Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
   3
   4#include <linux/clk.h>
   5#include <linux/dmaengine.h>
   6#include <linux/dma-mapping.h>
   7#include <linux/dma/qcom-gpi-dma.h>
   8#include <linux/interrupt.h>
   9#include <linux/io.h>
  10#include <linux/log2.h>
  11#include <linux/module.h>
 
  12#include <linux/platform_device.h>
  13#include <linux/pm_opp.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/qcom-geni-se.h>
  16#include <linux/spi/spi.h>
  17#include <linux/spinlock.h>
  18
  19/* SPI SE specific registers and respective register fields */
  20#define SE_SPI_CPHA		0x224
  21#define CPHA			BIT(0)
  22
  23#define SE_SPI_LOOPBACK		0x22c
  24#define LOOPBACK_ENABLE		0x1
  25#define NORMAL_MODE		0x0
  26#define LOOPBACK_MSK		GENMASK(1, 0)
  27
  28#define SE_SPI_CPOL		0x230
  29#define CPOL			BIT(2)
  30
  31#define SE_SPI_DEMUX_OUTPUT_INV	0x24c
  32#define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
  33
  34#define SE_SPI_DEMUX_SEL	0x250
  35#define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
  36
  37#define SE_SPI_TRANS_CFG	0x25c
  38#define CS_TOGGLE		BIT(0)
  39
  40#define SE_SPI_WORD_LEN		0x268
  41#define WORD_LEN_MSK		GENMASK(9, 0)
  42#define MIN_WORD_LEN		4
  43
  44#define SE_SPI_TX_TRANS_LEN	0x26c
  45#define SE_SPI_RX_TRANS_LEN	0x270
  46#define TRANS_LEN_MSK		GENMASK(23, 0)
  47
  48#define SE_SPI_PRE_POST_CMD_DLY	0x274
  49
  50#define SE_SPI_DELAY_COUNTERS	0x278
  51#define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
  52#define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
  53#define SPI_CS_CLK_DELAY_SHFT		10
  54
  55/* M_CMD OP codes for SPI */
  56#define SPI_TX_ONLY		1
  57#define SPI_RX_ONLY		2
 
  58#define SPI_TX_RX		7
  59#define SPI_CS_ASSERT		8
  60#define SPI_CS_DEASSERT		9
  61#define SPI_SCK_ONLY		10
  62/* M_CMD params for SPI */
  63#define SPI_PRE_CMD_DELAY	BIT(0)
  64#define TIMESTAMP_BEFORE	BIT(1)
  65#define FRAGMENTATION		BIT(2)
  66#define TIMESTAMP_AFTER		BIT(3)
  67#define POST_CMD_DELAY		BIT(4)
  68
  69#define GSI_LOOPBACK_EN		BIT(0)
  70#define GSI_CS_TOGGLE		BIT(3)
  71#define GSI_CPHA		BIT(4)
  72#define GSI_CPOL		BIT(5)
 
 
  73
  74struct spi_geni_master {
  75	struct geni_se se;
  76	struct device *dev;
  77	u32 tx_fifo_depth;
  78	u32 fifo_width_bits;
  79	u32 tx_wm;
  80	u32 last_mode;
  81	unsigned long cur_speed_hz;
  82	unsigned long cur_sclk_hz;
  83	unsigned int cur_bits_per_word;
  84	unsigned int tx_rem_bytes;
  85	unsigned int rx_rem_bytes;
  86	const struct spi_transfer *cur_xfer;
  87	struct completion cs_done;
  88	struct completion cancel_done;
  89	struct completion abort_done;
  90	unsigned int oversampling;
  91	spinlock_t lock;
 
  92	int irq;
  93	bool cs_flag;
  94	bool abort_failed;
  95	struct dma_chan *tx;
  96	struct dma_chan *rx;
  97	int cur_xfer_mode;
  98};
  99
 100static int get_spi_clk_cfg(unsigned int speed_hz,
 101			struct spi_geni_master *mas,
 102			unsigned int *clk_idx,
 103			unsigned int *clk_div)
 104{
 105	unsigned long sclk_freq;
 106	unsigned int actual_hz;
 
 107	int ret;
 108
 109	ret = geni_se_clk_freq_match(&mas->se,
 110				speed_hz * mas->oversampling,
 111				clk_idx, &sclk_freq, false);
 112	if (ret) {
 113		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
 114							ret, speed_hz);
 115		return ret;
 116	}
 117
 118	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
 119	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
 120
 121	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
 122				actual_hz, sclk_freq, *clk_idx, *clk_div);
 123	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
 124	if (ret)
 125		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
 126	else
 127		mas->cur_sclk_hz = sclk_freq;
 128
 129	return ret;
 130}
 131
 132static void handle_fifo_timeout(struct spi_master *spi,
 133				struct spi_message *msg)
 134{
 135	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 136	unsigned long time_left;
 137	struct geni_se *se = &mas->se;
 138
 139	spin_lock_irq(&mas->lock);
 140	reinit_completion(&mas->cancel_done);
 141	writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 142	mas->cur_xfer = NULL;
 143	geni_se_cancel_m_cmd(se);
 144	spin_unlock_irq(&mas->lock);
 145
 146	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
 147	if (time_left)
 148		return;
 149
 150	spin_lock_irq(&mas->lock);
 151	reinit_completion(&mas->abort_done);
 152	geni_se_abort_m_cmd(se);
 153	spin_unlock_irq(&mas->lock);
 154
 155	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
 156	if (!time_left) {
 157		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
 158
 159		/*
 160		 * No need for a lock since SPI core has a lock and we never
 161		 * access this from an interrupt.
 162		 */
 163		mas->abort_failed = true;
 164	}
 165}
 166
 167static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
 168{
 169	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 170
 171	dmaengine_terminate_sync(mas->tx);
 172	dmaengine_terminate_sync(mas->rx);
 173}
 174
 175static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
 176{
 177	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 178
 179	switch (mas->cur_xfer_mode) {
 180	case GENI_SE_FIFO:
 181		handle_fifo_timeout(spi, msg);
 182		break;
 183	case GENI_GPI_DMA:
 184		handle_gpi_timeout(spi, msg);
 185		break;
 186	default:
 187		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
 188	}
 189}
 190
 191static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
 192{
 193	struct geni_se *se = &mas->se;
 194	u32 m_irq, m_irq_en;
 195
 196	if (!mas->abort_failed)
 197		return false;
 198
 199	/*
 200	 * The only known case where a transfer times out and then a cancel
 201	 * times out then an abort times out is if something is blocking our
 202	 * interrupt handler from running.  Avoid starting any new transfers
 203	 * until that sorts itself out.
 204	 */
 205	spin_lock_irq(&mas->lock);
 206	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 207	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
 208	spin_unlock_irq(&mas->lock);
 209
 210	if (m_irq & m_irq_en) {
 211		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
 212			m_irq & m_irq_en);
 213		return true;
 214	}
 215
 216	/*
 217	 * If we're here the problem resolved itself so no need to check more
 218	 * on future transfers.
 219	 */
 220	mas->abort_failed = false;
 221
 222	return false;
 223}
 224
 225static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
 226{
 227	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
 228	struct spi_master *spi = dev_get_drvdata(mas->dev);
 229	struct geni_se *se = &mas->se;
 230	unsigned long time_left;
 231
 
