Loading...
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) "OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/pci.h>
12#include <linux/pci_regs.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/dma-direct.h> /* for bus_dma_region */
17
18#include "of_private.h"
19
20/* Max address size we deal with */
21#define OF_MAX_ADDR_CELLS 4
22#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25static struct of_bus *of_match_bus(struct device_node *np);
26static int __of_address_to_resource(struct device_node *dev, int index,
27 int bar_no, struct resource *r);
28static bool of_mmio_is_nonposted(struct device_node *np);
29
30/* Debug utility */
31#ifdef DEBUG
32static void of_dump_addr(const char *s, const __be32 *addr, int na)
33{
34 pr_debug("%s", s);
35 while (na--)
36 pr_cont(" %08x", be32_to_cpu(*(addr++)));
37 pr_cont("\n");
38}
39#else
40static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
41#endif
42
43/* Callbacks for bus specific translators */
44struct of_bus {
45 const char *name;
46 const char *addresses;
47 int (*match)(struct device_node *parent);
48 void (*count_cells)(struct device_node *child,
49 int *addrc, int *sizec);
50 u64 (*map)(__be32 *addr, const __be32 *range,
51 int na, int ns, int pna);
52 int (*translate)(__be32 *addr, u64 offset, int na);
53 bool has_flags;
54 unsigned int (*get_flags)(const __be32 *addr);
55};
56
57/*
58 * Default translator (generic bus)
59 */
60
61static void of_bus_default_count_cells(struct device_node *dev,
62 int *addrc, int *sizec)
63{
64 if (addrc)
65 *addrc = of_n_addr_cells(dev);
66 if (sizec)
67 *sizec = of_n_size_cells(dev);
68}
69
70static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
71 int na, int ns, int pna)
72{
73 u64 cp, s, da;
74
75 cp = of_read_number(range, na);
76 s = of_read_number(range + na + pna, ns);
77 da = of_read_number(addr, na);
78
79 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
80
81 if (da < cp || da >= (cp + s))
82 return OF_BAD_ADDR;
83 return da - cp;
84}
85
86static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
87{
88 u64 a = of_read_number(addr, na);
89 memset(addr, 0, na * 4);
90 a += offset;
91 if (na > 1)
92 addr[na - 2] = cpu_to_be32(a >> 32);
93 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
94
95 return 0;
96}
97
98static unsigned int of_bus_default_get_flags(const __be32 *addr)
99{
100 return IORESOURCE_MEM;
101}
102
103#ifdef CONFIG_PCI
104static unsigned int of_bus_pci_get_flags(const __be32 *addr)
105{
106 unsigned int flags = 0;
107 u32 w = be32_to_cpup(addr);
108
109 if (!IS_ENABLED(CONFIG_PCI))
110 return 0;
111
112 switch((w >> 24) & 0x03) {
113 case 0x01:
114 flags |= IORESOURCE_IO;
115 break;
116 case 0x02: /* 32 bits */
117 flags |= IORESOURCE_MEM;
118 break;
119
120 case 0x03: /* 64 bits */
121 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
122 break;
123 }
124 if (w & 0x40000000)
125 flags |= IORESOURCE_PREFETCH;
126 return flags;
127}
128
129/*
130 * PCI bus specific translator
131 */
132
133static bool of_node_is_pcie(struct device_node *np)
134{
135 bool is_pcie = of_node_name_eq(np, "pcie");
136
137 if (is_pcie)
138 pr_warn_once("%pOF: Missing device_type\n", np);
139
140 return is_pcie;
141}
142
143static int of_bus_pci_match(struct device_node *np)
144{
145 /*
146 * "pciex" is PCI Express
147 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
148 * "ht" is hypertransport
149 *
150 * If none of the device_type match, and that the node name is
151 * "pcie", accept the device as PCI (with a warning).
152 */
153 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
154 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
155 of_node_is_pcie(np);
156}
157
158static void of_bus_pci_count_cells(struct device_node *np,
159 int *addrc, int *sizec)
160{
161 if (addrc)
162 *addrc = 3;
163 if (sizec)
164 *sizec = 2;
165}
166
167static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
168 int pna)
169{
170 u64 cp, s, da;
171 unsigned int af, rf;
172
173 af = of_bus_pci_get_flags(addr);
174 rf = of_bus_pci_get_flags(range);
175
176 /* Check address type match */
177 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
178 return OF_BAD_ADDR;
179
180 /* Read address values, skipping high cell */
181 cp = of_read_number(range + 1, na - 1);
182 s = of_read_number(range + na + pna, ns);
183 da = of_read_number(addr + 1, na - 1);
184
185 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
186
187 if (da < cp || da >= (cp + s))
188 return OF_BAD_ADDR;
189 return da - cp;
190}
191
192static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
193{
194 return of_bus_default_translate(addr + 1, offset, na - 1);
195}
196#endif /* CONFIG_PCI */
197
198int of_pci_address_to_resource(struct device_node *dev, int bar,
199 struct resource *r)
200{
201
202 if (!IS_ENABLED(CONFIG_PCI))
203 return -ENOSYS;
204
205 return __of_address_to_resource(dev, -1, bar, r);
206}
207EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
208
209/*
210 * of_pci_range_to_resource - Create a resource from an of_pci_range
211 * @range: the PCI range that describes the resource
212 * @np: device node where the range belongs to
213 * @res: pointer to a valid resource that will be updated to
214 * reflect the values contained in the range.
215 *
216 * Returns EINVAL if the range cannot be converted to resource.
217 *
218 * Note that if the range is an IO range, the resource will be converted
219 * using pci_address_to_pio() which can fail if it is called too early or
220 * if the range cannot be matched to any host bridge IO space (our case here).
221 * To guard against that we try to register the IO range first.
222 * If that fails we know that pci_address_to_pio() will do too.
