Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
 
  18#include <linux/phy.h>
  19
  20struct fwnode_handle *__dev_fwnode(struct device *dev)
  21{
  22	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  23		of_fwnode_handle(dev->of_node) : dev->fwnode;
  24}
  25EXPORT_SYMBOL_GPL(__dev_fwnode);
  26
  27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
  28{
  29	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  30		of_fwnode_handle(dev->of_node) : dev->fwnode;
  31}
  32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
  33
  34/**
  35 * device_property_present - check if a property of a device is present
  36 * @dev: Device whose property is being checked
  37 * @propname: Name of the property
  38 *
  39 * Check if property @propname is present in the device firmware description.
  40 */
  41bool device_property_present(struct device *dev, const char *propname)
  42{
  43	return fwnode_property_present(dev_fwnode(dev), propname);
  44}
  45EXPORT_SYMBOL_GPL(device_property_present);
  46
  47/**
  48 * fwnode_property_present - check if a property of a firmware node is present
  49 * @fwnode: Firmware node whose property to check
  50 * @propname: Name of the property
  51 */
  52bool fwnode_property_present(const struct fwnode_handle *fwnode,
  53			     const char *propname)
  54{
  55	bool ret;
  56
  57	if (IS_ERR_OR_NULL(fwnode))
  58		return false;
  59
  60	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  61	if (ret)
  62		return ret;
  63
  64	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
 
