Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef _BCACHE_UTIL_H
  4#define _BCACHE_UTIL_H
  5
  6#include <linux/blkdev.h>
  7#include <linux/errno.h>
  8#include <linux/kernel.h>
  9#include <linux/sched/clock.h>
 10#include <linux/llist.h>
 11#include <linux/ratelimit.h>
 12#include <linux/vmalloc.h>
 13#include <linux/workqueue.h>
 14#include <linux/crc64.h>
 15
 16#include "closure.h"
 17
 
 
 18struct closure;
 19
 20#ifdef CONFIG_BCACHE_DEBUG
 21
 22#define EBUG_ON(cond)			BUG_ON(cond)
 23#define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
 24#define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
 25
 26#else /* DEBUG */
 27
 28#define EBUG_ON(cond)		do { if (cond) do {} while (0); } while (0)
 29#define atomic_dec_bug(v)	atomic_dec(v)
 30#define atomic_inc_bug(v, i)	atomic_inc(v)
 31
 32#endif
 33
 34#define DECLARE_HEAP(type, name)					\
 35	struct {							\
 36		size_t size, used;					\
 37		type *data;						\
 38	} name
 39
 40#define init_heap(heap, _size, gfp)					\
 41({									\
 42	size_t _bytes;							\
 43	(heap)->used = 0;						\
 44	(heap)->size = (_size);						\
 45	_bytes = (heap)->size * sizeof(*(heap)->data);			\
 46	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
 47	(heap)->data;							\
 48})
 49
 50#define free_heap(heap)							\
 51do {									\
 52	kvfree((heap)->data);						\
 53	(heap)->data = NULL;						\
 54} while (0)
 55
 56#define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
 57
 58#define heap_sift(h, i, cmp)						\
 59do {									\
 60	size_t _r, _j = i;						\
 61									\
 62	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
 63		_r = _j * 2 + 1;					\
 64		if (_r + 1 < (h)->used &&				\
 65		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
 66			_r++;						\
 67									\
 68		if (cmp((h)->data[_r], (h)->data[_j]))			\
 69			break;						\
 70		heap_swap(h, _r, _j);					\
 71	}								\
 72} while (0)
 73
 74#define heap_sift_down(h, i, cmp)					\
 75do {									\
 76	while (i) {							\
 77		size_t p = (i - 1) / 2;					\
 78		if (cmp((h)->data[i], (h)->data[p]))			\
 79			break;						\
 80		heap_swap(h, i, p);					\
 81		i = p;							\
 82	}								\
 83} while (0)
 84
 85#define heap_add(h, d, cmp)						\
 86({									\
 87	bool _r = !heap_full(h);					\
 88	if (_r) {							\
 89		size_t _i = (h)->used++;				\
 90		(h)->data[_i] = d;					\
 91									\
 92		heap_sift_down(h, _i, cmp);				\
 93		heap_sift(h, _i, cmp);					\
 94	}								\
 95	_r;								\
 96})
 97
 98#define heap_pop(h, d, cmp)						\
 99({									\
100	bool _r = (h)->used;						\
101	if (_r) {							\
102		(d) = (h)->data[0];					\
103		(h)->used--;						\
104		heap_swap(h, 0, (h)->used);				\
105		heap_sift(h, 0, cmp);					\
106	}								\
107	_r;								\
108})
109
110#define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
111
112#define heap_full(h)	((h)->used == (h)->size)
113
114#define DECLARE_FIFO(type, name)					\
115	struct {							\
116		size_t front, back, size, mask;				\
117		type *data;						\
118	} name
119
120#define fifo_for_each(c, fifo, iter)					\
121	for (iter = (fifo)->front;					\
122	     c = (fifo)->data[iter], iter != (fifo)->back;		\
123	     iter = (iter + 1) & (fifo)->mask)
124
125#define __init_fifo(fifo, gfp)						\
126({									\
127	size_t _allocated_size, _bytes;					\
128	BUG_ON(!(fifo)->size);						\
129									\
130	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
131	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
132									\
133	(fifo)->mask = _allocated_size - 1;				\
134	(fifo)->front = (fifo)->back = 0;				\
135									\
136	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
137	(fifo)->data;							\
138})
139
140#define init_fifo_exact(fifo, _size, gfp)				\
141({									\
142	(fifo)->size = (_size);						\
143	__init_fifo(fifo, gfp);						\
144})
145
146#define init_fifo(fifo, _size, gfp)					\
147({									\
148	(fifo)->size = (_size);						\
149	if ((fifo)->size > 4)						\
150		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
