Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Freescale STMP37XX/STMP378X Real Time Clock driver
  4 *
  5 * Copyright (c) 2007 Sigmatel, Inc.
  6 * Peter Hartley, <peter.hartley@sigmatel.com>
  7 *
  8 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
  9 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
 10 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/module.h>
 14#include <linux/io.h>
 15#include <linux/init.h>
 16#include <linux/platform_device.h>
 17#include <linux/interrupt.h>
 18#include <linux/delay.h>
 19#include <linux/rtc.h>
 20#include <linux/slab.h>
 21#include <linux/of_device.h>
 22#include <linux/of.h>
 23#include <linux/stmp_device.h>
 24#include <linux/stmp3xxx_rtc_wdt.h>
 25
 26#define STMP3XXX_RTC_CTRL			0x0
 27#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
 28#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
 29#define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
 30#define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
 31
 32#define STMP3XXX_RTC_STAT			0x10
 33#define STMP3XXX_RTC_STAT_STALE_SHIFT		16
 34#define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
 35#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
 36#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
 37
 38#define STMP3XXX_RTC_SECONDS			0x30
 39
 40#define STMP3XXX_RTC_ALARM			0x40
 41
 42#define STMP3XXX_RTC_WATCHDOG			0x50
 43
 44#define STMP3XXX_RTC_PERSISTENT0		0x60
 45#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
 46#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
 47#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
 48#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
 49#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
 50#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
 51#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
 52
 53#define STMP3XXX_RTC_PERSISTENT1		0x70
 54/* missing bitmask in headers */
 55#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
 56
 57struct stmp3xxx_rtc_data {
 58	struct rtc_device *rtc;
 59	void __iomem *io;
 60	int irq_alarm;
 61};
 62
 63#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
 64/**
 65 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
 66 * @dev: the parent device of the watchdog (= the RTC)
 67 * @timeout: the desired value for the timeout register of the watchdog.
 68 *           0 disables the watchdog
 69 *
 70 * The watchdog needs one register and two bits which are in the RTC domain.
 71 * To handle the resource conflict, the RTC driver will create another
 72 * platform_device for the watchdog driver as a child of the RTC device.
 73 * The watchdog driver is passed the below accessor function via platform_data
 74 * to configure the watchdog. Locking is not needed because accessing SET/CLR
 75 * registers is atomic.
 76 */
 77
 78static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
 79{
 80	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 81
 82	if (timeout) {
 83		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
 84		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
 85		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
 86		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
 87		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
 88	} else {
 89		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
 90		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
 91		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
 92		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
 93	}
 94}
 95
 96static struct stmp3xxx_wdt_pdata wdt_pdata = {
 97	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
 98};
 99
100static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
101{
102	int rc = -1;
103	struct platform_device *wdt_pdev =
104		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
105
106	if (wdt_pdev) {
107		wdt_pdev->dev.parent = &rtc_pdev->dev;
108		wdt_pdev->dev.platform_data = &wdt_pdata;
109		rc = platform_device_add(wdt_pdev);
110		if (rc)
111			platform_device_put(wdt_pdev);
112	}
113
114	if (rc)
115		dev_err(&rtc_pdev->dev,
116			"failed to register stmp3xxx_rtc_wdt\n");
117}
118#else
119static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
120{
121}
122#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
123
124static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
125{
126	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
127	/*
128	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
129	 * states:
130	 * | The order in which registers are updated is
131	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
132	 * | (This list is in bitfield order, from LSB to MSB, as they would
133	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
134	 * | register. For example, the Seconds register corresponds to
135	 * | STALE_REGS or NEW_REGS containing 0x80.)
