Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for STM32 DMA controller
4 *
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6 *
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/dmaengine.h>
16#include <linux/dma-mapping.h>
17#include <linux/err.h>
18#include <linux/init.h>
19#include <linux/iopoll.h>
20#include <linux/jiffies.h>
21#include <linux/list.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_dma.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/reset.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31
32#include "virt-dma.h"
33
34#define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
35#define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
36#define STM32_DMA_ISR(n) (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
37#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
38#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
39#define STM32_DMA_IFCR(n) (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
40#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
41#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
42#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
43#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
44#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
45#define STM32_DMA_MASKI (STM32_DMA_TCI \
46 | STM32_DMA_TEI \
47 | STM32_DMA_DMEI \
48 | STM32_DMA_FEI)
49/*
50 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
51 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
52 */
53#define STM32_DMA_FLAGS_SHIFT(n) ({ typeof(n) (_n) = (n); \
54 (((_n) & 2) << 3) | (((_n) & 1) * 6); })
55
56/* DMA Stream x Configuration Register */
57#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
58#define STM32_DMA_SCR_REQ_MASK GENMASK(27, 25)
59#define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
60#define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
61#define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
62#define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
63#define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
64#define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
65#define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */
66#define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
67#define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
68#define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
69#define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
70#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
71#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
72#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
73#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
74 */
75#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
76#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
77#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
78#define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
79 | STM32_DMA_SCR_MINC \
80 | STM32_DMA_SCR_PINCOS \
81 | STM32_DMA_SCR_PL_MASK)
82#define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
83 | STM32_DMA_SCR_TEIE \
84 | STM32_DMA_SCR_DMEIE)
85
86/* DMA Stream x number of data register */
87#define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
88
89/* DMA stream peripheral address register */
90#define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
91
92/* DMA stream x memory 0 address register */
93#define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
94
95/* DMA stream x memory 1 address register */
96#define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
97
98/* DMA stream x FIFO control register */
99#define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
100#define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
101#define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
102#define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
103#define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
104 | STM32_DMA_SFCR_DMDIS)
105
106/* DMA direction */
107#define STM32_DMA_DEV_TO_MEM 0x00
108#define STM32_DMA_MEM_TO_DEV 0x01
109#define STM32_DMA_MEM_TO_MEM 0x02
110
111/* DMA priority level */
112#define STM32_DMA_PRIORITY_LOW 0x00
113#define STM32_DMA_PRIORITY_MEDIUM 0x01
114#define STM32_DMA_PRIORITY_HIGH 0x02
115#define STM32_DMA_PRIORITY_VERY_HIGH 0x03
116
117/* DMA FIFO threshold selection */
118#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
119#define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
120#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
121#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
122#define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
123
124#define STM32_DMA_MAX_DATA_ITEMS 0xffff
125/*
126 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
127 * gather at boundary. Thus it's safer to round down this value on FIFO
128 * size (16 Bytes)
129 */
130#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
131 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
132#define STM32_DMA_MAX_CHANNELS 0x08
133#define STM32_DMA_MAX_REQUEST_ID 0x08
134#define STM32_DMA_MAX_DATA_PARAM 0x03
135#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
136#define STM32_DMA_MIN_BURST 4
137#define STM32_DMA_MAX_BURST 16
138
139/* DMA Features */
140#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
141#define STM32_DMA_DIRECT_MODE_MASK BIT(2)
142#define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
143#define STM32_DMA_MDMA_STREAM_ID_MASK GENMASK(19, 16)
144
145enum stm32_dma_width {
146 STM32_DMA_BYTE,
147 STM32_DMA_HALF_WORD,
148 STM32_DMA_WORD,
149};
150
151enum stm32_dma_burst_size {
152 STM32_DMA_BURST_SINGLE,
153 STM32_DMA_BURST_INCR4,
154 STM32_DMA_BURST_INCR8,
155 STM32_DMA_BURST_INCR16,
156};
157
158/**
159 * struct stm32_dma_cfg - STM32 DMA custom configuration
160 * @channel_id: channel ID
161 * @request_line: DMA request
162 * @stream_config: 32bit mask specifying the DMA channel configuration
163 * @features: 32bit mask specifying the DMA Feature list
164 */
165struct stm32_dma_cfg {
166 u32 channel_id;
167 u32 request_line;
168 u32 stream_config;
169 u32 features;
170};
171
172struct stm32_dma_chan_reg {
173 u32 dma_lisr;
174 u32 dma_hisr;
175 u32 dma_lifcr;
176 u32 dma_hifcr;
177 u32 dma_scr;
178 u32 dma_sndtr;
179 u32 dma_spar;
180 u32 dma_sm0ar;
181 u32 dma_sm1ar;
182 u32 dma_sfcr;
183};
184
185struct stm32_dma_sg_req {
186 u32 len;
187 struct stm32_dma_chan_reg chan_reg;
188};
189
190struct stm32_dma_desc {
191 struct virt_dma_desc vdesc;
192 bool cyclic;
193 u32 num_sgs;
194 struct stm32_dma_sg_req sg_req[];
195};
196
197/**
198 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
199 * @stream_id: DMA request to trigger STM32 MDMA transfer
200 * @ifcr: DMA interrupt flag clear register address,
201 * used by STM32 MDMA to clear DMA Transfer Complete flag
202 * @tcf: DMA Transfer Complete flag
203 */
204struct stm32_dma_mdma_config {
205 u32 stream_id;
206 u32 ifcr;
207 u32 tcf;
208};
209
210struct stm32_dma_chan {
211 struct virt_dma_chan vchan;
212 bool config_init;
213 bool busy;
214 u32 id;
215 u32 irq;
216 struct stm32_dma_desc *desc;
217 u32 next_sg;
218 struct dma_slave_config dma_sconfig;
219 struct stm32_dma_chan_reg chan_reg;
220 u32 threshold;
221 u32 mem_burst;
222 u32 mem_width;
223 enum dma_status status;
224 bool trig_mdma;
225 struct stm32_dma_mdma_config mdma_config;
226};
227
228struct stm32_dma_device {
229 struct dma_device ddev;
230 void __iomem *base;
231 struct clk *clk;
232 bool mem2mem;
233 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
234};
235
236static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
237{
238 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
239 ddev);
240}
241
242static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
243{
244 return container_of(c, struct stm32_dma_chan, vchan.chan);
245}
246
247static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
248{
249 return container_of(vdesc, struct stm32_dma_desc, vdesc);
250}
251
252static struct device *chan2dev(struct stm32_dma_chan *chan)
253{
254 return &chan->vchan.chan.dev->device;
255}
256
257static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
258{
259 return readl_relaxed(dmadev->base + reg);
260}
261
262static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
263{
264 writel_relaxed(val, dmadev->base + reg);
265}
266
267static int stm32_dma_get_width(struct stm32_dma_chan *chan,
268 enum dma_slave_buswidth width)
269{
270 switch (width) {
271 case DMA_SLAVE_BUSWIDTH_1_BYTE:
272 return STM32_DMA_BYTE;
273 case DMA_SLAVE_BUSWIDTH_2_BYTES:
274 return STM32_DMA_HALF_WORD;
275 case DMA_SLAVE_BUSWIDTH_4_BYTES:
276 return STM32_DMA_WORD;
277 default:
278 dev_err(chan2dev(chan), "Dma bus width not supported\n");
279 return -EINVAL;
280 }
281}
282
283static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
284 dma_addr_t buf_addr,
285 u32 threshold)
286{
287 enum dma_slave_buswidth max_width;
288
289 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
290 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
291 else
292 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
293
294 while ((buf_len < max_width || buf_len % max_width) &&
295 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
296 max_width = max_width >> 1;
297
298 if (buf_addr & (max_width - 1))
299 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
300
301 return max_width;
302}
303
304static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
305 enum dma_slave_buswidth width)
306{
307 u32 remaining;
308
309 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
310 return false;
311
312 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
313 if (burst != 0) {
314 /*
315 * If number of beats fit in several whole bursts
316 * this configuration is allowed.
317 */
318 remaining = ((STM32_DMA_FIFO_SIZE / width) *
319 (threshold + 1) / 4) % burst;
320
321 if (remaining == 0)
322 return true;
323 } else {
324 return true;
325 }
326 }
327
328 return false;
329}
330
331static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
332{
333 /* If FIFO direct mode, burst is not possible */
334 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
335 return false;
336
337 /*
338 * Buffer or period length has to be aligned on FIFO depth.
339 * Otherwise bytes may be stuck within FIFO at buffer or period
340 * length.
341 */
342 return ((buf_len % ((threshold + 1) * 4)) == 0);
343}
344
345static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
346 enum dma_slave_buswidth width)
347{
348 u32 best_burst = max_burst;
349
350 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
351 return 0;
352
353 while ((buf_len < best_burst * width && best_burst > 1) ||
354 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
355 width)) {
356 if (best_burst > STM32_DMA_MIN_BURST)
357 best_burst = best_burst >> 1;
358 else
359 best_burst = 0;
360 }
361
362 return best_burst;
363}
364
365static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
366{
367 switch (maxburst) {
368 case 0:
369 case 1:
370 return STM32_DMA_BURST_SINGLE;
371 case 4:
372 return STM32_DMA_BURST_INCR4;
373 case 8:
374 return STM32_DMA_BURST_INCR8;
375 case 16:
376 return STM32_DMA_BURST_INCR16;
377 default:
378 dev_err(chan2dev(chan), "Dma burst size not supported\n");
379 return -EINVAL;
380 }
381}
382
383static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
384 u32 src_burst, u32 dst_burst)
385{
386 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
387 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
388
389 if (!src_burst && !dst_burst) {
390 /* Using direct mode */
391 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
392 } else {
393 /* Using FIFO mode */
394 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
395 }
396}
397
398static int stm32_dma_slave_config(struct dma_chan *c,
399 struct dma_slave_config *config)
400{
401 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
402
403 memcpy(&chan->dma_sconfig, config, sizeof(*config));
404
405 /* Check if user is requesting DMA to trigger STM32 MDMA */
406 if (config->peripheral_size) {
407 config->peripheral_config = &chan->mdma_config;
408 config->peripheral_size = sizeof(chan->mdma_config);
409 chan->trig_mdma = true;
410 }
411
412 chan->config_init = true;
413
414 return 0;
415}
416
417static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
418{
419 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420 u32 flags, dma_isr;
421
422 /*
423 * Read "flags" from DMA_xISR register corresponding to the selected
424 * DMA channel at the correct bit offset inside that register.