 
 232	if (!(slv->mode & SPI_CS_HIGH))
 233		set_flag = !set_flag;
 234
 235	if (set_flag == mas->cs_flag)
 236		return;
 237
 238	pm_runtime_get_sync(mas->dev);
 239
 240	if (spi_geni_is_abort_still_pending(mas)) {
 241		dev_err(mas->dev, "Can't set chip select\n");
 242		goto exit;
 243	}
 244
 245	spin_lock_irq(&mas->lock);
 246	if (mas->cur_xfer) {
 247		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
 248		spin_unlock_irq(&mas->lock);
 249		goto exit;
 250	}
 251
 252	mas->cs_flag = set_flag;
 253	reinit_completion(&mas->cs_done);
 254	if (set_flag)
 255		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
 256	else
 257		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
 258	spin_unlock_irq(&mas->lock);
 259
 260	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
 261	if (!time_left) {
 262		dev_warn(mas->dev, "Timeout setting chip select\n");
 263		handle_fifo_timeout(spi, NULL);
 264	}
 265
 266exit:
 267	pm_runtime_put(mas->dev);
 268}
 269
 270static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
 271					unsigned int bits_per_word)
 272{
 273	unsigned int pack_words;
 274	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
 275	struct geni_se *se = &mas->se;
 276	u32 word_len;
 277
 
 
 278	/*
 279	 * If bits_per_word isn't a byte aligned value, set the packing to be
 280	 * 1 SPI word per FIFO word.
 281	 */
 282	if (!(mas->fifo_width_bits % bits_per_word))
 283		pack_words = mas->fifo_width_bits / bits_per_word;
 284	else
 285		pack_words = 1;
 
 
 286	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
 287								true, true);
 288	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
 289	writel(word_len, se->base + SE_SPI_WORD_LEN);
 290}
 291
 292static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
 293					unsigned long clk_hz)
 294{
 295	u32 clk_sel, m_clk_cfg, idx, div;
 296	struct geni_se *se = &mas->se;
 
 
 297	int ret;
 298
 299	if (clk_hz == mas->cur_speed_hz)
 300		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301
 302	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
 303	if (ret) {
 304		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
 
 305		return ret;
 306	}
 307
 308	/*
 309	 * SPI core clock gets configured with the requested frequency
 310	 * or the frequency closer to the requested frequency.
 311	 * For that reason requested frequency is stored in the
 312	 * cur_speed_hz and referred in the consecutive transfer instead
 313	 * of calling clk_get_rate() API.
 314	 */
 315	mas->cur_speed_hz = clk_hz;
 316
 317	clk_sel = idx & CLK_SEL_MSK;
 318	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
 
 
 
 
 
 
 319	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
 320	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 321
 322	/* Set BW quota for CPU as driver supports FIFO mode only. */
 323	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
 324	ret = geni_icc_set_bw(se);
 325	if (ret)
 326		return ret;
 327
 328	return 0;
 329}
 330
 331static int setup_fifo_params(struct spi_device *spi_slv,
 332					struct spi_master *spi)
 333{
 334	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 335	struct geni_se *se = &mas->se;
 336	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
 337	u32 demux_sel;
 338
 339	if (mas->last_mode != spi_slv->mode) {
 340		if (spi_slv->mode & SPI_LOOP)
 341			loopback_cfg = LOOPBACK_ENABLE;
 342
 343		if (spi_slv->mode & SPI_CPOL)
 344			cpol = CPOL;
 345
 346		if (spi_slv->mode & SPI_CPHA)
 347			cpha = CPHA;
 348
 349		if (spi_slv->mode & SPI_CS_HIGH)
 350			demux_output_inv = BIT(spi_slv->chip_select);
 351
 352		demux_sel = spi_slv->chip_select;
 353		mas->cur_bits_per_word = spi_slv->bits_per_word;
 354
 355		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
 356		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
 357		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
 358		writel(cpha, se->base + SE_SPI_CPHA);
 359		writel(cpol, se->base + SE_SPI_CPOL);
 360		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
 361
 362		mas->last_mode = spi_slv->mode;
 363	}
 364
 365	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
 366}
 367
 368static void
 369spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
 370{
 371	struct spi_master *spi = cb;
 372
 373	spi->cur_msg->status = -EIO;
 374	if (result->result != DMA_TRANS_NOERROR) {
 375		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
 376		spi_finalize_current_transfer(spi);
 377		return;
 378	}
 379
 380	if (!result->residue) {
 381		spi->cur_msg->status = 0;
 382		dev_dbg(&spi->dev, "DMA txn completed\n");
 383	} else {
 384		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
 385	}
 386
 387	spi_finalize_current_transfer(spi);
 388}
 389
 390static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
 391			  struct spi_device *spi_slv, struct spi_master *spi)
 392{
 393	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
 394	struct dma_slave_config config = {};
 395	struct gpi_spi_config peripheral = {};
 396	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
 397	int ret;
 398
 399	config.peripheral_config = &peripheral;
 400	config.peripheral_size = sizeof(peripheral);
 401	peripheral.set_config = true;
 402
 403	if (xfer->bits_per_word != mas->cur_bits_per_word ||
 404	    xfer->speed_hz != mas->cur_speed_hz) {
 405		mas->cur_bits_per_word = xfer->bits_per_word;
 406		mas->cur_speed_hz = xfer->speed_hz;
 407	}
 408
 409	if (xfer->tx_buf && xfer->rx_buf) {
 410		peripheral.cmd = SPI_DUPLEX;
 411	} else if (xfer->tx_buf) {
 412		peripheral.cmd = SPI_TX;
 413		peripheral.rx_len = 0;
 414	} else if (xfer->rx_buf) {
 415		peripheral.cmd = SPI_RX;
 416		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
 417			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
 418		} else {
 419			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
 420
 421			peripheral.rx_len = (xfer->len / bytes_per_word);
 422		}
 423	}
 424
 425	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
 426	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
 427	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
 428	peripheral.cs = spi_slv->chip_select;
 429	peripheral.pack_en = true;
 430	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
 431
 432	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
 433			      &peripheral.clk_src, &peripheral.clk_div);
 434	if (ret) {
 435		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
 436		return ret;
 437	}
 438
 439	if (!xfer->cs_change) {
 440		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
 441			peripheral.fragmentation = FRAGMENTATION;
 442	}
 443
 444	if (peripheral.cmd & SPI_RX) {
 445		dmaengine_slave_config(mas->rx, &config);
 446		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
 447						  DMA_DEV_TO_MEM, flags);
 448		if (!rx_desc) {
 449			dev_err(mas->dev, "Err setting up rx desc\n");
 450			return -EIO;
 451		}
 452	}
 453
 454	/*
 455	 * Prepare the TX always, even for RX or tx_buf being null, we would
 456	 * need TX to be prepared per GSI spec
 457	 */
 458	dmaengine_slave_config(mas->tx, &config);
 459	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
 460					  DMA_MEM_TO_DEV, flags);
 461	if (!tx_desc) {
 462		dev_err(mas->dev, "Err setting up tx desc\n");
 463		return -EIO;
 464	}
 465
 466	tx_desc->callback_result = spi_gsi_callback_result;
 467	tx_desc->callback_param = spi;
 468
 469	if (peripheral.cmd & SPI_RX)
 470		dmaengine_submit(rx_desc);
 471	dmaengine_submit(tx_desc);
 472
 473	if (peripheral.cmd & SPI_RX)
 474		dma_async_issue_pending(mas->rx);
 475
 476	dma_async_issue_pending(mas->tx);
 477	return 1;
 478}
 479
 480static bool geni_can_dma(struct spi_controller *ctlr,
 481			 struct spi_device *slv, struct spi_transfer *xfer)
 482{
 483	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
 484
 485	/* check if dma is supported */
 486	return mas->cur_xfer_mode != GENI_SE_FIFO;
 487}
 488
 489static int spi_geni_prepare_message(struct spi_master *spi,
 490					struct spi_message *spi_msg)
 491{
 492	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 493	int ret;
 494
 495	switch (mas->cur_xfer_mode) {
 496	case GENI_SE_FIFO:
 497		if (spi_geni_is_abort_still_pending(mas))
 498			return -EBUSY;
 499		ret = setup_fifo_params(spi_msg->spi, spi);
 500		if (ret)
 501			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
 502		return ret;
 503
 504	case GENI_GPI_DMA:
 505		/* nothing to do for GPI DMA */
 506		return 0;
 507	}
 508
 509	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
 510	return -EINVAL;
 511}
 512
 513static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
 514{
 515	int ret;
 