151	__init_fifo(fifo, gfp);						\
152})
153
154#define free_fifo(fifo)							\
155do {									\
156	kvfree((fifo)->data);						\
157	(fifo)->data = NULL;						\
158} while (0)
159
160#define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
161#define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
162
163#define fifo_empty(fifo)	(!fifo_used(fifo))
164#define fifo_full(fifo)		(!fifo_free(fifo))
165
166#define fifo_front(fifo)	((fifo)->data[(fifo)->front])
167#define fifo_back(fifo)							\
168	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
169
170#define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
171
172#define fifo_push_back(fifo, i)						\
173({									\
174	bool _r = !fifo_full((fifo));					\
175	if (_r) {							\
176		(fifo)->data[(fifo)->back++] = (i);			\
177		(fifo)->back &= (fifo)->mask;				\
178	}								\
179	_r;								\
180})
181
182#define fifo_pop_front(fifo, i)						\
183({									\
184	bool _r = !fifo_empty((fifo));					\
185	if (_r) {							\
186		(i) = (fifo)->data[(fifo)->front++];			\
187		(fifo)->front &= (fifo)->mask;				\
188	}								\
189	_r;								\
190})
191
192#define fifo_push_front(fifo, i)					\
193({									\
194	bool _r = !fifo_full((fifo));					\
195	if (_r) {							\
196		--(fifo)->front;					\
197		(fifo)->front &= (fifo)->mask;				\
198		(fifo)->data[(fifo)->front] = (i);			\
199	}								\
200	_r;								\
201})
202
203#define fifo_pop_back(fifo, i)						\
204({									\
205	bool _r = !fifo_empty((fifo));					\
206	if (_r) {							\
207		--(fifo)->back;						\
208		(fifo)->back &= (fifo)->mask;				\
209		(i) = (fifo)->data[(fifo)->back]			\
210	}								\
211	_r;								\
212})
213
214#define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
215#define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
216
217#define fifo_swap(l, r)							\
218do {									\
219	swap((l)->front, (r)->front);					\
220	swap((l)->back, (r)->back);					\
221	swap((l)->size, (r)->size);					\
222	swap((l)->mask, (r)->mask);					\
223	swap((l)->data, (r)->data);					\
224} while (0)
225
226#define fifo_move(dest, src)						\
227do {									\
228	typeof(*((dest)->data)) _t;					\
229	while (!fifo_full(dest) &&					\
230	       fifo_pop(src, _t))					\
231		fifo_push(dest, _t);					\
232} while (0)
233
234/*
235 * Simple array based allocator - preallocates a number of elements and you can
236 * never allocate more than that, also has no locking.
237 *
238 * Handy because if you know you only need a fixed number of elements you don't
239 * have to worry about memory allocation failure, and sometimes a mempool isn't
240 * what you want.
241 *
242 * We treat the free elements as entries in a singly linked list, and the
243 * freelist as a stack - allocating and freeing push and pop off the freelist.
244 */
245
246#define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
247	struct {							\
248		type	*freelist;					\
249		type	data[size];					\
250	} name
251
252#define array_alloc(array)						\
253({									\
254	typeof((array)->freelist) _ret = (array)->freelist;		\
255									\
256	if (_ret)							\
257		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
258									\
259	_ret;								\
260})
261
262#define array_free(array, ptr)						\
263do {									\
264	typeof((array)->freelist) _ptr = ptr;				\
265									\
266	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
267	(array)->freelist = _ptr;					\
268} while (0)
269
270#define array_allocator_init(array)					\
271do {									\
272	typeof((array)->freelist) _i;					\
273									\
274	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
275	(array)->freelist = NULL;					\
276									\
277	for (_i = (array)->data;					\
278	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
279	     _i++)							\
280		array_free(array, _i);					\
281} while (0)
282
283#define array_freelist_empty(array)	((array)->freelist == NULL)
284
285#define ANYSINT_MAX(t)							\
286	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
287
