Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
  3 * Copyright (C) 2015 Linaro Ltd.
  4 */
  5
  6#include <linux/slab.h>
  7#include <linux/io.h>
  8#include <linux/module.h>
  9#include <linux/mutex.h>
 10#include <linux/errno.h>
 11#include <linux/err.h>
 12#include <linux/qcom_scm.h>
 13#include <linux/dma-mapping.h>
 14
 15#include "qcom_scm.h"
 16
 17#define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
 18#define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
 19#define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
 20#define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
 21
 22#define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
 23#define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
 24#define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
 25#define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
 26
 27struct qcom_scm_entry {
 28	int flag;
 29	void *entry;
 30};
 31
 32static struct qcom_scm_entry qcom_scm_wb[] = {
 33	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
 34	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
 35	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
 36	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
 37};
 38
 39static DEFINE_MUTEX(qcom_scm_lock);
 40
 41/**
 42 * struct qcom_scm_command - one SCM command buffer
 43 * @len: total available memory for command and response
 44 * @buf_offset: start of command buffer
 45 * @resp_hdr_offset: start of response buffer
 46 * @id: command to be executed
 47 * @buf: buffer returned from qcom_scm_get_command_buffer()
 48 *
 49 * An SCM command is laid out in memory as follows:
 50 *
 51 *	------------------- <--- struct qcom_scm_command
 52 *	| command header  |
 53 *	------------------- <--- qcom_scm_get_command_buffer()
 54 *	| command buffer  |
 55 *	------------------- <--- struct qcom_scm_response and
 56 *	| response header |      qcom_scm_command_to_response()
 57 *	------------------- <--- qcom_scm_get_response_buffer()
 58 *	| response buffer |
 59 *	-------------------
 60 *
 61 * There can be arbitrary padding between the headers and buffers so
 62 * you should always use the appropriate qcom_scm_get_*_buffer() routines
 63 * to access the buffers in a safe manner.
 64 */
 65struct qcom_scm_command {
 66	__le32 len;
 67	__le32 buf_offset;
 68	__le32 resp_hdr_offset;
 69	__le32 id;
 70	__le32 buf[0];
 71};
 72
 73/**
 74 * struct qcom_scm_response - one SCM response buffer
 75 * @len: total available memory for response
 76 * @buf_offset: start of response data relative to start of qcom_scm_response
 77 * @is_complete: indicates if the command has finished processing
 78 */
 79struct qcom_scm_response {
 80	__le32 len;
 81	__le32 buf_offset;
 82	__le32 is_complete;
 83};
 84
 85/**
 86 * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
 87 * @cmd: command
 88 *
 89 * Returns a pointer to a response for a command.
 90 */
 91static inline struct qcom_scm_response *qcom_scm_command_to_response(
 92		const struct qcom_scm_command *cmd)
 93{
 94	return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
 95}
 96
 97/**
 98 * qcom_scm_get_command_buffer() - Get a pointer to a command buffer
 99 * @cmd: command
100 *
101 * Returns a pointer to the command buffer of a command.
102 */
103static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd)
104{
105	return (void *)cmd->buf;
106}
107
108/**
109 * qcom_scm_get_response_buffer() - Get a pointer to a response buffer
110 * @rsp: response
111 *
112 * Returns a pointer to a response buffer of a response.
113 */
114static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp)
115{
116	return (void *)rsp + le32_to_cpu(rsp->buf_offset);
117}
118
119static u32 smc(u32 cmd_addr)
120{
121	int context_id;
122	register u32 r0 asm("r0") = 1;
123	register u32 r1 asm("r1") = (u32)&context_id;
124	register u32 r2 asm("r2") = cmd_addr;
125	do {
126		asm volatile(
127			__asmeq("%0", "r0")
128			__asmeq("%1", "r0")
129			__asmeq("%2", "r1")
130			__asmeq("%3", "r2")
131#ifdef REQUIRES_SEC
132			".arch_extension sec\n"
133#endif
134			"smc	#0	@ switch to secure world\n"
135			: "=r" (r0)
136			: "r" (r0), "r" (r1), "r" (r2)
137			: "r3", "r12");
138	} while (r0 == QCOM_SCM_INTERRUPTED);
139
140	return r0;
141}
142
143/**
144 * qcom_scm_call() - Send an SCM command
145 * @dev: struct device
146 * @svc_id: service identifier
147 * @cmd_id: command identifier
148 * @cmd_buf: command buffer
149 * @cmd_len: length of the command buffer
150 * @resp_buf: response buffer
151 * @resp_len: length of the response buffer
152 *
153 * Sends a command to the SCM and waits for the command to finish processing.