136	 */
137	do {
138		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
139				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
140			return 0;
141		udelay(1);
142	} while (--timeout > 0);
143	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
144		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
145}
146
147/* Time read/write */
148static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
149{
150	int ret;
151	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
152
153	ret = stmp3xxx_wait_time(rtc_data);
154	if (ret)
155		return ret;
156
157	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
158	return 0;
159}
160
161static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
162{
163	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
164
165	writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
166	return stmp3xxx_wait_time(rtc_data);
167}
168
169/* interrupt(s) handler */
170static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
171{
172	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
173	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
174
175	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
176		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
177			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
178		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
179		return IRQ_HANDLED;
180	}
181
182	return IRQ_NONE;
183}
184
185static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
186{
187	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
188
189	if (enabled) {
190		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
191				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
192			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
193				STMP_OFFSET_REG_SET);
194		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
195			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
196	} else {
197		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
198				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
199			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
200				STMP_OFFSET_REG_CLR);
201		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
202			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
203	}
204	return 0;
205}
206
207static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
208{
209	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
210
211	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
212	return 0;
213}
214
215static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
216{
217	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
218
219	writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
220
221	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
222
223	return 0;
224}
225
226static const struct rtc_class_ops stmp3xxx_rtc_ops = {
227	.alarm_irq_enable =
228			  stmp3xxx_alarm_irq_enable,
229	.read_time	= stmp3xxx_rtc_gettime,
230	.set_time	= stmp3xxx_rtc_settime,
231	.read_alarm	= stmp3xxx_rtc_read_alarm,
232	.set_alarm	= stmp3xxx_rtc_set_alarm,
233};
234
235static int stmp3xxx_rtc_remove(struct platform_device *pdev)
236{
237	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
238
239	if (!rtc_data)
240		return 0;
241
242	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
243		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
244
245	return 0;
246}
247
248static int stmp3xxx_rtc_probe(struct platform_device *pdev)
249{
250	struct stmp3xxx_rtc_data *rtc_data;
251	struct resource *r;
252	u32 rtc_stat;
253	u32 pers0_set, pers0_clr;
254	u32 crystalfreq = 0;
255	int err;
256
257	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
258	if (!rtc_data)
259		return -ENOMEM;
260
261	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
262	if (!r) {
263		dev_err(&pdev->dev, "failed to get resource\n");
264		return -ENXIO;
265	}
266
267	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
268	if (!rtc_data->io) {
269		dev_err(&pdev->dev, "ioremap failed\n");
270		return -EIO;
271	}
272
273	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
274
275	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
276	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
277		dev_err(&pdev->dev, "no device onboard\n");
278		return -ENODEV;
279	}
280
281	platform_set_drvdata(pdev, rtc_data);
282
283	/*
284	 * Resetting the rtc stops the watchdog timer that is potentially
285	 * running. So (assuming it is running on purpose) don't reset if the
286	 * watchdog is enabled.
287	 */
288	if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
289	    STMP3XXX_RTC_CTRL_WATCHDOGEN) {
290		dev_info(&pdev->dev,
291			 "Watchdog is running, skip resetting rtc\n");
292	} else {
293		err = stmp_reset_block(rtc_data->io);
294		if (err) {
295			dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
296				err);
297			return err;
298		}
299	}
300
301	/*
302	 * Obviously the rtc needs a clock input to be able to run.
303	 * This clock can be provided by an external 32k crystal. If that one is
304	 * missing XTAL must not be disabled in suspend which consumes a
305	 * lot of power. Normally the presence and exact frequency (supported
306	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
307	 * proves these fuses are not blown correctly on all machines, so the
308	 * frequency can be overridden in the device tree.
