Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * PXA2xx SPI DMA engine support.
  4 *
  5 * Copyright (C) 2013, 2021 Intel Corporation
  6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/dmaengine.h>
 
 12#include <linux/scatterlist.h>
 13#include <linux/sizes.h>
 14
 15#include <linux/spi/pxa2xx_spi.h>
 16#include <linux/spi/spi.h>
 
 17
 18#include "spi-pxa2xx.h"
 19
 20static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
 21					     bool error)
 22{
 23	struct spi_message *msg = drv_data->controller->cur_msg;
 24
 25	/*
 26	 * It is possible that one CPU is handling ROR interrupt and other
 27	 * just gets DMA completion. Calling pump_transfers() twice for the
 28	 * same transfer leads to problems thus we prevent concurrent calls
 29	 * by using dma_running.
 30	 */
 31	if (atomic_dec_and_test(&drv_data->dma_running)) {
 32		/*
 33		 * If the other CPU is still handling the ROR interrupt we
 34		 * might not know about the error yet. So we re-check the
 35		 * ROR bit here before we clear the status register.
 36		 */
 37		if (!error)
 38			error = read_SSSR_bits(drv_data, drv_data->mask_sr) & SSSR_ROR;
 
 
 
 39
 40		/* Clear status & disable interrupts */
 41		clear_SSCR1_bits(drv_data, drv_data->dma_cr1);
 
 
 42		write_SSSR_CS(drv_data, drv_data->clear_sr);
 43		if (!pxa25x_ssp_comp(drv_data))
 44			pxa2xx_spi_write(drv_data, SSTO, 0);
 45
 46		if (error) {
 47			/* In case we got an error we disable the SSP now */
 48			pxa_ssp_disable(drv_data->ssp);
 
 
 49			msg->status = -EIO;
 50		}
 51
 52		spi_finalize_current_transfer(drv_data->controller);
 53	}
 54}
 55
 56static void pxa2xx_spi_dma_callback(void *data)
 57{
 58	pxa2xx_spi_dma_transfer_complete(data, false);
 59}
 60
 61static struct dma_async_tx_descriptor *
 62pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
 63			   enum dma_transfer_direction dir,
 64			   struct spi_transfer *xfer)
 65{
 66	struct chip_data *chip =
 67		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 68	enum dma_slave_buswidth width;
 69	struct dma_slave_config cfg;
 70	struct dma_chan *chan;
 71	struct sg_table *sgt;
 72	int ret;
 73
 74	switch (drv_data->n_bytes) {
 75	case 1:
 76		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 77		break;
 78	case 2:
 79		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 80		break;
 81	default:
 82		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 83		break;
 84	}
 85
 86	memset(&cfg, 0, sizeof(cfg));
 87	cfg.direction = dir;
 88
 89	if (dir == DMA_MEM_TO_DEV) {
 90		cfg.dst_addr = drv_data->ssp->phys_base + SSDR;
 91		cfg.dst_addr_width = width;
 92		cfg.dst_maxburst = chip->dma_burst_size;
 93
 94		sgt = &xfer->tx_sg;
 95		chan = drv_data->controller->dma_tx;
 96	} else {
 97		cfg.src_addr = drv_data->ssp->phys_base + SSDR;
 98		cfg.src_addr_width = width;
 99		cfg.src_maxburst = chip->dma_burst_size;
100
101		sgt = &xfer->rx_sg;
102		chan = drv_data->controller->dma_rx;
103	}
104
105	ret = dmaengine_slave_config(chan, &cfg);
106	if (ret) {
107		dev_warn(drv_data->ssp->dev, "DMA slave config failed\n");
108		return NULL;
109	}
110
111	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
112				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
113}
114
115irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
116{
117	u32 status;
118
119	status = read_SSSR_bits(drv_data, drv_data->mask_sr);
120	if (status & SSSR_ROR) {
121		dev_err(drv_data->ssp->dev, "FIFO overrun\n");
122
123		dmaengine_terminate_async(drv_data->controller->dma_rx);
124		dmaengine_terminate_async(drv_data->controller->dma_tx);
125
126		pxa2xx_spi_dma_transfer_complete(drv_data, true);
127		return IRQ_HANDLED;
128	}
129
130	return IRQ_NONE;
131}
132
133int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
134			   struct spi_transfer *xfer)
135{
136	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
137	int err;
138
139	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
140	if (!tx_desc) {
141		dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n");
 
142		err = -EBUSY;
143		goto err_tx;
144	}
145
146	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
147	if (!rx_desc) {
148		dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n");
 
