Loading...
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Freescale MXS SPI master driver
4//
5// Copyright 2012 DENX Software Engineering, GmbH.
6// Copyright 2012 Freescale Semiconductor, Inc.
7// Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
8//
9// Rework and transition to new API by:
10// Marek Vasut <marex@denx.de>
11//
12// Based on previous attempt by:
13// Fabio Estevam <fabio.estevam@freescale.com>
14//
15// Based on code from U-Boot bootloader by:
16// Marek Vasut <marex@denx.de>
17//
18// Based on spi-stmp.c, which is:
19// Author: Dmitry Pervushin <dimka@embeddedalley.com>
20
21#include <linux/kernel.h>
22#include <linux/ioport.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/platform_device.h>
26#include <linux/delay.h>
27#include <linux/interrupt.h>
28#include <linux/dma-mapping.h>
29#include <linux/dmaengine.h>
30#include <linux/highmem.h>
31#include <linux/clk.h>
32#include <linux/err.h>
33#include <linux/completion.h>
34#include <linux/pinctrl/consumer.h>
35#include <linux/regulator/consumer.h>
36#include <linux/pm_runtime.h>
37#include <linux/module.h>
38#include <linux/stmp_device.h>
39#include <linux/spi/spi.h>
40#include <linux/spi/mxs-spi.h>
41#include <trace/events/spi.h>
42
43#define DRIVER_NAME "mxs-spi"
44
45/* Use 10S timeout for very long transfers, it should suffice. */
46#define SSP_TIMEOUT 10000
47
48#define SG_MAXLEN 0xff00
49
50/*
51 * Flags for txrx functions. More efficient that using an argument register for
52 * each one.
53 */
54#define TXRX_WRITE (1<<0) /* This is a write */
55#define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */
56
57struct mxs_spi {
58 struct mxs_ssp ssp;
59 struct completion c;
60 unsigned int sck; /* Rate requested (vs actual) */
61};
62
63static int mxs_spi_setup_transfer(struct spi_device *dev,
64 const struct spi_transfer *t)
65{
66 struct mxs_spi *spi = spi_master_get_devdata(dev->master);
67 struct mxs_ssp *ssp = &spi->ssp;
68 const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
69
70 if (hz == 0) {
71 dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
72 return -EINVAL;
73 }
74
75 if (hz != spi->sck) {
76 mxs_ssp_set_clk_rate(ssp, hz);
77 /*
78 * Save requested rate, hz, rather than the actual rate,
79 * ssp->clk_rate. Otherwise we would set the rate every transfer
80 * when the actual rate is not quite the same as requested rate.
81 */
82 spi->sck = hz;
83 /*
84 * Perhaps we should return an error if the actual clock is
85 * nowhere close to what was requested?
86 */
87 }
88
89 writel(BM_SSP_CTRL0_LOCK_CS,
90 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
91
92 writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
93 BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
94 ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
95 ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
96 ssp->base + HW_SSP_CTRL1(ssp));
97
98 writel(0x0, ssp->base + HW_SSP_CMD0);
99 writel(0x0, ssp->base + HW_SSP_CMD1);
100
101 return 0;
102}
103
104static u32 mxs_spi_cs_to_reg(unsigned cs)
105{
106 u32 select = 0;
107
108 /*
109 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
110 *
111 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
112 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
113 * the datasheet for further details. In SPI mode, they are used to
114 * toggle the chip-select lines (nCS pins).
115 */
116 if (cs & 1)
117 select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
118 if (cs & 2)
119 select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
120
121 return select;
122}
123
124static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
125{
126 const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
127 struct mxs_ssp *ssp = &spi->ssp;
128 u32 reg;
129
130 do {
131 reg = readl_relaxed(ssp->base + offset);
132
133 if (!set)
134 reg = ~reg;
135
136 reg &= mask;
137
138 if (reg == mask)
139 return 0;
140 } while (time_before(jiffies, timeout));
141
142 return -ETIMEDOUT;
143}
144
145static void mxs_ssp_dma_irq_callback(void *param)
146{
147 struct mxs_spi *spi = param;
148
149 complete(&spi->c);
150}
151
152static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
153{
154 struct mxs_ssp *ssp = dev_id;
155
156 dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
157 __func__, __LINE__,
158 readl(ssp->base + HW_SSP_CTRL1(ssp)),
159 readl(ssp->base + HW_SSP_STATUS(ssp)));
160 return IRQ_HANDLED;
161}
162
163static int mxs_spi_txrx_dma(struct mxs_spi *spi,
164 unsigned char *buf, int len,
165 unsigned int flags)
166{
167 struct mxs_ssp *ssp = &spi->ssp;
168 struct dma_async_tx_descriptor *desc = NULL;
169 const bool vmalloced_buf = is_vmalloc_addr(buf);
170 const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
171 const int sgs = DIV_ROUND_UP(len, desc_len);
172 int sg_count;
173 int min, ret;
174 u32 ctrl0;
175 struct page *vm_page;
176 struct {
177 u32 pio[4];
178 struct scatterlist sg;
179 } *dma_xfer;
180
181 if (!len)
182 return -EINVAL;
183
184 dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
185 if (!dma_xfer)
186 return -ENOMEM;
187
188 reinit_completion(&spi->c);
189
190 /* Chip select was already programmed into CTRL0 */
191 ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
192 ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
193 BM_SSP_CTRL0_READ);
