Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Freescale MXS SPI master driver
  4//
  5// Copyright 2012 DENX Software Engineering, GmbH.
  6// Copyright 2012 Freescale Semiconductor, Inc.
  7// Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  8//
  9// Rework and transition to new API by:
 10// Marek Vasut <marex@denx.de>
 11//
 12// Based on previous attempt by:
 13// Fabio Estevam <fabio.estevam@freescale.com>
 14//
 15// Based on code from U-Boot bootloader by:
 16// Marek Vasut <marex@denx.de>
 17//
 18// Based on spi-stmp.c, which is:
 19// Author: Dmitry Pervushin <dimka@embeddedalley.com>
 20
 21#include <linux/kernel.h>
 22#include <linux/ioport.h>
 23#include <linux/of.h>
 24#include <linux/of_device.h>
 
 25#include <linux/platform_device.h>
 26#include <linux/delay.h>
 27#include <linux/interrupt.h>
 28#include <linux/dma-mapping.h>
 29#include <linux/dmaengine.h>
 30#include <linux/highmem.h>
 31#include <linux/clk.h>
 32#include <linux/err.h>
 33#include <linux/completion.h>
 34#include <linux/pinctrl/consumer.h>
 35#include <linux/regulator/consumer.h>
 36#include <linux/pm_runtime.h>
 37#include <linux/module.h>
 38#include <linux/stmp_device.h>
 39#include <linux/spi/spi.h>
 40#include <linux/spi/mxs-spi.h>
 41#include <trace/events/spi.h>
 42
 43#define DRIVER_NAME		"mxs-spi"
 44
 45/* Use 10S timeout for very long transfers, it should suffice. */
 46#define SSP_TIMEOUT		10000
 47
 48#define SG_MAXLEN		0xff00
 49
 50/*
 51 * Flags for txrx functions.  More efficient that using an argument register for
 52 * each one.
 53 */
 54#define TXRX_WRITE		(1<<0)	/* This is a write */
 55#define TXRX_DEASSERT_CS	(1<<1)	/* De-assert CS at end of txrx */
 56
 57struct mxs_spi {
 58	struct mxs_ssp		ssp;
 59	struct completion	c;
 60	unsigned int		sck;	/* Rate requested (vs actual) */
 61};
 62
 63static int mxs_spi_setup_transfer(struct spi_device *dev,
 64				  const struct spi_transfer *t)
 65{
 66	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
 67	struct mxs_ssp *ssp = &spi->ssp;
 68	const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
 69
 70	if (hz == 0) {
 71		dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
 72		return -EINVAL;
 73	}
 74
 75	if (hz != spi->sck) {
 76		mxs_ssp_set_clk_rate(ssp, hz);
 77		/*
 78		 * Save requested rate, hz, rather than the actual rate,
 79		 * ssp->clk_rate.  Otherwise we would set the rate every transfer
 80		 * when the actual rate is not quite the same as requested rate.
 81		 */
 82		spi->sck = hz;
 83		/*
 84		 * Perhaps we should return an error if the actual clock is
 85		 * nowhere close to what was requested?
 86		 */
 87	}
 88
 89	writel(BM_SSP_CTRL0_LOCK_CS,
 90		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
 91
 92	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
 93	       BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
 94	       ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
 95	       ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
 96	       ssp->base + HW_SSP_CTRL1(ssp));
 97
 98	writel(0x0, ssp->base + HW_SSP_CMD0);
 99	writel(0x0, ssp->base + HW_SSP_CMD1);
100
101	return 0;
102}
103
104static u32 mxs_spi_cs_to_reg(unsigned cs)
105{
106	u32 select = 0;
107
108	/*
109	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
110	 *
111	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
112	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
113	 * the datasheet for further details. In SPI mode, they are used to
114	 * toggle the chip-select lines (nCS pins).