223 */
224int of_pci_range_to_resource(struct of_pci_range *range,
225 struct device_node *np, struct resource *res)
226{
227 int err;
228 res->flags = range->flags;
229 res->parent = res->child = res->sibling = NULL;
230 res->name = np->full_name;
231
232 if (!IS_ENABLED(CONFIG_PCI))
233 return -ENOSYS;
234
235 if (res->flags & IORESOURCE_IO) {
236 unsigned long port;
237 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
238 range->size);
239 if (err)
240 goto invalid_range;
241 port = pci_address_to_pio(range->cpu_addr);
242 if (port == (unsigned long)-1) {
243 err = -EINVAL;
244 goto invalid_range;
245 }
246 res->start = port;
247 } else {
248 if ((sizeof(resource_size_t) < 8) &&
249 upper_32_bits(range->cpu_addr)) {
250 err = -EINVAL;
251 goto invalid_range;
252 }
253
254 res->start = range->cpu_addr;
255 }
256 res->end = res->start + range->size - 1;
257 return 0;
258
259invalid_range:
260 res->start = (resource_size_t)OF_BAD_ADDR;
261 res->end = (resource_size_t)OF_BAD_ADDR;
262 return err;
263}
264EXPORT_SYMBOL(of_pci_range_to_resource);
265
266/*
267 * ISA bus specific translator
268 */
269
270static int of_bus_isa_match(struct device_node *np)
271{
272 return of_node_name_eq(np, "isa");
273}
274
275static void of_bus_isa_count_cells(struct device_node *child,
276 int *addrc, int *sizec)
277{
278 if (addrc)
279 *addrc = 2;
280 if (sizec)
281 *sizec = 1;
282}
283
284static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
285 int pna)
286{
287 u64 cp, s, da;
288
289 /* Check address type match */
290 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
291 return OF_BAD_ADDR;
292
293 /* Read address values, skipping high cell */
294 cp = of_read_number(range + 1, na - 1);
295 s = of_read_number(range + na + pna, ns);
296 da = of_read_number(addr + 1, na - 1);
297
298 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
299
300 if (da < cp || da >= (cp + s))
301 return OF_BAD_ADDR;
302 return da - cp;
303}
304
305static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
306{
307 return of_bus_default_translate(addr + 1, offset, na - 1);
308}
309
310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311{
312 unsigned int flags = 0;
313 u32 w = be32_to_cpup(addr);
314
315 if (w & 1)
316 flags |= IORESOURCE_IO;
317 else
318 flags |= IORESOURCE_MEM;
319 return flags;
320}
321
322/*
323 * Array of bus specific translators
324 */
325
326static struct of_bus of_busses[] = {
327#ifdef CONFIG_PCI
328 /* PCI */
329 {
330 .name = "pci",
331 .addresses = "assigned-addresses",
332 .match = of_bus_pci_match,
333 .count_cells = of_bus_pci_count_cells,
334 .map = of_bus_pci_map,
335 .translate = of_bus_pci_translate,
336 .has_flags = true,
337 .get_flags = of_bus_pci_get_flags,
338 },
339#endif /* CONFIG_PCI */
340 /* ISA */
341 {
342 .name = "isa",
343 .addresses = "reg",
344 .match = of_bus_isa_match,
345 .count_cells = of_bus_isa_count_cells,
346 .map = of_bus_isa_map,
347 .translate = of_bus_isa_translate,
348 .has_flags = true,
349 .get_flags = of_bus_isa_get_flags,
350 },
351 /* Default */
352 {
353 .name = "default",
354 .addresses = "reg",
355 .match = NULL,
356 .count_cells = of_bus_default_count_cells,
357 .map = of_bus_default_map,
358 .translate = of_bus_default_translate,
359 .get_flags = of_bus_default_get_flags,
360 },
361};
362
363static struct of_bus *of_match_bus(struct device_node *np)
364{
365 int i;
366
367 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
368 if (!of_busses[i].match || of_busses[i].match(np))
369 return &of_busses[i];
370 BUG();
371 return NULL;
372}
373
374static int of_empty_ranges_quirk(struct device_node *np)
375{
376 if (IS_ENABLED(CONFIG_PPC)) {
377 /* To save cycles, we cache the result for global "Mac" setting */
378 static int quirk_state = -1;
379
380 /* PA-SEMI sdc DT bug */
381 if (of_device_is_compatible(np, "1682m-sdc"))
382 return true;
383
384 /* Make quirk cached */
385 if (quirk_state < 0)
386 quirk_state =
387 of_machine_is_compatible("Power Macintosh") ||
388 of_machine_is_compatible("MacRISC");
389 return quirk_state;
390 }
391 return false;
392}
393
394static int of_translate_one(struct device_node *parent, struct of_bus *bus,
395 struct of_bus *pbus, __be32 *addr,
396 int na, int ns, int pna, const char *rprop)
397{
398 const __be32 *ranges;
399 unsigned int rlen;
400 int rone;
401 u64 offset = OF_BAD_ADDR;
402
403 /*
404 * Normally, an absence of a "ranges" property means we are
405 * crossing a non-translatable boundary, and thus the addresses
406 * below the current cannot be converted to CPU physical ones.
407 * Unfortunately, while this is very clear in the spec, it's not
408 * what Apple understood, and they do have things like /uni-n or
409 * /ht nodes with no "ranges" property and a lot of perfectly
410 * useable mapped devices below them. Thus we treat the absence of
411 * "ranges" as equivalent to an empty "ranges" property which means
412 * a 1:1 translation at that level. It's up to the caller not to try
413 * to translate addresses that aren't supposed to be translated in
414 * the first place. --BenH.
415 *
416 * As far as we know, this damage only exists on Apple machines, so
417 * This code is only enabled on powerpc. --gcl
418 *
419 * This quirk also applies for 'dma-ranges' which frequently exist in
420 * child nodes without 'dma-ranges' in the parent nodes. --RobH
421 */
422 ranges = of_get_property(parent, rprop, &rlen);
423 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
424 strcmp(rprop, "dma-ranges")) {
425 pr_debug("no ranges; cannot translate\n");
426 return 1;
427 }
428 if (ranges == NULL || rlen == 0) {
429 offset = of_read_number(addr, na);
430 memset(addr, 0, pna * 4);
431 pr_debug("empty ranges; 1:1 translation\n");
432 goto finish;
433 }
434
435 pr_debug("walking ranges...\n");
436
437 /* Now walk through the ranges */
438 rlen /= 4;
439 rone = na + pna + ns;
440 for (; rlen >= rone; rlen -= rone, ranges += rone) {
441 offset = bus->map(addr, ranges, na, ns, pna);
442 if (offset != OF_BAD_ADDR)
443 break;
444 }
445 if (offset == OF_BAD_ADDR) {
446 pr_debug("not found !\n");
447 return 1;
448 }
449 memcpy(addr, ranges + na, 4 * pna);
450
451 finish:
452 of_dump_addr("parent translation for:", addr, pna);
453 pr_debug("with offset: %llx\n", offset);
454
455 /* Translate it into parent bus space */
456 return pbus->translate(addr, offset, pna);
457}
458
459/*
460 * Translate an address from the device-tree into a CPU physical address,
461 * this walks up the tree and applies the various bus mappings on the
462 * way.
463 *
464 * Note: We consider that crossing any level with #size-cells == 0 to mean
465 * that translation is impossible (that is we are not dealing with a value
466 * that can be mapped to a cpu physical address). This is not really specified
467 * that way, but this is traditionally the way IBM at least do things
468 *
469 * Whenever the translation fails, the *host pointer will be set to the
470 * device that had registered logical PIO mapping, and the return code is
471 * relative to that node.
472 */
473static u64 __of_translate_address(struct device_node *dev,
474 struct device_node *(*get_parent)(const struct device_node *),
475 const __be32 *in_addr, const char *rprop,
476 struct device_node **host)
477{
478 struct device_node *parent = NULL;
479 struct of_bus *bus, *pbus;
480 __be32 addr[OF_MAX_ADDR_CELLS];
481 int na, ns, pna, pns;
482 u64 result = OF_BAD_ADDR;
483
484 pr_debug("** translation for device %pOF **\n", dev);
485
486 /* Increase refcount at current level */
487 of_node_get(dev);
488
489 *host = NULL;
490 /* Get parent & match bus type */
491 parent = get_parent(dev);
492 if (parent == NULL)
493 goto bail;
494 bus = of_match_bus(parent);
495
496 /* Count address cells & copy address locally */
497 bus->count_cells(dev, &na, &ns);
498 if (!OF_CHECK_COUNTS(na, ns)) {
499 pr_debug("Bad cell count for %pOF\n", dev);
500 goto bail;
501 }
502 memcpy(addr, in_addr, na * 4);
503
504 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
505 bus->name, na, ns, parent);
506 of_dump_addr("translating address:", addr, na);
507
508 /* Translate */
509 for (;;) {
510 struct logic_pio_hwaddr *iorange;
511
512 /* Switch to parent bus */
513 of_node_put(dev);
514 dev = parent;
515 parent = get_parent(dev);
516
517 /* If root, we have finished */
518 if (parent == NULL) {
519 pr_debug("reached root node\n");
520 result = of_read_number(addr, na);
521 break;
522 }
523
524 /*
525 * For indirectIO device which has no ranges property, get
526 * the address from reg directly.