149		err = -EBUSY;
150		goto err_rx;
151	}
152
153	/* We are ready when RX completes */
154	rx_desc->callback = pxa2xx_spi_dma_callback;
155	rx_desc->callback_param = drv_data;
156
157	dmaengine_submit(rx_desc);
158	dmaengine_submit(tx_desc);
159	return 0;
160
161err_rx:
162	dmaengine_terminate_async(drv_data->controller->dma_tx);
163err_tx:
164	return err;
165}
166
167void pxa2xx_spi_dma_start(struct driver_data *drv_data)
168{
169	dma_async_issue_pending(drv_data->controller->dma_rx);
170	dma_async_issue_pending(drv_data->controller->dma_tx);
171
172	atomic_set(&drv_data->dma_running, 1);
173}
174
175void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
176{
177	atomic_set(&drv_data->dma_running, 0);
178	dmaengine_terminate_sync(drv_data->controller->dma_rx);
179	dmaengine_terminate_sync(drv_data->controller->dma_tx);
180}
181
182int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
183{
184	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
 
185	struct spi_controller *controller = drv_data->controller;
186	struct device *dev = drv_data->ssp->dev;
187	dma_cap_mask_t mask;
188
189	dma_cap_zero(mask);
190	dma_cap_set(DMA_SLAVE, mask);
191
192	controller->dma_tx = dma_request_slave_channel_compat(mask,
193				pdata->dma_filter, pdata->tx_param, dev, "tx");
194	if (!controller->dma_tx)
195		return -ENODEV;
196
197	controller->dma_rx = dma_request_slave_channel_compat(mask,
198				pdata->dma_filter, pdata->rx_param, dev, "rx");
199	if (!controller->dma_rx) {
200		dma_release_channel(controller->dma_tx);
201		controller->dma_tx = NULL;
202		return -ENODEV;
203	}
204
205	return 0;
206}
207
208void pxa2xx_spi_dma_release(struct driver_data *drv_data)
209{
210	struct spi_controller *controller = drv_data->controller;
211
212	if (controller->dma_rx) {
213		dmaengine_terminate_sync(controller->dma_rx);
214		dma_release_channel(controller->dma_rx);
215		controller->dma_rx = NULL;
216	}
217	if (controller->dma_tx) {
218		dmaengine_terminate_sync(controller->dma_tx);
219		dma_release_channel(controller->dma_tx);
220		controller->dma_tx = NULL;
221	}
222}
223
224int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
225					   struct spi_device *spi,
226					   u8 bits_per_word, u32 *burst_code,
227					   u32 *threshold)
228{
229	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
230	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
231	u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
232
233	/*
234	 * If the DMA burst size is given in chip_info we use that,
235	 * otherwise we use the default. Also we use the default FIFO
236	 * thresholds for now.
237	 */
238	*burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
239	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
240		   | SSCR1_TxTresh(TX_THRESH_DFLT);
241
242	return 0;
243}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * PXA2xx SPI DMA engine support.
  4 *
  5 * Copyright (C) 2013, Intel Corporation
  6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/dmaengine.h>
 12#include <linux/pxa2xx_ssp.h>
 13#include <linux/scatterlist.h>
 14#include <linux/sizes.h>
 
