Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SPI_PPC4XX SPI controller driver.
  4 *
  5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  8 *
  9 * Based in part on drivers/spi/spi_s3c24xx.c
 10 *
 11 * Copyright (c) 2006 Ben Dooks
 12 * Copyright (c) 2006 Simtec Electronics
 13 *	Ben Dooks <ben@simtec.co.uk>
 14 */
 15
 16/*
 17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 18 * generate an interrupt to the CPU. This can cause high CPU utilization.
 19 * This driver allows platforms to reduce the interrupt load on the CPU
 20 * during SPI transfers by setting max_speed_hz via the device tree.
 21 */
 22
 23#include <linux/module.h>
 24#include <linux/sched.h>
 25#include <linux/slab.h>
 26#include <linux/errno.h>
 27#include <linux/wait.h>
 28#include <linux/of_address.h>
 29#include <linux/of_irq.h>
 30#include <linux/of_platform.h>
 
 31#include <linux/interrupt.h>
 32#include <linux/delay.h>
 33
 
 34#include <linux/spi/spi.h>
 35#include <linux/spi/spi_bitbang.h>
 36
 37#include <linux/io.h>
 38#include <asm/dcr.h>
 39#include <asm/dcr-regs.h>
 40
 41/* bits in mode register - bit 0 is MSb */
 42
 43/*
 44 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 45 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 46 * Note: This is the inverse of CPHA.
 47 */
 48#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 49
 50/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 51#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 52
 53/*
 54 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 55 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 56 * Note: This is identical to SPI_LSB_FIRST.
 57 */
 58#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 59
 60/*
 61 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 62 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 63 * Note: This is identical to CPOL.
 64 */
 65#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 66
 67/*
 68 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 69 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 70 */
 71#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 72
 73/* bits in control register */
 74/* starts a transfer when set */
 75#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 76
 77/* bits in status register */
 78/* port is busy with a transfer */
 79#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 80/* RxD ready */
 81#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 82
 83/* clock settings (SCP and CI) for various SPI modes */
 84#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 85#define SPI_CLK_MODE1	(0 | 0)
 86#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 87#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 88
 89#define DRIVER_NAME	"spi_ppc4xx_of"
 90
 91struct spi_ppc4xx_regs {
 92	u8 mode;
 93	u8 rxd;
 94	u8 txd;
 95	u8 cr;
 96	u8 sr;
 97	u8 dummy;
 98	/*
 99	 * Clock divisor modulus register
100	 * This uses the following formula:
101	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
102	 * or
103	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
104	 * bit 0 is the MSb!
105	 */
106	u8 cdm;
107};
108
109/* SPI Controller driver's private data. */
110struct ppc4xx_spi {
111	/* bitbang has to be first */
112	struct spi_bitbang bitbang;
113	struct completion done;
114
115	u64 mapbase;
116	u64 mapsize;
117	int irqnum;
118	/* need this to set the SPI clock */
119	unsigned int opb_freq;
120
121	/* for transfers */
122	int len;
123	int count;
124	/* data buffers */
125	const unsigned char *tx;
126	unsigned char *rx;
127
 