115	 */
116	if (cs & 1)
117		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
118	if (cs & 2)
119		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
120
121	return select;
122}
123
124static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
125{
126	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
127	struct mxs_ssp *ssp = &spi->ssp;
128	u32 reg;
129
130	do {
131		reg = readl_relaxed(ssp->base + offset);
132
133		if (!set)
134			reg = ~reg;
135
136		reg &= mask;
137
138		if (reg == mask)
139			return 0;
140	} while (time_before(jiffies, timeout));
141
142	return -ETIMEDOUT;
143}
144
145static void mxs_ssp_dma_irq_callback(void *param)
146{
147	struct mxs_spi *spi = param;
148
149	complete(&spi->c);
150}
151
152static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
153{
154	struct mxs_ssp *ssp = dev_id;
155
156	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
157		__func__, __LINE__,
158		readl(ssp->base + HW_SSP_CTRL1(ssp)),
159		readl(ssp->base + HW_SSP_STATUS(ssp)));
160	return IRQ_HANDLED;
161}
162
163static int mxs_spi_txrx_dma(struct mxs_spi *spi,
164			    unsigned char *buf, int len,
165			    unsigned int flags)
166{
167	struct mxs_ssp *ssp = &spi->ssp;
168	struct dma_async_tx_descriptor *desc = NULL;
169	const bool vmalloced_buf = is_vmalloc_addr(buf);
170	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
171	const int sgs = DIV_ROUND_UP(len, desc_len);
172	int sg_count;
173	int min, ret;
174	u32 ctrl0;
175	struct page *vm_page;
176	struct {
177		u32			pio[4];
178		struct scatterlist	sg;
179	} *dma_xfer;
180
181	if (!len)
182		return -EINVAL;
183
184	dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
185	if (!dma_xfer)
186		return -ENOMEM;
187
188	reinit_completion(&spi->c);
189
190	/* Chip select was already programmed into CTRL0 */
191	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
192	ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
193		 BM_SSP_CTRL0_READ);
194	ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
195
196	if (!(flags & TXRX_WRITE))
197		ctrl0 |= BM_SSP_CTRL0_READ;
198
199	/* Queue the DMA data transfer. */
200	for (sg_count = 0; sg_count < sgs; sg_count++) {
201		/* Prepare the transfer descriptor. */
202		min = min(len, desc_len);
203
204		/*
205		 * De-assert CS on last segment if flag is set (i.e., no more
206		 * transfers will follow)
207		 */
208		if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
209			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
210
211		if (ssp->devid == IMX23_SSP) {
212			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
213			ctrl0 |= min;
214		}
215
216		dma_xfer[sg_count].pio[0] = ctrl0;
217		dma_xfer[sg_count].pio[3] = min;
218
219		if (vmalloced_buf) {
220			vm_page = vmalloc_to_page(buf);
221			if (!vm_page) {
222				ret = -ENOMEM;
223				goto err_vmalloc;
224			}
225
226			sg_init_table(&dma_xfer[sg_count].sg, 1);
227			sg_set_page(&dma_xfer[sg_count].sg, vm_page,
228				    min, offset_in_page(buf));
229		} else {
230			sg_init_one(&dma_xfer[sg_count].sg, buf, min);
231		}
232
233		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
234			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
235
236		len -= min;
237		buf += min;
238
239		/* Queue the PIO register write transfer. */
240		desc = dmaengine_prep_slave_sg(ssp->dmach,
241				(struct scatterlist *)dma_xfer[sg_count].pio,
242				(ssp->devid == IMX23_SSP) ? 1 : 4,
243				DMA_TRANS_NONE,
244				sg_count ? DMA_PREP_INTERRUPT : 0);
245		if (!desc) {
246			dev_err(ssp->dev,
247				"Failed to get PIO reg. write descriptor.\n");
248			ret = -EINVAL;
249			goto err_mapped;
250		}
251
252		desc = dmaengine_prep_slave_sg(ssp->dmach,
253				&dma_xfer[sg_count].sg, 1,
254				(flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
255				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
256
257		if (!desc) {
258			dev_err(ssp->dev,
259				"Failed to get DMA data write descriptor.\n");
260			ret = -EINVAL;
261			goto err_mapped;
262		}
263	}
264
265	/*
266	 * The last descriptor must have this callback,
267	 * to finish the DMA transaction.
268	 */
269	desc->callback = mxs_ssp_dma_irq_callback;
270	desc->callback_param = spi;
271
272	/* Start the transfer. */
273	dmaengine_submit(desc);
274	dma_async_issue_pending(ssp->dmach);
275
276	if (!wait_for_completion_timeout(&spi->c,
277					 msecs_to_jiffies(SSP_TIMEOUT))) {
278		dev_err(ssp->dev, "DMA transfer timeout\n");
279		ret = -ETIMEDOUT;
280		dmaengine_terminate_all(ssp->dmach);
281		goto err_vmalloc;
282	}
283
284	ret = 0;
285
286err_vmalloc:
287	while (--sg_count >= 0) {
288err_mapped:
289		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
290			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
291	}
292
293	kfree(dma_xfer);
294
295	return ret;
296}
297
298static int mxs_spi_txrx_pio(struct mxs_spi *spi,
299			    unsigned char *buf, int len,
300			    unsigned int flags)
301{
302	struct mxs_ssp *ssp = &spi->ssp;
303
304	writel(BM_SSP_CTRL0_IGNORE_CRC,
305	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
306
307	while (len--) {
308		if (len == 0 && (flags & TXRX_DEASSERT_CS))
309			writel(BM_SSP_CTRL0_IGNORE_CRC,
310			       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
311
312		if (ssp->devid == IMX23_SSP) {
313			writel(BM_SSP_CTRL0_XFER_COUNT,
314				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
315			writel(1,
316				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
317		} else {
318			writel(1, ssp->base + HW_SSP_XFER_SIZE);
319		}
320
321		if (flags & TXRX_WRITE)
322			writel(BM_SSP_CTRL0_READ,
323				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
324		else
325			writel(BM_SSP_CTRL0_READ,
326				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
327
328		writel(BM_SSP_CTRL0_RUN,
329				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
330
331		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
332			return -ETIMEDOUT;
333
334		if (flags & TXRX_WRITE)
335			writel(*buf, ssp->base + HW_SSP_DATA(ssp));
336
337		writel(BM_SSP_CTRL0_DATA_XFER,
338			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
339
340		if (!(flags & TXRX_WRITE)) {
341			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
342						BM_SSP_STATUS_FIFO_EMPTY, 0))
343				return -ETIMEDOUT;
344
345			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
346		}
347
348		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
349			return -ETIMEDOUT;
350
351		buf++;
352	}
353
354	if (len <= 0)
355		return 0;
356
357	return -ETIMEDOUT;
358}
359
360static int mxs_spi_transfer_one(struct spi_master *master,
361				struct spi_message *m)
362{
363	struct mxs_spi *spi = spi_master_get_devdata(master);
364	struct mxs_ssp *ssp = &spi->ssp;
365	struct spi_transfer *t;
366	unsigned int flag;
367	int status = 0;
368
369	/* Program CS register bits here, it will be used for all transfers. */
370	writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
371	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
372	writel(mxs_spi_cs_to_reg(m->spi->chip_select),
373	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
374
375	list_for_each_entry(t, &m->transfers, transfer_list) {
376
377		trace_spi_transfer_start(m, t);
378
379		status = mxs_spi_setup_transfer(m->spi, t);
380		if (status)
381			break;
382
383		/* De-assert on last transfer, inverted by cs_change flag */
384		flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
385		       TXRX_DEASSERT_CS : 0;
386
387		/*
388		 * Small blocks can be transfered via PIO.
