Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/bitfield.h>
 11#include <linux/clk.h>
 12#include <linux/delay.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/of_device.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 21#include <linux/dmaengine.h>
 22
 23#include <linux/spi/spi.h>
 24
 25#define SUN6I_AUTOSUSPEND_TIMEOUT	2000
 26
 27#define SUN6I_FIFO_DEPTH		128
 28#define SUN8I_FIFO_DEPTH		64
 29
 30#define SUN6I_GBL_CTL_REG		0x04
 31#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 32#define SUN6I_GBL_CTL_MASTER			BIT(1)
 33#define SUN6I_GBL_CTL_TP			BIT(7)
 34#define SUN6I_GBL_CTL_RST			BIT(31)
 35
 36#define SUN6I_TFR_CTL_REG		0x08
 37#define SUN6I_TFR_CTL_CPHA			BIT(0)
 38#define SUN6I_TFR_CTL_CPOL			BIT(1)
 39#define SUN6I_TFR_CTL_SPOL			BIT(2)
 40#define SUN6I_TFR_CTL_CS_MASK			0x30
 41#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 42#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 43#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 44#define SUN6I_TFR_CTL_DHB			BIT(8)
 45#define SUN6I_TFR_CTL_FBS			BIT(12)
 46#define SUN6I_TFR_CTL_XCH			BIT(31)
 47
 48#define SUN6I_INT_CTL_REG		0x10
 49#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 50#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 51#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 52#define SUN6I_INT_CTL_TC			BIT(12)
 53
 54#define SUN6I_INT_STA_REG		0x14
 55
 56#define SUN6I_FIFO_CTL_REG		0x18
 57#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 58#define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
 59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 60#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 61#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 62#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 63#define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
 64#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 65
 66#define SUN6I_FIFO_STA_REG		0x1c
 67#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 68#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 
 
 69
 70#define SUN6I_CLK_CTL_REG		0x24
 71#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 72#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 73#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 74#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 75#define SUN6I_CLK_CTL_DRS			BIT(12)
 76
 77#define SUN6I_MAX_XFER_SIZE		0xffffff
 78
 79#define SUN6I_BURST_CNT_REG		0x30
 
 80
 81#define SUN6I_XMIT_CNT_REG		0x34
 
 82
 83#define SUN6I_BURST_CTL_CNT_REG		0x38
 
 84
 85#define SUN6I_TXDATA_REG		0x200
 86#define SUN6I_RXDATA_REG		0x300
 87
 88struct sun6i_spi {
 89	struct spi_master	*master;
 90	void __iomem		*base_addr;
 91	dma_addr_t		dma_addr_rx;
 92	dma_addr_t		dma_addr_tx;
 93	struct clk		*hclk;
 94	struct clk		*mclk;
 95	struct reset_control	*rstc;
 96
 97	struct completion	done;
 98
 99	const u8		*tx_buf;
100	u8			*rx_buf;
101	int			len;
102	unsigned long		fifo_depth;
103};
104
105static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
106{
107	return readl(sspi->base_addr + reg);
108}
109
110static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
111{
112	writel(value, sspi->base_addr + reg);
113}
114
115static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
116{
117	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
 
 
120}
121
122static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
123{
124	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
125
126	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
 
127}
128
129static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130{
131	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133	reg &= ~mask;
134	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135}
136
137static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
138{
139	u32 len;
140	u8 byte;
141
142	/* See how much data is available */
143	len = sun6i_spi_get_rx_fifo_count(sspi);
 
 
 
 
 
