Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Synopsys DesignWare Multimedia Card Interface driver
   4 *  (Based on NXP driver for lpc 31xx)
   5 *
   6 * Copyright (C) 2009 NXP Semiconductors
   7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
   8 */
   9
  10#include <linux/blkdev.h>
  11#include <linux/clk.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/iopoll.h>
  19#include <linux/ioport.h>
  20#include <linux/ktime.h>
  21#include <linux/module.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/prandom.h>
  25#include <linux/seq_file.h>
  26#include <linux/slab.h>
  27#include <linux/stat.h>
  28#include <linux/delay.h>
  29#include <linux/irq.h>
  30#include <linux/mmc/card.h>
  31#include <linux/mmc/host.h>
  32#include <linux/mmc/mmc.h>
  33#include <linux/mmc/sd.h>
  34#include <linux/mmc/sdio.h>
  35#include <linux/bitops.h>
  36#include <linux/regulator/consumer.h>
  37#include <linux/of.h>
  38#include <linux/of_gpio.h>
  39#include <linux/mmc/slot-gpio.h>
  40
  41#include "dw_mmc.h"
  42
  43/* Common flag combinations */
  44#define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
  45				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
  46				 SDMMC_INT_EBE | SDMMC_INT_HLE)
  47#define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
  48				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
  49#define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
  50				 DW_MCI_CMD_ERROR_FLAGS)
  51#define DW_MCI_SEND_STATUS	1
  52#define DW_MCI_RECV_STATUS	2
  53#define DW_MCI_DMA_THRESHOLD	16
  54
  55#define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
  56#define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
  57
  58#define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
  59				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
  60				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
  61				 SDMMC_IDMAC_INT_TI)
  62
  63#define DESC_RING_BUF_SZ	PAGE_SIZE
  64
  65struct idmac_desc_64addr {
  66	u32		des0;	/* Control Descriptor */
  67#define IDMAC_OWN_CLR64(x) \
  68	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
  69
  70	u32		des1;	/* Reserved */
  71
  72	u32		des2;	/*Buffer sizes */
  73#define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
  74	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
  75	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
  76
  77	u32		des3;	/* Reserved */
  78
  79	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
  80	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
  81
  82	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
  83	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
  84};
  85
  86struct idmac_desc {
  87	__le32		des0;	/* Control Descriptor */
  88#define IDMAC_DES0_DIC	BIT(1)
  89#define IDMAC_DES0_LD	BIT(2)
  90#define IDMAC_DES0_FD	BIT(3)
  91#define IDMAC_DES0_CH	BIT(4)
  92#define IDMAC_DES0_ER	BIT(5)
  93#define IDMAC_DES0_CES	BIT(30)
  94#define IDMAC_DES0_OWN	BIT(31)
  95
  96	__le32		des1;	/* Buffer sizes */
  97#define IDMAC_SET_BUFFER1_SIZE(d, s) \
  98	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
  99
 100	__le32		des2;	/* buffer 1 physical address */
 101
 102	__le32		des3;	/* buffer 2 physical address */
 103};
 104
 105/* Each descriptor can transfer up to 4KB of data in chained mode */
 106#define DW_MCI_DESC_DATA_LENGTH	0x1000
 107
 108#if defined(CONFIG_DEBUG_FS)
 109static int dw_mci_req_show(struct seq_file *s, void *v)
 110{
 111	struct dw_mci_slot *slot = s->private;
 112	struct mmc_request *mrq;
 113	struct mmc_command *cmd;
 114	struct mmc_command *stop;
 115	struct mmc_data	*data;
 116
 117	/* Make sure we get a consistent snapshot */
 118	spin_lock_bh(&slot->host->lock);
 119	mrq = slot->mrq;
 120
 121	if (mrq) {
 122		cmd = mrq->cmd;
 123		data = mrq->data;
 124		stop = mrq->stop;
 125
 126		if (cmd)
 127			seq_printf(s,
 128				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
 129				   cmd->opcode, cmd->arg, cmd->flags,
 130				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
 131				   cmd->resp[2], cmd->error);
 132		if (data)
 133			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
 134				   data->bytes_xfered, data->blocks,
 135				   data->blksz, data->flags, data->error);
 136		if (stop)
 137			seq_printf(s,
 138				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
 139				   stop->opcode, stop->arg, stop->flags,
 140				   stop->resp[0], stop->resp[1], stop->resp[2],
 141				   stop->resp[2], stop->error);
 142	}
 143
 144	spin_unlock_bh(&slot->host->lock);
 145
 146	return 0;
 147}
 148DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
 149
 150static int dw_mci_regs_show(struct seq_file *s, void *v)
 151{
 152	struct dw_mci *host = s->private;
 153
 154	pm_runtime_get_sync(host->dev);
 155
 156	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
 157	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
 158	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
 159	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
 160	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
 161	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
 162
 163	pm_runtime_put_autosuspend(host->dev);
 164
 165	return 0;
 166}
 167DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
 168
 169static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
 170{
 171	struct mmc_host	*mmc = slot->mmc;
 172	struct dw_mci *host = slot->host;
 173	struct dentry *root;
 174
 175	root = mmc->debugfs_root;
 176	if (!root)
 177		return;
 178
 179	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
 180	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
 181	debugfs_create_u32("state", S_IRUSR, root, &host->state);
 182	debugfs_create_xul("pending_events", S_IRUSR, root,
 183			   &host->pending_events);
 184	debugfs_create_xul("completed_events", S_IRUSR, root,
 185			   &host->completed_events);
 186#ifdef CONFIG_FAULT_INJECTION
 187	fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
 188#endif
 189}
 190#endif /* defined(CONFIG_DEBUG_FS) */
 191
 192static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
 193{
 194	u32 ctrl;
 195
 196	ctrl = mci_readl(host, CTRL);
 197	ctrl |= reset;
 198	mci_writel(host, CTRL, ctrl);
 199
 200	/* wait till resets clear */
 201	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
 202				      !(ctrl & reset),
 203				      1, 500 * USEC_PER_MSEC)) {
 204		dev_err(host->dev,
 205			"Timeout resetting block (ctrl reset %#x)\n",
 206			ctrl & reset);
 207		return false;
 208	}
 209
 210	return true;
 211}
 212
 213static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
 214{
 215	u32 status;
 216
 217	/*
 218	 * Databook says that before issuing a new data transfer command
 219	 * we need to check to see if the card is busy.  Data transfer commands
 220	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
 221	 *
 222	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
 223	 * expected.
 224	 */
 225	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
 226	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
 227		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
 228					      status,
 229					      !(status & SDMMC_STATUS_BUSY),
 230					      10, 500 * USEC_PER_MSEC))
 231			dev_err(host->dev, "Busy; trying anyway\n");
 232	}
 233}
 234
 235static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
 236{
 237	struct dw_mci *host = slot->host;
 238	unsigned int cmd_status = 0;
 239
 240	mci_writel(host, CMDARG, arg);
 241	wmb(); /* drain writebuffer */
 242	dw_mci_wait_while_busy(host, cmd);
 243	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
 244
 245	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
 246				      !(cmd_status & SDMMC_CMD_START),
 247				      1, 500 * USEC_PER_MSEC))
 248		dev_err(&slot->mmc->class_dev,
 249			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
 250			cmd, arg, cmd_status);
 251}
 252
 253static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
 254{
 255	struct dw_mci_slot *slot = mmc_priv(mmc);
 256	struct dw_mci *host = slot->host;
 257	u32 cmdr;
 258
 259	cmd->error = -EINPROGRESS;
 260	cmdr = cmd->opcode;
 261
 262	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
 263	    cmd->opcode == MMC_GO_IDLE_STATE ||
 264	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
 265	    (cmd->opcode == SD_IO_RW_DIRECT &&
 266	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
 267		cmdr |= SDMMC_CMD_STOP;
 268	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
 269		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
 270
 271	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
 272		u32 clk_en_a;
 273
 274		/* Special bit makes CMD11 not die */
 275		cmdr |= SDMMC_CMD_VOLT_SWITCH;
 276
 277		/* Change state to continue to handle CMD11 weirdness */
 278		WARN_ON(slot->host->state != STATE_SENDING_CMD);
 279		slot->host->state = STATE_SENDING_CMD11;
 280
 281		/*
 282		 * We need to disable low power mode (automatic clock stop)
 283		 * while doing voltage switch so we don't confuse the card,
 284		 * since stopping the clock is a specific part of the UHS
 285		 * voltage change dance.
 286		 *
 287		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
 288		 * unconditionally turned back on in dw_mci_setup_bus() if it's
 289		 * ever called with a non-zero clock.  That shouldn't happen
 290		 * until the voltage change is all done.
 291		 */
 292		clk_en_a = mci_readl(host, CLKENA);
 293		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
 294		mci_writel(host, CLKENA, clk_en_a);
 295		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
 296			     SDMMC_CMD_PRV_DAT_WAIT, 0);
 297	}
 298
 299	if (cmd->flags & MMC_RSP_PRESENT) {
 300		/* We expect a response, so set this bit */
 301		cmdr |= SDMMC_CMD_RESP_EXP;
 302		if (cmd->flags & MMC_RSP_136)
 303			cmdr |= SDMMC_CMD_RESP_LONG;
 304	}
 305
 306	if (cmd->flags & MMC_RSP_CRC)
 307		cmdr |= SDMMC_CMD_RESP_CRC;
 308
 309	if (cmd->data) {
 310		cmdr |= SDMMC_CMD_DAT_EXP;
 311		if (cmd->data->flags & MMC_DATA_WRITE)
 312			cmdr |= SDMMC_CMD_DAT_WR;
 313	}
 314
 315	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
 316		cmdr |= SDMMC_CMD_USE_HOLD_REG;
 317
 318	return cmdr;
 319}
 320
 321static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
 322{
 323	struct mmc_command *stop;
 324	u32 cmdr;
 325
 326	if (!cmd->data)
 327		return 0;
 328
 329	stop = &host->stop_abort;
 330	cmdr = cmd->opcode;
 331	memset(stop, 0, sizeof(struct mmc_command));
 332
 333	if (cmdr == MMC_READ_SINGLE_BLOCK ||
 334	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
 335	    cmdr == MMC_WRITE_BLOCK ||
 336	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
 337	    mmc_op_tuning(cmdr) ||
 338	    cmdr == MMC_GEN_CMD) {
 339		stop->opcode = MMC_STOP_TRANSMISSION;
 340		stop->arg = 0;
 341		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 342	} else if (cmdr == SD_IO_RW_EXTENDED) {
 343		stop->opcode = SD_IO_RW_DIRECT;
 344		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
 345			     ((cmd->arg >> 28) & 0x7);
 346		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
 347	} else {
 348		return 0;
 349	}
 350
 351	cmdr = stop->opcode | SDMMC_CMD_STOP |
 352		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
 353
 354	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
 355		cmdr |= SDMMC_CMD_USE_HOLD_REG;
 356
 357	return cmdr;
 358}
 359
 360static inline void dw_mci_set_cto(struct dw_mci *host)
 361{
 362	unsigned int cto_clks;
 363	unsigned int cto_div;
 364	unsigned int cto_ms;
 365	unsigned long irqflags;
 366
 367	cto_clks = mci_readl(host, TMOUT) & 0xff;
 368	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
 369	if (cto_div == 0)
 370		cto_div = 1;
 371
 372	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
 373				  host->bus_hz);
 374
 375	/* add a bit spare time */
 376	cto_ms += 10;
 377
 378	/*
 379	 * The durations we're working with are fairly short so we have to be
 380	 * extra careful about synchronization here.  Specifically in hardware a
 381	 * command timeout is _at most_ 5.1 ms, so that means we expect an
 382	 * interrupt (either command done or timeout) to come rather quickly
 383	 * after the mci_writel.  ...but just in case we have a long interrupt
 384	 * latency let's add a bit of paranoia.
 385	 *
 386	 * In general we'll assume that at least an interrupt will be asserted
 387	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
 388	 * been asserted in hardware by that time then we'll assume it'll never
 389	 * come.
 390	 */
 391	spin_lock_irqsave(&host->irq_lock, irqflags);
 392	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
 393		mod_timer(&host->cto_timer,
 394			jiffies + msecs_to_jiffies(cto_ms) + 1);
 395	spin_unlock_irqrestore(&host->irq_lock, irqflags);
 396}
 397
 398static void dw_mci_start_command(struct dw_mci *host,
 399				 struct mmc_command *cmd, u32 cmd_flags)
 400{
 401	host->cmd = cmd;
 402	dev_vdbg(host->dev,
 403		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
 404		 cmd->arg, cmd_flags);
 405
 406	mci_writel(host, CMDARG, cmd->arg);
 407	wmb(); /* drain writebuffer */
 408	dw_mci_wait_while_busy(host, cmd_flags);
 409
 410	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
 411
 412	/* response expected command only */
 413	if (cmd_flags & SDMMC_CMD_RESP_EXP)
 414		dw_mci_set_cto(host);
 415}
 416
 417static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
 418{
 419	struct mmc_command *stop = &host->stop_abort;
 420
 421	dw_mci_start_command(host, stop, host->stop_cmdr);
 422}
 423
 424/* DMA interface functions */
 425static void dw_mci_stop_dma(struct dw_mci *host)
 426{
 427	if (host->using_dma) {
 428		host->dma_ops->stop(host);
 429		host->dma_ops->cleanup(host);
 430	}
 431
 432	/* Data transfer was stopped by the interrupt handler */
 433	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
 434}
 435
 436static void dw_mci_dma_cleanup(struct dw_mci *host)
 437{
 438	struct mmc_data *data = host->data;
 439
 440	if (data && data->host_cookie == COOKIE_MAPPED) {
 441		dma_unmap_sg(host->dev,
 442			     data->sg,
 443			     data->sg_len,
 444			     mmc_get_dma_dir(data));
 445		data->host_cookie = COOKIE_UNMAPPED;
 446	}
 447}
 448
 449static void dw_mci_idmac_reset(struct dw_mci *host)
 450{
 451	u32 bmod = mci_readl(host, BMOD);
 452	/* Software reset of DMA */
 453	bmod |= SDMMC_IDMAC_SWRESET;
 454	mci_writel(host, BMOD, bmod);
 455}
 456
 457static void dw_mci_idmac_stop_dma(struct dw_mci *host)
 458{
 459	u32 temp;
 460
 461	/* Disable and reset the IDMAC interface */
 462	temp = mci_readl(host, CTRL);
 463	temp &= ~SDMMC_CTRL_USE_IDMAC;
 464	temp |= SDMMC_CTRL_DMA_RESET;
 465	mci_writel(host, CTRL, temp);
 466
 467	/* Stop the IDMAC running */
 468	temp = mci_readl(host, BMOD);
 469	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
 470	temp |= SDMMC_IDMAC_SWRESET;
 471	mci_writel(host, BMOD, temp);
 472}
 473
 474static void dw_mci_dmac_complete_dma(void *arg)
 475{
 476	struct dw_mci *host = arg;
 477	struct mmc_data *data = host->data;
 478
 479	dev_vdbg(host->dev, "DMA complete\n");
 480
 481	if ((host->use_dma == TRANS_MODE_EDMAC) &&
 482	    data && (data->flags & MMC_DATA_READ))
 483		/* Invalidate cache after read */
 484		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
 485				    data->sg,
 486				    data->sg_len,
 487				    DMA_FROM_DEVICE);
 488
 489	host->dma_ops->cleanup(host);
 490
 491	/*
 492	 * If the card was removed, data will be NULL. No point in trying to
 493	 * send the stop command or waiting for NBUSY in this case.
 494	 */
 495	if (data) {
 496		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
 497		tasklet_schedule(&host->tasklet);
 498	}
 499}
 500
 501static int dw_mci_idmac_init(struct dw_mci *host)
 502{
 503	int i;
 504
 505	if (host->dma_64bit_address == 1) {
 506		struct idmac_desc_64addr *p;
 507		/* Number of descriptors in the ring buffer */
 508		host->ring_size =
 509			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
 510
 511		/* Forward link the descriptor list */
 512		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
 513								i++, p++) {
 514			p->des6 = (host->sg_dma +
 515					(sizeof(struct idmac_desc_64addr) *
 516							(i + 1))) & 0xffffffff;
 517
 518			p->des7 = (u64)(host->sg_dma +
 519					(sizeof(struct idmac_desc_64addr) *
 520							(i + 1))) >> 32;
 521			/* Initialize reserved and buffer size fields to "0" */
 522			p->des0 = 0;
 523			p->des1 = 0;
 524			p->des2 = 0;
 525			p->des3 = 0;
 526		}
 527
 528		/* Set the last descriptor as the end-of-ring descriptor */
 529		p->des6 = host->sg_dma & 0xffffffff;
 530		p->des7 = (u64)host->sg_dma >> 32;
 531		p->des0 = IDMAC_DES0_ER;
 532
 533	} else {
 534		struct idmac_desc *p;
 535		/* Number of descriptors in the ring buffer */
 536		host->ring_size =
 537			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
 538
 539		/* Forward link the descriptor list */
 540		for (i = 0, p = host->sg_cpu;
 541		     i < host->ring_size - 1;
 542		     i++, p++) {
 543			p->des3 = cpu_to_le32(host->sg_dma +
 544					(sizeof(struct idmac_desc) * (i + 1)));
 545			p->des0 = 0;
 546			p->des1 = 0;
 547		}
 548
 549		/* Set the last descriptor as the end-of-ring descriptor */
 550		p->des3 = cpu_to_le32(host->sg_dma);
 551		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
 552	}
 553
 554	dw_mci_idmac_reset(host);
 555
 556	if (host->dma_64bit_address == 1) {
 557		/* Mask out interrupts - get Tx & Rx complete only */
 558		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
 559		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
 560				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
 561
 562		/* Set the descriptor base address */
 563		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
 564		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
 565
 566	} else {
 567		/* Mask out interrupts - get Tx & Rx complete only */
 568		mci_writel(host, IDSTS, IDMAC_INT_CLR);
 569		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
 570				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
 571
 572		/* Set the descriptor base address */
 573		mci_writel(host, DBADDR, host->sg_dma);
 574	}
 575
 576	return 0;
 577}
 578
 579static inline int dw_mci_prepare_desc64(struct dw_mci *host,
 580					 struct mmc_data *data,
 581					 unsigned int sg_len)
 582{
 583	unsigned int desc_len;
 584	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
 585	u32 val;
 586	int i;
 587
 588	desc_first = desc_last = desc = host->sg_cpu;
 589
 590	for (i = 0; i < sg_len; i++) {
 591		unsigned int length = sg_dma_len(&data->sg[i]);
 592
 593		u64 mem_addr = sg_dma_address(&data->sg[i]);
 594
 595		for ( ; length ; desc++) {
 596			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
 597				   length : DW_MCI_DESC_DATA_LENGTH;
 598
 599			length -= desc_len;
 600
 601			/*
 602			 * Wait for the former clear OWN bit operation
 603			 * of IDMAC to make sure that this descriptor
 604			 * isn't still owned by IDMAC as IDMAC's write
 605			 * ops and CPU's read ops are asynchronous.
 606			 */
 607			if (readl_poll_timeout_atomic(&desc->des0, val,
 608						!(val & IDMAC_DES0_OWN),
 609						10, 100 * USEC_PER_MSEC))
 610				goto err_own_bit;
 611
 612			/*
 613			 * Set the OWN bit and disable interrupts
 614			 * for this descriptor
 615			 */
 616			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
 617						IDMAC_DES0_CH;
 618
 619			/* Buffer length */
 620			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
 621
 622			/* Physical address to DMA to/from */
 623			desc->des4 = mem_addr & 0xffffffff;
 624			desc->des5 = mem_addr >> 32;
 625
 626			/* Update physical address for the next desc */
 627			mem_addr += desc_len;
 628
 629			/* Save pointer to the last descriptor */
 630			desc_last = desc;
 631		}
 632	}
 633
 634	/* Set first descriptor */
 635	desc_first->des0 |= IDMAC_DES0_FD;
 636
 637	/* Set last descriptor */
 638	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
 639	desc_last->des0 |= IDMAC_DES0_LD;
 640
 641	return 0;
 642err_own_bit:
 643	/* restore the descriptor chain as it's polluted */
 644	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
 645	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
 646	dw_mci_idmac_init(host);
 647	return -EINVAL;
 648}
 649
 650
 651static inline int dw_mci_prepare_desc32(struct dw_mci *host,
 652					 struct mmc_data *data,
 653					 unsigned int sg_len)
 654{
 655	unsigned int desc_len;
 656	struct idmac_desc *desc_first, *desc_last, *desc;
 657	u32 val;
 658	int i;
 659
 660	desc_first = desc_last = desc = host->sg_cpu;
 661
 662	for (i = 0; i < sg_len; i++) {
 663		unsigned int length = sg_dma_len(&data->sg[i]);
 664
 665		u32 mem_addr = sg_dma_address(&data->sg[i]);
 666
 667		for ( ; length ; desc++) {
 668			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
 669				   length : DW_MCI_DESC_DATA_LENGTH;
 670
 671			length -= desc_len;
 672
 673			/*
 674			 * Wait for the former clear OWN bit operation
 675			 * of IDMAC to make sure that this descriptor
 676			 * isn't still owned by IDMAC as IDMAC's write
 677			 * ops and CPU's read ops are asynchronous.
 678			 */
 679			if (readl_poll_timeout_atomic(&desc->des0, val,
 680						      IDMAC_OWN_CLR64(val),
 681						      10,
 682						      100 * USEC_PER_MSEC))
 683				goto err_own_bit;
 684
 685			/*
 686			 * Set the OWN bit and disable interrupts
 687			 * for this descriptor
 688			 */
 689			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
 690						 IDMAC_DES0_DIC |
 691						 IDMAC_DES0_CH);
 692
 693			/* Buffer length */
 694			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
 695
 696			/* Physical address to DMA to/from */
 697			desc->des2 = cpu_to_le32(mem_addr);
 698
 699			/* Update physical address for the next desc */
 700			mem_addr += desc_len;
 701
 702			/* Save pointer to the last descriptor */
 703			desc_last = desc;
 704		}
 705	}
 706
 707	/* Set first descriptor */
 708	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
 709
 710	/* Set last descriptor */
 711	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
 712				       IDMAC_DES0_DIC));
 713	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
 714
 715	return 0;
 716err_own_bit:
 717	/* restore the descriptor chain as it's polluted */
 718	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
 719	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
 720	dw_mci_idmac_init(host);
 721	return -EINVAL;
 722}
 723
 724static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
 725{
 726	u32 temp;
 727	int ret;
 728
 729	if (host->dma_64bit_address == 1)
 730		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
 731	else
 732		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
 733
 734	if (ret)
 735		goto out;
 736
 737	/* drain writebuffer */
 738	wmb();
 739
 740	/* Make sure to reset DMA in case we did PIO before this */
 741	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
 742	dw_mci_idmac_reset(host);
 743
 744	/* Select IDMAC interface */
 745	temp = mci_readl(host, CTRL);
 746	temp |= SDMMC_CTRL_USE_IDMAC;
 747	mci_writel(host, CTRL, temp);
 748
 749	/* drain writebuffer */
 750	wmb();
 751
 752	/* Enable the IDMAC */
 753	temp = mci_readl(host, BMOD);
 754	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
 755	mci_writel(host, BMOD, temp);
 756
 757	/* Start it running */
 758	mci_writel(host, PLDMND, 1);
 759
 760out:
 761	return ret;
 762}
 763
 764static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
 765	.init = dw_mci_idmac_init,
 766	.start = dw_mci_idmac_start_dma,
 767	.stop = dw_mci_idmac_stop_dma,
 768	.complete = dw_mci_dmac_complete_dma,
 769	.cleanup = dw_mci_dma_cleanup,
 770};
 771
 772static void dw_mci_edmac_stop_dma(struct dw_mci *host)
 773{
 774	dmaengine_terminate_async(host->dms->ch);
 775}
 776
 777static int dw_mci_edmac_start_dma(struct dw_mci *host,
 778					    unsigned int sg_len)
 779{
 780	struct dma_slave_config cfg;
 781	struct dma_async_tx_descriptor *desc = NULL;
 782	struct scatterlist *sgl = host->data->sg;
 783	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
 784	u32 sg_elems = host->data->sg_len;
 785	u32 fifoth_val;
 786	u32 fifo_offset = host->fifo_reg - host->regs;
 787	int ret = 0;
 788
 789	/* Set external dma config: burst size, burst width */
 790	memset(&cfg, 0, sizeof(cfg));
 791	cfg.dst_addr = host->phy_regs + fifo_offset;
 792	cfg.src_addr = cfg.dst_addr;
 793	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 794	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 795
 796	/* Match burst msize with external dma config */
 797	fifoth_val = mci_readl(host, FIFOTH);
 798	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
 799	cfg.src_maxburst = cfg.dst_maxburst;
 800
 801	if (host->data->flags & MMC_DATA_WRITE)
 802		cfg.direction = DMA_MEM_TO_DEV;
 803	else
 804		cfg.direction = DMA_DEV_TO_MEM;
 805
 806	ret = dmaengine_slave_config(host->dms->ch, &cfg);
 807	if (ret) {
 808		dev_err(host->dev, "Failed to config edmac.\n");
 809		return -EBUSY;
 810	}
 811
 812	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
 813				       sg_len, cfg.direction,
 814				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 815	if (!desc) {
 816		dev_err(host->dev, "Can't prepare slave sg.\n");
 817		return -EBUSY;
 818	}
 819
 820	/* Set dw_mci_dmac_complete_dma as callback */
 821	desc->callback = dw_mci_dmac_complete_dma;
 822	desc->callback_param = (void *)host;
 823	dmaengine_submit(desc);
 824
 825	/* Flush cache before write */
 826	if (host->data->flags & MMC_DATA_WRITE)
 827		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
 828				       sg_elems, DMA_TO_DEVICE);
 829
 830	dma_async_issue_pending(host->dms->ch);
 831
 832	return 0;
 833}
 834
 835static int dw_mci_edmac_init(struct dw_mci *host)
 836{
 837	/* Request external dma channel */
 838	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
 839	if (!host->dms)
 840		return -ENOMEM;
 841
 842	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
 843	if (IS_ERR(host->dms->ch)) {
 844		int ret = PTR_ERR(host->dms->ch);
 845
 846		dev_err(host->dev, "Failed to get external DMA channel.\n");
 847		kfree(host->dms);
 848		host->dms = NULL;
 849		return ret;
 850	}
 851
 852	return 0;
 853}
 854
 855static void dw_mci_edmac_exit(struct dw_mci *host)
 856{
 857	if (host->dms) {
 858		if (host->dms->ch) {
 859			dma_release_channel(host->dms->ch);
 860			host->dms->ch = NULL;
 861		}
 862		kfree(host->dms);
 863		host->dms = NULL;
 864	}
 865}
 866
 867static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
 868	.init = dw_mci_edmac_init,
 869	.exit = dw_mci_edmac_exit,
 870	.start = dw_mci_edmac_start_dma,
 871	.stop = dw_mci_edmac_stop_dma,
 872	.complete = dw_mci_dmac_complete_dma,
 873	.cleanup = dw_mci_dma_cleanup,
 874};
 875
 876static int dw_mci_pre_dma_transfer(struct dw_mci *host,
 877				   struct mmc_data *data,
 878				   int cookie)
 879{
 880	struct scatterlist *sg;
 881	unsigned int i, sg_len;
 882
 883	if (data->host_cookie == COOKIE_PRE_MAPPED)
 884		return data->sg_len;
 885
 886	/*
 887	 * We don't do DMA on "complex" transfers, i.e. with
 888	 * non-word-aligned buffers or lengths. Also, we don't bother
 889	 * with all the DMA setup overhead for short transfers.
 890	 */
 891	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
 892		return -EINVAL;
 893
 894	if (data->blksz & 3)
 895		return -EINVAL;
 896
 897	for_each_sg(data->sg, sg, data->sg_len, i) {
 898		if (sg->offset & 3 || sg->length & 3)
 899			return -EINVAL;
 900	}
 901
 902	sg_len = dma_map_sg(host->dev,
 903			    data->sg,
 904			    data->sg_len,
 905			    mmc_get_dma_dir(data));
 906	if (sg_len == 0)
 907		return -EINVAL;
 908
 909	data->host_cookie = cookie;
 910
 911	return sg_len;
 912}
 913
 914static void dw_mci_pre_req(struct mmc_host *mmc,
 915			   struct mmc_request *mrq)
 916{
 917	struct dw_mci_slot *slot = mmc_priv(mmc);
 918	struct mmc_data *data = mrq->data;
 919
 920	if (!slot->host->use_dma || !data)
 921		return;
 922
 923	/* This data might be unmapped at this time */
 924	data->host_cookie = COOKIE_UNMAPPED;
 925
 926	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
 927				COOKIE_PRE_MAPPED) < 0)
 928		data->host_cookie = COOKIE_UNMAPPED;
 929}
 930
 931static void dw_mci_post_req(struct mmc_host *mmc,
 932			    struct mmc_request *mrq,
 933			    int err)
 934{
 935	struct dw_mci_slot *slot = mmc_priv(mmc);
 936	struct mmc_data *data = mrq->data;
 937
 938	if (!slot->host->use_dma || !data)
 939		return;
 940
 941	if (data->host_cookie != COOKIE_UNMAPPED)
 942		dma_unmap_sg(slot->host->dev,
 943			     data->sg,
 944			     data->sg_len,
 945			     mmc_get_dma_dir(data));
 946	data->host_cookie = COOKIE_UNMAPPED;
 947}
 948
 949static int dw_mci_get_cd(struct mmc_host *mmc)
 950{
 951	int present;
 952	struct dw_mci_slot *slot = mmc_priv(mmc);
 953	struct dw_mci *host = slot->host;
 954	int gpio_cd = mmc_gpio_get_cd(mmc);
 955
 956	/* Use platform get_cd function, else try onboard card detect */
 957	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
 958				|| !mmc_card_is_removable(mmc))) {
 959		present = 1;
 960
 961		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
 962			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
 963				dev_info(&mmc->class_dev,
 964					"card is polling.\n");
 965			} else {
 966				dev_info(&mmc->class_dev,
 967					"card is non-removable.\n");
 968			}
 969			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
 970		}
 971
 972		return present;
 973	} else if (gpio_cd >= 0)
 974		present = gpio_cd;
 975	else
 976		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
 977			== 0 ? 1 : 0;
 978
 979	spin_lock_bh(&host->lock);
 980	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
 981		dev_dbg(&mmc->class_dev, "card is present\n");
 982	else if (!present &&
 983			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
 984		dev_dbg(&mmc->class_dev, "card is not present\n");
 985	spin_unlock_bh(&host->lock);
 986
 987	return present;
 988}
 989
 990static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
 991{
 992	unsigned int blksz = data->blksz;
 993	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
 994	u32 fifo_width = 1 << host->data_shift;
 995	u32 blksz_depth = blksz / fifo_width, fifoth_val;
 996	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
 997	int idx = ARRAY_SIZE(mszs) - 1;
 998
 999	/* pio should ship this scenario */
1000	if (!host->use_dma)
1001		return;
1002
1003	tx_wmark = (host->fifo_depth) / 2;
1004	tx_wmark_invers = host->fifo_depth - tx_wmark;
1005
1006	/*
1007	 * MSIZE is '1',
1008	 * if blksz is not a multiple of the FIFO width
1009	 */
1010	if (blksz % fifo_width)
1011		goto done;
1012
1013	do {
1014		if (!((blksz_depth % mszs[idx]) ||
1015		     (tx_wmark_invers % mszs[idx]))) {
1016			msize = idx;
1017			rx_wmark = mszs[idx] - 1;
1018			break;
1019		}
1020	} while (--idx > 0);
1021	/*
1022	 * If idx is '0', it won't be tried
1023	 * Thus, initial values are uesed
1024	 */
1025done:
1026	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1027	mci_writel(host, FIFOTH, fifoth_val);
1028}
1029
1030static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1031{
1032	unsigned int blksz = data->blksz;
1033	u32 blksz_depth, fifo_depth;
1034	u16 thld_size;
1035	u8 enable;
1036
1037	/*
1038	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1039	 * in the FIFO region, so we really shouldn't access it).
1040	 */
1041	if (host->verid < DW_MMC_240A ||
1042		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1043		return;
1044
1045	/*
1046	 * Card write Threshold is introduced since 2.80a
1047	 * It's used when HS400 mode is enabled.
1048	 */
1049	if (data->flags & MMC_DATA_WRITE &&
1050		host->timing != MMC_TIMING_MMC_HS400)
1051		goto disable;
1052
1053	if (data->flags & MMC_DATA_WRITE)
1054		enable = SDMMC_CARD_WR_THR_EN;
1055	else
1056		enable = SDMMC_CARD_RD_THR_EN;
1057
1058	if (host->timing != MMC_TIMING_MMC_HS200 &&
1059	    host->timing != MMC_TIMING_UHS_SDR104 &&
1060	    host->timing != MMC_TIMING_MMC_HS400)
1061		goto disable;
1062
1063	blksz_depth = blksz / (1 << host->data_shift);
1064	fifo_depth = host->fifo_depth;
1065
1066	if (blksz_depth > fifo_depth)
1067		goto disable;
1068
1069	/*
1070	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1071	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1072	 * Currently just choose blksz.
1073	 */
1074	thld_size = blksz;
1075	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1076	return;
1077
1078disable:
1079	mci_writel(host, CDTHRCTL, 0);
1080}
1081
1082static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1083{
1084	unsigned long irqflags;
1085	int sg_len;
1086	u32 temp;
1087
1088	host->using_dma = 0;
1089
1090	/* If we don't have a channel, we can't do DMA */
1091	if (!host->use_dma)
1092		return -ENODEV;
1093
1094	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1095	if (sg_len < 0) {
1096		host->dma_ops->stop(host);
1097		return sg_len;
1098	}
1099
1100	host->using_dma = 1;
1101
1102	if (host->use_dma == TRANS_MODE_IDMAC)
1103		dev_vdbg(host->dev,
1104			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1105			 (unsigned long)host->sg_cpu,
1106			 (unsigned long)host->sg_dma,
1107			 sg_len);
1108
1109	/*
1110	 * Decide the MSIZE and RX/TX Watermark.
1111	 * If current block size is same with previous size,
1112	 * no need to update fifoth.
1113	 */
1114	if (host->prev_blksz != data->blksz)
1115		dw_mci_adjust_fifoth(host, data);
1116
1117	/* Enable the DMA interface */
1118	temp = mci_readl(host, CTRL);
1119	temp |= SDMMC_CTRL_DMA_ENABLE;
1120	mci_writel(host, CTRL, temp);
1121
1122	/* Disable RX/TX IRQs, let DMA handle it */
1123	spin_lock_irqsave(&host->irq_lock, irqflags);
1124	temp = mci_readl(host, INTMASK);
1125	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1126	mci_writel(host, INTMASK, temp);
1127	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1128
1129	if (host->dma_ops->start(host, sg_len)) {
1130		host->dma_ops->stop(host);
1131		/* We can't do DMA, try PIO for this one */
1132		dev_dbg(host->dev,
1133			"%s: fall back to PIO mode for current transfer\n",
1134			__func__);
1135		return -ENODEV;
1136	}
1137
1138	return 0;
1139}
1140
1141static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1142{
1143	unsigned long irqflags;
1144	int flags = SG_MITER_ATOMIC;
1145	u32 temp;
1146
1147	data->error = -EINPROGRESS;
1148
1149	WARN_ON(host->data);
1150	host->sg = NULL;
1151	host->data = data;
1152
1153	if (data->flags & MMC_DATA_READ)
1154		host->dir_status = DW_MCI_RECV_STATUS;
1155	else
1156		host->dir_status = DW_MCI_SEND_STATUS;
1157
1158	dw_mci_ctrl_thld(host, data);
1159
1160	if (dw_mci_submit_data_dma(host, data)) {
1161		if (host->data->flags & MMC_DATA_READ)
1162			flags |= SG_MITER_TO_SG;
1163		else
1164			flags |= SG_MITER_FROM_SG;
1165
1166		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1167		host->sg = data->sg;
1168		host->part_buf_start = 0;
1169		host->part_buf_count = 0;
1170
1171		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1172
1173		spin_lock_irqsave(&host->irq_lock, irqflags);
1174		temp = mci_readl(host, INTMASK);
1175		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1176		mci_writel(host, INTMASK, temp);
1177		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1178
1179		temp = mci_readl(host, CTRL);
1180		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1181		mci_writel(host, CTRL, temp);
1182
1183		/*
1184		 * Use the initial fifoth_val for PIO mode. If wm_algined
1185		 * is set, we set watermark same as data size.
1186		 * If next issued data may be transfered by DMA mode,
1187		 * prev_blksz should be invalidated.
1188		 */
1189		if (host->wm_aligned)
1190			dw_mci_adjust_fifoth(host, data);
1191		else
1192			mci_writel(host, FIFOTH, host->fifoth_val);
1193		host->prev_blksz = 0;
1194	} else {
1195		/*
1196		 * Keep the current block size.
1197		 * It will be used to decide whether to update
1198		 * fifoth register next time.
1199		 */
1200		host->prev_blksz = data->blksz;
1201	}
1202}
1203
1204static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1205{
1206	struct dw_mci *host = slot->host;
1207	unsigned int clock = slot->clock;
1208	u32 div;
1209	u32 clk_en_a;
1210	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1211
1212	/* We must continue to set bit 28 in CMD until the change is complete */
1213	if (host->state == STATE_WAITING_CMD11_DONE)
1214		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1215
1216	slot->mmc->actual_clock = 0;
1217
1218	if (!clock) {
1219		mci_writel(host, CLKENA, 0);
1220		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1221	} else if (clock != host->current_speed || force_clkinit) {
1222		div = host->bus_hz / clock;
1223		if (host->bus_hz % clock && host->bus_hz > clock)
1224			/*
1225			 * move the + 1 after the divide to prevent
1226			 * over-clocking the card.
1227			 */
1228			div += 1;
1229
1230		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1231
1232		if ((clock != slot->__clk_old &&
1233			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1234			force_clkinit) {
1235			/* Silent the verbose log if calling from PM context */
1236			if (!force_clkinit)
1237				dev_info(&slot->mmc->class_dev,
1238					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1239					 slot->id, host->bus_hz, clock,
1240					 div ? ((host->bus_hz / div) >> 1) :
1241					 host->bus_hz, div);
1242
1243			/*
1244			 * If card is polling, display the message only
1245			 * one time at boot time.
1246			 */
1247			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1248					slot->mmc->f_min == clock)
1249				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1250		}
1251
1252		/* disable clock */
1253		mci_writel(host, CLKENA, 0);
1254		mci_writel(host, CLKSRC, 0);
1255
1256		/* inform CIU */
1257		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258
1259		/* set clock to desired speed */
1260		mci_writel(host, CLKDIV, div);
1261
1262		/* inform CIU */
1263		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264
1265		/* enable clock; only low power if no SDIO */
1266		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1267		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1268			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1269		mci_writel(host, CLKENA, clk_en_a);
1270
1271		/* inform CIU */
1272		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273
1274		/* keep the last clock value that was requested from core */
1275		slot->__clk_old = clock;
1276		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1277					  host->bus_hz;
1278	}
1279
1280	host->current_speed = clock;
1281
1282	/* Set the current slot bus width */
1283	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1284}
1285
1286static void dw_mci_set_data_timeout(struct dw_mci *host,
1287				    unsigned int timeout_ns)
1288{
1289	const struct dw_mci_drv_data *drv_data = host->drv_data;
1290	u32 clk_div, tmout;
1291	u64 tmp;
1292
1293	if (drv_data && drv_data->set_data_timeout)
1294		return drv_data->set_data_timeout(host, timeout_ns);
1295
1296	clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1297	if (clk_div == 0)
1298		clk_div = 1;
1299
1300	tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1301	tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1302
1303	/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1304	tmout = 0xFF; /* Set maximum */
1305
1306	/* TMOUT[31:8] (DATA_TIMEOUT) */
1307	if (!tmp || tmp > 0xFFFFFF)
1308		tmout |= (0xFFFFFF << 8);
1309	else
1310		tmout |= (tmp & 0xFFFFFF) << 8;
1311
1312	mci_writel(host, TMOUT, tmout);
1313	dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1314		timeout_ns, tmout >> 8);
1315}
1316
1317static void __dw_mci_start_request(struct dw_mci *host,
1318				   struct dw_mci_slot *slot,
1319				   struct mmc_command *cmd)
1320{
1321	struct mmc_request *mrq;
1322	struct mmc_data	*data;
1323	u32 cmdflags;
1324
1325	mrq = slot->mrq;
1326
1327	host->mrq = mrq;
1328
1329	host->pending_events = 0;
1330	host->completed_events = 0;
1331	host->cmd_status = 0;
1332	host->data_status = 0;
1333	host->dir_status = 0;
1334
1335	data = cmd->data;
1336	if (data) {
1337		dw_mci_set_data_timeout(host, data->timeout_ns);
1338		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1339		mci_writel(host, BLKSIZ, data->blksz);
1340	}
1341
1342	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1343
1344	/* this is the first command, send the initialization clock */
1345	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1346		cmdflags |= SDMMC_CMD_INIT;
1347
1348	if (data) {
1349		dw_mci_submit_data(host, data);
1350		wmb(); /* drain writebuffer */
1351	}
1352
1353	dw_mci_start_command(host, cmd, cmdflags);
1354
1355	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1356		unsigned long irqflags;
1357
1358		/*
1359		 * Databook says to fail after 2ms w/ no response, but evidence
1360		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1361		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1362		 * is just about to roll over.
1363		 *
1364		 * We do this whole thing under spinlock and only if the
1365		 * command hasn't already completed (indicating the irq
1366		 * already ran so we don't want the timeout).
1367		 */
1368		spin_lock_irqsave(&host->irq_lock, irqflags);
1369		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1370			mod_timer(&host->cmd11_timer,
1371				jiffies + msecs_to_jiffies(500) + 1);
1372		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1373	}
1374
1375	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1376}
1377
1378static void dw_mci_start_request(struct dw_mci *host,
1379				 struct dw_mci_slot *slot)
1380{
1381	struct mmc_request *mrq = slot->mrq;
1382	struct mmc_command *cmd;
1383
1384	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1385	__dw_mci_start_request(host, slot, cmd);
1386}
1387
1388/* must be called with host->lock held */
1389static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1390				 struct mmc_request *mrq)
1391{
1392	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1393		 host->state);
1394
1395	slot->mrq = mrq;
1396
1397	if (host->state == STATE_WAITING_CMD11_DONE) {
1398		dev_warn(&slot->mmc->class_dev,
1399			 "Voltage change didn't complete\n");
1400		/*
1401		 * this case isn't expected to happen, so we can
1402		 * either crash here or just try to continue on
1403		 * in the closest possible state
1404		 */
1405		host->state = STATE_IDLE;
1406	}
1407
1408	if (host->state == STATE_IDLE) {
1409		host->state = STATE_SENDING_CMD;
1410		dw_mci_start_request(host, slot);
1411	} else {
1412		list_add_tail(&slot->queue_node, &host->queue);
1413	}
1414}
1415
1416static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1417{
1418	struct dw_mci_slot *slot = mmc_priv(mmc);
1419	struct dw_mci *host = slot->host;
1420
1421	WARN_ON(slot->mrq);
1422
1423	/*
1424	 * The check for card presence and queueing of the request must be
1425	 * atomic, otherwise the card could be removed in between and the
1426	 * request wouldn't fail until another card was inserted.
1427	 */
1428
1429	if (!dw_mci_get_cd(mmc)) {
1430		mrq->cmd->error = -ENOMEDIUM;
1431		mmc_request_done(mmc, mrq);
1432		return;
1433	}
1434
1435	spin_lock_bh(&host->lock);
1436
1437	dw_mci_queue_request(host, slot, mrq);
1438
1439	spin_unlock_bh(&host->lock);
1440}
1441
1442static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1443{
1444	struct dw_mci_slot *slot = mmc_priv(mmc);
1445	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1446	u32 regs;
1447	int ret;
1448
1449	switch (ios->bus_width) {
1450	case MMC_BUS_WIDTH_4:
1451		slot->ctype = SDMMC_CTYPE_4BIT;
1452		break;
1453	case MMC_BUS_WIDTH_8:
1454		slot->ctype = SDMMC_CTYPE_8BIT;
1455		break;
1456	default:
1457		/* set default 1 bit mode */
1458		slot->ctype = SDMMC_CTYPE_1BIT;
1459	}
1460
1461	regs = mci_readl(slot->host, UHS_REG);
1462
1463	/* DDR mode set */
1464	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1465	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1466	    ios->timing == MMC_TIMING_MMC_HS400)
1467		regs |= ((0x1 << slot->id) << 16);
1468	else
1469		regs &= ~((0x1 << slot->id) << 16);
1470
1471	mci_writel(slot->host, UHS_REG, regs);
1472	slot->host->timing = ios->timing;
1473
1474	/*
1475	 * Use mirror of ios->clock to prevent race with mmc
1476	 * core ios update when finding the minimum.
1477	 */
1478	slot->clock = ios->clock;
1479
1480	if (drv_data && drv_data->set_ios)
1481		drv_data->set_ios(slot->host, ios);
1482
1483	switch (ios->power_mode) {
1484	case MMC_POWER_UP:
1485		if (!IS_ERR(mmc->supply.vmmc)) {
1486			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1487					ios->vdd);
1488			if (ret) {
1489				dev_err(slot->host->dev,
1490					"failed to enable vmmc regulator\n");
1491				/*return, if failed turn on vmmc*/
1492				return;
1493			}
1494		}
1495		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1496		regs = mci_readl(slot->host, PWREN);
1497		regs |= (1 << slot->id);
1498		mci_writel(slot->host, PWREN, regs);
1499		break;
1500	case MMC_POWER_ON:
1501		if (!slot->host->vqmmc_enabled) {
1502			if (!IS_ERR(mmc->supply.vqmmc)) {
1503				ret = regulator_enable(mmc->supply.vqmmc);
1504				if (ret < 0)
1505					dev_err(slot->host->dev,
1506						"failed to enable vqmmc\n");
1507				else
1508					slot->host->vqmmc_enabled = true;
1509
1510			} else {
1511				/* Keep track so we don't reset again */
1512				slot->host->vqmmc_enabled = true;
1513			}
1514
1515			/* Reset our state machine after powering on */
1516			dw_mci_ctrl_reset(slot->host,
1517					  SDMMC_CTRL_ALL_RESET_FLAGS);
1518		}
1519
1520		/* Adjust clock / bus width after power is up */
1521		dw_mci_setup_bus(slot, false);
1522
1523		break;
1524	case MMC_POWER_OFF:
1525		/* Turn clock off before power goes down */
1526		dw_mci_setup_bus(slot, false);
1527
1528		if (!IS_ERR(mmc->supply.vmmc))
1529			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1530
1531		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1532			regulator_disable(mmc->supply.vqmmc);
1533		slot->host->vqmmc_enabled = false;
1534
1535		regs = mci_readl(slot->host, PWREN);
1536		regs &= ~(1 << slot->id);
1537		mci_writel(slot->host, PWREN, regs);
1538		break;
1539	default:
1540		break;
1541	}
1542
1543	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1544		slot->host->state = STATE_IDLE;
1545}
1546
1547static int dw_mci_card_busy(struct mmc_host *mmc)
1548{
1549	struct dw_mci_slot *slot = mmc_priv(mmc);
1550	u32 status;
1551
1552	/*
1553	 * Check the busy bit which is low when DAT[3:0]
1554	 * (the data lines) are 0000
1555	 */
1556	status = mci_readl(slot->host, STATUS);
1557
1558	return !!(status & SDMMC_STATUS_BUSY);
1559}
1560
1561static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1562{
1563	struct dw_mci_slot *slot = mmc_priv(mmc);
1564	struct dw_mci *host = slot->host;
1565	const struct dw_mci_drv_data *drv_data = host->drv_data;
1566	u32 uhs;
1567	u32 v18 = SDMMC_UHS_18V << slot->id;
1568	int ret;
1569
1570	if (drv_data && drv_data->switch_voltage)
1571		return drv_data->switch_voltage(mmc, ios);
1572
1573	/*
1574	 * Program the voltage.  Note that some instances of dw_mmc may use
1575	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1576	 * does no harm but you need to set the regulator directly.  Try both.
1577	 */
1578	uhs = mci_readl(host, UHS_REG);
1579	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1580		uhs &= ~v18;
1581	else
1582		uhs |= v18;
1583
1584	if (!IS_ERR(mmc->supply.vqmmc)) {
1585		ret = mmc_regulator_set_vqmmc(mmc, ios);
1586		if (ret < 0) {
 