527 */
528 iorange = find_io_range_by_fwnode(&dev->fwnode);
529 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
530 result = of_read_number(addr + 1, na - 1);
531 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
532 dev, result);
533 *host = of_node_get(dev);
534 break;
535 }
536
537 /* Get new parent bus and counts */
538 pbus = of_match_bus(parent);
539 pbus->count_cells(dev, &pna, &pns);
540 if (!OF_CHECK_COUNTS(pna, pns)) {
541 pr_err("Bad cell count for %pOF\n", dev);
542 break;
543 }
544
545 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
546 pbus->name, pna, pns, parent);
547
548 /* Apply bus translation */
549 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
550 break;
551
552 /* Complete the move up one level */
553 na = pna;
554 ns = pns;
555 bus = pbus;
556
557 of_dump_addr("one level translation:", addr, na);
558 }
559 bail:
560 of_node_put(parent);
561 of_node_put(dev);
562
563 return result;
564}
565
566u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
567{
568 struct device_node *host;
569 u64 ret;
570
571 ret = __of_translate_address(dev, of_get_parent,
572 in_addr, "ranges", &host);
573 if (host) {
574 of_node_put(host);
575 return OF_BAD_ADDR;
576 }
577
578 return ret;
579}
580EXPORT_SYMBOL(of_translate_address);
581
582#ifdef CONFIG_HAS_DMA
583struct device_node *__of_get_dma_parent(const struct device_node *np)
584{
585 struct of_phandle_args args;
586 int ret, index;
587
588 index = of_property_match_string(np, "interconnect-names", "dma-mem");
589 if (index < 0)
590 return of_get_parent(np);
591
592 ret = of_parse_phandle_with_args(np, "interconnects",
593 "#interconnect-cells",
594 index, &args);
595 if (ret < 0)
596 return of_get_parent(np);
597
598 return of_node_get(args.np);
599}
600#endif
601
602static struct device_node *of_get_next_dma_parent(struct device_node *np)
603{
604 struct device_node *parent;
605
606 parent = __of_get_dma_parent(np);
607 of_node_put(np);
608
609 return parent;
610}
611
612u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
613{
614 struct device_node *host;
615 u64 ret;
616
617 ret = __of_translate_address(dev, __of_get_dma_parent,
618 in_addr, "dma-ranges", &host);
619
620 if (host) {
621 of_node_put(host);
622 return OF_BAD_ADDR;
623 }
624
625 return ret;
626}
627EXPORT_SYMBOL(of_translate_dma_address);
628
629const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
630 u64 *size, unsigned int *flags)
631{
632 const __be32 *prop;
633 unsigned int psize;
634 struct device_node *parent;
635 struct of_bus *bus;
636 int onesize, i, na, ns;
637
638 /* Get parent & match bus type */
639 parent = of_get_parent(dev);
640 if (parent == NULL)
641 return NULL;
642 bus = of_match_bus(parent);
643 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
644 of_node_put(parent);
645 return NULL;
646 }
647 bus->count_cells(dev, &na, &ns);
648 of_node_put(parent);
649 if (!OF_CHECK_ADDR_COUNT(na))
650 return NULL;
651
652 /* Get "reg" or "assigned-addresses" property */
653 prop = of_get_property(dev, bus->addresses, &psize);
654 if (prop == NULL)
655 return NULL;
656 psize /= 4;
657
658 onesize = na + ns;
659 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
660 u32 val = be32_to_cpu(prop[0]);
661 /* PCI bus matches on BAR number instead of index */
662 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
663 ((index >= 0) && (i == index))) {
664 if (size)
665 *size = of_read_number(prop + na, ns);
666 if (flags)
667 *flags = bus->get_flags(prop);
668 return prop;
669 }
670 }
671 return NULL;
672}
673EXPORT_SYMBOL(__of_get_address);
674
675static int parser_init(struct of_pci_range_parser *parser,
676 struct device_node *node, const char *name)
677{
678 int rlen;
679
680 parser->node = node;
681 parser->pna = of_n_addr_cells(node);
682 parser->na = of_bus_n_addr_cells(node);
683 parser->ns = of_bus_n_size_cells(node);
684 parser->dma = !strcmp(name, "dma-ranges");
685 parser->bus = of_match_bus(node);
686
687 parser->range = of_get_property(node, name, &rlen);
688 if (parser->range == NULL)
689 return -ENOENT;
690
691 parser->end = parser->range + rlen / sizeof(__be32);
692
693 return 0;
694}
695
696int of_pci_range_parser_init(struct of_pci_range_parser *parser,
697 struct device_node *node)
698{
699 return parser_init(parser, node, "ranges");
700}
701EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
702
703int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
704 struct device_node *node)
705{
706 return parser_init(parser, node, "dma-ranges");
707}
708EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
709#define of_dma_range_parser_init of_pci_dma_range_parser_init
710
711struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
712 struct of_pci_range *range)
713{
714 int na = parser->na;
715 int ns = parser->ns;
716 int np = parser->pna + na + ns;
717 int busflag_na = 0;
718
719 if (!range)
720 return NULL;
721
722 if (!parser->range || parser->range + np > parser->end)
723 return NULL;
724
725 range->flags = parser->bus->get_flags(parser->range);
726
727 /* A extra cell for resource flags */
728 if (parser->bus->has_flags)
729 busflag_na = 1;
730
731 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
732
733 if (parser->dma)
734 range->cpu_addr = of_translate_dma_address(parser->node,
735 parser->range + na);
736 else
737 range->cpu_addr = of_translate_address(parser->node,
738 parser->range + na);
739 range->size = of_read_number(parser->range + parser->pna + na, ns);
740
741 parser->range += np;
742
743 /* Now consume following elements while they are contiguous */
744 while (parser->range + np <= parser->end) {
745 u32 flags = 0;
746 u64 bus_addr, cpu_addr, size;
747
748 flags = parser->bus->get_flags(parser->range);
749 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
750 if (parser->dma)
751 cpu_addr = of_translate_dma_address(parser->node,
752 parser->range + na);
753 else
754 cpu_addr = of_translate_address(parser->node,
755 parser->range + na);
756 size = of_read_number(parser->range + parser->pna + na, ns);
757
758 if (flags != range->flags)
759 break;
760 if (bus_addr != range->bus_addr + range->size ||
761 cpu_addr != range->cpu_addr + range->size)
762 break;
763
764 range->size += size;
765 parser->range += np;
766 }
767
768 return range;
769}
770EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
771
772static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
773 u64 size)
774{
775 u64 taddr;
776 unsigned long port;
777 struct device_node *host;
778
779 taddr = __of_translate_address(dev, of_get_parent,
780 in_addr, "ranges", &host);
781 if (host) {
782 /* host-specific port access */
783 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
784 of_node_put(host);
785 } else {
786 /* memory-mapped I/O range */
787 port = pci_address_to_pio(taddr);
788 }
789
790 if (port == (unsigned long)-1)
791 return OF_BAD_ADDR;
792
793 return port;
794}
795
796static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
797 struct resource *r)
798{
799 u64 taddr;
800 const __be32 *addrp;
801 u64 size;
802 unsigned int flags;
803 const char *name = NULL;
804
805 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
806 if (addrp == NULL)
807 return -EINVAL;
808
809 /* Get optional "reg-names" property to add a name to a resource */
