Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
  4 *
  5 * the driver does not rely on the native chipselects at all
  6 * but only uses the gpio type chipselects
  7 *
  8 * Based on: spi-bcm2835.c
  9 *
 10 * Copyright (C) 2015 Martin Sperl
 11 */
 12
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/debugfs.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 24#include <linux/of_device.h>
 
 25#include <linux/of_irq.h>
 26#include <linux/regmap.h>
 27#include <linux/spi/spi.h>
 28#include <linux/spinlock.h>
 29
 30/* define polling limits */
 31static unsigned int polling_limit_us = 30;
 32module_param(polling_limit_us, uint, 0664);
 33MODULE_PARM_DESC(polling_limit_us,
 34		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
 35
 36/*
 37 * spi register defines
 38 *
 39 * note there is garbage in the "official" documentation,
 40 * so some data is taken from the file:
 41 *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
 42 * inside of:
 43 *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
 44 */
 45
 46/* SPI register offsets */
 47#define BCM2835_AUX_SPI_CNTL0	0x00
 48#define BCM2835_AUX_SPI_CNTL1	0x04
 49#define BCM2835_AUX_SPI_STAT	0x08
 50#define BCM2835_AUX_SPI_PEEK	0x0C
 51#define BCM2835_AUX_SPI_IO	0x20
 52#define BCM2835_AUX_SPI_TXHOLD	0x30
 53
 54/* Bitfields in CNTL0 */
 55#define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
 56#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
 57#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
 58#define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
 59#define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
 60#define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
 61#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
 62#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
 63#define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
 64#define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
 65#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
 66#define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
 67#define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
 68#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
 69#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
 70
 71/* Bitfields in CNTL1 */
 72#define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
 73#define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
 74#define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
 75#define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
 76#define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
 77
 78/* Bitfields in STAT */
 79#define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
 80#define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
 81#define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
 82#define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
 83#define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
 84#define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
 85#define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
 86#define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
 87
 88struct bcm2835aux_spi {
 89	void __iomem *regs;
 90	struct clk *clk;
 91	int irq;
 92	u32 cntl[2];
 93	const u8 *tx_buf;
 94	u8 *rx_buf;
 95	int tx_len;
 96	int rx_len;
 97	int pending;
 98
 99	u64 count_transfer_polling;
100	u64 count_transfer_irq;
101	u64 count_transfer_irq_after_poll;
102
103	struct dentry *debugfs_dir;
104};
105
106#if defined(CONFIG_DEBUG_FS)
107static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
108				      const char *dname)
109{
110	char name[64];
111	struct dentry *dir;
112
113	/* get full name */
114	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
115
116	/* the base directory */
117	dir = debugfs_create_dir(name, NULL);
118	bs->debugfs_dir = dir;
119
120	/* the counters */
121	debugfs_create_u64("count_transfer_polling", 0444, dir,
122			   &bs->count_transfer_polling);
123	debugfs_create_u64("count_transfer_irq", 0444, dir,
124			   &bs->count_transfer_irq);
125	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
126			   &bs->count_transfer_irq_after_poll);
127}
128
129static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
130{
131	debugfs_remove_recursive(bs->debugfs_dir);
132	bs->debugfs_dir = NULL;
133}
134#else
135static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
136				      const char *dname)
137{
138}
139
140static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
141{
142}
143#endif /* CONFIG_DEBUG_FS */
144
145static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned int reg)
146{
147	return readl(bs->regs + reg);
148}
149
150static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned int reg,
151				 u32 val)
152{
153	writel(val, bs->regs + reg);
154}
155
156static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
157{
158	u32 data;
159	int count = min(bs->rx_len, 3);
160
161	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
162	if (bs->rx_buf) {
163		switch (count) {
164		case 3:
165			*bs->rx_buf++ = (data >> 16) & 0xff;
166			fallthrough;
167		case 2:
168			*bs->rx_buf++ = (data >> 8) & 0xff;
169			fallthrough;
170		case 1:
171			*bs->rx_buf++ = (data >> 0) & 0xff;
172			/* fallthrough - no default */
173		}
174	}
175	bs->rx_len -= count;
176	bs->pending -= count;
177}
178
179static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
180{
181	u32 data;
182	u8 byte;
183	int count;
184	int i;
185
186	/* gather up to 3 bytes to write to the FIFO */
187	count = min(bs->tx_len, 3);
188	data = 0;
189	for (i = 0; i < count; i++) {
190		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
191		data |= byte << (8 * (2 - i));
192	}
193
194	/* and set the variable bit-length */
195	data |= (count * 8) << 24;
196
197	/* and decrement length */
198	bs->tx_len -= count;
199	bs->pending += count;
200
201	/* write to the correct TX-register */
202	if (bs->tx_len)
203		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
204	else
205		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
206}
207
208static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
209{
210	/* disable spi clearing fifo and interrupts */
211	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
212	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
213		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
214}
215
216static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
217{
218	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
219
220	/* check if we have data to read */
221	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
222	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
223		bcm2835aux_rd_fifo(bs);
224
225	/* check if we have data to write */
226	while (bs->tx_len &&
227	       (bs->pending < 12) &&
228	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
229		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
230		bcm2835aux_wr_fifo(bs);
231	}
232}
233
234static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
235{
236	struct spi_master *master = dev_id;
237	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
238
239	/* IRQ may be shared, so return if our interrupts are disabled */
240	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
241	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
242		return IRQ_NONE;
243
244	/* do common fifo handling */
245	bcm2835aux_spi_transfer_helper(bs);
246
247	if (!bs->tx_len) {
248		/* disable tx fifo empty interrupt */
249		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
250			BCM2835_AUX_SPI_CNTL1_IDLE);
251	}
252
253	/* and if rx_len is 0 then disable interrupts and wake up completion */
254	if (!bs->rx_len) {
255		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
256		spi_finalize_current_transfer(master);
257	}
258
259	return IRQ_HANDLED;
260}
261
262static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
263					     struct spi_device *spi,
264					     struct spi_transfer *tfr)
265{
266	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
267
268	/* enable interrupts */
269	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
270		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
271		BCM2835_AUX_SPI_CNTL1_IDLE);
272
273	/* and wait for finish... */
274	return 1;
275}
276
277static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
278					   struct spi_device *spi,
279					   struct spi_transfer *tfr)
280{
281	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
282
283	/* update statistics */
284	bs->count_transfer_irq++;
285
286	/* fill in registers and fifos before enabling interrupts */
287	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
288	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
289
290	/* fill in tx fifo with data before enabling interrupts */
291	while ((bs->tx_len) &&
292	       (bs->pending < 12) &&
293	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
294		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
295		bcm2835aux_wr_fifo(bs);
296	}
297
298	/* now run the interrupt mode */
299	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
300}
301
302static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
303					    struct spi_device *spi,
304					struct spi_transfer *tfr)
305{
306	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
307	unsigned long timeout;
308
309	/* update statistics */
310	bs->count_transfer_polling++;
311
312	/* configure spi */
313	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
314	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
315
316	/* set the timeout to at least 2 jiffies */
317	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
318
319	/* loop until finished the transfer */
320	while (bs->rx_len) {
321
322		/* do common fifo handling */
323		bcm2835aux_spi_transfer_helper(bs);
324
325		/* there is still data pending to read check the timeout */
326		if (bs->rx_len && time_after(jiffies, timeout)) {
327			dev_dbg_ratelimited(&spi->dev,
328					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
329					    jiffies - timeout,
330					    bs->tx_len, bs->rx_len);
331			/* forward to interrupt handler */
332			bs->count_transfer_irq_after_poll++;
333			return __bcm2835aux_spi_transfer_one_irq(master,
334							       spi, tfr);
335		}
336	}
337