389		 * Measured by empiric means:
390		 *
391		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
392		 *
393		 * DMA only: 2.164808 seconds, 473.0KB/s
394		 * Combined: 1.676276 seconds, 610.9KB/s
395		 */
396		if (t->len < 32) {
397			writel(BM_SSP_CTRL1_DMA_ENABLE,
398				ssp->base + HW_SSP_CTRL1(ssp) +
399				STMP_OFFSET_REG_CLR);
400
401			if (t->tx_buf)
402				status = mxs_spi_txrx_pio(spi,
403						(void *)t->tx_buf,
404						t->len, flag | TXRX_WRITE);
405			if (t->rx_buf)
406				status = mxs_spi_txrx_pio(spi,
407						t->rx_buf, t->len,
408						flag);
409		} else {
410			writel(BM_SSP_CTRL1_DMA_ENABLE,
411				ssp->base + HW_SSP_CTRL1(ssp) +
412				STMP_OFFSET_REG_SET);
413
414			if (t->tx_buf)
415				status = mxs_spi_txrx_dma(spi,
416						(void *)t->tx_buf, t->len,
417						flag | TXRX_WRITE);
418			if (t->rx_buf)
419				status = mxs_spi_txrx_dma(spi,
420						t->rx_buf, t->len,
421						flag);
422		}
423
424		trace_spi_transfer_stop(m, t);
425
426		if (status) {
427			stmp_reset_block(ssp->base);
428			break;
429		}
430
431		m->actual_length += t->len;
432	}
433
434	m->status = status;
435	spi_finalize_current_message(master);
436
437	return status;
438}
439
440static int mxs_spi_runtime_suspend(struct device *dev)
441{
442	struct spi_master *master = dev_get_drvdata(dev);
443	struct mxs_spi *spi = spi_master_get_devdata(master);
444	struct mxs_ssp *ssp = &spi->ssp;
445	int ret;
446
447	clk_disable_unprepare(ssp->clk);
448
449	ret = pinctrl_pm_select_idle_state(dev);
450	if (ret) {
451		int ret2 = clk_prepare_enable(ssp->clk);
452
453		if (ret2)
454			dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
455				 ret, ret2);
456	}
457
458	return ret;
459}
460
461static int mxs_spi_runtime_resume(struct device *dev)
462{
463	struct spi_master *master = dev_get_drvdata(dev);
464	struct mxs_spi *spi = spi_master_get_devdata(master);
465	struct mxs_ssp *ssp = &spi->ssp;
466	int ret;
467
468	ret = pinctrl_pm_select_default_state(dev);
469	if (ret)
470		return ret;
471
472	ret = clk_prepare_enable(ssp->clk);
473	if (ret)
474		pinctrl_pm_select_idle_state(dev);
475
476	return ret;
477}
478
479static int __maybe_unused mxs_spi_suspend(struct device *dev)
480{
481	struct spi_master *master = dev_get_drvdata(dev);
482	int ret;
483
484	ret = spi_master_suspend(master);
485	if (ret)
486		return ret;
487
488	if (!pm_runtime_suspended(dev))
489		return mxs_spi_runtime_suspend(dev);
490	else
491		return 0;
492}
493
494static int __maybe_unused mxs_spi_resume(struct device *dev)
495{
496	struct spi_master *master = dev_get_drvdata(dev);
497	int ret;
498
499	if (!pm_runtime_suspended(dev))
500		ret = mxs_spi_runtime_resume(dev);
501	else
502		ret = 0;
503	if (ret)
504		return ret;
505
506	ret = spi_master_resume(master);
507	if (ret < 0 && !pm_runtime_suspended(dev))
508		mxs_spi_runtime_suspend(dev);
509
510	return ret;
511}
512
513static const struct dev_pm_ops mxs_spi_pm = {
514	SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
515			   mxs_spi_runtime_resume, NULL)
516	SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
517};
518
519static const struct of_device_id mxs_spi_dt_ids[] = {
520	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
521	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
522	{ /* sentinel */ }
523};
524MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
525
526static int mxs_spi_probe(struct platform_device *pdev)
527{
528	const struct of_device_id *of_id =
529			of_match_device(mxs_spi_dt_ids, &pdev->dev);
530	struct device_node *np = pdev->dev.of_node;
531	struct spi_master *master;
532	struct mxs_spi *spi;
533	struct mxs_ssp *ssp;
534	struct clk *clk;
535	void __iomem *base;
536	int devid, clk_freq;
537	int ret = 0, irq_err;
538
539	/*
540	 * Default clock speed for the SPI core. 160MHz seems to
541	 * work reasonably well with most SPI flashes, so use this
542	 * as a default. Override with "clock-frequency" DT prop.