 
 516
 517	mas->tx = dma_request_chan(mas->dev, "tx");
 518	if (IS_ERR(mas->tx)) {
 519		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
 520				    "Failed to get tx DMA ch\n");
 521		goto err_tx;
 522	}
 523
 524	mas->rx = dma_request_chan(mas->dev, "rx");
 525	if (IS_ERR(mas->rx)) {
 526		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
 527				    "Failed to get rx DMA ch\n");
 528		goto err_rx;
 529	}
 530
 531	return 0;
 532
 533err_rx:
 534	mas->rx = NULL;
 535	dma_release_channel(mas->tx);
 536err_tx:
 537	mas->tx = NULL;
 538	return ret;
 539}
 540
 541static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
 542{
 543	if (mas->rx) {
 544		dma_release_channel(mas->rx);
 545		mas->rx = NULL;
 546	}
 547
 548	if (mas->tx) {
 549		dma_release_channel(mas->tx);
 550		mas->tx = NULL;
 551	}
 552}
 553
 554static int spi_geni_init(struct spi_geni_master *mas)
 555{
 556	struct geni_se *se = &mas->se;
 557	unsigned int proto, major, minor, ver;
 558	u32 spi_tx_cfg, fifo_disable;
 559	int ret = -ENXIO;
 560
 561	pm_runtime_get_sync(mas->dev);
 562
 563	proto = geni_se_read_proto(se);
 564	if (proto != GENI_SE_SPI) {
 565		dev_err(mas->dev, "Invalid proto %d\n", proto);
 566		goto out_pm;
 
 567	}
 568	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
 569
 570	/* Width of Tx and Rx FIFO is same */
 571	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
 572
 573	/*
 574	 * Hardware programming guide suggests to configure
 575	 * RX FIFO RFR level to fifo_depth-2.
 576	 */
 577	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
 578	/* Transmit an entire FIFO worth of data per IRQ */
 579	mas->tx_wm = 1;
 580	ver = geni_se_get_qup_hw_version(se);
 581	major = GENI_SE_VERSION_MAJOR(ver);
 582	minor = GENI_SE_VERSION_MINOR(ver);
 583
 584	if (major == 1 && minor == 0)
 585		mas->oversampling = 2;
 586	else
 587		mas->oversampling = 1;
 588
 589	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
 590	switch (fifo_disable) {
 591	case 1:
 592		ret = spi_geni_grab_gpi_chan(mas);
 593		if (!ret) { /* success case */
 594			mas->cur_xfer_mode = GENI_GPI_DMA;
 595			geni_se_select_mode(se, GENI_GPI_DMA);
 596			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
 597			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598		}
 599		/*
 600		 * in case of failure to get dma channel, we can still do the
 601		 * FIFO mode, so fallthrough
 
 
 
 602		 */
 603		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
 604		fallthrough;
 605
 606	case 0:
 607		mas->cur_xfer_mode = GENI_SE_FIFO;
 608		geni_se_select_mode(se, GENI_SE_FIFO);
 609		ret = 0;
 610		break;
 611	}
 612
 613	/* We always control CS manually */
 614	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
 
 
 
 
 
 
 