338	/* and return without waiting for completion */
339	return 0;
340}
341
342static int bcm2835aux_spi_transfer_one(struct spi_master *master,
343				       struct spi_device *spi,
344				       struct spi_transfer *tfr)
345{
346	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
347	unsigned long spi_hz, clk_hz, speed;
348	unsigned long hz_per_byte, byte_limit;
349
350	/* calculate the registers to handle
351	 *
352	 * note that we use the variable data mode, which
353	 * is not optimal for longer transfers as we waste registers
354	 * resulting (potentially) in more interrupts when transferring
355	 * more than 12 bytes
356	 */
357
358	/* set clock */
359	spi_hz = tfr->speed_hz;
360	clk_hz = clk_get_rate(bs->clk);
361
362	if (spi_hz >= clk_hz / 2) {
363		speed = 0;
364	} else if (spi_hz) {
365		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
366		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
367			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
368	} else { /* the slowest we can go */
369		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
370	}
371	/* mask out old speed from previous spi_transfer */
372	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
373	/* set the new speed */
374	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
375
376	tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
377
378	/* set transmit buffers and length */
379	bs->tx_buf = tfr->tx_buf;
380	bs->rx_buf = tfr->rx_buf;
381	bs->tx_len = tfr->len;
382	bs->rx_len = tfr->len;
383	bs->pending = 0;
384
385	/* Calculate the estimated time in us the transfer runs.  Note that
386	 * there are 2 idle clocks cycles after each chunk getting
387	 * transferred - in our case the chunk size is 3 bytes, so we
388	 * approximate this by 9 cycles/byte.  This is used to find the number
389	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
390	 * 30 µs per 300,000 Hz of bus clock.
391	 */
392	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
393	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
394
395	/* run in polling mode for short transfers */
396	if (tfr->len < byte_limit)
397		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
398
399	/* run in interrupt mode for all others */
400	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
401}
402
403static int bcm2835aux_spi_prepare_message(struct spi_master *master,
404					  struct spi_message *msg)
405{
406	struct spi_device *spi = msg->spi;
407	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
408
409	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
410		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
411		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
412	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
413
414	/* handle all the modes */
415	if (spi->mode & SPI_CPOL) {
416		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
417		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
418	} else {
419		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
420	}
421	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
422	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
423
424	return 0;
425}
426
427static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
428					    struct spi_message *msg)
429{
430	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
431
432	bcm2835aux_spi_reset_hw(bs);
433
434	return 0;
435}
436
437static void bcm2835aux_spi_handle_err(struct spi_master *master,
438				      struct spi_message *msg)
439{
440	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
441
442	bcm2835aux_spi_reset_hw(bs);
443}
444
445static int bcm2835aux_spi_setup(struct spi_device *spi)
446{
 
 
447	/* sanity check for native cs */
448	if (spi->mode & SPI_NO_CS)
449		return 0;
 
 
 
 
 
 
 
 
 
 
 
450
451	if (spi->cs_gpiod)
452		return 0;
453
454	/* for dt-backwards compatibility: only support native on CS0
455	 * known things not supported with broken native CS:
456	 * * multiple chip-selects: cs0-cs2 are all
457	 *     simultaniously asserted whenever there is a transfer
458	 *     this even includes SPI_NO_CS
459	 * * SPI_CS_HIGH: cs are always asserted low
460	 * * cs_change: cs is deasserted after each spi_transfer
461	 * * cs_delay_usec: cs is always deasserted one SCK cycle
462	 *     after the last transfer
463	 * probably more...
464	 */
465	dev_warn(&spi->dev,
466		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
467
468	if (spi->chip_select == 0)
469		return 0;
470
471	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
472
473	return -EINVAL;
474}
475
476static int bcm2835aux_spi_probe(struct platform_device *pdev)
477{
478	struct spi_master *master;
479	struct bcm2835aux_spi *bs;
480	unsigned long clk_hz;
481	int err;
482
483	master = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
484	if (!master)
485		return -ENOMEM;
486
487	platform_set_drvdata(pdev, master);
488	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
489	master->bits_per_word_mask = SPI_BPW_MASK(8);
490	/* even though the driver never officially supported native CS
491	 * allow a single native CS for legacy DT support purposes when
492	 * no cs-gpio is configured.
