_WARNING
 832		       "alauda_write_lba: Out of unused blocks\n");
 833		return USB_STOR_TRANSPORT_ERROR;
 834	}
 835
 836	/* read old contents */
 837	if (pba != UNDEF) {
 838		result = alauda_read_block_raw(us, pba, 0,
 839			blocksize, blockbuffer);
 840		if (result != USB_STOR_XFER_GOOD)
 841			return result;
 842	} else {
 843		memset(blockbuffer, 0, blocksize * (pagesize + 64));
 844	}
 845
 846	lbap = (lba_offset << 1) | 0x1000;
 847	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 848		lbap ^= 1;
 849
 850	/* check old contents and fill lba */
 851	for (i = 0; i < blocksize; i++) {
 852		bptr = blockbuffer + (i * (pagesize + 64));
 853		cptr = bptr + pagesize;
 854		nand_compute_ecc(bptr, ecc);
 855		if (!nand_compare_ecc(cptr+13, ecc)) {
 856			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 857				     i, pba);
 858			nand_store_ecc(cptr+13, ecc);
 859		}
 860		nand_compute_ecc(bptr + (pagesize / 2), ecc);
 861		if (!nand_compare_ecc(cptr+8, ecc)) {
 862			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 863				     i, pba);
 864			nand_store_ecc(cptr+8, ecc);
 865		}
 866		cptr[6] = cptr[11] = MSB_of(lbap);
 867		cptr[7] = cptr[12] = LSB_of(lbap);
 868	}
 869
 870	/* copy in new stuff and compute ECC */
 871	xptr = ptr;
 872	for (i = page; i < page+pages; i++) {
 873		bptr = blockbuffer + (i * (pagesize + 64));
 874		cptr = bptr + pagesize;
 875		memcpy(bptr, xptr, pagesize);
 876		xptr += pagesize;
 877		nand_compute_ecc(bptr, ecc);
 878		nand_store_ecc(cptr+13, ecc);
 879		nand_compute_ecc(bptr + (pagesize / 2), ecc);
 880		nand_store_ecc(cptr+8, ecc);
 881	}
 882
 883	result = alauda_write_block(us, new_pba, blockbuffer);
 884	if (result != USB_STOR_XFER_GOOD)
 885		return result;
 886
 887	new_pba_offset = new_pba - (zone * zonesize);
 888	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 889	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 890	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
 891
 892	if (pba != UNDEF) {
 893		unsigned int pba_offset = pba - (zone * zonesize);
 894		result = alauda_erase_block(us, pba);
 895		if (result != USB_STOR_XFER_GOOD)
 896			return result;
 897		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 898	}
 899
 900	return USB_STOR_TRANSPORT_GOOD;
 901}
 902
 903/*
 904 * Read data from a specific sector address
 905 */
 906static int alauda_read_data(struct us_data *us, unsigned long address,
 907		unsigned int sectors)
 908{
 909	unsigned char *buffer;
 910	u16 lba, max_lba;
 911	unsigned int page, len, offset;
 912	unsigned int blockshift = MEDIA_INFO(us).blockshift;
 913	unsigned int pageshift = MEDIA_INFO(us).pageshift;
 914	unsigned int blocksize = MEDIA_INFO(us).blocksize;
 915	unsigned int pagesize = MEDIA_INFO(us).pagesize;
 916	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 917	struct scatterlist *sg;
 918	int result;
 919
 920	/*
 921	 * Since we only read in one block at a time, we have to create
 922	 * a bounce buffer and move the data a piece at a time between the
 923	 * bounce buffer and the actual transfer buffer.
 924	 * We make this buffer big enough to hold temporary redundancy data,
 925	 * which we use when reading the data blocks.
 926	 */
 927
 928	len = min(sectors, blocksize) * (pagesize + 64);
 929	buffer = kmalloc(len, GFP_NOIO);
 930	if (!buffer)
 931		return USB_STOR_TRANSPORT_ERROR;
 932
 933	/* Figure out the initial LBA and page */
 934	lba = address >> blockshift;
 935	page = (address & MEDIA_INFO(us).blockmask);
 936	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 937
 938	result = USB_STOR_TRANSPORT_GOOD;
 939	offset = 0;
 940	sg = NULL;
 941
 942	while (sectors > 0) {
 943		unsigned int zone = lba / uzonesize; /* integer division */
 944		unsigned int lba_offset = lba - (zone * uzonesize);
 945		unsigned int pages;
 946		u16 pba;
 947		alauda_ensure_map_for_zone(us, zone);
 948
 949		/* Not overflowing capacity? */
 950		if (lba >= max_lba) {
 951			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 952				     lba, max_lba);
 953			result = USB_STOR_TRANSPORT_ERROR;
 954			break;
 955		}
 956
 957		/* Find number of pages we can read in this block */
 958		pages = min(sectors, blocksize - page);
 959		len = pages << pageshift;
 960
 961		/* Find where this lba lives on disk */
 962		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 963
 964		if (pba == UNDEF) {	/* this lba was never written */
 965			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 966				     pages, lba, page);
 967
 968			/*
 969			 * This is not really an error. It just means
 970			 * that the block has never been written.