288int bch_strtoint_h(const char *cp, int *res);
289int bch_strtouint_h(const char *cp, unsigned int *res);
290int bch_strtoll_h(const char *cp, long long *res);
291int bch_strtoull_h(const char *cp, unsigned long long *res);
292
293static inline int bch_strtol_h(const char *cp, long *res)
294{
295#if BITS_PER_LONG == 32
296	return bch_strtoint_h(cp, (int *) res);
297#else
298	return bch_strtoll_h(cp, (long long *) res);
299#endif
300}
301
302static inline int bch_strtoul_h(const char *cp, long *res)
303{
304#if BITS_PER_LONG == 32
305	return bch_strtouint_h(cp, (unsigned int *) res);
306#else
307	return bch_strtoull_h(cp, (unsigned long long *) res);
308#endif
309}
310
311#define strtoi_h(cp, res)						\
312	(__builtin_types_compatible_p(typeof(*res), int)		\
313	? bch_strtoint_h(cp, (void *) res)				\
314	: __builtin_types_compatible_p(typeof(*res), long)		\
315	? bch_strtol_h(cp, (void *) res)				\
316	: __builtin_types_compatible_p(typeof(*res), long long)		\
317	? bch_strtoll_h(cp, (void *) res)				\
318	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
319	? bch_strtouint_h(cp, (void *) res)				\
320	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
321	? bch_strtoul_h(cp, (void *) res)				\
322	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
323	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
324
325#define strtoul_safe(cp, var)						\
326({									\
327	unsigned long _v;						\
328	int _r = kstrtoul(cp, 10, &_v);					\
329	if (!_r)							\
330		var = _v;						\
331	_r;								\
332})
333
334#define strtoul_safe_clamp(cp, var, min, max)				\
335({									\
336	unsigned long _v;						\
337	int _r = kstrtoul(cp, 10, &_v);					\
338	if (!_r)							\
339		var = clamp_t(typeof(var), _v, min, max);		\
340	_r;								\
341})
342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343ssize_t bch_hprint(char *buf, int64_t v);
344
345bool bch_is_zero(const char *p, size_t n);
346int bch_parse_uuid(const char *s, char *uuid);
347
348struct time_stats {
349	spinlock_t	lock;
350	/*
351	 * all fields are in nanoseconds, averages are ewmas stored left shifted
352	 * by 8
353	 */
354	uint64_t	max_duration;
355	uint64_t	average_duration;
356	uint64_t	average_frequency;
357	uint64_t	last;
358};
359
360void bch_time_stats_update(struct time_stats *stats, uint64_t time);
361
362static inline unsigned int local_clock_us(void)
363{
364	return local_clock() >> 10;
365}
366
367#define NSEC_PER_ns			1L
368#define NSEC_PER_us			NSEC_PER_USEC
369#define NSEC_PER_ms			NSEC_PER_MSEC
370#define NSEC_PER_sec			NSEC_PER_SEC
371
372#define __print_time_stat(stats, name, stat, units)			\
373	sysfs_print(name ## _ ## stat ## _ ## units,			\
374		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
375
376#define sysfs_print_time_stats(stats, name,				\
377			       frequency_units,				\
378			       duration_units)				\
379do {									\
380	__print_time_stat(stats, name,					\
381			  average_frequency,	frequency_units);	\
382	__print_time_stat(stats, name,					\
383			  average_duration,	duration_units);	\
384	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
385			div_u64((stats)->max_duration,			\
386				NSEC_PER_ ## duration_units));		\
387									\
388	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
389		    ? div_s64(local_clock() - (stats)->last,		\
390			      NSEC_PER_ ## frequency_units)		\
391		    : -1LL);						\
392} while (0)
393
394#define sysfs_time_stats_attribute(name,				\
395				   frequency_units,			\
396				   duration_units)			\
397read_attribute(name ## _average_frequency_ ## frequency_units);		\
398read_attribute(name ## _average_duration_ ## duration_units);		\
399read_attribute(name ## _max_duration_ ## duration_units);		\
400read_attribute(name ## _last_ ## frequency_units)
401
402#define sysfs_time_stats_attribute_list(name,				\
403					frequency_units,		\
404					duration_units)			\
405&sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
406&sysfs_ ## name ## _average_duration_ ## duration_units,		\
407&sysfs_ ## name ## _max_duration_ ## duration_units,			\