144
145	while (len--) {
146		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
147		if (sspi->rx_buf)
148			*sspi->rx_buf++ = byte;
149	}
150}
151
152static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
153{
154	u32 cnt;
155	int len;
156	u8 byte;
157
158	/* See how much data we can fit */
159	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
160
161	len = min((int)cnt, sspi->len);
162
163	while (len--) {
164		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
165		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
166		sspi->len--;
167	}
168}
169
170static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
171{
172	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
173	u32 reg;
174
175	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
176	reg &= ~SUN6I_TFR_CTL_CS_MASK;
177	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
178
179	if (enable)
180		reg |= SUN6I_TFR_CTL_CS_LEVEL;
181	else
182		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
183
184	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
185}
186
187static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
188{
189	return SUN6I_MAX_XFER_SIZE - 1;
190}
191
192static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
193				 struct spi_transfer *tfr)
194{
195	struct dma_async_tx_descriptor *rxdesc, *txdesc;
196	struct spi_master *master = sspi->master;
197
198	rxdesc = NULL;
199	if (tfr->rx_buf) {
200		struct dma_slave_config rxconf = {
201			.direction = DMA_DEV_TO_MEM,
202			.src_addr = sspi->dma_addr_rx,
203			.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
204			.src_maxburst = 8,
205		};
206
207		dmaengine_slave_config(master->dma_rx, &rxconf);
208
209		rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
210						 tfr->rx_sg.sgl,
211						 tfr->rx_sg.nents,
212						 DMA_DEV_TO_MEM,
213						 DMA_PREP_INTERRUPT);
214		if (!rxdesc)
215			return -EINVAL;
216	}
217
218	txdesc = NULL;
219	if (tfr->tx_buf) {
220		struct dma_slave_config txconf = {
221			.direction = DMA_MEM_TO_DEV,
222			.dst_addr = sspi->dma_addr_tx,
223			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
224			.dst_maxburst = 8,
225		};
226
227		dmaengine_slave_config(master->dma_tx, &txconf);
228
229		txdesc = dmaengine_prep_slave_sg(master->dma_tx,
230						 tfr->tx_sg.sgl,
231						 tfr->tx_sg.nents,
232						 DMA_MEM_TO_DEV,
233						 DMA_PREP_INTERRUPT);
234		if (!txdesc) {
235			if (rxdesc)
236				dmaengine_terminate_sync(master->dma_rx);
237			return -EINVAL;
238		}
239	}
240
241	if (tfr->rx_buf) {
242		dmaengine_submit(rxdesc);
243		dma_async_issue_pending(master->dma_rx);
244	}
245
246	if (tfr->tx_buf) {
247		dmaengine_submit(txdesc);
248		dma_async_issue_pending(master->dma_tx);
249	}
250
251	return 0;
252}
253
254static int sun6i_spi_transfer_one(struct spi_master *master,
255				  struct spi_device *spi,
256				  struct spi_transfer *tfr)
257{
258	struct sun6i_spi *sspi = spi_master_get_devdata(master);
259	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
260	unsigned int start, end, tx_time;
261	unsigned int trig_level;
262	unsigned int tx_len = 0, rx_len = 0;
263	bool use_dma;
264	int ret = 0;
265	u32 reg;
266
267	if (tfr->len > SUN6I_MAX_XFER_SIZE)
268		return -EINVAL;
269
270	reinit_completion(&sspi->done);
271	sspi->tx_buf = tfr->tx_buf;
272	sspi->rx_buf = tfr->rx_buf;
273	sspi->len = tfr->len;
274	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
275
276	/* Clear pending interrupts */
277	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
278
279	/* Reset FIFO */
280	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
281			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
282
283	reg = 0;
284
285	if (!use_dma) {
286		/*
287		 * Setup FIFO interrupt trigger level
288		 * Here we choose 3/4 of the full fifo depth, as it's
289		 * the hardcoded value used in old generation of Allwinner
290		 * SPI controller. (See spi-sun4i.c)
291		 */
292		trig_level = sspi->fifo_depth / 4 * 3;
293	} else {
294		/*
295		 * Setup FIFO DMA request trigger level
296		 * We choose 1/2 of the full fifo depth, that value will
297		 * be used as DMA burst length.
298		 */
299		trig_level = sspi->fifo_depth / 2;
300
301		if (tfr->tx_buf)
302			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
303		if (tfr->rx_buf)
304			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
305	}
306
307	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
308	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
309
310	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
311
312	/*
313	 * Setup the transfer control register: Chip Select,
314	 * polarities, etc.
315	 */
316	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
317
318	if (spi->mode & SPI_CPOL)
319		reg |= SUN6I_TFR_CTL_CPOL;
320	else
321		reg &= ~SUN6I_TFR_CTL_CPOL;
322
323	if (spi->mode & SPI_CPHA)
324		reg |= SUN6I_TFR_CTL_CPHA;
325	else
326		reg &= ~SUN6I_TFR_CTL_CPHA;
327
328	if (spi->mode & SPI_LSB_FIRST)
329		reg |= SUN6I_TFR_CTL_FBS;
330	else
331		reg &= ~SUN6I_TFR_CTL_FBS;
332
333	/*
334	 * If it's a TX only transfer, we don't want to fill the RX
335	 * FIFO with bogus data
336	 */
337	if (sspi->rx_buf) {
338		reg &= ~SUN6I_TFR_CTL_DHB;
339		rx_len = tfr->len;
340	} else {
341		reg |= SUN6I_TFR_CTL_DHB;
342	}
343
344	/* We want to control the chip select manually */
345	reg |= SUN6I_TFR_CTL_CS_MANUAL;
346
347	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
348
349	/* Ensure that we have a parent clock fast enough */
350	mclk_rate = clk_get_rate(sspi->mclk);
351	if (mclk_rate < (2 * tfr->speed_hz)) {
352		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
353		mclk_rate = clk_get_rate(sspi->mclk);
354	}
355
356	/*
357	 * Setup clock divider.
358	 *
359	 * We have two choices there. Either we can use the clock
360	 * divide rate 1, which is calculated thanks to this formula:
361	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
362	 * Or we can use CDR2, which is calculated with the formula:
363	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
364	 * Wether we use the former or the latter is set through the
365	 * DRS bit.
366	 *
367	 * First try CDR2, and if we can't reach the expected
368	 * frequency, fall back to CDR1.
369	 */
370	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
371	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
372	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
373		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
374		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
 