 971			 * Instead of returning USB_STOR_TRANSPORT_ERROR
 972			 * it is better to return all zero data.
 973			 */
 974
 975			memset(buffer, 0, len);
 976		} else {
 977			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 978				     pages, pba, lba, page);
 979
 980			result = alauda_read_block(us, pba, page, pages, buffer);
 981			if (result != USB_STOR_TRANSPORT_GOOD)
 982				break;
 983		}
 984
 985		/* Store the data in the transfer buffer */
 986		usb_stor_access_xfer_buf(buffer, len, us->srb,
 987				&sg, &offset, TO_XFER_BUF);
 988
 989		page = 0;
 990		lba++;
 991		sectors -= pages;
 992	}
 993
 994	kfree(buffer);
 995	return result;
 996}
 997
 998/*
 999 * Write data to a specific sector address
1000 */
1001static int alauda_write_data(struct us_data *us, unsigned long address,
1002		unsigned int sectors)
1003{
1004	unsigned char *buffer, *blockbuffer;
1005	unsigned int page, len, offset;
1006	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1007	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1008	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1009	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1010	struct scatterlist *sg;
1011	u16 lba, max_lba;
1012	int result;
1013
1014	/*
1015	 * Since we don't write the user data directly to the device,
1016	 * we have to create a bounce buffer and move the data a piece
1017	 * at a time between the bounce buffer and the actual transfer buffer.
1018	 */
1019
1020	len = min(sectors, blocksize) * pagesize;
1021	buffer = kmalloc(len, GFP_NOIO);
1022	if (!buffer)
1023		return USB_STOR_TRANSPORT_ERROR;
1024
1025	/*
1026	 * We also need a temporary block buffer, where we read in the old data,
1027	 * overwrite parts with the new data, and manipulate the redundancy data
1028	 */
1029	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1030	if (!blockbuffer) {
1031		kfree(buffer);
1032		return USB_STOR_TRANSPORT_ERROR;
1033	}
1034
1035	/* Figure out the initial LBA and page */
1036	lba = address >> blockshift;
1037	page = (address & MEDIA_INFO(us).blockmask);
1038	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1039
1040	result = USB_STOR_TRANSPORT_GOOD;
1041	offset = 0;
1042	sg = NULL;
1043
1044	while (sectors > 0) {
1045		/* Write as many sectors as possible in this block */
1046		unsigned int pages = min(sectors, blocksize - page);
1047		len = pages << pageshift;
1048
1049		/* Not overflowing capacity? */
1050		if (lba >= max_lba) {
1051			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1052				     lba, max_lba);
1053			result = USB_STOR_TRANSPORT_ERROR;
1054			break;
1055		}
1056
1057		/* Get the data from the transfer buffer */
1058		usb_stor_access_xfer_buf(buffer, len, us->srb,
1059				&sg, &offset, FROM_XFER_BUF);
1060
1061		result = alauda_write_lba(us, lba, page, pages, buffer,
1062			blockbuffer);
1063		if (result != USB_STOR_TRANSPORT_GOOD)
1064			break;
1065
1066		page = 0;
1067		lba++;
1068		sectors -= pages;
1069	}
1070
1071	kfree(buffer);
1072	kfree(blockbuffer);
1073	return result;
1074}
1075
1076/*
1077 * Our interface with the rest of the world
1078 */
1079
1080static void alauda_info_destructor(void *extra)
1081{
1082	struct alauda_info *info = (struct alauda_info *) extra;
1083	int port;
1084
1085	if (!info)
1086		return;
1087
1088	for (port = 0; port < 2; port++) {
1089		struct alauda_media_info *media_info = &info->port[port];
1090
1091		alauda_free_maps(media_info);
1092		kfree(media_info->lba_to_pba);
1093		kfree(media_info->pba_to_lba);
1094	}
1095}
1096
1097/*
1098 * Initialize alauda_info struct and find the data-write endpoint
1099 */
1100static int init_alauda(struct us_data *us)
1101{
1102	struct alauda_info *info;
1103	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1104	nand_init_ecc();
1105
1106	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1107	if (!us->extra)
1108		return USB_STOR_TRANSPORT_ERROR;
1109
1110	info = (struct alauda_info *) us->extra;
1111	us->extra_destructor = alauda_info_destructor;
1112
1113	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1114		altsetting->endpoint[0].desc.bEndpointAddress
1115		& USB_ENDPOINT_NUMBER_MASK);
1116
1117	return USB_STOR_TRANSPORT_GOOD;
1118}
1119