408&sysfs_ ## name ## _last_ ## frequency_units,
409
410#define ewma_add(ewma, val, weight, factor)				\
411({									\
412	(ewma) *= (weight) - 1;						\
413	(ewma) += (val) << factor;					\
414	(ewma) /= (weight);						\
415	(ewma) >> factor;						\
416})
417
418struct bch_ratelimit {
419	/* Next time we want to do some work, in nanoseconds */
420	uint64_t		next;
421
422	/*
423	 * Rate at which we want to do work, in units per second
424	 * The units here correspond to the units passed to bch_next_delay()
425	 */
426	atomic_long_t		rate;
427};
428
429static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
430{
431	d->next = local_clock();
432}
433
434uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
435
436#define __DIV_SAFE(n, d, zero)						\
437({									\
438	typeof(n) _n = (n);						\
439	typeof(d) _d = (d);						\
440	_d ? _n / _d : zero;						\
441})
442
443#define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
444
445#define container_of_or_null(ptr, type, member)				\
446({									\
447	typeof(ptr) _ptr = ptr;						\
448	_ptr ? container_of(_ptr, type, member) : NULL;			\
449})
450
451#define RB_INSERT(root, new, member, cmp)				\
452({									\
453	__label__ dup;							\
454	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
455	typeof(new) this;						\
456	int res, ret = -1;						\
457									\
458	while (*n) {							\
459		parent = *n;						\
460		this = container_of(*n, typeof(*(new)), member);	\
461		res = cmp(new, this);					\
462		if (!res)						\
463			goto dup;					\
464		n = res < 0						\
465			? &(*n)->rb_left				\
466			: &(*n)->rb_right;				\
467	}								\
468									\
469	rb_link_node(&(new)->member, parent, n);			\
470	rb_insert_color(&(new)->member, root);				\
471	ret = 0;							\
472dup:									\
473	ret;								\
474})
475
476#define RB_SEARCH(root, search, member, cmp)				\
477({									\
478	struct rb_node *n = (root)->rb_node;				\
479	typeof(&(search)) this, ret = NULL;				\
480	int res;							\
481									\
482	while (n) {							\
483		this = container_of(n, typeof(search), member);		\
484		res = cmp(&(search), this);				\
485		if (!res) {						\
486			ret = this;					\
487			break;						\
488		}							\
489		n = res < 0						\
490			? n->rb_left					\
491			: n->rb_right;					\
492	}								\
493	ret;								\
494})
495
496#define RB_GREATER(root, search, member, cmp)				\
497({									\
498	struct rb_node *n = (root)->rb_node;				\
499	typeof(&(search)) this, ret = NULL;				\
500	int res;							\
501									\
502	while (n) {							\
503		this = container_of(n, typeof(search), member);		\
504		res = cmp(&(search), this);				\
505		if (res < 0) {						\
506			ret = this;					\
507			n = n->rb_left;					\
508		} else							\
509			n = n->rb_right;				\
510	}								\
511	ret;								\
512})
513
514#define RB_FIRST(root, type, member)					\
515	container_of_or_null(rb_first(root), type, member)
516
517#define RB_LAST(root, type, member)					\
518	container_of_or_null(rb_last(root), type, member)
519
520#define RB_NEXT(ptr, member)						\
521	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
522
523#define RB_PREV(ptr, member)						\
524	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
525
526static inline uint64_t bch_crc64(const void *p, size_t len)
527{
528	uint64_t crc = 0xffffffffffffffffULL;
529
530	crc = crc64_be(crc, p, len);
531	return crc ^ 0xffffffffffffffffULL;
532}
533
 
 
 
 
 
 
 
 
534/*
535 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
536 * frac_bits), with the less-significant bits filled in by linear
537 * interpolation.
538 *
539 * This can also be interpreted as a floating-point number format,
540 * where the low frac_bits are the mantissa (with implicit leading
541 * 1 bit), and the more significant bits are the exponent.
542 * The return value is 1.mantissa * 2^exponent.
543 *
544 * The way this is used, fract_bits is 6 and the largest possible
545 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
546 * so the maximum output is 0x1fc00.