154 *
155 * A note on cache maintenance:
156 * Note that any buffers that are expected to be accessed by the secure world
157 * must be flushed before invoking qcom_scm_call and invalidated in the cache
158 * immediately after qcom_scm_call returns. Cache maintenance on the command
159 * and response buffers is taken care of by qcom_scm_call; however, callers are
160 * responsible for any other cached buffers passed over to the secure world.
161 */
162static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id,
163			 const void *cmd_buf, size_t cmd_len, void *resp_buf,
164			 size_t resp_len)
165{
166	int ret;
167	struct qcom_scm_command *cmd;
168	struct qcom_scm_response *rsp;
169	size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
170	dma_addr_t cmd_phys;
171
172	cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
173	if (!cmd)
174		return -ENOMEM;
175
176	cmd->len = cpu_to_le32(alloc_len);
177	cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
178	cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
179
180	cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
181	if (cmd_buf)
182		memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
183
184	rsp = qcom_scm_command_to_response(cmd);
185
186	cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
187	if (dma_mapping_error(dev, cmd_phys)) {
188		kfree(cmd);
189		return -ENOMEM;
190	}
191
192	mutex_lock(&qcom_scm_lock);
193	ret = smc(cmd_phys);
194	if (ret < 0)
195		ret = qcom_scm_remap_error(ret);
196	mutex_unlock(&qcom_scm_lock);
197	if (ret)
198		goto out;
199
200	do {
201		dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
202					sizeof(*rsp), DMA_FROM_DEVICE);
203	} while (!rsp->is_complete);
204
205	if (resp_buf) {
206		dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
207					le32_to_cpu(rsp->buf_offset),
208					resp_len, DMA_FROM_DEVICE);
209		memcpy(resp_buf, qcom_scm_get_response_buffer(rsp),
210		       resp_len);
211	}
212out:
213	dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
214	kfree(cmd);
215	return ret;
216}
217
218#define SCM_CLASS_REGISTER	(0x2 << 8)
219#define SCM_MASK_IRQS		BIT(5)
220#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
221				SCM_CLASS_REGISTER | \
222				SCM_MASK_IRQS | \
223				(n & 0xf))
224
225/**
226 * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
227 * @svc_id: service identifier
228 * @cmd_id: command identifier
229 * @arg1: first argument
230 *
231 * This shall only be used with commands that are guaranteed to be
232 * uninterruptable, atomic and SMP safe.
233 */
234static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
235{
236	int context_id;
237
238	register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
239	register u32 r1 asm("r1") = (u32)&context_id;
240	register u32 r2 asm("r2") = arg1;
241
242	asm volatile(
243			__asmeq("%0", "r0")
244			__asmeq("%1", "r0")
245			__asmeq("%2", "r1")
246			__asmeq("%3", "r2")
247#ifdef REQUIRES_SEC
248			".arch_extension sec\n"
249#endif
250			"smc    #0      @ switch to secure world\n"
251			: "=r" (r0)
252			: "r" (r0), "r" (r1), "r" (r2)
253			: "r3", "r12");
254	return r0;
255}
256
257/**
258 * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments
259 * @svc_id:	service identifier
260 * @cmd_id:	command identifier
261 * @arg1:	first argument
262 * @arg2:	second argument
263 *
264 * This shall only be used with commands that are guaranteed to be
265 * uninterruptable, atomic and SMP safe.