 
128	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
129	struct spi_master *master;
130	struct device *dev;
131};
132
133/* need this so we can set the clock in the chipselect routine */
134struct spi_ppc4xx_cs {
135	u8 mode;
136};
137
138static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
139{
140	struct ppc4xx_spi *hw;
141	u8 data;
142
143	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
144		t->tx_buf, t->rx_buf, t->len);
145
146	hw = spi_master_get_devdata(spi->master);
147
148	hw->tx = t->tx_buf;
149	hw->rx = t->rx_buf;
150	hw->len = t->len;
151	hw->count = 0;
152
153	/* send the first byte */
154	data = hw->tx ? hw->tx[0] : 0;
155	out_8(&hw->regs->txd, data);
156	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
157	wait_for_completion(&hw->done);
158
159	return hw->count;
160}
161
162static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
163{
164	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
165	struct spi_ppc4xx_cs *cs = spi->controller_state;
166	int scr;
167	u8 cdm = 0;
168	u32 speed;
169	u8 bits_per_word;
170
171	/* Start with the generic configuration for this device. */
172	bits_per_word = spi->bits_per_word;
173	speed = spi->max_speed_hz;
174
175	/*
176	 * Modify the configuration if the transfer overrides it.  Do not allow
177	 * the transfer to overwrite the generic configuration with zeros.
178	 */
179	if (t) {
180		if (t->bits_per_word)
181			bits_per_word = t->bits_per_word;
182
183		if (t->speed_hz)
184			speed = min(t->speed_hz, spi->max_speed_hz);
185	}
186
187	if (!speed || (speed > spi->max_speed_hz)) {
188		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
189		return -EINVAL;
190	}
191
192	/* Write new configuration */
193	out_8(&hw->regs->mode, cs->mode);
194
195	/* Set the clock */
196	/* opb_freq was already divided by 4 */
197	scr = (hw->opb_freq / speed) - 1;
198	if (scr > 0)
199		cdm = min(scr, 0xff);
200
201	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
202
203	if (in_8(&hw->regs->cdm) != cdm)
204		out_8(&hw->regs->cdm, cdm);
205
206	mutex_lock(&hw->bitbang.lock);
207	if (!hw->bitbang.busy) {
208		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
209		/* Need to ndelay here? */
210	}
211	mutex_unlock(&hw->bitbang.lock);
212
213	return 0;
214}
215
216static int spi_ppc4xx_setup(struct spi_device *spi)
217{
218	struct spi_ppc4xx_cs *cs = spi->controller_state;
219
220	if (!spi->max_speed_hz) {
221		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
222		return -EINVAL;
223	}
224
225	if (cs == NULL) {
226		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
227		if (!cs)
228			return -ENOMEM;
229		spi->controller_state = cs;
230	}
231
232	/*
233	 * We set all bits of the SPI0_MODE register, so,
234	 * no need to read-modify-write
235	 */
236	cs->mode = SPI_PPC4XX_MODE_SPE;
237
238	switch (spi->mode & SPI_MODE_X_MASK) {
239	case SPI_MODE_0:
240		cs->mode |= SPI_CLK_MODE0;
241		break;
242	case SPI_MODE_1:
243		cs->mode |= SPI_CLK_MODE1;
244		break;
245	case SPI_MODE_2:
246		cs->mode |= SPI_CLK_MODE2;
247		break;
248	case SPI_MODE_3:
249		cs->mode |= SPI_CLK_MODE3;
250		break;
251	}
252
253	if (spi->mode & SPI_LSB_FIRST)
254		cs->mode |= SPI_PPC4XX_MODE_RD;
255
256	return 0;
257}
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
260{
261	struct ppc4xx_spi *hw;
262	u8 status;
263	u8 data;
264	unsigned int count;
265
266	hw = (struct ppc4xx_spi *)dev_id;
267
268	status = in_8(&hw->regs->sr);
269	if (!status)
270		return IRQ_NONE;
271
272	/*
273	 * BSY de-asserts one cycle after the transfer is complete.  The
274	 * interrupt is asserted after the transfer is complete.  The exact
275	 * relationship is not documented, hence this code.
276	 */
277
278	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
279		u8 lstatus;
280		int cnt = 0;
281
282		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
283		do {
284			ndelay(10);
285			lstatus = in_8(&hw->regs->sr);
286		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
287
288		if (cnt >= 100) {
289			dev_err(hw->dev, "busywait: too many loops!\n");
290			complete(&hw->done);
291			return IRQ_HANDLED;
292		} else {
293			/* status is always 1 (RBR) here */
294			status = in_8(&hw->regs->sr);
295			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
296		}
297	}
298
299	count = hw->count;
300	hw->count++;
301
302	/* RBR triggered this interrupt.  Therefore, data must be ready. */
303	data = in_8(&hw->regs->rxd);
304	if (hw->rx)
305		hw->rx[count] = data;
306
307	count++;
308
309	if (count < hw->len) {
310		data = hw->tx ? hw->tx[count] : 0;
311		out_8(&hw->regs->txd, data);
312		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
313	} else {
314		complete(&hw->done);
315	}
316
317	return IRQ_HANDLED;
318}
319
320static void spi_ppc4xx_cleanup(struct spi_device *spi)
321{
322	kfree(spi->controller_state);
323}
324
325static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
326{
327	/*
328	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
329	 * the 2nd I2C bus. We need to enable the SPI bus before
330	 * using it.
331	 */
332
333	/* need to clear bit 14 to enable SPC */
334	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
335}
336
 