547 */
548static inline unsigned int fract_exp_two(unsigned int x,
549					 unsigned int fract_bits)
550{
551	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */
552
553	mantissa += x & (mantissa - 1);
554	x >>= fract_bits;	/* The exponent */
555	/* Largest intermediate value 0x7f0000 */
556	return mantissa << x >> fract_bits;
557}
558
559void bch_bio_map(struct bio *bio, void *base);
560int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
561
 
 
 
 
562#endif /* _BCACHE_UTIL_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef _BCACHE_UTIL_H
  4#define _BCACHE_UTIL_H
  5
  6#include <linux/blkdev.h>
  7#include <linux/errno.h>
  8#include <linux/kernel.h>
  9#include <linux/sched/clock.h>
 10#include <linux/llist.h>
 11#include <linux/ratelimit.h>
 12#include <linux/vmalloc.h>
 13#include <linux/workqueue.h>
 14#include <linux/crc64.h>
 15
 16#include "closure.h"
 17
 18#define PAGE_SECTORS		(PAGE_SIZE / 512)
 19
 20struct closure;
 21
 22#ifdef CONFIG_BCACHE_DEBUG
 23
 24#define EBUG_ON(cond)			BUG_ON(cond)
 25#define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
 26#define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
 27
 28#else /* DEBUG */
 29
 30#define EBUG_ON(cond)			do { if (cond); } while (0)
 31#define atomic_dec_bug(v)	atomic_dec(v)
 32#define atomic_inc_bug(v, i)	atomic_inc(v)
 33
 34#endif
 35
 36#define DECLARE_HEAP(type, name)					\
 37	struct {							\
 38		size_t size, used;					\
 39		type *data;						\
 40	} name
 41
 42#define init_heap(heap, _size, gfp)					\
 43({									\
 44	size_t _bytes;							\
 45	(heap)->used = 0;						\
 46	(heap)->size = (_size);						\
 47	_bytes = (heap)->size * sizeof(*(heap)->data);			\
 48	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
 49	(heap)->data;							\
 50})
 51
 52#define free_heap(heap)							\
 53do {									\
 54	kvfree((heap)->data);						\
 55	(heap)->data = NULL;						\
 56} while (0)
 57
 58#define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
 59
 60#define heap_sift(h, i, cmp)						\
 61do {									\
 62	size_t _r, _j = i;						\
 63									\
 64	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
 65		_r = _j * 2 + 1;					\
 66		if (_r + 1 < (h)->used &&				\
 67		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
 68			_r++;						\
 69									\
 70		if (cmp((h)->data[_r], (h)->data[_j]))			\
 71			break;						\
 72		heap_swap(h, _r, _j);					\
 73	}								\
 74} while (0)
 75
 76#define heap_sift_down(h, i, cmp)					\
 77do {									\
 78	while (i) {							\
 79		size_t p = (i - 1) / 2;					\
 80		if (cmp((h)->data[i], (h)->data[p]))			\
 81			break;						\
 82		heap_swap(h, i, p);					\
 83		i = p;							\
 84	}								\
 85} while (0)
 86
 87#define heap_add(h, d, cmp)						\
 88({									\
 89	bool _r = !heap_full(h);					\
 90	if (_r) {							\
 91		size_t _i = (h)->used++;				\
 92		(h)->data[_i] = d;					\
 93									\
 94		heap_sift_down(h, _i, cmp);				\
 95		heap_sift(h, _i, cmp);					\
 96	}								\
 97	_r;								\
 98})
 99
100#define heap_pop(h, d, cmp)						\
101({									\
102	bool _r = (h)->used;						\
103	if (_r) {							\
104		(d) = (h)->data[0];					\
105		(h)->used--;						\
106		heap_swap(h, 0, (h)->used);				\
107		heap_sift(h, 0, cmp);					\
108	}								\
109	_r;								\
110})
111
112#define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
113
114#define heap_full(h)	((h)->used == (h)->size)
115
116#define DECLARE_FIFO(type, name)					\
117	struct {							\
118		size_t front, back, size, mask;				\
119		type *data;						\
120	} name
121
122#define fifo_for_each(c, fifo, iter)					\
123	for (iter = (fifo)->front;					\
124	     c = (fifo)->data[iter], iter != (fifo)->back;		\
125	     iter = (iter + 1) & (fifo)->mask)
126
127#define __init_fifo(fifo, gfp)						\
128({									\
129	size_t _allocated_size, _bytes;					\
130	BUG_ON(!(fifo)->size);						\
131									\
132	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
133	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
134									\
135	(fifo)->mask = _allocated_size - 1;				\
136	(fifo)->front = (fifo)->back = 0;				\
137									\
138	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
139	(fifo)->data;							\
140})
141
142#define init_fifo_exact(fifo, _size, gfp)				\
143({									\
144	(fifo)->size = (_size);						\
145	__init_fifo(fifo, gfp);						\
146})
147
148#define init_fifo(fifo, _size, gfp)					\
149({									\
150	(fifo)->size = (_size);						\
151	if ((fifo)->size > 4)						\