493	 * Known limitations for native cs are:
494	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
495	 *     whenever there is a transfer -  this even includes SPI_NO_CS
496	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
497	 * * cs_change: cs is deasserted after each spi_transfer
498	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
499	 *     a spi_transfer
500	 */
501	master->num_chipselect = 1;
502	master->setup = bcm2835aux_spi_setup;
503	master->transfer_one = bcm2835aux_spi_transfer_one;
504	master->handle_err = bcm2835aux_spi_handle_err;
505	master->prepare_message = bcm2835aux_spi_prepare_message;
506	master->unprepare_message = bcm2835aux_spi_unprepare_message;
507	master->dev.of_node = pdev->dev.of_node;
508	master->use_gpio_descriptors = true;
509
510	bs = spi_master_get_devdata(master);
511
512	/* the main area */
513	bs->regs = devm_platform_ioremap_resource(pdev, 0);
514	if (IS_ERR(bs->regs))
515		return PTR_ERR(bs->regs);
 
 
516
517	bs->clk = devm_clk_get(&pdev->dev, NULL);
518	if (IS_ERR(bs->clk)) {
519		err = PTR_ERR(bs->clk);
520		dev_err(&pdev->dev, "could not get clk: %d\n", err);
521		return err;
522	}
523
524	bs->irq = platform_get_irq(pdev, 0);
525	if (bs->irq <= 0)
526		return bs->irq ? bs->irq : -ENODEV;
 
 
527
528	/* this also enables the HW block */
529	err = clk_prepare_enable(bs->clk);
530	if (err) {
531		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
532		return err;
533	}
534
535	/* just checking if the clock returns a sane value */
536	clk_hz = clk_get_rate(bs->clk);
537	if (!clk_hz) {
538		dev_err(&pdev->dev, "clock returns 0 Hz\n");
539		err = -ENODEV;
540		goto out_clk_disable;
541	}
542
543	/* reset SPI-HW block */
544	bcm2835aux_spi_reset_hw(bs);
545
546	err = devm_request_irq(&pdev->dev, bs->irq,
547			       bcm2835aux_spi_interrupt,
548			       IRQF_SHARED,
549			       dev_name(&pdev->dev), master);
550	if (err) {
551		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
552		goto out_clk_disable;
553	}
554
555	err = spi_register_master(master);
556	if (err) {
557		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
558		goto out_clk_disable;
559	}
560
561	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
562
563	return 0;
564
565out_clk_disable:
566	clk_disable_unprepare(bs->clk);
 
 
567	return err;
568}
569
570static int bcm2835aux_spi_remove(struct platform_device *pdev)
571{
572	struct spi_master *master = platform_get_drvdata(pdev);
573	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
574
575	bcm2835aux_debugfs_remove(bs);
576
577	spi_unregister_master(master);
578
579	bcm2835aux_spi_reset_hw(bs);
580
581	/* disable the HW block by releasing the clock */
582	clk_disable_unprepare(bs->clk);
583
584	return 0;
585}
586
587static const struct of_device_id bcm2835aux_spi_match[] = {
588	{ .compatible = "brcm,bcm2835-aux-spi", },
589	{}
590};
591MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
592
593static struct platform_driver bcm2835aux_spi_driver = {
594	.driver		= {
595		.name		= "spi-bcm2835aux",
596		.of_match_table	= bcm2835aux_spi_match,
597	},
598	.probe		= bcm2835aux_spi_probe,
599	.remove		= bcm2835aux_spi_remove,
600};
601module_platform_driver(bcm2835aux_spi_driver);
602
603MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
604MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
605MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
  4 *
  5 * the driver does not rely on the native chipselects at all
  6 * but only uses the gpio type chipselects
  7 *
  8 * Based on: spi-bcm2835.c
  9 *
 10 * Copyright (C) 2015 Martin Sperl
 11 */
 12
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/debugfs.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 24#include <linux/of_device.h>
 25#include <linux/of_gpio.h>
 26#include <linux/of_irq.h>
 27#include <linux/regmap.h>
 28#include <linux/spi/spi.h>
 29#include <linux/spinlock.h>
 30
 31/* define polling limits */
 32static unsigned int polling_limit_us = 30;
 33module_param(polling_limit_us, uint, 0664);
 34MODULE_PARM_DESC(polling_limit_us,
 35		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
 36
 37/*
 38 * spi register defines
 39 *
 40 * note there is garbage in the "official" documentation,
 41 * so some data is taken from the file:
 42 *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
 43 * inside of:
 44 *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
 45 */
 46
 47/* SPI register offsets */
 48#define BCM2835_AUX_SPI_CNTL0	0x00
 49#define BCM2835_AUX_SPI_CNTL1	0x04
 50#define BCM2835_AUX_SPI_STAT	0x08
 51#define BCM2835_AUX_SPI_PEEK	0x0C
 52#define BCM2835_AUX_SPI_IO	0x20
 53#define BCM2835_AUX_SPI_TXHOLD	0x30
 54
 55/* Bitfields in CNTL0 */
 56#define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