1587			dev_dbg(&mmc->class_dev,
1588					 "Regulator set error %d - %s V\n",
1589					 ret, uhs & v18 ? "1.8" : "3.3");
1590			return ret;
1591		}
1592	}
1593	mci_writel(host, UHS_REG, uhs);
1594
1595	return 0;
1596}
1597
1598static int dw_mci_get_ro(struct mmc_host *mmc)
1599{
1600	int read_only;
1601	struct dw_mci_slot *slot = mmc_priv(mmc);
1602	int gpio_ro = mmc_gpio_get_ro(mmc);
1603
1604	/* Use platform get_ro function, else try on board write protect */
1605	if (gpio_ro >= 0)
1606		read_only = gpio_ro;
1607	else
1608		read_only =
1609			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1610
1611	dev_dbg(&mmc->class_dev, "card is %s\n",
1612		read_only ? "read-only" : "read-write");
1613
1614	return read_only;
1615}
1616
1617static void dw_mci_hw_reset(struct mmc_host *mmc)
1618{
1619	struct dw_mci_slot *slot = mmc_priv(mmc);
1620	struct dw_mci *host = slot->host;
1621	int reset;
1622
1623	if (host->use_dma == TRANS_MODE_IDMAC)
1624		dw_mci_idmac_reset(host);
1625
1626	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627				     SDMMC_CTRL_FIFO_RESET))
1628		return;
1629
1630	/*
1631	 * According to eMMC spec, card reset procedure:
1632	 * tRstW >= 1us:   RST_n pulse width
1633	 * tRSCA >= 200us: RST_n to Command time
1634	 * tRSTH >= 1us:   RST_n high period
1635	 */
1636	reset = mci_readl(host, RST_N);
1637	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1638	mci_writel(host, RST_N, reset);
1639	usleep_range(1, 2);
1640	reset |= SDMMC_RST_HWACTIVE << slot->id;
1641	mci_writel(host, RST_N, reset);
1642	usleep_range(200, 300);
1643}
1644
1645static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1646{
 
1647	struct dw_mci *host = slot->host;
1648	const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1649	u32 clk_en_a_old;
1650	u32 clk_en_a;
1651
1652	/*
1653	 * Low power mode will stop the card clock when idle.  According to the
1654	 * description of the CLKENA register we should disable low power mode
1655	 * for SDIO cards if we need SDIO interrupts to work.
1656	 */
 
 
 
 
1657
1658	clk_en_a_old = mci_readl(host, CLKENA);
1659	if (prepare) {
1660		set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1661		clk_en_a = clk_en_a_old & ~clken_low_pwr;
1662	} else {
1663		clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664		clk_en_a = clk_en_a_old | clken_low_pwr;
1665	}
1666
1667	if (clk_en_a != clk_en_a_old) {
1668		mci_writel(host, CLKENA, clk_en_a);
1669		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1670			     0);
 
 
 
 
 
 
 
 
 
 
1671	}
1672}
1673
1674static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1675{
1676	struct dw_mci *host = slot->host;
1677	unsigned long irqflags;
1678	u32 int_mask;
1679
1680	spin_lock_irqsave(&host->irq_lock, irqflags);
1681
1682	/* Enable/disable Slot Specific SDIO interrupt */
1683	int_mask = mci_readl(host, INTMASK);
1684	if (enb)
1685		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1686	else
1687		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1688	mci_writel(host, INTMASK, int_mask);
1689
1690	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1691}
1692
1693static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1694{
1695	struct dw_mci_slot *slot = mmc_priv(mmc);
1696	struct dw_mci *host = slot->host;
1697
1698	dw_mci_prepare_sdio_irq(slot, enb);
1699	__dw_mci_enable_sdio_irq(slot, enb);
1700
1701	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1702	if (enb)
1703		pm_runtime_get_noresume(host->dev);
1704	else
1705		pm_runtime_put_noidle(host->dev);
1706}
1707
1708static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1709{
1710	struct dw_mci_slot *slot = mmc_priv(mmc);
1711
1712	__dw_mci_enable_sdio_irq(slot, 1);
1713}
1714
1715static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1716{
1717	struct dw_mci_slot *slot = mmc_priv(mmc);
1718	struct dw_mci *host = slot->host;
1719	const struct dw_mci_drv_data *drv_data = host->drv_data;
1720	int err = -EINVAL;
1721
1722	if (drv_data && drv_data->execute_tuning)
1723		err = drv_data->execute_tuning(slot, opcode);
1724	return err;
1725}
1726
1727static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1728				       struct mmc_ios *ios)
1729{
1730	struct dw_mci_slot *slot = mmc_priv(mmc);
1731	struct dw_mci *host = slot->host;
1732	const struct dw_mci_drv_data *drv_data = host->drv_data;
1733
1734	if (drv_data && drv_data->prepare_hs400_tuning)
1735		return drv_data->prepare_hs400_tuning(host, ios);
1736
1737	return 0;
1738}
1739
1740static bool dw_mci_reset(struct dw_mci *host)
1741{
1742	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1743	bool ret = false;
1744	u32 status = 0;
1745
1746	/*
1747	 * Resetting generates a block interrupt, hence setting
1748	 * the scatter-gather pointer to NULL.
1749	 */
1750	if (host->sg) {
1751		sg_miter_stop(&host->sg_miter);
1752		host->sg = NULL;
1753	}
1754
1755	if (host->use_dma)
1756		flags |= SDMMC_CTRL_DMA_RESET;
1757
1758	if (dw_mci_ctrl_reset(host, flags)) {
1759		/*
1760		 * In all cases we clear the RAWINTS
1761		 * register to clear any interrupts.
1762		 */
1763		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1764
1765		if (!host->use_dma) {
1766			ret = true;
1767			goto ciu_out;
1768		}
1769
1770		/* Wait for dma_req to be cleared */
1771		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1772					      status,
1773					      !(status & SDMMC_STATUS_DMA_REQ),
1774					      1, 500 * USEC_PER_MSEC)) {
1775			dev_err(host->dev,
1776				"%s: Timeout waiting for dma_req to be cleared\n",
1777				__func__);
1778			goto ciu_out;
1779		}
1780
1781		/* when using DMA next we reset the fifo again */
1782		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1783			goto ciu_out;
1784	} else {
1785		/* if the controller reset bit did clear, then set clock regs */
1786		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1787			dev_err(host->dev,
1788				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1789				__func__);
1790			goto ciu_out;
1791		}
1792	}
1793
1794	if (host->use_dma == TRANS_MODE_IDMAC)
1795		/* It is also required that we reinit idmac */
1796		dw_mci_idmac_init(host);
1797
1798	ret = true;
1799
1800ciu_out:
1801	/* After a CTRL reset we need to have CIU set clock registers  */
1802	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1803
1804	return ret;
1805}
1806
1807static const struct mmc_host_ops dw_mci_ops = {
1808	.request		= dw_mci_request,
1809	.pre_req		= dw_mci_pre_req,
1810	.post_req		= dw_mci_post_req,
1811	.set_ios		= dw_mci_set_ios,
1812	.get_ro			= dw_mci_get_ro,
1813	.get_cd			= dw_mci_get_cd,
1814	.card_hw_reset          = dw_mci_hw_reset,
1815	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1816	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1817	.execute_tuning		= dw_mci_execute_tuning,
1818	.card_busy		= dw_mci_card_busy,
1819	.start_signal_voltage_switch = dw_mci_switch_voltage,
 