 
 
 
 
 
 
 
 
 
 
 
 
337/*
338 * platform_device layer stuff...
339 */
340static int spi_ppc4xx_of_probe(struct platform_device *op)
341{
342	struct ppc4xx_spi *hw;
343	struct spi_master *master;
344	struct spi_bitbang *bbp;
345	struct resource resource;
346	struct device_node *np = op->dev.of_node;
347	struct device *dev = &op->dev;
348	struct device_node *opbnp;
349	int ret;
 
350	const unsigned int *clk;
351
352	master = spi_alloc_master(dev, sizeof(*hw));
353	if (master == NULL)
354		return -ENOMEM;
355	master->dev.of_node = np;
356	platform_set_drvdata(op, master);
357	hw = spi_master_get_devdata(master);
358	hw->master = master;
359	hw->dev = dev;
360
361	init_completion(&hw->done);
362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363	/* Setup the state for the bitbang driver */
364	bbp = &hw->bitbang;
365	bbp->master = hw->master;
366	bbp->setup_transfer = spi_ppc4xx_setupxfer;
 
367	bbp->txrx_bufs = spi_ppc4xx_txrx;
368	bbp->use_dma = 0;
369	bbp->master->setup = spi_ppc4xx_setup;
370	bbp->master->cleanup = spi_ppc4xx_cleanup;
371	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
372	bbp->master->use_gpio_descriptors = true;
373	/*
374	 * The SPI core will count the number of GPIO descriptors to figure
375	 * out the number of chip selects available on the platform.
376	 */
377	bbp->master->num_chipselect = 0;
378
379	/* the spi->mode bits understood by this driver: */
380	bbp->master->mode_bits =
381		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
382
 
 
 
383	/* Get the clock for the OPB */
384	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
385	if (opbnp == NULL) {
386		dev_err(dev, "OPB: cannot find node\n");
387		ret = -ENODEV;
388		goto free_master;
389	}
390	/* Get the clock (Hz) for the OPB */
391	clk = of_get_property(opbnp, "clock-frequency", NULL);
392	if (clk == NULL) {
393		dev_err(dev, "OPB: no clock-frequency property set\n");
394		of_node_put(opbnp);
395		ret = -ENODEV;
396		goto free_master;
397	}
398	hw->opb_freq = *clk;
399	hw->opb_freq >>= 2;
400	of_node_put(opbnp);
401
402	ret = of_address_to_resource(np, 0, &resource);
403	if (ret) {
404		dev_err(dev, "error while parsing device node resource\n");
405		goto free_master;
406	}
407	hw->mapbase = resource.start;
408	hw->mapsize = resource_size(&resource);
409
410	/* Sanity check */
411	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
412		dev_err(dev, "too small to map registers\n");
413		ret = -EINVAL;
414		goto free_master;
415	}
416
417	/* Request IRQ */
418	hw->irqnum = irq_of_parse_and_map(np, 0);
419	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
420			  0, "spi_ppc4xx_of", (void *)hw);
421	if (ret) {
422		dev_err(dev, "unable to allocate interrupt\n");
423		goto free_master;
424	}
425
426	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
427		dev_err(dev, "resource unavailable\n");
428		ret = -EBUSY;
429		goto request_mem_error;
430	}
431
432	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
433
434	if (!hw->regs) {
435		dev_err(dev, "unable to memory map registers\n");
436		ret = -ENXIO;
437		goto map_io_error;
438	}
439
440	spi_ppc4xx_enable(hw);
441
442	/* Finally register our spi controller */
443	dev->dma_mask = 0;
444	ret = spi_bitbang_start(bbp);
445	if (ret) {
446		dev_err(dev, "failed to register SPI master\n");
447		goto unmap_regs;
448	}
449
450	dev_info(dev, "driver initialized\n");
451
452	return 0;
453
454unmap_regs:
455	iounmap(hw->regs);
456map_io_error:
457	release_mem_region(hw->mapbase, hw->mapsize);
458request_mem_error:
459	free_irq(hw->irqnum, hw);
 