194 ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
195
196 if (!(flags & TXRX_WRITE))
197 ctrl0 |= BM_SSP_CTRL0_READ;
198
199 /* Queue the DMA data transfer. */
200 for (sg_count = 0; sg_count < sgs; sg_count++) {
201 /* Prepare the transfer descriptor. */
202 min = min(len, desc_len);
203
204 /*
205 * De-assert CS on last segment if flag is set (i.e., no more
206 * transfers will follow)
207 */
208 if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
209 ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
210
211 if (ssp->devid == IMX23_SSP) {
212 ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
213 ctrl0 |= min;
214 }
215
216 dma_xfer[sg_count].pio[0] = ctrl0;
217 dma_xfer[sg_count].pio[3] = min;
218
219 if (vmalloced_buf) {
220 vm_page = vmalloc_to_page(buf);
221 if (!vm_page) {
222 ret = -ENOMEM;
223 goto err_vmalloc;
224 }
225
226 sg_init_table(&dma_xfer[sg_count].sg, 1);
227 sg_set_page(&dma_xfer[sg_count].sg, vm_page,
228 min, offset_in_page(buf));
229 } else {
230 sg_init_one(&dma_xfer[sg_count].sg, buf, min);
231 }
232
233 ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
234 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
235
236 len -= min;
237 buf += min;
238
239 /* Queue the PIO register write transfer. */
240 desc = dmaengine_prep_slave_sg(ssp->dmach,
241 (struct scatterlist *)dma_xfer[sg_count].pio,
242 (ssp->devid == IMX23_SSP) ? 1 : 4,
243 DMA_TRANS_NONE,
244 sg_count ? DMA_PREP_INTERRUPT : 0);
245 if (!desc) {
246 dev_err(ssp->dev,
247 "Failed to get PIO reg. write descriptor.\n");
248 ret = -EINVAL;
249 goto err_mapped;
250 }
251
252 desc = dmaengine_prep_slave_sg(ssp->dmach,
253 &dma_xfer[sg_count].sg, 1,
254 (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
255 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
256
257 if (!desc) {
258 dev_err(ssp->dev,
259 "Failed to get DMA data write descriptor.\n");
260 ret = -EINVAL;
261 goto err_mapped;
262 }
263 }
264
265 /*
266 * The last descriptor must have this callback,
267 * to finish the DMA transaction.
268 */
269 desc->callback = mxs_ssp_dma_irq_callback;
270 desc->callback_param = spi;
271
272 /* Start the transfer. */
273 dmaengine_submit(desc);
274 dma_async_issue_pending(ssp->dmach);
275
276 if (!wait_for_completion_timeout(&spi->c,
277 msecs_to_jiffies(SSP_TIMEOUT))) {
278 dev_err(ssp->dev, "DMA transfer timeout\n");
279 ret = -ETIMEDOUT;
280 dmaengine_terminate_all(ssp->dmach);
281 goto err_vmalloc;
282 }
283
284 ret = 0;
285
286err_vmalloc:
287 while (--sg_count >= 0) {
288err_mapped:
289 dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
290 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
291 }
292
293 kfree(dma_xfer);
294
295 return ret;
296}
297
298static int mxs_spi_txrx_pio(struct mxs_spi *spi,
299 unsigned char *buf, int len,
300 unsigned int flags)
301{
302 struct mxs_ssp *ssp = &spi->ssp;
303
304 writel(BM_SSP_CTRL0_IGNORE_CRC,
305 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
306
307 while (len--) {
308 if (len == 0 && (flags & TXRX_DEASSERT_CS))
309 writel(BM_SSP_CTRL0_IGNORE_CRC,
310 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
311
312 if (ssp->devid == IMX23_SSP) {
313 writel(BM_SSP_CTRL0_XFER_COUNT,
314 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
315 writel(1,
316 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
317 } else {
318 writel(1, ssp->base + HW_SSP_XFER_SIZE);
319 }
320
321 if (flags & TXRX_WRITE)
322 writel(BM_SSP_CTRL0_READ,
323 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
324 else
325 writel(BM_SSP_CTRL0_READ,
326 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
327
328 writel(BM_SSP_CTRL0_RUN,
329 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
330
331 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
332 return -ETIMEDOUT;
333
334 if (flags & TXRX_WRITE)
335 writel(*buf, ssp->base + HW_SSP_DATA(ssp));
336
337 writel(BM_SSP_CTRL0_DATA_XFER,
338 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
339
340 if (!(flags & TXRX_WRITE)) {
341 if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
342 BM_SSP_STATUS_FIFO_EMPTY, 0))
343 return -ETIMEDOUT;
344
345 *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
346 }
347
348 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
349 return -ETIMEDOUT;
350
351 buf++;
352 }
353
354 if (len <= 0)
355 return 0;
356
357 return -ETIMEDOUT;
358}
359
360static int mxs_spi_transfer_one(struct spi_master *master,
361 struct spi_message *m)
362{
363 struct mxs_spi *spi = spi_master_get_devdata(master);
364 struct mxs_ssp *ssp = &spi->ssp;
365 struct spi_transfer *t;
366 unsigned int flag;
367 int status = 0;
368
369 /* Program CS register bits here, it will be used for all transfers. */
370 writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
371 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
372 writel(mxs_spi_cs_to_reg(m->spi->chip_select),
373 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
374
375 list_for_each_entry(t, &m->transfers, transfer_list) {
376
377 trace_spi_transfer_start(m, t);
378
379 status = mxs_spi_setup_transfer(m->spi, t);
380 if (status)
381 break;
382
383 /* De-assert on last transfer, inverted by cs_change flag */
384 flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
385 TXRX_DEASSERT_CS : 0;
386
387 /*
388 * Small blocks can be transfered via PIO.