 615	spi_tx_cfg &= ~CS_TOGGLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
 
 
 617
 618out_pm:
 619	pm_runtime_put(mas->dev);
 620	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621}
 622
 623static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
 624{
 625	/*
 626	 * Calculate how many bytes we'll put in each FIFO word.  If the
 627	 * transfer words don't pack cleanly into a FIFO word we'll just put
 628	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
 629	 */
 630	if (mas->fifo_width_bits % mas->cur_bits_per_word)
 631		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
 632						       BITS_PER_BYTE));
 633
 634	return mas->fifo_width_bits / BITS_PER_BYTE;
 635}
 636
 637static bool geni_spi_handle_tx(struct spi_geni_master *mas)
 638{
 639	struct geni_se *se = &mas->se;
 640	unsigned int max_bytes;
 641	const u8 *tx_buf;
 642	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 643	unsigned int i = 0;
 644
 645	/* Stop the watermark IRQ if nothing to send */
 646	if (!mas->cur_xfer) {
 647		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 648		return false;
 649	}
 650
 651	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
 652	if (mas->tx_rem_bytes < max_bytes)
 653		max_bytes = mas->tx_rem_bytes;
 654
 655	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
 656	while (i < max_bytes) {
 657		unsigned int j;
 658		unsigned int bytes_to_write;
 659		u32 fifo_word = 0;
 660		u8 *fifo_byte = (u8 *)&fifo_word;
 661
 662		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
 663		for (j = 0; j < bytes_to_write; j++)
 664			fifo_byte[j] = tx_buf[i++];
 665		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
 666	}
 667	mas->tx_rem_bytes -= max_bytes;
 668	if (!mas->tx_rem_bytes) {
 669		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 670		return false;
 671	}
 672	return true;
 673}
 674
 675static void geni_spi_handle_rx(struct spi_geni_master *mas)
 676{
 677	struct geni_se *se = &mas->se;
 678	u32 rx_fifo_status;
 679	unsigned int rx_bytes;
 680	unsigned int rx_last_byte_valid;
 681	u8 *rx_buf;
 682	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 683	unsigned int i = 0;
 684
 685	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
 686	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
 687	if (rx_fifo_status & RX_LAST) {
 688		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
 689		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
 690		if (rx_last_byte_valid && rx_last_byte_valid < 4)
 691			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
 692	}
 693
 694	/* Clear out the FIFO and bail if nowhere to put it */
 695	if (!mas->cur_xfer) {
 696		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
 697			readl(se->base + SE_GENI_RX_FIFOn);
 698		return;
 699	}
 700
 701	if (mas->rx_rem_bytes < rx_bytes)
 702		rx_bytes = mas->rx_rem_bytes;
 703
 704	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
 705	while (i < rx_bytes) {
 706		u32 fifo_word = 0;
 707		u8 *fifo_byte = (u8 *)&fifo_word;
 708		unsigned int bytes_to_read;
 709		unsigned int j;
 710
 711		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
 712		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
 713		for (j = 0; j < bytes_to_read; j++)
 714			rx_buf[i++] = fifo_byte[j];
 715	}
 716	mas->rx_rem_bytes -= rx_bytes;
 717}
 718
 719static void setup_fifo_xfer(struct spi_transfer *xfer,
 720				struct spi_geni_master *mas,
 721				u16 mode, struct spi_master *spi)
 722{
 723	u32 m_cmd = 0;
 724	u32 len;
 725	struct geni_se *se = &mas->se;
 726	int ret;
 727
 728	/*
 729	 * Ensure that our interrupt handler isn't still running from some
 730	 * prior command before we start messing with the hardware behind
 731	 * its back.  We don't need to _keep_ the lock here since we're only
 732	 * worried about racing with out interrupt handler.  The SPI core
 733	 * already handles making sure that we're not trying to do two
 734	 * transfers at once or setting a chip select and doing a transfer
 735	 * concurrently.
 736	 *
 737	 * NOTE: we actually _can't_ hold the lock here because possibly we
 738	 * might call clk_set_rate() which needs to be able to sleep.
 739	 */
 740	spin_lock_irq(&mas->lock);
 741	spin_unlock_irq(&mas->lock);
 742
 743	if (xfer->bits_per_word != mas->cur_bits_per_word) {
 744		spi_setup_word_len(mas, mode, xfer->bits_per_word);
 745		mas->cur_bits_per_word = xfer->bits_per_word;
 746	}
 747
 748	/* Speed and bits per word can be overridden per transfer */
 749	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
 750	if (ret)
 751		return;
 752
 753	mas->tx_rem_bytes = 0;
 754	mas->rx_rem_bytes = 0;
 755
 756	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
 757		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
 758	else
 759		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
 760	len &= TRANS_LEN_MSK;
 761
 762	mas->cur_xfer = xfer;
 763	if (xfer->tx_buf) {
 764		m_cmd |= SPI_TX_ONLY;
 765		mas->tx_rem_bytes = xfer->len;
 766		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
 767	}
 768
 769	if (xfer->rx_buf) {
 770		m_cmd |= SPI_RX_ONLY;
 771		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
 772		mas->rx_rem_bytes = xfer->len;
 773	}
 774
 775	/*
 776	 * Lock around right before we start the transfer since our
 777	 * interrupt could come in at any time now.
 778	 */
 779	spin_lock_irq(&mas->lock);
 780	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
 781	if (m_cmd & SPI_TX_ONLY) {
 782		if (geni_spi_handle_tx(mas))
 783			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
 784	}
 785	spin_unlock_irq(&mas->lock);
 786}
 787
 788static int spi_geni_transfer_one(struct spi_master *spi,
 789				struct spi_device *slv,
 790				struct spi_transfer *xfer)
 791{
 792	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 793
 794	if (spi_geni_is_abort_still_pending(mas))
 795		return -EBUSY;
 796
 797	/* Terminate and return success for 0 byte length transfer */
 798	if (!xfer->len)
 799		return 0;
 800
 801	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
 802		setup_fifo_xfer(xfer, mas, slv->mode, spi);
 803		return 1;
 804	}
 805	return setup_gsi_xfer(xfer, mas, slv, spi);
 806}
 807
 808static irqreturn_t geni_spi_isr(int irq, void *data)
 809{
 810	struct spi_master *spi = data;
 811	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 812	struct geni_se *se = &mas->se;
 813	u32 m_irq;
 
 814
 815	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 816	if (!m_irq)
 817		return IRQ_NONE;
 818
 819	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
 820		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
 821		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
 822		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
 823
 824	spin_lock(&mas->lock);
 825
 826	if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
 827		geni_spi_handle_rx(mas);
 828
 829	if (m_irq & M_TX_FIFO_WATERMARK_EN)
 830		geni_spi_handle_tx(mas);
 831
 832	if (m_irq & M_CMD_DONE_EN) {
 833		if (mas->cur_xfer) {
 834			spi_finalize_current_transfer(spi);
 835			mas->cur_xfer = NULL;
 836			/*
 837			 * If this happens, then a CMD_DONE came before all the
 838			 * Tx buffer bytes were sent out. This is unusual, log
 839			 * this condition and disable the WM interrupt to
 840			 * prevent the system from stalling due an interrupt
 841			 * storm.
 842			 *
 843			 * If this happens when all Rx bytes haven't been
 844			 * received, log the condition. The only known time
 845			 * this can happen is if bits_per_word != 8 and some
 846			 * registers that expect xfer lengths in num spi_words
 847			 * weren't written correctly.
 848			 */
 849			if (mas->tx_rem_bytes) {
 850				writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 851				dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
 852					mas->tx_rem_bytes, mas->cur_bits_per_word);
 853			}
 854			if (mas->rx_rem_bytes)
 855				dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
 856					mas->rx_rem_bytes, mas->cur_bits_per_word);
 857		} else {
 858			complete(&mas->cs_done);
 859		}
 
 
 
 860	}
 861
 862	if (m_irq & M_CMD_CANCEL_EN)
 863		complete(&mas->cancel_done);
 864	if (m_irq & M_CMD_ABORT_EN)
 865		complete(&mas->abort_done);
 866
 867	/*
 868	 * It's safe or a good idea to Ack all of our interrupts at the end
 869	 * of the function. Specifically:
 870	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
 871	 *   clearing Acks. Clearing at the end relies on nobody else having
 872	 *   started a new transfer yet or else we could be clearing _their_
 873	 *   done bit, but everyone grabs the spinlock before starting a new
 874	 *   transfer.
 875	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
 876	 *   to be "latched level" interrupts so it's important to clear them
 877	 *   _after_ you've handled the condition and always safe to do so
 878	 *   since they'll re-assert if they're still happening.
 879	 */
 880	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
 881
 882	spin_unlock(&mas->lock);
 883
 884	return IRQ_HANDLED;
 885}
 886
 887static int spi_geni_probe(struct platform_device *pdev)
 888{
 889	int ret, irq;
 890	struct spi_master *spi;
 891	struct spi_geni_master *mas;
 892	void __iomem *base;
 893	struct clk *clk;
 894	struct device *dev = &pdev->dev;
 895
 896	irq = platform_get_irq(pdev, 0);
 897	if (irq < 0)
 898		return irq;
 899
 900	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
 901	if (ret)
 902		return dev_err_probe(dev, ret, "could not set DMA mask\n");
 903
 904	base = devm_platform_ioremap_resource(pdev, 0);
 905	if (IS_ERR(base))
 906		return PTR_ERR(base);
 907
 908	clk = devm_clk_get(dev, "se");
 909	if (IS_ERR(clk))
 
 
 910		return PTR_ERR(clk);
 