 
 15#include <linux/spi/spi.h>
 16#include <linux/spi/pxa2xx_spi.h>
 17
 18#include "spi-pxa2xx.h"
 19
 20static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
 21					     bool error)
 22{
 23	struct spi_message *msg = drv_data->controller->cur_msg;
 24
 25	/*
 26	 * It is possible that one CPU is handling ROR interrupt and other
 27	 * just gets DMA completion. Calling pump_transfers() twice for the
 28	 * same transfer leads to problems thus we prevent concurrent calls
 29	 * by using ->dma_running.
 30	 */
 31	if (atomic_dec_and_test(&drv_data->dma_running)) {
 32		/*
 33		 * If the other CPU is still handling the ROR interrupt we
 34		 * might not know about the error yet. So we re-check the
 35		 * ROR bit here before we clear the status register.
 36		 */
 37		if (!error) {
 38			u32 status = pxa2xx_spi_read(drv_data, SSSR)
 39				     & drv_data->mask_sr;
 40			error = status & SSSR_ROR;
 41		}
 42
 43		/* Clear status & disable interrupts */
 44		pxa2xx_spi_write(drv_data, SSCR1,
 45				 pxa2xx_spi_read(drv_data, SSCR1)
 46				 & ~drv_data->dma_cr1);
 47		write_SSSR_CS(drv_data, drv_data->clear_sr);
 48		if (!pxa25x_ssp_comp(drv_data))
 49			pxa2xx_spi_write(drv_data, SSTO, 0);
 50
 51		if (error) {
 52			/* In case we got an error we disable the SSP now */
 53			pxa2xx_spi_write(drv_data, SSCR0,
 54					 pxa2xx_spi_read(drv_data, SSCR0)
 55					 & ~SSCR0_SSE);
 56			msg->status = -EIO;
 57		}
 58
 59		spi_finalize_current_transfer(drv_data->controller);
 60	}
 61}
 62
 63static void pxa2xx_spi_dma_callback(void *data)
 64{
 65	pxa2xx_spi_dma_transfer_complete(data, false);
 66}
 67
 68static struct dma_async_tx_descriptor *
 69pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
 70			   enum dma_transfer_direction dir,
 71			   struct spi_transfer *xfer)
 72{
 73	struct chip_data *chip =
 74		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 75	enum dma_slave_buswidth width;
 76	struct dma_slave_config cfg;
 77	struct dma_chan *chan;
 78	struct sg_table *sgt;
 79	int ret;
 80
 81	switch (drv_data->n_bytes) {
 82	case 1:
 83		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 84		break;
 85	case 2:
 86		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 87		break;
 88	default:
 89		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 90		break;
 91	}
 92
 93	memset(&cfg, 0, sizeof(cfg));
 94	cfg.direction = dir;
 95
 96	if (dir == DMA_MEM_TO_DEV) {
 97		cfg.dst_addr = drv_data->ssdr_physical;
 98		cfg.dst_addr_width = width;
 99		cfg.dst_maxburst = chip->dma_burst_size;
100
101		sgt = &xfer->tx_sg;
102		chan = drv_data->controller->dma_tx;
103	} else {
104		cfg.src_addr = drv_data->ssdr_physical;
105		cfg.src_addr_width = width;
106		cfg.src_maxburst = chip->dma_burst_size;
107
108		sgt = &xfer->rx_sg;
109		chan = drv_data->controller->dma_rx;
110	}
111
112	ret = dmaengine_slave_config(chan, &cfg);
113	if (ret) {
114		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
115		return NULL;
116	}
117
118	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
119				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
120}
121
122irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
123{
124	u32 status;
125
126	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
127	if (status & SSSR_ROR) {
128		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
129
130		dmaengine_terminate_async(drv_data->controller->dma_rx);
131		dmaengine_terminate_async(drv_data->controller->dma_tx);
132
133		pxa2xx_spi_dma_transfer_complete(drv_data, true);
134		return IRQ_HANDLED;
135	}
136
137	return IRQ_NONE;
138}
139
140int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
141			   struct spi_transfer *xfer)
142{
143	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
144	int err;
145
146	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
147	if (!tx_desc) {
148		dev_err(&drv_data->pdev->dev,
149			"failed to get DMA TX descriptor\n");
150		err = -EBUSY;
151		goto err_tx;
152	}
153
154	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
155	if (!rx_desc) {
156		dev_err(&drv_data->pdev->dev,
157			"failed to get DMA RX descriptor\n");
158		err = -EBUSY;
159		goto err_rx;
160	}
161
162	/* We are ready when RX completes */
163	rx_desc->callback = pxa2xx_spi_dma_callback;
164	rx_desc->callback_param = drv_data;
165
166	dmaengine_submit(rx_desc);
167	dmaengine_submit(tx_desc);
168	return 0;
169
170err_rx:
171	dmaengine_terminate_async(drv_data->controller->dma_tx);
172err_tx:
173	return err;
174}
175
176void pxa2xx_spi_dma_start(struct driver_data *drv_data)
177{
178	dma_async_issue_pending(drv_data->controller->dma_rx);
179	dma_async_issue_pending(drv_data->controller->dma_tx);
180
181	atomic_set(&drv_data->dma_running, 1);
182}
183
184void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
185{
186	atomic_set(&drv_data->dma_running, 0);
187	dmaengine_terminate_sync(drv_data->controller->dma_rx);
188	dmaengine_terminate_sync(drv_data->controller->dma_tx);
189}
190
191int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
192{
193	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
194	struct device *dev = &drv_data->pdev->dev;
195	struct spi_controller *controller = drv_data->controller;
 
196	dma_cap_mask_t mask;
197
198	dma_cap_zero(mask);
199	dma_cap_set(DMA_SLAVE, mask);
200
201	controller->dma_tx = dma_request_slave_channel_compat(mask,
202				pdata->dma_filter, pdata->tx_param, dev, "tx");
203	if (!controller->dma_tx)
204		return -ENODEV;
205
206	controller->dma_rx = dma_request_slave_channel_compat(mask,
207				pdata->dma_filter, pdata->rx_param, dev, "rx");
208	if (!controller->dma_rx) {
209		dma_release_channel(controller->dma_tx);
210		controller->dma_tx = NULL;
211		return -ENODEV;
212	}
213
214	return 0;
215}
216
217void pxa2xx_spi_dma_release(struct driver_data *drv_data)
218{
219	struct spi_controller *controller = drv_data->controller;
220
221	if (controller->dma_rx) {
222		dmaengine_terminate_sync(controller->dma_rx);
223		dma_release_channel(controller->dma_rx);
224		controller->dma_rx = NULL;
225	}
226	if (controller->dma_tx) {
227		dmaengine_terminate_sync(controller->dma_tx);
228		dma_release_channel(controller->dma_tx);
229		controller->dma_tx = NULL;
230	}
231}
232
233int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
234					   struct spi_device *spi,
235					   u8 bits_per_word, u32 *burst_code,
236					   u32 *threshold)
237{
238	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
239	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
240	u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
241
242	/*
243	 * If the DMA burst size is given in chip_info we use that,
244	 * otherwise we use the default. Also we use the default FIFO
245	 * thresholds for now.
246	 */
247	*burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
248	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
249		   | SSCR1_TxTresh(TX_THRESH_DFLT);
250
251	return 0;
252}