Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2006-2014 Intel Corporation.
   4 *
   5 * Authors: David Woodhouse <dwmw2@infradead.org>,
   6 *          Ashok Raj <ashok.raj@intel.com>,
   7 *          Shaohua Li <shaohua.li@intel.com>,
   8 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
   9 *          Fenghua Yu <fenghua.yu@intel.com>
  10 *          Joerg Roedel <jroedel@suse.de>
  11 */
  12
  13#define pr_fmt(fmt)     "DMAR: " fmt
  14#define dev_fmt(fmt)    pr_fmt(fmt)
  15
  16#include <linux/crash_dump.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dmi.h>
  19#include <linux/intel-svm.h>
  20#include <linux/memory.h>
  21#include <linux/pci.h>
  22#include <linux/pci-ats.h>
  23#include <linux/spinlock.h>
  24#include <linux/syscore_ops.h>
  25#include <linux/tboot.h>
  26
  27#include "iommu.h"
  28#include "../dma-iommu.h"
  29#include "../irq_remapping.h"
  30#include "../iommu-sva.h"
  31#include "pasid.h"
  32#include "cap_audit.h"
  33
  34#define ROOT_SIZE		VTD_PAGE_SIZE
  35#define CONTEXT_SIZE		VTD_PAGE_SIZE
  36
  37#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  38#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
  39#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  40#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
  41
  42#define IOAPIC_RANGE_START	(0xfee00000)
  43#define IOAPIC_RANGE_END	(0xfeefffff)
  44#define IOVA_START_ADDR		(0x1000)
  45
  46#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
  47
  48#define MAX_AGAW_WIDTH 64
  49#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
  50
  51#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
  52#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
  53
  54/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
  55   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
  56#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
  57				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
  58#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
  59
  60/* IO virtual address start page frame number */
  61#define IOVA_START_PFN		(1)
  62
  63#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
  64
  65/* page table handling */
  66#define LEVEL_STRIDE		(9)
  67#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
  68
  69static inline int agaw_to_level(int agaw)
  70{
  71	return agaw + 2;
  72}
  73
  74static inline int agaw_to_width(int agaw)
  75{
  76	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
  77}
  78
  79static inline int width_to_agaw(int width)
  80{
  81	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
  82}
  83
  84static inline unsigned int level_to_offset_bits(int level)
  85{
  86	return (level - 1) * LEVEL_STRIDE;
  87}
  88
  89static inline int pfn_level_offset(u64 pfn, int level)
  90{
  91	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
  92}
  93
  94static inline u64 level_mask(int level)
  95{
  96	return -1ULL << level_to_offset_bits(level);
  97}
  98
  99static inline u64 level_size(int level)
 100{
 101	return 1ULL << level_to_offset_bits(level);
 102}
 103
 104static inline u64 align_to_level(u64 pfn, int level)
 105{
 106	return (pfn + level_size(level) - 1) & level_mask(level);
 107}
 108
 109static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
 110{
 111	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
 112}
 113
 114/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
 115   are never going to work. */
 116static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
 117{
 118	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
 119}
 120static inline unsigned long page_to_dma_pfn(struct page *pg)
 121{
 122	return mm_to_dma_pfn(page_to_pfn(pg));
 123}
 124static inline unsigned long virt_to_dma_pfn(void *p)
 125{
 126	return page_to_dma_pfn(virt_to_page(p));
 127}
 128
 129static void __init check_tylersburg_isoch(void);
 130static int rwbf_quirk;
 131
 132/*
 133 * set to 1 to panic kernel if can't successfully enable VT-d
 134 * (used when kernel is launched w/ TXT)
 135 */
 136static int force_on = 0;
 137static int intel_iommu_tboot_noforce;
 138static int no_platform_optin;
 139
 140#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
 141
 142/*
 143 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 144 * if marked present.
 145 */
 146static phys_addr_t root_entry_lctp(struct root_entry *re)
 147{
 148	if (!(re->lo & 1))
 149		return 0;
 150
 151	return re->lo & VTD_PAGE_MASK;
 152}
 153
 154/*
 155 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 156 * if marked present.
 157 */
 158static phys_addr_t root_entry_uctp(struct root_entry *re)
 159{
 160	if (!(re->hi & 1))
 161		return 0;
 162
 163	return re->hi & VTD_PAGE_MASK;
 164}
 165
 166static inline void context_set_present(struct context_entry *context)
 167{
 168	context->lo |= 1;
 169}
 170
 171static inline void context_set_fault_enable(struct context_entry *context)
 172{
 173	context->lo &= (((u64)-1) << 2) | 1;
 174}
 175
 176static inline void context_set_translation_type(struct context_entry *context,
 177						unsigned long value)
 178{
 179	context->lo &= (((u64)-1) << 4) | 3;
 180	context->lo |= (value & 3) << 2;
 181}
 182
 183static inline void context_set_address_root(struct context_entry *context,
 184					    unsigned long value)
 185{
 186	context->lo &= ~VTD_PAGE_MASK;
 187	context->lo |= value & VTD_PAGE_MASK;
 188}
 189
 190static inline void context_set_address_width(struct context_entry *context,
 191					     unsigned long value)
 192{
 193	context->hi |= value & 7;
 194}
 195
 196static inline void context_set_domain_id(struct context_entry *context,
 197					 unsigned long value)
 198{
 199	context->hi |= (value & ((1 << 16) - 1)) << 8;
 200}
 201
 202static inline void context_set_pasid(struct context_entry *context)
 203{
 204	context->lo |= CONTEXT_PASIDE;
 205}
 206
 207static inline int context_domain_id(struct context_entry *c)
 208{
 209	return((c->hi >> 8) & 0xffff);
 210}
 211
 212static inline void context_clear_entry(struct context_entry *context)
 213{
 214	context->lo = 0;
 215	context->hi = 0;
 216}
 217
 218static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
 219{
 220	if (!iommu->copied_tables)
 221		return false;
 222
 223	return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
 224}
 225
 226static inline void
 227set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
 228{
 229	set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
 230}
 231
 232static inline void
 233clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
 234{
 235	clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
 236}
 237
 238/*
 239 * This domain is a statically identity mapping domain.
 240 *	1. This domain creats a static 1:1 mapping to all usable memory.
 241 * 	2. It maps to each iommu if successful.
 242 *	3. Each iommu mapps to this domain if successful.
 243 */
 244static struct dmar_domain *si_domain;
 245static int hw_pass_through = 1;
 246
 247struct dmar_rmrr_unit {
 248	struct list_head list;		/* list of rmrr units	*/
 249	struct acpi_dmar_header *hdr;	/* ACPI header		*/
 250	u64	base_address;		/* reserved base address*/
 251	u64	end_address;		/* reserved end address */
 252	struct dmar_dev_scope *devices;	/* target devices */
 253	int	devices_cnt;		/* target device count */
 254};
 255
 256struct dmar_atsr_unit {
 257	struct list_head list;		/* list of ATSR units */
 258	struct acpi_dmar_header *hdr;	/* ACPI header */
 259	struct dmar_dev_scope *devices;	/* target devices */
 260	int devices_cnt;		/* target device count */
 261	u8 include_all:1;		/* include all ports */
 262};
 263
 264struct dmar_satc_unit {
 265	struct list_head list;		/* list of SATC units */
 266	struct acpi_dmar_header *hdr;	/* ACPI header */
 267	struct dmar_dev_scope *devices;	/* target devices */
 268	struct intel_iommu *iommu;	/* the corresponding iommu */
 269	int devices_cnt;		/* target device count */
 270	u8 atc_required:1;		/* ATS is required */
 271};
 272
 273static LIST_HEAD(dmar_atsr_units);
 274static LIST_HEAD(dmar_rmrr_units);
 275static LIST_HEAD(dmar_satc_units);
 276
 277#define for_each_rmrr_units(rmrr) \
 278	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
 279
 280static void device_block_translation(struct device *dev);
 281static void intel_iommu_domain_free(struct iommu_domain *domain);
 282
 283int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON);
 284int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON);
 285
 286int intel_iommu_enabled = 0;
 287EXPORT_SYMBOL_GPL(intel_iommu_enabled);
 288
 289static int dmar_map_gfx = 1;
 290static int intel_iommu_superpage = 1;
 291static int iommu_identity_mapping;
 292static int iommu_skip_te_disable;
 293
 294#define IDENTMAP_GFX		2
 295#define IDENTMAP_AZALIA		4
 296
 297const struct iommu_ops intel_iommu_ops;
 298
 299static bool translation_pre_enabled(struct intel_iommu *iommu)
 300{
 301	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
 302}
 303
 304static void clear_translation_pre_enabled(struct intel_iommu *iommu)
 305{
 306	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
 307}
 308
 309static void init_translation_status(struct intel_iommu *iommu)
 310{
 311	u32 gsts;
 312
 313	gsts = readl(iommu->reg + DMAR_GSTS_REG);
 314	if (gsts & DMA_GSTS_TES)
 315		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
 316}
 317
 318static int __init intel_iommu_setup(char *str)
 319{
 320	if (!str)
 321		return -EINVAL;
 322
 323	while (*str) {
 324		if (!strncmp(str, "on", 2)) {
 325			dmar_disabled = 0;
 326			pr_info("IOMMU enabled\n");
 327		} else if (!strncmp(str, "off", 3)) {
 328			dmar_disabled = 1;
 329			no_platform_optin = 1;
 330			pr_info("IOMMU disabled\n");
 331		} else if (!strncmp(str, "igfx_off", 8)) {
 332			dmar_map_gfx = 0;
 333			pr_info("Disable GFX device mapping\n");
 334		} else if (!strncmp(str, "forcedac", 8)) {
 335			pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n");
 336			iommu_dma_forcedac = true;
 337		} else if (!strncmp(str, "strict", 6)) {
 338			pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n");
 339			iommu_set_dma_strict();
 340		} else if (!strncmp(str, "sp_off", 6)) {
 341			pr_info("Disable supported super page\n");
 342			intel_iommu_superpage = 0;
 343		} else if (!strncmp(str, "sm_on", 5)) {
 344			pr_info("Enable scalable mode if hardware supports\n");
 345			intel_iommu_sm = 1;
 346		} else if (!strncmp(str, "sm_off", 6)) {
 347			pr_info("Scalable mode is disallowed\n");
 348			intel_iommu_sm = 0;
 349		} else if (!strncmp(str, "tboot_noforce", 13)) {
 350			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
 351			intel_iommu_tboot_noforce = 1;
 352		} else {
 353			pr_notice("Unknown option - '%s'\n", str);
 354		}
 355
 356		str += strcspn(str, ",");
 357		while (*str == ',')
 358			str++;
 359	}
 360
 361	return 1;
 362}
 363__setup("intel_iommu=", intel_iommu_setup);
 364
 365void *alloc_pgtable_page(int node)
 366{
 367	struct page *page;
 368	void *vaddr = NULL;
 369
 370	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
 371	if (page)
 372		vaddr = page_address(page);
 373	return vaddr;
 374}
 375
 376void free_pgtable_page(void *vaddr)
 377{
 378	free_page((unsigned long)vaddr);
 379}
 380
 381static inline int domain_type_is_si(struct dmar_domain *domain)
 382{
 383	return domain->domain.type == IOMMU_DOMAIN_IDENTITY;
 384}
 385
 386static inline int domain_pfn_supported(struct dmar_domain *domain,
 387				       unsigned long pfn)
 388{
 389	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
 390
 391	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
 392}
 393
 394/*
 395 * Calculate the Supported Adjusted Guest Address Widths of an IOMMU.
 396 * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of
 397 * the returned SAGAW.
 398 */
 399static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu)
 400{
 401	unsigned long fl_sagaw, sl_sagaw;
 402
 403	fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0);
 404	sl_sagaw = cap_sagaw(iommu->cap);
 405
 406	/* Second level only. */
 407	if (!sm_supported(iommu) || !ecap_flts(iommu->ecap))
 408		return sl_sagaw;
 409
 410	/* First level only. */
 411	if (!ecap_slts(iommu->ecap))
 412		return fl_sagaw;
 413
 414	return fl_sagaw & sl_sagaw;
 415}
 416
 417static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
 418{
 419	unsigned long sagaw;
 420	int agaw;
 421
 422	sagaw = __iommu_calculate_sagaw(iommu);
 423	for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) {
 424		if (test_bit(agaw, &sagaw))
 425			break;
 426	}
 427
 428	return agaw;
 429}
 430
 431/*
 432 * Calculate max SAGAW for each iommu.
 433 */
 434int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
 435{
 436	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
 437}
 438
 439/*
 440 * calculate agaw for each iommu.
 441 * "SAGAW" may be different across iommus, use a default agaw, and
 442 * get a supported less agaw for iommus that don't support the default agaw.
 443 */
 444int iommu_calculate_agaw(struct intel_iommu *iommu)
 445{
 446	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
 447}
 448
 449static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
 450{
 451	return sm_supported(iommu) ?
 452			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
 453}
 454
 455static void domain_update_iommu_coherency(struct dmar_domain *domain)
 456{
 457	struct iommu_domain_info *info;
 458	struct dmar_drhd_unit *drhd;
 459	struct intel_iommu *iommu;
 460	bool found = false;
 461	unsigned long i;
 462
 463	domain->iommu_coherency = true;
 464	xa_for_each(&domain->iommu_array, i, info) {
 465		found = true;
 466		if (!iommu_paging_structure_coherency(info->iommu)) {
 467			domain->iommu_coherency = false;
 468			break;
 469		}
 470	}
 471	if (found)
 472		return;
 473
 474	/* No hardware attached; use lowest common denominator */
 475	rcu_read_lock();
 476	for_each_active_iommu(iommu, drhd) {
 477		if (!iommu_paging_structure_coherency(iommu)) {
 478			domain->iommu_coherency = false;
 479			break;
 480		}
 481	}
 482	rcu_read_unlock();
 483}
 484
 485static int domain_update_iommu_superpage(struct dmar_domain *domain,
 486					 struct intel_iommu *skip)
 487{
 488	struct dmar_drhd_unit *drhd;
 489	struct intel_iommu *iommu;
 490	int mask = 0x3;
 491
 492	if (!intel_iommu_superpage)
 493		return 0;
 494
 495	/* set iommu_superpage to the smallest common denominator */
 496	rcu_read_lock();
 497	for_each_active_iommu(iommu, drhd) {
 498		if (iommu != skip) {
 499			if (domain && domain->use_first_level) {
 500				if (!cap_fl1gp_support(iommu->cap))
 501					mask = 0x1;
 502			} else {
 503				mask &= cap_super_page_val(iommu->cap);
 504			}
 505
 506			if (!mask)
 507				break;
 508		}
 509	}
 510	rcu_read_unlock();
 511
 512	return fls(mask);
 513}
 514
 515static int domain_update_device_node(struct dmar_domain *domain)
 516{
 517	struct device_domain_info *info;
 518	int nid = NUMA_NO_NODE;
 519	unsigned long flags;
 520
 521	spin_lock_irqsave(&domain->lock, flags);
 522	list_for_each_entry(info, &domain->devices, link) {
 523		/*
 524		 * There could possibly be multiple device numa nodes as devices
 525		 * within the same domain may sit behind different IOMMUs. There
 526		 * isn't perfect answer in such situation, so we select first
 527		 * come first served policy.
 528		 */
 529		nid = dev_to_node(info->dev);
 530		if (nid != NUMA_NO_NODE)
 531			break;
 532	}
 533	spin_unlock_irqrestore(&domain->lock, flags);
 534
 535	return nid;
 536}
 537
 538static void domain_update_iotlb(struct dmar_domain *domain);
 539
 540/* Return the super pagesize bitmap if supported. */
 541static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain)
 542{
 543	unsigned long bitmap = 0;
 544
 545	/*
 546	 * 1-level super page supports page size of 2MiB, 2-level super page
 547	 * supports page size of both 2MiB and 1GiB.
 548	 */
 549	if (domain->iommu_superpage == 1)
 550		bitmap |= SZ_2M;
 551	else if (domain->iommu_superpage == 2)
 552		bitmap |= SZ_2M | SZ_1G;
 553
 554	return bitmap;
 555}
 556
 557/* Some capabilities may be different across iommus */
 558static void domain_update_iommu_cap(struct dmar_domain *domain)
 559{
 560	domain_update_iommu_coherency(domain);
 561	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
 562
 563	/*
 564	 * If RHSA is missing, we should default to the device numa domain
 565	 * as fall back.
 566	 */
 567	if (domain->nid == NUMA_NO_NODE)
 568		domain->nid = domain_update_device_node(domain);
 569
 570	/*
 571	 * First-level translation restricts the input-address to a
 572	 * canonical address (i.e., address bits 63:N have the same
 573	 * value as address bit [N-1], where N is 48-bits with 4-level
 574	 * paging and 57-bits with 5-level paging). Hence, skip bit
 575	 * [N-1].
 576	 */
 577	if (domain->use_first_level)
 578		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
 579	else
 580		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
 581
 582	domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
 583	domain_update_iotlb(domain);
 584}
 585
 586struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
 587					 u8 devfn, int alloc)
 588{
 589	struct root_entry *root = &iommu->root_entry[bus];
 590	struct context_entry *context;
 591	u64 *entry;
 592
 593	/*
 594	 * Except that the caller requested to allocate a new entry,
 595	 * returning a copied context entry makes no sense.
 596	 */
 597	if (!alloc && context_copied(iommu, bus, devfn))
 598		return NULL;
 599
 600	entry = &root->lo;
 601	if (sm_supported(iommu)) {
 602		if (devfn >= 0x80) {
 603			devfn -= 0x80;
 604			entry = &root->hi;
 605		}
 606		devfn *= 2;
 607	}
 608	if (*entry & 1)
 609		context = phys_to_virt(*entry & VTD_PAGE_MASK);
 610	else {
 611		unsigned long phy_addr;
 612		if (!alloc)
 613			return NULL;
 614
 615		context = alloc_pgtable_page(iommu->node);
 616		if (!context)
 617			return NULL;
 618
 619		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 620		phy_addr = virt_to_phys((void *)context);
 621		*entry = phy_addr | 1;
 622		__iommu_flush_cache(iommu, entry, sizeof(*entry));
 623	}
 624	return &context[devfn];
 625}
 626
 627/**
 628 * is_downstream_to_pci_bridge - test if a device belongs to the PCI
 629 *				 sub-hierarchy of a candidate PCI-PCI bridge
 630 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
 631 * @bridge: the candidate PCI-PCI bridge
 632 *
 633 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
 634 */
 635static bool
 636is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
 637{
 638	struct pci_dev *pdev, *pbridge;
 639
 640	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
 641		return false;
 642
 643	pdev = to_pci_dev(dev);
 644	pbridge = to_pci_dev(bridge);
 645
 646	if (pbridge->subordinate &&
 647	    pbridge->subordinate->number <= pdev->bus->number &&
 648	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
 649		return true;
 650
 651	return false;
 652}
 653
 654static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
 655{
 656	struct dmar_drhd_unit *drhd;
 657	u32 vtbar;
 658	int rc;
 659
 660	/* We know that this device on this chipset has its own IOMMU.