810 if (index >= 0)
811 of_property_read_string_index(dev, "reg-names", index, &name);
812
813 if (flags & IORESOURCE_MEM)
814 taddr = of_translate_address(dev, addrp);
815 else if (flags & IORESOURCE_IO)
816 taddr = of_translate_ioport(dev, addrp, size);
817 else
818 return -EINVAL;
819
820 if (taddr == OF_BAD_ADDR)
821 return -EINVAL;
822 memset(r, 0, sizeof(struct resource));
823
824 if (of_mmio_is_nonposted(dev))
825 flags |= IORESOURCE_MEM_NONPOSTED;
826
827 r->start = taddr;
828 r->end = taddr + size - 1;
829 r->flags = flags;
830 r->name = name ? name : dev->full_name;
831
832 return 0;
833}
834
835/**
836 * of_address_to_resource - Translate device tree address and return as resource
837 * @dev: Caller's Device Node
838 * @index: Index into the array
839 * @r: Pointer to resource array
840 *
841 * Note that if your address is a PIO address, the conversion will fail if
842 * the physical address can't be internally converted to an IO token with
843 * pci_address_to_pio(), that is because it's either called too early or it
844 * can't be matched to any host bridge IO space
845 */
846int of_address_to_resource(struct device_node *dev, int index,
847 struct resource *r)
848{
849 return __of_address_to_resource(dev, index, -1, r);
850}
851EXPORT_SYMBOL_GPL(of_address_to_resource);
852
853/**
854 * of_iomap - Maps the memory mapped IO for a given device_node
855 * @np: the device whose io range will be mapped
856 * @index: index of the io range
857 *
858 * Returns a pointer to the mapped memory
859 */
860void __iomem *of_iomap(struct device_node *np, int index)
861{
862 struct resource res;
863
864 if (of_address_to_resource(np, index, &res))
865 return NULL;
866
867 if (res.flags & IORESOURCE_MEM_NONPOSTED)
868 return ioremap_np(res.start, resource_size(&res));
869 else
870 return ioremap(res.start, resource_size(&res));
871}
872EXPORT_SYMBOL(of_iomap);
873
874/*
875 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
876 * for a given device_node
877 * @device: the device whose io range will be mapped
878 * @index: index of the io range
879 * @name: name "override" for the memory region request or NULL
880 *
881 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
882 * error code on failure. Usage example:
883 *
884 * base = of_io_request_and_map(node, 0, "foo");
885 * if (IS_ERR(base))
886 * return PTR_ERR(base);
887 */
888void __iomem *of_io_request_and_map(struct device_node *np, int index,
889 const char *name)
890{
891 struct resource res;
892 void __iomem *mem;
893
894 if (of_address_to_resource(np, index, &res))
895 return IOMEM_ERR_PTR(-EINVAL);
896
897 if (!name)
898 name = res.name;
899 if (!request_mem_region(res.start, resource_size(&res), name))
900 return IOMEM_ERR_PTR(-EBUSY);
901
902 if (res.flags & IORESOURCE_MEM_NONPOSTED)
903 mem = ioremap_np(res.start, resource_size(&res));
904 else
905 mem = ioremap(res.start, resource_size(&res));
906
907 if (!mem) {
908 release_mem_region(res.start, resource_size(&res));
909 return IOMEM_ERR_PTR(-ENOMEM);
910 }
911
912 return mem;
913}
914EXPORT_SYMBOL(of_io_request_and_map);
915
916#ifdef CONFIG_HAS_DMA
917/**
918 * of_dma_get_range - Get DMA range info and put it into a map array
919 * @np: device node to get DMA range info
920 * @map: dma range structure to return
921 *
922 * Look in bottom up direction for the first "dma-ranges" property
923 * and parse it. Put the information into a DMA offset map array.
924 *
925 * dma-ranges format:
926 * DMA addr (dma_addr) : naddr cells
927 * CPU addr (phys_addr_t) : pna cells
928 * size : nsize cells
929 *
930 * It returns -ENODEV if "dma-ranges" property was not found for this
931 * device in the DT.
932 */
933int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
934{
935 struct device_node *node = of_node_get(np);
936 const __be32 *ranges = NULL;
937 bool found_dma_ranges = false;
938 struct of_range_parser parser;
939 struct of_range range;
940 struct bus_dma_region *r;
941 int len, num_ranges = 0;
942 int ret = 0;
943
944 while (node) {
945 ranges = of_get_property(node, "dma-ranges", &len);
946
947 /* Ignore empty ranges, they imply no translation required */
948 if (ranges && len > 0)
949 break;
950
951 /* Once we find 'dma-ranges', then a missing one is an error */
952 if (found_dma_ranges && !ranges) {
953 ret = -ENODEV;
954 goto out;
955 }
956 found_dma_ranges = true;
957
958 node = of_get_next_dma_parent(node);
959 }
960
961 if (!node || !ranges) {
962 pr_debug("no dma-ranges found for node(%pOF)\n", np);
963 ret = -ENODEV;
964 goto out;
965 }
966
967 of_dma_range_parser_init(&parser, node);
968 for_each_of_range(&parser, &range) {
969 if (range.cpu_addr == OF_BAD_ADDR) {
970 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
971 range.bus_addr, node);
972 continue;
973 }
974 num_ranges++;
975 }
976
977 if (!num_ranges) {
978 ret = -EINVAL;
979 goto out;
980 }
981
982 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
983 if (!r) {
984 ret = -ENOMEM;
985 goto out;
986 }
987
988 /*
989 * Record all info in the generic DMA ranges array for struct device,
990 * returning an error if we don't find any parsable ranges.
991 */
992 *map = r;
993 of_dma_range_parser_init(&parser, node);
994 for_each_of_range(&parser, &range) {
995 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
996 range.bus_addr, range.cpu_addr, range.size);
997 if (range.cpu_addr == OF_BAD_ADDR)
998 continue;
999 r->cpu_start = range.cpu_addr;
1000 r->dma_start = range.bus_addr;
1001 r->size = range.size;
1002 r->offset = range.cpu_addr - range.bus_addr;
1003 r++;
1004 }
1005out:
1006 of_node_put(node);
1007 return ret;
1008}
1009#endif /* CONFIG_HAS_DMA */
1010
1011/**
1012 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1013 * @np: The node to start searching from or NULL to start from the root
1014 *
1015 * Gets the highest CPU physical address that is addressable by all DMA masters
1016 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1017 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1018 */
1019phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1020{
1021 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1022 struct of_range_parser parser;
1023 phys_addr_t subtree_max_addr;
1024 struct device_node *child;
1025 struct of_range range;
1026 const __be32 *ranges;
1027 u64 cpu_end = 0;
1028 int len;
1029
1030 if (!np)
1031 np = of_root;
1032
1033 ranges = of_get_property(np, "dma-ranges", &len);
1034 if (ranges && len) {
1035 of_dma_range_parser_init(&parser, np);
1036 for_each_of_range(&parser, &range)
1037 if (range.cpu_addr + range.size > cpu_end)
1038 cpu_end = range.cpu_addr + range.size - 1;
1039
1040 if (max_cpu_addr > cpu_end)
1041 max_cpu_addr = cpu_end;
1042 }
1043
1044 for_each_available_child_of_node(np, child) {
1045 subtree_max_addr = of_dma_get_max_cpu_address(child);
1046 if (max_cpu_addr > subtree_max_addr)
1047 max_cpu_addr = subtree_max_addr;
1048 }
1049
1050 return max_cpu_addr;
1051}
1052
1053/**
1054 * of_dma_is_coherent - Check if device is coherent
1055 * @np: device node
1056 *
1057 * It returns true if "dma-coherent" property was found
1058 * for this device in the DT, or if DMA is coherent by
1059 * default for OF devices on the current platform and no
1060 * "dma-noncoherent" property was found for this device.