1120static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1121{
1122	int rc;
1123	struct alauda_info *info = (struct alauda_info *) us->extra;
1124	unsigned char *ptr = us->iobuf;
1125	static unsigned char inquiry_response[36] = {
1126		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1127	};
1128
1129	if (srb->cmnd[0] == INQUIRY) {
1130		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1131		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1132		fill_inquiry_response(us, ptr, 36);
1133		return USB_STOR_TRANSPORT_GOOD;
1134	}
1135
1136	if (srb->cmnd[0] == TEST_UNIT_READY) {
1137		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1138		return alauda_check_media(us);
1139	}
1140
1141	if (srb->cmnd[0] == READ_CAPACITY) {
1142		unsigned int num_zones;
1143		unsigned long capacity;
1144
1145		rc = alauda_check_media(us);
1146		if (rc != USB_STOR_TRANSPORT_GOOD)
1147			return rc;
1148
1149		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1150			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1151
1152		capacity = num_zones * MEDIA_INFO(us).uzonesize
1153			* MEDIA_INFO(us).blocksize;
1154
1155		/* Report capacity and page size */
1156		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1157		((__be32 *) ptr)[1] = cpu_to_be32(512);
1158
1159		usb_stor_set_xfer_buf(ptr, 8, srb);
1160		return USB_STOR_TRANSPORT_GOOD;
1161	}
1162
1163	if (srb->cmnd[0] == READ_10) {
1164		unsigned int page, pages;
1165
1166		rc = alauda_check_media(us);
1167		if (rc != USB_STOR_TRANSPORT_GOOD)
1168			return rc;
1169
1170		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1171		page <<= 16;
1172		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1173		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1174
1175		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1176
1177		return alauda_read_data(us, page, pages);
1178	}
1179
1180	if (srb->cmnd[0] == WRITE_10) {
1181		unsigned int page, pages;
1182
1183		rc = alauda_check_media(us);
1184		if (rc != USB_STOR_TRANSPORT_GOOD)
1185			return rc;
1186
1187		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188		page <<= 16;
1189		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1191
1192		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1193
1194		return alauda_write_data(us, page, pages);
1195	}
1196
1197	if (srb->cmnd[0] == REQUEST_SENSE) {
1198		usb_stor_dbg(us, "REQUEST_SENSE\n");
1199
1200		memset(ptr, 0, 18);
1201		ptr[0] = 0xF0;
1202		ptr[2] = info->sense_key;
1203		ptr[7] = 11;
1204		ptr[12] = info->sense_asc;
1205		ptr[13] = info->sense_ascq;
1206		usb_stor_set_xfer_buf(ptr, 18, srb);
1207
1208		return USB_STOR_TRANSPORT_GOOD;
1209	}
1210
1211	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1212		/*
1213		 * sure.  whatever.  not like we can stop the user from popping
1214		 * the media out of the device (no locking doors, etc)
1215		 */
1216		return USB_STOR_TRANSPORT_GOOD;
1217	}
1218
1219	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1220		     srb->cmnd[0], srb->cmnd[0]);
1221	info->sense_key = 0x05;
1222	info->sense_asc = 0x20;
1223	info->sense_ascq = 0x00;
1224	return USB_STOR_TRANSPORT_FAILED;
1225}
1226
1227static struct scsi_host_template alauda_host_template;
1228
1229static int alauda_probe(struct usb_interface *intf,
1230			 const struct usb_device_id *id)
1231{
1232	struct us_data *us;
1233	int result;
1234
1235	result = usb_stor_probe1(&us, intf, id,
1236			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1237			&alauda_host_template);
1238	if (result)
1239		return result;
1240
1241	us->transport_name  = "Alauda Control/Bulk";
1242	us->transport = alauda_transport;
1243	us->transport_reset = usb_stor_Bulk_reset;
1244	us->max_lun = 1;
1245
1246	result = usb_stor_probe2(us);
1247	return result;
1248}
1249
1250static struct usb_driver alauda_driver = {
1251	.name =		DRV_NAME,
1252	.probe =	alauda_probe,
1253	.disconnect =	usb_stor_disconnect,
1254	.suspend =	usb_stor_suspend,
1255	.resume =	usb_stor_resume,
1256	.reset_resume =	usb_stor_reset_resume,
1257	.pre_reset =	usb_stor_pre_reset,
1258	.post_reset =	usb_stor_post_reset,
1259	.id_table =	alauda_usb_ids,
1260	.soft_unbind =	1,
1261	.no_dynamic_id = 1,
1262};
1263
1264module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);