1820	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1821};
1822
1823#ifdef CONFIG_FAULT_INJECTION
1824static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1825{
1826	struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1827	unsigned long flags;
1828
1829	spin_lock_irqsave(&host->irq_lock, flags);
1830
1831	/*
1832	 * Only inject an error if we haven't already got an error or data over
1833	 * interrupt.
1834	 */
1835	if (!host->data_status) {
1836		host->data_status = SDMMC_INT_DCRC;
1837		set_bit(EVENT_DATA_ERROR, &host->pending_events);
1838		tasklet_schedule(&host->tasklet);
1839	}
1840
1841	spin_unlock_irqrestore(&host->irq_lock, flags);
1842
1843	return HRTIMER_NORESTART;
1844}
1845
1846static void dw_mci_start_fault_timer(struct dw_mci *host)
1847{
1848	struct mmc_data *data = host->data;
1849
1850	if (!data || data->blocks <= 1)
1851		return;
1852
1853	if (!should_fail(&host->fail_data_crc, 1))
1854		return;
1855
1856	/*
1857	 * Try to inject the error at random points during the data transfer.
1858	 */
1859	hrtimer_start(&host->fault_timer,
1860		      ms_to_ktime(get_random_u32_below(25)),
1861		      HRTIMER_MODE_REL);
1862}
1863
1864static void dw_mci_stop_fault_timer(struct dw_mci *host)
1865{
1866	hrtimer_cancel(&host->fault_timer);
1867}
1868
1869static void dw_mci_init_fault(struct dw_mci *host)
1870{
1871	host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1872
1873	hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1874	host->fault_timer.function = dw_mci_fault_timer;
1875}
1876#else
1877static void dw_mci_init_fault(struct dw_mci *host)
1878{
1879}
1880
1881static void dw_mci_start_fault_timer(struct dw_mci *host)
1882{
1883}
1884
1885static void dw_mci_stop_fault_timer(struct dw_mci *host)
1886{
1887}
1888#endif
1889
1890static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1891	__releases(&host->lock)
1892	__acquires(&host->lock)
1893{
1894	struct dw_mci_slot *slot;
1895	struct mmc_host	*prev_mmc = host->slot->mmc;
1896
1897	WARN_ON(host->cmd || host->data);
1898
1899	host->slot->mrq = NULL;
1900	host->mrq = NULL;
1901	if (!list_empty(&host->queue)) {
1902		slot = list_entry(host->queue.next,
1903				  struct dw_mci_slot, queue_node);
1904		list_del(&slot->queue_node);
1905		dev_vdbg(host->dev, "list not empty: %s is next\n",
1906			 mmc_hostname(slot->mmc));
1907		host->state = STATE_SENDING_CMD;
1908		dw_mci_start_request(host, slot);
1909	} else {
1910		dev_vdbg(host->dev, "list empty\n");
1911
1912		if (host->state == STATE_SENDING_CMD11)
1913			host->state = STATE_WAITING_CMD11_DONE;
1914		else
1915			host->state = STATE_IDLE;
1916	}
1917
1918	spin_unlock(&host->lock);
1919	mmc_request_done(prev_mmc, mrq);
1920	spin_lock(&host->lock);
1921}
1922
1923static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1924{
1925	u32 status = host->cmd_status;
1926
1927	host->cmd_status = 0;
1928
1929	/* Read the response from the card (up to 16 bytes) */
1930	if (cmd->flags & MMC_RSP_PRESENT) {
1931		if (cmd->flags & MMC_RSP_136) {
1932			cmd->resp[3] = mci_readl(host, RESP0);
1933			cmd->resp[2] = mci_readl(host, RESP1);
1934			cmd->resp[1] = mci_readl(host, RESP2);
1935			cmd->resp[0] = mci_readl(host, RESP3);
1936		} else {
1937			cmd->resp[0] = mci_readl(host, RESP0);
1938			cmd->resp[1] = 0;
1939			cmd->resp[2] = 0;
1940			cmd->resp[3] = 0;
1941		}
1942	}
1943
1944	if (status & SDMMC_INT_RTO)
1945		cmd->error = -ETIMEDOUT;
1946	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1947		cmd->error = -EILSEQ;
1948	else if (status & SDMMC_INT_RESP_ERR)
1949		cmd->error = -EIO;
1950	else
1951		cmd->error = 0;
1952
1953	return cmd->error;
1954}
1955
1956static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1957{
1958	u32 status = host->data_status;
1959
1960	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1961		if (status & SDMMC_INT_DRTO) {
1962			data->error = -ETIMEDOUT;
1963		} else if (status & SDMMC_INT_DCRC) {
1964			data->error = -EILSEQ;
1965		} else if (status & SDMMC_INT_EBE) {
1966			if (host->dir_status ==
1967				DW_MCI_SEND_STATUS) {
1968				/*
1969				 * No data CRC status was returned.
1970				 * The number of bytes transferred
1971				 * will be exaggerated in PIO mode.
1972				 */
1973				data->bytes_xfered = 0;
1974				data->error = -ETIMEDOUT;
1975			} else if (host->dir_status ==
1976					DW_MCI_RECV_STATUS) {
1977				data->error = -EILSEQ;
1978			}
1979		} else {
1980			/* SDMMC_INT_SBE is included */
1981			data->error = -EILSEQ;
1982		}
1983
1984		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1985
1986		/*
1987		 * After an error, there may be data lingering
1988		 * in the FIFO
1989		 */
1990		dw_mci_reset(host);
1991	} else {
1992		data->bytes_xfered = data->blocks * data->blksz;
1993		data->error = 0;
1994	}
1995
1996	return data->error;
1997}
1998
1999static void dw_mci_set_drto(struct dw_mci *host)
2000{
2001	const struct dw_mci_drv_data *drv_data = host->drv_data;
2002	unsigned int drto_clks;
2003	unsigned int drto_div;
2004	unsigned int drto_ms;
2005	unsigned long irqflags;
2006
2007	if (drv_data && drv_data->get_drto_clks)
2008		drto_clks = drv_data->get_drto_clks(host);
2009	else
2010		drto_clks = mci_readl(host, TMOUT) >> 8;
2011	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2012	if (drto_div == 0)
2013		drto_div = 1;
2014
2015	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2016				   host->bus_hz);
2017
2018	dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2019
2020	/* add a bit spare time */
2021	drto_ms += 10;
2022
2023	spin_lock_irqsave(&host->irq_lock, irqflags);
2024	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2025		mod_timer(&host->dto_timer,
2026			  jiffies + msecs_to_jiffies(drto_ms));
2027	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2028}
2029
2030static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2031{
2032	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2033		return false;
2034
2035	/*
2036	 * Really be certain that the timer has stopped.  This is a bit of
2037	 * paranoia and could only really happen if we had really bad
2038	 * interrupt latency and the interrupt routine and timeout were
2039	 * running concurrently so that the del_timer() in the interrupt
2040	 * handler couldn't run.
2041	 */
2042	WARN_ON(del_timer_sync(&host->cto_timer));
2043	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2044
2045	return true;
2046}
2047
2048static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2049{
2050	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2051		return false;
2052
2053	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2054	WARN_ON(del_timer_sync(&host->dto_timer));
2055	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2056
2057	return true;
2058}
2059
2060static void dw_mci_tasklet_func(struct tasklet_struct *t)
2061{
2062	struct dw_mci *host = from_tasklet(host, t, tasklet);
2063	struct mmc_data	*data;
2064	struct mmc_command *cmd;
2065	struct mmc_request *mrq;
2066	enum dw_mci_state state;
2067	enum dw_mci_state prev_state;
2068	unsigned int err;
2069
2070	spin_lock(&host->lock);
2071
2072	state = host->state;
2073	data = host->data;
2074	mrq = host->mrq;
2075
2076	do {
2077		prev_state = state;
2078
2079		switch (state) {
2080		case STATE_IDLE:
2081		case STATE_WAITING_CMD11_DONE:
2082			break;
2083
2084		case STATE_SENDING_CMD11:
2085		case STATE_SENDING_CMD:
2086			if (!dw_mci_clear_pending_cmd_complete(host))
2087				break;
2088
2089			cmd = host->cmd;
2090			host->cmd = NULL;
2091			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2092			err = dw_mci_command_complete(host, cmd);
2093			if (cmd == mrq->sbc && !err) {
2094				__dw_mci_start_request(host, host->slot,
2095						       mrq->cmd);
2096				goto unlock;
2097			}
2098
2099			if (cmd->data && err) {
2100				/*
2101				 * During UHS tuning sequence, sending the stop
2102				 * command after the response CRC error would
2103				 * throw the system into a confused state
2104				 * causing all future tuning phases to report
2105				 * failure.
2106				 *
2107				 * In such case controller will move into a data
2108				 * transfer state after a response error or
2109				 * response CRC error. Let's let that finish
2110				 * before trying to send a stop, so we'll go to
2111				 * STATE_SENDING_DATA.
2112				 *
2113				 * Although letting the data transfer take place
2114				 * will waste a bit of time (we already know
2115				 * the command was bad), it can't cause any
2116				 * errors since it's possible it would have
2117				 * taken place anyway if this tasklet got
2118				 * delayed. Allowing the transfer to take place
2119				 * avoids races and keeps things simple.
2120				 */
2121				if (err != -ETIMEDOUT &&
2122				    host->dir_status == DW_MCI_RECV_STATUS) {
2123					state = STATE_SENDING_DATA;
2124					continue;
2125				}
2126
2127				send_stop_abort(host, data);
2128				dw_mci_stop_dma(host);
 
2129				state = STATE_SENDING_STOP;
2130				break;
2131			}
2132
2133			if (!cmd->data || err) {
2134				dw_mci_request_end(host, mrq);
2135				goto unlock;
2136			}
2137
2138			prev_state = state = STATE_SENDING_DATA;
2139			fallthrough;
2140
2141		case STATE_SENDING_DATA:
2142			/*
2143			 * We could get a data error and never a transfer
2144			 * complete so we'd better check for it here.
2145			 *
2146			 * Note that we don't really care if we also got a
2147			 * transfer complete; stopping the DMA and sending an
2148			 * abort won't hurt.
2149			 */
2150			if (test_and_clear_bit(EVENT_DATA_ERROR,
2151					       &host->pending_events)) {
 
2152				if (!(host->data_status & (SDMMC_INT_DRTO |
2153							   SDMMC_INT_EBE)))
2154					send_stop_abort(host, data);
2155				dw_mci_stop_dma(host);
2156				state = STATE_DATA_ERROR;
2157				break;
2158			}
2159
2160			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2161						&host->pending_events)) {
2162				/*
2163				 * If all data-related interrupts don't come
2164				 * within the given time in reading data state.
2165				 */
2166				if (host->dir_status == DW_MCI_RECV_STATUS)
2167					dw_mci_set_drto(host);
2168				break;
2169			}
2170
2171			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2172
2173			/*
2174			 * Handle an EVENT_DATA_ERROR that might have shown up
2175			 * before the transfer completed.  This might not have
2176			 * been caught by the check above because the interrupt
2177			 * could have gone off between the previous check and
2178			 * the check for transfer complete.
2179			 *
2180			 * Technically this ought not be needed assuming we
2181			 * get a DATA_COMPLETE eventually (we'll notice the
2182			 * error and end the request), but it shouldn't hurt.
2183			 *
2184			 * This has the advantage of sending the stop command.
2185			 */
2186			if (test_and_clear_bit(EVENT_DATA_ERROR,
2187					       &host->pending_events)) {
 
2188				if (!(host->data_status & (SDMMC_INT_DRTO |
2189							   SDMMC_INT_EBE)))
2190					send_stop_abort(host, data);
2191				dw_mci_stop_dma(host);
2192				state = STATE_DATA_ERROR;
2193				break;
2194			}
2195			prev_state = state = STATE_DATA_BUSY;
2196
2197			fallthrough;
2198
2199		case STATE_DATA_BUSY:
2200			if (!dw_mci_clear_pending_data_complete(host)) {
2201				/*
2202				 * If data error interrupt comes but data over
2203				 * interrupt doesn't come within the given time.
2204				 * in reading data state.
2205				 */
2206				if (host->dir_status == DW_MCI_RECV_STATUS)
2207					dw_mci_set_drto(host);
2208				break;
2209			}
2210
2211			dw_mci_stop_fault_timer(host);
2212			host->data = NULL;
2213			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2214			err = dw_mci_data_complete(host, data);
2215
2216			if (!err) {
2217				if (!data->stop || mrq->sbc) {
2218					if (mrq->sbc && data->stop)
2219						data->stop->error = 0;
2220					dw_mci_request_end(host, mrq);
2221					goto unlock;
2222				}
2223
2224				/* stop command for open-ended transfer*/
2225				if (data->stop)
2226					send_stop_abort(host, data);
2227			} else {
2228				/*
2229				 * If we don't have a command complete now we'll
2230				 * never get one since we just reset everything;
2231				 * better end the request.
2232				 *
2233				 * If we do have a command complete we'll fall
2234				 * through to the SENDING_STOP command and
2235				 * everything will be peachy keen.
2236				 */
2237				if (!test_bit(EVENT_CMD_COMPLETE,
2238					      &host->pending_events)) {
2239					host->cmd = NULL;
2240					dw_mci_request_end(host, mrq);
2241					goto unlock;
2242				}
2243			}
2244
2245			/*
2246			 * If err has non-zero,
2247			 * stop-abort command has been already issued.
2248			 */
2249			prev_state = state = STATE_SENDING_STOP;
2250
2251			fallthrough;
2252
2253		case STATE_SENDING_STOP:
2254			if (!dw_mci_clear_pending_cmd_complete(host))
2255				break;
2256
2257			/* CMD error in data command */
2258			if (mrq->cmd->error && mrq->data)
2259				dw_mci_reset(host);
2260
2261			dw_mci_stop_fault_timer(host);
2262			host->cmd = NULL;
2263			host->data = NULL;
2264
2265			if (!mrq->sbc && mrq->stop)
2266				dw_mci_command_complete(host, mrq->stop);
2267			else
2268				host->cmd_status = 0;
2269
2270			dw_mci_request_end(host, mrq);
2271			goto unlock;
2272
2273		case STATE_DATA_ERROR:
2274			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2275						&host->pending_events))
2276				break;
2277
2278			state = STATE_DATA_BUSY;
2279			break;
2280		}
2281	} while (state != prev_state);
2282
2283	host->state = state;
2284unlock:
2285	spin_unlock(&host->lock);
2286
2287}
2288
2289/* push final bytes to part_buf, only use during push */
2290static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2291{
2292	memcpy((void *)&host->part_buf, buf, cnt);
2293	host->part_buf_count = cnt;
2294}
2295
2296/* append bytes to part_buf, only use during push */
2297static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2298{
2299	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2300	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2301	host->part_buf_count += cnt;
2302	return cnt;
2303}
2304
2305/* pull first bytes from part_buf, only use during pull */
2306static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2307{
2308	cnt = min_t(int, cnt, host->part_buf_count);
2309	if (cnt) {
2310		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2311		       cnt);
2312		host->part_buf_count -= cnt;
2313		host->part_buf_start += cnt;
2314	}
2315	return cnt;
2316}
2317
2318/* pull final bytes from the part_buf, assuming it's just been filled */
2319static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2320{
2321	memcpy(buf, &host->part_buf, cnt);
2322	host->part_buf_start = cnt;
2323	host->part_buf_count = (1 << host->data_shift) - cnt;
2324}
2325
2326static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2327{
2328	struct mmc_data *data = host->data;
2329	int init_cnt = cnt;
2330
2331	/* try and push anything in the part_buf */
2332	if (unlikely(host->part_buf_count)) {
2333		int len = dw_mci_push_part_bytes(host, buf, cnt);
2334
2335		buf += len;
2336		cnt -= len;
2337		if (host->part_buf_count == 2) {
2338			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2339			host->part_buf_count = 0;
2340		}
2341	}
2342#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2343	if (unlikely((unsigned long)buf & 0x1)) {
2344		while (cnt >= 2) {
2345			u16 aligned_buf[64];
2346			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2347			int items = len >> 1;
2348			int i;
2349			/* memcpy from input buffer into aligned buffer */
2350			memcpy(aligned_buf, buf, len);
2351			buf += len;
2352			cnt -= len;
2353			/* push data from aligned buffer into fifo */
2354			for (i = 0; i < items; ++i)
2355				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2356		}
2357	} else
2358#endif
2359	{
2360		u16 *pdata = buf;
2361
2362		for (; cnt >= 2; cnt -= 2)
2363			mci_fifo_writew(host->fifo_reg, *pdata++);
2364		buf = pdata;
2365	}
2366	/* put anything remaining in the part_buf */
2367	if (cnt) {
2368		dw_mci_set_part_bytes(host, buf, cnt);
2369		 /* Push data if we have reached the expected data length */
2370		if ((data->bytes_xfered + init_cnt) ==
2371		    (data->blksz * data->blocks))
2372			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2373	}
2374}
2375
2376static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2377{
2378#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2379	if (unlikely((unsigned long)buf & 0x1)) {
2380		while (cnt >= 2) {
2381			/* pull data from fifo into aligned buffer */
2382			u16 aligned_buf[64];
2383			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2384			int items = len >> 1;
2385			int i;
2386
2387			for (i = 0; i < items; ++i)
2388				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2389			/* memcpy from aligned buffer into output buffer */
2390			memcpy(buf, aligned_buf, len);
2391			buf += len;
2392			cnt -= len;
2393		}
2394	} else
2395#endif
2396	{
2397		u16 *pdata = buf;
2398
2399		for (; cnt >= 2; cnt -= 2)
2400			*pdata++ = mci_fifo_readw(host->fifo_reg);
2401		buf = pdata;
2402	}
2403	if (cnt) {
2404		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2405		dw_mci_pull_final_bytes(host, buf, cnt);
2406	}
2407}
2408
2409static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2410{
2411	struct mmc_data *data = host->data;
2412	int init_cnt = cnt;
2413
2414	/* try and push anything in the part_buf */
2415	if (unlikely(host->part_buf_count)) {
2416		int len = dw_mci_push_part_bytes(host, buf, cnt);
2417
2418		buf += len;
2419		cnt -= len;
2420		if (host->part_buf_count == 4) {
2421			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2422			host->part_buf_count = 0;
2423		}
2424	}
2425#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2426	if (unlikely((unsigned long)buf & 0x3)) {
2427		while (cnt >= 4) {
2428			u32 aligned_buf[32];
2429			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2430			int items = len >> 2;
2431			int i;
2432			/* memcpy from input buffer into aligned buffer */
2433			memcpy(aligned_buf, buf, len);
2434			buf += len;
2435			cnt -= len;
2436			/* push data from aligned buffer into fifo */
2437			for (i = 0; i < items; ++i)
2438				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2439		}
2440	} else
2441#endif
2442	{
2443		u32 *pdata = buf;
2444
2445		for (; cnt >= 4; cnt -= 4)
2446			mci_fifo_writel(host->fifo_reg, *pdata++);
2447		buf = pdata;
2448	}
2449	/* put anything remaining in the part_buf */
2450	if (cnt) {
2451		dw_mci_set_part_bytes(host, buf, cnt);
2452		 /* Push data if we have reached the expected data length */
2453		if ((data->bytes_xfered + init_cnt) ==
2454		    (data->blksz * data->blocks))
2455			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2456	}
2457}
2458
2459static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2460{
2461#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2462	if (unlikely((unsigned long)buf & 0x3)) {
2463		while (cnt >= 4) {
2464			/* pull data from fifo into aligned buffer */
2465			u32 aligned_buf[32];
2466			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2467			int items = len >> 2;
2468			int i;
2469
2470			for (i = 0; i < items; ++i)
2471				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2472			/* memcpy from aligned buffer into output buffer */
2473			memcpy(buf, aligned_buf, len);
2474			buf += len;
2475			cnt -= len;
2476		}
2477	} else
2478#endif
2479	{
2480		u32 *pdata = buf;
2481
2482		for (; cnt >= 4; cnt -= 4)
2483			*pdata++ = mci_fifo_readl(host->fifo_reg);
2484		buf = pdata;
2485	}
2486	if (cnt) {
2487		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2488		dw_mci_pull_final_bytes(host, buf, cnt);
2489	}
2490}
2491
2492static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2493{
2494	struct mmc_data *data = host->data;
2495	int init_cnt = cnt;
2496
2497	/* try and push anything in the part_buf */
2498	if (unlikely(host->part_buf_count)) {
2499		int len = dw_mci_push_part_bytes(host, buf, cnt);
2500
2501		buf += len;
2502		cnt -= len;
2503
2504		if (host->part_buf_count == 8) {
2505			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2506			host->part_buf_count = 0;
2507		}
2508	}
2509#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2510	if (unlikely((unsigned long)buf & 0x7)) {
2511		while (cnt >= 8) {
2512			u64 aligned_buf[16];
2513			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2514			int items = len >> 3;
2515			int i;
2516			/* memcpy from input buffer into aligned buffer */
2517			memcpy(aligned_buf, buf, len);
2518			buf += len;
2519			cnt -= len;
2520			/* push data from aligned buffer into fifo */
2521			for (i = 0; i < items; ++i)
2522				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2523		}
2524	} else
2525#endif
2526	{
2527		u64 *pdata = buf;
2528
2529		for (; cnt >= 8; cnt -= 8)
2530			mci_fifo_writeq(host->fifo_reg, *pdata++);
2531		buf = pdata;
2532	}
2533	/* put anything remaining in the part_buf */
2534	if (cnt) {
2535		dw_mci_set_part_bytes(host, buf, cnt);
2536		/* Push data if we have reached the expected data length */
2537		if ((data->bytes_xfered + init_cnt) ==
2538		    (data->blksz * data->blocks))
2539			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2540	}
2541}
2542
2543static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2544{
2545#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2546	if (unlikely((unsigned long)buf & 0x7)) {
2547		while (cnt >= 8) {
2548			/* pull data from fifo into aligned buffer */
2549			u64 aligned_buf[16];
2550			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2551			int items = len >> 3;
2552			int i;
2553
2554			for (i = 0; i < items; ++i)
2555				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2556
2557			/* memcpy from aligned buffer into output buffer */
2558			memcpy(buf, aligned_buf, len);
2559			buf += len;
2560			cnt -= len;
2561		}
2562	} else
2563#endif
2564	{
2565		u64 *pdata = buf;
2566
2567		for (; cnt >= 8; cnt -= 8)
2568			*pdata++ = mci_fifo_readq(host->fifo_reg);
2569		buf = pdata;
2570	}
2571	if (cnt) {
2572		host->part_buf = mci_fifo_readq(host->fifo_reg);
2573		dw_mci_pull_final_bytes(host, buf, cnt);
2574	}
2575}
2576
2577static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2578{
2579	int len;
2580
2581	/* get remaining partial bytes */
2582	len = dw_mci_pull_part_bytes(host, buf, cnt);
2583	if (unlikely(len == cnt))
2584		return;
2585	buf += len;
2586	cnt -= len;
2587
2588	/* get the rest of the data */
2589	host->pull_data(host, buf, cnt);
2590}
2591
2592static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2593{
2594	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2595	void *buf;
2596	unsigned int offset;
2597	struct mmc_data	*data = host->data;
2598	int shift = host->data_shift;
2599	u32 status;
2600	unsigned int len;
2601	unsigned int remain, fcnt;
2602
2603	do {
2604		if (!sg_miter_next(sg_miter))
2605			goto done;
2606
2607		host->sg = sg_miter->piter.sg;
2608		buf = sg_miter->addr;
2609		remain = sg_miter->length;
2610		offset = 0;
2611
2612		do {
2613			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2614					<< shift) + host->part_buf_count;
2615			len = min(remain, fcnt);
2616			if (!len)
2617				break;
2618			dw_mci_pull_data(host, (void *)(buf + offset), len);
2619			data->bytes_xfered += len;
2620			offset += len;
2621			remain -= len;
2622		} while (remain);
2623
2624		sg_miter->consumed = offset;
2625		status = mci_readl(host, MINTSTS);
2626		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2627	/* if the RXDR is ready read again */
2628	} while ((status & SDMMC_INT_RXDR) ||
2629		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2630
2631	if (!remain) {
2632		if (!sg_miter_next(sg_miter))
2633			goto done;
2634		sg_miter->consumed = 0;
2635	}
2636	sg_miter_stop(sg_miter);
2637	return;
2638
2639done:
2640	sg_miter_stop(sg_miter);
2641	host->sg = NULL;
2642	smp_wmb(); /* drain writebuffer */
2643	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2644}
2645
2646static void dw_mci_write_data_pio(struct dw_mci *host)
2647{
2648	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2649	void *buf;
2650	unsigned int offset;
2651	struct mmc_data	*data = host->data;
2652	int shift = host->data_shift;
2653	u32 status;
2654	unsigned int len;
2655	unsigned int fifo_depth = host->fifo_depth;
2656	unsigned int remain, fcnt;
2657
2658	do {
2659		if (!sg_miter_next(sg_miter))
2660			goto done;
2661
2662		host->sg = sg_miter->piter.sg;
2663		buf = sg_miter->addr;
2664		remain = sg_miter->length;
2665		offset = 0;
2666
2667		do {
2668			fcnt = ((fifo_depth -
2669				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2670					<< shift) - host->part_buf_count;
2671			len = min(remain, fcnt);
2672			if (!len)
2673				break;
2674			host->push_data(host, (void *)(buf + offset), len);
2675			data->bytes_xfered += len;
2676			offset += len;
2677			remain -= len;
2678		} while (remain);
2679
2680		sg_miter->consumed = offset;
2681		status = mci_readl(host, MINTSTS);
2682		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2683	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2684
2685	if (!remain) {
2686		if (!sg_miter_next(sg_miter))
2687			goto done;
2688		sg_miter->consumed = 0;
2689	}
2690	sg_miter_stop(sg_miter);
2691	return;
2692
2693done:
2694	sg_miter_stop(sg_miter);
2695	host->sg = NULL;
2696	smp_wmb(); /* drain writebuffer */
2697	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2698}
2699
2700static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2701{
2702	del_timer(&host->cto_timer);
2703
2704	if (!host->cmd_status)
2705		host->cmd_status = status;
2706
2707	smp_wmb(); /* drain writebuffer */
2708
2709	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2710	tasklet_schedule(&host->tasklet);
2711
2712	dw_mci_start_fault_timer(host);
2713}
2714
2715static void dw_mci_handle_cd(struct dw_mci *host)
2716{
2717	struct dw_mci_slot *slot = host->slot;
2718
 