389 * Measured by empiric means:
390 *
391 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
392 *
393 * DMA only: 2.164808 seconds, 473.0KB/s
394 * Combined: 1.676276 seconds, 610.9KB/s
395 */
396 if (t->len < 32) {
397 writel(BM_SSP_CTRL1_DMA_ENABLE,
398 ssp->base + HW_SSP_CTRL1(ssp) +
399 STMP_OFFSET_REG_CLR);
400
401 if (t->tx_buf)
402 status = mxs_spi_txrx_pio(spi,
403 (void *)t->tx_buf,
404 t->len, flag | TXRX_WRITE);
405 if (t->rx_buf)
406 status = mxs_spi_txrx_pio(spi,
407 t->rx_buf, t->len,
408 flag);
409 } else {
410 writel(BM_SSP_CTRL1_DMA_ENABLE,
411 ssp->base + HW_SSP_CTRL1(ssp) +
412 STMP_OFFSET_REG_SET);
413
414 if (t->tx_buf)
415 status = mxs_spi_txrx_dma(spi,
416 (void *)t->tx_buf, t->len,
417 flag | TXRX_WRITE);
418 if (t->rx_buf)
419 status = mxs_spi_txrx_dma(spi,
420 t->rx_buf, t->len,
421 flag);
422 }
423
424 trace_spi_transfer_stop(m, t);
425
426 if (status) {
427 stmp_reset_block(ssp->base);
428 break;
429 }
430
431 m->actual_length += t->len;
432 }
433
434 m->status = status;
435 spi_finalize_current_message(master);
436
437 return status;
438}
439
440static int mxs_spi_runtime_suspend(struct device *dev)
441{
442 struct spi_master *master = dev_get_drvdata(dev);
443 struct mxs_spi *spi = spi_master_get_devdata(master);
444 struct mxs_ssp *ssp = &spi->ssp;
445 int ret;
446
447 clk_disable_unprepare(ssp->clk);
448
449 ret = pinctrl_pm_select_idle_state(dev);
450 if (ret) {
451 int ret2 = clk_prepare_enable(ssp->clk);
452
453 if (ret2)
454 dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
455 ret, ret2);
456 }
457
458 return ret;
459}
460
461static int mxs_spi_runtime_resume(struct device *dev)
462{
463 struct spi_master *master = dev_get_drvdata(dev);
464 struct mxs_spi *spi = spi_master_get_devdata(master);
465 struct mxs_ssp *ssp = &spi->ssp;
466 int ret;
467
468 ret = pinctrl_pm_select_default_state(dev);
469 if (ret)
470 return ret;
471
472 ret = clk_prepare_enable(ssp->clk);
473 if (ret)
474 pinctrl_pm_select_idle_state(dev);
475
476 return ret;
477}
478
479static int __maybe_unused mxs_spi_suspend(struct device *dev)
480{
481 struct spi_master *master = dev_get_drvdata(dev);
482 int ret;
483
484 ret = spi_master_suspend(master);
485 if (ret)
486 return ret;
487
488 if (!pm_runtime_suspended(dev))
489 return mxs_spi_runtime_suspend(dev);
490 else
491 return 0;
492}
493
494static int __maybe_unused mxs_spi_resume(struct device *dev)
495{
496 struct spi_master *master = dev_get_drvdata(dev);
497 int ret;
498
499 if (!pm_runtime_suspended(dev))
500 ret = mxs_spi_runtime_resume(dev);
501 else
502 ret = 0;
503 if (ret)
504 return ret;
505
506 ret = spi_master_resume(master);
507 if (ret < 0 && !pm_runtime_suspended(dev))
508 mxs_spi_runtime_suspend(dev);
509
510 return ret;
511}
512
513static const struct dev_pm_ops mxs_spi_pm = {
514 SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
515 mxs_spi_runtime_resume, NULL)
516 SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
517};
518
519static const struct of_device_id mxs_spi_dt_ids[] = {
520 { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
521 { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
522 { /* sentinel */ }
523};
524MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
525
526static int mxs_spi_probe(struct platform_device *pdev)
527{
528 const struct of_device_id *of_id =
529 of_match_device(mxs_spi_dt_ids, &pdev->dev);
530 struct device_node *np = pdev->dev.of_node;
531 struct spi_master *master;
532 struct mxs_spi *spi;
533 struct mxs_ssp *ssp;
534 struct clk *clk;
535 void __iomem *base;
536 int devid, clk_freq;
537 int ret = 0, irq_err;
538
539 /*
540 * Default clock speed for the SPI core. 160MHz seems to
541 * work reasonably well with most SPI flashes, so use this
542 * as a default. Override with "clock-frequency" DT prop.