543	 */
544	const int clk_freq_default = 160000000;
545
546	irq_err = platform_get_irq(pdev, 0);
547	if (irq_err < 0)
548		return irq_err;
549
550	base = devm_platform_ioremap_resource(pdev, 0);
551	if (IS_ERR(base))
552		return PTR_ERR(base);
553
554	clk = devm_clk_get(&pdev->dev, NULL);
555	if (IS_ERR(clk))
556		return PTR_ERR(clk);
557
558	devid = (enum mxs_ssp_id) of_id->data;
559	ret = of_property_read_u32(np, "clock-frequency",
560				   &clk_freq);
561	if (ret)
562		clk_freq = clk_freq_default;
563
564	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
565	if (!master)
566		return -ENOMEM;
567
568	platform_set_drvdata(pdev, master);
569
570	master->transfer_one_message = mxs_spi_transfer_one;
571	master->bits_per_word_mask = SPI_BPW_MASK(8);
572	master->mode_bits = SPI_CPOL | SPI_CPHA;
573	master->num_chipselect = 3;
574	master->dev.of_node = np;
575	master->flags = SPI_MASTER_HALF_DUPLEX;
576	master->auto_runtime_pm = true;
577
578	spi = spi_master_get_devdata(master);
579	ssp = &spi->ssp;
580	ssp->dev = &pdev->dev;
581	ssp->clk = clk;
582	ssp->base = base;
583	ssp->devid = devid;
584
585	init_completion(&spi->c);
586
587	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
588			       dev_name(&pdev->dev), ssp);
589	if (ret)
590		goto out_master_free;
591
592	ssp->dmach = dma_request_chan(&pdev->dev, "rx-tx");
593	if (IS_ERR(ssp->dmach)) {
594		dev_err(ssp->dev, "Failed to request DMA\n");
595		ret = PTR_ERR(ssp->dmach);
596		goto out_master_free;
597	}
598
599	pm_runtime_enable(ssp->dev);
600	if (!pm_runtime_enabled(ssp->dev)) {
601		ret = mxs_spi_runtime_resume(ssp->dev);
602		if (ret < 0) {
603			dev_err(ssp->dev, "runtime resume failed\n");
604			goto out_dma_release;
605		}
606	}
607
608	ret = pm_runtime_resume_and_get(ssp->dev);
609	if (ret < 0) {
610		dev_err(ssp->dev, "runtime_get_sync failed\n");
611		goto out_pm_runtime_disable;
612	}
613
614	clk_set_rate(ssp->clk, clk_freq);
615
616	ret = stmp_reset_block(ssp->base);
617	if (ret)
618		goto out_pm_runtime_put;
619
620	ret = devm_spi_register_master(&pdev->dev, master);
621	if (ret) {
622		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
623		goto out_pm_runtime_put;
624	}
625
626	pm_runtime_put(ssp->dev);
627
628	return 0;
629
630out_pm_runtime_put:
631	pm_runtime_put(ssp->dev);
632out_pm_runtime_disable:
633	pm_runtime_disable(ssp->dev);
634out_dma_release:
635	dma_release_channel(ssp->dmach);
636out_master_free:
637	spi_master_put(master);
638	return ret;
639}
640
641static int mxs_spi_remove(struct platform_device *pdev)
642{
643	struct spi_master *master;
644	struct mxs_spi *spi;
645	struct mxs_ssp *ssp;
646
647	master = platform_get_drvdata(pdev);
648	spi = spi_master_get_devdata(master);
649	ssp = &spi->ssp;
650
651	pm_runtime_disable(&pdev->dev);
652	if (!pm_runtime_status_suspended(&pdev->dev))
653		mxs_spi_runtime_suspend(&pdev->dev);
654
655	dma_release_channel(ssp->dmach);
656
657	return 0;
658}
659
660static struct platform_driver mxs_spi_driver = {
661	.probe	= mxs_spi_probe,
662	.remove	= mxs_spi_remove,
663	.driver	= {
664		.name	= DRIVER_NAME,
665		.of_match_table = mxs_spi_dt_ids,
666		.pm = &mxs_spi_pm,
667	},
668};
669
670module_platform_driver(mxs_spi_driver);
671
672MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
673MODULE_DESCRIPTION("MXS SPI master driver");
674MODULE_LICENSE("GPL");
675MODULE_ALIAS("platform:mxs-spi");
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Freescale MXS SPI master driver
  4//
  5// Copyright 2012 DENX Software Engineering, GmbH.