 
2719	mmc_detect_change(slot->mmc,
2720		msecs_to_jiffies(host->pdata->detect_delay_ms));
2721}
2722
2723static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2724{
2725	struct dw_mci *host = dev_id;
2726	u32 pending;
2727	struct dw_mci_slot *slot = host->slot;
 
2728
2729	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2730
2731	if (pending) {
2732		/* Check volt switch first, since it can look like an error */
2733		if ((host->state == STATE_SENDING_CMD11) &&
2734		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2735			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2736			pending &= ~SDMMC_INT_VOLT_SWITCH;
2737
2738			/*
2739			 * Hold the lock; we know cmd11_timer can't be kicked
2740			 * off after the lock is released, so safe to delete.
2741			 */
2742			spin_lock(&host->irq_lock);
2743			dw_mci_cmd_interrupt(host, pending);
2744			spin_unlock(&host->irq_lock);
2745
2746			del_timer(&host->cmd11_timer);
2747		}
2748
2749		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2750			spin_lock(&host->irq_lock);
2751
2752			del_timer(&host->cto_timer);
2753			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2754			host->cmd_status = pending;
2755			smp_wmb(); /* drain writebuffer */
2756			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2757
2758			spin_unlock(&host->irq_lock);
2759		}
2760
2761		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2762			spin_lock(&host->irq_lock);
2763
2764			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2765				del_timer(&host->dto_timer);
2766
2767			/* if there is an error report DATA_ERROR */
2768			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2769			host->data_status = pending;
2770			smp_wmb(); /* drain writebuffer */
2771			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2772
2773			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2774				/* In case of error, we cannot expect a DTO */
2775				set_bit(EVENT_DATA_COMPLETE,
2776					&host->pending_events);
2777
2778			tasklet_schedule(&host->tasklet);
2779
2780			spin_unlock(&host->irq_lock);
2781		}
2782
2783		if (pending & SDMMC_INT_DATA_OVER) {
2784			spin_lock(&host->irq_lock);
2785
2786			del_timer(&host->dto_timer);
2787
2788			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2789			if (!host->data_status)
2790				host->data_status = pending;
2791			smp_wmb(); /* drain writebuffer */
2792			if (host->dir_status == DW_MCI_RECV_STATUS) {
2793				if (host->sg != NULL)
2794					dw_mci_read_data_pio(host, true);
2795			}
2796			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2797			tasklet_schedule(&host->tasklet);
2798
2799			spin_unlock(&host->irq_lock);
2800		}
2801
2802		if (pending & SDMMC_INT_RXDR) {
2803			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2804			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2805				dw_mci_read_data_pio(host, false);
2806		}
2807
2808		if (pending & SDMMC_INT_TXDR) {
2809			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2810			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2811				dw_mci_write_data_pio(host);
2812		}
2813
2814		if (pending & SDMMC_INT_CMD_DONE) {
2815			spin_lock(&host->irq_lock);
2816
2817			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2818			dw_mci_cmd_interrupt(host, pending);
2819
2820			spin_unlock(&host->irq_lock);
2821		}
2822
2823		if (pending & SDMMC_INT_CD) {
2824			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2825			dw_mci_handle_cd(host);
2826		}
2827
2828		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2829			mci_writel(host, RINTSTS,
2830				   SDMMC_INT_SDIO(slot->sdio_id));
2831			__dw_mci_enable_sdio_irq(slot, 0);
2832			sdio_signal_irq(slot->mmc);
2833		}
2834
2835	}
2836
2837	if (host->use_dma != TRANS_MODE_IDMAC)
2838		return IRQ_HANDLED;
2839
2840	/* Handle IDMA interrupts */
2841	if (host->dma_64bit_address == 1) {
2842		pending = mci_readl(host, IDSTS64);
2843		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2844			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2845							SDMMC_IDMAC_INT_RI);
2846			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2847			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2848				host->dma_ops->complete((void *)host);
2849		}
2850	} else {
2851		pending = mci_readl(host, IDSTS);
2852		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2853			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2854							SDMMC_IDMAC_INT_RI);
2855			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2856			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2857				host->dma_ops->complete((void *)host);
2858		}
2859	}
2860
2861	return IRQ_HANDLED;
2862}
2863
2864static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2865{
2866	struct dw_mci *host = slot->host;
2867	const struct dw_mci_drv_data *drv_data = host->drv_data;
2868	struct mmc_host *mmc = slot->mmc;
2869	int ctrl_id;
2870
2871	if (host->pdata->caps)
2872		mmc->caps = host->pdata->caps;
2873
 
 
 
 
 
 
2874	if (host->pdata->pm_caps)
2875		mmc->pm_caps = host->pdata->pm_caps;
2876
2877	if (drv_data)
2878		mmc->caps |= drv_data->common_caps;
2879
2880	if (host->dev->of_node) {
2881		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2882		if (ctrl_id < 0)
2883			ctrl_id = 0;
2884	} else {
2885		ctrl_id = to_platform_device(host->dev)->id;
2886	}
2887
2888	if (drv_data && drv_data->caps) {
2889		if (ctrl_id >= drv_data->num_caps) {
2890			dev_err(host->dev, "invalid controller id %d\n",
2891				ctrl_id);
2892			return -EINVAL;
2893		}
2894		mmc->caps |= drv_data->caps[ctrl_id];
2895	}
2896
2897	if (host->pdata->caps2)
2898		mmc->caps2 = host->pdata->caps2;
2899
2900	/* if host has set a minimum_freq, we should respect it */
2901	if (host->minimum_speed)
2902		mmc->f_min = host->minimum_speed;
2903	else
2904		mmc->f_min = DW_MCI_FREQ_MIN;
2905
2906	if (!mmc->f_max)
2907		mmc->f_max = DW_MCI_FREQ_MAX;
2908
2909	/* Process SDIO IRQs through the sdio_irq_work. */
2910	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2911		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2912
2913	return 0;
2914}
2915
2916static int dw_mci_init_slot(struct dw_mci *host)
2917{
2918	struct mmc_host *mmc;
2919	struct dw_mci_slot *slot;
2920	int ret;
2921
2922	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2923	if (!mmc)
2924		return -ENOMEM;
2925
2926	slot = mmc_priv(mmc);
2927	slot->id = 0;
2928	slot->sdio_id = host->sdio_id0 + slot->id;
2929	slot->mmc = mmc;
2930	slot->host = host;
2931	host->slot = slot;
2932
2933	mmc->ops = &dw_mci_ops;
2934
2935	/*if there are external regulators, get them*/
2936	ret = mmc_regulator_get_supply(mmc);
2937	if (ret)
2938		goto err_host_allocated;
2939
2940	if (!mmc->ocr_avail)
2941		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2942
2943	ret = mmc_of_parse(mmc);
2944	if (ret)
2945		goto err_host_allocated;
2946
2947	ret = dw_mci_init_slot_caps(slot);
2948	if (ret)
2949		goto err_host_allocated;
2950
2951	/* Useful defaults if platform data is unset. */
2952	if (host->use_dma == TRANS_MODE_IDMAC) {
2953		mmc->max_segs = host->ring_size;
2954		mmc->max_blk_size = 65535;
2955		mmc->max_seg_size = 0x1000;
2956		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2957		mmc->max_blk_count = mmc->max_req_size / 512;
2958	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2959		mmc->max_segs = 64;
2960		mmc->max_blk_size = 65535;
2961		mmc->max_blk_count = 65535;
2962		mmc->max_req_size =
2963				mmc->max_blk_size * mmc->max_blk_count;
2964		mmc->max_seg_size = mmc->max_req_size;
2965	} else {
2966		/* TRANS_MODE_PIO */
2967		mmc->max_segs = 64;
2968		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2969		mmc->max_blk_count = 512;
2970		mmc->max_req_size = mmc->max_blk_size *
2971				    mmc->max_blk_count;
2972		mmc->max_seg_size = mmc->max_req_size;
2973	}
2974
2975	dw_mci_get_cd(mmc);
2976
2977	ret = mmc_add_host(mmc);
2978	if (ret)
2979		goto err_host_allocated;
2980
2981#if defined(CONFIG_DEBUG_FS)
2982	dw_mci_init_debugfs(slot);
2983#endif
2984
2985	return 0;
2986
2987err_host_allocated:
2988	mmc_free_host(mmc);
2989	return ret;
2990}
2991
2992static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2993{
2994	/* Debugfs stuff is cleaned up by mmc core */
2995	mmc_remove_host(slot->mmc);
2996	slot->host->slot = NULL;
2997	mmc_free_host(slot->mmc);
2998}
2999
3000static void dw_mci_init_dma(struct dw_mci *host)
3001{
3002	int addr_config;
3003	struct device *dev = host->dev;
3004
3005	/*
3006	* Check tansfer mode from HCON[17:16]
3007	* Clear the ambiguous description of dw_mmc databook:
3008	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
3009	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3010	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3011	* 2b'11: Non DW DMA Interface -> pio only
3012	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
3013	* simpler request/acknowledge handshake mechanism and both of them
3014	* are regarded as external dma master for dw_mmc.
3015	*/
3016	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3017	if (host->use_dma == DMA_INTERFACE_IDMA) {
3018		host->use_dma = TRANS_MODE_IDMAC;
3019	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3020		   host->use_dma == DMA_INTERFACE_GDMA) {
3021		host->use_dma = TRANS_MODE_EDMAC;
3022	} else {
3023		goto no_dma;
3024	}
3025
3026	/* Determine which DMA interface to use */
3027	if (host->use_dma == TRANS_MODE_IDMAC) {
3028		/*
3029		* Check ADDR_CONFIG bit in HCON to find
3030		* IDMAC address bus width
3031		*/
3032		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3033
3034		if (addr_config == 1) {
3035			/* host supports IDMAC in 64-bit address mode */
3036			host->dma_64bit_address = 1;
3037			dev_info(host->dev,
3038				 "IDMAC supports 64-bit address mode.\n");
3039			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3040				dma_set_coherent_mask(host->dev,
3041						      DMA_BIT_MASK(64));
3042		} else {
3043			/* host supports IDMAC in 32-bit address mode */
3044			host->dma_64bit_address = 0;
3045			dev_info(host->dev,
3046				 "IDMAC supports 32-bit address mode.\n");
3047		}
3048
3049		/* Alloc memory for sg translation */
3050		host->sg_cpu = dmam_alloc_coherent(host->dev,
3051						   DESC_RING_BUF_SZ,
3052						   &host->sg_dma, GFP_KERNEL);
3053		if (!host->sg_cpu) {
3054			dev_err(host->dev,
3055				"%s: could not alloc DMA memory\n",
3056				__func__);
3057			goto no_dma;
3058		}
3059
3060		host->dma_ops = &dw_mci_idmac_ops;
3061		dev_info(host->dev, "Using internal DMA controller.\n");
3062	} else {
3063		/* TRANS_MODE_EDMAC: check dma bindings again */
3064		if ((device_property_string_array_count(dev, "dma-names") < 0) ||
 
3065		    !device_property_present(dev, "dmas")) {
3066			goto no_dma;
3067		}
3068		host->dma_ops = &dw_mci_edmac_ops;
3069		dev_info(host->dev, "Using external DMA controller.\n");
3070	}
3071
3072	if (host->dma_ops->init && host->dma_ops->start &&
3073	    host->dma_ops->stop && host->dma_ops->cleanup) {
3074		if (host->dma_ops->init(host)) {
3075			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3076				__func__);
3077			goto no_dma;
3078		}
3079	} else {
3080		dev_err(host->dev, "DMA initialization not found.\n");
3081		goto no_dma;
3082	}
3083
3084	return;
3085
3086no_dma:
3087	dev_info(host->dev, "Using PIO mode.\n");
3088	host->use_dma = TRANS_MODE_PIO;
3089}
3090
3091static void dw_mci_cmd11_timer(struct timer_list *t)
3092{
3093	struct dw_mci *host = from_timer(host, t, cmd11_timer);
3094
3095	if (host->state != STATE_SENDING_CMD11) {
3096		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3097		return;
3098	}
3099
3100	host->cmd_status = SDMMC_INT_RTO;
3101	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3102	tasklet_schedule(&host->tasklet);
3103}
3104
3105static void dw_mci_cto_timer(struct timer_list *t)
3106{
3107	struct dw_mci *host = from_timer(host, t, cto_timer);
3108	unsigned long irqflags;
3109	u32 pending;
3110
3111	spin_lock_irqsave(&host->irq_lock, irqflags);
3112
3113	/*
3114	 * If somehow we have very bad interrupt latency it's remotely possible
3115	 * that the timer could fire while the interrupt is still pending or
3116	 * while the interrupt is midway through running.  Let's be paranoid
3117	 * and detect those two cases.  Note that this is paranoia is somewhat
3118	 * justified because in this function we don't actually cancel the
3119	 * pending command in the controller--we just assume it will never come.
3120	 */
3121	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3122	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3123		/* The interrupt should fire; no need to act but we can warn */
3124		dev_warn(host->dev, "Unexpected interrupt latency\n");
3125		goto exit;
3126	}
3127	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3128		/* Presumably interrupt handler couldn't delete the timer */
3129		dev_warn(host->dev, "CTO timeout when already completed\n");
3130		goto exit;
3131	}
3132
3133	/*
3134	 * Continued paranoia to make sure we're in the state we expect.
3135	 * This paranoia isn't really justified but it seems good to be safe.
3136	 */
3137	switch (host->state) {
3138	case STATE_SENDING_CMD11:
3139	case STATE_SENDING_CMD:
3140	case STATE_SENDING_STOP:
3141		/*
3142		 * If CMD_DONE interrupt does NOT come in sending command
3143		 * state, we should notify the driver to terminate current
3144		 * transfer and report a command timeout to the core.
3145		 */
3146		host->cmd_status = SDMMC_INT_RTO;
3147		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3148		tasklet_schedule(&host->tasklet);
3149		break;
3150	default:
3151		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3152			 host->state);
3153		break;
3154	}
3155
3156exit:
3157	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3158}
3159
3160static void dw_mci_dto_timer(struct timer_list *t)
3161{
3162	struct dw_mci *host = from_timer(host, t, dto_timer);
3163	unsigned long irqflags;
3164	u32 pending;
3165
3166	spin_lock_irqsave(&host->irq_lock, irqflags);
3167
3168	/*
3169	 * The DTO timer is much longer than the CTO timer, so it's even less
3170	 * likely that we'll these cases, but it pays to be paranoid.
3171	 */
3172	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3173	if (pending & SDMMC_INT_DATA_OVER) {
3174		/* The interrupt should fire; no need to act but we can warn */
3175		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3176		goto exit;
3177	}
3178	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3179		/* Presumably interrupt handler couldn't delete the timer */
3180		dev_warn(host->dev, "DTO timeout when already completed\n");
3181		goto exit;
3182	}
3183
3184	/*
3185	 * Continued paranoia to make sure we're in the state we expect.
3186	 * This paranoia isn't really justified but it seems good to be safe.
3187	 */
3188	switch (host->state) {
3189	case STATE_SENDING_DATA:
3190	case STATE_DATA_BUSY:
3191		/*
3192		 * If DTO interrupt does NOT come in sending data state,
3193		 * we should notify the driver to terminate current transfer
3194		 * and report a data timeout to the core.
3195		 */
3196		host->data_status = SDMMC_INT_DRTO;
3197		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3198		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3199		tasklet_schedule(&host->tasklet);
3200		break;
3201	default:
3202		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3203			 host->state);
3204		break;
3205	}
3206
3207exit:
3208	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3209}
3210
3211#ifdef CONFIG_OF
3212static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3213{
3214	struct dw_mci_board *pdata;
3215	struct device *dev = host->dev;
3216	const struct dw_mci_drv_data *drv_data = host->drv_data;
3217	int ret;
3218	u32 clock_frequency;
3219
3220	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3221	if (!pdata)
3222		return ERR_PTR(-ENOMEM);
3223
3224	/* find reset controller when exist */
3225	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3226	if (IS_ERR(pdata->rstc))
3227		return ERR_CAST(pdata->rstc);
 
 
3228
3229	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3230		dev_info(dev,
3231			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3232
3233	device_property_read_u32(dev, "card-detect-delay",
3234				 &pdata->detect_delay_ms);
3235
3236	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3237
3238	if (device_property_present(dev, "fifo-watermark-aligned"))
3239		host->wm_aligned = true;
3240
3241	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3242		pdata->bus_hz = clock_frequency;
3243
3244	if (drv_data && drv_data->parse_dt) {
3245		ret = drv_data->parse_dt(host);
3246		if (ret)
3247			return ERR_PTR(ret);
3248	}
3249
3250	return pdata;
3251}
3252
3253#else /* CONFIG_OF */
3254static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3255{
3256	return ERR_PTR(-EINVAL);
3257}
3258#endif /* CONFIG_OF */
3259
3260static void dw_mci_enable_cd(struct dw_mci *host)
3261{
3262	unsigned long irqflags;
3263	u32 temp;
3264
3265	/*
3266	 * No need for CD if all slots have a non-error GPIO
3267	 * as well as broken card detection is found.
3268	 */
3269	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3270		return;
3271
3272	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3273		spin_lock_irqsave(&host->irq_lock, irqflags);
3274		temp = mci_readl(host, INTMASK);
3275		temp  |= SDMMC_INT_CD;
3276		mci_writel(host, INTMASK, temp);
3277		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3278	}
3279}
3280
3281int dw_mci_probe(struct dw_mci *host)
3282{
3283	const struct dw_mci_drv_data *drv_data = host->drv_data;
3284	int width, i, ret = 0;
3285	u32 fifo_size;
3286
3287	if (!host->pdata) {
3288		host->pdata = dw_mci_parse_dt(host);
3289		if (IS_ERR(host->pdata))
3290			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3291					     "platform data not available\n");
 
 
 
3292	}
3293
3294	host->biu_clk = devm_clk_get(host->dev, "biu");
3295	if (IS_ERR(host->biu_clk)) {
3296		dev_dbg(host->dev, "biu clock not available\n");
3297	} else {
3298		ret = clk_prepare_enable(host->biu_clk);
3299		if (ret) {
3300			dev_err(host->dev, "failed to enable biu clock\n");
3301			return ret;
3302		}
3303	}
3304
3305	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3306	if (IS_ERR(host->ciu_clk)) {
3307		dev_dbg(host->dev, "ciu clock not available\n");
3308		host->bus_hz = host->pdata->bus_hz;
3309	} else {
3310		ret = clk_prepare_enable(host->ciu_clk);
3311		if (ret) {
3312			dev_err(host->dev, "failed to enable ciu clock\n");
3313			goto err_clk_biu;
3314		}
3315
3316		if (host->pdata->bus_hz) {
3317			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3318			if (ret)
3319				dev_warn(host->dev,
3320					 "Unable to set bus rate to %uHz\n",
3321					 host->pdata->bus_hz);
3322		}
3323		host->bus_hz = clk_get_rate(host->ciu_clk);
3324	}
3325
3326	if (!host->bus_hz) {
3327		dev_err(host->dev,
3328			"Platform data must supply bus speed\n");
3329		ret = -ENODEV;
3330		goto err_clk_ciu;
3331	}
3332
3333	if (host->pdata->rstc) {
3334		reset_control_assert(host->pdata->rstc);
3335		usleep_range(10, 50);
3336		reset_control_deassert(host->pdata->rstc);
3337	}
3338
3339	if (drv_data && drv_data->init) {
3340		ret = drv_data->init(host);
3341		if (ret) {
3342			dev_err(host->dev,
3343				"implementation specific init failed\n");
3344			goto err_clk_ciu;
3345		}
3346	}
3347
3348	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3349	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3350	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3351
3352	spin_lock_init(&host->lock);
3353	spin_lock_init(&host->irq_lock);
3354	INIT_LIST_HEAD(&host->queue);
3355
3356	dw_mci_init_fault(host);
3357
3358	/*
3359	 * Get the host data width - this assumes that HCON has been set with
3360	 * the correct values.
3361	 */
3362	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3363	if (!i) {
3364		host->push_data = dw_mci_push_data16;
3365		host->pull_data = dw_mci_pull_data16;
3366		width = 16;
3367		host->data_shift = 1;
3368	} else if (i == 2) {
3369		host->push_data = dw_mci_push_data64;
3370		host->pull_data = dw_mci_pull_data64;
3371		width = 64;
3372		host->data_shift = 3;
3373	} else {
3374		/* Check for a reserved value, and warn if it is */
3375		WARN((i != 1),
3376		     "HCON reports a reserved host data width!\n"
3377		     "Defaulting to 32-bit access.\n");
3378		host->push_data = dw_mci_push_data32;
3379		host->pull_data = dw_mci_pull_data32;
3380		width = 32;
3381		host->data_shift = 2;
3382	}
3383
3384	/* Reset all blocks */
3385	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3386		ret = -ENODEV;
3387		goto err_clk_ciu;
3388	}
3389
3390	host->dma_ops = host->pdata->dma_ops;
3391	dw_mci_init_dma(host);
3392
3393	/* Clear the interrupts for the host controller */
3394	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3395	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3396
3397	/* Put in max timeout */
3398	mci_writel(host, TMOUT, 0xFFFFFFFF);
3399
3400	/*
3401	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3402	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3403	 */
3404	if (!host->pdata->fifo_depth) {
3405		/*
3406		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3407		 * have been overwritten by the bootloader, just like we're
3408		 * about to do, so if you know the value for your hardware, you
3409		 * should put it in the platform data.
3410		 */
3411		fifo_size = mci_readl(host, FIFOTH);
3412		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3413	} else {
3414		fifo_size = host->pdata->fifo_depth;
3415	}
3416	host->fifo_depth = fifo_size;
3417	host->fifoth_val =
3418		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3419	mci_writel(host, FIFOTH, host->fifoth_val);
3420
3421	/* disable clock to CIU */
3422	mci_writel(host, CLKENA, 0);
3423	mci_writel(host, CLKSRC, 0);
3424
3425	/*
3426	 * In 2.40a spec, Data offset is changed.
3427	 * Need to check the version-id and set data-offset for DATA register.
3428	 */
3429	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3430	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3431
3432	if (host->data_addr_override)
3433		host->fifo_reg = host->regs + host->data_addr_override;
3434	else if (host->verid < DW_MMC_240A)
3435		host->fifo_reg = host->regs + DATA_OFFSET;
3436	else
3437		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3438
3439	tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3440	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3441			       host->irq_flags, "dw-mci", host);
3442	if (ret)
3443		goto err_dmaunmap;
3444
3445	/*
3446	 * Enable interrupts for command done, data over, data empty,
3447	 * receive ready and error such as transmit, receive timeout, crc error
3448	 */
3449	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3450		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3451		   DW_MCI_ERROR_FLAGS);
3452	/* Enable mci interrupt */
3453	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3454
3455	dev_info(host->dev,
3456		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3457		 host->irq, width, fifo_size);
3458
3459	/* We need at least one slot to succeed */
3460	ret = dw_mci_init_slot(host);
3461	if (ret) {
3462		dev_dbg(host->dev, "slot %d init failed\n", i);
3463		goto err_dmaunmap;
3464	}
3465
3466	/* Now that slots are all setup, we can enable card detect */
3467	dw_mci_enable_cd(host);
3468
3469	return 0;
3470
3471err_dmaunmap:
3472	if (host->use_dma && host->dma_ops->exit)
3473		host->dma_ops->exit(host);
3474
3475	reset_control_assert(host->pdata->rstc);
 
3476
3477err_clk_ciu:
3478	clk_disable_unprepare(host->ciu_clk);
3479
3480err_clk_biu:
3481	clk_disable_unprepare(host->biu_clk);
3482
3483	return ret;
3484}
3485EXPORT_SYMBOL(dw_mci_probe);
3486
3487void dw_mci_remove(struct dw_mci *host)
3488{
3489	dev_dbg(host->dev, "remove slot\n");
3490	if (host->slot)
3491		dw_mci_cleanup_slot(host->slot);
3492
3493	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3494	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3495
3496	/* disable clock to CIU */
3497	mci_writel(host, CLKENA, 0);
3498	mci_writel(host, CLKSRC, 0);
3499
3500	if (host->use_dma && host->dma_ops->exit)
3501		host->dma_ops->exit(host);
3502
3503	reset_control_assert(host->pdata->rstc);
 