266 */
267static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2)
268{
269	int context_id;
270
271	register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2);
272	register u32 r1 asm("r1") = (u32)&context_id;
273	register u32 r2 asm("r2") = arg1;
274	register u32 r3 asm("r3") = arg2;
275
276	asm volatile(
277			__asmeq("%0", "r0")
278			__asmeq("%1", "r0")
279			__asmeq("%2", "r1")
280			__asmeq("%3", "r2")
281			__asmeq("%4", "r3")
282#ifdef REQUIRES_SEC
283			".arch_extension sec\n"
284#endif
285			"smc    #0      @ switch to secure world\n"
286			: "=r" (r0)
287			: "r" (r0), "r" (r1), "r" (r2), "r" (r3)
288			: "r12");
289	return r0;
290}
291
292u32 qcom_scm_get_version(void)
293{
294	int context_id;
295	static u32 version = -1;
296	register u32 r0 asm("r0");
297	register u32 r1 asm("r1");
298
299	if (version != -1)
300		return version;
301
302	mutex_lock(&qcom_scm_lock);
303
304	r0 = 0x1 << 8;
305	r1 = (u32)&context_id;
306	do {
307		asm volatile(
308			__asmeq("%0", "r0")
309			__asmeq("%1", "r1")
310			__asmeq("%2", "r0")
311			__asmeq("%3", "r1")
312#ifdef REQUIRES_SEC
313			".arch_extension sec\n"
314#endif
315			"smc	#0	@ switch to secure world\n"
316			: "=r" (r0), "=r" (r1)
317			: "r" (r0), "r" (r1)
318			: "r2", "r3", "r12");
319	} while (r0 == QCOM_SCM_INTERRUPTED);
320
321	version = r1;
322	mutex_unlock(&qcom_scm_lock);
323
324	return version;
325}
326EXPORT_SYMBOL(qcom_scm_get_version);
327
328/**
329 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
330 * @entry: Entry point function for the cpus
331 * @cpus: The cpumask of cpus that will use the entry point
332 *
333 * Set the cold boot address of the cpus. Any cpu outside the supported
334 * range would be removed from the cpu present mask.
335 */
336int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
337{
338	int flags = 0;
339	int cpu;
340	int scm_cb_flags[] = {
341		QCOM_SCM_FLAG_COLDBOOT_CPU0,
342		QCOM_SCM_FLAG_COLDBOOT_CPU1,
343		QCOM_SCM_FLAG_COLDBOOT_CPU2,
344		QCOM_SCM_FLAG_COLDBOOT_CPU3,
345	};
346
347	if (!cpus || (cpus && cpumask_empty(cpus)))
348		return -EINVAL;
349
350	for_each_cpu(cpu, cpus) {
351		if (cpu < ARRAY_SIZE(scm_cb_flags))
352			flags |= scm_cb_flags[cpu];
353		else
354			set_cpu_present(cpu, false);
355	}
356
357	return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
358				    flags, virt_to_phys(entry));
359}
360
361/**
362 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
363 * @entry: Entry point function for the cpus
364 * @cpus: The cpumask of cpus that will use the entry point
365 *
366 * Set the Linux entry point for the SCM to transfer control to when coming
367 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
368 */
369int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
370				  const cpumask_t *cpus)
371{
372	int ret;
373	int flags = 0;
374	int cpu;
375	struct {
376		__le32 flags;
377		__le32 addr;
378	} cmd;
379
380	/*
381	 * Reassign only if we are switching from hotplug entry point
382	 * to cpuidle entry point or vice versa.
383	 */
384	for_each_cpu(cpu, cpus) {
385		if (entry == qcom_scm_wb[cpu].entry)
386			continue;
387		flags |= qcom_scm_wb[cpu].flag;
388	}
389
390	/* No change in entry function */
391	if (!flags)
392		return 0;
393
394	cmd.addr = cpu_to_le32(virt_to_phys(entry));
395	cmd.flags = cpu_to_le32(flags);
396	ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
397			    &cmd, sizeof(cmd), NULL, 0);
398	if (!ret) {
399		for_each_cpu(cpu, cpus)
400			qcom_scm_wb[cpu].entry = entry;
401	}
402
403	return ret;
404}
405
406/**
407 * qcom_scm_cpu_power_down() - Power down the cpu
408 * @flags - Flags to flush cache
409 *
410 * This is an end point to power down cpu. If there was a pending interrupt,
411 * the control would return from this function, otherwise, the cpu jumps to the
412 * warm boot entry point set for this cpu upon reset.