 911
 912	spi = devm_spi_alloc_master(dev, sizeof(*mas));
 913	if (!spi)
 914		return -ENOMEM;
 915
 916	platform_set_drvdata(pdev, spi);
 917	mas = spi_master_get_devdata(spi);
 918	mas->irq = irq;
 919	mas->dev = dev;
 920	mas->se.dev = dev;
 921	mas->se.wrapper = dev_get_drvdata(dev->parent);
 922	mas->se.base = base;
 923	mas->se.clk = clk;
 924
 925	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
 926	if (ret)
 927		return ret;
 928	/* OPP table is optional */
 929	ret = devm_pm_opp_of_add_table(&pdev->dev);
 930	if (ret && ret != -ENODEV) {
 931		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
 932		return ret;
 933	}
 934
 935	spi->bus_num = -1;
 936	spi->dev.of_node = dev->of_node;
 937	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
 938	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 939	spi->num_chipselect = 4;
 940	spi->max_speed_hz = 50000000;
 941	spi->prepare_message = spi_geni_prepare_message;
 942	spi->transfer_one = spi_geni_transfer_one;
 943	spi->can_dma = geni_can_dma;
 944	spi->dma_map_dev = dev->parent;
 945	spi->auto_runtime_pm = true;
 946	spi->handle_err = spi_geni_handle_err;
 947	spi->use_gpio_descriptors = true;
 948
 949	init_completion(&mas->cs_done);
 950	init_completion(&mas->cancel_done);
 951	init_completion(&mas->abort_done);
 952	spin_lock_init(&mas->lock);
 953	pm_runtime_use_autosuspend(&pdev->dev);
 954	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
 955	pm_runtime_enable(dev);
 956
 957	ret = geni_icc_get(&mas->se, NULL);
 958	if (ret)
 959		goto spi_geni_probe_runtime_disable;
 960	/* Set the bus quota to a reasonable value for register access */
 961	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
 962	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
 963
 964	ret = geni_icc_set_bw(&mas->se);
 965	if (ret)
 966		goto spi_geni_probe_runtime_disable;
 967
 968	ret = spi_geni_init(mas);
 969	if (ret)
 970		goto spi_geni_probe_runtime_disable;
 971
 972	/*
 973	 * check the mode supported and set_cs for fifo mode only
 974	 * for dma (gsi) mode, the gsi will set cs based on params passed in
 975	 * TRE
 976	 */
 977	if (mas->cur_xfer_mode == GENI_SE_FIFO)
 978		spi->set_cs = spi_geni_set_cs;
 979
 980	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
 981	if (ret)
 982		goto spi_geni_release_dma;
 983
 984	ret = spi_register_master(spi);
 985	if (ret)
 986		goto spi_geni_probe_free_irq;
 987
 988	return 0;
 989spi_geni_probe_free_irq:
 990	free_irq(mas->irq, spi);
 991spi_geni_release_dma:
 992	spi_geni_release_dma_chan(mas);
 993spi_geni_probe_runtime_disable:
 994	pm_runtime_disable(dev);
 
 995	return ret;
 996}
 997
 998static int spi_geni_remove(struct platform_device *pdev)
 999{
1000	struct spi_master *spi = platform_get_drvdata(pdev);
1001	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1002
1003	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1004	spi_unregister_master(spi);
1005
1006	spi_geni_release_dma_chan(mas);
1007
1008	free_irq(mas->irq, spi);
1009	pm_runtime_disable(&pdev->dev);
1010	return 0;
1011}
1012
1013static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1014{
1015	struct spi_master *spi = dev_get_drvdata(dev);
1016	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1017	int ret;
1018
1019	/* Drop the performance state vote */
1020	dev_pm_opp_set_rate(dev, 0);
1021
1022	ret = geni_se_resources_off(&mas->se);
1023	if (ret)
1024		return ret;
1025
1026	return geni_icc_disable(&mas->se);
1027}
1028
1029static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1030{
1031	struct spi_master *spi = dev_get_drvdata(dev);
1032	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1033	int ret;
1034
1035	ret = geni_icc_enable(&mas->se);
1036	if (ret)
1037		return ret;
1038
1039	ret = geni_se_resources_on(&mas->se);
1040	if (ret)
1041		return ret;
1042
1043	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1044}
1045
1046static int __maybe_unused spi_geni_suspend(struct device *dev)
1047{
1048	struct spi_master *spi = dev_get_drvdata(dev);
1049	int ret;
1050
1051	ret = spi_master_suspend(spi);
1052	if (ret)
1053		return ret;
1054
1055	ret = pm_runtime_force_suspend(dev);
1056	if (ret)
1057		spi_master_resume(spi);
1058
1059	return ret;
1060}
1061
1062static int __maybe_unused spi_geni_resume(struct device *dev)
1063{
1064	struct spi_master *spi = dev_get_drvdata(dev);
1065	int ret;
1066
1067	ret = pm_runtime_force_resume(dev);
1068	if (ret)
1069		return ret;
1070
1071	ret = spi_master_resume(spi);
1072	if (ret)
1073		pm_runtime_force_suspend(dev);
1074
1075	return ret;
1076}
1077
1078static const struct dev_pm_ops spi_geni_pm_ops = {
1079	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1080					spi_geni_runtime_resume, NULL)
1081	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1082};
1083
1084static const struct of_device_id spi_geni_dt_match[] = {
1085	{ .compatible = "qcom,geni-spi" },
1086	{}
1087};
1088MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1089
1090static struct platform_driver spi_geni_driver = {
1091	.probe  = spi_geni_probe,
1092	.remove = spi_geni_remove,
1093	.driver = {
1094		.name = "geni_spi",
1095		.pm = &spi_geni_pm_ops,
1096		.of_match_table = spi_geni_dt_match,
1097	},
1098};
1099module_platform_driver(spi_geni_driver);
1100
1101MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1102MODULE_LICENSE("GPL v2");
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
  3
  4#include <linux/clk.h>
 
 
 
  5#include <linux/interrupt.h>
  6#include <linux/io.h>
  7#include <linux/log2.h>
  8#include <linux/module.h>
  9#include <linux/of.h>
 10#include <linux/platform_device.h>
 
 11#include <linux/pm_runtime.h>
 12#include <linux/qcom-geni-se.h>
 13#include <linux/spi/spi.h>
 14#include <linux/spinlock.h>
 15
 16/* SPI SE specific registers and respective register fields */
 17#define SE_SPI_CPHA		0x224
 18#define CPHA			BIT(0)
 19
 20#define SE_SPI_LOOPBACK		0x22c
 21#define LOOPBACK_ENABLE		0x1
 22#define NORMAL_MODE		0x0
 23#define LOOPBACK_MSK		GENMASK(1, 0)
 24
 25#define SE_SPI_CPOL		0x230
 26#define CPOL			BIT(2)
 27
 28#define SE_SPI_DEMUX_OUTPUT_INV	0x24c
 29#define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
 30
 31#define SE_SPI_DEMUX_SEL	0x250
 32#define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
 33
 34#define SE_SPI_TRANS_CFG	0x25c
 35#define CS_TOGGLE		BIT(0)
 36
 37#define SE_SPI_WORD_LEN		0x268
 38#define WORD_LEN_MSK		GENMASK(9, 0)
 39#define MIN_WORD_LEN		4
 40
 41#define SE_SPI_TX_TRANS_LEN	0x26c
 42#define SE_SPI_RX_TRANS_LEN	0x270
 43#define TRANS_LEN_MSK		GENMASK(23, 0)
 44
 45#define SE_SPI_PRE_POST_CMD_DLY	0x274
 46
 47#define SE_SPI_DELAY_COUNTERS	0x278
 48#define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
 49#define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
 50#define SPI_CS_CLK_DELAY_SHFT		10
 51
 52/* M_CMD OP codes for SPI */
 53#define SPI_TX_ONLY		1
 54#define SPI_RX_ONLY		2
 55#define SPI_FULL_DUPLEX		3
 56#define SPI_TX_RX		7
 57#define SPI_CS_ASSERT		8
 58#define SPI_CS_DEASSERT		9
 59#define SPI_SCK_ONLY		10
 60/* M_CMD params for SPI */
 61#define SPI_PRE_CMD_DELAY	BIT(0)
 62#define TIMESTAMP_BEFORE	BIT(1)
 63#define FRAGMENTATION		BIT(2)
 64#define TIMESTAMP_AFTER		BIT(3)
 65#define POST_CMD_DELAY		BIT(4)
 66
 67enum spi_m_cmd_opcode {
 68	CMD_NONE,
 69	CMD_XFER,
 70	CMD_CS,
 71	CMD_CANCEL,
 72};
 73
 74struct spi_geni_master {
 75	struct geni_se se;
 76	struct device *dev;
 77	u32 tx_fifo_depth;
 78	u32 fifo_width_bits;
 79	u32 tx_wm;
 