425 */
426
427 dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
428 flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
429
430 return flags & STM32_DMA_MASKI;
431}
432
433static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
434{
435 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436 u32 dma_ifcr;
437
438 /*
439 * Write "flags" to the DMA_xIFCR register corresponding to the selected
440 * DMA channel at the correct bit offset inside that register.
441 */
442 flags &= STM32_DMA_MASKI;
443 dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
444
445 stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
446}
447
448static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
449{
450 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
451 u32 dma_scr, id, reg;
452
453 id = chan->id;
454 reg = STM32_DMA_SCR(id);
455 dma_scr = stm32_dma_read(dmadev, reg);
456
457 if (dma_scr & STM32_DMA_SCR_EN) {
458 dma_scr &= ~STM32_DMA_SCR_EN;
459 stm32_dma_write(dmadev, reg, dma_scr);
460
461 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
462 dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
463 10, 1000000);
464 }
465
466 return 0;
467}
468
469static void stm32_dma_stop(struct stm32_dma_chan *chan)
470{
471 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
472 u32 dma_scr, dma_sfcr, status;
473 int ret;
474
475 /* Disable interrupts */
476 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
477 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
478 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
479 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
480 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
481 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
482
483 /* Disable DMA */
484 ret = stm32_dma_disable_chan(chan);
485 if (ret < 0)
486 return;
487
488 /* Clear interrupt status if it is there */
489 status = stm32_dma_irq_status(chan);
490 if (status) {
491 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
492 __func__, status);
493 stm32_dma_irq_clear(chan, status);
494 }
495
496 chan->busy = false;
497 chan->status = DMA_COMPLETE;
498}
499
500static int stm32_dma_terminate_all(struct dma_chan *c)
501{
502 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
503 unsigned long flags;
504 LIST_HEAD(head);
505
506 spin_lock_irqsave(&chan->vchan.lock, flags);
507
508 if (chan->desc) {
509 dma_cookie_complete(&chan->desc->vdesc.tx);
510 vchan_terminate_vdesc(&chan->desc->vdesc);
511 if (chan->busy)
512 stm32_dma_stop(chan);
513 chan->desc = NULL;
514 }
515
516 vchan_get_all_descriptors(&chan->vchan, &head);
517 spin_unlock_irqrestore(&chan->vchan.lock, flags);
518 vchan_dma_desc_free_list(&chan->vchan, &head);
519
520 return 0;
521}
522
523static void stm32_dma_synchronize(struct dma_chan *c)
524{
525 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
526
527 vchan_synchronize(&chan->vchan);
528}
529
530static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
531{
532 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
534 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
535 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
536 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
537 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
538 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
539
540 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
541 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
542 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
543 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
544 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
545 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
546}
547
548static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
549{
550 chan->next_sg++;
551 if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
552 chan->next_sg = 0;
553}
554
555static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
556
557static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
558{
559 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
560 struct virt_dma_desc *vdesc;
561 struct stm32_dma_sg_req *sg_req;
562 struct stm32_dma_chan_reg *reg;
563 u32 status;
564 int ret;
565
566 ret = stm32_dma_disable_chan(chan);
567 if (ret < 0)
568 return;
569
570 if (!chan->desc) {
571 vdesc = vchan_next_desc(&chan->vchan);
572 if (!vdesc)
573 return;
574
575 list_del(&vdesc->node);
576
577 chan->desc = to_stm32_dma_desc(vdesc);
578 chan->next_sg = 0;
579 }
580
581 if (chan->next_sg == chan->desc->num_sgs)
582 chan->next_sg = 0;
583
584 sg_req = &chan->desc->sg_req[chan->next_sg];
585 reg = &sg_req->chan_reg;
586
587 /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
588 if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
589 reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
590
591 reg->dma_scr &= ~STM32_DMA_SCR_EN;
592 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
593 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
594 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
595 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
596 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
597 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
598
599 stm32_dma_sg_inc(chan);
600
601 /* Clear interrupt status if it is there */
602 status = stm32_dma_irq_status(chan);
603 if (status)
604 stm32_dma_irq_clear(chan, status);
605
606 if (chan->desc->cyclic)
607 stm32_dma_configure_next_sg(chan);
608
609 stm32_dma_dump_reg(chan);
610
611 /* Start DMA */
612 chan->busy = true;
613 chan->status = DMA_IN_PROGRESS;
614 reg->dma_scr |= STM32_DMA_SCR_EN;
615 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
616
617 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
618}
619
620static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
621{
622 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
623 struct stm32_dma_sg_req *sg_req;
624 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
625
626 id = chan->id;
627 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
628
629 sg_req = &chan->desc->sg_req[chan->next_sg];
630
631 if (dma_scr & STM32_DMA_SCR_CT) {
632 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
633 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
634 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
635 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
636 } else {
637 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
638 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
639 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
640 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
641 }
642}
643
644static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
645{
646 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
647 u32 dma_scr;
648
649 /*
650 * Read and store current remaining data items and peripheral/memory addresses to be
651 * updated on resume
652 */
653 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654 /*
655 * Transfer can be paused while between a previous resume and reconfiguration on transfer
656 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
657 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
658 */
659 if (chan->desc && chan->desc->cyclic) {
660 if (chan->desc->num_sgs == 1)
661 dma_scr |= STM32_DMA_SCR_CIRC;
662 else
663 dma_scr |= STM32_DMA_SCR_DBM;
664 }
665 chan->chan_reg.dma_scr = dma_scr;
666
667 /*
668 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
669 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
670 */
671 if (chan->desc && chan->desc->cyclic) {
672 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
673 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
674 }
675
676 chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
677
678 chan->status = DMA_PAUSED;
679
680 dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
681}
682
683static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
684{
685 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
686 struct stm32_dma_sg_req *sg_req;
687 u32 dma_scr, status, id;
688
689 id = chan->id;
690 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
691
692 /* Clear interrupt status if it is there */
693 status = stm32_dma_irq_status(chan);
694 if (status)
695 stm32_dma_irq_clear(chan, status);
696
697 if (!chan->next_sg)
698 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
699 else
700 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
701
702 /* Reconfigure NDTR with the initial value */
703 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
704
705 /* Restore SPAR */
706 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
707
708 /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
709 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
710 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
711
712 /* Reactivate CIRC/DBM if needed */
713 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
714 dma_scr |= STM32_DMA_SCR_DBM;
715 /* Restore CT */
716 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
717 dma_scr &= ~STM32_DMA_SCR_CT;
718 else
719 dma_scr |= STM32_DMA_SCR_CT;
720 } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
721 dma_scr |= STM32_DMA_SCR_CIRC;
722 }
723 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
724
725 stm32_dma_configure_next_sg(chan);
726
727 stm32_dma_dump_reg(chan);
728
729 dma_scr |= STM32_DMA_SCR_EN;
730 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
731
732 dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
733}
734
735static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
736{
737 if (!chan->desc)
738 return;
739
740 if (chan->desc->cyclic) {
741 vchan_cyclic_callback(&chan->desc->vdesc);
742 if (chan->trig_mdma)
743 return;
744 stm32_dma_sg_inc(chan);
745 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
746 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
747 stm32_dma_post_resume_reconfigure(chan);
748 else if (scr & STM32_DMA_SCR_DBM)
749 stm32_dma_configure_next_sg(chan);
750 } else {
751 chan->busy = false;
752 chan->status = DMA_COMPLETE;
753 if (chan->next_sg == chan->desc->num_sgs) {
754 vchan_cookie_complete(&chan->desc->vdesc);
755 chan->desc = NULL;
756 }
757 stm32_dma_start_transfer(chan);
758 }
759}
760
761static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
762{
763 struct stm32_dma_chan *chan = devid;
764 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
765 u32 status, scr, sfcr;
766
767 spin_lock(&chan->vchan.lock);
768
769 status = stm32_dma_irq_status(chan);
770 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
771 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
772
773 if (status & STM32_DMA_FEI) {
774 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
775 status &= ~STM32_DMA_FEI;
776 if (sfcr & STM32_DMA_SFCR_FEIE) {
777 if (!(scr & STM32_DMA_SCR_EN) &&
778 !(status & STM32_DMA_TCI))
779 dev_err(chan2dev(chan), "FIFO Error\n");
780 else
781 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
782 }
783 }
784 if (status & STM32_DMA_DMEI) {
785 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
786 status &= ~STM32_DMA_DMEI;
787 if (sfcr & STM32_DMA_SCR_DMEIE)
788 dev_dbg(chan2dev(chan), "Direct mode overrun\n");
789 }
790
791 if (status & STM32_DMA_TCI) {
792 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
793 if (scr & STM32_DMA_SCR_TCIE) {
794 if (chan->status != DMA_PAUSED)
795 stm32_dma_handle_chan_done(chan, scr);
796 }
797 status &= ~STM32_DMA_TCI;
798 }
799
800 if (status & STM32_DMA_HTI) {
801 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
802 status &= ~STM32_DMA_HTI;
803 }
804
805 if (status) {
806 stm32_dma_irq_clear(chan, status);
807 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
808 if (!(scr & STM32_DMA_SCR_EN))
809 dev_err(chan2dev(chan), "chan disabled by HW\n");
810 }
811
812 spin_unlock(&chan->vchan.lock);
813
814 return IRQ_HANDLED;
815}
816
817static void stm32_dma_issue_pending(struct dma_chan *c)
818{
819 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
820 unsigned long flags;
821
822 spin_lock_irqsave(&chan->vchan.lock, flags);
823 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
824 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
825 stm32_dma_start_transfer(chan);
826
827 }
828 spin_unlock_irqrestore(&chan->vchan.lock, flags);
829}
830
831static int stm32_dma_pause(struct dma_chan *c)
832{
833 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834 unsigned long flags;
835 int ret;
836
837 if (chan->status != DMA_IN_PROGRESS)
838 return -EPERM;
839
840 spin_lock_irqsave(&chan->vchan.lock, flags);
841
842 ret = stm32_dma_disable_chan(chan);
843 if (!ret)
844 stm32_dma_handle_chan_paused(chan);
845
846 spin_unlock_irqrestore(&chan->vchan.lock, flags);
847
848 return ret;
849}
850
851static int stm32_dma_resume(struct dma_chan *c)
852{
853 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
854 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
855 struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
856 u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
857 struct stm32_dma_sg_req *sg_req;
858 unsigned long flags;
859
860 if (chan->status != DMA_PAUSED)
861 return -EPERM;
862
863 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
864 if (WARN_ON(scr & STM32_DMA_SCR_EN))
865 return -EPERM;
866
867 spin_lock_irqsave(&chan->vchan.lock, flags);
868
869 /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
870 if (!chan->next_sg)
871 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
872 else
873 sg_req = &chan->desc->sg_req[chan->next_sg - 1];
874
875 ndtr = sg_req->chan_reg.dma_sndtr;
876 offset = (ndtr - chan_reg.dma_sndtr);
877 offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
878 spar = sg_req->chan_reg.dma_spar;
879 sm0ar = sg_req->chan_reg.dma_sm0ar;
880 sm1ar = sg_req->chan_reg.dma_sm1ar;
881
882 /*
883 * The peripheral and/or memory addresses have to be updated in order to adjust the
884 * address pointers. Need to check increment.