1061 */
1062bool of_dma_is_coherent(struct device_node *np)
1063{
1064 struct device_node *node;
1065 bool is_coherent = IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT);
1066
1067 node = of_node_get(np);
1068
1069 while (node) {
1070 if (of_property_read_bool(node, "dma-coherent")) {
1071 is_coherent = true;
1072 break;
1073 }
1074 if (of_property_read_bool(node, "dma-noncoherent")) {
1075 is_coherent = false;
1076 break;
1077 }
1078 node = of_get_next_dma_parent(node);
1079 }
1080 of_node_put(node);
1081 return is_coherent;
1082}
1083EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1084
1085/**
1086 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1087 * @np: device node
1088 *
1089 * Returns true if the "nonposted-mmio" property was found for
1090 * the device's bus.
1091 *
1092 * This is currently only enabled on builds that support Apple ARM devices, as
1093 * an optimization.
1094 */
1095static bool of_mmio_is_nonposted(struct device_node *np)
1096{
1097 struct device_node *parent;
1098 bool nonposted;
1099
1100 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1101 return false;
1102
1103 parent = of_get_parent(np);
1104 if (!parent)
1105 return false;
1106
1107 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1108
1109 of_node_put(parent);
1110 return nonposted;
1111}
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) "OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/pci.h>
12#include <linux/pci_regs.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16
17/* Max address size we deal with */
18#define OF_MAX_ADDR_CELLS 4
19#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
20#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
21
22static struct of_bus *of_match_bus(struct device_node *np);
23static int __of_address_to_resource(struct device_node *dev,
24 const __be32 *addrp, u64 size, unsigned int flags,
25 const char *name, struct resource *r);
26
27/* Debug utility */
28#ifdef DEBUG
29static void of_dump_addr(const char *s, const __be32 *addr, int na)
30{
31 pr_debug("%s", s);
32 while (na--)
33 pr_cont(" %08x", be32_to_cpu(*(addr++)));
34 pr_cont("\n");
35}
36#else
37static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
38#endif
39
40/* Callbacks for bus specific translators */
41struct of_bus {
42 const char *name;
43 const char *addresses;
44 int (*match)(struct device_node *parent);
45 void (*count_cells)(struct device_node *child,
46 int *addrc, int *sizec);
47 u64 (*map)(__be32 *addr, const __be32 *range,
48 int na, int ns, int pna);
49 int (*translate)(__be32 *addr, u64 offset, int na);
50 unsigned int (*get_flags)(const __be32 *addr);
51};
52
53/*
54 * Default translator (generic bus)
55 */
56
57static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
59{
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
64}
65
66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna)
68{
69 u64 cp, s, da;
70
71 cp = of_read_number(range, na);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr, na);
74
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
76 (unsigned long long)cp, (unsigned long long)s,
77 (unsigned long long)da);
78
79 if (da < cp || da >= (cp + s))
80 return OF_BAD_ADDR;
81 return da - cp;
82}
83
84static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
85{
86 u64 a = of_read_number(addr, na);
87 memset(addr, 0, na * 4);
88 a += offset;
89 if (na > 1)
90 addr[na - 2] = cpu_to_be32(a >> 32);
91 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
92
93 return 0;
94}
95
96static unsigned int of_bus_default_get_flags(const __be32 *addr)
97{
98 return IORESOURCE_MEM;
99}
100
101#ifdef CONFIG_PCI
102/*
103 * PCI bus specific translator
104 */
105
106static int of_bus_pci_match(struct device_node *np)
107{
108 /*
109 * "pciex" is PCI Express
110 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
111 * "ht" is hypertransport
112 */
113 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
114 of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
115}
116
117static void of_bus_pci_count_cells(struct device_node *np,
118 int *addrc, int *sizec)
119{
120 if (addrc)
121 *addrc = 3;
122 if (sizec)
123 *sizec = 2;
124}
125
126static unsigned int of_bus_pci_get_flags(const __be32 *addr)
127{
128 unsigned int flags = 0;
129 u32 w = be32_to_cpup(addr);
130
131 switch((w >> 24) & 0x03) {
132 case 0x01:
133 flags |= IORESOURCE_IO;
134 break;
135 case 0x02: /* 32 bits */
136 case 0x03: /* 64 bits */
137 flags |= IORESOURCE_MEM;
138 break;
139 }
140 if (w & 0x40000000)
141 flags |= IORESOURCE_PREFETCH;
142 return flags;
143}
144
145static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
146 int pna)
147{
148 u64 cp, s, da;
149 unsigned int af, rf;
150
151 af = of_bus_pci_get_flags(addr);
152 rf = of_bus_pci_get_flags(range);
153
154 /* Check address type match */
155 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
156 return OF_BAD_ADDR;
157
158 /* Read address values, skipping high cell */
159 cp = of_read_number(range + 1, na - 1);
160 s = of_read_number(range + na + pna, ns);
161 da = of_read_number(addr + 1, na - 1);
162
163 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
164 (unsigned long long)cp, (unsigned long long)s,
165 (unsigned long long)da);
166
167 if (da < cp || da >= (cp + s))
168 return OF_BAD_ADDR;
169 return da - cp;
170}
171
172static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
173{
174 return of_bus_default_translate(addr + 1, offset, na - 1);
175}
176
177const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 unsigned int *flags)
179{
180 const __be32 *prop;
181 unsigned int psize;
182 struct device_node *parent;
183 struct of_bus *bus;
184 int onesize, i, na, ns;
185
186 /* Get parent & match bus type */
187 parent = of_get_parent(dev);
188 if (parent == NULL)
189 return NULL;
190 bus = of_match_bus(parent);
191 if (strcmp(bus->name, "pci")) {
192 of_node_put(parent);
193 return NULL;
194 }
195 bus->count_cells(dev, &na, &ns);
196 of_node_put(parent);
197 if (!OF_CHECK_ADDR_COUNT(na))
198 return NULL;
199
200 /* Get "reg" or "assigned-addresses" property */
201 prop = of_get_property(dev, bus->addresses, &psize);
202 if (prop == NULL)
203 return NULL;
204 psize /= 4;
205
206 onesize = na + ns;
207 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 u32 val = be32_to_cpu(prop[0]);
209 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 if (size)
211 *size = of_read_number(prop + na, ns);
212 if (flags)
213 *flags = bus->get_flags(prop);
214 return prop;
215 }
216 }
217 return NULL;
218}
219EXPORT_SYMBOL(of_get_pci_address);
220
221int of_pci_address_to_resource(struct device_node *dev, int bar,
222 struct resource *r)
223{
224 const __be32 *addrp;
225 u64 size;
226 unsigned int flags;
227
228 addrp = of_get_pci_address(dev, bar, &size, &flags);
229 if (addrp == NULL)
230 return -EINVAL;
231 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
232}
233EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
234
235static int parser_init(struct of_pci_range_parser *parser,
236 struct device_node *node, const char *name)
237{
238 const int na = 3, ns = 2;
239 int rlen;
240
241 parser->node = node;
242 parser->pna = of_n_addr_cells(node);
243 parser->np = parser->pna + na + ns;
244
245 parser->range = of_get_property(node, name, &rlen);
246 if (parser->range == NULL)
247 return -ENOENT;
248
249 parser->end = parser->range + rlen / sizeof(__be32);
250
251 return 0;
252}
253
254int of_pci_range_parser_init(struct of_pci_range_parser *parser,
255 struct device_node *node)
256{
257 return parser_init(parser, node, "ranges");
258}
259EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
260
261int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
262 struct device_node *node)
263{
264 return parser_init(parser, node, "dma-ranges");
265}
266EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
267
268struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
269 struct of_pci_range *range)
270{
271 const int na = 3, ns = 2;
272
273 if (!range)
274 return NULL;
275
276 if (!parser->range || parser->range + parser->np > parser->end)
277 return NULL;
278
279 range->pci_space = be32_to_cpup(parser->range);
280 range->flags = of_bus_pci_get_flags(parser->range);
281 range->pci_addr = of_read_number(parser->range + 1, ns);
282 range->cpu_addr = of_translate_address(parser->node,
283 parser->range + na);
284 range->size = of_read_number(parser->range + parser->pna + na, ns);
285
286 parser->range += parser->np;
287
288 /* Now consume following elements while they are contiguous */
289 while (parser->range + parser->np <= parser->end) {
290 u32 flags;
291 u64 pci_addr, cpu_addr, size;
292
293 flags = of_bus_pci_get_flags(parser->range);
294 pci_addr = of_read_number(parser->range + 1, ns);
295 cpu_addr = of_translate_address(parser->node,
296 parser->range + na);
297 size = of_read_number(parser->range + parser->pna + na, ns);
298
299 if (flags != range->flags)
300 break;
301 if (pci_addr != range->pci_addr + range->size ||
302 cpu_addr != range->cpu_addr + range->size)
303 break;
304
305 range->size += size;
306 parser->range += parser->np;
307 }
308
309 return range;
310}
311EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
312
313/*
314 * of_pci_range_to_resource - Create a resource from an of_pci_range
315 * @range: the PCI range that describes the resource
316 * @np: device node where the range belongs to
317 * @res: pointer to a valid resource that will be updated to
318 * reflect the values contained in the range.