 661	 * If we find it under a different IOMMU, then the BIOS is lying
 662	 * to us. Hope that the IOMMU for this device is actually
 663	 * disabled, and it needs no translation...
 664	 */
 665	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
 666	if (rc) {
 667		/* "can't" happen */
 668		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
 669		return false;
 670	}
 671	vtbar &= 0xffff0000;
 672
 673	/* we know that the this iommu should be at offset 0xa000 from vtbar */
 674	drhd = dmar_find_matched_drhd_unit(pdev);
 675	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
 676		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
 677		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 678		return true;
 679	}
 680
 681	return false;
 682}
 683
 684static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
 685{
 686	if (!iommu || iommu->drhd->ignored)
 687		return true;
 688
 689	if (dev_is_pci(dev)) {
 690		struct pci_dev *pdev = to_pci_dev(dev);
 691
 692		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
 693		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
 694		    quirk_ioat_snb_local_iommu(pdev))
 695			return true;
 696	}
 697
 698	return false;
 699}
 700
 701struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
 702{
 703	struct dmar_drhd_unit *drhd = NULL;
 704	struct pci_dev *pdev = NULL;
 705	struct intel_iommu *iommu;
 706	struct device *tmp;
 707	u16 segment = 0;
 708	int i;
 709
 710	if (!dev)
 711		return NULL;
 712
 713	if (dev_is_pci(dev)) {
 714		struct pci_dev *pf_pdev;
 715
 716		pdev = pci_real_dma_dev(to_pci_dev(dev));
 717
 718		/* VFs aren't listed in scope tables; we need to look up
 719		 * the PF instead to find the IOMMU. */
 720		pf_pdev = pci_physfn(pdev);
 721		dev = &pf_pdev->dev;
 722		segment = pci_domain_nr(pdev->bus);
 723	} else if (has_acpi_companion(dev))
 724		dev = &ACPI_COMPANION(dev)->dev;
 725
 726	rcu_read_lock();
 727	for_each_iommu(iommu, drhd) {
 728		if (pdev && segment != drhd->segment)
 729			continue;
 730
 731		for_each_active_dev_scope(drhd->devices,
 732					  drhd->devices_cnt, i, tmp) {
 733			if (tmp == dev) {
 734				/* For a VF use its original BDF# not that of the PF
 735				 * which we used for the IOMMU lookup. Strictly speaking
 736				 * we could do this for all PCI devices; we only need to
 737				 * get the BDF# from the scope table for ACPI matches. */
 738				if (pdev && pdev->is_virtfn)
 739					goto got_pdev;
 740
 741				if (bus && devfn) {
 742					*bus = drhd->devices[i].bus;
 743					*devfn = drhd->devices[i].devfn;
 744				}
 745				goto out;
 746			}
 747
 748			if (is_downstream_to_pci_bridge(dev, tmp))
 749				goto got_pdev;
 750		}
 751
 752		if (pdev && drhd->include_all) {
 753got_pdev:
 754			if (bus && devfn) {
 755				*bus = pdev->bus->number;
 756				*devfn = pdev->devfn;
 757			}
 758			goto out;
 759		}
 760	}
 761	iommu = NULL;
 762out:
 763	if (iommu_is_dummy(iommu, dev))
 764		iommu = NULL;
 765
 766	rcu_read_unlock();
 767
 768	return iommu;
 769}
 770
 771static void domain_flush_cache(struct dmar_domain *domain,
 772			       void *addr, int size)
 773{
 774	if (!domain->iommu_coherency)
 775		clflush_cache_range(addr, size);
 776}
 777
 778static void free_context_table(struct intel_iommu *iommu)
 779{
 780	struct context_entry *context;
 781	int i;
 782
 783	if (!iommu->root_entry)
 784		return;
 785
 786	for (i = 0; i < ROOT_ENTRY_NR; i++) {
 787		context = iommu_context_addr(iommu, i, 0, 0);
 788		if (context)
 789			free_pgtable_page(context);
 790
 791		if (!sm_supported(iommu))
 792			continue;
 793
 794		context = iommu_context_addr(iommu, i, 0x80, 0);
 795		if (context)
 796			free_pgtable_page(context);
 797	}
 798
 799	free_pgtable_page(iommu->root_entry);
 800	iommu->root_entry = NULL;
 801}
 802
 803#ifdef CONFIG_DMAR_DEBUG
 804static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn,
 805			 u8 bus, u8 devfn, struct dma_pte *parent, int level)
 806{
 807	struct dma_pte *pte;
 808	int offset;
 809
 810	while (1) {
 811		offset = pfn_level_offset(pfn, level);
 812		pte = &parent[offset];
 813		if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) {
 814			pr_info("PTE not present at level %d\n", level);
 815			break;
 816		}
 817
 818		pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val);
 819
 820		if (level == 1)
 821			break;
 822
 823		parent = phys_to_virt(dma_pte_addr(pte));
 824		level--;
 825	}
 826}
 827
 828void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id,
 829			  unsigned long long addr, u32 pasid)
 830{
 831	struct pasid_dir_entry *dir, *pde;
 832	struct pasid_entry *entries, *pte;
 833	struct context_entry *ctx_entry;
 834	struct root_entry *rt_entry;
 835	int i, dir_index, index, level;
 836	u8 devfn = source_id & 0xff;
 837	u8 bus = source_id >> 8;
 838	struct dma_pte *pgtable;
 839
 840	pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr);
 841
 842	/* root entry dump */
 843	rt_entry = &iommu->root_entry[bus];
 844	if (!rt_entry) {
 845		pr_info("root table entry is not present\n");
 846		return;
 847	}
 848
 849	if (sm_supported(iommu))
 850		pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n",
 851			rt_entry->hi, rt_entry->lo);
 852	else
 853		pr_info("root entry: 0x%016llx", rt_entry->lo);
 854
 855	/* context entry dump */
 856	ctx_entry = iommu_context_addr(iommu, bus, devfn, 0);
 857	if (!ctx_entry) {
 858		pr_info("context table entry is not present\n");
 859		return;
 860	}
 861
 862	pr_info("context entry: hi 0x%016llx, low 0x%016llx\n",
 863		ctx_entry->hi, ctx_entry->lo);
 864
 865	/* legacy mode does not require PASID entries */
 866	if (!sm_supported(iommu)) {
 867		level = agaw_to_level(ctx_entry->hi & 7);
 868		pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
 869		goto pgtable_walk;
 870	}
 871
 872	/* get the pointer to pasid directory entry */
 873	dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
 874	if (!dir) {
 875		pr_info("pasid directory entry is not present\n");
 876		return;
 877	}
 878	/* For request-without-pasid, get the pasid from context entry */
 879	if (intel_iommu_sm && pasid == INVALID_IOASID)
 880		pasid = PASID_RID2PASID;
 881
 882	dir_index = pasid >> PASID_PDE_SHIFT;
 883	pde = &dir[dir_index];
 884	pr_info("pasid dir entry: 0x%016llx\n", pde->val);
 885
 886	/* get the pointer to the pasid table entry */
 887	entries = get_pasid_table_from_pde(pde);
 888	if (!entries) {
 889		pr_info("pasid table entry is not present\n");
 890		return;
 891	}
 892	index = pasid & PASID_PTE_MASK;
 893	pte = &entries[index];
 894	for (i = 0; i < ARRAY_SIZE(pte->val); i++)
 895		pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]);
 896
 897	if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) {
 898		level = pte->val[2] & BIT_ULL(2) ? 5 : 4;
 899		pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK);
 900	} else {
 901		level = agaw_to_level((pte->val[0] >> 2) & 0x7);
 902		pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK);
 903	}
 904
 905pgtable_walk:
 906	pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level);
 907}
 908#endif
 909
 910static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
 911				      unsigned long pfn, int *target_level)
 912{
 913	struct dma_pte *parent, *pte;
 914	int level = agaw_to_level(domain->agaw);
 915	int offset;
 916
 917	BUG_ON(!domain->pgd);
 918
 919	if (!domain_pfn_supported(domain, pfn))
 920		/* Address beyond IOMMU's addressing capabilities. */
 921		return NULL;
 922
 923	parent = domain->pgd;
 924
 925	while (1) {
 926		void *tmp_page;
 927
 928		offset = pfn_level_offset(pfn, level);
 929		pte = &parent[offset];
 930		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
 931			break;
 932		if (level == *target_level)
 933			break;
 934
 935		if (!dma_pte_present(pte)) {
 936			uint64_t pteval;
 937
 938			tmp_page = alloc_pgtable_page(domain->nid);
 939
 940			if (!tmp_page)
 941				return NULL;
 942
 943			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
 944			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
 945			if (domain->use_first_level)
 946				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
 947
 948			if (cmpxchg64(&pte->val, 0ULL, pteval))
 949				/* Someone else set it while we were thinking; use theirs. */
 950				free_pgtable_page(tmp_page);
 951			else
 952				domain_flush_cache(domain, pte, sizeof(*pte));
 953		}
 954		if (level == 1)
 955			break;
 956
 957		parent = phys_to_virt(dma_pte_addr(pte));
 958		level--;
 959	}
 960
 961	if (!*target_level)
 962		*target_level = level;
 963
 964	return pte;
 965}
 966
 967/* return address's pte at specific level */
 968static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
 969					 unsigned long pfn,
 970					 int level, int *large_page)
 971{
 972	struct dma_pte *parent, *pte;
 973	int total = agaw_to_level(domain->agaw);
 974	int offset;
 975
 976	parent = domain->pgd;
 977	while (level <= total) {
 978		offset = pfn_level_offset(pfn, total);
 979		pte = &parent[offset];
 980		if (level == total)
 981			return pte;
 982
 983		if (!dma_pte_present(pte)) {
 984			*large_page = total;
 985			break;
 986		}
 987
 988		if (dma_pte_superpage(pte)) {
 989			*large_page = total;
 990			return pte;
 991		}
 992
 993		parent = phys_to_virt(dma_pte_addr(pte));
 994		total--;
 995	}
 996	return NULL;
 997}
 998
 999/* clear last level pte, a tlb flush should be followed */
1000static void dma_pte_clear_range(struct dmar_domain *domain,
1001				unsigned long start_pfn,
1002				unsigned long last_pfn)
1003{
1004	unsigned int large_page;
1005	struct dma_pte *first_pte, *pte;
1006
1007	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1008	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1009	BUG_ON(start_pfn > last_pfn);
1010
1011	/* we don't need lock here; nobody else touches the iova range */
1012	do {
1013		large_page = 1;
1014		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1015		if (!pte) {
1016			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1017			continue;
1018		}
1019		do {
1020			dma_clear_pte(pte);
1021			start_pfn += lvl_to_nr_pages(large_page);
1022			pte++;
1023		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1024
1025		domain_flush_cache(domain, first_pte,
1026				   (void *)pte - (void *)first_pte);
1027
1028	} while (start_pfn && start_pfn <= last_pfn);
1029}
1030
1031static void dma_pte_free_level(struct dmar_domain *domain, int level,
1032			       int retain_level, struct dma_pte *pte,
1033			       unsigned long pfn, unsigned long start_pfn,
1034			       unsigned long last_pfn)
1035{
1036	pfn = max(start_pfn, pfn);
1037	pte = &pte[pfn_level_offset(pfn, level)];
1038
1039	do {
1040		unsigned long level_pfn;
1041		struct dma_pte *level_pte;
1042
1043		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1044			goto next;
1045
1046		level_pfn = pfn & level_mask(level);
1047		level_pte = phys_to_virt(dma_pte_addr(pte));
1048
1049		if (level > 2) {
1050			dma_pte_free_level(domain, level - 1, retain_level,
1051					   level_pte, level_pfn, start_pfn,
1052					   last_pfn);
1053		}
1054
1055		/*
1056		 * Free the page table if we're below the level we want to
1057		 * retain and the range covers the entire table.
1058		 */
1059		if (level < retain_level && !(start_pfn > level_pfn ||
1060		      last_pfn < level_pfn + level_size(level) - 1)) {
1061			dma_clear_pte(pte);
1062			domain_flush_cache(domain, pte, sizeof(*pte));
1063			free_pgtable_page(level_pte);
1064		}
1065next:
1066		pfn += level_size(level);
1067	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1068}
1069
1070/*
1071 * clear last level (leaf) ptes and free page table pages below the
1072 * level we wish to keep intact.
1073 */
1074static void dma_pte_free_pagetable(struct dmar_domain *domain,
1075				   unsigned long start_pfn,
1076				   unsigned long last_pfn,
1077				   int retain_level)
1078{
1079	dma_pte_clear_range(domain, start_pfn, last_pfn);
1080
1081	/* We don't need lock here; nobody else touches the iova range */
1082	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1083			   domain->pgd, 0, start_pfn, last_pfn);
1084
1085	/* free pgd */
1086	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1087		free_pgtable_page(domain->pgd);
1088		domain->pgd = NULL;
1089	}
1090}
1091
1092/* When a page at a given level is being unlinked from its parent, we don't
1093   need to *modify* it at all. All we need to do is make a list of all the
1094   pages which can be freed just as soon as we've flushed the IOTLB and we
1095   know the hardware page-walk will no longer touch them.
1096   The 'pte' argument is the *parent* PTE, pointing to the page that is to
1097   be freed. */
1098static void dma_pte_list_pagetables(struct dmar_domain *domain,
1099				    int level, struct dma_pte *pte,
1100				    struct list_head *freelist)
1101{
1102	struct page *pg;
1103
1104	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1105	list_add_tail(&pg->lru, freelist);
1106
1107	if (level == 1)
1108		return;
1109
1110	pte = page_address(pg);
1111	do {
1112		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1113			dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1114		pte++;
1115	} while (!first_pte_in_page(pte));
1116}
1117
1118static void dma_pte_clear_level(struct dmar_domain *domain, int level,
1119				struct dma_pte *pte, unsigned long pfn,
1120				unsigned long start_pfn, unsigned long last_pfn,
1121				struct list_head *freelist)
1122{
1123	struct dma_pte *first_pte = NULL, *last_pte = NULL;
1124
1125	pfn = max(start_pfn, pfn);
1126	pte = &pte[pfn_level_offset(pfn, level)];
1127
1128	do {
1129		unsigned long level_pfn = pfn & level_mask(level);
1130
1131		if (!dma_pte_present(pte))
1132			goto next;
1133
1134		/* If range covers entire pagetable, free it */
1135		if (start_pfn <= level_pfn &&
1136		    last_pfn >= level_pfn + level_size(level) - 1) {
1137			/* These suborbinate page tables are going away entirely. Don't
1138			   bother to clear them; we're just going to *free* them. */
1139			if (level > 1 && !dma_pte_superpage(pte))
1140				dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1141
1142			dma_clear_pte(pte);
1143			if (!first_pte)
1144				first_pte = pte;
1145			last_pte = pte;
1146		} else if (level > 1) {
1147			/* Recurse down into a level that isn't *entirely* obsolete */
1148			dma_pte_clear_level(domain, level - 1,
1149					    phys_to_virt(dma_pte_addr(pte)),
1150					    level_pfn, start_pfn, last_pfn,
1151					    freelist);
1152		}
1153next:
1154		pfn = level_pfn + level_size(level);
1155	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1156
1157	if (first_pte)
1158		domain_flush_cache(domain, first_pte,
1159				   (void *)++last_pte - (void *)first_pte);
1160}
1161
1162/* We can't just free the pages because the IOMMU may still be walking
1163   the page tables, and may have cached the intermediate levels. The
1164   pages can only be freed after the IOTLB flush has been done. */
1165static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn,
1166			 unsigned long last_pfn, struct list_head *freelist)
1167{
1168	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1169	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1170	BUG_ON(start_pfn > last_pfn);
1171
1172	/* we don't need lock here; nobody else touches the iova range */
1173	dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1174			    domain->pgd, 0, start_pfn, last_pfn, freelist);
1175
1176	/* free pgd */
1177	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1178		struct page *pgd_page = virt_to_page(domain->pgd);
1179		list_add_tail(&pgd_page->lru, freelist);
1180		domain->pgd = NULL;
1181	}
1182}
1183
1184/* iommu handling */
1185static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1186{
1187	struct root_entry *root;
1188
1189	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1190	if (!root) {
1191		pr_err("Allocating root entry for %s failed\n",
1192			iommu->name);
1193		return -ENOMEM;
1194	}
1195
1196	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1197	iommu->root_entry = root;
1198
1199	return 0;
1200}
1201
1202static void iommu_set_root_entry(struct intel_iommu *iommu)
1203{
1204	u64 addr;
1205	u32 sts;
1206	unsigned long flag;
1207
1208	addr = virt_to_phys(iommu->root_entry);
1209	if (sm_supported(iommu))
1210		addr |= DMA_RTADDR_SMT;
1211
1212	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1213	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1214
1215	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1216
1217	/* Make sure hardware complete it */
1218	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1219		      readl, (sts & DMA_GSTS_RTPS), sts);
1220
1221	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1222
1223	/*
1224	 * Hardware invalidates all DMA remapping hardware translation
1225	 * caches as part of SRTP flow.
1226	 */
1227	if (cap_esrtps(iommu->cap))
1228		return;
1229
1230	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1231	if (sm_supported(iommu))
1232		qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
1233	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1234}
1235
1236void iommu_flush_write_buffer(struct intel_iommu *iommu)
1237{
1238	u32 val;
1239	unsigned long flag;
1240
1241	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1242		return;
1243
1244	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1245	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1246
1247	/* Make sure hardware complete it */
1248	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1249		      readl, (!(val & DMA_GSTS_WBFS)), val);
1250
1251	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1252}
1253
1254/* return value determine if we need a write buffer flush */
1255static void __iommu_flush_context(struct intel_iommu *iommu,
1256				  u16 did, u16 source_id, u8 function_mask,
1257				  u64 type)
1258{
1259	u64 val = 0;
1260	unsigned long flag;
1261
1262	switch (type) {
1263	case DMA_CCMD_GLOBAL_INVL:
1264		val = DMA_CCMD_GLOBAL_INVL;
1265		break;
1266	case DMA_CCMD_DOMAIN_INVL:
1267		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1268		break;
1269	case DMA_CCMD_DEVICE_INVL:
1270		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1271			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1272		break;
1273	default:
1274		BUG();
1275	}
1276	val |= DMA_CCMD_ICC;
1277
1278	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1279	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1280
1281	/* Make sure hardware complete it */
1282	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1283		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1284
1285	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1286}
1287
1288/* return value determine if we need a write buffer flush */
1289static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1290				u64 addr, unsigned int size_order, u64 type)
1291{
1292	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1293	u64 val = 0, val_iva = 0;
1294	unsigned long flag;
1295
1296	switch (type) {
1297	case DMA_TLB_GLOBAL_FLUSH:
1298		/* global flush doesn't need set IVA_REG */
1299		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1300		break;
1301	case DMA_TLB_DSI_FLUSH:
1302		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1303		break;
1304	case DMA_TLB_PSI_FLUSH:
1305		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1306		/* IH bit is passed in as part of address */
1307		val_iva = size_order | addr;
1308		break;
1309	default:
1310		BUG();
1311	}
1312	/* Note: set drain read/write */
1313#if 0
1314	/*
1315	 * This is probably to be super secure.. Looks like we can
1316	 * ignore it without any impact.