375	} else {
376		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
377		reg = SUN6I_CLK_CTL_CDR1(div);
378		tfr->effective_speed_hz = mclk_rate / (1 << div);
379	}
380
381	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
382	/* Finally enable the bus - doing so before might raise SCK to HIGH */
383	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
384	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
385	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
386
387	/* Setup the transfer now... */
388	if (sspi->tx_buf)
389		tx_len = tfr->len;
390
391	/* Setup the counters */
392	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
393	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
394	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
395
396	if (!use_dma) {
397		/* Fill the TX FIFO */
398		sun6i_spi_fill_fifo(sspi);
399	} else {
400		ret = sun6i_spi_prepare_dma(sspi, tfr);
401		if (ret) {
402			dev_warn(&master->dev,
403				 "%s: prepare DMA failed, ret=%d",
404				 dev_name(&spi->dev), ret);
405			return ret;
406		}
407	}
408
409	/* Enable the interrupts */
410	reg = SUN6I_INT_CTL_TC;
411
412	if (!use_dma) {
413		if (rx_len > sspi->fifo_depth)
414			reg |= SUN6I_INT_CTL_RF_RDY;
415		if (tx_len > sspi->fifo_depth)
416			reg |= SUN6I_INT_CTL_TF_ERQ;
417	}
418
419	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
 
 
 
 
 
420
421	/* Start the transfer */
422	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
423	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
424
425	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
426	start = jiffies;
427	timeout = wait_for_completion_timeout(&sspi->done,
428					      msecs_to_jiffies(tx_time));
429	end = jiffies;
430	if (!timeout) {
431		dev_warn(&master->dev,
432			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
433			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
434			 jiffies_to_msecs(end - start), tx_time);
435		ret = -ETIMEDOUT;
 