885 */
886 if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
887 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
888 else
889 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
890
891 if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
892 offset = 0;
893
894 /*
895 * In case of DBM, the current target could be SM1AR.
896 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
897 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
898 */
899 if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
900 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
901 else
902 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
903
904 /* NDTR must be restored otherwise internal HW counter won't be correctly reset */
905 stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
906
907 /*
908 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
909 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
910 */
911 if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
912 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
913
914 if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
915 stm32_dma_configure_next_sg(chan);
916
917 stm32_dma_dump_reg(chan);
918
919 /* The stream may then be re-enabled to restart transfer from the point it was stopped */
920 chan->status = DMA_IN_PROGRESS;
921 chan_reg.dma_scr |= STM32_DMA_SCR_EN;
922 stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
923
924 spin_unlock_irqrestore(&chan->vchan.lock, flags);
925
926 dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
927
928 return 0;
929}
930
931static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
932 enum dma_transfer_direction direction,
933 enum dma_slave_buswidth *buswidth,
934 u32 buf_len, dma_addr_t buf_addr)
935{
936 enum dma_slave_buswidth src_addr_width, dst_addr_width;
937 int src_bus_width, dst_bus_width;
938 int src_burst_size, dst_burst_size;
939 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
940 u32 dma_scr, fifoth;
941
942 src_addr_width = chan->dma_sconfig.src_addr_width;
943 dst_addr_width = chan->dma_sconfig.dst_addr_width;
944 src_maxburst = chan->dma_sconfig.src_maxburst;
945 dst_maxburst = chan->dma_sconfig.dst_maxburst;
946 fifoth = chan->threshold;
947
948 switch (direction) {
949 case DMA_MEM_TO_DEV:
950 /* Set device data size */
951 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
952 if (dst_bus_width < 0)
953 return dst_bus_width;
954
955 /* Set device burst size */
956 dst_best_burst = stm32_dma_get_best_burst(buf_len,
957 dst_maxburst,
958 fifoth,
959 dst_addr_width);
960
961 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
962 if (dst_burst_size < 0)
963 return dst_burst_size;
964
965 /* Set memory data size */
966 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
967 fifoth);
968 chan->mem_width = src_addr_width;
969 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
970 if (src_bus_width < 0)
971 return src_bus_width;
972
973 /*
974 * Set memory burst size - burst not possible if address is not aligned on
975 * the address boundary equal to the size of the transfer
976 */
977 if (buf_addr & (buf_len - 1))
978 src_maxburst = 1;
979 else
980 src_maxburst = STM32_DMA_MAX_BURST;
981 src_best_burst = stm32_dma_get_best_burst(buf_len,
982 src_maxburst,
983 fifoth,
984 src_addr_width);
985 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
986 if (src_burst_size < 0)
987 return src_burst_size;
988
989 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
990 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
991 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
992 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
993 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
994
995 /* Set FIFO threshold */
996 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
997 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
998 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
999
1000 /* Set peripheral address */
1001 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1002 *buswidth = dst_addr_width;
1003 break;
1004
1005 case DMA_DEV_TO_MEM:
1006 /* Set device data size */
1007 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1008 if (src_bus_width < 0)
1009 return src_bus_width;
1010
1011 /* Set device burst size */
1012 src_best_burst = stm32_dma_get_best_burst(buf_len,
1013 src_maxburst,
1014 fifoth,
1015 src_addr_width);
1016 chan->mem_burst = src_best_burst;
1017 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1018 if (src_burst_size < 0)
1019 return src_burst_size;
1020
1021 /* Set memory data size */
1022 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1023 fifoth);
1024 chan->mem_width = dst_addr_width;
1025 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1026 if (dst_bus_width < 0)
1027 return dst_bus_width;
1028
1029 /*
1030 * Set memory burst size - burst not possible if address is not aligned on
1031 * the address boundary equal to the size of the transfer
1032 */
1033 if (buf_addr & (buf_len - 1))
1034 dst_maxburst = 1;
1035 else
1036 dst_maxburst = STM32_DMA_MAX_BURST;
1037 dst_best_burst = stm32_dma_get_best_burst(buf_len,
1038 dst_maxburst,
1039 fifoth,
1040 dst_addr_width);
1041 chan->mem_burst = dst_best_burst;
1042 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1043 if (dst_burst_size < 0)
1044 return dst_burst_size;
1045
1046 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1047 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1048 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1049 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1050 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1051
1052 /* Set FIFO threshold */
1053 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1054 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1055 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1056
1057 /* Set peripheral address */
1058 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1059 *buswidth = chan->dma_sconfig.src_addr_width;
1060 break;
1061
1062 default:
1063 dev_err(chan2dev(chan), "Dma direction is not supported\n");
1064 return -EINVAL;
1065 }
1066
1067 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1068
1069 /* Set DMA control register */
1070 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1071 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1072 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1073 chan->chan_reg.dma_scr |= dma_scr;
1074
1075 return 0;
1076}
1077
1078static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1079{
1080 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1081}
1082
1083static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1084 struct dma_chan *c, struct scatterlist *sgl,
1085 u32 sg_len, enum dma_transfer_direction direction,
1086 unsigned long flags, void *context)
1087{
1088 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1089 struct stm32_dma_desc *desc;
1090 struct scatterlist *sg;
1091 enum dma_slave_buswidth buswidth;
1092 u32 nb_data_items;
1093 int i, ret;
1094
1095 if (!chan->config_init) {
1096 dev_err(chan2dev(chan), "dma channel is not configured\n");
1097 return NULL;
1098 }
1099
1100 if (sg_len < 1) {
1101 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1102 return NULL;
1103 }
1104
1105 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1106 if (!desc)
1107 return NULL;
1108
1109 /* Set peripheral flow controller */
1110 if (chan->dma_sconfig.device_fc)
1111 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112 else
1113 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114
1115 /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116 if (chan->trig_mdma && sg_len > 1)
1117 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118
1119 for_each_sg(sgl, sg, sg_len, i) {
1120 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1121 sg_dma_len(sg),
1122 sg_dma_address(sg));
1123 if (ret < 0)
1124 goto err;
1125
1126 desc->sg_req[i].len = sg_dma_len(sg);
1127
1128 nb_data_items = desc->sg_req[i].len / buswidth;
1129 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1130 dev_err(chan2dev(chan), "nb items not supported\n");
1131 goto err;
1132 }
1133
1134 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1135 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1136 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1137 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1138 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1139 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1140 if (chan->trig_mdma)
1141 desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1142 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1143 }
1144
1145 desc->num_sgs = sg_len;
1146 desc->cyclic = false;
1147
1148 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1149
1150err:
1151 kfree(desc);
1152 return NULL;
1153}
1154
1155static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1156 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1157 size_t period_len, enum dma_transfer_direction direction,
1158 unsigned long flags)
1159{
1160 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1161 struct stm32_dma_desc *desc;
1162 enum dma_slave_buswidth buswidth;
1163 u32 num_periods, nb_data_items;
1164 int i, ret;
1165
1166 if (!buf_len || !period_len) {
1167 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1168 return NULL;
1169 }
1170
1171 if (!chan->config_init) {
1172 dev_err(chan2dev(chan), "dma channel is not configured\n");
1173 return NULL;
1174 }
1175
1176 if (buf_len % period_len) {
1177 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1178 return NULL;
1179 }
1180
1181 /*
1182 * We allow to take more number of requests till DMA is
1183 * not started. The driver will loop over all requests.
1184 * Once DMA is started then new requests can be queued only after
1185 * terminating the DMA.