543 */
544 const int clk_freq_default = 160000000;
545
546 irq_err = platform_get_irq(pdev, 0);
547 if (irq_err < 0)
548 return irq_err;
549
550 base = devm_platform_ioremap_resource(pdev, 0);
551 if (IS_ERR(base))
552 return PTR_ERR(base);
553
554 clk = devm_clk_get(&pdev->dev, NULL);
555 if (IS_ERR(clk))
556 return PTR_ERR(clk);
557
558 devid = (enum mxs_ssp_id) of_id->data;
559 ret = of_property_read_u32(np, "clock-frequency",
560 &clk_freq);
561 if (ret)
562 clk_freq = clk_freq_default;
563
564 master = spi_alloc_master(&pdev->dev, sizeof(*spi));
565 if (!master)
566 return -ENOMEM;
567
568 platform_set_drvdata(pdev, master);
569
570 master->transfer_one_message = mxs_spi_transfer_one;
571 master->bits_per_word_mask = SPI_BPW_MASK(8);
572 master->mode_bits = SPI_CPOL | SPI_CPHA;
573 master->num_chipselect = 3;
574 master->dev.of_node = np;
575 master->flags = SPI_MASTER_HALF_DUPLEX;
576 master->auto_runtime_pm = true;
577
578 spi = spi_master_get_devdata(master);
579 ssp = &spi->ssp;
580 ssp->dev = &pdev->dev;
581 ssp->clk = clk;
582 ssp->base = base;
583 ssp->devid = devid;
584
585 init_completion(&spi->c);
586
587 ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
588 dev_name(&pdev->dev), ssp);
589 if (ret)
590 goto out_master_free;
591
592 ssp->dmach = dma_request_chan(&pdev->dev, "rx-tx");
593 if (IS_ERR(ssp->dmach)) {
594 dev_err(ssp->dev, "Failed to request DMA\n");
595 ret = PTR_ERR(ssp->dmach);
596 goto out_master_free;
597 }
598
599 pm_runtime_enable(ssp->dev);
600 if (!pm_runtime_enabled(ssp->dev)) {
601 ret = mxs_spi_runtime_resume(ssp->dev);
602 if (ret < 0) {
603 dev_err(ssp->dev, "runtime resume failed\n");
604 goto out_dma_release;
605 }
606 }
607
608 ret = pm_runtime_resume_and_get(ssp->dev);
609 if (ret < 0) {
610 dev_err(ssp->dev, "runtime_get_sync failed\n");
611 goto out_pm_runtime_disable;
612 }
613
614 clk_set_rate(ssp->clk, clk_freq);
615
616 ret = stmp_reset_block(ssp->base);
617 if (ret)
618 goto out_pm_runtime_put;
619
620 ret = devm_spi_register_master(&pdev->dev, master);
621 if (ret) {
622 dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
623 goto out_pm_runtime_put;
624 }
625
626 pm_runtime_put(ssp->dev);
627
628 return 0;
629
630out_pm_runtime_put:
631 pm_runtime_put(ssp->dev);
632out_pm_runtime_disable:
633 pm_runtime_disable(ssp->dev);
634out_dma_release:
635 dma_release_channel(ssp->dmach);
636out_master_free:
637 spi_master_put(master);
638 return ret;
639}
640
641static int mxs_spi_remove(struct platform_device *pdev)
642{
643 struct spi_master *master;
644 struct mxs_spi *spi;
645 struct mxs_ssp *ssp;
646
647 master = platform_get_drvdata(pdev);
648 spi = spi_master_get_devdata(master);
649 ssp = &spi->ssp;
650
651 pm_runtime_disable(&pdev->dev);
652 if (!pm_runtime_status_suspended(&pdev->dev))
653 mxs_spi_runtime_suspend(&pdev->dev);
654
655 dma_release_channel(ssp->dmach);
656
657 return 0;
658}
659
660static struct platform_driver mxs_spi_driver = {
661 .probe = mxs_spi_probe,
662 .remove = mxs_spi_remove,
663 .driver = {
664 .name = DRIVER_NAME,
665 .of_match_table = mxs_spi_dt_ids,
666 .pm = &mxs_spi_pm,
667 },
668};
669
670module_platform_driver(mxs_spi_driver);
671
672MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
673MODULE_DESCRIPTION("MXS SPI master driver");
674MODULE_LICENSE("GPL");
675MODULE_ALIAS("platform:mxs-spi");
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Freescale MXS SPI master driver
4//
5// Copyright 2012 DENX Software Engineering, GmbH.