309	 */
310	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
311		crystalfreq = 32000;
312	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
313		crystalfreq = 32768;
314
315	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
316			     &crystalfreq);
317
318	switch (crystalfreq) {
319	case 32000:
320		/* keep 32kHz crystal running in low-power mode */
321		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
322			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
323			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
324		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
325		break;
326	case 32768:
327		/* keep 32.768kHz crystal running in low-power mode */
328		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
329			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
330		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
331			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
332		break;
333	default:
334		dev_warn(&pdev->dev,
335			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
336		fallthrough;
337	case 0:
338		/* keep XTAL on in low-power mode */
339		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
340		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
341			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
342	}
343
344	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
345			STMP_OFFSET_REG_SET);
346
347	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
348			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
349			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
350		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
351
352	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
353			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
354		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
355
356	rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
357	if (IS_ERR(rtc_data->rtc))
358		return PTR_ERR(rtc_data->rtc);
359
360	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
361			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
362	if (err) {
363		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
364			rtc_data->irq_alarm);
365		return err;
366	}
367
368	rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
369	rtc_data->rtc->range_max = U32_MAX;
370
371	err = devm_rtc_register_device(rtc_data->rtc);
372	if (err)
373		return err;
374
375	stmp3xxx_wdt_register(pdev);
376	return 0;
377}
378
379#ifdef CONFIG_PM_SLEEP
380static int stmp3xxx_rtc_suspend(struct device *dev)
381{
382	return 0;
383}
384
385static int stmp3xxx_rtc_resume(struct device *dev)
386{
387	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
388
389	stmp_reset_block(rtc_data->io);
390	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
391			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
392			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
393		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
394	return 0;
395}
396#endif
397
398static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
399			stmp3xxx_rtc_resume);
400
401static const struct of_device_id rtc_dt_ids[] = {
402	{ .compatible = "fsl,stmp3xxx-rtc", },
403	{ /* sentinel */ }
404};
405MODULE_DEVICE_TABLE(of, rtc_dt_ids);
406
407static struct platform_driver stmp3xxx_rtcdrv = {
408	.probe		= stmp3xxx_rtc_probe,
409	.remove		= stmp3xxx_rtc_remove,
410	.driver		= {
411		.name	= "stmp3xxx-rtc",
412		.pm	= &stmp3xxx_rtc_pm_ops,
413		.of_match_table = rtc_dt_ids,
414	},
415};
416
417module_platform_driver(stmp3xxx_rtcdrv);
418
419MODULE_DESCRIPTION("STMP3xxx RTC Driver");
420MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
421		"Wolfram Sang <kernel@pengutronix.de>");
422MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Freescale STMP37XX/STMP378X Real Time Clock driver
  4 *
  5 * Copyright (c) 2007 Sigmatel, Inc.
  6 * Peter Hartley, <peter.hartley@sigmatel.com>
  7 *
  8 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
  9 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
 10 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/module.h>
 14#include <linux/io.h>
 15#include <linux/init.h>
 16#include <linux/platform_device.h>
 17#include <linux/interrupt.h>
 18#include <linux/delay.h>
 19#include <linux/rtc.h>
 20#include <linux/slab.h>
 21#include <linux/of_device.h>
 22#include <linux/of.h>
 23#include <linux/stmp_device.h>
 24#include <linux/stmp3xxx_rtc_wdt.h>
 25
 26#define STMP3XXX_RTC_CTRL			0x0
 27#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
 28#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
 29#define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
 30#define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
 31
 32#define STMP3XXX_RTC_STAT			0x10
 33#define STMP3XXX_RTC_STAT_STALE_SHIFT		16
 34#define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
 35#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
 36#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
 37
 38#define STMP3XXX_RTC_SECONDS			0x30
 39
 40#define STMP3XXX_RTC_ALARM			0x40
 41
 42#define STMP3XXX_RTC_WATCHDOG			0x50
 43
 44#define STMP3XXX_RTC_PERSISTENT0		0x60
 45#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
 46#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
 47#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
 48#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
 49#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
 50#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
 51#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
 52
 53#define STMP3XXX_RTC_PERSISTENT1		0x70
 54/* missing bitmask in headers */
 55#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
 56
 57struct stmp3xxx_rtc_data {
 58	struct rtc_device *rtc;
 59	void __iomem *io;
 60	int irq_alarm;
 61};
 62
 63#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
 64/**
 65 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
 66 * @dev: the parent device of the watchdog (= the RTC)
 67 * @timeout: the desired value for the timeout register of the watchdog.
 68 *           0 disables the watchdog
 69 *
 70 * The watchdog needs one register and two bits which are in the RTC domain.