436	}
437
 
438	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
439
440	if (ret && use_dma) {
441		dmaengine_terminate_sync(master->dma_rx);
442		dmaengine_terminate_sync(master->dma_tx);
443	}
444
445	return ret;
446}
447
448static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
449{
450	struct sun6i_spi *sspi = dev_id;
451	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
452
453	/* Transfer complete */
454	if (status & SUN6I_INT_CTL_TC) {
455		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
456		sun6i_spi_drain_fifo(sspi);
457		complete(&sspi->done);
458		return IRQ_HANDLED;
459	}
460
461	/* Receive FIFO 3/4 full */
462	if (status & SUN6I_INT_CTL_RF_RDY) {
463		sun6i_spi_drain_fifo(sspi);
464		/* Only clear the interrupt _after_ draining the FIFO */
465		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
466		return IRQ_HANDLED;
467	}
468
469	/* Transmit FIFO 3/4 empty */
470	if (status & SUN6I_INT_CTL_TF_ERQ) {
471		sun6i_spi_fill_fifo(sspi);
472
473		if (!sspi->len)
474			/* nothing left to transmit */
475			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
476
477		/* Only clear the interrupt _after_ re-seeding the FIFO */
478		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
479
480		return IRQ_HANDLED;
481	}
482
483	return IRQ_NONE;
484}
485
486static int sun6i_spi_runtime_resume(struct device *dev)
487{
488	struct spi_master *master = dev_get_drvdata(dev);
489	struct sun6i_spi *sspi = spi_master_get_devdata(master);
490	int ret;
491
492	ret = clk_prepare_enable(sspi->hclk);
493	if (ret) {
494		dev_err(dev, "Couldn't enable AHB clock\n");
495		goto out;
496	}
497
498	ret = clk_prepare_enable(sspi->mclk);
499	if (ret) {
500		dev_err(dev, "Couldn't enable module clock\n");
501		goto err;
502	}
503
504	ret = reset_control_deassert(sspi->rstc);
505	if (ret) {
506		dev_err(dev, "Couldn't deassert the device from reset\n");
507		goto err2;
508	}
509
510	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
511			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
512
513	return 0;
514
515err2:
516	clk_disable_unprepare(sspi->mclk);
517err:
518	clk_disable_unprepare(sspi->hclk);
519out:
520	return ret;
521}
522
523static int sun6i_spi_runtime_suspend(struct device *dev)
524{
525	struct spi_master *master = dev_get_drvdata(dev);
526	struct sun6i_spi *sspi = spi_master_get_devdata(master);
527
528	reset_control_assert(sspi->rstc);
529	clk_disable_unprepare(sspi->mclk);
530	clk_disable_unprepare(sspi->hclk);
531
532	return 0;
533}
534
535static bool sun6i_spi_can_dma(struct spi_master *master,
536			      struct spi_device *spi,
537			      struct spi_transfer *xfer)
538{
539	struct sun6i_spi *sspi = spi_master_get_devdata(master);
540
541	/*
542	 * If the number of spi words to transfer is less or equal than
543	 * the fifo length we can just fill the fifo and wait for a single
544	 * irq, so don't bother setting up dma
545	 */
546	return xfer->len > sspi->fifo_depth;
547}
548
549static int sun6i_spi_probe(struct platform_device *pdev)
550{
551	struct spi_master *master;
552	struct sun6i_spi *sspi;
553	struct resource *mem;
554	int ret = 0, irq;
555
556	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
557	if (!master) {
558		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
559		return -ENOMEM;
560	}
561
562	platform_set_drvdata(pdev, master);
563	sspi = spi_master_get_devdata(master);
564
565	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
566	if (IS_ERR(sspi->base_addr)) {
567		ret = PTR_ERR(sspi->base_addr);
568		goto err_free_master;
569	}
570
571	irq = platform_get_irq(pdev, 0);
572	if (irq < 0) {
573		ret = -ENXIO;
574		goto err_free_master;
575	}
576
577	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
578			       0, "sun6i-spi", sspi);
579	if (ret) {
580		dev_err(&pdev->dev, "Cannot request IRQ\n");
581		goto err_free_master;
582	}
583
584	sspi->master = master;
585	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
586
587	master->max_speed_hz = 100 * 1000 * 1000;
588	master->min_speed_hz = 3 * 1000;
589	master->use_gpio_descriptors = true;
590	master->set_cs = sun6i_spi_set_cs;
591	master->transfer_one = sun6i_spi_transfer_one;
592	master->num_chipselect = 4;
593	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
594	master->bits_per_word_mask = SPI_BPW_MASK(8);
595	master->dev.of_node = pdev->dev.of_node;
596	master->auto_runtime_pm = true;
597	master->max_transfer_size = sun6i_spi_max_transfer_size;
598
599	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
600	if (IS_ERR(sspi->hclk)) {
601		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
602		ret = PTR_ERR(sspi->hclk);
603		goto err_free_master;
604	}
605
606	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
607	if (IS_ERR(sspi->mclk)) {
608		dev_err(&pdev->dev, "Unable to acquire module clock\n");
609		ret = PTR_ERR(sspi->mclk);
610		goto err_free_master;
611	}
612
613	init_completion(&sspi->done);
614
615	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
616	if (IS_ERR(sspi->rstc)) {
617		dev_err(&pdev->dev, "Couldn't get reset controller\n");
618		ret = PTR_ERR(sspi->rstc);
619		goto err_free_master;
620	}
621
622	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
623	if (IS_ERR(master->dma_tx)) {
624		/* Check tx to see if we need defer probing driver */
625		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
626			ret = -EPROBE_DEFER;
627			goto err_free_master;
628		}
629		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
630		master->dma_tx = NULL;
631	}
632
633	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
634	if (IS_ERR(master->dma_rx)) {
635		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
636			ret = -EPROBE_DEFER;
637			goto err_free_dma_tx;
638		}
639		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
640		master->dma_rx = NULL;
641	}
642
643	if (master->dma_tx && master->dma_rx) {
644		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
645		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
646		master->can_dma = sun6i_spi_can_dma;
647	}
648
649	/*
650	 * This wake-up/shutdown pattern is to be able to have the
651	 * device woken up, even if runtime_pm is disabled
652	 */
653	ret = sun6i_spi_runtime_resume(&pdev->dev);
654	if (ret) {
655		dev_err(&pdev->dev, "Couldn't resume the device\n");
656		goto err_free_dma_rx;
657	}
658
659	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
660	pm_runtime_use_autosuspend(&pdev->dev);
661	pm_runtime_set_active(&pdev->dev);
662	pm_runtime_enable(&pdev->dev);
 