 57#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
 58#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
 59#define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
 60#define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
 61#define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
 62#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
 63#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
 64#define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
 65#define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
 66#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
 67#define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
 68#define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
 69#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
 70#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
 71
 72/* Bitfields in CNTL1 */
 73#define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
 74#define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
 75#define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
 76#define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
 77#define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
 78
 79/* Bitfields in STAT */
 80#define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
 81#define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
 82#define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
 83#define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
 84#define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
 85#define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
 86#define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
 87#define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
 88
 89struct bcm2835aux_spi {
 90	void __iomem *regs;
 91	struct clk *clk;
 92	int irq;
 93	u32 cntl[2];
 94	const u8 *tx_buf;
 95	u8 *rx_buf;
 96	int tx_len;
 97	int rx_len;
 98	int pending;
 99
100	u64 count_transfer_polling;
101	u64 count_transfer_irq;
102	u64 count_transfer_irq_after_poll;
103
104	struct dentry *debugfs_dir;
105};
106
107#if defined(CONFIG_DEBUG_FS)
108static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
109				      const char *dname)
110{
111	char name[64];
112	struct dentry *dir;
113
114	/* get full name */
115	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
116
117	/* the base directory */
118	dir = debugfs_create_dir(name, NULL);
119	bs->debugfs_dir = dir;
120
121	/* the counters */
122	debugfs_create_u64("count_transfer_polling", 0444, dir,
123			   &bs->count_transfer_polling);
124	debugfs_create_u64("count_transfer_irq", 0444, dir,
125			   &bs->count_transfer_irq);
126	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
127			   &bs->count_transfer_irq_after_poll);
128}
129
130static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
131{
132	debugfs_remove_recursive(bs->debugfs_dir);
133	bs->debugfs_dir = NULL;
134}
135#else
136static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
137				      const char *dname)
138{
139}
140
141static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
142{
143}
144#endif /* CONFIG_DEBUG_FS */
145
146static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
147{
148	return readl(bs->regs + reg);
149}
150
151static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
152				 u32 val)
153{
154	writel(val, bs->regs + reg);
155}
156
157static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
158{
159	u32 data;
160	int count = min(bs->rx_len, 3);
161
162	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
163	if (bs->rx_buf) {
164		switch (count) {
165		case 3:
166			*bs->rx_buf++ = (data >> 16) & 0xff;
167			/* fallthrough */
168		case 2:
169			*bs->rx_buf++ = (data >> 8) & 0xff;
170			/* fallthrough */
171		case 1:
172			*bs->rx_buf++ = (data >> 0) & 0xff;
173			/* fallthrough - no default */
174		}
175	}
176	bs->rx_len -= count;
177	bs->pending -= count;
178}
179
180static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
181{
182	u32 data;
183	u8 byte;
184	int count;
185	int i;
186
187	/* gather up to 3 bytes to write to the FIFO */
188	count = min(bs->tx_len, 3);
189	data = 0;
190	for (i = 0; i < count; i++) {
191		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
192		data |= byte << (8 * (2 - i));
193	}
194
195	/* and set the variable bit-length */
196	data |= (count * 8) << 24;
197
198	/* and decrement length */
199	bs->tx_len -= count;
200	bs->pending += count;
201
202	/* write to the correct TX-register */
203	if (bs->tx_len)
204		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
205	else
206		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
207}
208
209static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
210{
211	/* disable spi clearing fifo and interrupts */
212	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