152		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
153	__init_fifo(fifo, gfp);						\
154})
155
156#define free_fifo(fifo)							\
157do {									\
158	kvfree((fifo)->data);						\
159	(fifo)->data = NULL;						\
160} while (0)
161
162#define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
163#define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
164
165#define fifo_empty(fifo)	(!fifo_used(fifo))
166#define fifo_full(fifo)		(!fifo_free(fifo))
167
168#define fifo_front(fifo)	((fifo)->data[(fifo)->front])
169#define fifo_back(fifo)							\
170	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
171
172#define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
173
174#define fifo_push_back(fifo, i)						\
175({									\
176	bool _r = !fifo_full((fifo));					\
177	if (_r) {							\
178		(fifo)->data[(fifo)->back++] = (i);			\
179		(fifo)->back &= (fifo)->mask;				\
180	}								\
181	_r;								\
182})
183
184#define fifo_pop_front(fifo, i)						\
185({									\
186	bool _r = !fifo_empty((fifo));					\
187	if (_r) {							\
188		(i) = (fifo)->data[(fifo)->front++];			\
189		(fifo)->front &= (fifo)->mask;				\
190	}								\
191	_r;								\
192})
193
194#define fifo_push_front(fifo, i)					\
195({									\
196	bool _r = !fifo_full((fifo));					\
197	if (_r) {							\
198		--(fifo)->front;					\
199		(fifo)->front &= (fifo)->mask;				\
200		(fifo)->data[(fifo)->front] = (i);			\
201	}								\
202	_r;								\
203})
204
205#define fifo_pop_back(fifo, i)						\
206({									\
207	bool _r = !fifo_empty((fifo));					\
208	if (_r) {							\
209		--(fifo)->back;						\
210		(fifo)->back &= (fifo)->mask;				\
211		(i) = (fifo)->data[(fifo)->back]			\
212	}								\
213	_r;								\
214})
215
216#define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
217#define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
218
219#define fifo_swap(l, r)							\
220do {									\
221	swap((l)->front, (r)->front);					\
222	swap((l)->back, (r)->back);					\
223	swap((l)->size, (r)->size);					\
224	swap((l)->mask, (r)->mask);					\
225	swap((l)->data, (r)->data);					\
226} while (0)
227
228#define fifo_move(dest, src)						\
229do {									\
230	typeof(*((dest)->data)) _t;					\
231	while (!fifo_full(dest) &&					\
232	       fifo_pop(src, _t))					\
233		fifo_push(dest, _t);					\
234} while (0)
235
236/*
237 * Simple array based allocator - preallocates a number of elements and you can
238 * never allocate more than that, also has no locking.
239 *
240 * Handy because if you know you only need a fixed number of elements you don't
241 * have to worry about memory allocation failure, and sometimes a mempool isn't
242 * what you want.
243 *
244 * We treat the free elements as entries in a singly linked list, and the
245 * freelist as a stack - allocating and freeing push and pop off the freelist.
246 */
247
248#define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
249	struct {							\
250		type	*freelist;					\
251		type	data[size];					\
252	} name
253
254#define array_alloc(array)						\
255({									\
256	typeof((array)->freelist) _ret = (array)->freelist;		\
257									\
258	if (_ret)							\
259		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
260									\
261	_ret;								\
262})
263
264#define array_free(array, ptr)						\
265do {									\
266	typeof((array)->freelist) _ptr = ptr;				\
267									\
268	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
269	(array)->freelist = _ptr;					\
270} while (0)
271
272#define array_allocator_init(array)					\
273do {									\
274	typeof((array)->freelist) _i;					\
275									\
276	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
277	(array)->freelist = NULL;					\
278									\
279	for (_i = (array)->data;					\
280	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
281	     _i++)							\
282		array_free(array, _i);					\
283} while (0)
284
285#define array_freelist_empty(array)	((array)->freelist == NULL)
286
287#define ANYSINT_MAX(t)							\
288	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
289
290int bch_strtoint_h(const char *cp, int *res);
291int bch_strtouint_h(const char *cp, unsigned int *res);
292int bch_strtoll_h(const char *cp, long long *res);
293int bch_strtoull_h(const char *cp, unsigned long long *res);
294
295static inline int bch_strtol_h(const char *cp, long *res)
296{
297#if BITS_PER_LONG == 32
298	return bch_strtoint_h(cp, (int *) res);
299#else
300	return bch_strtoll_h(cp, (long long *) res);
301#endif
302}
303