3504
3505	clk_disable_unprepare(host->ciu_clk);
3506	clk_disable_unprepare(host->biu_clk);
3507}
3508EXPORT_SYMBOL(dw_mci_remove);
3509
3510
3511
3512#ifdef CONFIG_PM
3513int dw_mci_runtime_suspend(struct device *dev)
3514{
3515	struct dw_mci *host = dev_get_drvdata(dev);
3516
3517	if (host->use_dma && host->dma_ops->exit)
3518		host->dma_ops->exit(host);
3519
3520	clk_disable_unprepare(host->ciu_clk);
3521
3522	if (host->slot &&
3523	    (mmc_can_gpio_cd(host->slot->mmc) ||
3524	     !mmc_card_is_removable(host->slot->mmc)))
3525		clk_disable_unprepare(host->biu_clk);
3526
3527	return 0;
3528}
3529EXPORT_SYMBOL(dw_mci_runtime_suspend);
3530
3531int dw_mci_runtime_resume(struct device *dev)
3532{
3533	int ret = 0;
3534	struct dw_mci *host = dev_get_drvdata(dev);
3535
3536	if (host->slot &&
3537	    (mmc_can_gpio_cd(host->slot->mmc) ||
3538	     !mmc_card_is_removable(host->slot->mmc))) {
3539		ret = clk_prepare_enable(host->biu_clk);
3540		if (ret)
3541			return ret;
3542	}
3543
3544	ret = clk_prepare_enable(host->ciu_clk);
3545	if (ret)
3546		goto err;
3547
3548	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3549		clk_disable_unprepare(host->ciu_clk);
3550		ret = -ENODEV;
3551		goto err;
3552	}
3553
3554	if (host->use_dma && host->dma_ops->init)
3555		host->dma_ops->init(host);
3556
3557	/*
3558	 * Restore the initial value at FIFOTH register
3559	 * And Invalidate the prev_blksz with zero
3560	 */
3561	mci_writel(host, FIFOTH, host->fifoth_val);
3562	host->prev_blksz = 0;
3563
3564	/* Put in max timeout */
3565	mci_writel(host, TMOUT, 0xFFFFFFFF);
3566
3567	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3568	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3569		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3570		   DW_MCI_ERROR_FLAGS);
3571	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3572
3573
3574	if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3575		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3576
3577	/* Force setup bus to guarantee available clock output */
3578	dw_mci_setup_bus(host->slot, true);
3579
3580	/* Re-enable SDIO interrupts. */
3581	if (sdio_irq_claimed(host->slot->mmc))
3582		__dw_mci_enable_sdio_irq(host->slot, 1);
3583
3584	/* Now that slots are all setup, we can enable card detect */
3585	dw_mci_enable_cd(host);
3586
3587	return 0;
3588
3589err:
3590	if (host->slot &&
3591	    (mmc_can_gpio_cd(host->slot->mmc) ||
3592	     !mmc_card_is_removable(host->slot->mmc)))
3593		clk_disable_unprepare(host->biu_clk);
3594
3595	return ret;
3596}
3597EXPORT_SYMBOL(dw_mci_runtime_resume);
3598#endif /* CONFIG_PM */
3599
3600static int __init dw_mci_init(void)
3601{
3602	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3603	return 0;
3604}
3605
3606static void __exit dw_mci_exit(void)
3607{
3608}
3609
3610module_init(dw_mci_init);
3611module_exit(dw_mci_exit);
3612
3613MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3614MODULE_AUTHOR("NXP Semiconductor VietNam");
3615MODULE_AUTHOR("Imagination Technologies Ltd");
3616MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Synopsys DesignWare Multimedia Card Interface driver
   4 *  (Based on NXP driver for lpc 31xx)
   5 *
   6 * Copyright (C) 2009 NXP Semiconductors
   7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
   8 */
   9
  10#include <linux/blkdev.h>
  11#include <linux/clk.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/iopoll.h>
  19#include <linux/ioport.h>
 
  20#include <linux/module.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
 
  23#include <linux/seq_file.h>
  24#include <linux/slab.h>
  25#include <linux/stat.h>
  26#include <linux/delay.h>
  27#include <linux/irq.h>
  28#include <linux/mmc/card.h>
  29#include <linux/mmc/host.h>
  30#include <linux/mmc/mmc.h>
  31#include <linux/mmc/sd.h>
  32#include <linux/mmc/sdio.h>
  33#include <linux/bitops.h>
  34#include <linux/regulator/consumer.h>
  35#include <linux/of.h>
  36#include <linux/of_gpio.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#include "dw_mmc.h"
  40
  41/* Common flag combinations */
  42#define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
  43				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
  44				 SDMMC_INT_EBE | SDMMC_INT_HLE)
  45#define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
  46				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
  47#define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
  48				 DW_MCI_CMD_ERROR_FLAGS)
  49#define DW_MCI_SEND_STATUS	1
  50#define DW_MCI_RECV_STATUS	2
  51#define DW_MCI_DMA_THRESHOLD	16
  52
  53#define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
  54#define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
  55
  56#define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
  57				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
  58				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
  59				 SDMMC_IDMAC_INT_TI)
  60
  61#define DESC_RING_BUF_SZ	PAGE_SIZE
  62
  63struct idmac_desc_64addr {
  64	u32		des0;	/* Control Descriptor */
  65#define IDMAC_OWN_CLR64(x) \
  66	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
  67
  68	u32		des1;	/* Reserved */
  69
  70	u32		des2;	/*Buffer sizes */
  71#define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
  72	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
  73	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
  74
  75	u32		des3;	/* Reserved */
  76
  77	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
  78	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
  79
  80	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
  81	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
  82};
  83
  84struct idmac_desc {
  85	__le32		des0;	/* Control Descriptor */
  86#define IDMAC_DES0_DIC	BIT(1)
  87#define IDMAC_DES0_LD	BIT(2)
  88#define IDMAC_DES0_FD	BIT(3)
  89#define IDMAC_DES0_CH	BIT(4)
  90#define IDMAC_DES0_ER	BIT(5)
  91#define IDMAC_DES0_CES	BIT(30)
  92#define IDMAC_DES0_OWN	BIT(31)
  93
  94	__le32		des1;	/* Buffer sizes */
  95#define IDMAC_SET_BUFFER1_SIZE(d, s) \
  96	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
  97
  98	__le32		des2;	/* buffer 1 physical address */
  99
 100	__le32		des3;	/* buffer 2 physical address */
 101};
 102
 103/* Each descriptor can transfer up to 4KB of data in chained mode */
 104#define DW_MCI_DESC_DATA_LENGTH	0x1000
 105
 106#if defined(CONFIG_DEBUG_FS)
 107static int dw_mci_req_show(struct seq_file *s, void *v)
 108{
 109	struct dw_mci_slot *slot = s->private;
 110	struct mmc_request *mrq;
 111	struct mmc_command *cmd;
 112	struct mmc_command *stop;
 113	struct mmc_data	*data;
 114
 115	/* Make sure we get a consistent snapshot */
 116	spin_lock_bh(&slot->host->lock);
 117	mrq = slot->mrq;
 118
 119	if (mrq) {
 120		cmd = mrq->cmd;
 121		data = mrq->data;
 122		stop = mrq->stop;
 123
 124		if (cmd)
 125			seq_printf(s,
 126				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
 127				   cmd->opcode, cmd->arg, cmd->flags,
 128				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
 129				   cmd->resp[2], cmd->error);
 130		if (data)
 131			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
 132				   data->bytes_xfered, data->blocks,
 133				   data->blksz, data->flags, data->error);
 134		if (stop)
 135			seq_printf(s,
 136				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
 137				   stop->opcode, stop->arg, stop->flags,
 138				   stop->resp[0], stop->resp[1], stop->resp[2],
 139				   stop->resp[2], stop->error);
 140	}
 141
 142	spin_unlock_bh(&slot->host->lock);
 143
 144	return 0;
 145}
 146DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
 147
 148static int dw_mci_regs_show(struct seq_file *s, void *v)
 149{
 150	struct dw_mci *host = s->private;
 151
 152	pm_runtime_get_sync(host->dev);
 153
 154	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
 155	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
 156	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
 157	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
 158	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
 159	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
 160
 161	pm_runtime_put_autosuspend(host->dev);
 162
 163	return 0;
 164}
 165DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
 166
 167static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
 168{
 169	struct mmc_host	*mmc = slot->mmc;
 170	struct dw_mci *host = slot->host;
 171	struct dentry *root;
 172
 173	root = mmc->debugfs_root;
 174	if (!root)
 175		return;
 176
 177	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
 178	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
 179	debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
 180	debugfs_create_x32("pending_events", S_IRUSR, root,
 181			   (u32 *)&host->pending_events);
 182	debugfs_create_x32("completed_events", S_IRUSR, root,
 183			   (u32 *)&host->completed_events);
 
 
 
 184}
 185#endif /* defined(CONFIG_DEBUG_FS) */
 186
 187static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
 188{
 189	u32 ctrl;
 190
 191	ctrl = mci_readl(host, CTRL);
 192	ctrl |= reset;
 193	mci_writel(host, CTRL, ctrl);
 194
 195	/* wait till resets clear */
 196	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
 197				      !(ctrl & reset),
 198				      1, 500 * USEC_PER_MSEC)) {
 199		dev_err(host->dev,
 200			"Timeout resetting block (ctrl reset %#x)\n",
 201			ctrl & reset);
 202		return false;
 203	}
 204
 205	return true;
 206}
 207
 208static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
 209{
 210	u32 status;
 211
 212	/*
 213	 * Databook says that before issuing a new data transfer command
 214	 * we need to check to see if the card is busy.  Data transfer commands
 215	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
 216	 *
 217	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
 218	 * expected.
 219	 */
 220	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
 221	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
 222		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
 223					      status,
 224					      !(status & SDMMC_STATUS_BUSY),
 225					      10, 500 * USEC_PER_MSEC))
 226			dev_err(host->dev, "Busy; trying anyway\n");
 227	}
 228}
 229
 230static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
 231{
 232	struct dw_mci *host = slot->host;
 233	unsigned int cmd_status = 0;
 234
 235	mci_writel(host, CMDARG, arg);
 236	wmb(); /* drain writebuffer */
 237	dw_mci_wait_while_busy(host, cmd);
 238	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
 239
 240	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
 241				      !(cmd_status & SDMMC_CMD_START),
 242				      1, 500 * USEC_PER_MSEC))
 243		dev_err(&slot->mmc->class_dev,
 244			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
 245			cmd, arg, cmd_status);
 246}
 247
 248static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
 249{
 250	struct dw_mci_slot *slot = mmc_priv(mmc);
 251	struct dw_mci *host = slot->host;
 252	u32 cmdr;
 253
 254	cmd->error = -EINPROGRESS;
 255	cmdr = cmd->opcode;
 256
 257	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
 258	    cmd->opcode == MMC_GO_IDLE_STATE ||
 259	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
 260	    (cmd->opcode == SD_IO_RW_DIRECT &&
 261	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
 262		cmdr |= SDMMC_CMD_STOP;
 263	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
 264		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
 265
 266	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
 267		u32 clk_en_a;
 268
 269		/* Special bit makes CMD11 not die */
 270		cmdr |= SDMMC_CMD_VOLT_SWITCH;
 271
 272		/* Change state to continue to handle CMD11 weirdness */
 273		WARN_ON(slot->host->state != STATE_SENDING_CMD);
 274		slot->host->state = STATE_SENDING_CMD11;
 275
 276		/*
 277		 * We need to disable low power mode (automatic clock stop)
 278		 * while doing voltage switch so we don't confuse the card,
 279		 * since stopping the clock is a specific part of the UHS
 280		 * voltage change dance.
 281		 *
 282		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
 283		 * unconditionally turned back on in dw_mci_setup_bus() if it's
 284		 * ever called with a non-zero clock.  That shouldn't happen
 285		 * until the voltage change is all done.
 286		 */
 287		clk_en_a = mci_readl(host, CLKENA);
 288		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
 289		mci_writel(host, CLKENA, clk_en_a);
 290		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
 291			     SDMMC_CMD_PRV_DAT_WAIT, 0);
 292	}
 293
 294	if (cmd->flags & MMC_RSP_PRESENT) {
 295		/* We expect a response, so set this bit */
 296		cmdr |= SDMMC_CMD_RESP_EXP;
 297		if (cmd->flags & MMC_RSP_136)
 298			cmdr |= SDMMC_CMD_RESP_LONG;
 299	}
 300
 301	if (cmd->flags & MMC_RSP_CRC)
 302		cmdr |= SDMMC_CMD_RESP_CRC;
 303
 304	if (cmd->data) {
 305		cmdr |= SDMMC_CMD_DAT_EXP;
 306		if (cmd->data->flags & MMC_DATA_WRITE)
 307			cmdr |= SDMMC_CMD_DAT_WR;
 308	}
 309
 310	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
 311		cmdr |= SDMMC_CMD_USE_HOLD_REG;
 312
 313	return cmdr;
 314}
 315
 316static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
 317{
 318	struct mmc_command *stop;
 319	u32 cmdr;
 320
 321	if (!cmd->data)
 322		return 0;
 323
 324	stop = &host->stop_abort;
 325	cmdr = cmd->opcode;
 326	memset(stop, 0, sizeof(struct mmc_command));
 327
 328	if (cmdr == MMC_READ_SINGLE_BLOCK ||
 329	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
 330	    cmdr == MMC_WRITE_BLOCK ||
 331	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
 332	    cmdr == MMC_SEND_TUNING_BLOCK ||
 333	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
 334		stop->opcode = MMC_STOP_TRANSMISSION;
 335		stop->arg = 0;
 336		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
 337	} else if (cmdr == SD_IO_RW_EXTENDED) {
 338		stop->opcode = SD_IO_RW_DIRECT;
 339		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
 340			     ((cmd->arg >> 28) & 0x7);
 341		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
 342	} else {
 343		return 0;
 344	}
 345
 346	cmdr = stop->opcode | SDMMC_CMD_STOP |
 347		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
 348
 349	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
 350		cmdr |= SDMMC_CMD_USE_HOLD_REG;
 351
 352	return cmdr;
 353}
 354
 355static inline void dw_mci_set_cto(struct dw_mci *host)
 356{
 357	unsigned int cto_clks;
 358	unsigned int cto_div;
 359	unsigned int cto_ms;
 360	unsigned long irqflags;
 361
 362	cto_clks = mci_readl(host, TMOUT) & 0xff;
 363	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
 364	if (cto_div == 0)
 365		cto_div = 1;
 366
 367	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
 368				  host->bus_hz);
 369
 370	/* add a bit spare time */
 371	cto_ms += 10;
 372
 373	/*
 374	 * The durations we're working with are fairly short so we have to be
 375	 * extra careful about synchronization here.  Specifically in hardware a
 376	 * command timeout is _at most_ 5.1 ms, so that means we expect an
 377	 * interrupt (either command done or timeout) to come rather quickly
 378	 * after the mci_writel.  ...but just in case we have a long interrupt
 379	 * latency let's add a bit of paranoia.
 380	 *
 381	 * In general we'll assume that at least an interrupt will be asserted
 382	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
 383	 * been asserted in hardware by that time then we'll assume it'll never
 384	 * come.
 385	 */
 386	spin_lock_irqsave(&host->irq_lock, irqflags);
 387	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
 388		mod_timer(&host->cto_timer,
 389			jiffies + msecs_to_jiffies(cto_ms) + 1);
 390	spin_unlock_irqrestore(&host->irq_lock, irqflags);
 391}
 392
 393static void dw_mci_start_command(struct dw_mci *host,
 394				 struct mmc_command *cmd, u32 cmd_flags)
 395{
 396	host->cmd = cmd;
 397	dev_vdbg(host->dev,
 398		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
 399		 cmd->arg, cmd_flags);
 400
 401	mci_writel(host, CMDARG, cmd->arg);
 402	wmb(); /* drain writebuffer */
 403	dw_mci_wait_while_busy(host, cmd_flags);
 404
 405	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
 406
 407	/* response expected command only */
 408	if (cmd_flags & SDMMC_CMD_RESP_EXP)
 409		dw_mci_set_cto(host);
 410}
 411
 412static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
 413{
 414	struct mmc_command *stop = &host->stop_abort;
 415
 416	dw_mci_start_command(host, stop, host->stop_cmdr);
 417}
 418
 419/* DMA interface functions */
 420static void dw_mci_stop_dma(struct dw_mci *host)
 421{
 422	if (host->using_dma) {
 423		host->dma_ops->stop(host);
 424		host->dma_ops->cleanup(host);
 425	}
 426
 427	/* Data transfer was stopped by the interrupt handler */
 428	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
 429}
 430
 431static void dw_mci_dma_cleanup(struct dw_mci *host)
 432{
 433	struct mmc_data *data = host->data;
 434
 435	if (data && data->host_cookie == COOKIE_MAPPED) {
 436		dma_unmap_sg(host->dev,
 437			     data->sg,
 438			     data->sg_len,
 439			     mmc_get_dma_dir(data));
 440		data->host_cookie = COOKIE_UNMAPPED;
 441	}
 442}
 443
 444static void dw_mci_idmac_reset(struct dw_mci *host)
 445{
 446	u32 bmod = mci_readl(host, BMOD);
 447	/* Software reset of DMA */
 448	bmod |= SDMMC_IDMAC_SWRESET;
 449	mci_writel(host, BMOD, bmod);
 450}
 451
 452static void dw_mci_idmac_stop_dma(struct dw_mci *host)
 453{
 454	u32 temp;
 455
 456	/* Disable and reset the IDMAC interface */
 457	temp = mci_readl(host, CTRL);
 458	temp &= ~SDMMC_CTRL_USE_IDMAC;
 459	temp |= SDMMC_CTRL_DMA_RESET;
 460	mci_writel(host, CTRL, temp);
 461
 462	/* Stop the IDMAC running */
 463	temp = mci_readl(host, BMOD);
 464	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
 465	temp |= SDMMC_IDMAC_SWRESET;
 466	mci_writel(host, BMOD, temp);
 467}
 468
 469static void dw_mci_dmac_complete_dma(void *arg)
 470{
 471	struct dw_mci *host = arg;
 472	struct mmc_data *data = host->data;
 473
 474	dev_vdbg(host->dev, "DMA complete\n");
 475
 476	if ((host->use_dma == TRANS_MODE_EDMAC) &&
 477	    data && (data->flags & MMC_DATA_READ))
 478		/* Invalidate cache after read */
 479		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
 480				    data->sg,
 481				    data->sg_len,
 482				    DMA_FROM_DEVICE);
 483
 484	host->dma_ops->cleanup(host);
 485
 486	/*
 487	 * If the card was removed, data will be NULL. No point in trying to
 488	 * send the stop command or waiting for NBUSY in this case.
 489	 */
 490	if (data) {
 491		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
 492		tasklet_schedule(&host->tasklet);
 493	}
 494}
 495
 496static int dw_mci_idmac_init(struct dw_mci *host)
 497{
 498	int i;
 499
 500	if (host->dma_64bit_address == 1) {
 501		struct idmac_desc_64addr *p;
 502		/* Number of descriptors in the ring buffer */
 503		host->ring_size =
 504			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
 505
 506		/* Forward link the descriptor list */
 507		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
 508								i++, p++) {
 509			p->des6 = (host->sg_dma +
 510					(sizeof(struct idmac_desc_64addr) *
 511							(i + 1))) & 0xffffffff;
 512
 513			p->des7 = (u64)(host->sg_dma +
 514					(sizeof(struct idmac_desc_64addr) *
 515							(i + 1))) >> 32;
 516			/* Initialize reserved and buffer size fields to "0" */
 517			p->des0 = 0;
 518			p->des1 = 0;
 519			p->des2 = 0;
 520			p->des3 = 0;
 521		}
 522
 523		/* Set the last descriptor as the end-of-ring descriptor */
 524		p->des6 = host->sg_dma & 0xffffffff;
 525		p->des7 = (u64)host->sg_dma >> 32;
 526		p->des0 = IDMAC_DES0_ER;
 527
 528	} else {
 529		struct idmac_desc *p;
 530		/* Number of descriptors in the ring buffer */
 531		host->ring_size =
 532			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
 533
 534		/* Forward link the descriptor list */
 535		for (i = 0, p = host->sg_cpu;
 536		     i < host->ring_size - 1;
 537		     i++, p++) {
 538			p->des3 = cpu_to_le32(host->sg_dma +
 539					(sizeof(struct idmac_desc) * (i + 1)));
 540			p->des0 = 0;
 541			p->des1 = 0;
 542		}
 543
 544		/* Set the last descriptor as the end-of-ring descriptor */
 545		p->des3 = cpu_to_le32(host->sg_dma);
 546		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
 547	}
 548
 549	dw_mci_idmac_reset(host);
 550
 551	if (host->dma_64bit_address == 1) {
 552		/* Mask out interrupts - get Tx & Rx complete only */
 553		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
 554		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
 555				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
 556
 557		/* Set the descriptor base address */
 558		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
 559		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
 560
 561	} else {
 562		/* Mask out interrupts - get Tx & Rx complete only */
 563		mci_writel(host, IDSTS, IDMAC_INT_CLR);
 564		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
 565				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
 566
 567		/* Set the descriptor base address */
 568		mci_writel(host, DBADDR, host->sg_dma);
 569	}
 570
 571	return 0;
 572}
 573
 574static inline int dw_mci_prepare_desc64(struct dw_mci *host,
 575					 struct mmc_data *data,
 576					 unsigned int sg_len)
 577{
 578	unsigned int desc_len;
 579	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
 580	u32 val;
 581	int i;
 582
 583	desc_first = desc_last = desc = host->sg_cpu;
 584
 585	for (i = 0; i < sg_len; i++) {
 586		unsigned int length = sg_dma_len(&data->sg[i]);
 587
 588		u64 mem_addr = sg_dma_address(&data->sg[i]);
 589
 590		for ( ; length ; desc++) {
 591			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
 592				   length : DW_MCI_DESC_DATA_LENGTH;
 593
 594			length -= desc_len;
 595
 596			/*
 597			 * Wait for the former clear OWN bit operation
 598			 * of IDMAC to make sure that this descriptor
 599			 * isn't still owned by IDMAC as IDMAC's write
 600			 * ops and CPU's read ops are asynchronous.
 601			 */
 602			if (readl_poll_timeout_atomic(&desc->des0, val,
 603						!(val & IDMAC_DES0_OWN),
 604						10, 100 * USEC_PER_MSEC))
 605				goto err_own_bit;
 606
 607			/*
 608			 * Set the OWN bit and disable interrupts
 609			 * for this descriptor
 610			 */
 611			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
 612						IDMAC_DES0_CH;
 613
 614			/* Buffer length */
 615			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
 616
 617			/* Physical address to DMA to/from */
 618			desc->des4 = mem_addr & 0xffffffff;
 619			desc->des5 = mem_addr >> 32;
 620
 621			/* Update physical address for the next desc */
 622			mem_addr += desc_len;
 623
 624			/* Save pointer to the last descriptor */
 625			desc_last = desc;
 626		}
 627	}
 628
 629	/* Set first descriptor */
 630	desc_first->des0 |= IDMAC_DES0_FD;
 631
 632	/* Set last descriptor */
 633	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
 634	desc_last->des0 |= IDMAC_DES0_LD;
 635
 636	return 0;
 637err_own_bit:
 638	/* restore the descriptor chain as it's polluted */
 639	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
 640	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
 641	dw_mci_idmac_init(host);
 642	return -EINVAL;
 643}
 644
 645
 646static inline int dw_mci_prepare_desc32(struct dw_mci *host,
 647					 struct mmc_data *data,
 648					 unsigned int sg_len)
 649{
 650	unsigned int desc_len;
 651	struct idmac_desc *desc_first, *desc_last, *desc;
 652	u32 val;
 653	int i;
 654
 655	desc_first = desc_last = desc = host->sg_cpu;
 656
 657	for (i = 0; i < sg_len; i++) {
 658		unsigned int length = sg_dma_len(&data->sg[i]);
 659
 660		u32 mem_addr = sg_dma_address(&data->sg[i]);
 661
 662		for ( ; length ; desc++) {
 663			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
 664				   length : DW_MCI_DESC_DATA_LENGTH;
 665
 666			length -= desc_len;
 667
 668			/*
 669			 * Wait for the former clear OWN bit operation
 670			 * of IDMAC to make sure that this descriptor
 671			 * isn't still owned by IDMAC as IDMAC's write
 672			 * ops and CPU's read ops are asynchronous.
 673			 */
 674			if (readl_poll_timeout_atomic(&desc->des0, val,
 675						      IDMAC_OWN_CLR64(val),
 676						      10,
 677						      100 * USEC_PER_MSEC))
 678				goto err_own_bit;
 679
 680			/*
 681			 * Set the OWN bit and disable interrupts
 682			 * for this descriptor
 683			 */
 684			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
 685						 IDMAC_DES0_DIC |
 686						 IDMAC_DES0_CH);
 687
 688			/* Buffer length */
 689			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
 690
 691			/* Physical address to DMA to/from */
 692			desc->des2 = cpu_to_le32(mem_addr);
 693
 694			/* Update physical address for the next desc */
 695			mem_addr += desc_len;
 696
 697			/* Save pointer to the last descriptor */
 698			desc_last = desc;
 699		}
 700	}
 701
 702	/* Set first descriptor */
 703	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
 704
 705	/* Set last descriptor */
 706	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
 707				       IDMAC_DES0_DIC));
 708	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
 709
 710	return 0;
 711err_own_bit:
 712	/* restore the descriptor chain as it's polluted */
 713	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
 714	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
 715	dw_mci_idmac_init(host);
 716	return -EINVAL;
 717}
 718
 719static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
 720{
 721	u32 temp;
 722	int ret;
 723
 724	if (host->dma_64bit_address == 1)
 725		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
 726	else
 727		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
 728
 729	if (ret)
 730		goto out;
 731
 732	/* drain writebuffer */
 733	wmb();
 734
 735	/* Make sure to reset DMA in case we did PIO before this */
 736	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
 737	dw_mci_idmac_reset(host);
 738
 739	/* Select IDMAC interface */
 740	temp = mci_readl(host, CTRL);
 741	temp |= SDMMC_CTRL_USE_IDMAC;
 742	mci_writel(host, CTRL, temp);
 743
 744	/* drain writebuffer */
 745	wmb();
 746
 747	/* Enable the IDMAC */
 748	temp = mci_readl(host, BMOD);
 749	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
 750	mci_writel(host, BMOD, temp);
 751
 752	/* Start it running */
 753	mci_writel(host, PLDMND, 1);
 754
 755out:
 756	return ret;
 757}
 758
 759static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
 760	.init = dw_mci_idmac_init,
 761	.start = dw_mci_idmac_start_dma,
 762	.stop = dw_mci_idmac_stop_dma,
 763	.complete = dw_mci_dmac_complete_dma,
 764	.cleanup = dw_mci_dma_cleanup,
 765};
 766
 767static void dw_mci_edmac_stop_dma(struct dw_mci *host)
 768{
 769	dmaengine_terminate_async(host->dms->ch);
 770}
 771
 772static int dw_mci_edmac_start_dma(struct dw_mci *host,
 773					    unsigned int sg_len)
 774{
 775	struct dma_slave_config cfg;
 776	struct dma_async_tx_descriptor *desc = NULL;
 777	struct scatterlist *sgl = host->data->sg;
 778	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
 779	u32 sg_elems = host->data->sg_len;
 780	u32 fifoth_val;
 781	u32 fifo_offset = host->fifo_reg - host->regs;
 782	int ret = 0;
 783
 784	/* Set external dma config: burst size, burst width */
 
 785	cfg.dst_addr = host->phy_regs + fifo_offset;
 786	cfg.src_addr = cfg.dst_addr;
 787	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 788	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 789
 790	/* Match burst msize with external dma config */
 791	fifoth_val = mci_readl(host, FIFOTH);
 792	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
 793	cfg.src_maxburst = cfg.dst_maxburst;
 794
 795	if (host->data->flags & MMC_DATA_WRITE)
 796		cfg.direction = DMA_MEM_TO_DEV;
 797	else
 798		cfg.direction = DMA_DEV_TO_MEM;
 799
 800	ret = dmaengine_slave_config(host->dms->ch, &cfg);
 801	if (ret) {
 802		dev_err(host->dev, "Failed to config edmac.\n");
 803		return -EBUSY;
 804	}
 805
 806	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
 807				       sg_len, cfg.direction,
 808				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 809	if (!desc) {
 810		dev_err(host->dev, "Can't prepare slave sg.\n");
 811		return -EBUSY;
 812	}
 813
 814	/* Set dw_mci_dmac_complete_dma as callback */
 815	desc->callback = dw_mci_dmac_complete_dma;
 816	desc->callback_param = (void *)host;
 817	dmaengine_submit(desc);
 818
 819	/* Flush cache before write */
 820	if (host->data->flags & MMC_DATA_WRITE)
 821		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
 822				       sg_elems, DMA_TO_DEVICE);
 823
 824	dma_async_issue_pending(host->dms->ch);
 825
 826	return 0;
 827}
 828
 829static int dw_mci_edmac_init(struct dw_mci *host)
 830{
 831	/* Request external dma channel */
 832	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
 833	if (!host->dms)
 834		return -ENOMEM;
 835
 836	host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
 837	if (!host->dms->ch) {
 