  65}
  66EXPORT_SYMBOL_GPL(fwnode_property_present);
  67
  68/**
  69 * device_property_read_u8_array - return a u8 array property of a device
  70 * @dev: Device to get the property of
  71 * @propname: Name of the property
  72 * @val: The values are stored here or %NULL to return the number of values
  73 * @nval: Size of the @val array
  74 *
  75 * Function reads an array of u8 properties with @propname from the device
  76 * firmware description and stores them to @val if found.
  77 *
  78 * It's recommended to call device_property_count_u8() instead of calling
  79 * this function with @val equals %NULL and @nval equals 0.
  80 *
  81 * Return: number of values if @val was %NULL,
  82 *         %0 if the property was found (success),
  83 *	   %-EINVAL if given arguments are not valid,
  84 *	   %-ENODATA if the property does not have a value,
  85 *	   %-EPROTO if the property is not an array of numbers,
  86 *	   %-EOVERFLOW if the size of the property is not as expected.
  87 *	   %-ENXIO if no suitable firmware interface is present.
  88 */
  89int device_property_read_u8_array(struct device *dev, const char *propname,
  90				  u8 *val, size_t nval)
  91{
  92	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  93}
  94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  95
  96/**
  97 * device_property_read_u16_array - return a u16 array property of a device
  98 * @dev: Device to get the property of
  99 * @propname: Name of the property
 100 * @val: The values are stored here or %NULL to return the number of values
 101 * @nval: Size of the @val array
 102 *
 103 * Function reads an array of u16 properties with @propname from the device
 104 * firmware description and stores them to @val if found.
 105 *
 106 * It's recommended to call device_property_count_u16() instead of calling
 107 * this function with @val equals %NULL and @nval equals 0.
 108 *
 109 * Return: number of values if @val was %NULL,
 110 *         %0 if the property was found (success),
 111 *	   %-EINVAL if given arguments are not valid,
 112 *	   %-ENODATA if the property does not have a value,
 113 *	   %-EPROTO if the property is not an array of numbers,
 114 *	   %-EOVERFLOW if the size of the property is not as expected.
 115 *	   %-ENXIO if no suitable firmware interface is present.
 116 */
 117int device_property_read_u16_array(struct device *dev, const char *propname,
 118				   u16 *val, size_t nval)
 119{
 120	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 121}
 122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 123
 124/**
 125 * device_property_read_u32_array - return a u32 array property of a device
 126 * @dev: Device to get the property of
 127 * @propname: Name of the property
 128 * @val: The values are stored here or %NULL to return the number of values
 129 * @nval: Size of the @val array
 130 *
 131 * Function reads an array of u32 properties with @propname from the device
 132 * firmware description and stores them to @val if found.
 133 *
 134 * It's recommended to call device_property_count_u32() instead of calling
 135 * this function with @val equals %NULL and @nval equals 0.
 136 *
 137 * Return: number of values if @val was %NULL,
 138 *         %0 if the property was found (success),
 139 *	   %-EINVAL if given arguments are not valid,
 140 *	   %-ENODATA if the property does not have a value,
 141 *	   %-EPROTO if the property is not an array of numbers,
 142 *	   %-EOVERFLOW if the size of the property is not as expected.
 143 *	   %-ENXIO if no suitable firmware interface is present.
 144 */
 145int device_property_read_u32_array(struct device *dev, const char *propname,
 146				   u32 *val, size_t nval)
 147{
 148	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 149}
 150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 151
 152/**
 153 * device_property_read_u64_array - return a u64 array property of a device
 154 * @dev: Device to get the property of
 155 * @propname: Name of the property
 156 * @val: The values are stored here or %NULL to return the number of values
 157 * @nval: Size of the @val array
 158 *
 159 * Function reads an array of u64 properties with @propname from the device
 160 * firmware description and stores them to @val if found.
 161 *
 162 * It's recommended to call device_property_count_u64() instead of calling
 163 * this function with @val equals %NULL and @nval equals 0.
 164 *
 165 * Return: number of values if @val was %NULL,
 166 *         %0 if the property was found (success),
 167 *	   %-EINVAL if given arguments are not valid,
 168 *	   %-ENODATA if the property does not have a value,
 169 *	   %-EPROTO if the property is not an array of numbers,
 170 *	   %-EOVERFLOW if the size of the property is not as expected.
 171 *	   %-ENXIO if no suitable firmware interface is present.
 172 */
 173int device_property_read_u64_array(struct device *dev, const char *propname,
 174				   u64 *val, size_t nval)
 175{
 176	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 177}
 178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 179
 180/**
 181 * device_property_read_string_array - return a string array property of device
 182 * @dev: Device to get the property of
 183 * @propname: Name of the property
 184 * @val: The values are stored here or %NULL to return the number of values
 185 * @nval: Size of the @val array
 186 *
 187 * Function reads an array of string properties with @propname from the device
 188 * firmware description and stores them to @val if found.
 189 *
 190 * It's recommended to call device_property_string_array_count() instead of calling
 191 * this function with @val equals %NULL and @nval equals 0.
 192 *
 193 * Return: number of values read on success if @val is non-NULL,
 194 *	   number of values available on success if @val is NULL,
 195 *	   %-EINVAL if given arguments are not valid,
 196 *	   %-ENODATA if the property does not have a value,
 197 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 198 *	   %-EOVERFLOW if the size of the property is not as expected.
 199 *	   %-ENXIO if no suitable firmware interface is present.
 200 */
 201int device_property_read_string_array(struct device *dev, const char *propname,
 202				      const char **val, size_t nval)
 203{
 204	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 205}
 206EXPORT_SYMBOL_GPL(device_property_read_string_array);
 207
 208/**
 209 * device_property_read_string - return a string property of a device
 210 * @dev: Device to get the property of
 211 * @propname: Name of the property
 212 * @val: The value is stored here
 213 *
 214 * Function reads property @propname from the device firmware description and
 215 * stores the value into @val if found. The value is checked to be a string.
 216 *
 217 * Return: %0 if the property was found (success),
 218 *	   %-EINVAL if given arguments are not valid,
 219 *	   %-ENODATA if the property does not have a value,
 220 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 221 *	   %-ENXIO if no suitable firmware interface is present.
 222 */
 223int device_property_read_string(struct device *dev, const char *propname,
 224				const char **val)
 225{
 226	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 227}
 228EXPORT_SYMBOL_GPL(device_property_read_string);
 229
 230/**
 231 * device_property_match_string - find a string in an array and return index
 232 * @dev: Device to get the property of
 233 * @propname: Name of the property holding the array
 234 * @string: String to look for
 235 *
 236 * Find a given string in a string array and if it is found return the
 237 * index back.
 238 *
 239 * Return: index, starting from %0, if the property was found (success),
 240 *	   %-EINVAL if given arguments are not valid,
 241 *	   %-ENODATA if the property does not have a value,
 242 *	   %-EPROTO if the property is not an array of strings,
 243 *	   %-ENXIO if no suitable firmware interface is present.
 244 */
 245int device_property_match_string(struct device *dev, const char *propname,
 246				 const char *string)
 247{
 248	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 249}
 250EXPORT_SYMBOL_GPL(device_property_match_string);
 251
 252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 253					  const char *propname,
 254					  unsigned int elem_size, void *val,
 255					  size_t nval)
 256{
 257	int ret;
 258
 259	if (IS_ERR_OR_NULL(fwnode))
 260		return -EINVAL;
 261
 262	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 263				 elem_size, val, nval);
 264	if (ret != -EINVAL)
 265		return ret;
 