  6// Copyright 2012 Freescale Semiconductor, Inc.
  7// Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  8//
  9// Rework and transition to new API by:
 10// Marek Vasut <marex@denx.de>
 11//
 12// Based on previous attempt by:
 13// Fabio Estevam <fabio.estevam@freescale.com>
 14//
 15// Based on code from U-Boot bootloader by:
 16// Marek Vasut <marex@denx.de>
 17//
 18// Based on spi-stmp.c, which is:
 19// Author: Dmitry Pervushin <dimka@embeddedalley.com>
 20
 21#include <linux/kernel.h>
 22#include <linux/ioport.h>
 23#include <linux/of.h>
 24#include <linux/of_device.h>
 25#include <linux/of_gpio.h>
 26#include <linux/platform_device.h>
 27#include <linux/delay.h>
 28#include <linux/interrupt.h>
 29#include <linux/dma-mapping.h>
 30#include <linux/dmaengine.h>
 31#include <linux/highmem.h>
 32#include <linux/clk.h>
 33#include <linux/err.h>
 34#include <linux/completion.h>
 35#include <linux/gpio.h>
 36#include <linux/regulator/consumer.h>
 37#include <linux/pm_runtime.h>
 38#include <linux/module.h>
 39#include <linux/stmp_device.h>
 40#include <linux/spi/spi.h>
 41#include <linux/spi/mxs-spi.h>
 42#include <trace/events/spi.h>
 43
 44#define DRIVER_NAME		"mxs-spi"
 45
 46/* Use 10S timeout for very long transfers, it should suffice. */
 47#define SSP_TIMEOUT		10000
 48
 49#define SG_MAXLEN		0xff00
 50
 51/*
 52 * Flags for txrx functions.  More efficient that using an argument register for
 53 * each one.
 54 */
 55#define TXRX_WRITE		(1<<0)	/* This is a write */
 56#define TXRX_DEASSERT_CS	(1<<1)	/* De-assert CS at end of txrx */
 57
 58struct mxs_spi {
 59	struct mxs_ssp		ssp;
 60	struct completion	c;
 61	unsigned int		sck;	/* Rate requested (vs actual) */
 62};
 63
 64static int mxs_spi_setup_transfer(struct spi_device *dev,
 65				  const struct spi_transfer *t)
 66{
 67	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
 68	struct mxs_ssp *ssp = &spi->ssp;
 69	const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
 70
 71	if (hz == 0) {
 72		dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
 73		return -EINVAL;
 74	}
 75
 76	if (hz != spi->sck) {
 77		mxs_ssp_set_clk_rate(ssp, hz);
 78		/*
 79		 * Save requested rate, hz, rather than the actual rate,
 80		 * ssp->clk_rate.  Otherwise we would set the rate every transfer
 81		 * when the actual rate is not quite the same as requested rate.
 82		 */
 83		spi->sck = hz;
 84		/*
 85		 * Perhaps we should return an error if the actual clock is
 86		 * nowhere close to what was requested?
 87		 */
 88	}
 89
 90	writel(BM_SSP_CTRL0_LOCK_CS,
 91		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
 92
 93	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
 94	       BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
 95	       ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
 96	       ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
 97	       ssp->base + HW_SSP_CTRL1(ssp));
 98
 99	writel(0x0, ssp->base + HW_SSP_CMD0);
100	writel(0x0, ssp->base + HW_SSP_CMD1);
101
102	return 0;
103}
104
105static u32 mxs_spi_cs_to_reg(unsigned cs)
106{
107	u32 select = 0;
108
109	/*
110	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
111	 *
112	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
113	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
114	 * the datasheet for further details. In SPI mode, they are used to
115	 * toggle the chip-select lines (nCS pins).