 80	unsigned long cur_speed_hz;
 
 81	unsigned int cur_bits_per_word;
 82	unsigned int tx_rem_bytes;
 83	unsigned int rx_rem_bytes;
 84	const struct spi_transfer *cur_xfer;
 85	struct completion xfer_done;
 
 
 86	unsigned int oversampling;
 87	spinlock_t lock;
 88	enum spi_m_cmd_opcode cur_mcmd;
 89	int irq;
 
 
 
 
 
 90};
 91
 92static int get_spi_clk_cfg(unsigned int speed_hz,
 93			struct spi_geni_master *mas,
 94			unsigned int *clk_idx,
 95			unsigned int *clk_div)
 96{
 97	unsigned long sclk_freq;
 98	unsigned int actual_hz;
 99	struct geni_se *se = &mas->se;
100	int ret;
101
102	ret = geni_se_clk_freq_match(&mas->se,
103				speed_hz * mas->oversampling,
104				clk_idx, &sclk_freq, false);
105	if (ret) {
106		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
107							ret, speed_hz);
108		return ret;
109	}
110
111	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
112	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
113
114	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
115				actual_hz, sclk_freq, *clk_idx, *clk_div);
116	ret = clk_set_rate(se->clk, sclk_freq);
117	if (ret)
118		dev_err(mas->dev, "clk_set_rate failed %d\n", ret);
 
 
 
119	return ret;
120}
121
122static void handle_fifo_timeout(struct spi_master *spi,
123				struct spi_message *msg)
124{
125	struct spi_geni_master *mas = spi_master_get_devdata(spi);
126	unsigned long time_left, flags;
127	struct geni_se *se = &mas->se;
128
129	spin_lock_irqsave(&mas->lock, flags);
130	reinit_completion(&mas->xfer_done);
131	mas->cur_mcmd = CMD_CANCEL;
 
132	geni_se_cancel_m_cmd(se);
133	writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
134	spin_unlock_irqrestore(&mas->lock, flags);
135	time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
136	if (time_left)
137		return;
138
139	spin_lock_irqsave(&mas->lock, flags);
140	reinit_completion(&mas->xfer_done);
141	geni_se_abort_m_cmd(se);
142	spin_unlock_irqrestore(&mas->lock, flags);
143	time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
144	if (!time_left)
 
145		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146}
147
148static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
149{
150	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
151	struct spi_master *spi = dev_get_drvdata(mas->dev);
152	struct geni_se *se = &mas->se;
153	unsigned long time_left;
154
155	reinit_completion(&mas->xfer_done);
156	pm_runtime_get_sync(mas->dev);
157	if (!(slv->mode & SPI_CS_HIGH))
158		set_flag = !set_flag;
159
160	mas->cur_mcmd = CMD_CS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161	if (set_flag)
162		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
163	else
164		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
 
165
166	time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
167	if (!time_left)
 
168		handle_fifo_timeout(spi, NULL);
 
169
 
170	pm_runtime_put(mas->dev);
171}
172
173static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
174					unsigned int bits_per_word)
175{
176	unsigned int pack_words;
177	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
178	struct geni_se *se = &mas->se;
179	u32 word_len;
180
181	word_len = readl(se->base + SE_SPI_WORD_LEN);
182
183	/*
184	 * If bits_per_word isn't a byte aligned value, set the packing to be
185	 * 1 SPI word per FIFO word.
186	 */
187	if (!(mas->fifo_width_bits % bits_per_word))
188		pack_words = mas->fifo_width_bits / bits_per_word;
189	else
190		pack_words = 1;
191	word_len &= ~WORD_LEN_MSK;
192	word_len |= ((bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK);
193	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
194								true, true);
 
195	writel(word_len, se->base + SE_SPI_WORD_LEN);
196}
197
198static int setup_fifo_params(struct spi_device *spi_slv,
199					struct spi_master *spi)
200{
201	struct spi_geni_master *mas = spi_master_get_devdata(spi);
202	struct geni_se *se = &mas->se;
203	u32 loopback_cfg, cpol, cpha, demux_output_inv;
204	u32 demux_sel, clk_sel, m_clk_cfg, idx, div;
205	int ret;
206
207	loopback_cfg = readl(se->base + SE_SPI_LOOPBACK);
208	cpol = readl(se->base + SE_SPI_CPOL);
209	cpha = readl(se->base + SE_SPI_CPHA);
210	demux_output_inv = 0;
211	loopback_cfg &= ~LOOPBACK_MSK;
212	cpol &= ~CPOL;
213	cpha &= ~CPHA;
214
215	if (spi_slv->mode & SPI_LOOP)
216		loopback_cfg |= LOOPBACK_ENABLE;
217
218	if (spi_slv->mode & SPI_CPOL)
219		cpol |= CPOL;
220
221	if (spi_slv->mode & SPI_CPHA)
222		cpha |= CPHA;
223
224	if (spi_slv->mode & SPI_CS_HIGH)
225		demux_output_inv = BIT(spi_slv->chip_select);
226
227	demux_sel = spi_slv->chip_select;
228	mas->cur_speed_hz = spi_slv->max_speed_hz;
229	mas->cur_bits_per_word = spi_slv->bits_per_word;
230
231	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas, &idx, &div);
232	if (ret) {
233		dev_err(mas->dev, "Err setting clks ret(%d) for %ld\n",
234							ret, mas->cur_speed_hz);
235		return ret;
236	}
237
 
 
 
 
 
 
 
 
 
238	clk_sel = idx & CLK_SEL_MSK;
239	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
240	spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
241	writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
242	writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
243	writel(cpha, se->base + SE_SPI_CPHA);
244	writel(cpol, se->base + SE_SPI_CPOL);
245	writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
246	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
247	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 
 
 
 
 
 