319 *
320 * Returns EINVAL if the range cannot be converted to resource.
321 *
322 * Note that if the range is an IO range, the resource will be converted
323 * using pci_address_to_pio() which can fail if it is called too early or
324 * if the range cannot be matched to any host bridge IO space (our case here).
325 * To guard against that we try to register the IO range first.
326 * If that fails we know that pci_address_to_pio() will do too.
327 */
328int of_pci_range_to_resource(struct of_pci_range *range,
329 struct device_node *np, struct resource *res)
330{
331 int err;
332 res->flags = range->flags;
333 res->parent = res->child = res->sibling = NULL;
334 res->name = np->full_name;
335
336 if (res->flags & IORESOURCE_IO) {
337 unsigned long port;
338 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
339 range->size);
340 if (err)
341 goto invalid_range;
342 port = pci_address_to_pio(range->cpu_addr);
343 if (port == (unsigned long)-1) {
344 err = -EINVAL;
345 goto invalid_range;
346 }
347 res->start = port;
348 } else {
349 if ((sizeof(resource_size_t) < 8) &&
350 upper_32_bits(range->cpu_addr)) {
351 err = -EINVAL;
352 goto invalid_range;
353 }
354
355 res->start = range->cpu_addr;
356 }
357 res->end = res->start + range->size - 1;
358 return 0;
359
360invalid_range:
361 res->start = (resource_size_t)OF_BAD_ADDR;
362 res->end = (resource_size_t)OF_BAD_ADDR;
363 return err;
364}
365EXPORT_SYMBOL(of_pci_range_to_resource);
366#endif /* CONFIG_PCI */
367
368/*
369 * ISA bus specific translator
370 */
371
372static int of_bus_isa_match(struct device_node *np)
373{
374 return of_node_name_eq(np, "isa");
375}
376
377static void of_bus_isa_count_cells(struct device_node *child,
378 int *addrc, int *sizec)
379{
380 if (addrc)
381 *addrc = 2;
382 if (sizec)
383 *sizec = 1;
384}
385
386static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
387 int pna)
388{
389 u64 cp, s, da;
390
391 /* Check address type match */
392 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
393 return OF_BAD_ADDR;
394
395 /* Read address values, skipping high cell */
396 cp = of_read_number(range + 1, na - 1);
397 s = of_read_number(range + na + pna, ns);
398 da = of_read_number(addr + 1, na - 1);
399
400 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
401 (unsigned long long)cp, (unsigned long long)s,
402 (unsigned long long)da);
403
404 if (da < cp || da >= (cp + s))
405 return OF_BAD_ADDR;
406 return da - cp;
407}
408
409static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
410{
411 return of_bus_default_translate(addr + 1, offset, na - 1);
412}
413
414static unsigned int of_bus_isa_get_flags(const __be32 *addr)
415{
416 unsigned int flags = 0;
417 u32 w = be32_to_cpup(addr);
418
419 if (w & 1)
420 flags |= IORESOURCE_IO;
421 else
422 flags |= IORESOURCE_MEM;
423 return flags;
424}
425
426/*
427 * Array of bus specific translators
428 */
429
430static struct of_bus of_busses[] = {
431#ifdef CONFIG_PCI
432 /* PCI */
433 {
434 .name = "pci",
435 .addresses = "assigned-addresses",
436 .match = of_bus_pci_match,
437 .count_cells = of_bus_pci_count_cells,
438 .map = of_bus_pci_map,
439 .translate = of_bus_pci_translate,
440 .get_flags = of_bus_pci_get_flags,
441 },
442#endif /* CONFIG_PCI */
443 /* ISA */
444 {
445 .name = "isa",
446 .addresses = "reg",
447 .match = of_bus_isa_match,
448 .count_cells = of_bus_isa_count_cells,
449 .map = of_bus_isa_map,
450 .translate = of_bus_isa_translate,
451 .get_flags = of_bus_isa_get_flags,
452 },
453 /* Default */
454 {
455 .name = "default",
456 .addresses = "reg",
457 .match = NULL,
458 .count_cells = of_bus_default_count_cells,
459 .map = of_bus_default_map,
460 .translate = of_bus_default_translate,
461 .get_flags = of_bus_default_get_flags,
462 },
463};
464
465static struct of_bus *of_match_bus(struct device_node *np)
466{
467 int i;
468
469 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
470 if (!of_busses[i].match || of_busses[i].match(np))
471 return &of_busses[i];
472 BUG();
473 return NULL;
474}
475
476static int of_empty_ranges_quirk(struct device_node *np)
477{
478 if (IS_ENABLED(CONFIG_PPC)) {
479 /* To save cycles, we cache the result for global "Mac" setting */
480 static int quirk_state = -1;
481
482 /* PA-SEMI sdc DT bug */
483 if (of_device_is_compatible(np, "1682m-sdc"))
484 return true;
485
486 /* Make quirk cached */
487 if (quirk_state < 0)
488 quirk_state =
489 of_machine_is_compatible("Power Macintosh") ||
490 of_machine_is_compatible("MacRISC");
491 return quirk_state;
492 }
493 return false;
494}
495
496static int of_translate_one(struct device_node *parent, struct of_bus *bus,
497 struct of_bus *pbus, __be32 *addr,
498 int na, int ns, int pna, const char *rprop)
499{
500 const __be32 *ranges;
501 unsigned int rlen;
502 int rone;
503 u64 offset = OF_BAD_ADDR;
504
505 /*
506 * Normally, an absence of a "ranges" property means we are
507 * crossing a non-translatable boundary, and thus the addresses
508 * below the current cannot be converted to CPU physical ones.