116	 */
117	if (cs & 1)
118		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
119	if (cs & 2)
120		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
121
122	return select;
123}
124
125static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
126{
127	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
128	struct mxs_ssp *ssp = &spi->ssp;
129	u32 reg;
130
131	do {
132		reg = readl_relaxed(ssp->base + offset);
133
134		if (!set)
135			reg = ~reg;
136
137		reg &= mask;
138
139		if (reg == mask)
140			return 0;
141	} while (time_before(jiffies, timeout));
142
143	return -ETIMEDOUT;
144}
145
146static void mxs_ssp_dma_irq_callback(void *param)
147{
148	struct mxs_spi *spi = param;
149
150	complete(&spi->c);
151}
152
153static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
154{
155	struct mxs_ssp *ssp = dev_id;
156
157	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
158		__func__, __LINE__,
159		readl(ssp->base + HW_SSP_CTRL1(ssp)),
160		readl(ssp->base + HW_SSP_STATUS(ssp)));
161	return IRQ_HANDLED;
162}
163
164static int mxs_spi_txrx_dma(struct mxs_spi *spi,
165			    unsigned char *buf, int len,
166			    unsigned int flags)
167{
168	struct mxs_ssp *ssp = &spi->ssp;
169	struct dma_async_tx_descriptor *desc = NULL;
170	const bool vmalloced_buf = is_vmalloc_addr(buf);
171	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
172	const int sgs = DIV_ROUND_UP(len, desc_len);
173	int sg_count;
174	int min, ret;
175	u32 ctrl0;
176	struct page *vm_page;
177	struct {
178		u32			pio[4];
179		struct scatterlist	sg;
180	} *dma_xfer;
181
182	if (!len)
183		return -EINVAL;
184
185	dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
186	if (!dma_xfer)
187		return -ENOMEM;
188
189	reinit_completion(&spi->c);
190
191	/* Chip select was already programmed into CTRL0 */
192	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
193	ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
194		 BM_SSP_CTRL0_READ);
195	ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
196
197	if (!(flags & TXRX_WRITE))
198		ctrl0 |= BM_SSP_CTRL0_READ;
199
200	/* Queue the DMA data transfer. */
201	for (sg_count = 0; sg_count < sgs; sg_count++) {
202		/* Prepare the transfer descriptor. */
203		min = min(len, desc_len);
204
205		/*
206		 * De-assert CS on last segment if flag is set (i.e., no more
207		 * transfers will follow)
208		 */
209		if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
210			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
211
212		if (ssp->devid == IMX23_SSP) {
213			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
214			ctrl0 |= min;
215		}
216
217		dma_xfer[sg_count].pio[0] = ctrl0;
218		dma_xfer[sg_count].pio[3] = min;
219
220		if (vmalloced_buf) {
221			vm_page = vmalloc_to_page(buf);
222			if (!vm_page) {
223				ret = -ENOMEM;
224				goto err_vmalloc;
225			}
226
227			sg_init_table(&dma_xfer[sg_count].sg, 1);
228			sg_set_page(&dma_xfer[sg_count].sg, vm_page,
229				    min, offset_in_page(buf));
230		} else {
231			sg_init_one(&dma_xfer[sg_count].sg, buf, min);
232		}
233
234		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
235			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
236
237		len -= min;
238		buf += min;
239
240		/* Queue the PIO register write transfer. */
241		desc = dmaengine_prep_slave_sg(ssp->dmach,
242				(struct scatterlist *)dma_xfer[sg_count].pio,
243				(ssp->devid == IMX23_SSP) ? 1 : 4,
244				DMA_TRANS_NONE,
245				sg_count ? DMA_PREP_INTERRUPT : 0);
246		if (!desc) {
247			dev_err(ssp->dev,
248				"Failed to get PIO reg. write descriptor.\n");
249			ret = -EINVAL;
250			goto err_mapped;
251		}
252
253		desc = dmaengine_prep_slave_sg(ssp->dmach,
254				&dma_xfer[sg_count].sg, 1,
255				(flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
256				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
257
258		if (!desc) {
259			dev_err(ssp->dev,
260				"Failed to get DMA data write descriptor.\n");
261			ret = -EINVAL;
262			goto err_mapped;
263		}
264	}
265
266	/*
267	 * The last descriptor must have this callback,
268	 * to finish the DMA transaction.
269	 */
270	desc->callback = mxs_ssp_dma_irq_callback;
271	desc->callback_param = spi;
272
273	/* Start the transfer. */
274	dmaengine_submit(desc);
275	dma_async_issue_pending(ssp->dmach);
276
277	if (!wait_for_completion_timeout(&spi->c,
278					 msecs_to_jiffies(SSP_TIMEOUT))) {
279		dev_err(ssp->dev, "DMA transfer timeout\n");
280		ret = -ETIMEDOUT;
281		dmaengine_terminate_all(ssp->dmach);
282		goto err_vmalloc;
283	}
284
285	ret = 0;
286
287err_vmalloc:
288	while (--sg_count >= 0) {
289err_mapped:
290		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
291			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
292	}
293
294	kfree(dma_xfer);
295
296	return ret;
297}
298
299static int mxs_spi_txrx_pio(struct mxs_spi *spi,
300			    unsigned char *buf, int len,
301			    unsigned int flags)
302{
303	struct mxs_ssp *ssp = &spi->ssp;
304
305	writel(BM_SSP_CTRL0_IGNORE_CRC,
306	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
307
308	while (len--) {
309		if (len == 0 && (flags & TXRX_DEASSERT_CS))
310			writel(BM_SSP_CTRL0_IGNORE_CRC,
311			       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
312
313		if (ssp->devid == IMX23_SSP) {
314			writel(BM_SSP_CTRL0_XFER_COUNT,
315				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
316			writel(1,
317				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
318		} else {
319			writel(1, ssp->base + HW_SSP_XFER_SIZE);
320		}
321
322		if (flags & TXRX_WRITE)
323			writel(BM_SSP_CTRL0_READ,
324				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
325		else
326			writel(BM_SSP_CTRL0_READ,
327				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
328
329		writel(BM_SSP_CTRL0_RUN,
330				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
331
332		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
333			return -ETIMEDOUT;
334
335		if (flags & TXRX_WRITE)
336			writel(*buf, ssp->base + HW_SSP_DATA(ssp));
337
338		writel(BM_SSP_CTRL0_DATA_XFER,
339			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
340
341		if (!(flags & TXRX_WRITE)) {
342			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
343						BM_SSP_STATUS_FIFO_EMPTY, 0))
344				return -ETIMEDOUT;
345
346			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
347		}
348
349		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
350			return -ETIMEDOUT;
351
352		buf++;
353	}
354
355	if (len <= 0)
356		return 0;
357
358	return -ETIMEDOUT;
359}
360
361static int mxs_spi_transfer_one(struct spi_master *master,
362				struct spi_message *m)
363{
364	struct mxs_spi *spi = spi_master_get_devdata(master);
365	struct mxs_ssp *ssp = &spi->ssp;
366	struct spi_transfer *t;
367	unsigned int flag;
368	int status = 0;
369
370	/* Program CS register bits here, it will be used for all transfers. */
371	writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
372	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
373	writel(mxs_spi_cs_to_reg(m->spi->chip_select),
374	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
375
376	list_for_each_entry(t, &m->transfers, transfer_list) {
377
378		trace_spi_transfer_start(m, t);
379
380		status = mxs_spi_setup_transfer(m->spi, t);
381		if (status)
382			break;
383
384		/* De-assert on last transfer, inverted by cs_change flag */
385		flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
386		       TXRX_DEASSERT_CS : 0;
387
388		/*
389		 * Small blocks can be transfered via PIO.