1317	 */
1318	if (cap_read_drain(iommu->cap))
1319		val |= DMA_TLB_READ_DRAIN;
1320#endif
1321	if (cap_write_drain(iommu->cap))
1322		val |= DMA_TLB_WRITE_DRAIN;
1323
1324	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1325	/* Note: Only uses first TLB reg currently */
1326	if (val_iva)
1327		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1328	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1329
1330	/* Make sure hardware complete it */
1331	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1332		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1333
1334	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1335
1336	/* check IOTLB invalidation granularity */
1337	if (DMA_TLB_IAIG(val) == 0)
1338		pr_err("Flush IOTLB failed\n");
1339	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1340		pr_debug("TLB flush request %Lx, actual %Lx\n",
1341			(unsigned long long)DMA_TLB_IIRG(type),
1342			(unsigned long long)DMA_TLB_IAIG(val));
1343}
1344
1345static struct device_domain_info *
1346domain_lookup_dev_info(struct dmar_domain *domain,
1347		       struct intel_iommu *iommu, u8 bus, u8 devfn)
1348{
1349	struct device_domain_info *info;
1350	unsigned long flags;
1351
1352	spin_lock_irqsave(&domain->lock, flags);
1353	list_for_each_entry(info, &domain->devices, link) {
1354		if (info->iommu == iommu && info->bus == bus &&
1355		    info->devfn == devfn) {
1356			spin_unlock_irqrestore(&domain->lock, flags);
1357			return info;
1358		}
1359	}
1360	spin_unlock_irqrestore(&domain->lock, flags);
1361
1362	return NULL;
1363}
1364
1365static void domain_update_iotlb(struct dmar_domain *domain)
1366{
1367	struct device_domain_info *info;
1368	bool has_iotlb_device = false;
1369	unsigned long flags;
1370
1371	spin_lock_irqsave(&domain->lock, flags);
1372	list_for_each_entry(info, &domain->devices, link) {
1373		if (info->ats_enabled) {
1374			has_iotlb_device = true;
1375			break;
1376		}
1377	}
1378	domain->has_iotlb_device = has_iotlb_device;
1379	spin_unlock_irqrestore(&domain->lock, flags);
1380}
1381
1382/*
1383 * The extra devTLB flush quirk impacts those QAT devices with PCI device
1384 * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device()
1385 * check because it applies only to the built-in QAT devices and it doesn't
1386 * grant additional privileges.
1387 */
1388#define BUGGY_QAT_DEVID_MASK 0x4940
1389static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev)
1390{
1391	if (pdev->vendor != PCI_VENDOR_ID_INTEL)
1392		return false;
1393
1394	if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK)
1395		return false;
1396
1397	return true;
1398}
1399
1400static void iommu_enable_pci_caps(struct device_domain_info *info)
1401{
1402	struct pci_dev *pdev;
1403
1404	if (!dev_is_pci(info->dev))
1405		return;
1406
1407	pdev = to_pci_dev(info->dev);
1408	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
1409	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1410	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1411	 * reserved, which should be set to 0.
1412	 */
1413	if (!ecap_dit(info->iommu->ecap))
1414		info->pfsid = 0;
1415	else {
1416		struct pci_dev *pf_pdev;
1417
1418		/* pdev will be returned if device is not a vf */
1419		pf_pdev = pci_physfn(pdev);
1420		info->pfsid = pci_dev_id(pf_pdev);
1421	}
1422
1423	/* The PCIe spec, in its wisdom, declares that the behaviour of
1424	   the device if you enable PASID support after ATS support is
1425	   undefined. So always enable PASID support on devices which
1426	   have it, even if we can't yet know if we're ever going to
1427	   use it. */
1428	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1429		info->pasid_enabled = 1;
1430
1431	if (info->pri_supported &&
1432	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
1433	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, PRQ_DEPTH))
1434		info->pri_enabled = 1;
1435
1436	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1437	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1438		info->ats_enabled = 1;
1439		domain_update_iotlb(info->domain);
1440		info->ats_qdep = pci_ats_queue_depth(pdev);
1441	}
1442}
1443
1444static void iommu_disable_pci_caps(struct device_domain_info *info)
1445{
1446	struct pci_dev *pdev;
1447
1448	if (!dev_is_pci(info->dev))
1449		return;
1450
1451	pdev = to_pci_dev(info->dev);
1452
1453	if (info->ats_enabled) {
1454		pci_disable_ats(pdev);
1455		info->ats_enabled = 0;
1456		domain_update_iotlb(info->domain);
1457	}
1458
1459	if (info->pri_enabled) {
1460		pci_disable_pri(pdev);
1461		info->pri_enabled = 0;
1462	}
1463
1464	if (info->pasid_enabled) {
1465		pci_disable_pasid(pdev);
1466		info->pasid_enabled = 0;
1467	}
1468}
1469
1470static void __iommu_flush_dev_iotlb(struct device_domain_info *info,
1471				    u64 addr, unsigned int mask)
1472{
1473	u16 sid, qdep;
1474
1475	if (!info || !info->ats_enabled)
1476		return;
1477
1478	sid = info->bus << 8 | info->devfn;
1479	qdep = info->ats_qdep;
1480	qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1481			   qdep, addr, mask);
1482	quirk_extra_dev_tlb_flush(info, addr, mask, PASID_RID2PASID, qdep);
1483}
1484
1485static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1486				  u64 addr, unsigned mask)
1487{
1488	struct device_domain_info *info;
1489	unsigned long flags;
1490
1491	if (!domain->has_iotlb_device)
1492		return;
1493
1494	spin_lock_irqsave(&domain->lock, flags);
1495	list_for_each_entry(info, &domain->devices, link)
1496		__iommu_flush_dev_iotlb(info, addr, mask);
1497	spin_unlock_irqrestore(&domain->lock, flags);
1498}
1499
1500static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1501				  struct dmar_domain *domain,
1502				  unsigned long pfn, unsigned int pages,
1503				  int ih, int map)
1504{
1505	unsigned int aligned_pages = __roundup_pow_of_two(pages);
1506	unsigned int mask = ilog2(aligned_pages);
1507	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1508	u16 did = domain_id_iommu(domain, iommu);
1509
1510	BUG_ON(pages == 0);
1511
1512	if (ih)
1513		ih = 1 << 6;
1514
1515	if (domain->use_first_level) {
1516		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih);
1517	} else {
1518		unsigned long bitmask = aligned_pages - 1;
1519
1520		/*
1521		 * PSI masks the low order bits of the base address. If the
1522		 * address isn't aligned to the mask, then compute a mask value
1523		 * needed to ensure the target range is flushed.
1524		 */
1525		if (unlikely(bitmask & pfn)) {
1526			unsigned long end_pfn = pfn + pages - 1, shared_bits;
1527
1528			/*
1529			 * Since end_pfn <= pfn + bitmask, the only way bits
1530			 * higher than bitmask can differ in pfn and end_pfn is
1531			 * by carrying. This means after masking out bitmask,
1532			 * high bits starting with the first set bit in
1533			 * shared_bits are all equal in both pfn and end_pfn.
1534			 */
1535			shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
1536			mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
1537		}
1538
1539		/*
1540		 * Fallback to domain selective flush if no PSI support or
1541		 * the size is too big.
1542		 */
1543		if (!cap_pgsel_inv(iommu->cap) ||
1544		    mask > cap_max_amask_val(iommu->cap))
1545			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1546							DMA_TLB_DSI_FLUSH);
1547		else
1548			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1549							DMA_TLB_PSI_FLUSH);
1550	}
1551
1552	/*
1553	 * In caching mode, changes of pages from non-present to present require
1554	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1555	 */
1556	if (!cap_caching_mode(iommu->cap) || !map)
1557		iommu_flush_dev_iotlb(domain, addr, mask);
1558}
1559
1560/* Notification for newly created mappings */
1561static inline void __mapping_notify_one(struct intel_iommu *iommu,
1562					struct dmar_domain *domain,
1563					unsigned long pfn, unsigned int pages)
1564{
1565	/*
1566	 * It's a non-present to present mapping. Only flush if caching mode
1567	 * and second level.
1568	 */
1569	if (cap_caching_mode(iommu->cap) && !domain->use_first_level)
1570		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1571	else
1572		iommu_flush_write_buffer(iommu);
1573}
1574
1575static void intel_flush_iotlb_all(struct iommu_domain *domain)
1576{
1577	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1578	struct iommu_domain_info *info;
1579	unsigned long idx;
1580
1581	xa_for_each(&dmar_domain->iommu_array, idx, info) {
1582		struct intel_iommu *iommu = info->iommu;
1583		u16 did = domain_id_iommu(dmar_domain, iommu);
1584
1585		if (dmar_domain->use_first_level)
1586			qi_flush_piotlb(iommu, did, PASID_RID2PASID, 0, -1, 0);
1587		else
1588			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1589						 DMA_TLB_DSI_FLUSH);
1590
1591		if (!cap_caching_mode(iommu->cap))
1592			iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH);
1593	}
1594}
1595
1596static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1597{
1598	u32 pmen;
1599	unsigned long flags;
1600
1601	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1602		return;
1603
1604	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1605	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1606	pmen &= ~DMA_PMEN_EPM;
1607	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1608
1609	/* wait for the protected region status bit to clear */
1610	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1611		readl, !(pmen & DMA_PMEN_PRS), pmen);
1612
1613	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1614}
1615
1616static void iommu_enable_translation(struct intel_iommu *iommu)
1617{
1618	u32 sts;
1619	unsigned long flags;
1620
1621	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1622	iommu->gcmd |= DMA_GCMD_TE;
1623	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1624
1625	/* Make sure hardware complete it */
1626	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1627		      readl, (sts & DMA_GSTS_TES), sts);
1628
1629	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1630}
1631
1632static void iommu_disable_translation(struct intel_iommu *iommu)
1633{
1634	u32 sts;
1635	unsigned long flag;
1636
1637	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
1638	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
1639		return;
1640
1641	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1642	iommu->gcmd &= ~DMA_GCMD_TE;
1643	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644
1645	/* Make sure hardware complete it */
1646	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1647		      readl, (!(sts & DMA_GSTS_TES)), sts);
1648
1649	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1650}
1651
1652static int iommu_init_domains(struct intel_iommu *iommu)
1653{
1654	u32 ndomains;
1655
1656	ndomains = cap_ndoms(iommu->cap);
1657	pr_debug("%s: Number of Domains supported <%d>\n",
1658		 iommu->name, ndomains);
1659
1660	spin_lock_init(&iommu->lock);
1661
1662	iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL);
1663	if (!iommu->domain_ids)
1664		return -ENOMEM;
1665
1666	/*
1667	 * If Caching mode is set, then invalid translations are tagged
1668	 * with domain-id 0, hence we need to pre-allocate it. We also
1669	 * use domain-id 0 as a marker for non-allocated domain-id, so
1670	 * make sure it is not used for a real domain.
1671	 */
1672	set_bit(0, iommu->domain_ids);
1673
1674	/*
1675	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1676	 * entry for first-level or pass-through translation modes should
1677	 * be programmed with a domain id different from those used for
1678	 * second-level or nested translation. We reserve a domain id for
1679	 * this purpose.
1680	 */
1681	if (sm_supported(iommu))
1682		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1683
1684	return 0;
1685}
1686
1687static void disable_dmar_iommu(struct intel_iommu *iommu)
1688{
1689	if (!iommu->domain_ids)
1690		return;
1691
1692	/*
1693	 * All iommu domains must have been detached from the devices,
1694	 * hence there should be no domain IDs in use.
1695	 */
1696	if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap))
1697		    > NUM_RESERVED_DID))
1698		return;
1699
1700	if (iommu->gcmd & DMA_GCMD_TE)
1701		iommu_disable_translation(iommu);
1702}
1703
1704static void free_dmar_iommu(struct intel_iommu *iommu)
1705{
1706	if (iommu->domain_ids) {
1707		bitmap_free(iommu->domain_ids);
1708		iommu->domain_ids = NULL;
1709	}
1710
1711	if (iommu->copied_tables) {
1712		bitmap_free(iommu->copied_tables);
1713		iommu->copied_tables = NULL;
1714	}
1715
1716	/* free context mapping */
1717	free_context_table(iommu);
1718
1719#ifdef CONFIG_INTEL_IOMMU_SVM
1720	if (pasid_supported(iommu)) {
1721		if (ecap_prs(iommu->ecap))
1722			intel_svm_finish_prq(iommu);
1723	}
1724	if (vccap_pasid(iommu->vccap))
1725		ioasid_unregister_allocator(&iommu->pasid_allocator);
1726
1727#endif
1728}
1729
1730/*
1731 * Check and return whether first level is used by default for
1732 * DMA translation.
1733 */
1734static bool first_level_by_default(unsigned int type)
1735{
1736	/* Only SL is available in legacy mode */
1737	if (!scalable_mode_support())
1738		return false;
1739
1740	/* Only level (either FL or SL) is available, just use it */
1741	if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity())
1742		return intel_cap_flts_sanity();
1743
1744	/* Both levels are available, decide it based on domain type */
1745	return type != IOMMU_DOMAIN_UNMANAGED;
1746}
1747
1748static struct dmar_domain *alloc_domain(unsigned int type)
1749{
1750	struct dmar_domain *domain;
1751
1752	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1753	if (!domain)
1754		return NULL;
1755
1756	domain->nid = NUMA_NO_NODE;
1757	if (first_level_by_default(type))
1758		domain->use_first_level = true;
1759	domain->has_iotlb_device = false;
1760	INIT_LIST_HEAD(&domain->devices);
1761	spin_lock_init(&domain->lock);
1762	xa_init(&domain->iommu_array);
1763
1764	return domain;
1765}
1766
1767static int domain_attach_iommu(struct dmar_domain *domain,
1768			       struct intel_iommu *iommu)
1769{
1770	struct iommu_domain_info *info, *curr;
1771	unsigned long ndomains;
1772	int num, ret = -ENOSPC;
1773
1774	info = kzalloc(sizeof(*info), GFP_KERNEL);
1775	if (!info)
1776		return -ENOMEM;
1777
1778	spin_lock(&iommu->lock);
1779	curr = xa_load(&domain->iommu_array, iommu->seq_id);
1780	if (curr) {
1781		curr->refcnt++;
1782		spin_unlock(&iommu->lock);
1783		kfree(info);
1784		return 0;
1785	}
1786
1787	ndomains = cap_ndoms(iommu->cap);
1788	num = find_first_zero_bit(iommu->domain_ids, ndomains);
1789	if (num >= ndomains) {
1790		pr_err("%s: No free domain ids\n", iommu->name);
1791		goto err_unlock;
1792	}
1793
1794	set_bit(num, iommu->domain_ids);
1795	info->refcnt	= 1;
1796	info->did	= num;
1797	info->iommu	= iommu;
1798	curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id,
1799			  NULL, info, GFP_ATOMIC);
1800	if (curr) {
1801		ret = xa_err(curr) ? : -EBUSY;
1802		goto err_clear;
1803	}
1804	domain_update_iommu_cap(domain);
1805
1806	spin_unlock(&iommu->lock);
1807	return 0;
1808
1809err_clear:
1810	clear_bit(info->did, iommu->domain_ids);
1811err_unlock:
1812	spin_unlock(&iommu->lock);
1813	kfree(info);
1814	return ret;
1815}
1816
1817static void domain_detach_iommu(struct dmar_domain *domain,
1818				struct intel_iommu *iommu)
1819{
1820	struct iommu_domain_info *info;
1821
1822	spin_lock(&iommu->lock);
1823	info = xa_load(&domain->iommu_array, iommu->seq_id);
1824	if (--info->refcnt == 0) {
1825		clear_bit(info->did, iommu->domain_ids);
1826		xa_erase(&domain->iommu_array, iommu->seq_id);
1827		domain->nid = NUMA_NO_NODE;
1828		domain_update_iommu_cap(domain);
1829		kfree(info);
1830	}
1831	spin_unlock(&iommu->lock);
1832}
1833
1834static inline int guestwidth_to_adjustwidth(int gaw)
1835{
1836	int agaw;
1837	int r = (gaw - 12) % 9;
1838
1839	if (r == 0)
1840		agaw = gaw;
1841	else
1842		agaw = gaw + 9 - r;
1843	if (agaw > 64)
1844		agaw = 64;
1845	return agaw;
1846}
1847
1848static void domain_exit(struct dmar_domain *domain)
1849{
1850	if (domain->pgd) {
1851		LIST_HEAD(freelist);
1852
1853		domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist);
1854		put_pages_list(&freelist);
1855	}
1856
1857	if (WARN_ON(!list_empty(&domain->devices)))
1858		return;
1859
1860	kfree(domain);
1861}
1862
1863/*
1864 * Get the PASID directory size for scalable mode context entry.
1865 * Value of X in the PDTS field of a scalable mode context entry
1866 * indicates PASID directory with 2^(X + 7) entries.
1867 */
1868static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1869{
1870	unsigned long pds, max_pde;
1871
1872	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1873	pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS);
1874	if (pds < 7)
1875		return 0;
1876
1877	return pds - 7;
1878}
1879
1880/*
1881 * Set the RID_PASID field of a scalable mode context entry. The
1882 * IOMMU hardware will use the PASID value set in this field for
1883 * DMA translations of DMA requests without PASID.
1884 */
1885static inline void
1886context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1887{
1888	context->hi |= pasid & ((1 << 20) - 1);
1889}
1890
1891/*
1892 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1893 * entry.
1894 */
1895static inline void context_set_sm_dte(struct context_entry *context)
1896{
1897	context->lo |= (1 << 2);
1898}
1899
1900/*
1901 * Set the PRE(Page Request Enable) field of a scalable mode context
1902 * entry.
1903 */
1904static inline void context_set_sm_pre(struct context_entry *context)
1905{
1906	context->lo |= (1 << 4);
1907}
1908
1909/* Convert value to context PASID directory size field coding. */
1910#define context_pdts(pds)	(((pds) & 0x7) << 9)
1911
1912static int domain_context_mapping_one(struct dmar_domain *domain,
1913				      struct intel_iommu *iommu,
1914				      struct pasid_table *table,
1915				      u8 bus, u8 devfn)
1916{
1917	struct device_domain_info *info =
1918			domain_lookup_dev_info(domain, iommu, bus, devfn);
1919	u16 did = domain_id_iommu(domain, iommu);
1920	int translation = CONTEXT_TT_MULTI_LEVEL;
1921	struct context_entry *context;
1922	int ret;
1923
1924	WARN_ON(did == 0);
1925
1926	if (hw_pass_through && domain_type_is_si(domain))
1927		translation = CONTEXT_TT_PASS_THROUGH;
1928
1929	pr_debug("Set context mapping for %02x:%02x.%d\n",
1930		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1931
1932	BUG_ON(!domain->pgd);
1933
1934	spin_lock(&iommu->lock);
1935	ret = -ENOMEM;
1936	context = iommu_context_addr(iommu, bus, devfn, 1);
1937	if (!context)
1938		goto out_unlock;
1939
1940	ret = 0;
1941	if (context_present(context) && !context_copied(iommu, bus, devfn))
1942		goto out_unlock;
1943
1944	/*
1945	 * For kdump cases, old valid entries may be cached due to the
1946	 * in-flight DMA and copied pgtable, but there is no unmapping
1947	 * behaviour for them, thus we need an explicit cache flush for
1948	 * the newly-mapped device. For kdump, at this point, the device
1949	 * is supposed to finish reset at its driver probe stage, so no
1950	 * in-flight DMA will exist, and we don't need to worry anymore
1951	 * hereafter.