6// Copyright 2012 Freescale Semiconductor, Inc.
7// Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
8//
9// Rework and transition to new API by:
10// Marek Vasut <marex@denx.de>
11//
12// Based on previous attempt by:
13// Fabio Estevam <fabio.estevam@freescale.com>
14//
15// Based on code from U-Boot bootloader by:
16// Marek Vasut <marex@denx.de>
17//
18// Based on spi-stmp.c, which is:
19// Author: Dmitry Pervushin <dimka@embeddedalley.com>
20
21#include <linux/kernel.h>
22#include <linux/ioport.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_gpio.h>
26#include <linux/platform_device.h>
27#include <linux/delay.h>
28#include <linux/interrupt.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmaengine.h>
31#include <linux/highmem.h>
32#include <linux/clk.h>
33#include <linux/err.h>
34#include <linux/completion.h>
35#include <linux/gpio.h>
36#include <linux/regulator/consumer.h>
37#include <linux/pm_runtime.h>
38#include <linux/module.h>
39#include <linux/stmp_device.h>
40#include <linux/spi/spi.h>
41#include <linux/spi/mxs-spi.h>
42#include <trace/events/spi.h>
43
44#define DRIVER_NAME "mxs-spi"
45
46/* Use 10S timeout for very long transfers, it should suffice. */
47#define SSP_TIMEOUT 10000
48
49#define SG_MAXLEN 0xff00
50
51/*
52 * Flags for txrx functions. More efficient that using an argument register for
53 * each one.
54 */
55#define TXRX_WRITE (1<<0) /* This is a write */
56#define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */
57
58struct mxs_spi {
59 struct mxs_ssp ssp;
60 struct completion c;
61 unsigned int sck; /* Rate requested (vs actual) */
62};
63
64static int mxs_spi_setup_transfer(struct spi_device *dev,
65 const struct spi_transfer *t)
66{
67 struct mxs_spi *spi = spi_master_get_devdata(dev->master);
68 struct mxs_ssp *ssp = &spi->ssp;
69 const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
70
71 if (hz == 0) {
72 dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
73 return -EINVAL;
74 }
75
76 if (hz != spi->sck) {
77 mxs_ssp_set_clk_rate(ssp, hz);
78 /*
79 * Save requested rate, hz, rather than the actual rate,
80 * ssp->clk_rate. Otherwise we would set the rate every transfer
81 * when the actual rate is not quite the same as requested rate.
82 */
83 spi->sck = hz;
84 /*
85 * Perhaps we should return an error if the actual clock is
86 * nowhere close to what was requested?
87 */
88 }
89
90 writel(BM_SSP_CTRL0_LOCK_CS,
91 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
92
93 writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
94 BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
95 ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
96 ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
97 ssp->base + HW_SSP_CTRL1(ssp));
98
99 writel(0x0, ssp->base + HW_SSP_CMD0);
100 writel(0x0, ssp->base + HW_SSP_CMD1);
101
102 return 0;
103}
104
105static u32 mxs_spi_cs_to_reg(unsigned cs)
106{
107 u32 select = 0;
108
109 /*
110 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
111 *
112 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
113 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
114 * the datasheet for further details. In SPI mode, they are used to
115 * toggle the chip-select lines (nCS pins).
116 */
117 if (cs & 1)
118 select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
119 if (cs & 2)
120 select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
121
122 return select;
123}
124
125static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
126{
127 const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
128 struct mxs_ssp *ssp = &spi->ssp;
129 u32 reg;
130
131 do {
132 reg = readl_relaxed(ssp->base + offset);
133
134 if (!set)
135 reg = ~reg;
136
137 reg &= mask;
138
139 if (reg == mask)
140 return 0;
141 } while (time_before(jiffies, timeout));
142
143 return -ETIMEDOUT;
144}
145
146static void mxs_ssp_dma_irq_callback(void *param)
147{
148 struct mxs_spi *spi = param;
149
150 complete(&spi->c);
151}
152
153static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
154{
155 struct mxs_ssp *ssp = dev_id;
156
157 dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
158 __func__, __LINE__,
159 readl(ssp->base + HW_SSP_CTRL1(ssp)),
160 readl(ssp->base + HW_SSP_STATUS(ssp)));
161 return IRQ_HANDLED;
162}
163
164static int mxs_spi_txrx_dma(struct mxs_spi *spi,
165 unsigned char *buf, int len,
166 unsigned int flags)
167{
168 struct mxs_ssp *ssp = &spi->ssp;
169 struct dma_async_tx_descriptor *desc = NULL;
170 const bool vmalloced_buf = is_vmalloc_addr(buf);
171 const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
172 const int sgs = DIV_ROUND_UP(len, desc_len);
173 int sg_count;
174 int min, ret;
175 u32 ctrl0;
176 struct page *vm_page;
177 struct {
178 u32 pio[4];
179 struct scatterlist sg;
180 } *dma_xfer;
181
182 if (!len)
183 return -EINVAL;
184
185 dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
186 if (!dma_xfer)
187 return -ENOMEM;
188
189 reinit_completion(&spi->c);
190
191 /* Chip select was already programmed into CTRL0 */
192 ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
193 ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
194 BM_SSP_CTRL0_READ);
195 ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
196
197 if (!(flags & TXRX_WRITE))