213	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
214		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
215}
216
217static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
218{
219	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
220
221	/* check if we have data to read */
222	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
223	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
224		bcm2835aux_rd_fifo(bs);
225
226	/* check if we have data to write */
227	while (bs->tx_len &&
228	       (bs->pending < 12) &&
229	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
230		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
231		bcm2835aux_wr_fifo(bs);
232	}
233}
234
235static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
236{
237	struct spi_master *master = dev_id;
238	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
239
240	/* IRQ may be shared, so return if our interrupts are disabled */
241	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
242	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
243		return IRQ_NONE;
244
245	/* do common fifo handling */
246	bcm2835aux_spi_transfer_helper(bs);
247
248	if (!bs->tx_len) {
249		/* disable tx fifo empty interrupt */
250		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
251			BCM2835_AUX_SPI_CNTL1_IDLE);
252	}
253
254	/* and if rx_len is 0 then disable interrupts and wake up completion */
255	if (!bs->rx_len) {
256		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
257		complete(&master->xfer_completion);
258	}
259
260	return IRQ_HANDLED;
261}
262
263static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
264					     struct spi_device *spi,
265					     struct spi_transfer *tfr)
266{
267	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
268
269	/* enable interrupts */
270	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
271		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
272		BCM2835_AUX_SPI_CNTL1_IDLE);
273
274	/* and wait for finish... */
275	return 1;
276}
277
278static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
279					   struct spi_device *spi,
280					   struct spi_transfer *tfr)
281{
282	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
283
284	/* update statistics */
285	bs->count_transfer_irq++;
286
287	/* fill in registers and fifos before enabling interrupts */
288	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
289	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
290
291	/* fill in tx fifo with data before enabling interrupts */
292	while ((bs->tx_len) &&
293	       (bs->pending < 12) &&
294	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
295		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
296		bcm2835aux_wr_fifo(bs);
297	}
298
299	/* now run the interrupt mode */
300	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
301}
302
303static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
304					    struct spi_device *spi,
305					struct spi_transfer *tfr)
306{
307	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
308	unsigned long timeout;
309
310	/* update statistics */
311	bs->count_transfer_polling++;
312
313	/* configure spi */
314	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
315	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
316
317	/* set the timeout to at least 2 jiffies */
318	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
319
320	/* loop until finished the transfer */
321	while (bs->rx_len) {
322
323		/* do common fifo handling */
324		bcm2835aux_spi_transfer_helper(bs);
325
326		/* there is still data pending to read check the timeout */
327		if (bs->rx_len && time_after(jiffies, timeout)) {
328			dev_dbg_ratelimited(&spi->dev,
329					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
330					    jiffies - timeout,
331					    bs->tx_len, bs->rx_len);
332			/* forward to interrupt handler */
333			bs->count_transfer_irq_after_poll++;
334			return __bcm2835aux_spi_transfer_one_irq(master,
335							       spi, tfr);
336		}
337	}
338
339	/* and return without waiting for completion */
340	return 0;
341}
342
343static int bcm2835aux_spi_transfer_one(struct spi_master *master,
344				       struct spi_device *spi,
345				       struct spi_transfer *tfr)
346{
347	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
348	unsigned long spi_hz, clk_hz, speed, spi_used_hz;
349	unsigned long hz_per_byte, byte_limit;
350
351	/* calculate the registers to handle
352	 *
353	 * note that we use the variable data mode, which
354	 * is not optimal for longer transfers as we waste registers
355	 * resulting (potentially) in more interrupts when transferring
356	 * more than 12 bytes
357	 */
358
359	/* set clock */
360	spi_hz = tfr->speed_hz;
361	clk_hz = clk_get_rate(bs->clk);
362