1952	 */
1953	if (context_copied(iommu, bus, devfn)) {
1954		u16 did_old = context_domain_id(context);
1955
1956		if (did_old < cap_ndoms(iommu->cap)) {
1957			iommu->flush.flush_context(iommu, did_old,
1958						   (((u16)bus) << 8) | devfn,
1959						   DMA_CCMD_MASK_NOBIT,
1960						   DMA_CCMD_DEVICE_INVL);
1961			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
1962						 DMA_TLB_DSI_FLUSH);
1963		}
1964
1965		clear_context_copied(iommu, bus, devfn);
1966	}
1967
1968	context_clear_entry(context);
1969
1970	if (sm_supported(iommu)) {
1971		unsigned long pds;
1972
1973		WARN_ON(!table);
1974
1975		/* Setup the PASID DIR pointer: */
1976		pds = context_get_sm_pds(table);
1977		context->lo = (u64)virt_to_phys(table->table) |
1978				context_pdts(pds);
1979
1980		/* Setup the RID_PASID field: */
1981		context_set_sm_rid2pasid(context, PASID_RID2PASID);
1982
1983		/*
1984		 * Setup the Device-TLB enable bit and Page request
1985		 * Enable bit:
1986		 */
1987		if (info && info->ats_supported)
1988			context_set_sm_dte(context);
1989		if (info && info->pri_supported)
1990			context_set_sm_pre(context);
1991		if (info && info->pasid_supported)
1992			context_set_pasid(context);
1993	} else {
1994		struct dma_pte *pgd = domain->pgd;
1995		int agaw;
1996
1997		context_set_domain_id(context, did);
1998
1999		if (translation != CONTEXT_TT_PASS_THROUGH) {
2000			/*
2001			 * Skip top levels of page tables for iommu which has
2002			 * less agaw than default. Unnecessary for PT mode.
2003			 */
2004			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2005				ret = -ENOMEM;
2006				pgd = phys_to_virt(dma_pte_addr(pgd));
2007				if (!dma_pte_present(pgd))
2008					goto out_unlock;
2009			}
2010
2011			if (info && info->ats_supported)
2012				translation = CONTEXT_TT_DEV_IOTLB;
2013			else
2014				translation = CONTEXT_TT_MULTI_LEVEL;
2015
2016			context_set_address_root(context, virt_to_phys(pgd));
2017			context_set_address_width(context, agaw);
2018		} else {
2019			/*
2020			 * In pass through mode, AW must be programmed to
2021			 * indicate the largest AGAW value supported by
2022			 * hardware. And ASR is ignored by hardware.
2023			 */
2024			context_set_address_width(context, iommu->msagaw);
2025		}
2026
2027		context_set_translation_type(context, translation);
2028	}
2029
2030	context_set_fault_enable(context);
2031	context_set_present(context);
2032	if (!ecap_coherent(iommu->ecap))
2033		clflush_cache_range(context, sizeof(*context));
2034
2035	/*
2036	 * It's a non-present to present mapping. If hardware doesn't cache
2037	 * non-present entry we only need to flush the write-buffer. If the
2038	 * _does_ cache non-present entries, then it does so in the special
2039	 * domain #0, which we have to flush:
2040	 */
2041	if (cap_caching_mode(iommu->cap)) {
2042		iommu->flush.flush_context(iommu, 0,
2043					   (((u16)bus) << 8) | devfn,
2044					   DMA_CCMD_MASK_NOBIT,
2045					   DMA_CCMD_DEVICE_INVL);
2046		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2047	} else {
2048		iommu_flush_write_buffer(iommu);
2049	}
2050
2051	ret = 0;
2052
2053out_unlock:
2054	spin_unlock(&iommu->lock);
2055
2056	return ret;
2057}
2058
2059struct domain_context_mapping_data {
2060	struct dmar_domain *domain;
2061	struct intel_iommu *iommu;
2062	struct pasid_table *table;
2063};
2064
2065static int domain_context_mapping_cb(struct pci_dev *pdev,
2066				     u16 alias, void *opaque)
2067{
2068	struct domain_context_mapping_data *data = opaque;
2069
2070	return domain_context_mapping_one(data->domain, data->iommu,
2071					  data->table, PCI_BUS_NUM(alias),
2072					  alias & 0xff);
2073}
2074
2075static int
2076domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2077{
2078	struct domain_context_mapping_data data;
2079	struct pasid_table *table;
2080	struct intel_iommu *iommu;
2081	u8 bus, devfn;
2082
2083	iommu = device_to_iommu(dev, &bus, &devfn);
2084	if (!iommu)
2085		return -ENODEV;
2086
2087	table = intel_pasid_get_table(dev);
2088
2089	if (!dev_is_pci(dev))
2090		return domain_context_mapping_one(domain, iommu, table,
2091						  bus, devfn);
2092
2093	data.domain = domain;
2094	data.iommu = iommu;
2095	data.table = table;
2096
2097	return pci_for_each_dma_alias(to_pci_dev(dev),
2098				      &domain_context_mapping_cb, &data);
2099}
2100
2101/* Returns a number of VTD pages, but aligned to MM page size */
2102static inline unsigned long aligned_nrpages(unsigned long host_addr,
2103					    size_t size)
2104{
2105	host_addr &= ~PAGE_MASK;
2106	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2107}
2108
2109/* Return largest possible superpage level for a given mapping */
2110static inline int hardware_largepage_caps(struct dmar_domain *domain,
2111					  unsigned long iov_pfn,
2112					  unsigned long phy_pfn,
2113					  unsigned long pages)
2114{
2115	int support, level = 1;
2116	unsigned long pfnmerge;
2117
2118	support = domain->iommu_superpage;
2119
2120	/* To use a large page, the virtual *and* physical addresses
2121	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2122	   of them will mean we have to use smaller pages. So just
2123	   merge them and check both at once. */
2124	pfnmerge = iov_pfn | phy_pfn;
2125
2126	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2127		pages >>= VTD_STRIDE_SHIFT;
2128		if (!pages)
2129			break;
2130		pfnmerge >>= VTD_STRIDE_SHIFT;
2131		level++;
2132		support--;
2133	}
2134	return level;
2135}
2136
2137/*
2138 * Ensure that old small page tables are removed to make room for superpage(s).
2139 * We're going to add new large pages, so make sure we don't remove their parent
2140 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared.
2141 */
2142static void switch_to_super_page(struct dmar_domain *domain,
2143				 unsigned long start_pfn,
2144				 unsigned long end_pfn, int level)
2145{
2146	unsigned long lvl_pages = lvl_to_nr_pages(level);
2147	struct iommu_domain_info *info;
2148	struct dma_pte *pte = NULL;
2149	unsigned long i;
2150
2151	while (start_pfn <= end_pfn) {
2152		if (!pte)
2153			pte = pfn_to_dma_pte(domain, start_pfn, &level);
2154
2155		if (dma_pte_present(pte)) {
2156			dma_pte_free_pagetable(domain, start_pfn,
2157					       start_pfn + lvl_pages - 1,
2158					       level + 1);
2159
2160			xa_for_each(&domain->iommu_array, i, info)
2161				iommu_flush_iotlb_psi(info->iommu, domain,
2162						      start_pfn, lvl_pages,
2163						      0, 0);
2164		}
2165
2166		pte++;
2167		start_pfn += lvl_pages;
2168		if (first_pte_in_page(pte))
2169			pte = NULL;
2170	}
2171}
2172
2173static int
2174__domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2175		 unsigned long phys_pfn, unsigned long nr_pages, int prot)
2176{
2177	struct dma_pte *first_pte = NULL, *pte = NULL;
2178	unsigned int largepage_lvl = 0;
2179	unsigned long lvl_pages = 0;
2180	phys_addr_t pteval;
2181	u64 attr;
2182
2183	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2184
2185	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2186		return -EINVAL;
2187
2188	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
2189	attr |= DMA_FL_PTE_PRESENT;
2190	if (domain->use_first_level) {
2191		attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
2192		if (prot & DMA_PTE_WRITE)
2193			attr |= DMA_FL_PTE_DIRTY;
2194	}
2195
2196	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2197
2198	while (nr_pages > 0) {
2199		uint64_t tmp;
2200
2201		if (!pte) {
2202			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
2203					phys_pfn, nr_pages);
2204
2205			pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2206			if (!pte)
2207				return -ENOMEM;
2208			first_pte = pte;
2209
2210			lvl_pages = lvl_to_nr_pages(largepage_lvl);
2211
2212			/* It is large page*/
2213			if (largepage_lvl > 1) {
2214				unsigned long end_pfn;
2215				unsigned long pages_to_remove;
2216
2217				pteval |= DMA_PTE_LARGE_PAGE;
2218				pages_to_remove = min_t(unsigned long, nr_pages,
2219							nr_pte_to_next_page(pte) * lvl_pages);
2220				end_pfn = iov_pfn + pages_to_remove - 1;
2221				switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl);
2222			} else {
2223				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2224			}
2225
2226		}
2227		/* We don't need lock here, nobody else
2228		 * touches the iova range
2229		 */
2230		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2231		if (tmp) {
2232			static int dumps = 5;
2233			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2234				iov_pfn, tmp, (unsigned long long)pteval);
2235			if (dumps) {
2236				dumps--;
2237				debug_dma_dump_mappings(NULL);
2238			}
2239			WARN_ON(1);
2240		}
2241
2242		nr_pages -= lvl_pages;
2243		iov_pfn += lvl_pages;
2244		phys_pfn += lvl_pages;
2245		pteval += lvl_pages * VTD_PAGE_SIZE;
2246
2247		/* If the next PTE would be the first in a new page, then we
2248		 * need to flush the cache on the entries we've just written.
2249		 * And then we'll need to recalculate 'pte', so clear it and
2250		 * let it get set again in the if (!pte) block above.
2251		 *
2252		 * If we're done (!nr_pages) we need to flush the cache too.
2253		 *
2254		 * Also if we've been setting superpages, we may need to
2255		 * recalculate 'pte' and switch back to smaller pages for the
2256		 * end of the mapping, if the trailing size is not enough to
2257		 * use another superpage (i.e. nr_pages < lvl_pages).
2258		 */
2259		pte++;
2260		if (!nr_pages || first_pte_in_page(pte) ||
2261		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2262			domain_flush_cache(domain, first_pte,
2263					   (void *)pte - (void *)first_pte);
2264			pte = NULL;
2265		}
2266	}
2267
2268	return 0;
2269}
2270
2271static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn)
2272{
2273	struct intel_iommu *iommu = info->iommu;
2274	struct context_entry *context;
2275	u16 did_old;
2276
2277	if (!iommu)
2278		return;
2279
2280	spin_lock(&iommu->lock);
2281	context = iommu_context_addr(iommu, bus, devfn, 0);
2282	if (!context) {
2283		spin_unlock(&iommu->lock);
2284		return;
2285	}
2286
2287	if (sm_supported(iommu)) {
2288		if (hw_pass_through && domain_type_is_si(info->domain))
2289			did_old = FLPT_DEFAULT_DID;
2290		else
2291			did_old = domain_id_iommu(info->domain, iommu);
2292	} else {
2293		did_old = context_domain_id(context);
2294	}
2295
2296	context_clear_entry(context);
2297	__iommu_flush_cache(iommu, context, sizeof(*context));
2298	spin_unlock(&iommu->lock);
2299	iommu->flush.flush_context(iommu,
2300				   did_old,
2301				   (((u16)bus) << 8) | devfn,
2302				   DMA_CCMD_MASK_NOBIT,
2303				   DMA_CCMD_DEVICE_INVL);
2304
2305	if (sm_supported(iommu))
2306		qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0);
2307
2308	iommu->flush.flush_iotlb(iommu,
2309				 did_old,
2310				 0,
2311				 0,
2312				 DMA_TLB_DSI_FLUSH);
2313
2314	__iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH);
2315}
2316
2317static int domain_setup_first_level(struct intel_iommu *iommu,
2318				    struct dmar_domain *domain,
2319				    struct device *dev,
2320				    u32 pasid)
2321{
2322	struct dma_pte *pgd = domain->pgd;
2323	int agaw, level;
2324	int flags = 0;
2325
2326	/*
2327	 * Skip top levels of page tables for iommu which has
2328	 * less agaw than default. Unnecessary for PT mode.
2329	 */
2330	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2331		pgd = phys_to_virt(dma_pte_addr(pgd));
2332		if (!dma_pte_present(pgd))
2333			return -ENOMEM;
2334	}
2335
2336	level = agaw_to_level(agaw);
2337	if (level != 4 && level != 5)
2338		return -EINVAL;
2339
2340	if (pasid != PASID_RID2PASID)
2341		flags |= PASID_FLAG_SUPERVISOR_MODE;
2342	if (level == 5)
2343		flags |= PASID_FLAG_FL5LP;
2344
2345	if (domain->force_snooping)
2346		flags |= PASID_FLAG_PAGE_SNOOP;
2347
2348	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
2349					     domain_id_iommu(domain, iommu),
2350					     flags);
2351}
2352
2353static bool dev_is_real_dma_subdevice(struct device *dev)
2354{
2355	return dev && dev_is_pci(dev) &&
2356	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
2357}
2358
2359static int iommu_domain_identity_map(struct dmar_domain *domain,
2360				     unsigned long first_vpfn,
2361				     unsigned long last_vpfn)
2362{
2363	/*
2364	 * RMRR range might have overlap with physical memory range,
2365	 * clear it first
2366	 */
2367	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2368
2369	return __domain_mapping(domain, first_vpfn,
2370				first_vpfn, last_vpfn - first_vpfn + 1,
2371				DMA_PTE_READ|DMA_PTE_WRITE);
2372}
2373
2374static int md_domain_init(struct dmar_domain *domain, int guest_width);
2375
2376static int __init si_domain_init(int hw)
2377{
2378	struct dmar_rmrr_unit *rmrr;
2379	struct device *dev;
2380	int i, nid, ret;
2381
2382	si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY);
2383	if (!si_domain)
2384		return -EFAULT;
2385
2386	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2387		domain_exit(si_domain);
2388		si_domain = NULL;
2389		return -EFAULT;
2390	}
2391
2392	if (hw)
2393		return 0;
2394
2395	for_each_online_node(nid) {
2396		unsigned long start_pfn, end_pfn;
2397		int i;
2398
2399		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2400			ret = iommu_domain_identity_map(si_domain,
2401					mm_to_dma_pfn(start_pfn),
2402					mm_to_dma_pfn(end_pfn));
2403			if (ret)
2404				return ret;
2405		}
2406	}
2407
2408	/*
2409	 * Identity map the RMRRs so that devices with RMRRs could also use
2410	 * the si_domain.
2411	 */
2412	for_each_rmrr_units(rmrr) {
2413		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2414					  i, dev) {
2415			unsigned long long start = rmrr->base_address;
2416			unsigned long long end = rmrr->end_address;
2417
2418			if (WARN_ON(end < start ||
2419				    end >> agaw_to_width(si_domain->agaw)))
2420				continue;
2421
2422			ret = iommu_domain_identity_map(si_domain,
2423					mm_to_dma_pfn(start >> PAGE_SHIFT),
2424					mm_to_dma_pfn(end >> PAGE_SHIFT));
2425			if (ret)
2426				return ret;
2427		}
2428	}
2429
2430	return 0;
2431}
2432
2433static int dmar_domain_attach_device(struct dmar_domain *domain,
2434				     struct device *dev)
2435{
2436	struct device_domain_info *info = dev_iommu_priv_get(dev);
2437	struct intel_iommu *iommu;
2438	unsigned long flags;
2439	u8 bus, devfn;
2440	int ret;
2441
2442	iommu = device_to_iommu(dev, &bus, &devfn);
2443	if (!iommu)
2444		return -ENODEV;
2445
2446	ret = domain_attach_iommu(domain, iommu);
2447	if (ret)
2448		return ret;
2449	info->domain = domain;
2450	spin_lock_irqsave(&domain->lock, flags);
2451	list_add(&info->link, &domain->devices);
2452	spin_unlock_irqrestore(&domain->lock, flags);
2453
2454	/* PASID table is mandatory for a PCI device in scalable mode. */
2455	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
2456		/* Setup the PASID entry for requests without PASID: */
2457		if (hw_pass_through && domain_type_is_si(domain))
2458			ret = intel_pasid_setup_pass_through(iommu, domain,
2459					dev, PASID_RID2PASID);
2460		else if (domain->use_first_level)
2461			ret = domain_setup_first_level(iommu, domain, dev,
2462					PASID_RID2PASID);
2463		else
2464			ret = intel_pasid_setup_second_level(iommu, domain,
2465					dev, PASID_RID2PASID);
2466		if (ret) {
2467			dev_err(dev, "Setup RID2PASID failed\n");
2468			device_block_translation(dev);
2469			return ret;
2470		}
2471	}
2472
2473	ret = domain_context_mapping(domain, dev);
2474	if (ret) {
2475		dev_err(dev, "Domain context map failed\n");
2476		device_block_translation(dev);
2477		return ret;
2478	}
2479
2480	iommu_enable_pci_caps(info);
2481
2482	return 0;
2483}
2484
2485static bool device_has_rmrr(struct device *dev)
2486{
2487	struct dmar_rmrr_unit *rmrr;
2488	struct device *tmp;
2489	int i;
2490
2491	rcu_read_lock();
2492	for_each_rmrr_units(rmrr) {
2493		/*
2494		 * Return TRUE if this RMRR contains the device that
2495		 * is passed in.
2496		 */
2497		for_each_active_dev_scope(rmrr->devices,
2498					  rmrr->devices_cnt, i, tmp)
2499			if (tmp == dev ||
2500			    is_downstream_to_pci_bridge(dev, tmp)) {
2501				rcu_read_unlock();
2502				return true;
2503			}
2504	}
2505	rcu_read_unlock();
2506	return false;
2507}
2508
2509/**
2510 * device_rmrr_is_relaxable - Test whether the RMRR of this device
2511 * is relaxable (ie. is allowed to be not enforced under some conditions)
2512 * @dev: device handle
2513 *
2514 * We assume that PCI USB devices with RMRRs have them largely
2515 * for historical reasons and that the RMRR space is not actively used post
2516 * boot.  This exclusion may change if vendors begin to abuse it.