 
248	return 0;
249}
250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251static int spi_geni_prepare_message(struct spi_master *spi,
252					struct spi_message *spi_msg)
253{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254	int ret;
255	struct spi_geni_master *mas = spi_master_get_devdata(spi);
256	struct geni_se *se = &mas->se;
257
258	geni_se_select_mode(se, GENI_SE_FIFO);
259	ret = setup_fifo_params(spi_msg->spi, spi);
260	if (ret)
261		dev_err(mas->dev, "Couldn't select mode %d\n", ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262	return ret;
263}
264
 
 
 
 
 
 
 
 
 
 
 
 
 
265static int spi_geni_init(struct spi_geni_master *mas)
266{
267	struct geni_se *se = &mas->se;
268	unsigned int proto, major, minor, ver;
 
 
269
270	pm_runtime_get_sync(mas->dev);
271
272	proto = geni_se_read_proto(se);
273	if (proto != GENI_SE_SPI) {
274		dev_err(mas->dev, "Invalid proto %d\n", proto);
275		pm_runtime_put(mas->dev);
276		return -ENXIO;
277	}
278	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
279
280	/* Width of Tx and Rx FIFO is same */
281	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
282
283	/*
284	 * Hardware programming guide suggests to configure
285	 * RX FIFO RFR level to fifo_depth-2.
286	 */
287	geni_se_init(se, 0x0, mas->tx_fifo_depth - 2);
288	/* Transmit an entire FIFO worth of data per IRQ */
289	mas->tx_wm = 1;
290	ver = geni_se_get_qup_hw_version(se);
291	major = GENI_SE_VERSION_MAJOR(ver);
292	minor = GENI_SE_VERSION_MINOR(ver);
293
294	if (major == 1 && minor == 0)
295		mas->oversampling = 2;
296	else
297		mas->oversampling = 1;
298
299	pm_runtime_put(mas->dev);
300	return 0;
301}
302
303static void setup_fifo_xfer(struct spi_transfer *xfer,
304				struct spi_geni_master *mas,
305				u16 mode, struct spi_master *spi)
306{
307	u32 m_cmd = 0;
308	u32 spi_tx_cfg, len;
309	struct geni_se *se = &mas->se;
310
311	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
312	if (xfer->bits_per_word != mas->cur_bits_per_word) {
313		spi_setup_word_len(mas, mode, xfer->bits_per_word);
314		mas->cur_bits_per_word = xfer->bits_per_word;
315	}
316
317	/* Speed and bits per word can be overridden per transfer */
318	if (xfer->speed_hz != mas->cur_speed_hz) {
319		int ret;
320		u32 clk_sel, m_clk_cfg;
321		unsigned int idx, div;
322
323		ret = get_spi_clk_cfg(xfer->speed_hz, mas, &idx, &div);
324		if (ret) {
325			dev_err(mas->dev, "Err setting clks:%d\n", ret);
326			return;
327		}
328		/*
329		 * SPI core clock gets configured with the requested frequency
330		 * or the frequency closer to the requested frequency.
331		 * For that reason requested frequency is stored in the
332		 * cur_speed_hz and referred in the consecutive transfer instead
333		 * of calling clk_get_rate() API.
334		 */
335		mas->cur_speed_hz = xfer->speed_hz;
336		clk_sel = idx & CLK_SEL_MSK;
337		m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
338		writel(clk_sel, se->base + SE_GENI_CLK_SEL);
339		writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 
 
 
340	}
341
342	mas->tx_rem_bytes = 0;
343	mas->rx_rem_bytes = 0;
344	if (xfer->tx_buf && xfer->rx_buf)
345		m_cmd = SPI_FULL_DUPLEX;
346	else if (xfer->tx_buf)
347		m_cmd = SPI_TX_ONLY;
348	else if (xfer->rx_buf)
349		m_cmd = SPI_RX_ONLY;
350
351	spi_tx_cfg &= ~CS_TOGGLE;
352
353	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
354		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
355	else
356		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
357	len &= TRANS_LEN_MSK;
358
359	mas->cur_xfer = xfer;
360	if (m_cmd & SPI_TX_ONLY) {
361		mas->tx_rem_bytes = xfer->len;
362		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
363	}
364
365	if (m_cmd & SPI_RX_ONLY) {
366		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
367		mas->rx_rem_bytes = xfer->len;
368	}
369	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
370	mas->cur_mcmd = CMD_XFER;
371	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
372
373	/*
374	 * TX_WATERMARK_REG should be set after SPI configuration and
375	 * setting up GENI SE engine, as driver starts data transfer
376	 * for the watermark interrupt.
377	 */
378	if (m_cmd & SPI_TX_ONLY)
379		writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
380}
381
382static int spi_geni_transfer_one(struct spi_master *spi,
383				struct spi_device *slv,
384				struct spi_transfer *xfer)
385{
386	struct spi_geni_master *mas = spi_master_get_devdata(spi);
387
388	/* Terminate and return success for 0 byte length transfer */
389	if (!xfer->len)
390		return 0;
391
392	setup_fifo_xfer(xfer, mas, slv->mode, spi);
393	return 1;
394}
395
396static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
397{
398	/*
399	 * Calculate how many bytes we'll put in each FIFO word.  If the
400	 * transfer words don't pack cleanly into a FIFO word we'll just put
401	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
402	 */
403	if (mas->fifo_width_bits % mas->cur_bits_per_word)
404		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
405						       BITS_PER_BYTE));
406
407	return mas->fifo_width_bits / BITS_PER_BYTE;
408}
409
410static void geni_spi_handle_tx(struct spi_geni_master *mas)
411{
412	struct geni_se *se = &mas->se;
413	unsigned int max_bytes;
414	const u8 *tx_buf;
415	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
416	unsigned int i = 0;
417
 
 
 
 
 
 
418	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
419	if (mas->tx_rem_bytes < max_bytes)
420		max_bytes = mas->tx_rem_bytes;
421
422	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
423	while (i < max_bytes) {
424		unsigned int j;
425		unsigned int bytes_to_write;
426		u32 fifo_word = 0;
427		u8 *fifo_byte = (u8 *)&fifo_word;
428
429		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
430		for (j = 0; j < bytes_to_write; j++)
431			fifo_byte[j] = tx_buf[i++];
432		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
433	}
434	mas->tx_rem_bytes -= max_bytes;
435	if (!mas->tx_rem_bytes)
436		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 
 
 
437}
438
439static void geni_spi_handle_rx(struct spi_geni_master *mas)
440{
441	struct geni_se *se = &mas->se;
442	u32 rx_fifo_status;
443	unsigned int rx_bytes;
444	unsigned int rx_last_byte_valid;
445	u8 *rx_buf;
446	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
447	unsigned int i = 0;
448
449	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
450	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
451	if (rx_fifo_status & RX_LAST) {
452		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
453		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
454		if (rx_last_byte_valid && rx_last_byte_valid < 4)
455			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
456	}
 
 
 
 
 
 
 
 
457	if (mas->rx_rem_bytes < rx_bytes)
458		rx_bytes = mas->rx_rem_bytes;
459
460	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
461	while (i < rx_bytes) {
462		u32 fifo_word = 0;
463		u8 *fifo_byte = (u8 *)&fifo_word;
464		unsigned int bytes_to_read;
465		unsigned int j;
466
467		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
468		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
469		for (j = 0; j < bytes_to_read; j++)
470			rx_buf[i++] = fifo_byte[j];
471	}
472	mas->rx_rem_bytes -= rx_bytes;
473}
474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475static irqreturn_t geni_spi_isr(int irq, void *data)
476{
477	struct spi_master *spi = data;
478	struct spi_geni_master *mas = spi_master_get_devdata(spi);
479	struct geni_se *se = &mas->se;
480	u32 m_irq;
481	unsigned long flags;
482
483	if (mas->cur_mcmd == CMD_NONE)
 