509 * Unfortunately, while this is very clear in the spec, it's not
510 * what Apple understood, and they do have things like /uni-n or
511 * /ht nodes with no "ranges" property and a lot of perfectly
512 * useable mapped devices below them. Thus we treat the absence of
513 * "ranges" as equivalent to an empty "ranges" property which means
514 * a 1:1 translation at that level. It's up to the caller not to try
515 * to translate addresses that aren't supposed to be translated in
516 * the first place. --BenH.
517 *
518 * As far as we know, this damage only exists on Apple machines, so
519 * This code is only enabled on powerpc. --gcl
520 */
521 ranges = of_get_property(parent, rprop, &rlen);
522 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
523 pr_debug("no ranges; cannot translate\n");
524 return 1;
525 }
526 if (ranges == NULL || rlen == 0) {
527 offset = of_read_number(addr, na);
528 memset(addr, 0, pna * 4);
529 pr_debug("empty ranges; 1:1 translation\n");
530 goto finish;
531 }
532
533 pr_debug("walking ranges...\n");
534
535 /* Now walk through the ranges */
536 rlen /= 4;
537 rone = na + pna + ns;
538 for (; rlen >= rone; rlen -= rone, ranges += rone) {
539 offset = bus->map(addr, ranges, na, ns, pna);
540 if (offset != OF_BAD_ADDR)
541 break;
542 }
543 if (offset == OF_BAD_ADDR) {
544 pr_debug("not found !\n");
545 return 1;
546 }
547 memcpy(addr, ranges + na, 4 * pna);
548
549 finish:
550 of_dump_addr("parent translation for:", addr, pna);
551 pr_debug("with offset: %llx\n", (unsigned long long)offset);
552
553 /* Translate it into parent bus space */
554 return pbus->translate(addr, offset, pna);
555}
556
557/*
558 * Translate an address from the device-tree into a CPU physical address,
559 * this walks up the tree and applies the various bus mappings on the
560 * way.
561 *
562 * Note: We consider that crossing any level with #size-cells == 0 to mean
563 * that translation is impossible (that is we are not dealing with a value
564 * that can be mapped to a cpu physical address). This is not really specified
565 * that way, but this is traditionally the way IBM at least do things
566 *
567 * Whenever the translation fails, the *host pointer will be set to the
568 * device that had registered logical PIO mapping, and the return code is
569 * relative to that node.
570 */
571static u64 __of_translate_address(struct device_node *dev,
572 struct device_node *(*get_parent)(const struct device_node *),
573 const __be32 *in_addr, const char *rprop,
574 struct device_node **host)
575{
576 struct device_node *parent = NULL;
577 struct of_bus *bus, *pbus;
578 __be32 addr[OF_MAX_ADDR_CELLS];
579 int na, ns, pna, pns;
580 u64 result = OF_BAD_ADDR;
581
582 pr_debug("** translation for device %pOF **\n", dev);
583
584 /* Increase refcount at current level */
585 of_node_get(dev);
586
587 *host = NULL;
588 /* Get parent & match bus type */
589 parent = get_parent(dev);
590 if (parent == NULL)
591 goto bail;
592 bus = of_match_bus(parent);
593
594 /* Count address cells & copy address locally */
595 bus->count_cells(dev, &na, &ns);
596 if (!OF_CHECK_COUNTS(na, ns)) {
597 pr_debug("Bad cell count for %pOF\n", dev);
598 goto bail;
599 }
600 memcpy(addr, in_addr, na * 4);
601
602 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
603 bus->name, na, ns, parent);
604 of_dump_addr("translating address:", addr, na);
605
606 /* Translate */
607 for (;;) {
608 struct logic_pio_hwaddr *iorange;
609
610 /* Switch to parent bus */
611 of_node_put(dev);
612 dev = parent;
613 parent = get_parent(dev);
614
615 /* If root, we have finished */
616 if (parent == NULL) {
617 pr_debug("reached root node\n");
618 result = of_read_number(addr, na);
619 break;
620 }
621
622 /*
623 * For indirectIO device which has no ranges property, get
624 * the address from reg directly.
625 */
626 iorange = find_io_range_by_fwnode(&dev->fwnode);
627 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
628 result = of_read_number(addr + 1, na - 1);
629 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
630 dev, result);
631 *host = of_node_get(dev);
632 break;
633 }
634
635 /* Get new parent bus and counts */
636 pbus = of_match_bus(parent);
637 pbus->count_cells(dev, &pna, &pns);
638 if (!OF_CHECK_COUNTS(pna, pns)) {
639 pr_err("Bad cell count for %pOF\n", dev);
640 break;
641 }
642
643 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
644 pbus->name, pna, pns, parent);
645
646 /* Apply bus translation */
647 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
648 break;
649
650 /* Complete the move up one level */
651 na = pna;
652 ns = pns;
653 bus = pbus;
654
655 of_dump_addr("one level translation:", addr, na);
656 }
657 bail:
658 of_node_put(parent);
659 of_node_put(dev);
660
661 return result;
662}
663
664u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
665{
666 struct device_node *host;
667 u64 ret;
668
669 ret = __of_translate_address(dev, of_get_parent,
670 in_addr, "ranges", &host);
671 if (host) {
672 of_node_put(host);
673 return OF_BAD_ADDR;
674 }
675
676 return ret;
677}
678EXPORT_SYMBOL(of_translate_address);
679
680static struct device_node *__of_get_dma_parent(const struct device_node *np)
681{
682 struct of_phandle_args args;
683 int ret, index;
684
685 index = of_property_match_string(np, "interconnect-names", "dma-mem");
686 if (index < 0)
687 return of_get_parent(np);
688
689 ret = of_parse_phandle_with_args(np, "interconnects",
690 "#interconnect-cells",
691 index, &args);
692 if (ret < 0)
693 return of_get_parent(np);
694
695 return of_node_get(args.np);
696}
697
698u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
699{
700 struct device_node *host;
701 u64 ret;
702
703 ret = __of_translate_address(dev, __of_get_dma_parent,
704 in_addr, "dma-ranges", &host);
705
706 if (host) {
707 of_node_put(host);
708 return OF_BAD_ADDR;
709 }
710
711 return ret;
712}
713EXPORT_SYMBOL(of_translate_dma_address);
714
715const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
716 unsigned int *flags)
717{
718 const __be32 *prop;
719 unsigned int psize;
720 struct device_node *parent;
721 struct of_bus *bus;
722 int onesize, i, na, ns;
723
724 /* Get parent & match bus type */
725 parent = of_get_parent(dev);
726 if (parent == NULL)
727 return NULL;
728 bus = of_match_bus(parent);
729 bus->count_cells(dev, &na, &ns);
730 of_node_put(parent);
731 if (!OF_CHECK_ADDR_COUNT(na))
732 return NULL;
733
734 /* Get "reg" or "assigned-addresses" property */
735 prop = of_get_property(dev, bus->addresses, &psize);
736 if (prop == NULL)
737 return NULL;
738 psize /= 4;
739
740 onesize = na + ns;
741 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
742 if (i == index) {
743 if (size)
744 *size = of_read_number(prop + na, ns);
745 if (flags)
746 *flags = bus->get_flags(prop);
747 return prop;
748 }
749 return NULL;
750}
751EXPORT_SYMBOL(of_get_address);
752
753static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