2517 *
2518 * The same exception is made for graphics devices, with the requirement that
2519 * any use of the RMRR regions will be torn down before assigning the device
2520 * to a guest.
2521 *
2522 * Return: true if the RMRR is relaxable, false otherwise
2523 */
2524static bool device_rmrr_is_relaxable(struct device *dev)
2525{
2526	struct pci_dev *pdev;
2527
2528	if (!dev_is_pci(dev))
2529		return false;
2530
2531	pdev = to_pci_dev(dev);
2532	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2533		return true;
2534	else
2535		return false;
2536}
2537
2538/*
2539 * There are a couple cases where we need to restrict the functionality of
2540 * devices associated with RMRRs.  The first is when evaluating a device for
2541 * identity mapping because problems exist when devices are moved in and out
2542 * of domains and their respective RMRR information is lost.  This means that
2543 * a device with associated RMRRs will never be in a "passthrough" domain.
2544 * The second is use of the device through the IOMMU API.  This interface
2545 * expects to have full control of the IOVA space for the device.  We cannot
2546 * satisfy both the requirement that RMRR access is maintained and have an
2547 * unencumbered IOVA space.  We also have no ability to quiesce the device's
2548 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2549 * We therefore prevent devices associated with an RMRR from participating in
2550 * the IOMMU API, which eliminates them from device assignment.
2551 *
2552 * In both cases, devices which have relaxable RMRRs are not concerned by this
2553 * restriction. See device_rmrr_is_relaxable comment.
2554 */
2555static bool device_is_rmrr_locked(struct device *dev)
2556{
2557	if (!device_has_rmrr(dev))
2558		return false;
2559
2560	if (device_rmrr_is_relaxable(dev))
2561		return false;
2562
2563	return true;
2564}
2565
2566/*
2567 * Return the required default domain type for a specific device.
2568 *
2569 * @dev: the device in query
2570 * @startup: true if this is during early boot
2571 *
2572 * Returns:
2573 *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2574 *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2575 *  - 0: both identity and dynamic domains work for this device
2576 */
2577static int device_def_domain_type(struct device *dev)
2578{
2579	if (dev_is_pci(dev)) {
2580		struct pci_dev *pdev = to_pci_dev(dev);
2581
2582		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2583			return IOMMU_DOMAIN_IDENTITY;
2584
2585		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2586			return IOMMU_DOMAIN_IDENTITY;
2587	}
2588
2589	return 0;
2590}
2591
2592static void intel_iommu_init_qi(struct intel_iommu *iommu)
2593{
2594	/*
2595	 * Start from the sane iommu hardware state.
2596	 * If the queued invalidation is already initialized by us
2597	 * (for example, while enabling interrupt-remapping) then
2598	 * we got the things already rolling from a sane state.
2599	 */
2600	if (!iommu->qi) {
2601		/*
2602		 * Clear any previous faults.
2603		 */
2604		dmar_fault(-1, iommu);
2605		/*
2606		 * Disable queued invalidation if supported and already enabled
2607		 * before OS handover.
2608		 */
2609		dmar_disable_qi(iommu);
2610	}
2611
2612	if (dmar_enable_qi(iommu)) {
2613		/*
2614		 * Queued Invalidate not enabled, use Register Based Invalidate
2615		 */
2616		iommu->flush.flush_context = __iommu_flush_context;
2617		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2618		pr_info("%s: Using Register based invalidation\n",
2619			iommu->name);
2620	} else {
2621		iommu->flush.flush_context = qi_flush_context;
2622		iommu->flush.flush_iotlb = qi_flush_iotlb;
2623		pr_info("%s: Using Queued invalidation\n", iommu->name);
2624	}
2625}
2626
2627static int copy_context_table(struct intel_iommu *iommu,
2628			      struct root_entry *old_re,
2629			      struct context_entry **tbl,
2630			      int bus, bool ext)
2631{
2632	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2633	struct context_entry *new_ce = NULL, ce;
2634	struct context_entry *old_ce = NULL;
2635	struct root_entry re;
2636	phys_addr_t old_ce_phys;
2637
2638	tbl_idx = ext ? bus * 2 : bus;
2639	memcpy(&re, old_re, sizeof(re));
2640
2641	for (devfn = 0; devfn < 256; devfn++) {
2642		/* First calculate the correct index */
2643		idx = (ext ? devfn * 2 : devfn) % 256;
2644
2645		if (idx == 0) {
2646			/* First save what we may have and clean up */
2647			if (new_ce) {
2648				tbl[tbl_idx] = new_ce;
2649				__iommu_flush_cache(iommu, new_ce,
2650						    VTD_PAGE_SIZE);
2651				pos = 1;
2652			}
2653
2654			if (old_ce)
2655				memunmap(old_ce);
2656
2657			ret = 0;
2658			if (devfn < 0x80)
2659				old_ce_phys = root_entry_lctp(&re);
2660			else
2661				old_ce_phys = root_entry_uctp(&re);
2662
2663			if (!old_ce_phys) {
2664				if (ext && devfn == 0) {
2665					/* No LCTP, try UCTP */
2666					devfn = 0x7f;
2667					continue;
2668				} else {
2669					goto out;
2670				}
2671			}
2672
2673			ret = -ENOMEM;
2674			old_ce = memremap(old_ce_phys, PAGE_SIZE,
2675					MEMREMAP_WB);
2676			if (!old_ce)
2677				goto out;
2678
2679			new_ce = alloc_pgtable_page(iommu->node);
2680			if (!new_ce)
2681				goto out_unmap;
2682
2683			ret = 0;
2684		}
2685
2686		/* Now copy the context entry */
2687		memcpy(&ce, old_ce + idx, sizeof(ce));
2688
2689		if (!context_present(&ce))
2690			continue;
2691
2692		did = context_domain_id(&ce);
2693		if (did >= 0 && did < cap_ndoms(iommu->cap))
2694			set_bit(did, iommu->domain_ids);
2695
2696		set_context_copied(iommu, bus, devfn);
2697		new_ce[idx] = ce;
2698	}
2699
2700	tbl[tbl_idx + pos] = new_ce;
2701
2702	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2703
2704out_unmap:
2705	memunmap(old_ce);
2706
2707out:
2708	return ret;
2709}
2710
2711static int copy_translation_tables(struct intel_iommu *iommu)
2712{
2713	struct context_entry **ctxt_tbls;
2714	struct root_entry *old_rt;
2715	phys_addr_t old_rt_phys;
2716	int ctxt_table_entries;
2717	u64 rtaddr_reg;
2718	int bus, ret;
2719	bool new_ext, ext;
2720
2721	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2722	ext        = !!(rtaddr_reg & DMA_RTADDR_SMT);
2723	new_ext    = !!sm_supported(iommu);
2724
2725	/*
2726	 * The RTT bit can only be changed when translation is disabled,
2727	 * but disabling translation means to open a window for data
2728	 * corruption. So bail out and don't copy anything if we would
2729	 * have to change the bit.
2730	 */
2731	if (new_ext != ext)
2732		return -EINVAL;
2733
2734	iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL);
2735	if (!iommu->copied_tables)
2736		return -ENOMEM;
2737
2738	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2739	if (!old_rt_phys)
2740		return -EINVAL;
2741
2742	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
2743	if (!old_rt)
2744		return -ENOMEM;
2745
2746	/* This is too big for the stack - allocate it from slab */
2747	ctxt_table_entries = ext ? 512 : 256;
2748	ret = -ENOMEM;
2749	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
2750	if (!ctxt_tbls)
2751		goto out_unmap;
2752
2753	for (bus = 0; bus < 256; bus++) {
2754		ret = copy_context_table(iommu, &old_rt[bus],
2755					 ctxt_tbls, bus, ext);
2756		if (ret) {
2757			pr_err("%s: Failed to copy context table for bus %d\n",
2758				iommu->name, bus);
2759			continue;
2760		}
2761	}
2762
2763	spin_lock(&iommu->lock);
2764
2765	/* Context tables are copied, now write them to the root_entry table */
2766	for (bus = 0; bus < 256; bus++) {
2767		int idx = ext ? bus * 2 : bus;
2768		u64 val;
2769
2770		if (ctxt_tbls[idx]) {
2771			val = virt_to_phys(ctxt_tbls[idx]) | 1;
2772			iommu->root_entry[bus].lo = val;
2773		}
2774
2775		if (!ext || !ctxt_tbls[idx + 1])
2776			continue;
2777
2778		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2779		iommu->root_entry[bus].hi = val;
2780	}
2781
2782	spin_unlock(&iommu->lock);
2783
2784	kfree(ctxt_tbls);
2785
2786	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2787
2788	ret = 0;
2789
2790out_unmap:
2791	memunmap(old_rt);
2792
2793	return ret;
2794}
2795
2796#ifdef CONFIG_INTEL_IOMMU_SVM
2797static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
2798{
2799	struct intel_iommu *iommu = data;
2800	ioasid_t ioasid;
2801
2802	if (!iommu)
2803		return INVALID_IOASID;
2804	/*
2805	 * VT-d virtual command interface always uses the full 20 bit
2806	 * PASID range. Host can partition guest PASID range based on
2807	 * policies but it is out of guest's control.
2808	 */
2809	if (min < PASID_MIN || max > intel_pasid_max_id)
2810		return INVALID_IOASID;
2811
2812	if (vcmd_alloc_pasid(iommu, &ioasid))
2813		return INVALID_IOASID;
2814
2815	return ioasid;
2816}
2817
2818static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
2819{
2820	struct intel_iommu *iommu = data;
2821
2822	if (!iommu)
2823		return;
2824	/*
2825	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
2826	 * We can only free the PASID when all the devices are unbound.
2827	 */
2828	if (ioasid_find(NULL, ioasid, NULL)) {
2829		pr_alert("Cannot free active IOASID %d\n", ioasid);
2830		return;
2831	}
2832	vcmd_free_pasid(iommu, ioasid);
2833}
2834
2835static void register_pasid_allocator(struct intel_iommu *iommu)
2836{
2837	/*
2838	 * If we are running in the host, no need for custom allocator
2839	 * in that PASIDs are allocated from the host system-wide.
2840	 */
2841	if (!cap_caching_mode(iommu->cap))
2842		return;
2843
2844	if (!sm_supported(iommu)) {
2845		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
2846		return;
2847	}
2848
2849	/*
2850	 * Register a custom PASID allocator if we are running in a guest,
2851	 * guest PASID must be obtained via virtual command interface.
2852	 * There can be multiple vIOMMUs in each guest but only one allocator
2853	 * is active. All vIOMMU allocators will eventually be calling the same
2854	 * host allocator.
2855	 */
2856	if (!vccap_pasid(iommu->vccap))
2857		return;
2858
2859	pr_info("Register custom PASID allocator\n");
2860	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
2861	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
2862	iommu->pasid_allocator.pdata = (void *)iommu;
2863	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
2864		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
2865		/*
2866		 * Disable scalable mode on this IOMMU if there
2867		 * is no custom allocator. Mixing SM capable vIOMMU
2868		 * and non-SM vIOMMU are not supported.
2869		 */
2870		intel_iommu_sm = 0;
2871	}
2872}
2873#endif
2874
2875static int __init init_dmars(void)
2876{
2877	struct dmar_drhd_unit *drhd;
2878	struct intel_iommu *iommu;
2879	int ret;
2880
2881	ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
2882	if (ret)
2883		goto free_iommu;
2884
2885	for_each_iommu(iommu, drhd) {
2886		if (drhd->ignored) {
2887			iommu_disable_translation(iommu);
2888			continue;
2889		}
2890
2891		/*
2892		 * Find the max pasid size of all IOMMU's in the system.
2893		 * We need to ensure the system pasid table is no bigger
2894		 * than the smallest supported.
2895		 */
2896		if (pasid_supported(iommu)) {
2897			u32 temp = 2 << ecap_pss(iommu->ecap);
2898
2899			intel_pasid_max_id = min_t(u32, temp,
2900						   intel_pasid_max_id);
2901		}
2902
2903		intel_iommu_init_qi(iommu);
2904
2905		ret = iommu_init_domains(iommu);
2906		if (ret)
2907			goto free_iommu;
2908
2909		init_translation_status(iommu);
2910
2911		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
2912			iommu_disable_translation(iommu);
2913			clear_translation_pre_enabled(iommu);
2914			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
2915				iommu->name);
2916		}
2917
2918		/*
2919		 * TBD:
2920		 * we could share the same root & context tables
2921		 * among all IOMMU's. Need to Split it later.
2922		 */
2923		ret = iommu_alloc_root_entry(iommu);
2924		if (ret)
2925			goto free_iommu;
2926
2927		if (translation_pre_enabled(iommu)) {
2928			pr_info("Translation already enabled - trying to copy translation structures\n");
2929
2930			ret = copy_translation_tables(iommu);
2931			if (ret) {
2932				/*
2933				 * We found the IOMMU with translation
2934				 * enabled - but failed to copy over the
2935				 * old root-entry table. Try to proceed
2936				 * by disabling translation now and
2937				 * allocating a clean root-entry table.
2938				 * This might cause DMAR faults, but
2939				 * probably the dump will still succeed.
2940				 */
2941				pr_err("Failed to copy translation tables from previous kernel for %s\n",
2942				       iommu->name);
2943				iommu_disable_translation(iommu);
2944				clear_translation_pre_enabled(iommu);
2945			} else {
2946				pr_info("Copied translation tables from previous kernel for %s\n",
2947					iommu->name);
2948			}
2949		}
2950
2951		if (!ecap_pass_through(iommu->ecap))
2952			hw_pass_through = 0;
2953		intel_svm_check(iommu);
2954	}
2955
2956	/*
2957	 * Now that qi is enabled on all iommus, set the root entry and flush
2958	 * caches. This is required on some Intel X58 chipsets, otherwise the
2959	 * flush_context function will loop forever and the boot hangs.
2960	 */
2961	for_each_active_iommu(iommu, drhd) {
2962		iommu_flush_write_buffer(iommu);
2963#ifdef CONFIG_INTEL_IOMMU_SVM
2964		register_pasid_allocator(iommu);
2965#endif
2966		iommu_set_root_entry(iommu);
2967	}
2968
2969#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2970	dmar_map_gfx = 0;
2971#endif
2972
2973	if (!dmar_map_gfx)
2974		iommu_identity_mapping |= IDENTMAP_GFX;
2975
2976	check_tylersburg_isoch();
2977
2978	ret = si_domain_init(hw_pass_through);
2979	if (ret)
2980		goto free_iommu;
2981
2982	/*
2983	 * for each drhd
2984	 *   enable fault log
2985	 *   global invalidate context cache
2986	 *   global invalidate iotlb
2987	 *   enable translation
2988	 */
2989	for_each_iommu(iommu, drhd) {
2990		if (drhd->ignored) {
2991			/*
2992			 * we always have to disable PMRs or DMA may fail on
2993			 * this device
2994			 */
2995			if (force_on)
2996				iommu_disable_protect_mem_regions(iommu);
2997			continue;
2998		}
2999
3000		iommu_flush_write_buffer(iommu);
3001
3002#ifdef CONFIG_INTEL_IOMMU_SVM
3003		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3004			/*
3005			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3006			 * could cause possible lock race condition.