1186 */
1187 if (chan->busy) {
1188 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1189 return NULL;
1190 }
1191
1192 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1193 buf_addr);
1194 if (ret < 0)
1195 return NULL;
1196
1197 nb_data_items = period_len / buswidth;
1198 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1199 dev_err(chan2dev(chan), "number of items not supported\n");
1200 return NULL;
1201 }
1202
1203 /* Enable Circular mode or double buffer mode */
1204 if (buf_len == period_len) {
1205 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1206 } else {
1207 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1208 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1209 }
1210
1211 /* Clear periph ctrl if client set it */
1212 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1213
1214 num_periods = buf_len / period_len;
1215
1216 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1217 if (!desc)
1218 return NULL;
1219
1220 for (i = 0; i < num_periods; i++) {
1221 desc->sg_req[i].len = period_len;
1222
1223 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1224 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1225 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1226 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1227 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1228 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1229 if (chan->trig_mdma)
1230 desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1231 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1232 if (!chan->trig_mdma)
1233 buf_addr += period_len;
1234 }
1235
1236 desc->num_sgs = num_periods;
1237 desc->cyclic = true;
1238
1239 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1240}
1241
1242static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1243 struct dma_chan *c, dma_addr_t dest,
1244 dma_addr_t src, size_t len, unsigned long flags)
1245{
1246 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1247 enum dma_slave_buswidth max_width;
1248 struct stm32_dma_desc *desc;
1249 size_t xfer_count, offset;
1250 u32 num_sgs, best_burst, dma_burst, threshold;
1251 int i;
1252
1253 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1254 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1255 if (!desc)
1256 return NULL;
1257
1258 threshold = chan->threshold;
1259
1260 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1261 xfer_count = min_t(size_t, len - offset,
1262 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1263
1264 /* Compute best burst size */
1265 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1267 threshold, max_width);
1268 dma_burst = stm32_dma_get_burst(chan, best_burst);
1269
1270 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1271 desc->sg_req[i].chan_reg.dma_scr =
1272 FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1273 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1274 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1275 STM32_DMA_SCR_MINC |
1276 STM32_DMA_SCR_PINC |
1277 STM32_DMA_SCR_TCIE |
1278 STM32_DMA_SCR_TEIE;
1279 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1280 desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1281 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1282 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1283 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1284 desc->sg_req[i].len = xfer_count;
1285 }
1286
1287 desc->num_sgs = num_sgs;
1288 desc->cyclic = false;
1289
1290 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1291}
1292
1293static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1294{
1295 u32 dma_scr, width, ndtr;
1296 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1297
1298 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1299 width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1300 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1301
1302 return ndtr << width;
1303}
1304
1305/**
1306 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1307 * @chan: dma channel
1308 *
1309 * This function called when IRQ are disable, checks that the hardware has not
1310 * switched on the next transfer in double buffer mode. The test is done by
1311 * comparing the next_sg memory address with the hardware related register
1312 * (based on CT bit value).
1313 *
1314 * Returns true if expected current transfer is still running or double
1315 * buffer mode is not activated.
1316 */
1317static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1318{
1319 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1320 struct stm32_dma_sg_req *sg_req;
1321 u32 dma_scr, dma_smar, id, period_len;
1322
1323 id = chan->id;
1324 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1325
1326 /* In cyclic CIRC but not DBM, CT is not used */
1327 if (!(dma_scr & STM32_DMA_SCR_DBM))
1328 return true;
1329
1330 sg_req = &chan->desc->sg_req[chan->next_sg];
1331 period_len = sg_req->len;
1332
1333 /* DBM - take care of a previous pause/resume not yet post reconfigured */
1334 if (dma_scr & STM32_DMA_SCR_CT) {
1335 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1336 /*
1337 * If transfer has been pause/resumed,
1338 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1339 */
1340 return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1341 dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1342 }
1343
1344 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1345 /*
1346 * If transfer has been pause/resumed,
1347 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1348 */
1349 return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1350 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1351}
1352
1353static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1354 struct stm32_dma_desc *desc,
1355 u32 next_sg)
1356{
1357 u32 modulo, burst_size;
1358 u32 residue;
1359 u32 n_sg = next_sg;
1360 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1361 int i;
1362
1363 /*
1364 * Calculate the residue means compute the descriptors
1365 * information:
1366 * - the sg_req currently transferred
1367 * - the Hardware remaining position in this sg (NDTR bits field).
1368 *
1369 * A race condition may occur if DMA is running in cyclic or double
1370 * buffer mode, since the DMA register are automatically reloaded at end
1371 * of period transfer. The hardware may have switched to the next
1372 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1373 * read.
1374 * In this case the SxNDTR reg could (or not) correspond to the new
1375 * transfer position, and not the expected one.
1376 * The strategy implemented in the stm32 driver is to:
1377 * - read the SxNDTR register
1378 * - crosscheck that hardware is still in current transfer.
1379 * In case of switch, we can assume that the DMA is at the beginning of
1380 * the next transfer. So we approximate the residue in consequence, by
1381 * pointing on the beginning of next transfer.
1382 *
1383 * This race condition doesn't apply for none cyclic mode, as double
1384 * buffer is not used. In such situation registers are updated by the
1385 * software.
1386 */
1387
1388 residue = stm32_dma_get_remaining_bytes(chan);
1389
1390 if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
1391 n_sg++;
1392 if (n_sg == chan->desc->num_sgs)
1393 n_sg = 0;
1394 residue = sg_req->len;
1395 }
1396
1397 /*
1398 * In cyclic mode, for the last period, residue = remaining bytes
1399 * from NDTR,
1400 * else for all other periods in cyclic mode, and in sg mode,
1401 * residue = remaining bytes from NDTR + remaining
1402 * periods/sg to be transferred
1403 */
1404 if (!chan->desc->cyclic || n_sg != 0)
1405 for (i = n_sg; i < desc->num_sgs; i++)
1406 residue += desc->sg_req[i].len;
1407
1408 if (!chan->mem_burst)
1409 return residue;
1410
1411 burst_size = chan->mem_burst * chan->mem_width;
1412 modulo = residue % burst_size;
1413 if (modulo)
1414 residue = residue - modulo + burst_size;
1415
1416 return residue;
1417}
1418
1419static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1420 dma_cookie_t cookie,
1421 struct dma_tx_state *state)
1422{
1423 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1424 struct virt_dma_desc *vdesc;
1425 enum dma_status status;
1426 unsigned long flags;
1427 u32 residue = 0;
1428
1429 status = dma_cookie_status(c, cookie, state);
1430 if (status == DMA_COMPLETE)
1431 return status;
1432
1433 status = chan->status;
1434
1435 if (!state)
1436 return status;
1437
1438 spin_lock_irqsave(&chan->vchan.lock, flags);
1439 vdesc = vchan_find_desc(&chan->vchan, cookie);
1440 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1441 residue = stm32_dma_desc_residue(chan, chan->desc,
1442 chan->next_sg);
1443 else if (vdesc)
1444 residue = stm32_dma_desc_residue(chan,
1445 to_stm32_dma_desc(vdesc), 0);
1446 dma_set_residue(state, residue);
1447
1448 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1449
1450 return status;
1451}
1452
1453static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1454{
1455 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1456 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1457 int ret;
1458
1459 chan->config_init = false;
1460
1461 ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1462 if (ret < 0)
1463 return ret;
1464
1465 ret = stm32_dma_disable_chan(chan);
1466 if (ret < 0)
1467 pm_runtime_put(dmadev->ddev.dev);
1468
1469 return ret;
1470}
1471
1472static void stm32_dma_free_chan_resources(struct dma_chan *c)
1473{
1474 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1475 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1476 unsigned long flags;
1477
1478 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1479
1480 if (chan->busy) {
1481 spin_lock_irqsave(&chan->vchan.lock, flags);
1482 stm32_dma_stop(chan);
1483 chan->desc = NULL;
1484 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1485 }
1486
1487 pm_runtime_put(dmadev->ddev.dev);
1488
1489 vchan_free_chan_resources(to_virt_chan(c));
1490 stm32_dma_clear_reg(&chan->chan_reg);
1491 chan->threshold = 0;
1492}
1493
1494static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1495{
1496 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1497}
1498
1499static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1500 struct stm32_dma_cfg *cfg)
1501{
1502 stm32_dma_clear_reg(&chan->chan_reg);
1503
1504 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1505 chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1506
1507 /* Enable Interrupts */
1508 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1509
1510 chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1511 if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1512 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1513 if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1514 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1515 chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1516}
1517
1518static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1519 struct of_dma *ofdma)
1520{
1521 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1522 struct device *dev = dmadev->ddev.dev;
1523 struct stm32_dma_cfg cfg;
1524 struct stm32_dma_chan *chan;
1525 struct dma_chan *c;
1526
1527 if (dma_spec->args_count < 4) {
1528 dev_err(dev, "Bad number of cells\n");
1529 return NULL;
1530 }
1531
1532 cfg.channel_id = dma_spec->args[0];
1533 cfg.request_line = dma_spec->args[1];
1534 cfg.stream_config = dma_spec->args[2];
1535 cfg.features = dma_spec->args[3];
1536
1537 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1538 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1539 dev_err(dev, "Bad channel and/or request id\n");
1540 return NULL;
1541 }
1542
1543 chan = &dmadev->chan[cfg.channel_id];
1544
1545 c = dma_get_slave_channel(&chan->vchan.chan);
1546 if (!c) {
1547 dev_err(dev, "No more channels available\n");
1548 return NULL;
1549 }
1550
1551 stm32_dma_set_config(chan, &cfg);
1552
1553 return c;
1554}
1555
1556static const struct of_device_id stm32_dma_of_match[] = {
1557 { .compatible = "st,stm32-dma", },
1558 { /* sentinel */ },
1559};
1560MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1561
1562static int stm32_dma_probe(struct platform_device *pdev)
1563{
1564 struct stm32_dma_chan *chan;
1565 struct stm32_dma_device *dmadev;
1566 struct dma_device *dd;
1567 const struct of_device_id *match;
1568 struct resource *res;
1569 struct reset_control *rst;
1570 int i, ret;
1571
1572 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1573 if (!match) {
1574 dev_err(&pdev->dev, "Error: No device match found\n");
1575 return -ENODEV;
1576 }
1577
1578 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1579 if (!dmadev)
1580 return -ENOMEM;
1581
1582 dd = &dmadev->ddev;
1583
1584 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1585 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1586 if (IS_ERR(dmadev->base))
1587 return PTR_ERR(dmadev->base);
1588
1589 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1590 if (IS_ERR(dmadev->clk))
1591 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1592
1593 ret = clk_prepare_enable(dmadev->clk);
1594 if (ret < 0) {
1595 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1596 return ret;
1597 }
1598
1599 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1600 "st,mem2mem");
1601
1602 rst = devm_reset_control_get(&pdev->dev, NULL);
1603 if (IS_ERR(rst)) {
1604 ret = PTR_ERR(rst);
1605 if (ret == -EPROBE_DEFER)
1606 goto clk_free;
1607 } else {
1608 reset_control_assert(rst);
1609 udelay(2);
1610 reset_control_deassert(rst);
1611 }
1612
1613 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1614
1615 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1616 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1617 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1618 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1619 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1620 dd->device_tx_status = stm32_dma_tx_status;