198 ctrl0 |= BM_SSP_CTRL0_READ;
199
200 /* Queue the DMA data transfer. */
201 for (sg_count = 0; sg_count < sgs; sg_count++) {
202 /* Prepare the transfer descriptor. */
203 min = min(len, desc_len);
204
205 /*
206 * De-assert CS on last segment if flag is set (i.e., no more
207 * transfers will follow)
208 */
209 if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
210 ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
211
212 if (ssp->devid == IMX23_SSP) {
213 ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
214 ctrl0 |= min;
215 }
216
217 dma_xfer[sg_count].pio[0] = ctrl0;
218 dma_xfer[sg_count].pio[3] = min;
219
220 if (vmalloced_buf) {
221 vm_page = vmalloc_to_page(buf);
222 if (!vm_page) {
223 ret = -ENOMEM;
224 goto err_vmalloc;
225 }
226
227 sg_init_table(&dma_xfer[sg_count].sg, 1);
228 sg_set_page(&dma_xfer[sg_count].sg, vm_page,
229 min, offset_in_page(buf));
230 } else {
231 sg_init_one(&dma_xfer[sg_count].sg, buf, min);
232 }
233
234 ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
235 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
236
237 len -= min;
238 buf += min;
239
240 /* Queue the PIO register write transfer. */
241 desc = dmaengine_prep_slave_sg(ssp->dmach,
242 (struct scatterlist *)dma_xfer[sg_count].pio,
243 (ssp->devid == IMX23_SSP) ? 1 : 4,
244 DMA_TRANS_NONE,
245 sg_count ? DMA_PREP_INTERRUPT : 0);
246 if (!desc) {
247 dev_err(ssp->dev,
248 "Failed to get PIO reg. write descriptor.\n");
249 ret = -EINVAL;
250 goto err_mapped;
251 }
252
253 desc = dmaengine_prep_slave_sg(ssp->dmach,
254 &dma_xfer[sg_count].sg, 1,
255 (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
256 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
257
258 if (!desc) {
259 dev_err(ssp->dev,
260 "Failed to get DMA data write descriptor.\n");
261 ret = -EINVAL;
262 goto err_mapped;
263 }
264 }
265
266 /*
267 * The last descriptor must have this callback,
268 * to finish the DMA transaction.
269 */
270 desc->callback = mxs_ssp_dma_irq_callback;
271 desc->callback_param = spi;
272
273 /* Start the transfer. */
274 dmaengine_submit(desc);
275 dma_async_issue_pending(ssp->dmach);
276
277 if (!wait_for_completion_timeout(&spi->c,
278 msecs_to_jiffies(SSP_TIMEOUT))) {
279 dev_err(ssp->dev, "DMA transfer timeout\n");
280 ret = -ETIMEDOUT;
281 dmaengine_terminate_all(ssp->dmach);
282 goto err_vmalloc;
283 }
284
285 ret = 0;
286
287err_vmalloc:
288 while (--sg_count >= 0) {
289err_mapped:
290 dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
291 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
292 }
293
294 kfree(dma_xfer);
295
296 return ret;
297}
298
299static int mxs_spi_txrx_pio(struct mxs_spi *spi,
300 unsigned char *buf, int len,
301 unsigned int flags)
302{
303 struct mxs_ssp *ssp = &spi->ssp;
304
305 writel(BM_SSP_CTRL0_IGNORE_CRC,
306 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
307
308 while (len--) {
309 if (len == 0 && (flags & TXRX_DEASSERT_CS))
310 writel(BM_SSP_CTRL0_IGNORE_CRC,
311 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
312
313 if (ssp->devid == IMX23_SSP) {
314 writel(BM_SSP_CTRL0_XFER_COUNT,
315 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
316 writel(1,
317 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
318 } else {
319 writel(1, ssp->base + HW_SSP_XFER_SIZE);
320 }
321
322 if (flags & TXRX_WRITE)
323 writel(BM_SSP_CTRL0_READ,
324 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
325 else
326 writel(BM_SSP_CTRL0_READ,
327 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
328
329 writel(BM_SSP_CTRL0_RUN,
330 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
331
332 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
333 return -ETIMEDOUT;
334
335 if (flags & TXRX_WRITE)
336 writel(*buf, ssp->base + HW_SSP_DATA(ssp));
337
338 writel(BM_SSP_CTRL0_DATA_XFER,
339 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
340
341 if (!(flags & TXRX_WRITE)) {
342 if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
343 BM_SSP_STATUS_FIFO_EMPTY, 0))
344 return -ETIMEDOUT;
345
346 *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
347 }
348
349 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
350 return -ETIMEDOUT;
351
352 buf++;
353 }
354
355 if (len <= 0)
356 return 0;
357
358 return -ETIMEDOUT;
359}
360
361static int mxs_spi_transfer_one(struct spi_master *master,
362 struct spi_message *m)
363{
364 struct mxs_spi *spi = spi_master_get_devdata(master);
365 struct mxs_ssp *ssp = &spi->ssp;
366 struct spi_transfer *t;
367 unsigned int flag;
368 int status = 0;
369
370 /* Program CS register bits here, it will be used for all transfers. */
371 writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
372 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
373 writel(mxs_spi_cs_to_reg(m->spi->chip_select),
374 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
375
376 list_for_each_entry(t, &m->transfers, transfer_list) {
377
378 trace_spi_transfer_start(m, t);
379
380 status = mxs_spi_setup_transfer(m->spi, t);
381 if (status)
382 break;
383
384 /* De-assert on last transfer, inverted by cs_change flag */
385 flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
386 TXRX_DEASSERT_CS : 0;
387
388 /*
389 * Small blocks can be transfered via PIO.