3007			 */
3008			up_write(&dmar_global_lock);
3009			ret = intel_svm_enable_prq(iommu);
3010			down_write(&dmar_global_lock);
3011			if (ret)
3012				goto free_iommu;
3013		}
3014#endif
3015		ret = dmar_set_interrupt(iommu);
3016		if (ret)
3017			goto free_iommu;
3018	}
3019
3020	return 0;
3021
3022free_iommu:
3023	for_each_active_iommu(iommu, drhd) {
3024		disable_dmar_iommu(iommu);
3025		free_dmar_iommu(iommu);
3026	}
3027	if (si_domain) {
3028		domain_exit(si_domain);
3029		si_domain = NULL;
3030	}
3031
3032	return ret;
3033}
3034
3035static void __init init_no_remapping_devices(void)
3036{
3037	struct dmar_drhd_unit *drhd;
3038	struct device *dev;
3039	int i;
3040
3041	for_each_drhd_unit(drhd) {
3042		if (!drhd->include_all) {
3043			for_each_active_dev_scope(drhd->devices,
3044						  drhd->devices_cnt, i, dev)
3045				break;
3046			/* ignore DMAR unit if no devices exist */
3047			if (i == drhd->devices_cnt)
3048				drhd->ignored = 1;
3049		}
3050	}
3051
3052	for_each_active_drhd_unit(drhd) {
3053		if (drhd->include_all)
3054			continue;
3055
3056		for_each_active_dev_scope(drhd->devices,
3057					  drhd->devices_cnt, i, dev)
3058			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3059				break;
3060		if (i < drhd->devices_cnt)
3061			continue;
3062
3063		/* This IOMMU has *only* gfx devices. Either bypass it or
3064		   set the gfx_mapped flag, as appropriate */
3065		drhd->gfx_dedicated = 1;
3066		if (!dmar_map_gfx)
3067			drhd->ignored = 1;
3068	}
3069}
3070
3071#ifdef CONFIG_SUSPEND
3072static int init_iommu_hw(void)
3073{
3074	struct dmar_drhd_unit *drhd;
3075	struct intel_iommu *iommu = NULL;
3076
3077	for_each_active_iommu(iommu, drhd)
3078		if (iommu->qi)
3079			dmar_reenable_qi(iommu);
3080
3081	for_each_iommu(iommu, drhd) {
3082		if (drhd->ignored) {
3083			/*
3084			 * we always have to disable PMRs or DMA may fail on
3085			 * this device
3086			 */
3087			if (force_on)
3088				iommu_disable_protect_mem_regions(iommu);
3089			continue;
3090		}
3091
3092		iommu_flush_write_buffer(iommu);
3093		iommu_set_root_entry(iommu);
3094		iommu_enable_translation(iommu);
3095		iommu_disable_protect_mem_regions(iommu);
3096	}
3097
3098	return 0;
3099}
3100
3101static void iommu_flush_all(void)
3102{
3103	struct dmar_drhd_unit *drhd;
3104	struct intel_iommu *iommu;
3105
3106	for_each_active_iommu(iommu, drhd) {
3107		iommu->flush.flush_context(iommu, 0, 0, 0,
3108					   DMA_CCMD_GLOBAL_INVL);
3109		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3110					 DMA_TLB_GLOBAL_FLUSH);
3111	}
3112}
3113
3114static int iommu_suspend(void)
3115{
3116	struct dmar_drhd_unit *drhd;
3117	struct intel_iommu *iommu = NULL;
3118	unsigned long flag;
3119
3120	for_each_active_iommu(iommu, drhd) {
3121		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3122					     GFP_KERNEL);
3123		if (!iommu->iommu_state)
3124			goto nomem;
3125	}
3126
3127	iommu_flush_all();
3128
3129	for_each_active_iommu(iommu, drhd) {
3130		iommu_disable_translation(iommu);
3131
3132		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3133
3134		iommu->iommu_state[SR_DMAR_FECTL_REG] =
3135			readl(iommu->reg + DMAR_FECTL_REG);
3136		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3137			readl(iommu->reg + DMAR_FEDATA_REG);
3138		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3139			readl(iommu->reg + DMAR_FEADDR_REG);
3140		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3141			readl(iommu->reg + DMAR_FEUADDR_REG);
3142
3143		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3144	}
3145	return 0;
3146
3147nomem:
3148	for_each_active_iommu(iommu, drhd)
3149		kfree(iommu->iommu_state);
3150
3151	return -ENOMEM;
3152}
3153
3154static void iommu_resume(void)
3155{
3156	struct dmar_drhd_unit *drhd;
3157	struct intel_iommu *iommu = NULL;
3158	unsigned long flag;
3159
3160	if (init_iommu_hw()) {
3161		if (force_on)
3162			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3163		else
3164			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3165		return;
3166	}
3167
3168	for_each_active_iommu(iommu, drhd) {
3169
3170		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3171
3172		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3173			iommu->reg + DMAR_FECTL_REG);
3174		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3175			iommu->reg + DMAR_FEDATA_REG);
3176		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3177			iommu->reg + DMAR_FEADDR_REG);
3178		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3179			iommu->reg + DMAR_FEUADDR_REG);
3180
3181		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3182	}
3183
3184	for_each_active_iommu(iommu, drhd)
3185		kfree(iommu->iommu_state);
3186}
3187
3188static struct syscore_ops iommu_syscore_ops = {
3189	.resume		= iommu_resume,
3190	.suspend	= iommu_suspend,
3191};
3192
3193static void __init init_iommu_pm_ops(void)
3194{
3195	register_syscore_ops(&iommu_syscore_ops);
3196}
3197
3198#else
3199static inline void init_iommu_pm_ops(void) {}
3200#endif	/* CONFIG_PM */
3201
3202static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
3203{
3204	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
3205	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
3206	    rmrr->end_address <= rmrr->base_address ||
3207	    arch_rmrr_sanity_check(rmrr))
3208		return -EINVAL;
3209
3210	return 0;
3211}
3212
3213int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3214{
3215	struct acpi_dmar_reserved_memory *rmrr;
3216	struct dmar_rmrr_unit *rmrru;
3217
3218	rmrr = (struct acpi_dmar_reserved_memory *)header;
3219	if (rmrr_sanity_check(rmrr)) {
3220		pr_warn(FW_BUG
3221			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
3222			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3223			   rmrr->base_address, rmrr->end_address,
3224			   dmi_get_system_info(DMI_BIOS_VENDOR),
3225			   dmi_get_system_info(DMI_BIOS_VERSION),
3226			   dmi_get_system_info(DMI_PRODUCT_VERSION));
3227		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
3228	}
3229
3230	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3231	if (!rmrru)
3232		goto out;
3233
3234	rmrru->hdr = header;
3235
3236	rmrru->base_address = rmrr->base_address;
3237	rmrru->end_address = rmrr->end_address;
3238
3239	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3240				((void *)rmrr) + rmrr->header.length,
3241				&rmrru->devices_cnt);
3242	if (rmrru->devices_cnt && rmrru->devices == NULL)
3243		goto free_rmrru;
3244
3245	list_add(&rmrru->list, &dmar_rmrr_units);
3246
3247	return 0;
3248free_rmrru:
3249	kfree(rmrru);
3250out:
3251	return -ENOMEM;
3252}
3253
3254static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3255{
3256	struct dmar_atsr_unit *atsru;
3257	struct acpi_dmar_atsr *tmp;
3258
3259	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
3260				dmar_rcu_check()) {
3261		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3262		if (atsr->segment != tmp->segment)
3263			continue;
3264		if (atsr->header.length != tmp->header.length)
3265			continue;
3266		if (memcmp(atsr, tmp, atsr->header.length) == 0)
3267			return atsru;
3268	}
3269
3270	return NULL;
3271}
3272
3273int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3274{
3275	struct acpi_dmar_atsr *atsr;
3276	struct dmar_atsr_unit *atsru;
3277
3278	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3279		return 0;
3280
3281	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3282	atsru = dmar_find_atsr(atsr);
3283	if (atsru)
3284		return 0;
3285
3286	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3287	if (!atsru)
3288		return -ENOMEM;
3289
3290	/*
3291	 * If memory is allocated from slab by ACPI _DSM method, we need to
3292	 * copy the memory content because the memory buffer will be freed
3293	 * on return.
3294	 */
3295	atsru->hdr = (void *)(atsru + 1);
3296	memcpy(atsru->hdr, hdr, hdr->length);
3297	atsru->include_all = atsr->flags & 0x1;
3298	if (!atsru->include_all) {
3299		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3300				(void *)atsr + atsr->header.length,
3301				&atsru->devices_cnt);
3302		if (atsru->devices_cnt && atsru->devices == NULL) {
3303			kfree(atsru);
3304			return -ENOMEM;
3305		}
3306	}
3307
3308	list_add_rcu(&atsru->list, &dmar_atsr_units);
3309
3310	return 0;
3311}
3312
3313static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3314{
3315	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3316	kfree(atsru);
3317}
3318
3319int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3320{
3321	struct acpi_dmar_atsr *atsr;
3322	struct dmar_atsr_unit *atsru;
3323
3324	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3325	atsru = dmar_find_atsr(atsr);
3326	if (atsru) {
3327		list_del_rcu(&atsru->list);
3328		synchronize_rcu();
3329		intel_iommu_free_atsr(atsru);
3330	}
3331
3332	return 0;
3333}
3334
3335int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3336{
3337	int i;
3338	struct device *dev;
3339	struct acpi_dmar_atsr *atsr;
3340	struct dmar_atsr_unit *atsru;
3341
3342	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3343	atsru = dmar_find_atsr(atsr);
3344	if (!atsru)
3345		return 0;
3346
3347	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3348		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3349					  i, dev)
3350			return -EBUSY;
3351	}
3352
3353	return 0;
3354}
3355
3356static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc)
3357{
3358	struct dmar_satc_unit *satcu;
3359	struct acpi_dmar_satc *tmp;
3360
3361	list_for_each_entry_rcu(satcu, &dmar_satc_units, list,
3362				dmar_rcu_check()) {
3363		tmp = (struct acpi_dmar_satc *)satcu->hdr;
3364		if (satc->segment != tmp->segment)
3365			continue;
3366		if (satc->header.length != tmp->header.length)
3367			continue;
3368		if (memcmp(satc, tmp, satc->header.length) == 0)
3369			return satcu;
3370	}
3371
3372	return NULL;
3373}
3374
3375int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg)
3376{
3377	struct acpi_dmar_satc *satc;
3378	struct dmar_satc_unit *satcu;
3379
3380	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3381		return 0;
3382
3383	satc = container_of(hdr, struct acpi_dmar_satc, header);
3384	satcu = dmar_find_satc(satc);
3385	if (satcu)
3386		return 0;
3387
3388	satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL);
3389	if (!satcu)
3390		return -ENOMEM;
3391
3392	satcu->hdr = (void *)(satcu + 1);
3393	memcpy(satcu->hdr, hdr, hdr->length);
3394	satcu->atc_required = satc->flags & 0x1;
3395	satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1),
3396					      (void *)satc + satc->header.length,
3397					      &satcu->devices_cnt);
3398	if (satcu->devices_cnt && !satcu->devices) {
3399		kfree(satcu);
3400		return -ENOMEM;
3401	}
3402	list_add_rcu(&satcu->list, &dmar_satc_units);
3403
3404	return 0;
3405}
3406
3407static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3408{
3409	int sp, ret;
3410	struct intel_iommu *iommu = dmaru->iommu;
3411
3412	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
3413	if (ret)
3414		goto out;
3415
3416	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3417		pr_warn("%s: Doesn't support hardware pass through.\n",
3418			iommu->name);
3419		return -ENXIO;
3420	}
3421
3422	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3423	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3424		pr_warn("%s: Doesn't support large page.\n",
3425			iommu->name);
3426		return -ENXIO;
3427	}
3428
3429	/*
3430	 * Disable translation if already enabled prior to OS handover.
3431	 */
3432	if (iommu->gcmd & DMA_GCMD_TE)
3433		iommu_disable_translation(iommu);
3434
3435	ret = iommu_init_domains(iommu);
3436	if (ret == 0)
3437		ret = iommu_alloc_root_entry(iommu);
3438	if (ret)
3439		goto out;
3440
3441	intel_svm_check(iommu);
3442
3443	if (dmaru->ignored) {
3444		/*
3445		 * we always have to disable PMRs or DMA may fail on this device
3446		 */
3447		if (force_on)
3448			iommu_disable_protect_mem_regions(iommu);
3449		return 0;
3450	}
3451
3452	intel_iommu_init_qi(iommu);
3453	iommu_flush_write_buffer(iommu);
3454
3455#ifdef CONFIG_INTEL_IOMMU_SVM
3456	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3457		ret = intel_svm_enable_prq(iommu);
3458		if (ret)
3459			goto disable_iommu;
3460	}
3461#endif
3462	ret = dmar_set_interrupt(iommu);
3463	if (ret)
3464		goto disable_iommu;
3465
3466	iommu_set_root_entry(iommu);
3467	iommu_enable_translation(iommu);
3468
3469	iommu_disable_protect_mem_regions(iommu);
3470	return 0;
3471
3472disable_iommu:
3473	disable_dmar_iommu(iommu);
3474out:
3475	free_dmar_iommu(iommu);
3476	return ret;
3477}
3478
3479int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3480{
3481	int ret = 0;
3482	struct intel_iommu *iommu = dmaru->iommu;
3483
3484	if (!intel_iommu_enabled)
3485		return 0;
3486	if (iommu == NULL)
3487		return -EINVAL;
3488
3489	if (insert) {
3490		ret = intel_iommu_add(dmaru);
3491	} else {
3492		disable_dmar_iommu(iommu);
3493		free_dmar_iommu(iommu);
3494	}
3495
3496	return ret;
3497}
3498
3499static void intel_iommu_free_dmars(void)
3500{
3501	struct dmar_rmrr_unit *rmrru, *rmrr_n;
3502	struct dmar_atsr_unit *atsru, *atsr_n;
3503	struct dmar_satc_unit *satcu, *satc_n;
3504
3505	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3506		list_del(&rmrru->list);
3507		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3508		kfree(rmrru);
3509	}
3510
3511	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3512		list_del(&atsru->list);
3513		intel_iommu_free_atsr(atsru);
3514	}
3515	list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) {
3516		list_del(&satcu->list);
3517		dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt);
3518		kfree(satcu);
3519	}
3520}
3521
3522static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev)
3523{
3524	struct dmar_satc_unit *satcu;
3525	struct acpi_dmar_satc *satc;
3526	struct device *tmp;
3527	int i;
3528
3529	dev = pci_physfn(dev);
3530	rcu_read_lock();
3531
3532	list_for_each_entry_rcu(satcu, &dmar_satc_units, list) {
3533		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3534		if (satc->segment != pci_domain_nr(dev->bus))
3535			continue;
3536		for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp)
3537			if (to_pci_dev(tmp) == dev)
3538				goto out;
3539	}
3540	satcu = NULL;
3541out:
3542	rcu_read_unlock();
3543	return satcu;
3544}
3545
3546static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu)
3547{
3548	int i, ret = 1;
3549	struct pci_bus *bus;
3550	struct pci_dev *bridge = NULL;
3551	struct device *tmp;
3552	struct acpi_dmar_atsr *atsr;
3553	struct dmar_atsr_unit *atsru;
3554	struct dmar_satc_unit *satcu;
3555
3556	dev = pci_physfn(dev);
3557	satcu = dmar_find_matched_satc_unit(dev);
3558	if (satcu)
3559		/*
3560		 * This device supports ATS as it is in SATC table.
3561		 * When IOMMU is in legacy mode, enabling ATS is done
3562		 * automatically by HW for the device that requires
3563		 * ATS, hence OS should not enable this device ATS
3564		 * to avoid duplicated TLB invalidation.
3565		 */
3566		return !(satcu->atc_required && !sm_supported(iommu));
3567
3568	for (bus = dev->bus; bus; bus = bus->parent) {
3569		bridge = bus->self;
3570		/* If it's an integrated device, allow ATS */
3571		if (!bridge)
3572			return 1;
3573		/* Connected via non-PCIe: no ATS */
3574		if (!pci_is_pcie(bridge) ||
3575		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3576			return 0;
3577		/* If we found the root port, look it up in the ATSR */
3578		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3579			break;
3580	}
3581
3582	rcu_read_lock();
3583	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3584		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3585		if (atsr->segment != pci_domain_nr(dev->bus))
3586			continue;
3587
3588		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3589			if (tmp == &bridge->dev)
3590				goto out;
3591
3592		if (atsru->include_all)
3593			goto out;
3594	}
3595	ret = 0;
3596out:
3597	rcu_read_unlock();
3598
3599	return ret;
3600}
3601
3602int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3603{
3604	int ret;
3605	struct dmar_rmrr_unit *rmrru;
3606	struct dmar_atsr_unit *atsru;
3607	struct dmar_satc_unit *satcu;
3608	struct acpi_dmar_atsr *atsr;
3609	struct acpi_dmar_reserved_memory *rmrr;
3610	struct acpi_dmar_satc *satc;
3611
3612	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3613		return 0;
3614
3615	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3616		rmrr = container_of(rmrru->hdr,
3617				    struct acpi_dmar_reserved_memory, header);
3618		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3619			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3620				((void *)rmrr) + rmrr->header.length,
3621				rmrr->segment, rmrru->devices,
3622				rmrru->devices_cnt);
3623			if (ret < 0)
3624				return ret;
3625		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3626			dmar_remove_dev_scope(info, rmrr->segment,
3627				rmrru->devices, rmrru->devices_cnt);
3628		}
3629	}
3630
3631	list_for_each_entry(atsru, &dmar_atsr_units, list) {
3632		if (atsru->include_all)
3633			continue;
3634
3635		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3636		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3637			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3638					(void *)atsr + atsr->header.length,
3639					atsr->segment, atsru->devices,
3640					atsru->devices_cnt);
3641			if (ret > 0)
3642				break;
3643			else if (ret < 0)
3644				return ret;
3645		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3646			if (dmar_remove_dev_scope(info, atsr->segment,
3647					atsru->devices, atsru->devices_cnt))
3648				break;
3649		}
3650	}
3651	list_for_each_entry(satcu, &dmar_satc_units, list) {
3652		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3653		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3654			ret = dmar_insert_dev_scope(info, (void *)(satc + 1),
3655					(void *)satc + satc->header.length,
3656					satc->segment, satcu->devices,
3657					satcu->devices_cnt);
3658			if (ret > 0)
3659				break;
3660			else if (ret < 0)
3661				return ret;
3662		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3663			if (dmar_remove_dev_scope(info, satc->segment,
3664					satcu->devices, satcu->devices_cnt))
3665				break;
3666		}
3667	}
3668
3669	return 0;
3670}
3671
3672static int intel_iommu_memory_notifier(struct notifier_block *nb,
3673				       unsigned long val, void *v)
3674{
3675	struct memory_notify *mhp = v;
3676	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3677	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
3678			mhp->nr_pages - 1);
3679
3680	switch (val) {
3681	case MEM_GOING_ONLINE:
3682		if (iommu_domain_identity_map(si_domain,
3683					      start_vpfn, last_vpfn)) {
3684			pr_warn("Failed to build identity map for [%lx-%lx]\n",
3685				start_vpfn, last_vpfn);
3686			return NOTIFY_BAD;
3687		}
3688		break;
3689
3690	case MEM_OFFLINE:
3691	case MEM_CANCEL_ONLINE:
3692		{
3693			struct dmar_drhd_unit *drhd;
3694			struct intel_iommu *iommu;
3695			LIST_HEAD(freelist);
3696
3697			domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist);
3698
3699			rcu_read_lock();
3700			for_each_active_iommu(iommu, drhd)
3701				iommu_flush_iotlb_psi(iommu, si_domain,
3702					start_vpfn, mhp->nr_pages,
3703					list_empty(&freelist), 0);
3704			rcu_read_unlock();
3705			put_pages_list(&freelist);
3706		}
3707		break;
3708	}
3709
3710	return NOTIFY_OK;
3711}
3712
3713static struct notifier_block intel_iommu_memory_nb = {
3714	.notifier_call = intel_iommu_memory_notifier,
3715	.priority = 0
3716};
3717
3718static void intel_disable_iommus(void)
3719{
3720	struct intel_iommu *iommu = NULL;
3721	struct dmar_drhd_unit *drhd;
3722
3723	for_each_iommu(iommu, drhd)
3724		iommu_disable_translation(iommu);
3725}
3726
3727void intel_iommu_shutdown(void)
3728{
3729	struct dmar_drhd_unit *drhd;
3730	struct intel_iommu *iommu = NULL;
3731
3732	if (no_iommu || dmar_disabled)
3733		return;
3734
3735	down_write(&dmar_global_lock);
3736
3737	/* Disable PMRs explicitly here. */
3738	for_each_iommu(iommu, drhd)
3739		iommu_disable_protect_mem_regions(iommu);
3740
3741	/* Make sure the IOMMUs are switched off */
3742	intel_disable_iommus();
3743
3744	up_write(&dmar_global_lock);
3745}
3746
3747static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
3748{
3749	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
3750
3751	return container_of(iommu_dev, struct intel_iommu, iommu);
3752}
3753
3754static ssize_t version_show(struct device *dev,
3755			    struct device_attribute *attr, char *buf)
3756{
3757	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3758	u32 ver = readl(iommu->reg + DMAR_VER_REG);
3759	return sprintf(buf, "%d:%d\n",
3760		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
3761}
3762static DEVICE_ATTR_RO(version);
3763
3764static ssize_t address_show(struct device *dev,
3765			    struct device_attribute *attr, char *buf)
3766{
3767	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3768	return sprintf(buf, "%llx\n", iommu->reg_phys);
3769}
3770static DEVICE_ATTR_RO(address);
3771
3772static ssize_t cap_show(struct device *dev,
3773			struct device_attribute *attr, char *buf)
3774{
3775	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3776	return sprintf(buf, "%llx\n", iommu->cap);
3777}
3778static DEVICE_ATTR_RO(cap);
3779
3780static ssize_t ecap_show(struct device *dev,
3781			 struct device_attribute *attr, char *buf)
3782{
3783	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3784	return sprintf(buf, "%llx\n", iommu->ecap);
3785}
3786static DEVICE_ATTR_RO(ecap);
3787
3788static ssize_t domains_supported_show(struct device *dev,
3789				      struct device_attribute *attr, char *buf)
3790{
3791	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3792	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
3793}
3794static DEVICE_ATTR_RO(domains_supported);
3795
3796static ssize_t domains_used_show(struct device *dev,
3797				 struct device_attribute *attr, char *buf)
3798{
3799	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3800	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
3801						  cap_ndoms(iommu->cap)));
3802}
3803static DEVICE_ATTR_RO(domains_used);
3804
3805static struct attribute *intel_iommu_attrs[] = {
3806	&dev_attr_version.attr,
3807	&dev_attr_address.attr,
3808	&dev_attr_cap.attr,
3809	&dev_attr_ecap.attr,
3810	&dev_attr_domains_supported.attr,
3811	&dev_attr_domains_used.attr,
3812	NULL,
3813};
3814
3815static struct attribute_group intel_iommu_group = {
3816	.name = "intel-iommu",
3817	.attrs = intel_iommu_attrs,
3818};
3819
3820const struct attribute_group *intel_iommu_groups[] = {
3821	&intel_iommu_group,
3822	NULL,
3823};
3824
3825static inline bool has_external_pci(void)
3826{
3827	struct pci_dev *pdev = NULL;
3828
3829	for_each_pci_dev(pdev)
3830		if (pdev->external_facing) {
3831			pci_dev_put(pdev);
3832			return true;
3833		}
3834
3835	return false;
3836}
3837
3838static int __init platform_optin_force_iommu(void)
3839{
3840	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
3841		return 0;
3842
3843	if (no_iommu || dmar_disabled)
3844		pr_info("Intel-IOMMU force enabled due to platform opt in\n");
3845
3846	/*
3847	 * If Intel-IOMMU is disabled by default, we will apply identity
3848	 * map for all devices except those marked as being untrusted.