1621 dd->device_issue_pending = stm32_dma_issue_pending;
1622 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1623 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1624 dd->device_config = stm32_dma_slave_config;
1625 dd->device_pause = stm32_dma_pause;
1626 dd->device_resume = stm32_dma_resume;
1627 dd->device_terminate_all = stm32_dma_terminate_all;
1628 dd->device_synchronize = stm32_dma_synchronize;
1629 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1630 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1631 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1632 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1633 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1634 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1635 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1636 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1637 dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1638 dd->max_burst = STM32_DMA_MAX_BURST;
1639 dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1640 dd->descriptor_reuse = true;
1641 dd->dev = &pdev->dev;
1642 INIT_LIST_HEAD(&dd->channels);
1643
1644 if (dmadev->mem2mem) {
1645 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1646 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1647 dd->directions |= BIT(DMA_MEM_TO_MEM);
1648 }
1649
1650 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1651 chan = &dmadev->chan[i];
1652 chan->id = i;
1653 chan->vchan.desc_free = stm32_dma_desc_free;
1654 vchan_init(&chan->vchan, dd);
1655
1656 chan->mdma_config.ifcr = res->start;
1657 chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1658
1659 chan->mdma_config.tcf = STM32_DMA_TCI;
1660 chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1661 }
1662
1663 ret = dma_async_device_register(dd);
1664 if (ret)
1665 goto clk_free;
1666
1667 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1668 chan = &dmadev->chan[i];
1669 ret = platform_get_irq(pdev, i);
1670 if (ret < 0)
1671 goto err_unregister;
1672 chan->irq = ret;
1673
1674 ret = devm_request_irq(&pdev->dev, chan->irq,
1675 stm32_dma_chan_irq, 0,
1676 dev_name(chan2dev(chan)), chan);
1677 if (ret) {
1678 dev_err(&pdev->dev,
1679 "request_irq failed with err %d channel %d\n",
1680 ret, i);
1681 goto err_unregister;
1682 }
1683 }
1684
1685 ret = of_dma_controller_register(pdev->dev.of_node,
1686 stm32_dma_of_xlate, dmadev);
1687 if (ret < 0) {
1688 dev_err(&pdev->dev,
1689 "STM32 DMA DMA OF registration failed %d\n", ret);
1690 goto err_unregister;
1691 }
1692
1693 platform_set_drvdata(pdev, dmadev);
1694
1695 pm_runtime_set_active(&pdev->dev);
1696 pm_runtime_enable(&pdev->dev);
1697 pm_runtime_get_noresume(&pdev->dev);
1698 pm_runtime_put(&pdev->dev);
1699
1700 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1701
1702 return 0;
1703
1704err_unregister:
1705 dma_async_device_unregister(dd);
1706clk_free:
1707 clk_disable_unprepare(dmadev->clk);
1708
1709 return ret;
1710}
1711
1712#ifdef CONFIG_PM
1713static int stm32_dma_runtime_suspend(struct device *dev)
1714{
1715 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1716
1717 clk_disable_unprepare(dmadev->clk);
1718
1719 return 0;
1720}
1721
1722static int stm32_dma_runtime_resume(struct device *dev)
1723{
1724 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1725 int ret;
1726
1727 ret = clk_prepare_enable(dmadev->clk);
1728 if (ret) {
1729 dev_err(dev, "failed to prepare_enable clock\n");
1730 return ret;
1731 }
1732
1733 return 0;
1734}
1735#endif
1736
1737#ifdef CONFIG_PM_SLEEP
1738static int stm32_dma_pm_suspend(struct device *dev)
1739{
1740 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1741 int id, ret, scr;
1742
1743 ret = pm_runtime_resume_and_get(dev);
1744 if (ret < 0)
1745 return ret;
1746
1747 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1748 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1749 if (scr & STM32_DMA_SCR_EN) {
1750 dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1751 return -EBUSY;
1752 }
1753 }
1754
1755 pm_runtime_put_sync(dev);
1756
1757 pm_runtime_force_suspend(dev);
1758
1759 return 0;
1760}
1761
1762static int stm32_dma_pm_resume(struct device *dev)
1763{
1764 return pm_runtime_force_resume(dev);
1765}
1766#endif
1767
1768static const struct dev_pm_ops stm32_dma_pm_ops = {
1769 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1770 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1771 stm32_dma_runtime_resume, NULL)
1772};
1773
1774static struct platform_driver stm32_dma_driver = {
1775 .driver = {
1776 .name = "stm32-dma",
1777 .of_match_table = stm32_dma_of_match,
1778 .pm = &stm32_dma_pm_ops,
1779 },
1780 .probe = stm32_dma_probe,
1781};
1782
1783static int __init stm32_dma_init(void)
1784{
1785 return platform_driver_register(&stm32_dma_driver);
1786}
1787subsys_initcall(stm32_dma_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for STM32 DMA controller
4 *
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6 *
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10 */
11
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/dmaengine.h>
15#include <linux/dma-mapping.h>
16#include <linux/err.h>
17#include <linux/init.h>
18#include <linux/jiffies.h>
19#include <linux/list.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/of_dma.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/reset.h>
27#include <linux/sched.h>
28#include <linux/slab.h>
29
30#include "virt-dma.h"
31
32#define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
33#define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
34#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
35#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
36#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
37#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
38#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
39#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
40#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
41#define STM32_DMA_MASKI (STM32_DMA_TCI \
42 | STM32_DMA_TEI \
43 | STM32_DMA_DMEI \
44 | STM32_DMA_FEI)
45
46/* DMA Stream x Configuration Register */
47#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
48#define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
49#define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
50#define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
51#define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
52#define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
53#define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
54#define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
55#define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
56#define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
57#define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
58#define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
59#define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60#define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
61#define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
62#define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
63#define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
64#define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
65#define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
66#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
67#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
68#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
69#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
70 */
71#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
72#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
73#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
74#define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
75 | STM32_DMA_SCR_MINC \
76 | STM32_DMA_SCR_PINCOS \
77 | STM32_DMA_SCR_PL_MASK)
78#define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
79 | STM32_DMA_SCR_TEIE \
80 | STM32_DMA_SCR_DMEIE)
81
82/* DMA Stream x number of data register */
83#define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
84
85/* DMA stream peripheral address register */
86#define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
87
88/* DMA stream x memory 0 address register */
89#define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
90
91/* DMA stream x memory 1 address register */
92#define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
93
94/* DMA stream x FIFO control register */
95#define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
96#define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
97#define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
98#define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
99#define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
100#define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
101 | STM32_DMA_SFCR_DMDIS)
102
103/* DMA direction */
104#define STM32_DMA_DEV_TO_MEM 0x00
105#define STM32_DMA_MEM_TO_DEV 0x01
106#define STM32_DMA_MEM_TO_MEM 0x02
107
108/* DMA priority level */
109#define STM32_DMA_PRIORITY_LOW 0x00
110#define STM32_DMA_PRIORITY_MEDIUM 0x01
111#define STM32_DMA_PRIORITY_HIGH 0x02
112#define STM32_DMA_PRIORITY_VERY_HIGH 0x03
113
114/* DMA FIFO threshold selection */
115#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
116#define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
117#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
118#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
119
120#define STM32_DMA_MAX_DATA_ITEMS 0xffff
121/*
122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123 * gather at boundary. Thus it's safer to round down this value on FIFO
124 * size (16 Bytes)
125 */
126#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
127 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128#define STM32_DMA_MAX_CHANNELS 0x08
129#define STM32_DMA_MAX_REQUEST_ID 0x08
130#define STM32_DMA_MAX_DATA_PARAM 0x03
131#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
132#define STM32_DMA_MIN_BURST 4
133#define STM32_DMA_MAX_BURST 16
134
135/* DMA Features */
136#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
137#define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
138
139enum stm32_dma_width {
140 STM32_DMA_BYTE,
141 STM32_DMA_HALF_WORD,
142 STM32_DMA_WORD,
143};
144
145enum stm32_dma_burst_size {
146 STM32_DMA_BURST_SINGLE,
147 STM32_DMA_BURST_INCR4,
148 STM32_DMA_BURST_INCR8,
149 STM32_DMA_BURST_INCR16,
150};
151
152/**
153 * struct stm32_dma_cfg - STM32 DMA custom configuration
154 * @channel_id: channel ID
155 * @request_line: DMA request
156 * @stream_config: 32bit mask specifying the DMA channel configuration
157 * @features: 32bit mask specifying the DMA Feature list
158 */
159struct stm32_dma_cfg {
160 u32 channel_id;
161 u32 request_line;
162 u32 stream_config;
163 u32 features;
164};
165
166struct stm32_dma_chan_reg {
167 u32 dma_lisr;
168 u32 dma_hisr;
169 u32 dma_lifcr;
170 u32 dma_hifcr;
171 u32 dma_scr;
172 u32 dma_sndtr;
173 u32 dma_spar;
174 u32 dma_sm0ar;
175 u32 dma_sm1ar;
176 u32 dma_sfcr;
177};
178
179struct stm32_dma_sg_req {
180 u32 len;
181 struct stm32_dma_chan_reg chan_reg;
182};
183
184struct stm32_dma_desc {
185 struct virt_dma_desc vdesc;
186 bool cyclic;
187 u32 num_sgs;
188 struct stm32_dma_sg_req sg_req[];
189};
190
191struct stm32_dma_chan {
192 struct virt_dma_chan vchan;
193 bool config_init;
194 bool busy;
195 u32 id;
196 u32 irq;
197 struct stm32_dma_desc *desc;
198 u32 next_sg;
199 struct dma_slave_config dma_sconfig;
200 struct stm32_dma_chan_reg chan_reg;
201 u32 threshold;
202 u32 mem_burst;
203 u32 mem_width;
204};
205
206struct stm32_dma_device {
207 struct dma_device ddev;
208 void __iomem *base;
209 struct clk *clk;
210 struct reset_control *rst;
211 bool mem2mem;
212 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213};
214
215static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216{
217 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218 ddev);
219}
220
221static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222{
223 return container_of(c, struct stm32_dma_chan, vchan.chan);
224}
225
226static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227{
228 return container_of(vdesc, struct stm32_dma_desc, vdesc);
229}
230
231static struct device *chan2dev(struct stm32_dma_chan *chan)
232{
233 return &chan->vchan.chan.dev->device;
234}
235
236static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237{
238 return readl_relaxed(dmadev->base + reg);
239}
240
241static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242{
243 writel_relaxed(val, dmadev->base + reg);
244}
245
246static int stm32_dma_get_width(struct stm32_dma_chan *chan,
247 enum dma_slave_buswidth width)
248{
249 switch (width) {
250 case DMA_SLAVE_BUSWIDTH_1_BYTE:
251 return STM32_DMA_BYTE;
252 case DMA_SLAVE_BUSWIDTH_2_BYTES:
253 return STM32_DMA_HALF_WORD;
254 case DMA_SLAVE_BUSWIDTH_4_BYTES:
255 return STM32_DMA_WORD;
256 default:
257 dev_err(chan2dev(chan), "Dma bus width not supported\n");
258 return -EINVAL;
259 }
260}
261
262static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
263 u32 threshold)
264{
265 enum dma_slave_buswidth max_width;
266
267 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
268 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
269 else
270 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
271
272 while ((buf_len < max_width || buf_len % max_width) &&
273 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
274 max_width = max_width >> 1;
275
276 return max_width;
277}
278
279static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
280 enum dma_slave_buswidth width)
281{
282 u32 remaining;
283
284 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
285 if (burst != 0) {
286 /*
287 * If number of beats fit in several whole bursts
288 * this configuration is allowed.