 
460free_master:
461	spi_master_put(master);
462
463	dev_err(dev, "initialization failed\n");
464	return ret;
465}
466
467static int spi_ppc4xx_of_remove(struct platform_device *op)
468{
469	struct spi_master *master = platform_get_drvdata(op);
470	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
471
472	spi_bitbang_stop(&hw->bitbang);
473	release_mem_region(hw->mapbase, hw->mapsize);
474	free_irq(hw->irqnum, hw);
475	iounmap(hw->regs);
 
476	spi_master_put(master);
477	return 0;
478}
479
480static const struct of_device_id spi_ppc4xx_of_match[] = {
481	{ .compatible = "ibm,ppc4xx-spi", },
482	{},
483};
484
485MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
486
487static struct platform_driver spi_ppc4xx_of_driver = {
488	.probe = spi_ppc4xx_of_probe,
489	.remove = spi_ppc4xx_of_remove,
490	.driver = {
491		.name = DRIVER_NAME,
492		.of_match_table = spi_ppc4xx_of_match,
493	},
494};
495module_platform_driver(spi_ppc4xx_of_driver);
496
497MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
498MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
499MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SPI_PPC4XX SPI controller driver.
  4 *
  5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  8 *
  9 * Based in part on drivers/spi/spi_s3c24xx.c
 10 *
 11 * Copyright (c) 2006 Ben Dooks
 12 * Copyright (c) 2006 Simtec Electronics
 13 *	Ben Dooks <ben@simtec.co.uk>
 14 */
 15
 16/*
 17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 18 * generate an interrupt to the CPU. This can cause high CPU utilization.
 19 * This driver allows platforms to reduce the interrupt load on the CPU
 20 * during SPI transfers by setting max_speed_hz via the device tree.
 21 */
 22
 23#include <linux/module.h>
 24#include <linux/sched.h>
 25#include <linux/slab.h>
 26#include <linux/errno.h>
 27#include <linux/wait.h>
 28#include <linux/of_address.h>
 29#include <linux/of_irq.h>
 30#include <linux/of_platform.h>
 31#include <linux/of_gpio.h>
 32#include <linux/interrupt.h>
 33#include <linux/delay.h>
 34
 35#include <linux/gpio.h>
 36#include <linux/spi/spi.h>
 37#include <linux/spi/spi_bitbang.h>
 38
 39#include <asm/io.h>
 40#include <asm/dcr.h>
 41#include <asm/dcr-regs.h>
 42
 43/* bits in mode register - bit 0 is MSb */
 44
 45/*
 46 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 47 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 48 * Note: This is the inverse of CPHA.
 49 */
 50#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 51
 52/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 53#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 54
 55/*
 56 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 57 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 58 * Note: This is identical to SPI_LSB_FIRST.
 59 */
 60#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 61
 62/*
 63 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 64 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 65 * Note: This is identical to CPOL.
 66 */
 67#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 68
 69/*
 70 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 71 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 72 */
 73#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 74
 75/* bits in control register */
 76/* starts a transfer when set */
 77#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 78
 79/* bits in status register */
 80/* port is busy with a transfer */
 81#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 82/* RxD ready */
 83#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 84
 85/* clock settings (SCP and CI) for various SPI modes */
 86#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 87#define SPI_CLK_MODE1	(0 | 0)
 88#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 89#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 90
 91#define DRIVER_NAME	"spi_ppc4xx_of"
 92
 93struct spi_ppc4xx_regs {
 94	u8 mode;
 95	u8 rxd;
 96	u8 txd;
 97	u8 cr;
 98	u8 sr;
 99	u8 dummy;
100	/*
101	 * Clock divisor modulus register
102	 * This uses the following formula:
103	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
104	 * or
105	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
106	 * bit 0 is the MSb!
107	 */
108	u8 cdm;
109};
110
111/* SPI Controller driver's private data. */
112struct ppc4xx_spi {