 
 
 266
 267	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 268				  elem_size, val, nval);
 269}
 270
 271/**
 272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 273 * @fwnode: Firmware node to get the property of
 274 * @propname: Name of the property
 275 * @val: The values are stored here or %NULL to return the number of values
 276 * @nval: Size of the @val array
 277 *
 278 * Read an array of u8 properties with @propname from @fwnode and stores them to
 279 * @val if found.
 280 *
 281 * It's recommended to call fwnode_property_count_u8() instead of calling
 282 * this function with @val equals %NULL and @nval equals 0.
 283 *
 284 * Return: number of values if @val was %NULL,
 285 *         %0 if the property was found (success),
 286 *	   %-EINVAL if given arguments are not valid,
 287 *	   %-ENODATA if the property does not have a value,
 288 *	   %-EPROTO if the property is not an array of numbers,
 289 *	   %-EOVERFLOW if the size of the property is not as expected,
 290 *	   %-ENXIO if no suitable firmware interface is present.
 291 */
 292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 293				  const char *propname, u8 *val, size_t nval)
 294{
 295	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 296					      val, nval);
 297}
 298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 299
 300/**
 301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 302 * @fwnode: Firmware node to get the property of
 303 * @propname: Name of the property
 304 * @val: The values are stored here or %NULL to return the number of values
 305 * @nval: Size of the @val array
 306 *
 307 * Read an array of u16 properties with @propname from @fwnode and store them to
 308 * @val if found.
 309 *
 310 * It's recommended to call fwnode_property_count_u16() instead of calling
 311 * this function with @val equals %NULL and @nval equals 0.
 312 *
 313 * Return: number of values if @val was %NULL,
 314 *         %0 if the property was found (success),
 315 *	   %-EINVAL if given arguments are not valid,
 316 *	   %-ENODATA if the property does not have a value,
 317 *	   %-EPROTO if the property is not an array of numbers,
 318 *	   %-EOVERFLOW if the size of the property is not as expected,
 319 *	   %-ENXIO if no suitable firmware interface is present.
 320 */
 321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 322				   const char *propname, u16 *val, size_t nval)
 323{
 324	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 325					      val, nval);
 326}
 327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 328
 329/**
 330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 331 * @fwnode: Firmware node to get the property of
 332 * @propname: Name of the property
 333 * @val: The values are stored here or %NULL to return the number of values
 334 * @nval: Size of the @val array
 335 *
 336 * Read an array of u32 properties with @propname from @fwnode store them to
 337 * @val if found.
 338 *
 339 * It's recommended to call fwnode_property_count_u32() instead of calling
 340 * this function with @val equals %NULL and @nval equals 0.
 341 *
 342 * Return: number of values if @val was %NULL,
 343 *         %0 if the property was found (success),
 344 *	   %-EINVAL if given arguments are not valid,
 345 *	   %-ENODATA if the property does not have a value,
 346 *	   %-EPROTO if the property is not an array of numbers,
 347 *	   %-EOVERFLOW if the size of the property is not as expected,
 348 *	   %-ENXIO if no suitable firmware interface is present.
 349 */
 350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 351				   const char *propname, u32 *val, size_t nval)
 352{
 353	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 354					      val, nval);
 355}
 356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 357
 358/**
 359 * fwnode_property_read_u64_array - return a u64 array property firmware node
 360 * @fwnode: Firmware node to get the property of
 361 * @propname: Name of the property
 362 * @val: The values are stored here or %NULL to return the number of values
 363 * @nval: Size of the @val array
 364 *
 365 * Read an array of u64 properties with @propname from @fwnode and store them to
 366 * @val if found.
 367 *
 368 * It's recommended to call fwnode_property_count_u64() instead of calling
 369 * this function with @val equals %NULL and @nval equals 0.
 370 *
 371 * Return: number of values if @val was %NULL,
 372 *         %0 if the property was found (success),
 373 *	   %-EINVAL if given arguments are not valid,
 374 *	   %-ENODATA if the property does not have a value,
 375 *	   %-EPROTO if the property is not an array of numbers,
 376 *	   %-EOVERFLOW if the size of the property is not as expected,
 377 *	   %-ENXIO if no suitable firmware interface is present.
 378 */
 379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 380				   const char *propname, u64 *val, size_t nval)
 381{
 382	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 383					      val, nval);
 384}
 385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 386
 387/**
 388 * fwnode_property_read_string_array - return string array property of a node
 389 * @fwnode: Firmware node to get the property of
 390 * @propname: Name of the property
 391 * @val: The values are stored here or %NULL to return the number of values
 392 * @nval: Size of the @val array
 393 *
 394 * Read an string list property @propname from the given firmware node and store
 395 * them to @val if found.
 396 *
 397 * It's recommended to call fwnode_property_string_array_count() instead of calling
 398 * this function with @val equals %NULL and @nval equals 0.
 399 *
 400 * Return: number of values read on success if @val is non-NULL,
 401 *	   number of values available on success if @val is NULL,
 402 *	   %-EINVAL if given arguments are not valid,
 403 *	   %-ENODATA if the property does not have a value,
 404 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 405 *	   %-EOVERFLOW if the size of the property is not as expected,
 406 *	   %-ENXIO if no suitable firmware interface is present.
 407 */
 408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 409				      const char *propname, const char **val,
 410				      size_t nval)
 411{
 412	int ret;
 413
 414	if (IS_ERR_OR_NULL(fwnode))
 415		return -EINVAL;
 416
 417	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 418				 val, nval);
 419	if (ret != -EINVAL)
 420		return ret;
 421
 422	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 423				  val, nval);
 