3849	 */
3850	if (dmar_disabled)
3851		iommu_set_default_passthrough(false);
3852
3853	dmar_disabled = 0;
3854	no_iommu = 0;
3855
3856	return 1;
3857}
3858
3859static int __init probe_acpi_namespace_devices(void)
3860{
3861	struct dmar_drhd_unit *drhd;
3862	/* To avoid a -Wunused-but-set-variable warning. */
3863	struct intel_iommu *iommu __maybe_unused;
3864	struct device *dev;
3865	int i, ret = 0;
3866
3867	for_each_active_iommu(iommu, drhd) {
3868		for_each_active_dev_scope(drhd->devices,
3869					  drhd->devices_cnt, i, dev) {
3870			struct acpi_device_physical_node *pn;
3871			struct iommu_group *group;
3872			struct acpi_device *adev;
3873
3874			if (dev->bus != &acpi_bus_type)
3875				continue;
3876
3877			adev = to_acpi_device(dev);
3878			mutex_lock(&adev->physical_node_lock);
3879			list_for_each_entry(pn,
3880					    &adev->physical_node_list, node) {
3881				group = iommu_group_get(pn->dev);
3882				if (group) {
3883					iommu_group_put(group);
3884					continue;
3885				}
3886
3887				ret = iommu_probe_device(pn->dev);
3888				if (ret)
3889					break;
3890			}
3891			mutex_unlock(&adev->physical_node_lock);
3892
3893			if (ret)
3894				return ret;
3895		}
3896	}
3897
3898	return 0;
3899}
3900
3901static __init int tboot_force_iommu(void)
3902{
3903	if (!tboot_enabled())
3904		return 0;
3905
3906	if (no_iommu || dmar_disabled)
3907		pr_warn("Forcing Intel-IOMMU to enabled\n");
3908
3909	dmar_disabled = 0;
3910	no_iommu = 0;
3911
3912	return 1;
3913}
3914
3915int __init intel_iommu_init(void)
3916{
3917	int ret = -ENODEV;
3918	struct dmar_drhd_unit *drhd;
3919	struct intel_iommu *iommu;
3920
3921	/*
3922	 * Intel IOMMU is required for a TXT/tboot launch or platform
3923	 * opt in, so enforce that.
3924	 */
3925	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
3926		    platform_optin_force_iommu();
3927
3928	down_write(&dmar_global_lock);
3929	if (dmar_table_init()) {
3930		if (force_on)
3931			panic("tboot: Failed to initialize DMAR table\n");
3932		goto out_free_dmar;
3933	}
3934
3935	if (dmar_dev_scope_init() < 0) {
3936		if (force_on)
3937			panic("tboot: Failed to initialize DMAR device scope\n");
3938		goto out_free_dmar;
3939	}
3940
3941	up_write(&dmar_global_lock);
3942
3943	/*
3944	 * The bus notifier takes the dmar_global_lock, so lockdep will
3945	 * complain later when we register it under the lock.
3946	 */
3947	dmar_register_bus_notifier();
3948
3949	down_write(&dmar_global_lock);
3950
3951	if (!no_iommu)
3952		intel_iommu_debugfs_init();
3953
3954	if (no_iommu || dmar_disabled) {
3955		/*
3956		 * We exit the function here to ensure IOMMU's remapping and
3957		 * mempool aren't setup, which means that the IOMMU's PMRs
3958		 * won't be disabled via the call to init_dmars(). So disable
3959		 * it explicitly here. The PMRs were setup by tboot prior to
3960		 * calling SENTER, but the kernel is expected to reset/tear
3961		 * down the PMRs.
3962		 */
3963		if (intel_iommu_tboot_noforce) {
3964			for_each_iommu(iommu, drhd)
3965				iommu_disable_protect_mem_regions(iommu);
3966		}
3967
3968		/*
3969		 * Make sure the IOMMUs are switched off, even when we
3970		 * boot into a kexec kernel and the previous kernel left
3971		 * them enabled
3972		 */
3973		intel_disable_iommus();
3974		goto out_free_dmar;
3975	}
3976
3977	if (list_empty(&dmar_rmrr_units))
3978		pr_info("No RMRR found\n");
3979
3980	if (list_empty(&dmar_atsr_units))
3981		pr_info("No ATSR found\n");
3982
3983	if (list_empty(&dmar_satc_units))
3984		pr_info("No SATC found\n");
3985
3986	init_no_remapping_devices();
3987
3988	ret = init_dmars();
3989	if (ret) {
3990		if (force_on)
3991			panic("tboot: Failed to initialize DMARs\n");
3992		pr_err("Initialization failed\n");
3993		goto out_free_dmar;
3994	}
3995	up_write(&dmar_global_lock);
3996
3997	init_iommu_pm_ops();
3998
3999	down_read(&dmar_global_lock);
4000	for_each_active_iommu(iommu, drhd) {
4001		/*
4002		 * The flush queue implementation does not perform
4003		 * page-selective invalidations that are required for efficient
4004		 * TLB flushes in virtual environments.  The benefit of batching
4005		 * is likely to be much lower than the overhead of synchronizing
4006		 * the virtual and physical IOMMU page-tables.
4007		 */
4008		if (cap_caching_mode(iommu->cap)) {
4009			pr_info_once("IOMMU batching disallowed due to virtualization\n");
4010			iommu_set_dma_strict();
4011		}
4012		iommu_device_sysfs_add(&iommu->iommu, NULL,
4013				       intel_iommu_groups,
4014				       "%s", iommu->name);
4015		iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
4016	}
4017	up_read(&dmar_global_lock);
4018
4019	if (si_domain && !hw_pass_through)
4020		register_memory_notifier(&intel_iommu_memory_nb);
4021
4022	down_read(&dmar_global_lock);
4023	if (probe_acpi_namespace_devices())
4024		pr_warn("ACPI name space devices didn't probe correctly\n");
4025
4026	/* Finally, we enable the DMA remapping hardware. */
4027	for_each_iommu(iommu, drhd) {
4028		if (!drhd->ignored && !translation_pre_enabled(iommu))
4029			iommu_enable_translation(iommu);
4030
4031		iommu_disable_protect_mem_regions(iommu);
4032	}
4033	up_read(&dmar_global_lock);
4034
4035	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4036
4037	intel_iommu_enabled = 1;
4038
4039	return 0;
4040
4041out_free_dmar:
4042	intel_iommu_free_dmars();
4043	up_write(&dmar_global_lock);
4044	return ret;
4045}
4046
4047static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4048{
4049	struct device_domain_info *info = opaque;
4050
4051	domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff);
4052	return 0;
4053}
4054
4055/*
4056 * NB - intel-iommu lacks any sort of reference counting for the users of
4057 * dependent devices.  If multiple endpoints have intersecting dependent
4058 * devices, unbinding the driver from any one of them will possibly leave
4059 * the others unable to operate.
4060 */
4061static void domain_context_clear(struct device_domain_info *info)
4062{
4063	if (!info->iommu || !info->dev || !dev_is_pci(info->dev))
4064		return;
4065
4066	pci_for_each_dma_alias(to_pci_dev(info->dev),
4067			       &domain_context_clear_one_cb, info);
4068}
4069
4070static void dmar_remove_one_dev_info(struct device *dev)
4071{
4072	struct device_domain_info *info = dev_iommu_priv_get(dev);
4073	struct dmar_domain *domain = info->domain;
4074	struct intel_iommu *iommu = info->iommu;
4075	unsigned long flags;
4076
4077	if (!dev_is_real_dma_subdevice(info->dev)) {
4078		if (dev_is_pci(info->dev) && sm_supported(iommu))
4079			intel_pasid_tear_down_entry(iommu, info->dev,
4080					PASID_RID2PASID, false);
4081
4082		iommu_disable_pci_caps(info);
4083		domain_context_clear(info);
4084	}
4085
4086	spin_lock_irqsave(&domain->lock, flags);
4087	list_del(&info->link);
4088	spin_unlock_irqrestore(&domain->lock, flags);
4089
4090	domain_detach_iommu(domain, iommu);
4091	info->domain = NULL;
4092}
4093
4094/*
4095 * Clear the page table pointer in context or pasid table entries so that
4096 * all DMA requests without PASID from the device are blocked. If the page
4097 * table has been set, clean up the data structures.
4098 */
4099static void device_block_translation(struct device *dev)
4100{
4101	struct device_domain_info *info = dev_iommu_priv_get(dev);
4102	struct intel_iommu *iommu = info->iommu;
4103	unsigned long flags;
4104
4105	iommu_disable_pci_caps(info);
4106	if (!dev_is_real_dma_subdevice(dev)) {
4107		if (sm_supported(iommu))
4108			intel_pasid_tear_down_entry(iommu, dev,
4109						    PASID_RID2PASID, false);
4110		else
4111			domain_context_clear(info);
4112	}
4113
4114	if (!info->domain)
4115		return;
4116
4117	spin_lock_irqsave(&info->domain->lock, flags);
4118	list_del(&info->link);
4119	spin_unlock_irqrestore(&info->domain->lock, flags);
4120
4121	domain_detach_iommu(info->domain, iommu);
4122	info->domain = NULL;
4123}
4124
4125static int md_domain_init(struct dmar_domain *domain, int guest_width)
4126{
4127	int adjust_width;
4128
4129	/* calculate AGAW */
4130	domain->gaw = guest_width;
4131	adjust_width = guestwidth_to_adjustwidth(guest_width);
4132	domain->agaw = width_to_agaw(adjust_width);
4133
4134	domain->iommu_coherency = false;
4135	domain->iommu_superpage = 0;
4136	domain->max_addr = 0;
4137
4138	/* always allocate the top pgd */
4139	domain->pgd = alloc_pgtable_page(domain->nid);
4140	if (!domain->pgd)
4141		return -ENOMEM;
4142	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4143	return 0;
4144}
4145
4146static int blocking_domain_attach_dev(struct iommu_domain *domain,
4147				      struct device *dev)
4148{
4149	device_block_translation(dev);
4150	return 0;
4151}
4152
4153static struct iommu_domain blocking_domain = {
4154	.ops = &(const struct iommu_domain_ops) {
4155		.attach_dev	= blocking_domain_attach_dev,
4156		.free		= intel_iommu_domain_free
4157	}
4158};
4159
4160static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4161{
4162	struct dmar_domain *dmar_domain;
4163	struct iommu_domain *domain;
4164
4165	switch (type) {
4166	case IOMMU_DOMAIN_BLOCKED:
4167		return &blocking_domain;
4168	case IOMMU_DOMAIN_DMA:
4169	case IOMMU_DOMAIN_DMA_FQ:
4170	case IOMMU_DOMAIN_UNMANAGED:
4171		dmar_domain = alloc_domain(type);
4172		if (!dmar_domain) {
4173			pr_err("Can't allocate dmar_domain\n");
4174			return NULL;
4175		}
4176		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4177			pr_err("Domain initialization failed\n");
4178			domain_exit(dmar_domain);
4179			return NULL;
4180		}
4181
4182		domain = &dmar_domain->domain;
4183		domain->geometry.aperture_start = 0;
4184		domain->geometry.aperture_end   =
4185				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
4186		domain->geometry.force_aperture = true;
4187
4188		return domain;
4189	case IOMMU_DOMAIN_IDENTITY:
4190		return &si_domain->domain;
4191	case IOMMU_DOMAIN_SVA:
4192		return intel_svm_domain_alloc();
4193	default:
4194		return NULL;
4195	}
4196
4197	return NULL;
4198}
4199
4200static void intel_iommu_domain_free(struct iommu_domain *domain)
4201{
4202	if (domain != &si_domain->domain && domain != &blocking_domain)
4203		domain_exit(to_dmar_domain(domain));
4204}
4205
4206static int prepare_domain_attach_device(struct iommu_domain *domain,
4207					struct device *dev)
4208{
4209	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4210	struct intel_iommu *iommu;
4211	int addr_width;
4212
4213	iommu = device_to_iommu(dev, NULL, NULL);
4214	if (!iommu)
4215		return -ENODEV;
4216
4217	if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap))
4218		return -EINVAL;
4219
4220	/* check if this iommu agaw is sufficient for max mapped address */
4221	addr_width = agaw_to_width(iommu->agaw);
4222	if (addr_width > cap_mgaw(iommu->cap))
4223		addr_width = cap_mgaw(iommu->cap);
4224
4225	if (dmar_domain->max_addr > (1LL << addr_width))
4226		return -EINVAL;
4227	dmar_domain->gaw = addr_width;
4228
4229	/*
4230	 * Knock out extra levels of page tables if necessary
4231	 */
4232	while (iommu->agaw < dmar_domain->agaw) {
4233		struct dma_pte *pte;
4234
4235		pte = dmar_domain->pgd;
4236		if (dma_pte_present(pte)) {
4237			dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte));
4238			free_pgtable_page(pte);
4239		}
4240		dmar_domain->agaw--;
4241	}
4242
4243	return 0;
4244}
4245
4246static int intel_iommu_attach_device(struct iommu_domain *domain,
4247				     struct device *dev)
4248{
4249	struct device_domain_info *info = dev_iommu_priv_get(dev);
4250	int ret;
4251
4252	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
4253	    device_is_rmrr_locked(dev)) {
4254		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4255		return -EPERM;
4256	}
4257
4258	if (info->domain)
4259		device_block_translation(dev);
4260
4261	ret = prepare_domain_attach_device(domain, dev);
4262	if (ret)
4263		return ret;
4264
4265	return dmar_domain_attach_device(to_dmar_domain(domain), dev);
4266}
4267
4268static int intel_iommu_map(struct iommu_domain *domain,
4269			   unsigned long iova, phys_addr_t hpa,
4270			   size_t size, int iommu_prot, gfp_t gfp)
4271{
4272	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4273	u64 max_addr;
4274	int prot = 0;
4275
4276	if (iommu_prot & IOMMU_READ)
4277		prot |= DMA_PTE_READ;
4278	if (iommu_prot & IOMMU_WRITE)
4279		prot |= DMA_PTE_WRITE;
4280	if (dmar_domain->set_pte_snp)
4281		prot |= DMA_PTE_SNP;
4282
4283	max_addr = iova + size;
4284	if (dmar_domain->max_addr < max_addr) {
4285		u64 end;
4286
4287		/* check if minimum agaw is sufficient for mapped address */
4288		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4289		if (end < max_addr) {
4290			pr_err("%s: iommu width (%d) is not "
4291			       "sufficient for the mapped address (%llx)\n",
4292			       __func__, dmar_domain->gaw, max_addr);
4293			return -EFAULT;
4294		}
4295		dmar_domain->max_addr = max_addr;
4296	}
4297	/* Round up size to next multiple of PAGE_SIZE, if it and
4298	   the low bits of hpa would take us onto the next page */
4299	size = aligned_nrpages(hpa, size);
4300	return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4301				hpa >> VTD_PAGE_SHIFT, size, prot);
4302}
4303
4304static int intel_iommu_map_pages(struct iommu_domain *domain,
4305				 unsigned long iova, phys_addr_t paddr,
4306				 size_t pgsize, size_t pgcount,
4307				 int prot, gfp_t gfp, size_t *mapped)
4308{
4309	unsigned long pgshift = __ffs(pgsize);
4310	size_t size = pgcount << pgshift;
4311	int ret;
4312
4313	if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G)
4314		return -EINVAL;
4315
4316	if (!IS_ALIGNED(iova | paddr, pgsize))
4317		return -EINVAL;
4318
4319	ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp);
4320	if (!ret && mapped)
4321		*mapped = size;
4322
4323	return ret;
4324}
4325
4326static size_t intel_iommu_unmap(struct iommu_domain *domain,
4327				unsigned long iova, size_t size,
4328				struct iommu_iotlb_gather *gather)
4329{
4330	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4331	unsigned long start_pfn, last_pfn;
4332	int level = 0;
4333
4334	/* Cope with horrid API which requires us to unmap more than the
4335	   size argument if it happens to be a large-page mapping. */
4336	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4337
4338	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4339		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4340
4341	start_pfn = iova >> VTD_PAGE_SHIFT;
4342	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4343
4344	domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist);
4345
4346	if (dmar_domain->max_addr == iova + size)
4347		dmar_domain->max_addr = iova;
4348
4349	iommu_iotlb_gather_add_page(domain, gather, iova, size);
4350
4351	return size;
4352}
4353
4354static size_t intel_iommu_unmap_pages(struct iommu_domain *domain,
4355				      unsigned long iova,
4356				      size_t pgsize, size_t pgcount,
4357				      struct iommu_iotlb_gather *gather)
4358{
4359	unsigned long pgshift = __ffs(pgsize);
4360	size_t size = pgcount << pgshift;
4361
4362	return intel_iommu_unmap(domain, iova, size, gather);
4363}
4364
4365static void intel_iommu_tlb_sync(struct iommu_domain *domain,
4366				 struct iommu_iotlb_gather *gather)
4367{
4368	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4369	unsigned long iova_pfn = IOVA_PFN(gather->start);
4370	size_t size = gather->end - gather->start;
4371	struct iommu_domain_info *info;
4372	unsigned long start_pfn;
4373	unsigned long nrpages;
4374	unsigned long i;
4375
4376	nrpages = aligned_nrpages(gather->start, size);
4377	start_pfn = mm_to_dma_pfn(iova_pfn);
4378
4379	xa_for_each(&dmar_domain->iommu_array, i, info)
4380		iommu_flush_iotlb_psi(info->iommu, dmar_domain,
4381				      start_pfn, nrpages,
4382				      list_empty(&gather->freelist), 0);
4383
4384	put_pages_list(&gather->freelist);
4385}
4386
4387static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4388					    dma_addr_t iova)
4389{
4390	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4391	struct dma_pte *pte;
4392	int level = 0;
4393	u64 phys = 0;
4394
4395	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4396	if (pte && dma_pte_present(pte))
4397		phys = dma_pte_addr(pte) +
4398			(iova & (BIT_MASK(level_to_offset_bits(level) +
4399						VTD_PAGE_SHIFT) - 1));
4400
4401	return phys;
4402}
4403
4404static bool domain_support_force_snooping(struct dmar_domain *domain)
4405{
4406	struct device_domain_info *info;
4407	bool support = true;
4408
4409	assert_spin_locked(&domain->lock);
4410	list_for_each_entry(info, &domain->devices, link) {
4411		if (!ecap_sc_support(info->iommu->ecap)) {
4412			support = false;
4413			break;
4414		}
4415	}
4416
4417	return support;
4418}
4419
4420static void domain_set_force_snooping(struct dmar_domain *domain)
4421{
4422	struct device_domain_info *info;
4423
4424	assert_spin_locked(&domain->lock);
4425	/*
4426	 * Second level page table supports per-PTE snoop control. The
4427	 * iommu_map() interface will handle this by setting SNP bit.