413 */
414void __qcom_scm_cpu_power_down(u32 flags)
415{
416	qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC,
417			flags & QCOM_SCM_FLUSH_FLAG_MASK);
418}
419
420int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
421{
422	int ret;
423	__le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id);
424	__le32 ret_val = 0;
425
426	ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD,
427			    &svc_cmd, sizeof(svc_cmd), &ret_val,
428			    sizeof(ret_val));
429	if (ret)
430		return ret;
431
432	return le32_to_cpu(ret_val);
433}
434
435int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
436			u32 req_cnt, u32 *resp)
437{
438	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
439		return -ERANGE;
440
441	return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP,
442		req, req_cnt * sizeof(*req), resp, sizeof(*resp));
443}
444
445void __qcom_scm_init(void)
446{
447}
448
449bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral)
450{
451	__le32 out;
452	__le32 in;
453	int ret;
454
455	in = cpu_to_le32(peripheral);
456	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
457			    QCOM_SCM_PAS_IS_SUPPORTED_CMD,
458			    &in, sizeof(in),
459			    &out, sizeof(out));
460
461	return ret ? false : !!out;
462}
463
464int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral,
465			      dma_addr_t metadata_phys)
466{
467	__le32 scm_ret;
468	int ret;
469	struct {
470		__le32 proc;
471		__le32 image_addr;
472	} request;
473
474	request.proc = cpu_to_le32(peripheral);
475	request.image_addr = cpu_to_le32(metadata_phys);
476
477	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
478			    QCOM_SCM_PAS_INIT_IMAGE_CMD,
479			    &request, sizeof(request),
480			    &scm_ret, sizeof(scm_ret));
481
482	return ret ? : le32_to_cpu(scm_ret);
483}
484
485int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral,
486			     phys_addr_t addr, phys_addr_t size)
487{
488	__le32 scm_ret;
489	int ret;
490	struct {
491		__le32 proc;
492		__le32 addr;
493		__le32 len;
494	} request;
495
496	request.proc = cpu_to_le32(peripheral);
497	request.addr = cpu_to_le32(addr);
498	request.len = cpu_to_le32(size);
499
500	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
501			    QCOM_SCM_PAS_MEM_SETUP_CMD,
502			    &request, sizeof(request),
503			    &scm_ret, sizeof(scm_ret));
504
505	return ret ? : le32_to_cpu(scm_ret);
506}
507
508int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral)
509{
510	__le32 out;
511	__le32 in;
512	int ret;
513
514	in = cpu_to_le32(peripheral);
515	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
516			    QCOM_SCM_PAS_AUTH_AND_RESET_CMD,
517			    &in, sizeof(in),
518			    &out, sizeof(out));
519
520	return ret ? : le32_to_cpu(out);
521}
522
523int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral)
524{
525	__le32 out;
526	__le32 in;
527	int ret;
528
529	in = cpu_to_le32(peripheral);
530	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
531			    QCOM_SCM_PAS_SHUTDOWN_CMD,
532			    &in, sizeof(in),
533			    &out, sizeof(out));
534
535	return ret ? : le32_to_cpu(out);
536}
537
538int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
539{
540	__le32 out;
541	__le32 in = cpu_to_le32(reset);
542	int ret;
543
544	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET,
545			&in, sizeof(in),
546			&out, sizeof(out));
547
548	return ret ? : le32_to_cpu(out);
549}
550
551int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
552{
553	return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE,
554				     enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0);
555}
556
557int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id)
558{
559	struct {
560		__le32 state;
561		__le32 id;
562	} req;
563	__le32 scm_ret = 0;
564	int ret;
565
566	req.state = cpu_to_le32(state);
567	req.id = cpu_to_le32(id);
568
569	ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE,
570			    &req, sizeof(req), &scm_ret, sizeof(scm_ret));
571
572	return ret ? : le32_to_cpu(scm_ret);
573}
574
575int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
576			  size_t mem_sz, phys_addr_t src, size_t src_sz,
577			  phys_addr_t dest, size_t dest_sz)
578{
579	return -ENODEV;
580}
581
582int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id,
583			       u32 spare)
584{
585	return -ENODEV;
586}
587
588int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare,
589				      size_t *size)
590{
591	return -ENODEV;
592}
593
594int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size,
595				      u32 spare)
596{
597	return -ENODEV;
598}
599
600int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr,
601			unsigned int *val)
602{
603	int ret;
604
605	ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr);
606	if (ret >= 0)
607		*val = ret;
608
609	return ret < 0 ? ret : 0;
610}
611
612int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val)
613{
614	return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE,
615				     addr, val);
616}