 424}
 425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 426
 427/**
 428 * fwnode_property_read_string - return a string property of a firmware node
 429 * @fwnode: Firmware node to get the property of
 430 * @propname: Name of the property
 431 * @val: The value is stored here
 432 *
 433 * Read property @propname from the given firmware node and store the value into
 434 * @val if found.  The value is checked to be a string.
 435 *
 436 * Return: %0 if the property was found (success),
 437 *	   %-EINVAL if given arguments are not valid,
 438 *	   %-ENODATA if the property does not have a value,
 439 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 440 *	   %-ENXIO if no suitable firmware interface is present.
 441 */
 442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 443				const char *propname, const char **val)
 444{
 445	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 446
 447	return ret < 0 ? ret : 0;
 448}
 449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 450
 451/**
 452 * fwnode_property_match_string - find a string in an array and return index
 453 * @fwnode: Firmware node to get the property of
 454 * @propname: Name of the property holding the array
 455 * @string: String to look for
 456 *
 457 * Find a given string in a string array and if it is found return the
 458 * index back.
 459 *
 460 * Return: index, starting from %0, if the property was found (success),
 461 *	   %-EINVAL if given arguments are not valid,
 462 *	   %-ENODATA if the property does not have a value,
 463 *	   %-EPROTO if the property is not an array of strings,
 464 *	   %-ENXIO if no suitable firmware interface is present.
 465 */
 466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 467	const char *propname, const char *string)
 468{
 469	const char **values;
 470	int nval, ret;
 471
 472	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 473	if (nval < 0)
 474		return nval;
 475
 476	if (nval == 0)
 477		return -ENODATA;
 478
 479	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 480	if (!values)
 481		return -ENOMEM;
 482
 483	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 484	if (ret < 0)
 485		goto out_free;
 486
 487	ret = match_string(values, nval, string);
 488	if (ret < 0)
 489		ret = -ENODATA;
 490
 491out_free:
 492	kfree(values);
 493	return ret;
 494}
 495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 496
 497/**
 498 * fwnode_property_get_reference_args() - Find a reference with arguments
 499 * @fwnode:	Firmware node where to look for the reference
 500 * @prop:	The name of the property
 501 * @nargs_prop:	The name of the property telling the number of
 502 *		arguments in the referred node. NULL if @nargs is known,
 503 *		otherwise @nargs is ignored. Only relevant on OF.
 504 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 505 * @index:	Index of the reference, from zero onwards.
 506 * @args:	Result structure with reference and integer arguments.
 507 *
 508 * Obtain a reference based on a named property in an fwnode, with
 509 * integer arguments.
 510 *
 511 * Caller is responsible to call fwnode_handle_put() on the returned
 512 * args->fwnode pointer.
 513 *
 514 * Returns: %0 on success
 515 *	    %-ENOENT when the index is out of bounds, the index has an empty
 516 *		     reference or the property was not found
 517 *	    %-EINVAL on parse error
 518 */
 519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 520				       const char *prop, const char *nargs_prop,
 521				       unsigned int nargs, unsigned int index,
 522				       struct fwnode_reference_args *args)
 523{
 524	int ret;
 525
 526	if (IS_ERR_OR_NULL(fwnode))
 527		return -ENOENT;
 528
 529	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 530				 nargs, index, args);
 531	if (ret == 0)
 532		return ret;
 533
 534	if (IS_ERR_OR_NULL(fwnode->secondary))
 535		return ret;
 536
 537	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 538				  nargs, index, args);
 539}
 540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 541
 542/**
 543 * fwnode_find_reference - Find named reference to a fwnode_handle
 544 * @fwnode: Firmware node where to look for the reference
 545 * @name: The name of the reference
 546 * @index: Index of the reference
 547 *
 548 * @index can be used when the named reference holds a table of references.
 549 *
 550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
 551 * call fwnode_handle_put() on the returned fwnode pointer.
 552 */
 553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 554					    const char *name,
 555					    unsigned int index)
 556{
 557	struct fwnode_reference_args args;
 558	int ret;
 559
 560	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 561						 &args);
 562	return ret ? ERR_PTR(ret) : args.fwnode;
 563}
 564EXPORT_SYMBOL_GPL(fwnode_find_reference);
 565
 566/**
 567 * fwnode_get_name - Return the name of a node
 568 * @fwnode: The firmware node
 569 *
 570 * Returns a pointer to the node name.
 