 71 * To handle the resource conflict, the RTC driver will create another
 72 * platform_device for the watchdog driver as a child of the RTC device.
 73 * The watchdog driver is passed the below accessor function via platform_data
 74 * to configure the watchdog. Locking is not needed because accessing SET/CLR
 75 * registers is atomic.
 76 */
 77
 78static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
 79{
 80	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
 81
 82	if (timeout) {
 83		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
 84		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
 85		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
 86		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
 87		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
 88	} else {
 89		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
 90		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
 91		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
 92		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
 93	}
 94}
 95
 96static struct stmp3xxx_wdt_pdata wdt_pdata = {
 97	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
 98};
 99
100static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
101{
102	int rc = -1;
103	struct platform_device *wdt_pdev =
104		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
105
106	if (wdt_pdev) {
107		wdt_pdev->dev.parent = &rtc_pdev->dev;
108		wdt_pdev->dev.platform_data = &wdt_pdata;
109		rc = platform_device_add(wdt_pdev);
 
 
110	}
111
112	if (rc)
113		dev_err(&rtc_pdev->dev,
114			"failed to register stmp3xxx_rtc_wdt\n");
115}
116#else
117static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
118{
119}
120#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
121
122static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
123{
124	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
125	/*
126	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
127	 * states:
128	 * | The order in which registers are updated is
129	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
130	 * | (This list is in bitfield order, from LSB to MSB, as they would
131	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
132	 * | register. For example, the Seconds register corresponds to
133	 * | STALE_REGS or NEW_REGS containing 0x80.)
134	 */
135	do {
136		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
137				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
138			return 0;
139		udelay(1);
140	} while (--timeout > 0);
141	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
142		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
143}
144
145/* Time read/write */
146static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
147{
148	int ret;
149	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
150
151	ret = stmp3xxx_wait_time(rtc_data);
152	if (ret)
153		return ret;
154
155	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
156	return 0;
157}
158
159static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
160{
161	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
162
163	writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
164	return stmp3xxx_wait_time(rtc_data);
165}
166
167/* interrupt(s) handler */
168static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
169{
170	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
171	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
172
173	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
174		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
175			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
176		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
177		return IRQ_HANDLED;
178	}
179
180	return IRQ_NONE;
181}
182
183static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
184{
185	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
186
187	if (enabled) {
188		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
189				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
190			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
191				STMP_OFFSET_REG_SET);
192		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
193			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
194	} else {
195		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
196				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
197			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
198				STMP_OFFSET_REG_CLR);
199		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
200			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
201	}
202	return 0;
203}
204
205static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
206{
207	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
208
209	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
210	return 0;
211}
212
213static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
214{
215	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
216
217	writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
218
219	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
220
221	return 0;
222}
223
224static const struct rtc_class_ops stmp3xxx_rtc_ops = {
225	.alarm_irq_enable =
226			  stmp3xxx_alarm_irq_enable,
227	.read_time	= stmp3xxx_rtc_gettime,
228	.set_time	= stmp3xxx_rtc_settime,
229	.read_alarm	= stmp3xxx_rtc_read_alarm,
230	.set_alarm	= stmp3xxx_rtc_set_alarm,
231};
232
233static int stmp3xxx_rtc_remove(struct platform_device *pdev)
234{
235	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
236
237	if (!rtc_data)
238		return 0;
239
240	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
241		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
242
243	return 0;
244}
245
246static int stmp3xxx_rtc_probe(struct platform_device *pdev)
247{
248	struct stmp3xxx_rtc_data *rtc_data;
249	struct resource *r;
250	u32 rtc_stat;
251	u32 pers0_set, pers0_clr;
252	u32 crystalfreq = 0;
253	int err;
254
255	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
256	if (!rtc_data)
257		return -ENOMEM;
258
259	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
260	if (!r) {
261		dev_err(&pdev->dev, "failed to get resource\n");
262		return -ENXIO;
263	}
264
265	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
266	if (!rtc_data->io) {
267		dev_err(&pdev->dev, "ioremap failed\n");
268		return -EIO;
269	}
270
271	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
272
273	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
274	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
275		dev_err(&pdev->dev, "no device onboard\n");
276		return -ENODEV;
277	}
278
279	platform_set_drvdata(pdev, rtc_data);
280
281	/*
282	 * Resetting the rtc stops the watchdog timer that is potentially
283	 * running. So (assuming it is running on purpose) don't reset if the
284	 * watchdog is enabled.