304static inline int bch_strtoul_h(const char *cp, long *res)
305{
306#if BITS_PER_LONG == 32
307	return bch_strtouint_h(cp, (unsigned int *) res);
308#else
309	return bch_strtoull_h(cp, (unsigned long long *) res);
310#endif
311}
312
313#define strtoi_h(cp, res)						\
314	(__builtin_types_compatible_p(typeof(*res), int)		\
315	? bch_strtoint_h(cp, (void *) res)				\
316	: __builtin_types_compatible_p(typeof(*res), long)		\
317	? bch_strtol_h(cp, (void *) res)				\
318	: __builtin_types_compatible_p(typeof(*res), long long)		\
319	? bch_strtoll_h(cp, (void *) res)				\
320	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
321	? bch_strtouint_h(cp, (void *) res)				\
322	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
323	? bch_strtoul_h(cp, (void *) res)				\
324	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
325	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
326
327#define strtoul_safe(cp, var)						\
328({									\
329	unsigned long _v;						\
330	int _r = kstrtoul(cp, 10, &_v);					\
331	if (!_r)							\
332		var = _v;						\
333	_r;								\
334})
335
336#define strtoul_safe_clamp(cp, var, min, max)				\
337({									\
338	unsigned long _v;						\
339	int _r = kstrtoul(cp, 10, &_v);					\
340	if (!_r)							\
341		var = clamp_t(typeof(var), _v, min, max);		\
342	_r;								\
343})
344
345#define snprint(buf, size, var)						\
346	snprintf(buf, size,						\
347		__builtin_types_compatible_p(typeof(var), int)		\
348		     ? "%i\n" :						\
349		__builtin_types_compatible_p(typeof(var), unsigned int)	\
350		     ? "%u\n" :						\
351		__builtin_types_compatible_p(typeof(var), long)		\
352		     ? "%li\n" :					\
353		__builtin_types_compatible_p(typeof(var), unsigned long)\
354		     ? "%lu\n" :					\
355		__builtin_types_compatible_p(typeof(var), int64_t)	\
356		     ? "%lli\n" :					\
357		__builtin_types_compatible_p(typeof(var), uint64_t)	\
358		     ? "%llu\n" :					\
359		__builtin_types_compatible_p(typeof(var), const char *)	\
360		     ? "%s\n" : "%i\n", var)
361
362ssize_t bch_hprint(char *buf, int64_t v);
363
364bool bch_is_zero(const char *p, size_t n);
365int bch_parse_uuid(const char *s, char *uuid);
366
367struct time_stats {
368	spinlock_t	lock;
369	/*
370	 * all fields are in nanoseconds, averages are ewmas stored left shifted
371	 * by 8
372	 */
373	uint64_t	max_duration;
374	uint64_t	average_duration;
375	uint64_t	average_frequency;
376	uint64_t	last;
377};
378
379void bch_time_stats_update(struct time_stats *stats, uint64_t time);
380
381static inline unsigned int local_clock_us(void)
382{
383	return local_clock() >> 10;
384}
385
386#define NSEC_PER_ns			1L
387#define NSEC_PER_us			NSEC_PER_USEC
388#define NSEC_PER_ms			NSEC_PER_MSEC
389#define NSEC_PER_sec			NSEC_PER_SEC
390
391#define __print_time_stat(stats, name, stat, units)			\
392	sysfs_print(name ## _ ## stat ## _ ## units,			\
393		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
394
395#define sysfs_print_time_stats(stats, name,				\
396			       frequency_units,				\
397			       duration_units)				\
398do {									\
399	__print_time_stat(stats, name,					\
400			  average_frequency,	frequency_units);	\
401	__print_time_stat(stats, name,					\
402			  average_duration,	duration_units);	\
403	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
404			div_u64((stats)->max_duration,			\
405				NSEC_PER_ ## duration_units));		\
406									\
407	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
408		    ? div_s64(local_clock() - (stats)->last,		\
409			      NSEC_PER_ ## frequency_units)		\
410		    : -1LL);						\
411} while (0)
412
413#define sysfs_time_stats_attribute(name,				\
414				   frequency_units,			\
415				   duration_units)			\
416read_attribute(name ## _average_frequency_ ## frequency_units);		\
417read_attribute(name ## _average_duration_ ## duration_units);		\
418read_attribute(name ## _max_duration_ ## duration_units);		\
419read_attribute(name ## _last_ ## frequency_units)
420
421#define sysfs_time_stats_attribute_list(name,				\
422					frequency_units,		\
423					duration_units)			\
424&sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
425&sysfs_ ## name ## _average_duration_ ## duration_units,		\
426&sysfs_ ## name ## _max_duration_ ## duration_units,			\
427&sysfs_ ## name ## _last_ ## frequency_units,
428
429#define ewma_add(ewma, val, weight, factor)				\
430({									\
431	(ewma) *= (weight) - 1;						\
432	(ewma) += (val) << factor;					\
433	(ewma) /= (weight);						\
434	(ewma) >> factor;						\