363	if (spi_hz >= clk_hz / 2) {
364		speed = 0;
365	} else if (spi_hz) {
366		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
367		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
368			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
369	} else { /* the slowest we can go */
370		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
371	}
372	/* mask out old speed from previous spi_transfer */
373	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
374	/* set the new speed */
375	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
376
377	spi_used_hz = clk_hz / (2 * (speed + 1));
378
379	/* set transmit buffers and length */
380	bs->tx_buf = tfr->tx_buf;
381	bs->rx_buf = tfr->rx_buf;
382	bs->tx_len = tfr->len;
383	bs->rx_len = tfr->len;
384	bs->pending = 0;
385
386	/* Calculate the estimated time in us the transfer runs.  Note that
387	 * there are are 2 idle clocks cycles after each chunk getting
388	 * transferred - in our case the chunk size is 3 bytes, so we
389	 * approximate this by 9 cycles/byte.  This is used to find the number
390	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
391	 * 30 µs per 300,000 Hz of bus clock.
392	 */
393	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
394	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
395
396	/* run in polling mode for short transfers */
397	if (tfr->len < byte_limit)
398		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
399
400	/* run in interrupt mode for all others */
401	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
402}
403
404static int bcm2835aux_spi_prepare_message(struct spi_master *master,
405					  struct spi_message *msg)
406{
407	struct spi_device *spi = msg->spi;
408	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
409
410	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
411		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
412		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
413	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
414
415	/* handle all the modes */
416	if (spi->mode & SPI_CPOL) {
417		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
418		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
419	} else {
420		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
421	}
422	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
423	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
424
425	return 0;
426}
427
428static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
429					    struct spi_message *msg)
430{
431	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
432
433	bcm2835aux_spi_reset_hw(bs);
434
435	return 0;
436}
437
438static void bcm2835aux_spi_handle_err(struct spi_master *master,
439				      struct spi_message *msg)
440{
441	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
442
443	bcm2835aux_spi_reset_hw(bs);
444}
445
446static int bcm2835aux_spi_setup(struct spi_device *spi)
447{
448	int ret;
449
450	/* sanity check for native cs */
451	if (spi->mode & SPI_NO_CS)
452		return 0;
453	if (gpio_is_valid(spi->cs_gpio)) {
454		/* with gpio-cs set the GPIO to the correct level
455		 * and as output (in case the dt has the gpio not configured
456		 * as output but native cs)
457		 */
458		ret = gpio_direction_output(spi->cs_gpio,
459					    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
460		if (ret)
461			dev_err(&spi->dev,
462				"could not set gpio %i as output: %i\n",
463				spi->cs_gpio, ret);
464
465		return ret;
466	}
467
468	/* for dt-backwards compatibility: only support native on CS0
469	 * known things not supported with broken native CS:
470	 * * multiple chip-selects: cs0-cs2 are all
471	 *     simultaniously asserted whenever there is a transfer
472	 *     this even includes SPI_NO_CS
473	 * * SPI_CS_HIGH: cs are always asserted low
474	 * * cs_change: cs is deasserted after each spi_transfer
475	 * * cs_delay_usec: cs is always deasserted one SCK cycle
476	 *     after the last transfer
477	 * probably more...
478	 */
479	dev_warn(&spi->dev,
480		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
481
482	if (spi->chip_select == 0)
483		return 0;
484
485	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
486
487	return -EINVAL;
488}
489
490static int bcm2835aux_spi_probe(struct platform_device *pdev)
491{
492	struct spi_master *master;
493	struct bcm2835aux_spi *bs;
494	unsigned long clk_hz;
495	int err;
496
497	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
498	if (!master)
499		return -ENOMEM;
500
501	platform_set_drvdata(pdev, master);
502	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
503	master->bits_per_word_mask = SPI_BPW_MASK(8);
504	/* even though the driver never officially supported native CS
505	 * allow a single native CS for legacy DT support purposes when
506	 * no cs-gpio is configured.