754 u64 size)
755{
756 u64 taddr;
757 unsigned long port;
758 struct device_node *host;
759
760 taddr = __of_translate_address(dev, of_get_parent,
761 in_addr, "ranges", &host);
762 if (host) {
763 /* host-specific port access */
764 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
765 of_node_put(host);
766 } else {
767 /* memory-mapped I/O range */
768 port = pci_address_to_pio(taddr);
769 }
770
771 if (port == (unsigned long)-1)
772 return OF_BAD_ADDR;
773
774 return port;
775}
776
777static int __of_address_to_resource(struct device_node *dev,
778 const __be32 *addrp, u64 size, unsigned int flags,
779 const char *name, struct resource *r)
780{
781 u64 taddr;
782
783 if (flags & IORESOURCE_MEM)
784 taddr = of_translate_address(dev, addrp);
785 else if (flags & IORESOURCE_IO)
786 taddr = of_translate_ioport(dev, addrp, size);
787 else
788 return -EINVAL;
789
790 if (taddr == OF_BAD_ADDR)
791 return -EINVAL;
792 memset(r, 0, sizeof(struct resource));
793
794 r->start = taddr;
795 r->end = taddr + size - 1;
796 r->flags = flags;
797 r->name = name ? name : dev->full_name;
798
799 return 0;
800}
801
802/**
803 * of_address_to_resource - Translate device tree address and return as resource
804 *
805 * Note that if your address is a PIO address, the conversion will fail if
806 * the physical address can't be internally converted to an IO token with
807 * pci_address_to_pio(), that is because it's either called too early or it
808 * can't be matched to any host bridge IO space
809 */
810int of_address_to_resource(struct device_node *dev, int index,
811 struct resource *r)
812{
813 const __be32 *addrp;
814 u64 size;
815 unsigned int flags;
816 const char *name = NULL;
817
818 addrp = of_get_address(dev, index, &size, &flags);
819 if (addrp == NULL)
820 return -EINVAL;
821
822 /* Get optional "reg-names" property to add a name to a resource */
823 of_property_read_string_index(dev, "reg-names", index, &name);
824
825 return __of_address_to_resource(dev, addrp, size, flags, name, r);
826}
827EXPORT_SYMBOL_GPL(of_address_to_resource);
828
829struct device_node *of_find_matching_node_by_address(struct device_node *from,
830 const struct of_device_id *matches,
831 u64 base_address)
832{
833 struct device_node *dn = of_find_matching_node(from, matches);
834 struct resource res;
835
836 while (dn) {
837 if (!of_address_to_resource(dn, 0, &res) &&
838 res.start == base_address)
839 return dn;
840
841 dn = of_find_matching_node(dn, matches);
842 }
843
844 return NULL;
845}
846
847
848/**
849 * of_iomap - Maps the memory mapped IO for a given device_node
850 * @device: the device whose io range will be mapped
851 * @index: index of the io range
852 *
853 * Returns a pointer to the mapped memory
854 */
855void __iomem *of_iomap(struct device_node *np, int index)
856{
857 struct resource res;
858
859 if (of_address_to_resource(np, index, &res))
860 return NULL;
861
862 return ioremap(res.start, resource_size(&res));
863}
864EXPORT_SYMBOL(of_iomap);
865
866/*
867 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
868 * for a given device_node
869 * @device: the device whose io range will be mapped
870 * @index: index of the io range
871 * @name: name "override" for the memory region request or NULL
872 *
873 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
874 * error code on failure. Usage example:
875 *
876 * base = of_io_request_and_map(node, 0, "foo");
877 * if (IS_ERR(base))
878 * return PTR_ERR(base);
879 */
880void __iomem *of_io_request_and_map(struct device_node *np, int index,
881 const char *name)
882{
883 struct resource res;
884 void __iomem *mem;
885
886 if (of_address_to_resource(np, index, &res))
887 return IOMEM_ERR_PTR(-EINVAL);
888
889 if (!name)
890 name = res.name;
891 if (!request_mem_region(res.start, resource_size(&res), name))
892 return IOMEM_ERR_PTR(-EBUSY);
893
894 mem = ioremap(res.start, resource_size(&res));
895 if (!mem) {
896 release_mem_region(res.start, resource_size(&res));
897 return IOMEM_ERR_PTR(-ENOMEM);
898 }
899
900 return mem;
901}
902EXPORT_SYMBOL(of_io_request_and_map);
903
904/**
905 * of_dma_get_range - Get DMA range info
906 * @np: device node to get DMA range info
907 * @dma_addr: pointer to store initial DMA address of DMA range
908 * @paddr: pointer to store initial CPU address of DMA range
909 * @size: pointer to store size of DMA range
910 *
911 * Look in bottom up direction for the first "dma-ranges" property
912 * and parse it.
913 * dma-ranges format:
914 * DMA addr (dma_addr) : naddr cells
915 * CPU addr (phys_addr_t) : pna cells
916 * size : nsize cells
917 *
918 * It returns -ENODEV if "dma-ranges" property was not found
919 * for this device in DT.
920 */
921int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
922{
923 struct device_node *node = of_node_get(np);
924 const __be32 *ranges = NULL;
925 int len, naddr, nsize, pna;
926 int ret = 0;
927 u64 dmaaddr;
928
929 if (!node)
930 return -EINVAL;
931
932 while (1) {
933 struct device_node *parent;
934
935 naddr = of_n_addr_cells(node);
936 nsize = of_n_size_cells(node);
937
938 parent = __of_get_dma_parent(node);
939 of_node_put(node);
940
941 node = parent;
942 if (!node)
943 break;
944
945 ranges = of_get_property(node, "dma-ranges", &len);
946
947 /* Ignore empty ranges, they imply no translation required */
948 if (ranges && len > 0)
949 break;
950
951 /*
952 * At least empty ranges has to be defined for parent node if
953 * DMA is supported
954 */
955 if (!ranges)
956 break;
957 }
958
959 if (!ranges) {
960 pr_debug("no dma-ranges found for node(%pOF)\n", np);
961 ret = -ENODEV;
962 goto out;
963 }
964
965 len /= sizeof(u32);
966
967 pna = of_n_addr_cells(node);
968
969 /* dma-ranges format:
970 * DMA addr : naddr cells
971 * CPU addr : pna cells
972 * size : nsize cells
973 */
974 dmaaddr = of_read_number(ranges, naddr);
975 *paddr = of_translate_dma_address(np, ranges);
976 if (*paddr == OF_BAD_ADDR) {
977 pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
978 dma_addr, np);
979 ret = -EINVAL;
980 goto out;
981 }
982 *dma_addr = dmaaddr;
983
984 *size = of_read_number(ranges + naddr + pna, nsize);
985
986 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
987 *dma_addr, *paddr, *size);
988
989out:
990 of_node_put(node);
991
992 return ret;
993}
994EXPORT_SYMBOL_GPL(of_dma_get_range);
995
996/**
997 * of_dma_is_coherent - Check if device is coherent
998 * @np: device node
999 *
1000 * It returns true if "dma-coherent" property was found
1001 * for this device in DT.
1002 */
1003bool of_dma_is_coherent(struct device_node *np)
1004{
1005 struct device_node *node = of_node_get(np);
1006
1007 while (node) {
1008 if (of_property_read_bool(node, "dma-coherent")) {
1009 of_node_put(node);
1010 return true;
1011 }
1012 node = of_get_next_parent(node);
1013 }
1014 of_node_put(node);
1015 return false;
1016}
1017EXPORT_SYMBOL_GPL(of_dma_is_coherent);