435})
436
437struct bch_ratelimit {
438	/* Next time we want to do some work, in nanoseconds */
439	uint64_t		next;
440
441	/*
442	 * Rate at which we want to do work, in units per second
443	 * The units here correspond to the units passed to bch_next_delay()
444	 */
445	atomic_long_t		rate;
446};
447
448static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
449{
450	d->next = local_clock();
451}
452
453uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
454
455#define __DIV_SAFE(n, d, zero)						\
456({									\
457	typeof(n) _n = (n);						\
458	typeof(d) _d = (d);						\
459	_d ? _n / _d : zero;						\
460})
461
462#define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
463
464#define container_of_or_null(ptr, type, member)				\
465({									\
466	typeof(ptr) _ptr = ptr;						\
467	_ptr ? container_of(_ptr, type, member) : NULL;			\
468})
469
470#define RB_INSERT(root, new, member, cmp)				\
471({									\
472	__label__ dup;							\
473	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
474	typeof(new) this;						\
475	int res, ret = -1;						\
476									\
477	while (*n) {							\
478		parent = *n;						\
479		this = container_of(*n, typeof(*(new)), member);	\
480		res = cmp(new, this);					\
481		if (!res)						\
482			goto dup;					\
483		n = res < 0						\
484			? &(*n)->rb_left				\
485			: &(*n)->rb_right;				\
486	}								\
487									\
488	rb_link_node(&(new)->member, parent, n);			\
489	rb_insert_color(&(new)->member, root);				\
490	ret = 0;							\
491dup:									\
492	ret;								\
493})
494
495#define RB_SEARCH(root, search, member, cmp)				\
496({									\
497	struct rb_node *n = (root)->rb_node;				\
498	typeof(&(search)) this, ret = NULL;				\
499	int res;							\
500									\
501	while (n) {							\
502		this = container_of(n, typeof(search), member);		\
503		res = cmp(&(search), this);				\
504		if (!res) {						\
505			ret = this;					\
506			break;						\
507		}							\
508		n = res < 0						\
509			? n->rb_left					\
510			: n->rb_right;					\
511	}								\
512	ret;								\
513})
514
515#define RB_GREATER(root, search, member, cmp)				\
516({									\
517	struct rb_node *n = (root)->rb_node;				\
518	typeof(&(search)) this, ret = NULL;				\
519	int res;							\
520									\
521	while (n) {							\
522		this = container_of(n, typeof(search), member);		\
523		res = cmp(&(search), this);				\
524		if (res < 0) {						\
525			ret = this;					\
526			n = n->rb_left;					\
527		} else							\
528			n = n->rb_right;				\
529	}								\
530	ret;								\
531})
532
533#define RB_FIRST(root, type, member)					\
534	container_of_or_null(rb_first(root), type, member)
535
536#define RB_LAST(root, type, member)					\
537	container_of_or_null(rb_last(root), type, member)
538
539#define RB_NEXT(ptr, member)						\
540	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
541
542#define RB_PREV(ptr, member)						\
543	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
544
545static inline uint64_t bch_crc64(const void *p, size_t len)
546{
547	uint64_t crc = 0xffffffffffffffffULL;
548
549	crc = crc64_be(crc, p, len);
550	return crc ^ 0xffffffffffffffffULL;
551}
552
553static inline uint64_t bch_crc64_update(uint64_t crc,
554					const void *p,
555					size_t len)
556{
557	crc = crc64_be(crc, p, len);
558	return crc;
559}
560
561/*
562 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
563 * frac_bits), with the less-significant bits filled in by linear
564 * interpolation.
565 *
566 * This can also be interpreted as a floating-point number format,
567 * where the low frac_bits are the mantissa (with implicit leading
568 * 1 bit), and the more significant bits are the exponent.
569 * The return value is 1.mantissa * 2^exponent.
570 *
571 * The way this is used, fract_bits is 6 and the largest possible
572 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
573 * so the maximum output is 0x1fc00.
574 */
575static inline unsigned int fract_exp_two(unsigned int x,
576					 unsigned int fract_bits)
577{
578	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */
579
580	mantissa += x & (mantissa - 1);
581	x >>= fract_bits;	/* The exponent */
582	/* Largest intermediate value 0x7f0000 */
583	return mantissa << x >> fract_bits;
584}
585
586void bch_bio_map(struct bio *bio, void *base);
587int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
588
589static inline sector_t bdev_sectors(struct block_device *bdev)
590{
591	return bdev->bd_inode->i_size >> 9;
592}
593#endif /* _BCACHE_UTIL_H */