507	 * Known limitations for native cs are:
508	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
509	 *     whenever there is a transfer -  this even includes SPI_NO_CS
510	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
511	 * * cs_change: cs is deasserted after each spi_transfer
512	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
513	 *     a spi_transfer
514	 */
515	master->num_chipselect = 1;
516	master->setup = bcm2835aux_spi_setup;
517	master->transfer_one = bcm2835aux_spi_transfer_one;
518	master->handle_err = bcm2835aux_spi_handle_err;
519	master->prepare_message = bcm2835aux_spi_prepare_message;
520	master->unprepare_message = bcm2835aux_spi_unprepare_message;
521	master->dev.of_node = pdev->dev.of_node;
 
522
523	bs = spi_master_get_devdata(master);
524
525	/* the main area */
526	bs->regs = devm_platform_ioremap_resource(pdev, 0);
527	if (IS_ERR(bs->regs)) {
528		err = PTR_ERR(bs->regs);
529		goto out_master_put;
530	}
531
532	bs->clk = devm_clk_get(&pdev->dev, NULL);
533	if (IS_ERR(bs->clk)) {
534		err = PTR_ERR(bs->clk);
535		dev_err(&pdev->dev, "could not get clk: %d\n", err);
536		goto out_master_put;
537	}
538
539	bs->irq = platform_get_irq(pdev, 0);
540	if (bs->irq <= 0) {
541		err = bs->irq ? bs->irq : -ENODEV;
542		goto out_master_put;
543	}
544
545	/* this also enables the HW block */
546	err = clk_prepare_enable(bs->clk);
547	if (err) {
548		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
549		goto out_master_put;
550	}
551
552	/* just checking if the clock returns a sane value */
553	clk_hz = clk_get_rate(bs->clk);
554	if (!clk_hz) {
555		dev_err(&pdev->dev, "clock returns 0 Hz\n");
556		err = -ENODEV;
557		goto out_clk_disable;
558	}
559
560	/* reset SPI-HW block */
561	bcm2835aux_spi_reset_hw(bs);
562
563	err = devm_request_irq(&pdev->dev, bs->irq,
564			       bcm2835aux_spi_interrupt,
565			       IRQF_SHARED,
566			       dev_name(&pdev->dev), master);
567	if (err) {
568		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
569		goto out_clk_disable;
570	}
571
572	err = devm_spi_register_master(&pdev->dev, master);
573	if (err) {
574		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
575		goto out_clk_disable;
576	}
577
578	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
579
580	return 0;
581
582out_clk_disable:
583	clk_disable_unprepare(bs->clk);
584out_master_put:
585	spi_master_put(master);
586	return err;
587}
588
589static int bcm2835aux_spi_remove(struct platform_device *pdev)
590{
591	struct spi_master *master = platform_get_drvdata(pdev);
592	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
593
594	bcm2835aux_debugfs_remove(bs);
 
 
595
596	bcm2835aux_spi_reset_hw(bs);
597
598	/* disable the HW block by releasing the clock */
599	clk_disable_unprepare(bs->clk);
600
601	return 0;
602}
603
604static const struct of_device_id bcm2835aux_spi_match[] = {
605	{ .compatible = "brcm,bcm2835-aux-spi", },
606	{}
607};
608MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
609
610static struct platform_driver bcm2835aux_spi_driver = {
611	.driver		= {
612		.name		= "spi-bcm2835aux",
613		.of_match_table	= bcm2835aux_spi_match,
614	},
615	.probe		= bcm2835aux_spi_probe,
616	.remove		= bcm2835aux_spi_remove,
617};
618module_platform_driver(bcm2835aux_spi_driver);
619
620MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
621MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
622MODULE_LICENSE("GPL");