113	/* bitbang has to be first */
114	struct spi_bitbang bitbang;
115	struct completion done;
116
117	u64 mapbase;
118	u64 mapsize;
119	int irqnum;
120	/* need this to set the SPI clock */
121	unsigned int opb_freq;
122
123	/* for transfers */
124	int len;
125	int count;
126	/* data buffers */
127	const unsigned char *tx;
128	unsigned char *rx;
129
130	int *gpios;
131
132	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
133	struct spi_master *master;
134	struct device *dev;
135};
136
137/* need this so we can set the clock in the chipselect routine */
138struct spi_ppc4xx_cs {
139	u8 mode;
140};
141
142static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
143{
144	struct ppc4xx_spi *hw;
145	u8 data;
146
147	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
148		t->tx_buf, t->rx_buf, t->len);
149
150	hw = spi_master_get_devdata(spi->master);
151
152	hw->tx = t->tx_buf;
153	hw->rx = t->rx_buf;
154	hw->len = t->len;
155	hw->count = 0;
156
157	/* send the first byte */
158	data = hw->tx ? hw->tx[0] : 0;
159	out_8(&hw->regs->txd, data);
160	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
161	wait_for_completion(&hw->done);
162
163	return hw->count;
164}
165
166static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
167{
168	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
169	struct spi_ppc4xx_cs *cs = spi->controller_state;
170	int scr;
171	u8 cdm = 0;
172	u32 speed;
173	u8 bits_per_word;
174
175	/* Start with the generic configuration for this device. */
176	bits_per_word = spi->bits_per_word;
177	speed = spi->max_speed_hz;
178
179	/*
180	 * Modify the configuration if the transfer overrides it.  Do not allow
181	 * the transfer to overwrite the generic configuration with zeros.
182	 */
183	if (t) {
184		if (t->bits_per_word)
185			bits_per_word = t->bits_per_word;
186
187		if (t->speed_hz)
188			speed = min(t->speed_hz, spi->max_speed_hz);
189	}
190
191	if (!speed || (speed > spi->max_speed_hz)) {
192		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
193		return -EINVAL;
194	}
195
196	/* Write new configuration */
197	out_8(&hw->regs->mode, cs->mode);
198
199	/* Set the clock */
200	/* opb_freq was already divided by 4 */
201	scr = (hw->opb_freq / speed) - 1;
202	if (scr > 0)
203		cdm = min(scr, 0xff);
204
205	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
206
207	if (in_8(&hw->regs->cdm) != cdm)
208		out_8(&hw->regs->cdm, cdm);
209
210	mutex_lock(&hw->bitbang.lock);
211	if (!hw->bitbang.busy) {
212		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
213		/* Need to ndelay here? */
214	}
215	mutex_unlock(&hw->bitbang.lock);
216
217	return 0;
218}
219
220static int spi_ppc4xx_setup(struct spi_device *spi)
221{
222	struct spi_ppc4xx_cs *cs = spi->controller_state;
223
224	if (!spi->max_speed_hz) {
225		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
226		return -EINVAL;
227	}
228
229	if (cs == NULL) {
230		cs = kzalloc(sizeof *cs, GFP_KERNEL);
231		if (!cs)
232			return -ENOMEM;
233		spi->controller_state = cs;
234	}
235
236	/*
237	 * We set all bits of the SPI0_MODE register, so,
238	 * no need to read-modify-write
239	 */
240	cs->mode = SPI_PPC4XX_MODE_SPE;
241
242	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
243	case SPI_MODE_0:
244		cs->mode |= SPI_CLK_MODE0;
245		break;
246	case SPI_MODE_1:
247		cs->mode |= SPI_CLK_MODE1;
248		break;
249	case SPI_MODE_2:
250		cs->mode |= SPI_CLK_MODE2;
251		break;
252	case SPI_MODE_3:
253		cs->mode |= SPI_CLK_MODE3;
254		break;
255	}
256
257	if (spi->mode & SPI_LSB_FIRST)
258		cs->mode |= SPI_PPC4XX_MODE_RD;
259
260	return 0;
261}
262
263static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
264{
265	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
266	unsigned int cs = spi->chip_select;
267	unsigned int cspol;
268
269	/*
270	 * If there are no chip selects at all, or if this is the special
271	 * case of a non-existent (dummy) chip select, do nothing.
272	 */
273
274	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
275		return;
276
277	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
278	if (value == BITBANG_CS_INACTIVE)
279		cspol = !cspol;
280
281	gpio_set_value(hw->gpios[cs], cspol);
282}
283
284static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
285{
286	struct ppc4xx_spi *hw;
287	u8 status;
288	u8 data;
289	unsigned int count;
290
291	hw = (struct ppc4xx_spi *)dev_id;