 
 571 */
 572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 573{
 574	return fwnode_call_ptr_op(fwnode, get_name);
 575}
 576EXPORT_SYMBOL_GPL(fwnode_get_name);
 577
 578/**
 579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 580 * @fwnode: The firmware node
 581 *
 582 * Returns the prefix of a node, intended to be printed right before the node.
 583 * The prefix works also as a separator between the nodes.
 584 */
 585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 586{
 587	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 588}
 
 589
 590/**
 591 * fwnode_get_parent - Return parent firwmare node
 592 * @fwnode: Firmware whose parent is retrieved
 
 593 *
 594 * Return parent firmware node of the given node if possible or %NULL if no
 595 * parent was available.
 
 
 
 
 596 */
 597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 
 598{
 599	return fwnode_call_ptr_op(fwnode, get_parent);
 
 
 
 
 
 
 
 600}
 601EXPORT_SYMBOL_GPL(fwnode_get_parent);
 602
 603/**
 604 * fwnode_get_next_parent - Iterate to the node's parent
 605 * @fwnode: Firmware whose parent is retrieved
 606 *
 607 * This is like fwnode_get_parent() except that it drops the refcount
 608 * on the passed node, making it suitable for iterating through a
 609 * node's parents.
 610 *
 611 * Returns a node pointer with refcount incremented, use
 612 * fwnode_handle_put() on it when done.
 613 */
 614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 615{
 616	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 617
 618	fwnode_handle_put(fwnode);
 619
 620	return parent;
 621}
 622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 623
 624/**
 625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
 626 * @fwnode: firmware node
 627 *
 628 * Given a firmware node (@fwnode), this function finds its closest ancestor
 629 * firmware node that has a corresponding struct device and returns that struct
 630 * device.
 631 *
 632 * The caller of this function is expected to call put_device() on the returned
 633 * device when they are done.
 634 */
 635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
 636{
 637	struct fwnode_handle *parent;
 638	struct device *dev;
 639
 640	fwnode_for_each_parent_node(fwnode, parent) {
 641		dev = get_dev_from_fwnode(parent);
 642		if (dev) {
 643			fwnode_handle_put(parent);
 644			return dev;
 645		}
 646	}
 647	return NULL;
 648}
 649
 650/**
 651 * fwnode_count_parents - Return the number of parents a node has
 652 * @fwnode: The node the parents of which are to be counted
 653 *
 654 * Returns the number of parents a node has.
 655 */
 656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 657{
 658	struct fwnode_handle *parent;
 659	unsigned int count = 0;
 660
 661	fwnode_for_each_parent_node(fwnode, parent)
 662		count++;
 663
 664	return count;
 665}
 666EXPORT_SYMBOL_GPL(fwnode_count_parents);
 667
 668/**
 669 * fwnode_get_nth_parent - Return an nth parent of a node
 670 * @fwnode: The node the parent of which is requested
 671 * @depth: Distance of the parent from the node
 672 *
 673 * Returns the nth parent of a node. If there is no parent at the requested
 674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 676 *
 677 * The caller is responsible for calling fwnode_handle_put() for the returned
 678 * node.
 679 */
 680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 681					    unsigned int depth)
 682{
 683	struct fwnode_handle *parent;
 684
 685	if (depth == 0)
 686		return fwnode_handle_get(fwnode);
 687
 688	fwnode_for_each_parent_node(fwnode, parent) {
 689		if (--depth == 0)
 690			return parent;
 691	}
 692	return NULL;
 693}
 694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 695
 696/**
 697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
 698 * @ancestor: Firmware which is tested for being an ancestor
 699 * @child: Firmware which is tested for being the child
 700 *
 701 * A node is considered an ancestor of itself too.
 702 *
 703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
 