390 * Measured by empiric means:
391 *
392 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
393 *
394 * DMA only: 2.164808 seconds, 473.0KB/s
395 * Combined: 1.676276 seconds, 610.9KB/s
396 */
397 if (t->len < 32) {
398 writel(BM_SSP_CTRL1_DMA_ENABLE,
399 ssp->base + HW_SSP_CTRL1(ssp) +
400 STMP_OFFSET_REG_CLR);
401
402 if (t->tx_buf)
403 status = mxs_spi_txrx_pio(spi,
404 (void *)t->tx_buf,
405 t->len, flag | TXRX_WRITE);
406 if (t->rx_buf)
407 status = mxs_spi_txrx_pio(spi,
408 t->rx_buf, t->len,
409 flag);
410 } else {
411 writel(BM_SSP_CTRL1_DMA_ENABLE,
412 ssp->base + HW_SSP_CTRL1(ssp) +
413 STMP_OFFSET_REG_SET);
414
415 if (t->tx_buf)
416 status = mxs_spi_txrx_dma(spi,
417 (void *)t->tx_buf, t->len,
418 flag | TXRX_WRITE);
419 if (t->rx_buf)
420 status = mxs_spi_txrx_dma(spi,
421 t->rx_buf, t->len,
422 flag);
423 }
424
425 trace_spi_transfer_stop(m, t);
426
427 if (status) {
428 stmp_reset_block(ssp->base);
429 break;
430 }
431
432 m->actual_length += t->len;
433 }
434
435 m->status = status;
436 spi_finalize_current_message(master);
437
438 return status;
439}
440
441static int mxs_spi_runtime_suspend(struct device *dev)
442{
443 struct spi_master *master = dev_get_drvdata(dev);
444 struct mxs_spi *spi = spi_master_get_devdata(master);
445 struct mxs_ssp *ssp = &spi->ssp;
446 int ret;
447
448 clk_disable_unprepare(ssp->clk);
449
450 ret = pinctrl_pm_select_idle_state(dev);
451 if (ret) {
452 int ret2 = clk_prepare_enable(ssp->clk);
453
454 if (ret2)
455 dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
456 ret, ret2);
457 }
458
459 return ret;
460}
461
462static int mxs_spi_runtime_resume(struct device *dev)
463{
464 struct spi_master *master = dev_get_drvdata(dev);
465 struct mxs_spi *spi = spi_master_get_devdata(master);
466 struct mxs_ssp *ssp = &spi->ssp;
467 int ret;
468
469 ret = pinctrl_pm_select_default_state(dev);
470 if (ret)
471 return ret;
472
473 ret = clk_prepare_enable(ssp->clk);
474 if (ret)
475 pinctrl_pm_select_idle_state(dev);
476
477 return ret;
478}
479
480static int __maybe_unused mxs_spi_suspend(struct device *dev)
481{
482 struct spi_master *master = dev_get_drvdata(dev);
483 int ret;
484
485 ret = spi_master_suspend(master);
486 if (ret)
487 return ret;
488
489 if (!pm_runtime_suspended(dev))
490 return mxs_spi_runtime_suspend(dev);
491 else
492 return 0;
493}
494
495static int __maybe_unused mxs_spi_resume(struct device *dev)
496{
497 struct spi_master *master = dev_get_drvdata(dev);
498 int ret;
499
500 if (!pm_runtime_suspended(dev))
501 ret = mxs_spi_runtime_resume(dev);
502 else
503 ret = 0;
504 if (ret)
505 return ret;
506
507 ret = spi_master_resume(master);
508 if (ret < 0 && !pm_runtime_suspended(dev))
509 mxs_spi_runtime_suspend(dev);
510
511 return ret;
512}
513
514static const struct dev_pm_ops mxs_spi_pm = {
515 SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
516 mxs_spi_runtime_resume, NULL)
517 SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
518};
519
520static const struct of_device_id mxs_spi_dt_ids[] = {
521 { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
522 { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
523 { /* sentinel */ }
524};
525MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
526
527static int mxs_spi_probe(struct platform_device *pdev)
528{
529 const struct of_device_id *of_id =
530 of_match_device(mxs_spi_dt_ids, &pdev->dev);
531 struct device_node *np = pdev->dev.of_node;
532 struct spi_master *master;
533 struct mxs_spi *spi;
534 struct mxs_ssp *ssp;
535 struct clk *clk;
536 void __iomem *base;
537 int devid, clk_freq;
538 int ret = 0, irq_err;
539
540 /*
541 * Default clock speed for the SPI core. 160MHz seems to
542 * work reasonably well with most SPI flashes, so use this
543 * as a default. Override with "clock-frequency" DT prop.