390		 * Measured by empiric means:
391		 *
392		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
393		 *
394		 * DMA only: 2.164808 seconds, 473.0KB/s
395		 * Combined: 1.676276 seconds, 610.9KB/s
396		 */
397		if (t->len < 32) {
398			writel(BM_SSP_CTRL1_DMA_ENABLE,
399				ssp->base + HW_SSP_CTRL1(ssp) +
400				STMP_OFFSET_REG_CLR);
401
402			if (t->tx_buf)
403				status = mxs_spi_txrx_pio(spi,
404						(void *)t->tx_buf,
405						t->len, flag | TXRX_WRITE);
406			if (t->rx_buf)
407				status = mxs_spi_txrx_pio(spi,
408						t->rx_buf, t->len,
409						flag);
410		} else {
411			writel(BM_SSP_CTRL1_DMA_ENABLE,
412				ssp->base + HW_SSP_CTRL1(ssp) +
413				STMP_OFFSET_REG_SET);
414
415			if (t->tx_buf)
416				status = mxs_spi_txrx_dma(spi,
417						(void *)t->tx_buf, t->len,
418						flag | TXRX_WRITE);
419			if (t->rx_buf)
420				status = mxs_spi_txrx_dma(spi,
421						t->rx_buf, t->len,
422						flag);
423		}
424
425		trace_spi_transfer_stop(m, t);
426
427		if (status) {
428			stmp_reset_block(ssp->base);
429			break;
430		}
431
432		m->actual_length += t->len;
433	}
434
435	m->status = status;
436	spi_finalize_current_message(master);
437
438	return status;
439}
440
441static int mxs_spi_runtime_suspend(struct device *dev)
442{
443	struct spi_master *master = dev_get_drvdata(dev);
444	struct mxs_spi *spi = spi_master_get_devdata(master);
445	struct mxs_ssp *ssp = &spi->ssp;
446	int ret;
447
448	clk_disable_unprepare(ssp->clk);
449
450	ret = pinctrl_pm_select_idle_state(dev);
451	if (ret) {
452		int ret2 = clk_prepare_enable(ssp->clk);
453
454		if (ret2)
455			dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
456				 ret, ret2);
457	}
458
459	return ret;
460}
461
462static int mxs_spi_runtime_resume(struct device *dev)
463{
464	struct spi_master *master = dev_get_drvdata(dev);
465	struct mxs_spi *spi = spi_master_get_devdata(master);
466	struct mxs_ssp *ssp = &spi->ssp;
467	int ret;
468
469	ret = pinctrl_pm_select_default_state(dev);
470	if (ret)
471		return ret;
472
473	ret = clk_prepare_enable(ssp->clk);
474	if (ret)
475		pinctrl_pm_select_idle_state(dev);
476
477	return ret;
478}
479
480static int __maybe_unused mxs_spi_suspend(struct device *dev)
481{
482	struct spi_master *master = dev_get_drvdata(dev);
483	int ret;
484
485	ret = spi_master_suspend(master);
486	if (ret)
487		return ret;
488
489	if (!pm_runtime_suspended(dev))
490		return mxs_spi_runtime_suspend(dev);
491	else
492		return 0;
493}
494
495static int __maybe_unused mxs_spi_resume(struct device *dev)
496{
497	struct spi_master *master = dev_get_drvdata(dev);
498	int ret;
499
500	if (!pm_runtime_suspended(dev))
501		ret = mxs_spi_runtime_resume(dev);
502	else
503		ret = 0;
504	if (ret)
505		return ret;
506
507	ret = spi_master_resume(master);
508	if (ret < 0 && !pm_runtime_suspended(dev))
509		mxs_spi_runtime_suspend(dev);
510
511	return ret;
512}
513
514static const struct dev_pm_ops mxs_spi_pm = {
515	SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
516			   mxs_spi_runtime_resume, NULL)
517	SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
518};
519
520static const struct of_device_id mxs_spi_dt_ids[] = {
521	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
522	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
523	{ /* sentinel */ }
524};
525MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
526
527static int mxs_spi_probe(struct platform_device *pdev)
528{
529	const struct of_device_id *of_id =
530			of_match_device(mxs_spi_dt_ids, &pdev->dev);
531	struct device_node *np = pdev->dev.of_node;
532	struct spi_master *master;
533	struct mxs_spi *spi;
534	struct mxs_ssp *ssp;
535	struct clk *clk;
536	void __iomem *base;
537	int devid, clk_freq;
538	int ret = 0, irq_err;
539
540	/*
541	 * Default clock speed for the SPI core. 160MHz seems to
542	 * work reasonably well with most SPI flashes, so use this
543	 * as a default. Override with "clock-frequency" DT prop.