289 */
290 remaining = ((STM32_DMA_FIFO_SIZE / width) *
291 (threshold + 1) / 4) % burst;
292
293 if (remaining == 0)
294 return true;
295 } else {
296 return true;
297 }
298 }
299
300 return false;
301}
302
303static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
304{
305 /*
306 * Buffer or period length has to be aligned on FIFO depth.
307 * Otherwise bytes may be stuck within FIFO at buffer or period
308 * length.
309 */
310 return ((buf_len % ((threshold + 1) * 4)) == 0);
311}
312
313static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
314 enum dma_slave_buswidth width)
315{
316 u32 best_burst = max_burst;
317
318 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
319 return 0;
320
321 while ((buf_len < best_burst * width && best_burst > 1) ||
322 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
323 width)) {
324 if (best_burst > STM32_DMA_MIN_BURST)
325 best_burst = best_burst >> 1;
326 else
327 best_burst = 0;
328 }
329
330 return best_burst;
331}
332
333static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
334{
335 switch (maxburst) {
336 case 0:
337 case 1:
338 return STM32_DMA_BURST_SINGLE;
339 case 4:
340 return STM32_DMA_BURST_INCR4;
341 case 8:
342 return STM32_DMA_BURST_INCR8;
343 case 16:
344 return STM32_DMA_BURST_INCR16;
345 default:
346 dev_err(chan2dev(chan), "Dma burst size not supported\n");
347 return -EINVAL;
348 }
349}
350
351static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
352 u32 src_burst, u32 dst_burst)
353{
354 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
355 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
356
357 if (!src_burst && !dst_burst) {
358 /* Using direct mode */
359 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
360 } else {
361 /* Using FIFO mode */
362 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
363 }
364}
365
366static int stm32_dma_slave_config(struct dma_chan *c,
367 struct dma_slave_config *config)
368{
369 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
370
371 memcpy(&chan->dma_sconfig, config, sizeof(*config));
372
373 chan->config_init = true;
374
375 return 0;
376}
377
378static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
379{
380 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
381 u32 flags, dma_isr;
382
383 /*
384 * Read "flags" from DMA_xISR register corresponding to the selected
385 * DMA channel at the correct bit offset inside that register.
386 *
387 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
389 */
390
391 if (chan->id & 4)
392 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
393 else
394 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
395
396 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
397
398 return flags & STM32_DMA_MASKI;
399}
400
401static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
402{
403 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
404 u32 dma_ifcr;
405
406 /*
407 * Write "flags" to the DMA_xIFCR register corresponding to the selected
408 * DMA channel at the correct bit offset inside that register.
409 *
410 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
412 */
413 flags &= STM32_DMA_MASKI;
414 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415
416 if (chan->id & 4)
417 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
418 else
419 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
420}
421
422static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
423{
424 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425 unsigned long timeout = jiffies + msecs_to_jiffies(5000);
426 u32 dma_scr, id;
427
428 id = chan->id;
429 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
430
431 if (dma_scr & STM32_DMA_SCR_EN) {
432 dma_scr &= ~STM32_DMA_SCR_EN;
433 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
434
435 do {
436 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437 dma_scr &= STM32_DMA_SCR_EN;
438 if (!dma_scr)
439 break;
440
441 if (time_after_eq(jiffies, timeout)) {
442 dev_err(chan2dev(chan), "%s: timeout!\n",
443 __func__);
444 return -EBUSY;
445 }
446 cond_resched();
447 } while (1);
448 }
449
450 return 0;
451}
452
453static void stm32_dma_stop(struct stm32_dma_chan *chan)
454{
455 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
456 u32 dma_scr, dma_sfcr, status;
457 int ret;
458
459 /* Disable interrupts */
460 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
461 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
462 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
463 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
464 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
465 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
466
467 /* Disable DMA */
468 ret = stm32_dma_disable_chan(chan);
469 if (ret < 0)
470 return;
471
472 /* Clear interrupt status if it is there */
473 status = stm32_dma_irq_status(chan);
474 if (status) {
475 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
476 __func__, status);
477 stm32_dma_irq_clear(chan, status);
478 }
479
480 chan->busy = false;
481}
482
483static int stm32_dma_terminate_all(struct dma_chan *c)
484{
485 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
486 unsigned long flags;
487 LIST_HEAD(head);
488
489 spin_lock_irqsave(&chan->vchan.lock, flags);
490
491 if (chan->busy) {
492 stm32_dma_stop(chan);
493 chan->desc = NULL;
494 }
495
496 vchan_get_all_descriptors(&chan->vchan, &head);
497 spin_unlock_irqrestore(&chan->vchan.lock, flags);
498 vchan_dma_desc_free_list(&chan->vchan, &head);
499
500 return 0;
501}
502
503static void stm32_dma_synchronize(struct dma_chan *c)
504{
505 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
506
507 vchan_synchronize(&chan->vchan);
508}
509
510static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
511{
512 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
513 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
514 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
515 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
516 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
517 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
518 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
519
520 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
521 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
522 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
523 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
524 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
525 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
526}
527
528static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
529
530static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
531{
532 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533 struct virt_dma_desc *vdesc;
534 struct stm32_dma_sg_req *sg_req;
535 struct stm32_dma_chan_reg *reg;
536 u32 status;
537 int ret;
538
539 ret = stm32_dma_disable_chan(chan);
540 if (ret < 0)
541 return;
542
543 if (!chan->desc) {
544 vdesc = vchan_next_desc(&chan->vchan);
545 if (!vdesc)
546 return;
547
548 chan->desc = to_stm32_dma_desc(vdesc);
549 chan->next_sg = 0;
550 }
551
552 if (chan->next_sg == chan->desc->num_sgs)
553 chan->next_sg = 0;
554
555 sg_req = &chan->desc->sg_req[chan->next_sg];
556 reg = &sg_req->chan_reg;
557
558 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
559 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
560 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
561 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
562 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
563 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
564
565 chan->next_sg++;
566
567 /* Clear interrupt status if it is there */
568 status = stm32_dma_irq_status(chan);
569 if (status)
570 stm32_dma_irq_clear(chan, status);
571
572 if (chan->desc->cyclic)
573 stm32_dma_configure_next_sg(chan);
574
575 stm32_dma_dump_reg(chan);
576
577 /* Start DMA */
578 reg->dma_scr |= STM32_DMA_SCR_EN;
579 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
580
581 chan->busy = true;
582
583 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
584}
585
586static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
587{
588 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
589 struct stm32_dma_sg_req *sg_req;
590 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
591
592 id = chan->id;
593 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
594
595 if (dma_scr & STM32_DMA_SCR_DBM) {
596 if (chan->next_sg == chan->desc->num_sgs)
597 chan->next_sg = 0;
598
599 sg_req = &chan->desc->sg_req[chan->next_sg];
600
601 if (dma_scr & STM32_DMA_SCR_CT) {
602 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
603 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
604 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
605 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
606 } else {
607 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
608 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
609 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
610 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
611 }
612 }
613}
614
615static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
616{
617 if (chan->desc) {
618 if (chan->desc->cyclic) {
619 vchan_cyclic_callback(&chan->desc->vdesc);
620 chan->next_sg++;
621 stm32_dma_configure_next_sg(chan);
622 } else {
623 chan->busy = false;
624 if (chan->next_sg == chan->desc->num_sgs) {
625 list_del(&chan->desc->vdesc.node);
626 vchan_cookie_complete(&chan->desc->vdesc);
627 chan->desc = NULL;
628 }
629 stm32_dma_start_transfer(chan);
630 }
631 }
632}
633
634static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
635{
636 struct stm32_dma_chan *chan = devid;
637 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
638 u32 status, scr, sfcr;
639
640 spin_lock(&chan->vchan.lock);
641
642 status = stm32_dma_irq_status(chan);
643 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
644 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
645
646 if (status & STM32_DMA_TCI) {
647 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
648 if (scr & STM32_DMA_SCR_TCIE)
649 stm32_dma_handle_chan_done(chan);
650 status &= ~STM32_DMA_TCI;
651 }
652 if (status & STM32_DMA_HTI) {
653 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
654 status &= ~STM32_DMA_HTI;
655 }
656 if (status & STM32_DMA_FEI) {
657 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
658 status &= ~STM32_DMA_FEI;
659 if (sfcr & STM32_DMA_SFCR_FEIE) {
660 if (!(scr & STM32_DMA_SCR_EN))
661 dev_err(chan2dev(chan), "FIFO Error\n");
662 else
663 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
664 }
665 }
666 if (status) {
667 stm32_dma_irq_clear(chan, status);
668 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
669 if (!(scr & STM32_DMA_SCR_EN))
670 dev_err(chan2dev(chan), "chan disabled by HW\n");
671 }
672
673 spin_unlock(&chan->vchan.lock);
674
675 return IRQ_HANDLED;
676}
677
678static void stm32_dma_issue_pending(struct dma_chan *c)
679{
680 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
681 unsigned long flags;
682
683 spin_lock_irqsave(&chan->vchan.lock, flags);
684 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
685 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
686 stm32_dma_start_transfer(chan);
687
688 }
689 spin_unlock_irqrestore(&chan->vchan.lock, flags);
690}
691
692static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
693 enum dma_transfer_direction direction,
694 enum dma_slave_buswidth *buswidth,
695 u32 buf_len)
696{
697 enum dma_slave_buswidth src_addr_width, dst_addr_width;
698 int src_bus_width, dst_bus_width;
699 int src_burst_size, dst_burst_size;
700 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
701 u32 dma_scr, threshold;
702
703 src_addr_width = chan->dma_sconfig.src_addr_width;
704 dst_addr_width = chan->dma_sconfig.dst_addr_width;
705 src_maxburst = chan->dma_sconfig.src_maxburst;
706 dst_maxburst = chan->dma_sconfig.dst_maxburst;