663
664	ret = devm_spi_register_master(&pdev->dev, master);
665	if (ret) {
666		dev_err(&pdev->dev, "cannot register SPI master\n");
667		goto err_pm_disable;
668	}
669
670	return 0;
671
672err_pm_disable:
673	pm_runtime_disable(&pdev->dev);
674	sun6i_spi_runtime_suspend(&pdev->dev);
675err_free_dma_rx:
676	if (master->dma_rx)
677		dma_release_channel(master->dma_rx);
678err_free_dma_tx:
679	if (master->dma_tx)
680		dma_release_channel(master->dma_tx);
681err_free_master:
682	spi_master_put(master);
683	return ret;
684}
685
686static int sun6i_spi_remove(struct platform_device *pdev)
687{
688	struct spi_master *master = platform_get_drvdata(pdev);
689
690	pm_runtime_force_suspend(&pdev->dev);
691
692	if (master->dma_tx)
693		dma_release_channel(master->dma_tx);
694	if (master->dma_rx)
695		dma_release_channel(master->dma_rx);
696	return 0;
697}
698
699static const struct of_device_id sun6i_spi_match[] = {
700	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
701	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
702	{}
703};
704MODULE_DEVICE_TABLE(of, sun6i_spi_match);
705
706static const struct dev_pm_ops sun6i_spi_pm_ops = {
707	.runtime_resume		= sun6i_spi_runtime_resume,
708	.runtime_suspend	= sun6i_spi_runtime_suspend,
709};
710
711static struct platform_driver sun6i_spi_driver = {
712	.probe	= sun6i_spi_probe,
713	.remove	= sun6i_spi_remove,
714	.driver	= {
715		.name		= "sun6i-spi",
716		.of_match_table	= sun6i_spi_match,
717		.pm		= &sun6i_spi_pm_ops,
718	},
719};
720module_platform_driver(sun6i_spi_driver);
721
722MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
723MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
724MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
725MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 
 10#include <linux/clk.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <linux/interrupt.h>
 14#include <linux/io.h>
 15#include <linux/module.h>
 16#include <linux/of_device.h>
 17#include <linux/platform_device.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/reset.h>
 
 20
 21#include <linux/spi/spi.h>
 22
 
 
 23#define SUN6I_FIFO_DEPTH		128
 24#define SUN8I_FIFO_DEPTH		64
 25
 26#define SUN6I_GBL_CTL_REG		0x04
 27#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 28#define SUN6I_GBL_CTL_MASTER			BIT(1)
 29#define SUN6I_GBL_CTL_TP			BIT(7)
 30#define SUN6I_GBL_CTL_RST			BIT(31)
 31
 32#define SUN6I_TFR_CTL_REG		0x08
 33#define SUN6I_TFR_CTL_CPHA			BIT(0)
 34#define SUN6I_TFR_CTL_CPOL			BIT(1)
 35#define SUN6I_TFR_CTL_SPOL			BIT(2)
 36#define SUN6I_TFR_CTL_CS_MASK			0x30
 37#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 38#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 39#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 40#define SUN6I_TFR_CTL_DHB			BIT(8)
 41#define SUN6I_TFR_CTL_FBS			BIT(12)
 42#define SUN6I_TFR_CTL_XCH			BIT(31)
 43
 44#define SUN6I_INT_CTL_REG		0x10
 45#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 46#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 47#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 48#define SUN6I_INT_CTL_TC			BIT(12)
 49
 50#define SUN6I_INT_STA_REG		0x14
 51
 52#define SUN6I_FIFO_CTL_REG		0x18
 53#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 
 54#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 55#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 56#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 57#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 
 58#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 59
 60#define SUN6I_FIFO_STA_REG		0x1c
 61#define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
 62#define SUN6I_FIFO_STA_RF_CNT_BITS		0
 63#define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
 64#define SUN6I_FIFO_STA_TF_CNT_BITS		16
 65
 66#define SUN6I_CLK_CTL_REG		0x24
 67#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 68#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 69#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 70#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 71#define SUN6I_CLK_CTL_DRS			BIT(12)
 72
 73#define SUN6I_MAX_XFER_SIZE		0xffffff
 74
 75#define SUN6I_BURST_CNT_REG		0x30
 76#define SUN6I_BURST_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
 77
 78#define SUN6I_XMIT_CNT_REG		0x34
 79#define SUN6I_XMIT_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
 80
 81#define SUN6I_BURST_CTL_CNT_REG		0x38
 82#define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & SUN6I_MAX_XFER_SIZE)
 83
 84#define SUN6I_TXDATA_REG		0x200
 85#define SUN6I_RXDATA_REG		0x300
 86
 87struct sun6i_spi {
 88	struct spi_master	*master;
 89	void __iomem		*base_addr;
 