544	 */
545	const int clk_freq_default = 160000000;
546
547	irq_err = platform_get_irq(pdev, 0);
548	if (irq_err < 0)
549		return irq_err;
550
551	base = devm_platform_ioremap_resource(pdev, 0);
552	if (IS_ERR(base))
553		return PTR_ERR(base);
554
555	clk = devm_clk_get(&pdev->dev, NULL);
556	if (IS_ERR(clk))
557		return PTR_ERR(clk);
558
559	devid = (enum mxs_ssp_id) of_id->data;
560	ret = of_property_read_u32(np, "clock-frequency",
561				   &clk_freq);
562	if (ret)
563		clk_freq = clk_freq_default;
564
565	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
566	if (!master)
567		return -ENOMEM;
568
569	platform_set_drvdata(pdev, master);
570
571	master->transfer_one_message = mxs_spi_transfer_one;
572	master->bits_per_word_mask = SPI_BPW_MASK(8);
573	master->mode_bits = SPI_CPOL | SPI_CPHA;
574	master->num_chipselect = 3;
575	master->dev.of_node = np;
576	master->flags = SPI_MASTER_HALF_DUPLEX;
577	master->auto_runtime_pm = true;
578
579	spi = spi_master_get_devdata(master);
580	ssp = &spi->ssp;
581	ssp->dev = &pdev->dev;
582	ssp->clk = clk;
583	ssp->base = base;
584	ssp->devid = devid;
585
586	init_completion(&spi->c);
587
588	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
589			       dev_name(&pdev->dev), ssp);
590	if (ret)
591		goto out_master_free;
592
593	ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
594	if (!ssp->dmach) {
595		dev_err(ssp->dev, "Failed to request DMA\n");
596		ret = -ENODEV;
597		goto out_master_free;
598	}
599
600	pm_runtime_enable(ssp->dev);
601	if (!pm_runtime_enabled(ssp->dev)) {
602		ret = mxs_spi_runtime_resume(ssp->dev);
603		if (ret < 0) {
604			dev_err(ssp->dev, "runtime resume failed\n");
605			goto out_dma_release;
606		}
607	}
608
609	ret = pm_runtime_get_sync(ssp->dev);
610	if (ret < 0) {
611		dev_err(ssp->dev, "runtime_get_sync failed\n");
612		goto out_pm_runtime_disable;
613	}
614
615	clk_set_rate(ssp->clk, clk_freq);
616
617	ret = stmp_reset_block(ssp->base);
618	if (ret)
619		goto out_pm_runtime_put;
620
621	ret = devm_spi_register_master(&pdev->dev, master);
622	if (ret) {
623		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
624		goto out_pm_runtime_put;
625	}
626
627	pm_runtime_put(ssp->dev);
628
629	return 0;
630
631out_pm_runtime_put:
632	pm_runtime_put(ssp->dev);
633out_pm_runtime_disable:
634	pm_runtime_disable(ssp->dev);
635out_dma_release:
636	dma_release_channel(ssp->dmach);
637out_master_free:
638	spi_master_put(master);
639	return ret;
640}
641
642static int mxs_spi_remove(struct platform_device *pdev)
643{
644	struct spi_master *master;
645	struct mxs_spi *spi;
646	struct mxs_ssp *ssp;
647
648	master = platform_get_drvdata(pdev);
649	spi = spi_master_get_devdata(master);
650	ssp = &spi->ssp;
651
652	pm_runtime_disable(&pdev->dev);
653	if (!pm_runtime_status_suspended(&pdev->dev))
654		mxs_spi_runtime_suspend(&pdev->dev);
655
656	dma_release_channel(ssp->dmach);
657
658	return 0;
659}
660
661static struct platform_driver mxs_spi_driver = {
662	.probe	= mxs_spi_probe,
663	.remove	= mxs_spi_remove,
664	.driver	= {
665		.name	= DRIVER_NAME,
666		.of_match_table = mxs_spi_dt_ids,
667		.pm = &mxs_spi_pm,
668	},
669};
670
671module_platform_driver(mxs_spi_driver);
672
673MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
674MODULE_DESCRIPTION("MXS SPI master driver");
675MODULE_LICENSE("GPL");
676MODULE_ALIAS("platform:mxs-spi");