 
 838		dev_err(host->dev, "Failed to get external DMA channel.\n");
 839		kfree(host->dms);
 840		host->dms = NULL;
 841		return -ENXIO;
 842	}
 843
 844	return 0;
 845}
 846
 847static void dw_mci_edmac_exit(struct dw_mci *host)
 848{
 849	if (host->dms) {
 850		if (host->dms->ch) {
 851			dma_release_channel(host->dms->ch);
 852			host->dms->ch = NULL;
 853		}
 854		kfree(host->dms);
 855		host->dms = NULL;
 856	}
 857}
 858
 859static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
 860	.init = dw_mci_edmac_init,
 861	.exit = dw_mci_edmac_exit,
 862	.start = dw_mci_edmac_start_dma,
 863	.stop = dw_mci_edmac_stop_dma,
 864	.complete = dw_mci_dmac_complete_dma,
 865	.cleanup = dw_mci_dma_cleanup,
 866};
 867
 868static int dw_mci_pre_dma_transfer(struct dw_mci *host,
 869				   struct mmc_data *data,
 870				   int cookie)
 871{
 872	struct scatterlist *sg;
 873	unsigned int i, sg_len;
 874
 875	if (data->host_cookie == COOKIE_PRE_MAPPED)
 876		return data->sg_len;
 877
 878	/*
 879	 * We don't do DMA on "complex" transfers, i.e. with
 880	 * non-word-aligned buffers or lengths. Also, we don't bother
 881	 * with all the DMA setup overhead for short transfers.
 882	 */
 883	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
 884		return -EINVAL;
 885
 886	if (data->blksz & 3)
 887		return -EINVAL;
 888
 889	for_each_sg(data->sg, sg, data->sg_len, i) {
 890		if (sg->offset & 3 || sg->length & 3)
 891			return -EINVAL;
 892	}
 893
 894	sg_len = dma_map_sg(host->dev,
 895			    data->sg,
 896			    data->sg_len,
 897			    mmc_get_dma_dir(data));
 898	if (sg_len == 0)
 899		return -EINVAL;
 900
 901	data->host_cookie = cookie;
 902
 903	return sg_len;
 904}
 905
 906static void dw_mci_pre_req(struct mmc_host *mmc,
 907			   struct mmc_request *mrq)
 908{
 909	struct dw_mci_slot *slot = mmc_priv(mmc);
 910	struct mmc_data *data = mrq->data;
 911
 912	if (!slot->host->use_dma || !data)
 913		return;
 914
 915	/* This data might be unmapped at this time */
 916	data->host_cookie = COOKIE_UNMAPPED;
 917
 918	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
 919				COOKIE_PRE_MAPPED) < 0)
 920		data->host_cookie = COOKIE_UNMAPPED;
 921}
 922
 923static void dw_mci_post_req(struct mmc_host *mmc,
 924			    struct mmc_request *mrq,
 925			    int err)
 926{
 927	struct dw_mci_slot *slot = mmc_priv(mmc);
 928	struct mmc_data *data = mrq->data;
 929
 930	if (!slot->host->use_dma || !data)
 931		return;
 932
 933	if (data->host_cookie != COOKIE_UNMAPPED)
 934		dma_unmap_sg(slot->host->dev,
 935			     data->sg,
 936			     data->sg_len,
 937			     mmc_get_dma_dir(data));
 938	data->host_cookie = COOKIE_UNMAPPED;
 939}
 940
 941static int dw_mci_get_cd(struct mmc_host *mmc)
 942{
 943	int present;
 944	struct dw_mci_slot *slot = mmc_priv(mmc);
 945	struct dw_mci *host = slot->host;
 946	int gpio_cd = mmc_gpio_get_cd(mmc);
 947
 948	/* Use platform get_cd function, else try onboard card detect */
 949	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
 950				|| !mmc_card_is_removable(mmc))) {
 951		present = 1;
 952
 953		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
 954			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
 955				dev_info(&mmc->class_dev,
 956					"card is polling.\n");
 957			} else {
 958				dev_info(&mmc->class_dev,
 959					"card is non-removable.\n");
 960			}
 961			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
 962		}
 963
 964		return present;
 965	} else if (gpio_cd >= 0)
 966		present = gpio_cd;
 967	else
 968		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
 969			== 0 ? 1 : 0;
 970
 971	spin_lock_bh(&host->lock);
 972	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
 973		dev_dbg(&mmc->class_dev, "card is present\n");
 974	else if (!present &&
 975			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
 976		dev_dbg(&mmc->class_dev, "card is not present\n");
 977	spin_unlock_bh(&host->lock);
 978
 979	return present;
 980}
 981
 982static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
 983{
 984	unsigned int blksz = data->blksz;
 985	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
 986	u32 fifo_width = 1 << host->data_shift;
 987	u32 blksz_depth = blksz / fifo_width, fifoth_val;
 988	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
 989	int idx = ARRAY_SIZE(mszs) - 1;
 990
 991	/* pio should ship this scenario */
 992	if (!host->use_dma)
 993		return;
 994
 995	tx_wmark = (host->fifo_depth) / 2;
 996	tx_wmark_invers = host->fifo_depth - tx_wmark;
 997
 998	/*
 999	 * MSIZE is '1',
1000	 * if blksz is not a multiple of the FIFO width
1001	 */
1002	if (blksz % fifo_width)
1003		goto done;
1004
1005	do {
1006		if (!((blksz_depth % mszs[idx]) ||
1007		     (tx_wmark_invers % mszs[idx]))) {
1008			msize = idx;
1009			rx_wmark = mszs[idx] - 1;
1010			break;
1011		}
1012	} while (--idx > 0);
1013	/*
1014	 * If idx is '0', it won't be tried
1015	 * Thus, initial values are uesed
1016	 */
1017done:
1018	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1019	mci_writel(host, FIFOTH, fifoth_val);
1020}
1021
1022static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1023{
1024	unsigned int blksz = data->blksz;
1025	u32 blksz_depth, fifo_depth;
1026	u16 thld_size;
1027	u8 enable;
1028
1029	/*
1030	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1031	 * in the FIFO region, so we really shouldn't access it).
1032	 */
1033	if (host->verid < DW_MMC_240A ||
1034		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1035		return;
1036
1037	/*
1038	 * Card write Threshold is introduced since 2.80a
1039	 * It's used when HS400 mode is enabled.
1040	 */
1041	if (data->flags & MMC_DATA_WRITE &&
1042		host->timing != MMC_TIMING_MMC_HS400)
1043		goto disable;
1044
1045	if (data->flags & MMC_DATA_WRITE)
1046		enable = SDMMC_CARD_WR_THR_EN;
1047	else
1048		enable = SDMMC_CARD_RD_THR_EN;
1049
1050	if (host->timing != MMC_TIMING_MMC_HS200 &&
1051	    host->timing != MMC_TIMING_UHS_SDR104 &&
1052	    host->timing != MMC_TIMING_MMC_HS400)
1053		goto disable;
1054
1055	blksz_depth = blksz / (1 << host->data_shift);
1056	fifo_depth = host->fifo_depth;
1057
1058	if (blksz_depth > fifo_depth)
1059		goto disable;
1060
1061	/*
1062	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1063	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1064	 * Currently just choose blksz.
1065	 */
1066	thld_size = blksz;
1067	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1068	return;
1069
1070disable:
1071	mci_writel(host, CDTHRCTL, 0);
1072}
1073
1074static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1075{
1076	unsigned long irqflags;
1077	int sg_len;
1078	u32 temp;
1079
1080	host->using_dma = 0;
1081
1082	/* If we don't have a channel, we can't do DMA */
1083	if (!host->use_dma)
1084		return -ENODEV;
1085
1086	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1087	if (sg_len < 0) {
1088		host->dma_ops->stop(host);
1089		return sg_len;
1090	}
1091
1092	host->using_dma = 1;
1093
1094	if (host->use_dma == TRANS_MODE_IDMAC)
1095		dev_vdbg(host->dev,
1096			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1097			 (unsigned long)host->sg_cpu,
1098			 (unsigned long)host->sg_dma,
1099			 sg_len);
1100
1101	/*
1102	 * Decide the MSIZE and RX/TX Watermark.
1103	 * If current block size is same with previous size,
1104	 * no need to update fifoth.
1105	 */
1106	if (host->prev_blksz != data->blksz)
1107		dw_mci_adjust_fifoth(host, data);
1108
1109	/* Enable the DMA interface */
1110	temp = mci_readl(host, CTRL);
1111	temp |= SDMMC_CTRL_DMA_ENABLE;
1112	mci_writel(host, CTRL, temp);
1113
1114	/* Disable RX/TX IRQs, let DMA handle it */
1115	spin_lock_irqsave(&host->irq_lock, irqflags);
1116	temp = mci_readl(host, INTMASK);
1117	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1118	mci_writel(host, INTMASK, temp);
1119	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1120
1121	if (host->dma_ops->start(host, sg_len)) {
1122		host->dma_ops->stop(host);
1123		/* We can't do DMA, try PIO for this one */
1124		dev_dbg(host->dev,
1125			"%s: fall back to PIO mode for current transfer\n",
1126			__func__);
1127		return -ENODEV;
1128	}
1129
1130	return 0;
1131}
1132
1133static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1134{
1135	unsigned long irqflags;
1136	int flags = SG_MITER_ATOMIC;
1137	u32 temp;
1138
1139	data->error = -EINPROGRESS;
1140
1141	WARN_ON(host->data);
1142	host->sg = NULL;
1143	host->data = data;
1144
1145	if (data->flags & MMC_DATA_READ)
1146		host->dir_status = DW_MCI_RECV_STATUS;
1147	else
1148		host->dir_status = DW_MCI_SEND_STATUS;
1149
1150	dw_mci_ctrl_thld(host, data);
1151
1152	if (dw_mci_submit_data_dma(host, data)) {
1153		if (host->data->flags & MMC_DATA_READ)
1154			flags |= SG_MITER_TO_SG;
1155		else
1156			flags |= SG_MITER_FROM_SG;
1157
1158		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1159		host->sg = data->sg;
1160		host->part_buf_start = 0;
1161		host->part_buf_count = 0;
1162
1163		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1164
1165		spin_lock_irqsave(&host->irq_lock, irqflags);
1166		temp = mci_readl(host, INTMASK);
1167		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1168		mci_writel(host, INTMASK, temp);
1169		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1170
1171		temp = mci_readl(host, CTRL);
1172		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1173		mci_writel(host, CTRL, temp);
1174
1175		/*
1176		 * Use the initial fifoth_val for PIO mode. If wm_algined
1177		 * is set, we set watermark same as data size.
1178		 * If next issued data may be transfered by DMA mode,
1179		 * prev_blksz should be invalidated.
1180		 */
1181		if (host->wm_aligned)
1182			dw_mci_adjust_fifoth(host, data);
1183		else
1184			mci_writel(host, FIFOTH, host->fifoth_val);
1185		host->prev_blksz = 0;
1186	} else {
1187		/*
1188		 * Keep the current block size.
1189		 * It will be used to decide whether to update
1190		 * fifoth register next time.
1191		 */
1192		host->prev_blksz = data->blksz;
1193	}
1194}
1195
1196static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1197{
1198	struct dw_mci *host = slot->host;
1199	unsigned int clock = slot->clock;
1200	u32 div;
1201	u32 clk_en_a;
1202	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1203
1204	/* We must continue to set bit 28 in CMD until the change is complete */
1205	if (host->state == STATE_WAITING_CMD11_DONE)
1206		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1207
1208	slot->mmc->actual_clock = 0;
1209
1210	if (!clock) {
1211		mci_writel(host, CLKENA, 0);
1212		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1213	} else if (clock != host->current_speed || force_clkinit) {
1214		div = host->bus_hz / clock;
1215		if (host->bus_hz % clock && host->bus_hz > clock)
1216			/*
1217			 * move the + 1 after the divide to prevent
1218			 * over-clocking the card.
1219			 */
1220			div += 1;
1221
1222		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1223
1224		if ((clock != slot->__clk_old &&
1225			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1226			force_clkinit) {
1227			/* Silent the verbose log if calling from PM context */
1228			if (!force_clkinit)
1229				dev_info(&slot->mmc->class_dev,
1230					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1231					 slot->id, host->bus_hz, clock,
1232					 div ? ((host->bus_hz / div) >> 1) :
1233					 host->bus_hz, div);
1234
1235			/*
1236			 * If card is polling, display the message only
1237			 * one time at boot time.
1238			 */
1239			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1240					slot->mmc->f_min == clock)
1241				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1242		}
1243
1244		/* disable clock */
1245		mci_writel(host, CLKENA, 0);
1246		mci_writel(host, CLKSRC, 0);
1247
1248		/* inform CIU */
1249		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1250
1251		/* set clock to desired speed */
1252		mci_writel(host, CLKDIV, div);
1253
1254		/* inform CIU */
1255		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1256
1257		/* enable clock; only low power if no SDIO */
1258		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1259		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1260			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1261		mci_writel(host, CLKENA, clk_en_a);
1262
1263		/* inform CIU */
1264		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1265
1266		/* keep the last clock value that was requested from core */
1267		slot->__clk_old = clock;
1268		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1269					  host->bus_hz;
1270	}
1271
1272	host->current_speed = clock;
1273
1274	/* Set the current slot bus width */
1275	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1276}
1277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278static void __dw_mci_start_request(struct dw_mci *host,
1279				   struct dw_mci_slot *slot,
1280				   struct mmc_command *cmd)
1281{
1282	struct mmc_request *mrq;
1283	struct mmc_data	*data;
1284	u32 cmdflags;
1285
1286	mrq = slot->mrq;
1287
1288	host->mrq = mrq;
1289
1290	host->pending_events = 0;
1291	host->completed_events = 0;
1292	host->cmd_status = 0;
1293	host->data_status = 0;
1294	host->dir_status = 0;
1295
1296	data = cmd->data;
1297	if (data) {
1298		mci_writel(host, TMOUT, 0xFFFFFFFF);
1299		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1300		mci_writel(host, BLKSIZ, data->blksz);
1301	}
1302
1303	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1304
1305	/* this is the first command, send the initialization clock */
1306	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1307		cmdflags |= SDMMC_CMD_INIT;
1308
1309	if (data) {
1310		dw_mci_submit_data(host, data);
1311		wmb(); /* drain writebuffer */
1312	}
1313
1314	dw_mci_start_command(host, cmd, cmdflags);
1315
1316	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1317		unsigned long irqflags;
1318
1319		/*
1320		 * Databook says to fail after 2ms w/ no response, but evidence
1321		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1322		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1323		 * is just about to roll over.
1324		 *
1325		 * We do this whole thing under spinlock and only if the
1326		 * command hasn't already completed (indicating the the irq
1327		 * already ran so we don't want the timeout).
1328		 */
1329		spin_lock_irqsave(&host->irq_lock, irqflags);
1330		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1331			mod_timer(&host->cmd11_timer,
1332				jiffies + msecs_to_jiffies(500) + 1);
1333		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1334	}
1335
1336	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1337}
1338
1339static void dw_mci_start_request(struct dw_mci *host,
1340				 struct dw_mci_slot *slot)
1341{
1342	struct mmc_request *mrq = slot->mrq;
1343	struct mmc_command *cmd;
1344
1345	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1346	__dw_mci_start_request(host, slot, cmd);
1347}
1348
1349/* must be called with host->lock held */
1350static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1351				 struct mmc_request *mrq)
1352{
1353	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1354		 host->state);
1355
1356	slot->mrq = mrq;
1357
1358	if (host->state == STATE_WAITING_CMD11_DONE) {
1359		dev_warn(&slot->mmc->class_dev,
1360			 "Voltage change didn't complete\n");
1361		/*
1362		 * this case isn't expected to happen, so we can
1363		 * either crash here or just try to continue on
1364		 * in the closest possible state
1365		 */
1366		host->state = STATE_IDLE;
1367	}
1368
1369	if (host->state == STATE_IDLE) {
1370		host->state = STATE_SENDING_CMD;
1371		dw_mci_start_request(host, slot);
1372	} else {
1373		list_add_tail(&slot->queue_node, &host->queue);
1374	}
1375}
1376
1377static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1378{
1379	struct dw_mci_slot *slot = mmc_priv(mmc);
1380	struct dw_mci *host = slot->host;
1381
1382	WARN_ON(slot->mrq);
1383
1384	/*
1385	 * The check for card presence and queueing of the request must be
1386	 * atomic, otherwise the card could be removed in between and the
1387	 * request wouldn't fail until another card was inserted.
1388	 */
1389
1390	if (!dw_mci_get_cd(mmc)) {
1391		mrq->cmd->error = -ENOMEDIUM;
1392		mmc_request_done(mmc, mrq);
1393		return;
1394	}
1395
1396	spin_lock_bh(&host->lock);
1397
1398	dw_mci_queue_request(host, slot, mrq);
1399
1400	spin_unlock_bh(&host->lock);
1401}
1402
1403static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1404{
1405	struct dw_mci_slot *slot = mmc_priv(mmc);
1406	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1407	u32 regs;
1408	int ret;
1409
1410	switch (ios->bus_width) {
1411	case MMC_BUS_WIDTH_4:
1412		slot->ctype = SDMMC_CTYPE_4BIT;
1413		break;
1414	case MMC_BUS_WIDTH_8:
1415		slot->ctype = SDMMC_CTYPE_8BIT;
1416		break;
1417	default:
1418		/* set default 1 bit mode */
1419		slot->ctype = SDMMC_CTYPE_1BIT;
1420	}
1421
1422	regs = mci_readl(slot->host, UHS_REG);
1423
1424	/* DDR mode set */
1425	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1426	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1427	    ios->timing == MMC_TIMING_MMC_HS400)
1428		regs |= ((0x1 << slot->id) << 16);
1429	else
1430		regs &= ~((0x1 << slot->id) << 16);
1431
1432	mci_writel(slot->host, UHS_REG, regs);
1433	slot->host->timing = ios->timing;
1434
1435	/*
1436	 * Use mirror of ios->clock to prevent race with mmc
1437	 * core ios update when finding the minimum.
1438	 */
1439	slot->clock = ios->clock;
1440
1441	if (drv_data && drv_data->set_ios)
1442		drv_data->set_ios(slot->host, ios);
1443
1444	switch (ios->power_mode) {
1445	case MMC_POWER_UP:
1446		if (!IS_ERR(mmc->supply.vmmc)) {
1447			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1448					ios->vdd);
1449			if (ret) {
1450				dev_err(slot->host->dev,
1451					"failed to enable vmmc regulator\n");
1452				/*return, if failed turn on vmmc*/
1453				return;
1454			}
1455		}
1456		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1457		regs = mci_readl(slot->host, PWREN);
1458		regs |= (1 << slot->id);
1459		mci_writel(slot->host, PWREN, regs);
1460		break;
1461	case MMC_POWER_ON:
1462		if (!slot->host->vqmmc_enabled) {
1463			if (!IS_ERR(mmc->supply.vqmmc)) {
1464				ret = regulator_enable(mmc->supply.vqmmc);
1465				if (ret < 0)
1466					dev_err(slot->host->dev,
1467						"failed to enable vqmmc\n");
1468				else
1469					slot->host->vqmmc_enabled = true;
1470
1471			} else {
1472				/* Keep track so we don't reset again */
1473				slot->host->vqmmc_enabled = true;
1474			}
1475
1476			/* Reset our state machine after powering on */
1477			dw_mci_ctrl_reset(slot->host,
1478					  SDMMC_CTRL_ALL_RESET_FLAGS);
1479		}
1480
1481		/* Adjust clock / bus width after power is up */
1482		dw_mci_setup_bus(slot, false);
1483
1484		break;
1485	case MMC_POWER_OFF:
1486		/* Turn clock off before power goes down */
1487		dw_mci_setup_bus(slot, false);
1488
1489		if (!IS_ERR(mmc->supply.vmmc))
1490			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1491
1492		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1493			regulator_disable(mmc->supply.vqmmc);
1494		slot->host->vqmmc_enabled = false;
1495
1496		regs = mci_readl(slot->host, PWREN);
1497		regs &= ~(1 << slot->id);
1498		mci_writel(slot->host, PWREN, regs);
1499		break;
1500	default:
1501		break;
1502	}
1503
1504	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1505		slot->host->state = STATE_IDLE;
1506}
1507
1508static int dw_mci_card_busy(struct mmc_host *mmc)
1509{
1510	struct dw_mci_slot *slot = mmc_priv(mmc);
1511	u32 status;
1512
1513	/*
1514	 * Check the busy bit which is low when DAT[3:0]
1515	 * (the data lines) are 0000
1516	 */
1517	status = mci_readl(slot->host, STATUS);
1518
1519	return !!(status & SDMMC_STATUS_BUSY);
1520}
1521
1522static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1523{
1524	struct dw_mci_slot *slot = mmc_priv(mmc);
1525	struct dw_mci *host = slot->host;
1526	const struct dw_mci_drv_data *drv_data = host->drv_data;
1527	u32 uhs;
1528	u32 v18 = SDMMC_UHS_18V << slot->id;
1529	int ret;
1530
1531	if (drv_data && drv_data->switch_voltage)
1532		return drv_data->switch_voltage(mmc, ios);
1533
1534	/*
1535	 * Program the voltage.  Note that some instances of dw_mmc may use
1536	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1537	 * does no harm but you need to set the regulator directly.  Try both.
1538	 */
1539	uhs = mci_readl(host, UHS_REG);
1540	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1541		uhs &= ~v18;
1542	else
1543		uhs |= v18;
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546		ret = mmc_regulator_set_vqmmc(mmc, ios);
1547
1548		if (ret) {
1549			dev_dbg(&mmc->class_dev,
1550					 "Regulator set error %d - %s V\n",
1551					 ret, uhs & v18 ? "1.8" : "3.3");
1552			return ret;
1553		}
1554	}
1555	mci_writel(host, UHS_REG, uhs);
1556
1557	return 0;
1558}
1559
1560static int dw_mci_get_ro(struct mmc_host *mmc)
1561{
1562	int read_only;
1563	struct dw_mci_slot *slot = mmc_priv(mmc);
1564	int gpio_ro = mmc_gpio_get_ro(mmc);
1565
1566	/* Use platform get_ro function, else try on board write protect */
1567	if (gpio_ro >= 0)
1568		read_only = gpio_ro;
1569	else
1570		read_only =
1571			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1572
1573	dev_dbg(&mmc->class_dev, "card is %s\n",
1574		read_only ? "read-only" : "read-write");
1575
1576	return read_only;
1577}
1578
1579static void dw_mci_hw_reset(struct mmc_host *mmc)
1580{
1581	struct dw_mci_slot *slot = mmc_priv(mmc);
1582	struct dw_mci *host = slot->host;
1583	int reset;
1584
1585	if (host->use_dma == TRANS_MODE_IDMAC)
1586		dw_mci_idmac_reset(host);
1587
1588	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1589				     SDMMC_CTRL_FIFO_RESET))
1590		return;
1591
1592	/*
1593	 * According to eMMC spec, card reset procedure:
1594	 * tRstW >= 1us:   RST_n pulse width
1595	 * tRSCA >= 200us: RST_n to Command time
1596	 * tRSTH >= 1us:   RST_n high period
1597	 */
1598	reset = mci_readl(host, RST_N);
1599	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1600	mci_writel(host, RST_N, reset);
1601	usleep_range(1, 2);
1602	reset |= SDMMC_RST_HWACTIVE << slot->id;
1603	mci_writel(host, RST_N, reset);
1604	usleep_range(200, 300);
1605}
1606
1607static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1608{
1609	struct dw_mci_slot *slot = mmc_priv(mmc);
1610	struct dw_mci *host = slot->host;
 
 
 
1611
1612	/*
1613	 * Low power mode will stop the card clock when idle.  According to the
1614	 * description of the CLKENA register we should disable low power mode
1615	 * for SDIO cards if we need SDIO interrupts to work.
1616	 */
1617	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1618		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1619		u32 clk_en_a_old;
1620		u32 clk_en_a;
1621
1622		clk_en_a_old = mci_readl(host, CLKENA);
 
 
 
 
 
 
 
1623
1624		if (card->type == MMC_TYPE_SDIO ||
1625		    card->type == MMC_TYPE_SD_COMBO) {
1626			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1627			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1628		} else {
1629			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1630			clk_en_a = clk_en_a_old | clken_low_pwr;
1631		}
1632
1633		if (clk_en_a != clk_en_a_old) {
1634			mci_writel(host, CLKENA, clk_en_a);
1635			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1636				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1637		}
1638	}
1639}
1640
1641static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1642{
1643	struct dw_mci *host = slot->host;
1644	unsigned long irqflags;
1645	u32 int_mask;
1646
1647	spin_lock_irqsave(&host->irq_lock, irqflags);
1648
1649	/* Enable/disable Slot Specific SDIO interrupt */
1650	int_mask = mci_readl(host, INTMASK);
1651	if (enb)
1652		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1653	else
1654		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1655	mci_writel(host, INTMASK, int_mask);
1656
1657	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1658}
1659
1660static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1661{
1662	struct dw_mci_slot *slot = mmc_priv(mmc);
1663	struct dw_mci *host = slot->host;
1664
 