 
 90	struct clk		*hclk;
 91	struct clk		*mclk;
 92	struct reset_control	*rstc;
 93
 94	struct completion	done;
 95
 96	const u8		*tx_buf;
 97	u8			*rx_buf;
 98	int			len;
 99	unsigned long		fifo_depth;
100};
101
102static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
103{
104	return readl(sspi->base_addr + reg);
105}
106
107static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
108{
109	writel(value, sspi->base_addr + reg);
110}
111
112static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
113{
114	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115
116	reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
117
118	return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
119}
120
121static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
122{
123	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
124
125	reg |= mask;
126	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
127}
128
129static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130{
131	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133	reg &= ~mask;
134	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135}
136
137static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
138{
139	u32 reg, cnt;
140	u8 byte;
141
142	/* See how much data is available */
143	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
144	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
145	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
146
147	if (len > cnt)
148		len = cnt;
149
150	while (len--) {
151		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
152		if (sspi->rx_buf)
153			*sspi->rx_buf++ = byte;
154	}
155}
156
157static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
158{
159	u32 cnt;
 
160	u8 byte;
161
162	/* See how much data we can fit */
163	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
164
165	len = min3(len, (int)cnt, sspi->len);
166
167	while (len--) {
168		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
169		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
170		sspi->len--;
171	}
172}
173
174static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
175{
176	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
177	u32 reg;
178
179	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
180	reg &= ~SUN6I_TFR_CTL_CS_MASK;
181	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
182
183	if (enable)
184		reg |= SUN6I_TFR_CTL_CS_LEVEL;
185	else
186		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
187
188	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
189}
190
191static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
192{
193	return SUN6I_MAX_XFER_SIZE - 1;
194}
195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196static int sun6i_spi_transfer_one(struct spi_master *master,
197				  struct spi_device *spi,
198				  struct spi_transfer *tfr)
199{
200	struct sun6i_spi *sspi = spi_master_get_devdata(master);
201	unsigned int mclk_rate, div, timeout;
202	unsigned int start, end, tx_time;
203	unsigned int trig_level;
204	unsigned int tx_len = 0;
 
205	int ret = 0;
206	u32 reg;
207
208	if (tfr->len > SUN6I_MAX_XFER_SIZE)
209		return -EINVAL;
210
211	reinit_completion(&sspi->done);
212	sspi->tx_buf = tfr->tx_buf;
213	sspi->rx_buf = tfr->rx_buf;
214	sspi->len = tfr->len;
 
215
216	/* Clear pending interrupts */
217	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
218
219	/* Reset FIFO */
220	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
221			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
222
223	/*
224	 * Setup FIFO interrupt trigger level
225	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
226	 * value used in old generation of Allwinner SPI controller.
227	 * (See spi-sun4i.c)
228	 */
229	trig_level = sspi->fifo_depth / 4 * 3;
230	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
231			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
232			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
234	/*
235	 * Setup the transfer control register: Chip Select,
236	 * polarities, etc.
237	 */
238	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
239
240	if (spi->mode & SPI_CPOL)
241		reg |= SUN6I_TFR_CTL_CPOL;
242	else
243		reg &= ~SUN6I_TFR_CTL_CPOL;
244
245	if (spi->mode & SPI_CPHA)
246		reg |= SUN6I_TFR_CTL_CPHA;
247	else
248		reg &= ~SUN6I_TFR_CTL_CPHA;
249
250	if (spi->mode & SPI_LSB_FIRST)
251		reg |= SUN6I_TFR_CTL_FBS;
252	else
253		reg &= ~SUN6I_TFR_CTL_FBS;
254
255	/*
256	 * If it's a TX only transfer, we don't want to fill the RX
257	 * FIFO with bogus data
258	 */
259	if (sspi->rx_buf)
260		reg &= ~SUN6I_TFR_CTL_DHB;
261	else
 