707 threshold = chan->threshold;
708
709 switch (direction) {
710 case DMA_MEM_TO_DEV:
711 /* Set device data size */
712 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
713 if (dst_bus_width < 0)
714 return dst_bus_width;
715
716 /* Set device burst size */
717 dst_best_burst = stm32_dma_get_best_burst(buf_len,
718 dst_maxburst,
719 threshold,
720 dst_addr_width);
721
722 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
723 if (dst_burst_size < 0)
724 return dst_burst_size;
725
726 /* Set memory data size */
727 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
728 chan->mem_width = src_addr_width;
729 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
730 if (src_bus_width < 0)
731 return src_bus_width;
732
733 /* Set memory burst size */
734 src_maxburst = STM32_DMA_MAX_BURST;
735 src_best_burst = stm32_dma_get_best_burst(buf_len,
736 src_maxburst,
737 threshold,
738 src_addr_width);
739 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
740 if (src_burst_size < 0)
741 return src_burst_size;
742
743 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
744 STM32_DMA_SCR_PSIZE(dst_bus_width) |
745 STM32_DMA_SCR_MSIZE(src_bus_width) |
746 STM32_DMA_SCR_PBURST(dst_burst_size) |
747 STM32_DMA_SCR_MBURST(src_burst_size);
748
749 /* Set FIFO threshold */
750 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
751 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
752
753 /* Set peripheral address */
754 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
755 *buswidth = dst_addr_width;
756 break;
757
758 case DMA_DEV_TO_MEM:
759 /* Set device data size */
760 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
761 if (src_bus_width < 0)
762 return src_bus_width;
763
764 /* Set device burst size */
765 src_best_burst = stm32_dma_get_best_burst(buf_len,
766 src_maxburst,
767 threshold,
768 src_addr_width);
769 chan->mem_burst = src_best_burst;
770 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
771 if (src_burst_size < 0)
772 return src_burst_size;
773
774 /* Set memory data size */
775 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
776 chan->mem_width = dst_addr_width;
777 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
778 if (dst_bus_width < 0)
779 return dst_bus_width;
780
781 /* Set memory burst size */
782 dst_maxburst = STM32_DMA_MAX_BURST;
783 dst_best_burst = stm32_dma_get_best_burst(buf_len,
784 dst_maxburst,
785 threshold,
786 dst_addr_width);
787 chan->mem_burst = dst_best_burst;
788 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
789 if (dst_burst_size < 0)
790 return dst_burst_size;
791
792 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
793 STM32_DMA_SCR_PSIZE(src_bus_width) |
794 STM32_DMA_SCR_MSIZE(dst_bus_width) |
795 STM32_DMA_SCR_PBURST(src_burst_size) |
796 STM32_DMA_SCR_MBURST(dst_burst_size);
797
798 /* Set FIFO threshold */
799 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
800 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
801
802 /* Set peripheral address */
803 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
804 *buswidth = chan->dma_sconfig.src_addr_width;
805 break;
806
807 default:
808 dev_err(chan2dev(chan), "Dma direction is not supported\n");
809 return -EINVAL;
810 }
811
812 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
813
814 /* Set DMA control register */
815 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
816 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
817 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
818 chan->chan_reg.dma_scr |= dma_scr;
819
820 return 0;
821}
822
823static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
824{
825 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
826}
827
828static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
829 struct dma_chan *c, struct scatterlist *sgl,
830 u32 sg_len, enum dma_transfer_direction direction,
831 unsigned long flags, void *context)
832{
833 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834 struct stm32_dma_desc *desc;
835 struct scatterlist *sg;
836 enum dma_slave_buswidth buswidth;
837 u32 nb_data_items;
838 int i, ret;
839
840 if (!chan->config_init) {
841 dev_err(chan2dev(chan), "dma channel is not configured\n");
842 return NULL;
843 }
844
845 if (sg_len < 1) {
846 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
847 return NULL;
848 }
849
850 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
851 if (!desc)
852 return NULL;
853
854 /* Set peripheral flow controller */
855 if (chan->dma_sconfig.device_fc)
856 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
857 else
858 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
859
860 for_each_sg(sgl, sg, sg_len, i) {
861 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
862 sg_dma_len(sg));
863 if (ret < 0)
864 goto err;
865
866 desc->sg_req[i].len = sg_dma_len(sg);
867
868 nb_data_items = desc->sg_req[i].len / buswidth;
869 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
870 dev_err(chan2dev(chan), "nb items not supported\n");
871 goto err;
872 }
873
874 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
875 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
876 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
877 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
878 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
879 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
880 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
881 }
882
883 desc->num_sgs = sg_len;
884 desc->cyclic = false;
885
886 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
887
888err:
889 kfree(desc);
890 return NULL;
891}
892
893static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
894 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
895 size_t period_len, enum dma_transfer_direction direction,
896 unsigned long flags)
897{
898 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
899 struct stm32_dma_desc *desc;
900 enum dma_slave_buswidth buswidth;
901 u32 num_periods, nb_data_items;
902 int i, ret;
903
904 if (!buf_len || !period_len) {
905 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
906 return NULL;
907 }
908
909 if (!chan->config_init) {
910 dev_err(chan2dev(chan), "dma channel is not configured\n");
911 return NULL;
912 }
913
914 if (buf_len % period_len) {
915 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
916 return NULL;
917 }
918
919 /*
920 * We allow to take more number of requests till DMA is
921 * not started. The driver will loop over all requests.
922 * Once DMA is started then new requests can be queued only after
923 * terminating the DMA.
924 */
925 if (chan->busy) {
926 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
927 return NULL;
928 }
929
930 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
931 if (ret < 0)
932 return NULL;
933
934 nb_data_items = period_len / buswidth;
935 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
936 dev_err(chan2dev(chan), "number of items not supported\n");
937 return NULL;
938 }
939
940 /* Enable Circular mode or double buffer mode */
941 if (buf_len == period_len)
942 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
943 else
944 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
945
946 /* Clear periph ctrl if client set it */
947 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
948
949 num_periods = buf_len / period_len;
950
951 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
952 if (!desc)
953 return NULL;
954
955 for (i = 0; i < num_periods; i++) {
956 desc->sg_req[i].len = period_len;
957
958 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
959 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
960 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
961 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
962 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
963 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
964 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
965 buf_addr += period_len;
966 }
967
968 desc->num_sgs = num_periods;
969 desc->cyclic = true;
970
971 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
972}
973
974static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
975 struct dma_chan *c, dma_addr_t dest,
976 dma_addr_t src, size_t len, unsigned long flags)
977{
978 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
979 enum dma_slave_buswidth max_width;
980 struct stm32_dma_desc *desc;
981 size_t xfer_count, offset;
982 u32 num_sgs, best_burst, dma_burst, threshold;
983 int i;
984
985 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
986 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
987 if (!desc)
988 return NULL;
989
990 threshold = chan->threshold;
991
992 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
993 xfer_count = min_t(size_t, len - offset,
994 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
995
996 /* Compute best burst size */
997 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
998 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
999 threshold, max_width);
1000 dma_burst = stm32_dma_get_burst(chan, best_burst);
1001
1002 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1003 desc->sg_req[i].chan_reg.dma_scr =
1004 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1005 STM32_DMA_SCR_PBURST(dma_burst) |
1006 STM32_DMA_SCR_MBURST(dma_burst) |
1007 STM32_DMA_SCR_MINC |
1008 STM32_DMA_SCR_PINC |
1009 STM32_DMA_SCR_TCIE |
1010 STM32_DMA_SCR_TEIE;
1011 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1012 desc->sg_req[i].chan_reg.dma_sfcr |=
1013 STM32_DMA_SFCR_FTH(threshold);
1014 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1015 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1016 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1017 desc->sg_req[i].len = xfer_count;
1018 }
1019
1020 desc->num_sgs = num_sgs;
1021 desc->cyclic = false;
1022
1023 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1024}
1025
1026static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1027{
1028 u32 dma_scr, width, ndtr;
1029 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1030
1031 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1032 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1033 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1034
1035 return ndtr << width;
1036}
1037
1038/**
1039 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1040 * @chan: dma channel
1041 *
1042 * This function called when IRQ are disable, checks that the hardware has not
1043 * switched on the next transfer in double buffer mode. The test is done by
1044 * comparing the next_sg memory address with the hardware related register
1045 * (based on CT bit value).
1046 *
1047 * Returns true if expected current transfer is still running or double
1048 * buffer mode is not activated.
1049 */
1050static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1051{
1052 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1053 struct stm32_dma_sg_req *sg_req;
1054 u32 dma_scr, dma_smar, id;
1055
1056 id = chan->id;
1057 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1058
1059 if (!(dma_scr & STM32_DMA_SCR_DBM))
1060 return true;
1061
1062 sg_req = &chan->desc->sg_req[chan->next_sg];
1063
1064 if (dma_scr & STM32_DMA_SCR_CT) {
1065 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1066 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1067 }
1068
1069 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1070
1071 return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1072}
1073
1074static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1075 struct stm32_dma_desc *desc,
1076 u32 next_sg)
1077{
1078 u32 modulo, burst_size;
1079 u32 residue;
1080 u32 n_sg = next_sg;
1081 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1082 int i;
1083
1084 /*
1085 * Calculate the residue means compute the descriptors
1086 * information:
1087 * - the sg_req currently transferred
1088 * - the Hardware remaining position in this sg (NDTR bits field).