4428	 */
4429	if (!domain->use_first_level) {
4430		domain->set_pte_snp = true;
4431		return;
4432	}
4433
4434	list_for_each_entry(info, &domain->devices, link)
4435		intel_pasid_setup_page_snoop_control(info->iommu, info->dev,
4436						     PASID_RID2PASID);
4437}
4438
4439static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain)
4440{
4441	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4442	unsigned long flags;
4443
4444	if (dmar_domain->force_snooping)
4445		return true;
4446
4447	spin_lock_irqsave(&dmar_domain->lock, flags);
4448	if (!domain_support_force_snooping(dmar_domain)) {
4449		spin_unlock_irqrestore(&dmar_domain->lock, flags);
4450		return false;
4451	}
4452
4453	domain_set_force_snooping(dmar_domain);
4454	dmar_domain->force_snooping = true;
4455	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4456
4457	return true;
4458}
4459
4460static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap)
4461{
4462	struct device_domain_info *info = dev_iommu_priv_get(dev);
4463
4464	switch (cap) {
4465	case IOMMU_CAP_CACHE_COHERENCY:
4466		return true;
4467	case IOMMU_CAP_INTR_REMAP:
4468		return irq_remapping_enabled == 1;
4469	case IOMMU_CAP_PRE_BOOT_PROTECTION:
4470		return dmar_platform_optin();
4471	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
4472		return ecap_sc_support(info->iommu->ecap);
4473	default:
4474		return false;
4475	}
4476}
4477
4478static struct iommu_device *intel_iommu_probe_device(struct device *dev)
4479{
4480	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4481	struct device_domain_info *info;
4482	struct intel_iommu *iommu;
4483	u8 bus, devfn;
4484	int ret;
4485
4486	iommu = device_to_iommu(dev, &bus, &devfn);
4487	if (!iommu || !iommu->iommu.ops)
4488		return ERR_PTR(-ENODEV);
4489
4490	info = kzalloc(sizeof(*info), GFP_KERNEL);
4491	if (!info)
4492		return ERR_PTR(-ENOMEM);
4493
4494	if (dev_is_real_dma_subdevice(dev)) {
4495		info->bus = pdev->bus->number;
4496		info->devfn = pdev->devfn;
4497		info->segment = pci_domain_nr(pdev->bus);
4498	} else {
4499		info->bus = bus;
4500		info->devfn = devfn;
4501		info->segment = iommu->segment;
4502	}
4503
4504	info->dev = dev;
4505	info->iommu = iommu;
4506	if (dev_is_pci(dev)) {
4507		if (ecap_dev_iotlb_support(iommu->ecap) &&
4508		    pci_ats_supported(pdev) &&
4509		    dmar_ats_supported(pdev, iommu)) {
4510			info->ats_supported = 1;
4511			info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev);
4512		}
4513		if (sm_supported(iommu)) {
4514			if (pasid_supported(iommu)) {
4515				int features = pci_pasid_features(pdev);
4516
4517				if (features >= 0)
4518					info->pasid_supported = features | 1;
4519			}
4520
4521			if (info->ats_supported && ecap_prs(iommu->ecap) &&
4522			    pci_pri_supported(pdev))
4523				info->pri_supported = 1;
4524		}
4525	}
4526
4527	dev_iommu_priv_set(dev, info);
4528
4529	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
4530		ret = intel_pasid_alloc_table(dev);
4531		if (ret) {
4532			dev_err(dev, "PASID table allocation failed\n");
4533			dev_iommu_priv_set(dev, NULL);
4534			kfree(info);
4535			return ERR_PTR(ret);
4536		}
4537	}
4538
4539	return &iommu->iommu;
4540}
4541
4542static void intel_iommu_release_device(struct device *dev)
4543{
4544	struct device_domain_info *info = dev_iommu_priv_get(dev);
4545
4546	dmar_remove_one_dev_info(dev);
4547	intel_pasid_free_table(dev);
4548	dev_iommu_priv_set(dev, NULL);
4549	kfree(info);
4550	set_dma_ops(dev, NULL);
4551}
4552
4553static void intel_iommu_probe_finalize(struct device *dev)
4554{
4555	set_dma_ops(dev, NULL);
4556	iommu_setup_dma_ops(dev, 0, U64_MAX);
4557}
4558
4559static void intel_iommu_get_resv_regions(struct device *device,
4560					 struct list_head *head)
4561{
4562	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
4563	struct iommu_resv_region *reg;
4564	struct dmar_rmrr_unit *rmrr;
4565	struct device *i_dev;
4566	int i;
4567
4568	rcu_read_lock();
4569	for_each_rmrr_units(rmrr) {
4570		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
4571					  i, i_dev) {
4572			struct iommu_resv_region *resv;
4573			enum iommu_resv_type type;
4574			size_t length;
4575
4576			if (i_dev != device &&
4577			    !is_downstream_to_pci_bridge(device, i_dev))
4578				continue;
4579
4580			length = rmrr->end_address - rmrr->base_address + 1;
4581
4582			type = device_rmrr_is_relaxable(device) ?
4583				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
4584
4585			resv = iommu_alloc_resv_region(rmrr->base_address,
4586						       length, prot, type,
4587						       GFP_ATOMIC);
4588			if (!resv)
4589				break;
4590
4591			list_add_tail(&resv->list, head);
4592		}
4593	}
4594	rcu_read_unlock();
4595
4596#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
4597	if (dev_is_pci(device)) {
4598		struct pci_dev *pdev = to_pci_dev(device);
4599
4600		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
4601			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
4602					IOMMU_RESV_DIRECT_RELAXABLE,
4603					GFP_KERNEL);
4604			if (reg)
4605				list_add_tail(&reg->list, head);
4606		}
4607	}
4608#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
4609
4610	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
4611				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
4612				      0, IOMMU_RESV_MSI, GFP_KERNEL);
4613	if (!reg)
4614		return;
4615	list_add_tail(&reg->list, head);
4616}
4617
4618static struct iommu_group *intel_iommu_device_group(struct device *dev)
4619{
4620	if (dev_is_pci(dev))
4621		return pci_device_group(dev);
4622	return generic_device_group(dev);
4623}
4624
4625static int intel_iommu_enable_sva(struct device *dev)
4626{
4627	struct device_domain_info *info = dev_iommu_priv_get(dev);
4628	struct intel_iommu *iommu;
4629	int ret;
4630
4631	if (!info || dmar_disabled)
4632		return -EINVAL;
4633
4634	iommu = info->iommu;
4635	if (!iommu)
4636		return -EINVAL;
4637
4638	if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE))
4639		return -ENODEV;
4640
4641	if (!info->pasid_enabled || !info->pri_enabled || !info->ats_enabled)
4642		return -EINVAL;
4643
4644	ret = iopf_queue_add_device(iommu->iopf_queue, dev);
4645	if (!ret)
4646		ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev);
4647
4648	return ret;
4649}
4650
4651static int intel_iommu_disable_sva(struct device *dev)
4652{
4653	struct device_domain_info *info = dev_iommu_priv_get(dev);
4654	struct intel_iommu *iommu = info->iommu;
4655	int ret;
4656
4657	ret = iommu_unregister_device_fault_handler(dev);
4658	if (!ret)
4659		ret = iopf_queue_remove_device(iommu->iopf_queue, dev);
4660
4661	return ret;
4662}
4663
4664static int intel_iommu_enable_iopf(struct device *dev)
4665{
4666	struct device_domain_info *info = dev_iommu_priv_get(dev);
4667
4668	if (info && info->pri_supported)
4669		return 0;
4670
4671	return -ENODEV;
4672}
4673
4674static int
4675intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
4676{
4677	switch (feat) {
4678	case IOMMU_DEV_FEAT_IOPF:
4679		return intel_iommu_enable_iopf(dev);
4680
4681	case IOMMU_DEV_FEAT_SVA:
4682		return intel_iommu_enable_sva(dev);
4683
4684	default:
4685		return -ENODEV;
4686	}
4687}
4688
4689static int
4690intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
4691{
4692	switch (feat) {
4693	case IOMMU_DEV_FEAT_IOPF:
4694		return 0;
4695
4696	case IOMMU_DEV_FEAT_SVA:
4697		return intel_iommu_disable_sva(dev);
4698
4699	default:
4700		return -ENODEV;
4701	}
4702}
4703
4704static bool intel_iommu_is_attach_deferred(struct device *dev)
4705{
4706	struct device_domain_info *info = dev_iommu_priv_get(dev);
4707
4708	return translation_pre_enabled(info->iommu) && !info->domain;
4709}
4710
4711/*
4712 * Check that the device does not live on an external facing PCI port that is
4713 * marked as untrusted. Such devices should not be able to apply quirks and
4714 * thus not be able to bypass the IOMMU restrictions.
4715 */
4716static bool risky_device(struct pci_dev *pdev)
4717{
4718	if (pdev->untrusted) {
4719		pci_info(pdev,
4720			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
4721			 pdev->vendor, pdev->device);
4722		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
4723		return true;
4724	}
4725	return false;
4726}
4727
4728static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain,
4729				       unsigned long iova, size_t size)
4730{
4731	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4732	unsigned long pages = aligned_nrpages(iova, size);
4733	unsigned long pfn = iova >> VTD_PAGE_SHIFT;
4734	struct iommu_domain_info *info;
4735	unsigned long i;
4736
4737	xa_for_each(&dmar_domain->iommu_array, i, info)
4738		__mapping_notify_one(info->iommu, dmar_domain, pfn, pages);
4739}
4740
4741static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid)
4742{
4743	struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
4744	struct iommu_domain *domain;
4745
4746	/* Domain type specific cleanup: */
4747	domain = iommu_get_domain_for_dev_pasid(dev, pasid, 0);
4748	if (domain) {
4749		switch (domain->type) {
4750		case IOMMU_DOMAIN_SVA:
4751			intel_svm_remove_dev_pasid(dev, pasid);
4752			break;
4753		default:
4754			/* should never reach here */
4755			WARN_ON(1);
4756			break;
4757		}
4758	}
4759
4760	intel_pasid_tear_down_entry(iommu, dev, pasid, false);
4761}
4762
4763const struct iommu_ops intel_iommu_ops = {
4764	.capable		= intel_iommu_capable,
4765	.domain_alloc		= intel_iommu_domain_alloc,
4766	.probe_device		= intel_iommu_probe_device,
4767	.probe_finalize		= intel_iommu_probe_finalize,
4768	.release_device		= intel_iommu_release_device,
4769	.get_resv_regions	= intel_iommu_get_resv_regions,
4770	.device_group		= intel_iommu_device_group,
4771	.dev_enable_feat	= intel_iommu_dev_enable_feat,
4772	.dev_disable_feat	= intel_iommu_dev_disable_feat,
4773	.is_attach_deferred	= intel_iommu_is_attach_deferred,
4774	.def_domain_type	= device_def_domain_type,
4775	.remove_dev_pasid	= intel_iommu_remove_dev_pasid,
4776	.pgsize_bitmap		= SZ_4K,
4777#ifdef CONFIG_INTEL_IOMMU_SVM
4778	.page_response		= intel_svm_page_response,
4779#endif
4780	.default_domain_ops = &(const struct iommu_domain_ops) {
4781		.attach_dev		= intel_iommu_attach_device,
4782		.map_pages		= intel_iommu_map_pages,
4783		.unmap_pages		= intel_iommu_unmap_pages,
4784		.iotlb_sync_map		= intel_iommu_iotlb_sync_map,
4785		.flush_iotlb_all        = intel_flush_iotlb_all,
4786		.iotlb_sync		= intel_iommu_tlb_sync,
4787		.iova_to_phys		= intel_iommu_iova_to_phys,
4788		.free			= intel_iommu_domain_free,
4789		.enforce_cache_coherency = intel_iommu_enforce_cache_coherency,
4790	}
4791};
4792
4793static void quirk_iommu_igfx(struct pci_dev *dev)
4794{
4795	if (risky_device(dev))
4796		return;
4797
4798	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
4799	dmar_map_gfx = 0;
4800}
4801
4802/* G4x/GM45 integrated gfx dmar support is totally busted. */
4803DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
4804DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
4805DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
4806DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
4807DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
4808DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
4809DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
4810
4811/* Broadwell igfx malfunctions with dmar */
4812DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
4813DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
4814DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
4815DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
4816DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
4817DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
4818DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
4819DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
4820DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
4821DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
4822DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
4823DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
4824DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
4825DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
4826DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
4827DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
4828DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
4829DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
4830DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
4831DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
4832DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
4833DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
4834DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
4835DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
4836
4837static void quirk_iommu_rwbf(struct pci_dev *dev)
4838{
4839	if (risky_device(dev))
4840		return;
4841
4842	/*
4843	 * Mobile 4 Series Chipset neglects to set RWBF capability,
4844	 * but needs it. Same seems to hold for the desktop versions.
4845	 */
4846	pci_info(dev, "Forcing write-buffer flush capability\n");
4847	rwbf_quirk = 1;
4848}
4849
4850DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4851DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4852DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4853DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4854DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4855DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4856DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4857
4858#define GGC 0x52
4859#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
4860#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
4861#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
4862#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
4863#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
4864#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
4865#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
4866#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
4867
4868static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4869{
4870	unsigned short ggc;
4871
4872	if (risky_device(dev))
4873		return;
4874
4875	if (pci_read_config_word(dev, GGC, &ggc))
4876		return;
4877
4878	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4879		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4880		dmar_map_gfx = 0;
4881	} else if (dmar_map_gfx) {
4882		/* we have to ensure the gfx device is idle before we flush */
4883		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
4884		iommu_set_dma_strict();
4885	}
4886}
4887DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4888DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4889DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4890DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4891
4892static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
4893{
4894	unsigned short ver;
4895
4896	if (!IS_GFX_DEVICE(dev))
4897		return;
4898
4899	ver = (dev->device >> 8) & 0xff;
4900	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
4901	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
4902	    ver != 0x9a && ver != 0xa7)
4903		return;
4904
4905	if (risky_device(dev))
4906		return;
4907
4908	pci_info(dev, "Skip IOMMU disabling for graphics\n");
4909	iommu_skip_te_disable = 1;
4910}
4911DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
4912
4913/* On Tylersburg chipsets, some BIOSes have been known to enable the
4914   ISOCH DMAR unit for the Azalia sound device, but not give it any
4915   TLB entries, which causes it to deadlock. Check for that.  We do
4916   this in a function called from init_dmars(), instead of in a PCI
4917   quirk, because we don't want to print the obnoxious "BIOS broken"
4918   message if VT-d is actually disabled.
4919*/
4920static void __init check_tylersburg_isoch(void)
4921{
4922	struct pci_dev *pdev;
4923	uint32_t vtisochctrl;
4924
4925	/* If there's no Azalia in the system anyway, forget it. */
4926	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4927	if (!pdev)
4928		return;
4929
4930	if (risky_device(pdev)) {
4931		pci_dev_put(pdev);
4932		return;
4933	}
4934
4935	pci_dev_put(pdev);
4936
4937	/* System Management Registers. Might be hidden, in which case
4938	   we can't do the sanity check. But that's OK, because the
4939	   known-broken BIOSes _don't_ actually hide it, so far. */
4940	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4941	if (!pdev)
4942		return;
4943
4944	if (risky_device(pdev)) {
4945		pci_dev_put(pdev);
4946		return;
4947	}
4948
4949	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4950		pci_dev_put(pdev);
4951		return;
4952	}
4953
4954	pci_dev_put(pdev);
4955
4956	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4957	if (vtisochctrl & 1)
4958		return;
4959
4960	/* Drop all bits other than the number of TLB entries */
4961	vtisochctrl &= 0x1c;
4962
4963	/* If we have the recommended number of TLB entries (16), fine. */
4964	if (vtisochctrl == 0x10)
4965		return;
4966
4967	/* Zero TLB entries? You get to ride the short bus to school. */
4968	if (!vtisochctrl) {
4969		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4970		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4971		     dmi_get_system_info(DMI_BIOS_VENDOR),
4972		     dmi_get_system_info(DMI_BIOS_VERSION),
4973		     dmi_get_system_info(DMI_PRODUCT_VERSION));
4974		iommu_identity_mapping |= IDENTMAP_AZALIA;
4975		return;
4976	}
4977
4978	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4979	       vtisochctrl);
4980}
4981
4982/*
4983 * Here we deal with a device TLB defect where device may inadvertently issue ATS
4984 * invalidation completion before posted writes initiated with translated address
4985 * that utilized translations matching the invalidation address range, violating
4986 * the invalidation completion ordering.
4987 * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is
4988 * vulnerable to this defect. In other words, any dTLB invalidation initiated not
4989 * under the control of the trusted/privileged host device driver must use this
4990 * quirk.
4991 * Device TLBs are invalidated under the following six conditions:
4992 * 1. Device driver does DMA API unmap IOVA
4993 * 2. Device driver unbind a PASID from a process, sva_unbind_device()
4994 * 3. PASID is torn down, after PASID cache is flushed. e.g. process
4995 *    exit_mmap() due to crash
4996 * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where
4997 *    VM has to free pages that were unmapped
4998 * 5. Userspace driver unmaps a DMA buffer
4999 * 6. Cache invalidation in vSVA usage (upcoming)
5000 *
5001 * For #1 and #2, device drivers are responsible for stopping DMA traffic
5002 * before unmap/unbind. For #3, iommu driver gets mmu_notifier to
5003 * invalidate TLB the same way as normal user unmap which will use this quirk.
5004 * The dTLB invalidation after PASID cache flush does not need this quirk.
5005 *
5006 * As a reminder, #6 will *NEED* this quirk as we enable nested translation.
5007 */
5008void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
5009			       unsigned long address, unsigned long mask,
5010			       u32 pasid, u16 qdep)
5011{
5012	u16 sid;
5013
5014	if (likely(!info->dtlb_extra_inval))
5015		return;
5016
5017	sid = PCI_DEVID(info->bus, info->devfn);
5018	if (pasid == PASID_RID2PASID) {
5019		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
5020				   qdep, address, mask);
5021	} else {
5022		qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid,
5023					 pasid, qdep, address, mask);
5024	}
5025}