292
293	status = in_8(&hw->regs->sr);
294	if (!status)
295		return IRQ_NONE;
296
297	/*
298	 * BSY de-asserts one cycle after the transfer is complete.  The
299	 * interrupt is asserted after the transfer is complete.  The exact
300	 * relationship is not documented, hence this code.
301	 */
302
303	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
304		u8 lstatus;
305		int cnt = 0;
306
307		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
308		do {
309			ndelay(10);
310			lstatus = in_8(&hw->regs->sr);
311		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
312
313		if (cnt >= 100) {
314			dev_err(hw->dev, "busywait: too many loops!\n");
315			complete(&hw->done);
316			return IRQ_HANDLED;
317		} else {
318			/* status is always 1 (RBR) here */
319			status = in_8(&hw->regs->sr);
320			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
321		}
322	}
323
324	count = hw->count;
325	hw->count++;
326
327	/* RBR triggered this interrupt.  Therefore, data must be ready. */
328	data = in_8(&hw->regs->rxd);
329	if (hw->rx)
330		hw->rx[count] = data;
331
332	count++;
333
334	if (count < hw->len) {
335		data = hw->tx ? hw->tx[count] : 0;
336		out_8(&hw->regs->txd, data);
337		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
338	} else {
339		complete(&hw->done);
340	}
341
342	return IRQ_HANDLED;
343}
344
345static void spi_ppc4xx_cleanup(struct spi_device *spi)
346{
347	kfree(spi->controller_state);
348}
349
350static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
351{
352	/*
353	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
354	 * the 2nd I2C bus. We need to enable the the SPI bus before
355	 * using it.
356	 */
357
358	/* need to clear bit 14 to enable SPC */
359	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
360}
361
362static void free_gpios(struct ppc4xx_spi *hw)
363{
364	if (hw->master->num_chipselect) {
365		int i;
366		for (i = 0; i < hw->master->num_chipselect; i++)
367			if (gpio_is_valid(hw->gpios[i]))
368				gpio_free(hw->gpios[i]);
369
370		kfree(hw->gpios);
371		hw->gpios = NULL;
372	}
373}
374
375/*
376 * platform_device layer stuff...
377 */
378static int spi_ppc4xx_of_probe(struct platform_device *op)
379{
380	struct ppc4xx_spi *hw;
381	struct spi_master *master;
382	struct spi_bitbang *bbp;
383	struct resource resource;
384	struct device_node *np = op->dev.of_node;
385	struct device *dev = &op->dev;
386	struct device_node *opbnp;
387	int ret;
388	int num_gpios;
389	const unsigned int *clk;
390
391	master = spi_alloc_master(dev, sizeof *hw);
392	if (master == NULL)
393		return -ENOMEM;
394	master->dev.of_node = np;
395	platform_set_drvdata(op, master);
396	hw = spi_master_get_devdata(master);
397	hw->master = master;
398	hw->dev = dev;
399
400	init_completion(&hw->done);
401
402	/*
403	 * A count of zero implies a single SPI device without any chip-select.
404	 * Note that of_gpio_count counts all gpios assigned to this spi master.
405	 * This includes both "null" gpio's and real ones.
406	 */
407	num_gpios = of_gpio_count(np);
408	if (num_gpios > 0) {
409		int i;
410
411		hw->gpios = kcalloc(num_gpios, sizeof(*hw->gpios), GFP_KERNEL);
412		if (!hw->gpios) {
413			ret = -ENOMEM;
414			goto free_master;
415		}
416
417		for (i = 0; i < num_gpios; i++) {
418			int gpio;
419			enum of_gpio_flags flags;
420
421			gpio = of_get_gpio_flags(np, i, &flags);
422			hw->gpios[i] = gpio;
423
424			if (gpio_is_valid(gpio)) {
425				/* Real CS - set the initial state. */
426				ret = gpio_request(gpio, np->name);
427				if (ret < 0) {
428					dev_err(dev,
429						"can't request gpio #%d: %d\n",
430						i, ret);
431					goto free_gpios;
432				}
433
434				gpio_direction_output(gpio,
435						!!(flags & OF_GPIO_ACTIVE_LOW));
436			} else if (gpio == -EEXIST) {
437				; /* No CS, but that's OK. */
438			} else {
439				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
440				ret = -EINVAL;
441				goto free_gpios;
442			}
443		}
444	}
445
446	/* Setup the state for the bitbang driver */
447	bbp = &hw->bitbang;
448	bbp->master = hw->master;
449	bbp->setup_transfer = spi_ppc4xx_setupxfer;
450	bbp->chipselect = spi_ppc4xx_chipsel;
451	bbp->txrx_bufs = spi_ppc4xx_txrx;
452	bbp->use_dma = 0;
453	bbp->master->setup = spi_ppc4xx_setup;
454	bbp->master->cleanup = spi_ppc4xx_cleanup;
455	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
 