262		reg |= SUN6I_TFR_CTL_DHB;
 
263
264	/* We want to control the chip select manually */
265	reg |= SUN6I_TFR_CTL_CS_MANUAL;
266
267	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
268
269	/* Ensure that we have a parent clock fast enough */
270	mclk_rate = clk_get_rate(sspi->mclk);
271	if (mclk_rate < (2 * tfr->speed_hz)) {
272		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
273		mclk_rate = clk_get_rate(sspi->mclk);
274	}
275
276	/*
277	 * Setup clock divider.
278	 *
279	 * We have two choices there. Either we can use the clock
280	 * divide rate 1, which is calculated thanks to this formula:
281	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
282	 * Or we can use CDR2, which is calculated with the formula:
283	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284	 * Wether we use the former or the latter is set through the
285	 * DRS bit.
286	 *
287	 * First try CDR2, and if we can't reach the expected
288	 * frequency, fall back to CDR1.
289	 */
290	div = mclk_rate / (2 * tfr->speed_hz);
291	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292		if (div > 0)
293			div--;
294
295		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
296	} else {
297		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
298		reg = SUN6I_CLK_CTL_CDR1(div);
 
299	}
300
301	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 
 
 
 
302
303	/* Setup the transfer now... */
304	if (sspi->tx_buf)
305		tx_len = tfr->len;
306
307	/* Setup the counters */
308	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
309	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
310	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
311			SUN6I_BURST_CTL_CNT_STC(tx_len));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313	/* Fill the TX FIFO */
314	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
 
 
 
 
315
316	/* Enable the interrupts */
317	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
318	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
319					 SUN6I_INT_CTL_RF_RDY);
320	if (tx_len > sspi->fifo_depth)
321		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
322
323	/* Start the transfer */
324	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
325	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
326
327	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
328	start = jiffies;
329	timeout = wait_for_completion_timeout(&sspi->done,
330					      msecs_to_jiffies(tx_time));
331	end = jiffies;
332	if (!timeout) {
333		dev_warn(&master->dev,
334			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
335			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
336			 jiffies_to_msecs(end - start), tx_time);
337		ret = -ETIMEDOUT;
338		goto out;
339	}
340
341out:
342	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
343
 
 
 
 
 
344	return ret;
345}
346
347static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
348{
349	struct sun6i_spi *sspi = dev_id;
350	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
351
352	/* Transfer complete */
353	if (status & SUN6I_INT_CTL_TC) {
354		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
355		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
356		complete(&sspi->done);
357		return IRQ_HANDLED;
358	}
359
360	/* Receive FIFO 3/4 full */
361	if (status & SUN6I_INT_CTL_RF_RDY) {
362		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
363		/* Only clear the interrupt _after_ draining the FIFO */
364		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
365		return IRQ_HANDLED;
366	}
367
368	/* Transmit FIFO 3/4 empty */
369	if (status & SUN6I_INT_CTL_TF_ERQ) {
370		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
371
372		if (!sspi->len)
373			/* nothing left to transmit */
374			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
375
376		/* Only clear the interrupt _after_ re-seeding the FIFO */
377		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
378
379		return IRQ_HANDLED;
380	}
381
382	return IRQ_NONE;
383}
384
385static int sun6i_spi_runtime_resume(struct device *dev)
386{
387	struct spi_master *master = dev_get_drvdata(dev);
388	struct sun6i_spi *sspi = spi_master_get_devdata(master);
389	int ret;
390
391	ret = clk_prepare_enable(sspi->hclk);
392	if (ret) {
393		dev_err(dev, "Couldn't enable AHB clock\n");
394		goto out;
395	}
396
397	ret = clk_prepare_enable(sspi->mclk);
398	if (ret) {
399		dev_err(dev, "Couldn't enable module clock\n");
400		goto err;
401	}
402
403	ret = reset_control_deassert(sspi->rstc);
404	if (ret) {
405		dev_err(dev, "Couldn't deassert the device from reset\n");
406		goto err2;
407	}
408
409	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
410			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
411
412	return 0;
413
414err2:
415	clk_disable_unprepare(sspi->mclk);
416err:
417	clk_disable_unprepare(sspi->hclk);
418out:
419	return ret;
420}
421
422static int sun6i_spi_runtime_suspend(struct device *dev)
423{
424	struct spi_master *master = dev_get_drvdata(dev);
425	struct sun6i_spi *sspi = spi_master_get_devdata(master);
426
427	reset_control_assert(sspi->rstc);
428	clk_disable_unprepare(sspi->mclk);
429	clk_disable_unprepare(sspi->hclk);
430
431	return 0;
432}
433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434static int sun6i_spi_probe(struct platform_device *pdev)
435{
436	struct spi_master *master;
437	struct sun6i_spi *sspi;
 