1089 *
1090 * A race condition may occur if DMA is running in cyclic or double
1091 * buffer mode, since the DMA register are automatically reloaded at end
1092 * of period transfer. The hardware may have switched to the next
1093 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1094 * read.
1095 * In this case the SxNDTR reg could (or not) correspond to the new
1096 * transfer position, and not the expected one.
1097 * The strategy implemented in the stm32 driver is to:
1098 * - read the SxNDTR register
1099 * - crosscheck that hardware is still in current transfer.
1100 * In case of switch, we can assume that the DMA is at the beginning of
1101 * the next transfer. So we approximate the residue in consequence, by
1102 * pointing on the beginning of next transfer.
1103 *
1104 * This race condition doesn't apply for none cyclic mode, as double
1105 * buffer is not used. In such situation registers are updated by the
1106 * software.
1107 */
1108
1109 residue = stm32_dma_get_remaining_bytes(chan);
1110
1111 if (!stm32_dma_is_current_sg(chan)) {
1112 n_sg++;
1113 if (n_sg == chan->desc->num_sgs)
1114 n_sg = 0;
1115 residue = sg_req->len;
1116 }
1117
1118 /*
1119 * In cyclic mode, for the last period, residue = remaining bytes
1120 * from NDTR,
1121 * else for all other periods in cyclic mode, and in sg mode,
1122 * residue = remaining bytes from NDTR + remaining
1123 * periods/sg to be transferred
1124 */
1125 if (!chan->desc->cyclic || n_sg != 0)
1126 for (i = n_sg; i < desc->num_sgs; i++)
1127 residue += desc->sg_req[i].len;
1128
1129 if (!chan->mem_burst)
1130 return residue;
1131
1132 burst_size = chan->mem_burst * chan->mem_width;
1133 modulo = residue % burst_size;
1134 if (modulo)
1135 residue = residue - modulo + burst_size;
1136
1137 return residue;
1138}
1139
1140static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1141 dma_cookie_t cookie,
1142 struct dma_tx_state *state)
1143{
1144 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1145 struct virt_dma_desc *vdesc;
1146 enum dma_status status;
1147 unsigned long flags;
1148 u32 residue = 0;
1149
1150 status = dma_cookie_status(c, cookie, state);
1151 if (status == DMA_COMPLETE || !state)
1152 return status;
1153
1154 spin_lock_irqsave(&chan->vchan.lock, flags);
1155 vdesc = vchan_find_desc(&chan->vchan, cookie);
1156 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1157 residue = stm32_dma_desc_residue(chan, chan->desc,
1158 chan->next_sg);
1159 else if (vdesc)
1160 residue = stm32_dma_desc_residue(chan,
1161 to_stm32_dma_desc(vdesc), 0);
1162 dma_set_residue(state, residue);
1163
1164 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1165
1166 return status;
1167}
1168
1169static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1170{
1171 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1172 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1173 int ret;
1174
1175 chan->config_init = false;
1176
1177 ret = pm_runtime_get_sync(dmadev->ddev.dev);
1178 if (ret < 0)
1179 return ret;
1180
1181 ret = stm32_dma_disable_chan(chan);
1182 if (ret < 0)
1183 pm_runtime_put(dmadev->ddev.dev);
1184
1185 return ret;
1186}
1187
1188static void stm32_dma_free_chan_resources(struct dma_chan *c)
1189{
1190 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1191 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1192 unsigned long flags;
1193
1194 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1195
1196 if (chan->busy) {
1197 spin_lock_irqsave(&chan->vchan.lock, flags);
1198 stm32_dma_stop(chan);
1199 chan->desc = NULL;
1200 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1201 }
1202
1203 pm_runtime_put(dmadev->ddev.dev);
1204
1205 vchan_free_chan_resources(to_virt_chan(c));
1206}
1207
1208static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1209{
1210 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1211}
1212
1213static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1214 struct stm32_dma_cfg *cfg)
1215{
1216 stm32_dma_clear_reg(&chan->chan_reg);
1217
1218 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1219 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1220
1221 /* Enable Interrupts */
1222 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1223
1224 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1225}
1226
1227static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1228 struct of_dma *ofdma)
1229{
1230 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1231 struct device *dev = dmadev->ddev.dev;
1232 struct stm32_dma_cfg cfg;
1233 struct stm32_dma_chan *chan;
1234 struct dma_chan *c;
1235
1236 if (dma_spec->args_count < 4) {
1237 dev_err(dev, "Bad number of cells\n");
1238 return NULL;
1239 }
1240
1241 cfg.channel_id = dma_spec->args[0];
1242 cfg.request_line = dma_spec->args[1];
1243 cfg.stream_config = dma_spec->args[2];
1244 cfg.features = dma_spec->args[3];
1245
1246 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1247 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1248 dev_err(dev, "Bad channel and/or request id\n");
1249 return NULL;
1250 }
1251
1252 chan = &dmadev->chan[cfg.channel_id];
1253
1254 c = dma_get_slave_channel(&chan->vchan.chan);
1255 if (!c) {
1256 dev_err(dev, "No more channels available\n");
1257 return NULL;
1258 }
1259
1260 stm32_dma_set_config(chan, &cfg);
1261
1262 return c;
1263}
1264
1265static const struct of_device_id stm32_dma_of_match[] = {
1266 { .compatible = "st,stm32-dma", },
1267 { /* sentinel */ },
1268};
1269MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1270
1271static int stm32_dma_probe(struct platform_device *pdev)
1272{
1273 struct stm32_dma_chan *chan;
1274 struct stm32_dma_device *dmadev;
1275 struct dma_device *dd;
1276 const struct of_device_id *match;
1277 struct resource *res;
1278 int i, ret;
1279
1280 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1281 if (!match) {
1282 dev_err(&pdev->dev, "Error: No device match found\n");
1283 return -ENODEV;
1284 }
1285
1286 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1287 if (!dmadev)
1288 return -ENOMEM;
1289
1290 dd = &dmadev->ddev;
1291
1292 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1294 if (IS_ERR(dmadev->base))
1295 return PTR_ERR(dmadev->base);
1296
1297 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1298 if (IS_ERR(dmadev->clk)) {
1299 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1300 return PTR_ERR(dmadev->clk);
1301 }
1302
1303 ret = clk_prepare_enable(dmadev->clk);
1304 if (ret < 0) {
1305 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1306 return ret;
1307 }
1308
1309 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1310 "st,mem2mem");
1311
1312 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1313 if (!IS_ERR(dmadev->rst)) {
1314 reset_control_assert(dmadev->rst);
1315 udelay(2);
1316 reset_control_deassert(dmadev->rst);
1317 }
1318
1319 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1320 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1321 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1322 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1323 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1324 dd->device_tx_status = stm32_dma_tx_status;
1325 dd->device_issue_pending = stm32_dma_issue_pending;
1326 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1327 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1328 dd->device_config = stm32_dma_slave_config;
1329 dd->device_terminate_all = stm32_dma_terminate_all;
1330 dd->device_synchronize = stm32_dma_synchronize;
1331 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1332 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1333 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1334 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1338 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1339 dd->max_burst = STM32_DMA_MAX_BURST;
1340 dd->dev = &pdev->dev;
1341 INIT_LIST_HEAD(&dd->channels);
1342
1343 if (dmadev->mem2mem) {
1344 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1345 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1346 dd->directions |= BIT(DMA_MEM_TO_MEM);
1347 }
1348
1349 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1350 chan = &dmadev->chan[i];
1351 chan->id = i;
1352 chan->vchan.desc_free = stm32_dma_desc_free;
1353 vchan_init(&chan->vchan, dd);
1354 }
1355
1356 ret = dma_async_device_register(dd);
1357 if (ret)
1358 goto clk_free;
1359
1360 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1361 chan = &dmadev->chan[i];
1362 ret = platform_get_irq(pdev, i);
1363 if (ret < 0)
1364 goto err_unregister;
1365 chan->irq = ret;
1366
1367 ret = devm_request_irq(&pdev->dev, chan->irq,
1368 stm32_dma_chan_irq, 0,
1369 dev_name(chan2dev(chan)), chan);
1370 if (ret) {
1371 dev_err(&pdev->dev,
1372 "request_irq failed with err %d channel %d\n",
1373 ret, i);
1374 goto err_unregister;
1375 }
1376 }
1377
1378 ret = of_dma_controller_register(pdev->dev.of_node,
1379 stm32_dma_of_xlate, dmadev);
1380 if (ret < 0) {
1381 dev_err(&pdev->dev,
1382 "STM32 DMA DMA OF registration failed %d\n", ret);
1383 goto err_unregister;
1384 }
1385
1386 platform_set_drvdata(pdev, dmadev);
1387
1388 pm_runtime_set_active(&pdev->dev);
1389 pm_runtime_enable(&pdev->dev);
1390 pm_runtime_get_noresume(&pdev->dev);
1391 pm_runtime_put(&pdev->dev);
1392
1393 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1394
1395 return 0;
1396
1397err_unregister:
1398 dma_async_device_unregister(dd);
1399clk_free:
1400 clk_disable_unprepare(dmadev->clk);
1401
1402 return ret;
1403}
1404
1405#ifdef CONFIG_PM
1406static int stm32_dma_runtime_suspend(struct device *dev)
1407{
1408 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1409
1410 clk_disable_unprepare(dmadev->clk);
1411
1412 return 0;
1413}
1414
1415static int stm32_dma_runtime_resume(struct device *dev)
1416{
1417 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1418 int ret;
1419
1420 ret = clk_prepare_enable(dmadev->clk);
1421 if (ret) {
1422 dev_err(dev, "failed to prepare_enable clock\n");
1423 return ret;
1424 }
1425
1426 return 0;
1427}
1428#endif
1429
1430static const struct dev_pm_ops stm32_dma_pm_ops = {
1431 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1432 stm32_dma_runtime_resume, NULL)
1433};
1434
1435static struct platform_driver stm32_dma_driver = {
1436 .driver = {
1437 .name = "stm32-dma",
1438 .of_match_table = stm32_dma_of_match,
1439 .pm = &stm32_dma_pm_ops,
1440 },
1441};
1442
1443static int __init stm32_dma_init(void)
1444{
1445 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1446}
1447subsys_initcall(stm32_dma_init);