1665	__dw_mci_enable_sdio_irq(slot, enb);
1666
1667	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1668	if (enb)
1669		pm_runtime_get_noresume(host->dev);
1670	else
1671		pm_runtime_put_noidle(host->dev);
1672}
1673
1674static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1675{
1676	struct dw_mci_slot *slot = mmc_priv(mmc);
1677
1678	__dw_mci_enable_sdio_irq(slot, 1);
1679}
1680
1681static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1682{
1683	struct dw_mci_slot *slot = mmc_priv(mmc);
1684	struct dw_mci *host = slot->host;
1685	const struct dw_mci_drv_data *drv_data = host->drv_data;
1686	int err = -EINVAL;
1687
1688	if (drv_data && drv_data->execute_tuning)
1689		err = drv_data->execute_tuning(slot, opcode);
1690	return err;
1691}
1692
1693static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1694				       struct mmc_ios *ios)
1695{
1696	struct dw_mci_slot *slot = mmc_priv(mmc);
1697	struct dw_mci *host = slot->host;
1698	const struct dw_mci_drv_data *drv_data = host->drv_data;
1699
1700	if (drv_data && drv_data->prepare_hs400_tuning)
1701		return drv_data->prepare_hs400_tuning(host, ios);
1702
1703	return 0;
1704}
1705
1706static bool dw_mci_reset(struct dw_mci *host)
1707{
1708	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1709	bool ret = false;
1710	u32 status = 0;
1711
1712	/*
1713	 * Resetting generates a block interrupt, hence setting
1714	 * the scatter-gather pointer to NULL.
1715	 */
1716	if (host->sg) {
1717		sg_miter_stop(&host->sg_miter);
1718		host->sg = NULL;
1719	}
1720
1721	if (host->use_dma)
1722		flags |= SDMMC_CTRL_DMA_RESET;
1723
1724	if (dw_mci_ctrl_reset(host, flags)) {
1725		/*
1726		 * In all cases we clear the RAWINTS
1727		 * register to clear any interrupts.
1728		 */
1729		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1730
1731		if (!host->use_dma) {
1732			ret = true;
1733			goto ciu_out;
1734		}
1735
1736		/* Wait for dma_req to be cleared */
1737		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1738					      status,
1739					      !(status & SDMMC_STATUS_DMA_REQ),
1740					      1, 500 * USEC_PER_MSEC)) {
1741			dev_err(host->dev,
1742				"%s: Timeout waiting for dma_req to be cleared\n",
1743				__func__);
1744			goto ciu_out;
1745		}
1746
1747		/* when using DMA next we reset the fifo again */
1748		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1749			goto ciu_out;
1750	} else {
1751		/* if the controller reset bit did clear, then set clock regs */
1752		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1753			dev_err(host->dev,
1754				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1755				__func__);
1756			goto ciu_out;
1757		}
1758	}
1759
1760	if (host->use_dma == TRANS_MODE_IDMAC)
1761		/* It is also required that we reinit idmac */
1762		dw_mci_idmac_init(host);
1763
1764	ret = true;
1765
1766ciu_out:
1767	/* After a CTRL reset we need to have CIU set clock registers  */
1768	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1769
1770	return ret;
1771}
1772
1773static const struct mmc_host_ops dw_mci_ops = {
1774	.request		= dw_mci_request,
1775	.pre_req		= dw_mci_pre_req,
1776	.post_req		= dw_mci_post_req,
1777	.set_ios		= dw_mci_set_ios,
1778	.get_ro			= dw_mci_get_ro,
1779	.get_cd			= dw_mci_get_cd,
1780	.hw_reset               = dw_mci_hw_reset,
1781	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1782	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1783	.execute_tuning		= dw_mci_execute_tuning,
1784	.card_busy		= dw_mci_card_busy,
1785	.start_signal_voltage_switch = dw_mci_switch_voltage,
1786	.init_card		= dw_mci_init_card,
1787	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1788};
1789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1791	__releases(&host->lock)
1792	__acquires(&host->lock)
1793{
1794	struct dw_mci_slot *slot;
1795	struct mmc_host	*prev_mmc = host->slot->mmc;
1796
1797	WARN_ON(host->cmd || host->data);
1798
1799	host->slot->mrq = NULL;
1800	host->mrq = NULL;
1801	if (!list_empty(&host->queue)) {
1802		slot = list_entry(host->queue.next,
1803				  struct dw_mci_slot, queue_node);
1804		list_del(&slot->queue_node);
1805		dev_vdbg(host->dev, "list not empty: %s is next\n",
1806			 mmc_hostname(slot->mmc));
1807		host->state = STATE_SENDING_CMD;
1808		dw_mci_start_request(host, slot);
1809	} else {
1810		dev_vdbg(host->dev, "list empty\n");
1811
1812		if (host->state == STATE_SENDING_CMD11)
1813			host->state = STATE_WAITING_CMD11_DONE;
1814		else
1815			host->state = STATE_IDLE;
1816	}
1817
1818	spin_unlock(&host->lock);
1819	mmc_request_done(prev_mmc, mrq);
1820	spin_lock(&host->lock);
1821}
1822
1823static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1824{
1825	u32 status = host->cmd_status;
1826
1827	host->cmd_status = 0;
1828
1829	/* Read the response from the card (up to 16 bytes) */
1830	if (cmd->flags & MMC_RSP_PRESENT) {
1831		if (cmd->flags & MMC_RSP_136) {
1832			cmd->resp[3] = mci_readl(host, RESP0);
1833			cmd->resp[2] = mci_readl(host, RESP1);
1834			cmd->resp[1] = mci_readl(host, RESP2);
1835			cmd->resp[0] = mci_readl(host, RESP3);
1836		} else {
1837			cmd->resp[0] = mci_readl(host, RESP0);
1838			cmd->resp[1] = 0;
1839			cmd->resp[2] = 0;
1840			cmd->resp[3] = 0;
1841		}
1842	}
1843
1844	if (status & SDMMC_INT_RTO)
1845		cmd->error = -ETIMEDOUT;
1846	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1847		cmd->error = -EILSEQ;
1848	else if (status & SDMMC_INT_RESP_ERR)
1849		cmd->error = -EIO;
1850	else
1851		cmd->error = 0;
1852
1853	return cmd->error;
1854}
1855
1856static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1857{
1858	u32 status = host->data_status;
1859
1860	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1861		if (status & SDMMC_INT_DRTO) {
1862			data->error = -ETIMEDOUT;
1863		} else if (status & SDMMC_INT_DCRC) {
1864			data->error = -EILSEQ;
1865		} else if (status & SDMMC_INT_EBE) {
1866			if (host->dir_status ==
1867				DW_MCI_SEND_STATUS) {
1868				/*
1869				 * No data CRC status was returned.
1870				 * The number of bytes transferred
1871				 * will be exaggerated in PIO mode.
1872				 */
1873				data->bytes_xfered = 0;
1874				data->error = -ETIMEDOUT;
1875			} else if (host->dir_status ==
1876					DW_MCI_RECV_STATUS) {
1877				data->error = -EILSEQ;
1878			}
1879		} else {
1880			/* SDMMC_INT_SBE is included */
1881			data->error = -EILSEQ;
1882		}
1883
1884		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1885
1886		/*
1887		 * After an error, there may be data lingering
1888		 * in the FIFO
1889		 */
1890		dw_mci_reset(host);
1891	} else {
1892		data->bytes_xfered = data->blocks * data->blksz;
1893		data->error = 0;
1894	}
1895
1896	return data->error;
1897}
1898
1899static void dw_mci_set_drto(struct dw_mci *host)
1900{
 
1901	unsigned int drto_clks;
1902	unsigned int drto_div;
1903	unsigned int drto_ms;
1904	unsigned long irqflags;
1905
1906	drto_clks = mci_readl(host, TMOUT) >> 8;
 
 
 
1907	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1908	if (drto_div == 0)
1909		drto_div = 1;
1910
1911	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1912				   host->bus_hz);
1913
 
 
1914	/* add a bit spare time */
1915	drto_ms += 10;
1916
1917	spin_lock_irqsave(&host->irq_lock, irqflags);
1918	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1919		mod_timer(&host->dto_timer,
1920			  jiffies + msecs_to_jiffies(drto_ms));
1921	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1922}
1923
1924static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1925{
1926	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1927		return false;
1928
1929	/*
1930	 * Really be certain that the timer has stopped.  This is a bit of
1931	 * paranoia and could only really happen if we had really bad
1932	 * interrupt latency and the interrupt routine and timeout were
1933	 * running concurrently so that the del_timer() in the interrupt
1934	 * handler couldn't run.
1935	 */
1936	WARN_ON(del_timer_sync(&host->cto_timer));
1937	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1938
1939	return true;
1940}
1941
1942static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1943{
1944	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1945		return false;
1946
1947	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1948	WARN_ON(del_timer_sync(&host->dto_timer));
1949	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1950
1951	return true;
1952}
1953
1954static void dw_mci_tasklet_func(unsigned long priv)
1955{
1956	struct dw_mci *host = (struct dw_mci *)priv;
1957	struct mmc_data	*data;
1958	struct mmc_command *cmd;
1959	struct mmc_request *mrq;
1960	enum dw_mci_state state;
1961	enum dw_mci_state prev_state;
1962	unsigned int err;
1963
1964	spin_lock(&host->lock);
1965
1966	state = host->state;
1967	data = host->data;
1968	mrq = host->mrq;
1969
1970	do {
1971		prev_state = state;
1972
1973		switch (state) {
1974		case STATE_IDLE:
1975		case STATE_WAITING_CMD11_DONE:
1976			break;
1977
1978		case STATE_SENDING_CMD11:
1979		case STATE_SENDING_CMD:
1980			if (!dw_mci_clear_pending_cmd_complete(host))
1981				break;
1982
1983			cmd = host->cmd;
1984			host->cmd = NULL;
1985			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1986			err = dw_mci_command_complete(host, cmd);
1987			if (cmd == mrq->sbc && !err) {
1988				__dw_mci_start_request(host, host->slot,
1989						       mrq->cmd);
1990				goto unlock;
1991			}
1992
1993			if (cmd->data && err) {
1994				/*
1995				 * During UHS tuning sequence, sending the stop
1996				 * command after the response CRC error would
1997				 * throw the system into a confused state
1998				 * causing all future tuning phases to report
1999				 * failure.
2000				 *
2001				 * In such case controller will move into a data
2002				 * transfer state after a response error or
2003				 * response CRC error. Let's let that finish
2004				 * before trying to send a stop, so we'll go to
2005				 * STATE_SENDING_DATA.
2006				 *
2007				 * Although letting the data transfer take place
2008				 * will waste a bit of time (we already know
2009				 * the command was bad), it can't cause any
2010				 * errors since it's possible it would have
2011				 * taken place anyway if this tasklet got
2012				 * delayed. Allowing the transfer to take place
2013				 * avoids races and keeps things simple.
2014				 */
2015				if (err != -ETIMEDOUT) {
 
2016					state = STATE_SENDING_DATA;
2017					continue;
2018				}
2019
 
2020				dw_mci_stop_dma(host);
2021				send_stop_abort(host, data);
2022				state = STATE_SENDING_STOP;
2023				break;
2024			}
2025
2026			if (!cmd->data || err) {
2027				dw_mci_request_end(host, mrq);
2028				goto unlock;
2029			}
2030
2031			prev_state = state = STATE_SENDING_DATA;
2032			/* fall through */
2033
2034		case STATE_SENDING_DATA:
2035			/*
2036			 * We could get a data error and never a transfer
2037			 * complete so we'd better check for it here.
2038			 *
2039			 * Note that we don't really care if we also got a
2040			 * transfer complete; stopping the DMA and sending an
2041			 * abort won't hurt.
2042			 */
2043			if (test_and_clear_bit(EVENT_DATA_ERROR,
2044					       &host->pending_events)) {
2045				dw_mci_stop_dma(host);
2046				if (!(host->data_status & (SDMMC_INT_DRTO |
2047							   SDMMC_INT_EBE)))
2048					send_stop_abort(host, data);
 
2049				state = STATE_DATA_ERROR;
2050				break;
2051			}
2052
2053			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2054						&host->pending_events)) {
2055				/*
2056				 * If all data-related interrupts don't come
2057				 * within the given time in reading data state.
2058				 */
2059				if (host->dir_status == DW_MCI_RECV_STATUS)
2060					dw_mci_set_drto(host);
2061				break;
2062			}
2063
2064			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2065
2066			/*
2067			 * Handle an EVENT_DATA_ERROR that might have shown up
2068			 * before the transfer completed.  This might not have
2069			 * been caught by the check above because the interrupt
2070			 * could have gone off between the previous check and
2071			 * the check for transfer complete.
2072			 *
2073			 * Technically this ought not be needed assuming we
2074			 * get a DATA_COMPLETE eventually (we'll notice the
2075			 * error and end the request), but it shouldn't hurt.
2076			 *
2077			 * This has the advantage of sending the stop command.
2078			 */
2079			if (test_and_clear_bit(EVENT_DATA_ERROR,
2080					       &host->pending_events)) {
2081				dw_mci_stop_dma(host);
2082				if (!(host->data_status & (SDMMC_INT_DRTO |
2083							   SDMMC_INT_EBE)))
2084					send_stop_abort(host, data);
 
2085				state = STATE_DATA_ERROR;
2086				break;
2087			}
2088			prev_state = state = STATE_DATA_BUSY;
2089
2090			/* fall through */
2091
2092		case STATE_DATA_BUSY:
2093			if (!dw_mci_clear_pending_data_complete(host)) {
2094				/*
2095				 * If data error interrupt comes but data over
2096				 * interrupt doesn't come within the given time.
2097				 * in reading data state.
2098				 */
2099				if (host->dir_status == DW_MCI_RECV_STATUS)
2100					dw_mci_set_drto(host);
2101				break;
2102			}
2103
 
2104			host->data = NULL;
2105			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2106			err = dw_mci_data_complete(host, data);
2107
2108			if (!err) {
2109				if (!data->stop || mrq->sbc) {
2110					if (mrq->sbc && data->stop)
2111						data->stop->error = 0;
2112					dw_mci_request_end(host, mrq);
2113					goto unlock;
2114				}
2115
2116				/* stop command for open-ended transfer*/
2117				if (data->stop)
2118					send_stop_abort(host, data);
2119			} else {
2120				/*
2121				 * If we don't have a command complete now we'll
2122				 * never get one since we just reset everything;
2123				 * better end the request.
2124				 *
2125				 * If we do have a command complete we'll fall
2126				 * through to the SENDING_STOP command and
2127				 * everything will be peachy keen.
2128				 */
2129				if (!test_bit(EVENT_CMD_COMPLETE,
2130					      &host->pending_events)) {
2131					host->cmd = NULL;
2132					dw_mci_request_end(host, mrq);
2133					goto unlock;
2134				}
2135			}
2136
2137			/*
2138			 * If err has non-zero,
2139			 * stop-abort command has been already issued.
2140			 */
2141			prev_state = state = STATE_SENDING_STOP;
2142
2143			/* fall through */
2144
2145		case STATE_SENDING_STOP:
2146			if (!dw_mci_clear_pending_cmd_complete(host))
2147				break;
2148
2149			/* CMD error in data command */
2150			if (mrq->cmd->error && mrq->data)
2151				dw_mci_reset(host);
2152
 
2153			host->cmd = NULL;
2154			host->data = NULL;
2155
2156			if (!mrq->sbc && mrq->stop)
2157				dw_mci_command_complete(host, mrq->stop);
2158			else
2159				host->cmd_status = 0;
2160
2161			dw_mci_request_end(host, mrq);
2162			goto unlock;
2163
2164		case STATE_DATA_ERROR:
2165			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2166						&host->pending_events))
2167				break;
2168
2169			state = STATE_DATA_BUSY;
2170			break;
2171		}
2172	} while (state != prev_state);
2173
2174	host->state = state;
2175unlock:
2176	spin_unlock(&host->lock);
2177
2178}
2179
2180/* push final bytes to part_buf, only use during push */
2181static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2182{
2183	memcpy((void *)&host->part_buf, buf, cnt);
2184	host->part_buf_count = cnt;
2185}
2186
2187/* append bytes to part_buf, only use during push */
2188static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2189{
2190	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2191	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2192	host->part_buf_count += cnt;
2193	return cnt;
2194}
2195
2196/* pull first bytes from part_buf, only use during pull */
2197static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2198{
2199	cnt = min_t(int, cnt, host->part_buf_count);
2200	if (cnt) {
2201		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2202		       cnt);
2203		host->part_buf_count -= cnt;
2204		host->part_buf_start += cnt;
2205	}
2206	return cnt;
2207}
2208
2209/* pull final bytes from the part_buf, assuming it's just been filled */
2210static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2211{
2212	memcpy(buf, &host->part_buf, cnt);
2213	host->part_buf_start = cnt;
2214	host->part_buf_count = (1 << host->data_shift) - cnt;
2215}
2216
2217static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2218{
2219	struct mmc_data *data = host->data;
2220	int init_cnt = cnt;
2221
2222	/* try and push anything in the part_buf */
2223	if (unlikely(host->part_buf_count)) {
2224		int len = dw_mci_push_part_bytes(host, buf, cnt);
2225
2226		buf += len;
2227		cnt -= len;
2228		if (host->part_buf_count == 2) {
2229			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2230			host->part_buf_count = 0;
2231		}
2232	}
2233#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2234	if (unlikely((unsigned long)buf & 0x1)) {
2235		while (cnt >= 2) {
2236			u16 aligned_buf[64];
2237			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2238			int items = len >> 1;
2239			int i;
2240			/* memcpy from input buffer into aligned buffer */
2241			memcpy(aligned_buf, buf, len);
2242			buf += len;
2243			cnt -= len;
2244			/* push data from aligned buffer into fifo */
2245			for (i = 0; i < items; ++i)
2246				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2247		}
2248	} else
2249#endif
2250	{
2251		u16 *pdata = buf;
2252
2253		for (; cnt >= 2; cnt -= 2)
2254			mci_fifo_writew(host->fifo_reg, *pdata++);
2255		buf = pdata;
2256	}
2257	/* put anything remaining in the part_buf */
2258	if (cnt) {
2259		dw_mci_set_part_bytes(host, buf, cnt);
2260		 /* Push data if we have reached the expected data length */
2261		if ((data->bytes_xfered + init_cnt) ==
2262		    (data->blksz * data->blocks))
2263			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2264	}
2265}
2266
2267static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2268{
2269#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2270	if (unlikely((unsigned long)buf & 0x1)) {
2271		while (cnt >= 2) {
2272			/* pull data from fifo into aligned buffer */
2273			u16 aligned_buf[64];
2274			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2275			int items = len >> 1;
2276			int i;
2277
2278			for (i = 0; i < items; ++i)
2279				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2280			/* memcpy from aligned buffer into output buffer */
2281			memcpy(buf, aligned_buf, len);
2282			buf += len;
2283			cnt -= len;
2284		}
2285	} else
2286#endif
2287	{
2288		u16 *pdata = buf;
2289
2290		for (; cnt >= 2; cnt -= 2)
2291			*pdata++ = mci_fifo_readw(host->fifo_reg);
2292		buf = pdata;
2293	}
2294	if (cnt) {
2295		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2296		dw_mci_pull_final_bytes(host, buf, cnt);
2297	}
2298}
2299
2300static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2301{
2302	struct mmc_data *data = host->data;
2303	int init_cnt = cnt;
2304
2305	/* try and push anything in the part_buf */
2306	if (unlikely(host->part_buf_count)) {
2307		int len = dw_mci_push_part_bytes(host, buf, cnt);
2308
2309		buf += len;
2310		cnt -= len;
2311		if (host->part_buf_count == 4) {
2312			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2313			host->part_buf_count = 0;
2314		}
2315	}
2316#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2317	if (unlikely((unsigned long)buf & 0x3)) {
2318		while (cnt >= 4) {
2319			u32 aligned_buf[32];
2320			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2321			int items = len >> 2;
2322			int i;
2323			/* memcpy from input buffer into aligned buffer */
2324			memcpy(aligned_buf, buf, len);
2325			buf += len;
2326			cnt -= len;
2327			/* push data from aligned buffer into fifo */
2328			for (i = 0; i < items; ++i)
2329				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2330		}
2331	} else
2332#endif
2333	{
2334		u32 *pdata = buf;
2335
2336		for (; cnt >= 4; cnt -= 4)
2337			mci_fifo_writel(host->fifo_reg, *pdata++);
2338		buf = pdata;
2339	}
2340	/* put anything remaining in the part_buf */
2341	if (cnt) {
2342		dw_mci_set_part_bytes(host, buf, cnt);
2343		 /* Push data if we have reached the expected data length */
2344		if ((data->bytes_xfered + init_cnt) ==
2345		    (data->blksz * data->blocks))
2346			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2347	}
2348}
2349
2350static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2351{
2352#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2353	if (unlikely((unsigned long)buf & 0x3)) {
2354		while (cnt >= 4) {
2355			/* pull data from fifo into aligned buffer */
2356			u32 aligned_buf[32];
2357			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2358			int items = len >> 2;
2359			int i;
2360
2361			for (i = 0; i < items; ++i)
2362				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2363			/* memcpy from aligned buffer into output buffer */
2364			memcpy(buf, aligned_buf, len);
2365			buf += len;
2366			cnt -= len;
2367		}
2368	} else
2369#endif
2370	{
2371		u32 *pdata = buf;
2372
2373		for (; cnt >= 4; cnt -= 4)
2374			*pdata++ = mci_fifo_readl(host->fifo_reg);
2375		buf = pdata;
2376	}
2377	if (cnt) {
2378		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2379		dw_mci_pull_final_bytes(host, buf, cnt);
2380	}
2381}
2382
2383static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2384{
2385	struct mmc_data *data = host->data;
2386	int init_cnt = cnt;
2387
2388	/* try and push anything in the part_buf */
2389	if (unlikely(host->part_buf_count)) {
2390		int len = dw_mci_push_part_bytes(host, buf, cnt);
2391
2392		buf += len;
2393		cnt -= len;
2394
2395		if (host->part_buf_count == 8) {
2396			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2397			host->part_buf_count = 0;
2398		}
2399	}
2400#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2401	if (unlikely((unsigned long)buf & 0x7)) {
2402		while (cnt >= 8) {
2403			u64 aligned_buf[16];
2404			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2405			int items = len >> 3;
2406			int i;
2407			/* memcpy from input buffer into aligned buffer */
2408			memcpy(aligned_buf, buf, len);
2409			buf += len;
2410			cnt -= len;
2411			/* push data from aligned buffer into fifo */
2412			for (i = 0; i < items; ++i)
2413				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2414		}
2415	} else
2416#endif
2417	{
2418		u64 *pdata = buf;
2419
2420		for (; cnt >= 8; cnt -= 8)
2421			mci_fifo_writeq(host->fifo_reg, *pdata++);
2422		buf = pdata;
2423	}
2424	/* put anything remaining in the part_buf */
2425	if (cnt) {
2426		dw_mci_set_part_bytes(host, buf, cnt);
2427		/* Push data if we have reached the expected data length */
2428		if ((data->bytes_xfered + init_cnt) ==
2429		    (data->blksz * data->blocks))
2430			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2431	}
2432}
2433
2434static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2435{
2436#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2437	if (unlikely((unsigned long)buf & 0x7)) {
2438		while (cnt >= 8) {
2439			/* pull data from fifo into aligned buffer */
2440			u64 aligned_buf[16];
2441			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2442			int items = len >> 3;
2443			int i;
2444
2445			for (i = 0; i < items; ++i)
2446				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2447
2448			/* memcpy from aligned buffer into output buffer */
2449			memcpy(buf, aligned_buf, len);
2450			buf += len;
2451			cnt -= len;
2452		}
2453	} else
2454#endif
2455	{
2456		u64 *pdata = buf;
2457
2458		for (; cnt >= 8; cnt -= 8)
2459			*pdata++ = mci_fifo_readq(host->fifo_reg);
2460		buf = pdata;
2461	}
2462	if (cnt) {
2463		host->part_buf = mci_fifo_readq(host->fifo_reg);
2464		dw_mci_pull_final_bytes(host, buf, cnt);
2465	}
2466}
2467
2468static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2469{
2470	int len;
2471
2472	/* get remaining partial bytes */
2473	len = dw_mci_pull_part_bytes(host, buf, cnt);
2474	if (unlikely(len == cnt))
2475		return;
2476	buf += len;
2477	cnt -= len;
2478
2479	/* get the rest of the data */
2480	host->pull_data(host, buf, cnt);
2481}
2482
2483static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2484{
2485	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2486	void *buf;
2487	unsigned int offset;
2488	struct mmc_data	*data = host->data;
2489	int shift = host->data_shift;
2490	u32 status;
2491	unsigned int len;
2492	unsigned int remain, fcnt;
2493
2494	do {
2495		if (!sg_miter_next(sg_miter))
2496			goto done;
2497
2498		host->sg = sg_miter->piter.sg;
2499		buf = sg_miter->addr;
2500		remain = sg_miter->length;
2501		offset = 0;
2502
2503		do {
2504			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2505					<< shift) + host->part_buf_count;
2506			len = min(remain, fcnt);
2507			if (!len)
2508				break;
2509			dw_mci_pull_data(host, (void *)(buf + offset), len);
2510			data->bytes_xfered += len;
2511			offset += len;
2512			remain -= len;
2513		} while (remain);
2514
2515		sg_miter->consumed = offset;
2516		status = mci_readl(host, MINTSTS);
2517		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2518	/* if the RXDR is ready read again */
2519	} while ((status & SDMMC_INT_RXDR) ||
2520		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2521
2522	if (!remain) {
2523		if (!sg_miter_next(sg_miter))
2524			goto done;
2525		sg_miter->consumed = 0;
2526	}
2527	sg_miter_stop(sg_miter);
2528	return;
2529
2530done:
2531	sg_miter_stop(sg_miter);
2532	host->sg = NULL;
2533	smp_wmb(); /* drain writebuffer */
2534	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2535}
2536
2537static void dw_mci_write_data_pio(struct dw_mci *host)
2538{
2539	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2540	void *buf;
2541	unsigned int offset;
2542	struct mmc_data	*data = host->data;
2543	int shift = host->data_shift;
2544	u32 status;
2545	unsigned int len;
2546	unsigned int fifo_depth = host->fifo_depth;
2547	unsigned int remain, fcnt;
2548
2549	do {
2550		if (!sg_miter_next(sg_miter))
2551			goto done;
2552
2553		host->sg = sg_miter->piter.sg;
2554		buf = sg_miter->addr;
2555		remain = sg_miter->length;
2556		offset = 0;
2557
2558		do {
2559			fcnt = ((fifo_depth -
2560				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2561					<< shift) - host->part_buf_count;
2562			len = min(remain, fcnt);
2563			if (!len)
2564				break;
2565			host->push_data(host, (void *)(buf + offset), len);
2566			data->bytes_xfered += len;
2567			offset += len;
2568			remain -= len;
2569		} while (remain);
2570
2571		sg_miter->consumed = offset;
2572		status = mci_readl(host, MINTSTS);
2573		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2574	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2575
2576	if (!remain) {
2577		if (!sg_miter_next(sg_miter))
2578			goto done;
2579		sg_miter->consumed = 0;
2580	}
2581	sg_miter_stop(sg_miter);
2582	return;
2583
2584done:
2585	sg_miter_stop(sg_miter);
2586	host->sg = NULL;
2587	smp_wmb(); /* drain writebuffer */
2588	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2589}
2590
2591static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2592{
2593	del_timer(&host->cto_timer);
2594
2595	if (!host->cmd_status)
2596		host->cmd_status = status;
2597
2598	smp_wmb(); /* drain writebuffer */
2599
2600	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2601	tasklet_schedule(&host->tasklet);
 
 
2602}
2603
2604static void dw_mci_handle_cd(struct dw_mci *host)
2605{
2606	struct dw_mci_slot *slot = host->slot;
2607
2608	if (slot->mmc->ops->card_event)
2609		slot->mmc->ops->card_event(slot->mmc);
2610	mmc_detect_change(slot->mmc,
2611		msecs_to_jiffies(host->pdata->detect_delay_ms));
2612}
2613
2614static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2615{
2616	struct dw_mci *host = dev_id;
2617	u32 pending;
2618	struct dw_mci_slot *slot = host->slot;
2619	unsigned long irqflags;
2620
2621	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2622
2623	if (pending) {
2624		/* Check volt switch first, since it can look like an error */
2625		if ((host->state == STATE_SENDING_CMD11) &&
2626		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2627			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2628			pending &= ~SDMMC_INT_VOLT_SWITCH;
2629
2630			/*
2631			 * Hold the lock; we know cmd11_timer can't be kicked
2632			 * off after the lock is released, so safe to delete.
2633			 */
2634			spin_lock_irqsave(&host->irq_lock, irqflags);
2635			dw_mci_cmd_interrupt(host, pending);
2636			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2637
2638			del_timer(&host->cmd11_timer);
2639		}
2640
2641		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2642			spin_lock_irqsave(&host->irq_lock, irqflags);
2643
2644			del_timer(&host->cto_timer);
2645			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2646			host->cmd_status = pending;
2647			smp_wmb(); /* drain writebuffer */
2648			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2649
2650			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2651		}
2652
2653		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
 