 
 
 
 
 
456
457	/* the spi->mode bits understood by this driver: */
458	bbp->master->mode_bits =
459		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
460
461	/* this many pins in all GPIO controllers */
462	bbp->master->num_chipselect = num_gpios > 0 ? num_gpios : 0;
463
464	/* Get the clock for the OPB */
465	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
466	if (opbnp == NULL) {
467		dev_err(dev, "OPB: cannot find node\n");
468		ret = -ENODEV;
469		goto free_gpios;
470	}
471	/* Get the clock (Hz) for the OPB */
472	clk = of_get_property(opbnp, "clock-frequency", NULL);
473	if (clk == NULL) {
474		dev_err(dev, "OPB: no clock-frequency property set\n");
475		of_node_put(opbnp);
476		ret = -ENODEV;
477		goto free_gpios;
478	}
479	hw->opb_freq = *clk;
480	hw->opb_freq >>= 2;
481	of_node_put(opbnp);
482
483	ret = of_address_to_resource(np, 0, &resource);
484	if (ret) {
485		dev_err(dev, "error while parsing device node resource\n");
486		goto free_gpios;
487	}
488	hw->mapbase = resource.start;
489	hw->mapsize = resource_size(&resource);
490
491	/* Sanity check */
492	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
493		dev_err(dev, "too small to map registers\n");
494		ret = -EINVAL;
495		goto free_gpios;
496	}
497
498	/* Request IRQ */
499	hw->irqnum = irq_of_parse_and_map(np, 0);
500	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
501			  0, "spi_ppc4xx_of", (void *)hw);
502	if (ret) {
503		dev_err(dev, "unable to allocate interrupt\n");
504		goto free_gpios;
505	}
506
507	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
508		dev_err(dev, "resource unavailable\n");
509		ret = -EBUSY;
510		goto request_mem_error;
511	}
512
513	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
514
515	if (!hw->regs) {
516		dev_err(dev, "unable to memory map registers\n");
517		ret = -ENXIO;
518		goto map_io_error;
519	}
520
521	spi_ppc4xx_enable(hw);
522
523	/* Finally register our spi controller */
524	dev->dma_mask = 0;
525	ret = spi_bitbang_start(bbp);
526	if (ret) {
527		dev_err(dev, "failed to register SPI master\n");
528		goto unmap_regs;
529	}
530
531	dev_info(dev, "driver initialized\n");
532
533	return 0;
534
535unmap_regs:
536	iounmap(hw->regs);
537map_io_error:
538	release_mem_region(hw->mapbase, hw->mapsize);
539request_mem_error:
540	free_irq(hw->irqnum, hw);
541free_gpios:
542	free_gpios(hw);
543free_master:
544	spi_master_put(master);
545
546	dev_err(dev, "initialization failed\n");
547	return ret;
548}
549
550static int spi_ppc4xx_of_remove(struct platform_device *op)
551{
552	struct spi_master *master = platform_get_drvdata(op);
553	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
554
555	spi_bitbang_stop(&hw->bitbang);
556	release_mem_region(hw->mapbase, hw->mapsize);
557	free_irq(hw->irqnum, hw);
558	iounmap(hw->regs);
559	free_gpios(hw);
560	spi_master_put(master);
561	return 0;
562}
563
564static const struct of_device_id spi_ppc4xx_of_match[] = {
565	{ .compatible = "ibm,ppc4xx-spi", },
566	{},
567};
568
569MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
570
571static struct platform_driver spi_ppc4xx_of_driver = {
572	.probe = spi_ppc4xx_of_probe,
573	.remove = spi_ppc4xx_of_remove,
574	.driver = {
575		.name = DRIVER_NAME,
576		.of_match_table = spi_ppc4xx_of_match,
577	},
578};
579module_platform_driver(spi_ppc4xx_of_driver);
580
581MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
582MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
583MODULE_LICENSE("GPL");