484		return IRQ_NONE;
485
486	spin_lock_irqsave(&mas->lock, flags);
487	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 
 
 
 
488
489	if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
490		geni_spi_handle_rx(mas);
491
492	if (m_irq & M_TX_FIFO_WATERMARK_EN)
493		geni_spi_handle_tx(mas);
494
495	if (m_irq & M_CMD_DONE_EN) {
496		if (mas->cur_mcmd == CMD_XFER)
497			spi_finalize_current_transfer(spi);
498		else if (mas->cur_mcmd == CMD_CS)
499			complete(&mas->xfer_done);
500		mas->cur_mcmd = CMD_NONE;
501		/*
502		 * If this happens, then a CMD_DONE came before all the Tx
503		 * buffer bytes were sent out. This is unusual, log this
504		 * condition and disable the WM interrupt to prevent the
505		 * system from stalling due an interrupt storm.
506		 * If this happens when all Rx bytes haven't been received, log
507		 * the condition.
508		 * The only known time this can happen is if bits_per_word != 8
509		 * and some registers that expect xfer lengths in num spi_words
510		 * weren't written correctly.
511		 */
512		if (mas->tx_rem_bytes) {
513			writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
514			dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
515				mas->tx_rem_bytes, mas->cur_bits_per_word);
 
 
 
 
 
 
516		}
517		if (mas->rx_rem_bytes)
518			dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
519				mas->rx_rem_bytes, mas->cur_bits_per_word);
520	}
521
522	if ((m_irq & M_CMD_CANCEL_EN) || (m_irq & M_CMD_ABORT_EN)) {
523		mas->cur_mcmd = CMD_NONE;
524		complete(&mas->xfer_done);
525	}
526
 
 
 
 
 
 
 
 
 
 
 
 
 
527	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
528	spin_unlock_irqrestore(&mas->lock, flags);
 
 
529	return IRQ_HANDLED;
530}
531
532static int spi_geni_probe(struct platform_device *pdev)
533{
534	int ret, irq;
535	struct spi_master *spi;
536	struct spi_geni_master *mas;
537	void __iomem *base;
538	struct clk *clk;
 
539
540	irq = platform_get_irq(pdev, 0);
541	if (irq < 0)
542		return irq;
543
 
 
 
 
544	base = devm_platform_ioremap_resource(pdev, 0);
545	if (IS_ERR(base))
546		return PTR_ERR(base);
547
548	clk = devm_clk_get(&pdev->dev, "se");
549	if (IS_ERR(clk)) {
550		dev_err(&pdev->dev, "Err getting SE Core clk %ld\n",
551						PTR_ERR(clk));
552		return PTR_ERR(clk);
553	}
554
555	spi = spi_alloc_master(&pdev->dev, sizeof(*mas));
556	if (!spi)
557		return -ENOMEM;
558
559	platform_set_drvdata(pdev, spi);
560	mas = spi_master_get_devdata(spi);
561	mas->irq = irq;
562	mas->dev = &pdev->dev;
563	mas->se.dev = &pdev->dev;
564	mas->se.wrapper = dev_get_drvdata(pdev->dev.parent);
565	mas->se.base = base;
566	mas->se.clk = clk;
567
 
 
 
 
 
 
 
 
 
 
568	spi->bus_num = -1;
569	spi->dev.of_node = pdev->dev.of_node;
570	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
571	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
572	spi->num_chipselect = 4;
573	spi->max_speed_hz = 50000000;
574	spi->prepare_message = spi_geni_prepare_message;
575	spi->transfer_one = spi_geni_transfer_one;
 
 
576	spi->auto_runtime_pm = true;
577	spi->handle_err = handle_fifo_timeout;
578	spi->set_cs = spi_geni_set_cs;
579
580	init_completion(&mas->xfer_done);
 
 
581	spin_lock_init(&mas->lock);
582	pm_runtime_enable(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
583
584	ret = spi_geni_init(mas);
585	if (ret)
586		goto spi_geni_probe_runtime_disable;
587
588	ret = request_irq(mas->irq, geni_spi_isr,
589			IRQF_TRIGGER_HIGH, "spi_geni", spi);
 
 
 
 
 
 
 
590	if (ret)
591		goto spi_geni_probe_runtime_disable;
592
593	ret = spi_register_master(spi);
594	if (ret)
595		goto spi_geni_probe_free_irq;
596
597	return 0;
598spi_geni_probe_free_irq:
599	free_irq(mas->irq, spi);
 
 
600spi_geni_probe_runtime_disable:
601	pm_runtime_disable(&pdev->dev);
602	spi_master_put(spi);
603	return ret;
604}
605
606static int spi_geni_remove(struct platform_device *pdev)
607{
608	struct spi_master *spi = platform_get_drvdata(pdev);
609	struct spi_geni_master *mas = spi_master_get_devdata(spi);
610
611	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
612	spi_unregister_master(spi);
613
 
 
614	free_irq(mas->irq, spi);
615	pm_runtime_disable(&pdev->dev);
616	return 0;
617}
618
619static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
620{
621	struct spi_master *spi = dev_get_drvdata(dev);
622	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 
623
624	return geni_se_resources_off(&mas->se);
 
 
 
 
 
 
 
625}
626
627static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
628{
629	struct spi_master *spi = dev_get_drvdata(dev);
630	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 
 
 
 
 
 
 
 
 
631
632	return geni_se_resources_on(&mas->se);
633}
634
635static int __maybe_unused spi_geni_suspend(struct device *dev)
636{
637	struct spi_master *spi = dev_get_drvdata(dev);
638	int ret;
639
640	ret = spi_master_suspend(spi);
641	if (ret)
642		return ret;
643
644	ret = pm_runtime_force_suspend(dev);
645	if (ret)
646		spi_master_resume(spi);
647
648	return ret;
649}
650
651static int __maybe_unused spi_geni_resume(struct device *dev)
652{
653	struct spi_master *spi = dev_get_drvdata(dev);
654	int ret;
655
656	ret = pm_runtime_force_resume(dev);
657	if (ret)
658		return ret;
659
660	ret = spi_master_resume(spi);
661	if (ret)
662		pm_runtime_force_suspend(dev);
663
664	return ret;
665}
666
667static const struct dev_pm_ops spi_geni_pm_ops = {
668	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
669					spi_geni_runtime_resume, NULL)
670	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
671};
672
673static const struct of_device_id spi_geni_dt_match[] = {
674	{ .compatible = "qcom,geni-spi" },
675	{}
676};
677MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
678
679static struct platform_driver spi_geni_driver = {
680	.probe  = spi_geni_probe,
681	.remove = spi_geni_remove,
682	.driver = {
683		.name = "geni_spi",
684		.pm = &spi_geni_pm_ops,
685		.of_match_table = spi_geni_dt_match,
686	},
687};
688module_platform_driver(spi_geni_driver);
689
690MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
691MODULE_LICENSE("GPL v2");