544 */
545 const int clk_freq_default = 160000000;
546
547 irq_err = platform_get_irq(pdev, 0);
548 if (irq_err < 0)
549 return irq_err;
550
551 base = devm_platform_ioremap_resource(pdev, 0);
552 if (IS_ERR(base))
553 return PTR_ERR(base);
554
555 clk = devm_clk_get(&pdev->dev, NULL);
556 if (IS_ERR(clk))
557 return PTR_ERR(clk);
558
559 devid = (enum mxs_ssp_id) of_id->data;
560 ret = of_property_read_u32(np, "clock-frequency",
561 &clk_freq);
562 if (ret)
563 clk_freq = clk_freq_default;
564
565 master = spi_alloc_master(&pdev->dev, sizeof(*spi));
566 if (!master)
567 return -ENOMEM;
568
569 platform_set_drvdata(pdev, master);
570
571 master->transfer_one_message = mxs_spi_transfer_one;
572 master->bits_per_word_mask = SPI_BPW_MASK(8);
573 master->mode_bits = SPI_CPOL | SPI_CPHA;
574 master->num_chipselect = 3;
575 master->dev.of_node = np;
576 master->flags = SPI_MASTER_HALF_DUPLEX;
577 master->auto_runtime_pm = true;
578
579 spi = spi_master_get_devdata(master);
580 ssp = &spi->ssp;
581 ssp->dev = &pdev->dev;
582 ssp->clk = clk;
583 ssp->base = base;
584 ssp->devid = devid;
585
586 init_completion(&spi->c);
587
588 ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
589 dev_name(&pdev->dev), ssp);
590 if (ret)
591 goto out_master_free;
592
593 ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
594 if (!ssp->dmach) {
595 dev_err(ssp->dev, "Failed to request DMA\n");
596 ret = -ENODEV;
597 goto out_master_free;
598 }
599
600 pm_runtime_enable(ssp->dev);
601 if (!pm_runtime_enabled(ssp->dev)) {
602 ret = mxs_spi_runtime_resume(ssp->dev);
603 if (ret < 0) {
604 dev_err(ssp->dev, "runtime resume failed\n");
605 goto out_dma_release;
606 }
607 }
608
609 ret = pm_runtime_get_sync(ssp->dev);
610 if (ret < 0) {
611 dev_err(ssp->dev, "runtime_get_sync failed\n");
612 goto out_pm_runtime_disable;
613 }
614
615 clk_set_rate(ssp->clk, clk_freq);
616
617 ret = stmp_reset_block(ssp->base);
618 if (ret)
619 goto out_pm_runtime_put;
620
621 ret = devm_spi_register_master(&pdev->dev, master);
622 if (ret) {
623 dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
624 goto out_pm_runtime_put;
625 }
626
627 pm_runtime_put(ssp->dev);
628
629 return 0;
630
631out_pm_runtime_put:
632 pm_runtime_put(ssp->dev);
633out_pm_runtime_disable:
634 pm_runtime_disable(ssp->dev);
635out_dma_release:
636 dma_release_channel(ssp->dmach);
637out_master_free:
638 spi_master_put(master);
639 return ret;
640}
641
642static int mxs_spi_remove(struct platform_device *pdev)
643{
644 struct spi_master *master;
645 struct mxs_spi *spi;
646 struct mxs_ssp *ssp;
647
648 master = platform_get_drvdata(pdev);
649 spi = spi_master_get_devdata(master);
650 ssp = &spi->ssp;
651
652 pm_runtime_disable(&pdev->dev);
653 if (!pm_runtime_status_suspended(&pdev->dev))
654 mxs_spi_runtime_suspend(&pdev->dev);
655
656 dma_release_channel(ssp->dmach);
657
658 return 0;
659}
660
661static struct platform_driver mxs_spi_driver = {
662 .probe = mxs_spi_probe,
663 .remove = mxs_spi_remove,
664 .driver = {
665 .name = DRIVER_NAME,
666 .of_match_table = mxs_spi_dt_ids,
667 .pm = &mxs_spi_pm,
668 },
669};
670
671module_platform_driver(mxs_spi_driver);
672
673MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
674MODULE_DESCRIPTION("MXS SPI master driver");
675MODULE_LICENSE("GPL");
676MODULE_ALIAS("platform:mxs-spi");