438	int ret = 0, irq;
439
440	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
441	if (!master) {
442		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
443		return -ENOMEM;
444	}
445
446	platform_set_drvdata(pdev, master);
447	sspi = spi_master_get_devdata(master);
448
449	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
450	if (IS_ERR(sspi->base_addr)) {
451		ret = PTR_ERR(sspi->base_addr);
452		goto err_free_master;
453	}
454
455	irq = platform_get_irq(pdev, 0);
456	if (irq < 0) {
457		ret = -ENXIO;
458		goto err_free_master;
459	}
460
461	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
462			       0, "sun6i-spi", sspi);
463	if (ret) {
464		dev_err(&pdev->dev, "Cannot request IRQ\n");
465		goto err_free_master;
466	}
467
468	sspi->master = master;
469	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
470
471	master->max_speed_hz = 100 * 1000 * 1000;
472	master->min_speed_hz = 3 * 1000;
 
473	master->set_cs = sun6i_spi_set_cs;
474	master->transfer_one = sun6i_spi_transfer_one;
475	master->num_chipselect = 4;
476	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
477	master->bits_per_word_mask = SPI_BPW_MASK(8);
478	master->dev.of_node = pdev->dev.of_node;
479	master->auto_runtime_pm = true;
480	master->max_transfer_size = sun6i_spi_max_transfer_size;
481
482	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
483	if (IS_ERR(sspi->hclk)) {
484		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
485		ret = PTR_ERR(sspi->hclk);
486		goto err_free_master;
487	}
488
489	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
490	if (IS_ERR(sspi->mclk)) {
491		dev_err(&pdev->dev, "Unable to acquire module clock\n");
492		ret = PTR_ERR(sspi->mclk);
493		goto err_free_master;
494	}
495
496	init_completion(&sspi->done);
497
498	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
499	if (IS_ERR(sspi->rstc)) {
500		dev_err(&pdev->dev, "Couldn't get reset controller\n");
501		ret = PTR_ERR(sspi->rstc);
502		goto err_free_master;
503	}
504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505	/*
506	 * This wake-up/shutdown pattern is to be able to have the
507	 * device woken up, even if runtime_pm is disabled
508	 */
509	ret = sun6i_spi_runtime_resume(&pdev->dev);
510	if (ret) {
511		dev_err(&pdev->dev, "Couldn't resume the device\n");
512		goto err_free_master;
513	}
514
 
 
515	pm_runtime_set_active(&pdev->dev);
516	pm_runtime_enable(&pdev->dev);
517	pm_runtime_idle(&pdev->dev);
518
519	ret = devm_spi_register_master(&pdev->dev, master);
520	if (ret) {
521		dev_err(&pdev->dev, "cannot register SPI master\n");
522		goto err_pm_disable;
523	}
524
525	return 0;
526
527err_pm_disable:
528	pm_runtime_disable(&pdev->dev);
529	sun6i_spi_runtime_suspend(&pdev->dev);
 
 
 
 
 
 
530err_free_master:
531	spi_master_put(master);
532	return ret;
533}
534
535static int sun6i_spi_remove(struct platform_device *pdev)
536{
 
 
537	pm_runtime_force_suspend(&pdev->dev);
538
 
 
 
 
539	return 0;
540}
541
542static const struct of_device_id sun6i_spi_match[] = {
543	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
544	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
545	{}
546};
547MODULE_DEVICE_TABLE(of, sun6i_spi_match);
548
549static const struct dev_pm_ops sun6i_spi_pm_ops = {
550	.runtime_resume		= sun6i_spi_runtime_resume,
551	.runtime_suspend	= sun6i_spi_runtime_suspend,
552};
553
554static struct platform_driver sun6i_spi_driver = {
555	.probe	= sun6i_spi_probe,
556	.remove	= sun6i_spi_remove,
557	.driver	= {
558		.name		= "sun6i-spi",
559		.of_match_table	= sun6i_spi_match,
560		.pm		= &sun6i_spi_pm_ops,
561	},
562};
563module_platform_driver(sun6i_spi_driver);
564
565MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
566MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
567MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
568MODULE_LICENSE("GPL");