285	 */
286	if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
287	    STMP3XXX_RTC_CTRL_WATCHDOGEN) {
288		dev_info(&pdev->dev,
289			 "Watchdog is running, skip resetting rtc\n");
290	} else {
291		err = stmp_reset_block(rtc_data->io);
292		if (err) {
293			dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
294				err);
295			return err;
296		}
297	}
298
299	/*
300	 * Obviously the rtc needs a clock input to be able to run.
301	 * This clock can be provided by an external 32k crystal. If that one is
302	 * missing XTAL must not be disabled in suspend which consumes a
303	 * lot of power. Normally the presence and exact frequency (supported
304	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
305	 * proves these fuses are not blown correctly on all machines, so the
306	 * frequency can be overridden in the device tree.
307	 */
308	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
309		crystalfreq = 32000;
310	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
311		crystalfreq = 32768;
312
313	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
314			     &crystalfreq);
315
316	switch (crystalfreq) {
317	case 32000:
318		/* keep 32kHz crystal running in low-power mode */
319		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
320			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
321			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
322		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
323		break;
324	case 32768:
325		/* keep 32.768kHz crystal running in low-power mode */
326		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
327			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
328		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
329			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
330		break;
331	default:
332		dev_warn(&pdev->dev,
333			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
334		/* fall-through */
335	case 0:
336		/* keep XTAL on in low-power mode */
337		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
338		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
339			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
340	}
341
342	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
343			STMP_OFFSET_REG_SET);
344
345	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
346			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
347			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
348		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
349
350	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
351			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
352		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
353
354	rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
355	if (IS_ERR(rtc_data->rtc))
356		return PTR_ERR(rtc_data->rtc);
357
358	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
359			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
360	if (err) {
361		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
362			rtc_data->irq_alarm);
363		return err;
364	}
365
366	rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
367	rtc_data->rtc->range_max = U32_MAX;
368
369	err = rtc_register_device(rtc_data->rtc);
370	if (err)
371		return err;
372
373	stmp3xxx_wdt_register(pdev);
374	return 0;
375}
376
377#ifdef CONFIG_PM_SLEEP
378static int stmp3xxx_rtc_suspend(struct device *dev)
379{
380	return 0;
381}
382
383static int stmp3xxx_rtc_resume(struct device *dev)
384{
385	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
386
387	stmp_reset_block(rtc_data->io);
388	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
389			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
390			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
391		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
392	return 0;
393}
394#endif
395
396static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
397			stmp3xxx_rtc_resume);
398
399static const struct of_device_id rtc_dt_ids[] = {
400	{ .compatible = "fsl,stmp3xxx-rtc", },
401	{ /* sentinel */ }
402};
403MODULE_DEVICE_TABLE(of, rtc_dt_ids);
404
405static struct platform_driver stmp3xxx_rtcdrv = {
406	.probe		= stmp3xxx_rtc_probe,
407	.remove		= stmp3xxx_rtc_remove,
408	.driver		= {
409		.name	= "stmp3xxx-rtc",
410		.pm	= &stmp3xxx_rtc_pm_ops,
411		.of_match_table = rtc_dt_ids,
412	},
413};
414
415module_platform_driver(stmp3xxx_rtcdrv);
416
417MODULE_DESCRIPTION("STMP3xxx RTC Driver");
418MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
419		"Wolfram Sang <w.sang@pengutronix.de>");
420MODULE_LICENSE("GPL");