 
 
 
 
2654			/* if there is an error report DATA_ERROR */
2655			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2656			host->data_status = pending;
2657			smp_wmb(); /* drain writebuffer */
2658			set_bit(EVENT_DATA_ERROR, &host->pending_events);
 
 
 
 
 
 
2659			tasklet_schedule(&host->tasklet);
 
 
2660		}
2661
2662		if (pending & SDMMC_INT_DATA_OVER) {
2663			spin_lock_irqsave(&host->irq_lock, irqflags);
2664
2665			del_timer(&host->dto_timer);
2666
2667			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2668			if (!host->data_status)
2669				host->data_status = pending;
2670			smp_wmb(); /* drain writebuffer */
2671			if (host->dir_status == DW_MCI_RECV_STATUS) {
2672				if (host->sg != NULL)
2673					dw_mci_read_data_pio(host, true);
2674			}
2675			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2676			tasklet_schedule(&host->tasklet);
2677
2678			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2679		}
2680
2681		if (pending & SDMMC_INT_RXDR) {
2682			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2683			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2684				dw_mci_read_data_pio(host, false);
2685		}
2686
2687		if (pending & SDMMC_INT_TXDR) {
2688			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2689			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2690				dw_mci_write_data_pio(host);
2691		}
2692
2693		if (pending & SDMMC_INT_CMD_DONE) {
2694			spin_lock_irqsave(&host->irq_lock, irqflags);
2695
2696			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2697			dw_mci_cmd_interrupt(host, pending);
2698
2699			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2700		}
2701
2702		if (pending & SDMMC_INT_CD) {
2703			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2704			dw_mci_handle_cd(host);
2705		}
2706
2707		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2708			mci_writel(host, RINTSTS,
2709				   SDMMC_INT_SDIO(slot->sdio_id));
2710			__dw_mci_enable_sdio_irq(slot, 0);
2711			sdio_signal_irq(slot->mmc);
2712		}
2713
2714	}
2715
2716	if (host->use_dma != TRANS_MODE_IDMAC)
2717		return IRQ_HANDLED;
2718
2719	/* Handle IDMA interrupts */
2720	if (host->dma_64bit_address == 1) {
2721		pending = mci_readl(host, IDSTS64);
2722		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2723			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2724							SDMMC_IDMAC_INT_RI);
2725			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2726			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2727				host->dma_ops->complete((void *)host);
2728		}
2729	} else {
2730		pending = mci_readl(host, IDSTS);
2731		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2732			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2733							SDMMC_IDMAC_INT_RI);
2734			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2735			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2736				host->dma_ops->complete((void *)host);
2737		}
2738	}
2739
2740	return IRQ_HANDLED;
2741}
2742
2743static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2744{
2745	struct dw_mci *host = slot->host;
2746	const struct dw_mci_drv_data *drv_data = host->drv_data;
2747	struct mmc_host *mmc = slot->mmc;
2748	int ctrl_id;
2749
2750	if (host->pdata->caps)
2751		mmc->caps = host->pdata->caps;
2752
2753	/*
2754	 * Support MMC_CAP_ERASE by default.
2755	 * It needs to use trim/discard/erase commands.
2756	 */
2757	mmc->caps |= MMC_CAP_ERASE;
2758
2759	if (host->pdata->pm_caps)
2760		mmc->pm_caps = host->pdata->pm_caps;
2761
 
 
 
2762	if (host->dev->of_node) {
2763		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2764		if (ctrl_id < 0)
2765			ctrl_id = 0;
2766	} else {
2767		ctrl_id = to_platform_device(host->dev)->id;
2768	}
2769
2770	if (drv_data && drv_data->caps) {
2771		if (ctrl_id >= drv_data->num_caps) {
2772			dev_err(host->dev, "invalid controller id %d\n",
2773				ctrl_id);
2774			return -EINVAL;
2775		}
2776		mmc->caps |= drv_data->caps[ctrl_id];
2777	}
2778
2779	if (host->pdata->caps2)
2780		mmc->caps2 = host->pdata->caps2;
2781
2782	mmc->f_min = DW_MCI_FREQ_MIN;
 
 
 
 
 
2783	if (!mmc->f_max)
2784		mmc->f_max = DW_MCI_FREQ_MAX;
2785
2786	/* Process SDIO IRQs through the sdio_irq_work. */
2787	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2788		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2789
2790	return 0;
2791}
2792
2793static int dw_mci_init_slot(struct dw_mci *host)
2794{
2795	struct mmc_host *mmc;
2796	struct dw_mci_slot *slot;
2797	int ret;
2798
2799	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2800	if (!mmc)
2801		return -ENOMEM;
2802
2803	slot = mmc_priv(mmc);
2804	slot->id = 0;
2805	slot->sdio_id = host->sdio_id0 + slot->id;
2806	slot->mmc = mmc;
2807	slot->host = host;
2808	host->slot = slot;
2809
2810	mmc->ops = &dw_mci_ops;
2811
2812	/*if there are external regulators, get them*/
2813	ret = mmc_regulator_get_supply(mmc);
2814	if (ret)
2815		goto err_host_allocated;
2816
2817	if (!mmc->ocr_avail)
2818		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2819
2820	ret = mmc_of_parse(mmc);
2821	if (ret)
2822		goto err_host_allocated;
2823
2824	ret = dw_mci_init_slot_caps(slot);
2825	if (ret)
2826		goto err_host_allocated;
2827
2828	/* Useful defaults if platform data is unset. */
2829	if (host->use_dma == TRANS_MODE_IDMAC) {
2830		mmc->max_segs = host->ring_size;
2831		mmc->max_blk_size = 65535;
2832		mmc->max_seg_size = 0x1000;
2833		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2834		mmc->max_blk_count = mmc->max_req_size / 512;
2835	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2836		mmc->max_segs = 64;
2837		mmc->max_blk_size = 65535;
2838		mmc->max_blk_count = 65535;
2839		mmc->max_req_size =
2840				mmc->max_blk_size * mmc->max_blk_count;
2841		mmc->max_seg_size = mmc->max_req_size;
2842	} else {
2843		/* TRANS_MODE_PIO */
2844		mmc->max_segs = 64;
2845		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2846		mmc->max_blk_count = 512;
2847		mmc->max_req_size = mmc->max_blk_size *
2848				    mmc->max_blk_count;
2849		mmc->max_seg_size = mmc->max_req_size;
2850	}
2851
2852	dw_mci_get_cd(mmc);
2853
2854	ret = mmc_add_host(mmc);
2855	if (ret)
2856		goto err_host_allocated;
2857
2858#if defined(CONFIG_DEBUG_FS)
2859	dw_mci_init_debugfs(slot);
2860#endif
2861
2862	return 0;
2863
2864err_host_allocated:
2865	mmc_free_host(mmc);
2866	return ret;
2867}
2868
2869static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2870{
2871	/* Debugfs stuff is cleaned up by mmc core */
2872	mmc_remove_host(slot->mmc);
2873	slot->host->slot = NULL;
2874	mmc_free_host(slot->mmc);
2875}
2876
2877static void dw_mci_init_dma(struct dw_mci *host)
2878{
2879	int addr_config;
2880	struct device *dev = host->dev;
2881
2882	/*
2883	* Check tansfer mode from HCON[17:16]
2884	* Clear the ambiguous description of dw_mmc databook:
2885	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2886	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2887	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2888	* 2b'11: Non DW DMA Interface -> pio only
2889	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2890	* simpler request/acknowledge handshake mechanism and both of them
2891	* are regarded as external dma master for dw_mmc.
2892	*/
2893	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2894	if (host->use_dma == DMA_INTERFACE_IDMA) {
2895		host->use_dma = TRANS_MODE_IDMAC;
2896	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2897		   host->use_dma == DMA_INTERFACE_GDMA) {
2898		host->use_dma = TRANS_MODE_EDMAC;
2899	} else {
2900		goto no_dma;
2901	}
2902
2903	/* Determine which DMA interface to use */
2904	if (host->use_dma == TRANS_MODE_IDMAC) {
2905		/*
2906		* Check ADDR_CONFIG bit in HCON to find
2907		* IDMAC address bus width
2908		*/
2909		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2910
2911		if (addr_config == 1) {
2912			/* host supports IDMAC in 64-bit address mode */
2913			host->dma_64bit_address = 1;
2914			dev_info(host->dev,
2915				 "IDMAC supports 64-bit address mode.\n");
2916			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2917				dma_set_coherent_mask(host->dev,
2918						      DMA_BIT_MASK(64));
2919		} else {
2920			/* host supports IDMAC in 32-bit address mode */
2921			host->dma_64bit_address = 0;
2922			dev_info(host->dev,
2923				 "IDMAC supports 32-bit address mode.\n");
2924		}
2925
2926		/* Alloc memory for sg translation */
2927		host->sg_cpu = dmam_alloc_coherent(host->dev,
2928						   DESC_RING_BUF_SZ,
2929						   &host->sg_dma, GFP_KERNEL);
2930		if (!host->sg_cpu) {
2931			dev_err(host->dev,
2932				"%s: could not alloc DMA memory\n",
2933				__func__);
2934			goto no_dma;
2935		}
2936
2937		host->dma_ops = &dw_mci_idmac_ops;
2938		dev_info(host->dev, "Using internal DMA controller.\n");
2939	} else {
2940		/* TRANS_MODE_EDMAC: check dma bindings again */
2941		if ((device_property_read_string_array(dev, "dma-names",
2942						       NULL, 0) < 0) ||
2943		    !device_property_present(dev, "dmas")) {
2944			goto no_dma;
2945		}
2946		host->dma_ops = &dw_mci_edmac_ops;
2947		dev_info(host->dev, "Using external DMA controller.\n");
2948	}
2949
2950	if (host->dma_ops->init && host->dma_ops->start &&
2951	    host->dma_ops->stop && host->dma_ops->cleanup) {
2952		if (host->dma_ops->init(host)) {
2953			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2954				__func__);
2955			goto no_dma;
2956		}
2957	} else {
2958		dev_err(host->dev, "DMA initialization not found.\n");
2959		goto no_dma;
2960	}
2961
2962	return;
2963
2964no_dma:
2965	dev_info(host->dev, "Using PIO mode.\n");
2966	host->use_dma = TRANS_MODE_PIO;
2967}
2968
2969static void dw_mci_cmd11_timer(struct timer_list *t)
2970{
2971	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2972
2973	if (host->state != STATE_SENDING_CMD11) {
2974		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2975		return;
2976	}
2977
2978	host->cmd_status = SDMMC_INT_RTO;
2979	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2980	tasklet_schedule(&host->tasklet);
2981}
2982
2983static void dw_mci_cto_timer(struct timer_list *t)
2984{
2985	struct dw_mci *host = from_timer(host, t, cto_timer);
2986	unsigned long irqflags;
2987	u32 pending;
2988
2989	spin_lock_irqsave(&host->irq_lock, irqflags);
2990
2991	/*
2992	 * If somehow we have very bad interrupt latency it's remotely possible
2993	 * that the timer could fire while the interrupt is still pending or
2994	 * while the interrupt is midway through running.  Let's be paranoid
2995	 * and detect those two cases.  Note that this is paranoia is somewhat
2996	 * justified because in this function we don't actually cancel the
2997	 * pending command in the controller--we just assume it will never come.
2998	 */
2999	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3000	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3001		/* The interrupt should fire; no need to act but we can warn */
3002		dev_warn(host->dev, "Unexpected interrupt latency\n");
3003		goto exit;
3004	}
3005	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3006		/* Presumably interrupt handler couldn't delete the timer */
3007		dev_warn(host->dev, "CTO timeout when already completed\n");
3008		goto exit;
3009	}
3010
3011	/*
3012	 * Continued paranoia to make sure we're in the state we expect.
3013	 * This paranoia isn't really justified but it seems good to be safe.
3014	 */
3015	switch (host->state) {
3016	case STATE_SENDING_CMD11:
3017	case STATE_SENDING_CMD:
3018	case STATE_SENDING_STOP:
3019		/*
3020		 * If CMD_DONE interrupt does NOT come in sending command
3021		 * state, we should notify the driver to terminate current
3022		 * transfer and report a command timeout to the core.
3023		 */
3024		host->cmd_status = SDMMC_INT_RTO;
3025		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3026		tasklet_schedule(&host->tasklet);
3027		break;
3028	default:
3029		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3030			 host->state);
3031		break;
3032	}
3033
3034exit:
3035	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3036}
3037
3038static void dw_mci_dto_timer(struct timer_list *t)
3039{
3040	struct dw_mci *host = from_timer(host, t, dto_timer);
3041	unsigned long irqflags;
3042	u32 pending;
3043
3044	spin_lock_irqsave(&host->irq_lock, irqflags);
3045
3046	/*
3047	 * The DTO timer is much longer than the CTO timer, so it's even less
3048	 * likely that we'll these cases, but it pays to be paranoid.
3049	 */
3050	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3051	if (pending & SDMMC_INT_DATA_OVER) {
3052		/* The interrupt should fire; no need to act but we can warn */
3053		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3054		goto exit;
3055	}
3056	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3057		/* Presumably interrupt handler couldn't delete the timer */
3058		dev_warn(host->dev, "DTO timeout when already completed\n");
3059		goto exit;
3060	}
3061
3062	/*
3063	 * Continued paranoia to make sure we're in the state we expect.
3064	 * This paranoia isn't really justified but it seems good to be safe.
3065	 */
3066	switch (host->state) {
3067	case STATE_SENDING_DATA:
3068	case STATE_DATA_BUSY:
3069		/*
3070		 * If DTO interrupt does NOT come in sending data state,
3071		 * we should notify the driver to terminate current transfer
3072		 * and report a data timeout to the core.
3073		 */
3074		host->data_status = SDMMC_INT_DRTO;
3075		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3076		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3077		tasklet_schedule(&host->tasklet);
3078		break;
3079	default:
3080		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3081			 host->state);
3082		break;
3083	}
3084
3085exit:
3086	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3087}
3088
3089#ifdef CONFIG_OF
3090static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3091{
3092	struct dw_mci_board *pdata;
3093	struct device *dev = host->dev;
3094	const struct dw_mci_drv_data *drv_data = host->drv_data;
3095	int ret;
3096	u32 clock_frequency;
3097
3098	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3099	if (!pdata)
3100		return ERR_PTR(-ENOMEM);
3101
3102	/* find reset controller when exist */
3103	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3104	if (IS_ERR(pdata->rstc)) {
3105		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3106			return ERR_PTR(-EPROBE_DEFER);
3107	}
3108
3109	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3110		dev_info(dev,
3111			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3112
3113	device_property_read_u32(dev, "card-detect-delay",
3114				 &pdata->detect_delay_ms);
3115
3116	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3117
3118	if (device_property_present(dev, "fifo-watermark-aligned"))
3119		host->wm_aligned = true;
3120
3121	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3122		pdata->bus_hz = clock_frequency;
3123
3124	if (drv_data && drv_data->parse_dt) {
3125		ret = drv_data->parse_dt(host);
3126		if (ret)
3127			return ERR_PTR(ret);
3128	}
3129
3130	return pdata;
3131}
3132
3133#else /* CONFIG_OF */
3134static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3135{
3136	return ERR_PTR(-EINVAL);
3137}
3138#endif /* CONFIG_OF */
3139
3140static void dw_mci_enable_cd(struct dw_mci *host)
3141{
3142	unsigned long irqflags;
3143	u32 temp;
3144
3145	/*
3146	 * No need for CD if all slots have a non-error GPIO
3147	 * as well as broken card detection is found.
3148	 */
3149	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3150		return;
3151
3152	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3153		spin_lock_irqsave(&host->irq_lock, irqflags);
3154		temp = mci_readl(host, INTMASK);
3155		temp  |= SDMMC_INT_CD;
3156		mci_writel(host, INTMASK, temp);
3157		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3158	}
3159}
3160
3161int dw_mci_probe(struct dw_mci *host)
3162{
3163	const struct dw_mci_drv_data *drv_data = host->drv_data;
3164	int width, i, ret = 0;
3165	u32 fifo_size;
3166
3167	if (!host->pdata) {
3168		host->pdata = dw_mci_parse_dt(host);
3169		if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3170			return -EPROBE_DEFER;
3171		} else if (IS_ERR(host->pdata)) {
3172			dev_err(host->dev, "platform data not available\n");
3173			return -EINVAL;
3174		}
3175	}
3176
3177	host->biu_clk = devm_clk_get(host->dev, "biu");
3178	if (IS_ERR(host->biu_clk)) {
3179		dev_dbg(host->dev, "biu clock not available\n");
3180	} else {
3181		ret = clk_prepare_enable(host->biu_clk);
3182		if (ret) {
3183			dev_err(host->dev, "failed to enable biu clock\n");
3184			return ret;
3185		}
3186	}
3187
3188	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3189	if (IS_ERR(host->ciu_clk)) {
3190		dev_dbg(host->dev, "ciu clock not available\n");
3191		host->bus_hz = host->pdata->bus_hz;
3192	} else {
3193		ret = clk_prepare_enable(host->ciu_clk);
3194		if (ret) {
3195			dev_err(host->dev, "failed to enable ciu clock\n");
3196			goto err_clk_biu;
3197		}
3198
3199		if (host->pdata->bus_hz) {
3200			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3201			if (ret)
3202				dev_warn(host->dev,
3203					 "Unable to set bus rate to %uHz\n",
3204					 host->pdata->bus_hz);
3205		}
3206		host->bus_hz = clk_get_rate(host->ciu_clk);
3207	}
3208
3209	if (!host->bus_hz) {
3210		dev_err(host->dev,
3211			"Platform data must supply bus speed\n");
3212		ret = -ENODEV;
3213		goto err_clk_ciu;
3214	}
3215
3216	if (!IS_ERR(host->pdata->rstc)) {
3217		reset_control_assert(host->pdata->rstc);
3218		usleep_range(10, 50);
3219		reset_control_deassert(host->pdata->rstc);
3220	}
3221
3222	if (drv_data && drv_data->init) {
3223		ret = drv_data->init(host);
3224		if (ret) {
3225			dev_err(host->dev,
3226				"implementation specific init failed\n");
3227			goto err_clk_ciu;
3228		}
3229	}
3230
3231	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3232	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3233	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3234
3235	spin_lock_init(&host->lock);
3236	spin_lock_init(&host->irq_lock);
3237	INIT_LIST_HEAD(&host->queue);
3238
 
 
3239	/*
3240	 * Get the host data width - this assumes that HCON has been set with
3241	 * the correct values.
3242	 */
3243	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3244	if (!i) {
3245		host->push_data = dw_mci_push_data16;
3246		host->pull_data = dw_mci_pull_data16;
3247		width = 16;
3248		host->data_shift = 1;
3249	} else if (i == 2) {
3250		host->push_data = dw_mci_push_data64;
3251		host->pull_data = dw_mci_pull_data64;
3252		width = 64;
3253		host->data_shift = 3;
3254	} else {
3255		/* Check for a reserved value, and warn if it is */
3256		WARN((i != 1),
3257		     "HCON reports a reserved host data width!\n"
3258		     "Defaulting to 32-bit access.\n");
3259		host->push_data = dw_mci_push_data32;
3260		host->pull_data = dw_mci_pull_data32;
3261		width = 32;
3262		host->data_shift = 2;
3263	}
3264
3265	/* Reset all blocks */
3266	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3267		ret = -ENODEV;
3268		goto err_clk_ciu;
3269	}
3270
3271	host->dma_ops = host->pdata->dma_ops;
3272	dw_mci_init_dma(host);
3273
3274	/* Clear the interrupts for the host controller */
3275	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3276	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3277
3278	/* Put in max timeout */
3279	mci_writel(host, TMOUT, 0xFFFFFFFF);
3280
3281	/*
3282	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3283	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3284	 */
3285	if (!host->pdata->fifo_depth) {
3286		/*
3287		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3288		 * have been overwritten by the bootloader, just like we're
3289		 * about to do, so if you know the value for your hardware, you
3290		 * should put it in the platform data.
3291		 */
3292		fifo_size = mci_readl(host, FIFOTH);
3293		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3294	} else {
3295		fifo_size = host->pdata->fifo_depth;
3296	}
3297	host->fifo_depth = fifo_size;
3298	host->fifoth_val =
3299		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3300	mci_writel(host, FIFOTH, host->fifoth_val);
3301
3302	/* disable clock to CIU */
3303	mci_writel(host, CLKENA, 0);
3304	mci_writel(host, CLKSRC, 0);
3305
3306	/*
3307	 * In 2.40a spec, Data offset is changed.
3308	 * Need to check the version-id and set data-offset for DATA register.
3309	 */
3310	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3311	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3312
3313	if (host->data_addr_override)
3314		host->fifo_reg = host->regs + host->data_addr_override;
3315	else if (host->verid < DW_MMC_240A)
3316		host->fifo_reg = host->regs + DATA_OFFSET;
3317	else
3318		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3319
3320	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3321	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3322			       host->irq_flags, "dw-mci", host);
3323	if (ret)
3324		goto err_dmaunmap;
3325
3326	/*
3327	 * Enable interrupts for command done, data over, data empty,
3328	 * receive ready and error such as transmit, receive timeout, crc error
3329	 */
3330	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3331		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3332		   DW_MCI_ERROR_FLAGS);
3333	/* Enable mci interrupt */
3334	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3335
3336	dev_info(host->dev,
3337		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3338		 host->irq, width, fifo_size);
3339
3340	/* We need at least one slot to succeed */
3341	ret = dw_mci_init_slot(host);
3342	if (ret) {
3343		dev_dbg(host->dev, "slot %d init failed\n", i);
3344		goto err_dmaunmap;
3345	}
3346
3347	/* Now that slots are all setup, we can enable card detect */
3348	dw_mci_enable_cd(host);
3349
3350	return 0;
3351
3352err_dmaunmap:
3353	if (host->use_dma && host->dma_ops->exit)
3354		host->dma_ops->exit(host);
3355
3356	if (!IS_ERR(host->pdata->rstc))
3357		reset_control_assert(host->pdata->rstc);
3358
3359err_clk_ciu:
3360	clk_disable_unprepare(host->ciu_clk);
3361
3362err_clk_biu:
3363	clk_disable_unprepare(host->biu_clk);
3364
3365	return ret;
3366}
3367EXPORT_SYMBOL(dw_mci_probe);
3368
3369void dw_mci_remove(struct dw_mci *host)
3370{
3371	dev_dbg(host->dev, "remove slot\n");
3372	if (host->slot)
3373		dw_mci_cleanup_slot(host->slot);
3374
3375	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3376	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3377
3378	/* disable clock to CIU */
3379	mci_writel(host, CLKENA, 0);
3380	mci_writel(host, CLKSRC, 0);
3381
3382	if (host->use_dma && host->dma_ops->exit)
3383		host->dma_ops->exit(host);
3384
3385	if (!IS_ERR(host->pdata->rstc))
3386		reset_control_assert(host->pdata->rstc);
3387
3388	clk_disable_unprepare(host->ciu_clk);
3389	clk_disable_unprepare(host->biu_clk);
3390}
3391EXPORT_SYMBOL(dw_mci_remove);
3392
3393
3394
3395#ifdef CONFIG_PM
3396int dw_mci_runtime_suspend(struct device *dev)
3397{
3398	struct dw_mci *host = dev_get_drvdata(dev);
3399
3400	if (host->use_dma && host->dma_ops->exit)
3401		host->dma_ops->exit(host);
3402
3403	clk_disable_unprepare(host->ciu_clk);
3404
3405	if (host->slot &&
3406	    (mmc_can_gpio_cd(host->slot->mmc) ||
3407	     !mmc_card_is_removable(host->slot->mmc)))
3408		clk_disable_unprepare(host->biu_clk);
3409
3410	return 0;
3411}
3412EXPORT_SYMBOL(dw_mci_runtime_suspend);
3413
3414int dw_mci_runtime_resume(struct device *dev)
3415{
3416	int ret = 0;
3417	struct dw_mci *host = dev_get_drvdata(dev);
3418
3419	if (host->slot &&
3420	    (mmc_can_gpio_cd(host->slot->mmc) ||
3421	     !mmc_card_is_removable(host->slot->mmc))) {
3422		ret = clk_prepare_enable(host->biu_clk);
3423		if (ret)
3424			return ret;
3425	}
3426
3427	ret = clk_prepare_enable(host->ciu_clk);
3428	if (ret)
3429		goto err;
3430
3431	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3432		clk_disable_unprepare(host->ciu_clk);
3433		ret = -ENODEV;
3434		goto err;
3435	}
3436
3437	if (host->use_dma && host->dma_ops->init)
3438		host->dma_ops->init(host);
3439
3440	/*
3441	 * Restore the initial value at FIFOTH register
3442	 * And Invalidate the prev_blksz with zero
3443	 */
3444	 mci_writel(host, FIFOTH, host->fifoth_val);
3445	 host->prev_blksz = 0;
3446
3447	/* Put in max timeout */
3448	mci_writel(host, TMOUT, 0xFFFFFFFF);
3449
3450	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3451	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3452		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3453		   DW_MCI_ERROR_FLAGS);
3454	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3455
3456
3457	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3458		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3459
3460	/* Force setup bus to guarantee available clock output */
3461	dw_mci_setup_bus(host->slot, true);
3462
3463	/* Re-enable SDIO interrupts. */
3464	if (sdio_irq_claimed(host->slot->mmc))
3465		__dw_mci_enable_sdio_irq(host->slot, 1);
3466
3467	/* Now that slots are all setup, we can enable card detect */
3468	dw_mci_enable_cd(host);
3469
3470	return 0;
3471
3472err:
3473	if (host->slot &&
3474	    (mmc_can_gpio_cd(host->slot->mmc) ||
3475	     !mmc_card_is_removable(host->slot->mmc)))
3476		clk_disable_unprepare(host->biu_clk);
3477
3478	return ret;
3479}
3480EXPORT_SYMBOL(dw_mci_runtime_resume);
3481#endif /* CONFIG_PM */
3482
3483static int __init dw_mci_init(void)
3484{
3485	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3486	return 0;
3487}
3488
3489static void __exit dw_mci_exit(void)
3490{
3491}
3492
3493module_init(dw_mci_init);
3494module_exit(dw_mci_exit);
3495
3496MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3497MODULE_AUTHOR("NXP Semiconductor VietNam");
3498MODULE_AUTHOR("Imagination Technologies Ltd");
3499MODULE_LICENSE("GPL v2");