 704 */
 705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
 706{
 707	struct fwnode_handle *parent;
 708
 709	if (IS_ERR_OR_NULL(ancestor))
 710		return false;
 711
 712	if (child == ancestor)
 713		return true;
 714
 715	fwnode_for_each_parent_node(child, parent) {
 716		if (parent == ancestor) {
 717			fwnode_handle_put(parent);
 718			return true;
 719		}
 720	}
 721	return false;
 722}
 
 723
 724/**
 725 * fwnode_get_next_child_node - Return the next child node handle for a node
 726 * @fwnode: Firmware node to find the next child node for.
 727 * @child: Handle to one of the node's child nodes or a %NULL handle.
 728 */
 729struct fwnode_handle *
 730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 731			   struct fwnode_handle *child)
 732{
 733	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 734}
 735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 736
 737/**
 738 * fwnode_get_next_available_child_node - Return the next
 739 * available child node handle for a node
 740 * @fwnode: Firmware node to find the next child node for.
 741 * @child: Handle to one of the node's child nodes or a %NULL handle.
 742 */
 743struct fwnode_handle *
 744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 745				     struct fwnode_handle *child)
 746{
 747	struct fwnode_handle *next_child = child;
 748
 749	if (IS_ERR_OR_NULL(fwnode))
 750		return NULL;
 751
 752	do {
 753		next_child = fwnode_get_next_child_node(fwnode, next_child);
 754		if (!next_child)
 755			return NULL;
 756	} while (!fwnode_device_is_available(next_child));
 
 757
 758	return next_child;
 759}
 760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 761
 762/**
 763 * device_get_next_child_node - Return the next child node handle for a device
 764 * @dev: Device to find the next child node for.
 765 * @child: Handle to one of the device's child nodes or a null handle.
 766 */
 767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 768						 struct fwnode_handle *child)
 769{
 770	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 771	struct fwnode_handle *next;
 772
 773	if (IS_ERR_OR_NULL(fwnode))
 774		return NULL;
 
 
 775
 776	/* Try to find a child in primary fwnode */
 777	next = fwnode_get_next_child_node(fwnode, child);
 778	if (next)
 779		return next;
 780
 781	/* When no more children in primary, continue with secondary */
 782	return fwnode_get_next_child_node(fwnode->secondary, child);
 783}
 784EXPORT_SYMBOL_GPL(device_get_next_child_node);
 785
 786/**
 787 * fwnode_get_named_child_node - Return first matching named child node handle
 788 * @fwnode: Firmware node to find the named child node for.
 789 * @childname: String to match child node name against.
 790 */
 791struct fwnode_handle *
 792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 793			    const char *childname)
 794{
 795	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 796}
 797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 798
 799/**
 800 * device_get_named_child_node - Return first matching named child node handle
 801 * @dev: Device to find the named child node for.
 802 * @childname: String to match child node name against.
 803 */
 804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 805						  const char *childname)
 806{
 807	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 808}
 809EXPORT_SYMBOL_GPL(device_get_named_child_node);
 810
 811/**
 812 * fwnode_handle_get - Obtain a reference to a device node
 813 * @fwnode: Pointer to the device node to obtain the reference to.
 814 *
 815 * Returns the fwnode handle.
 816 */
 817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 818{
 819	if (!fwnode_has_op(fwnode, get))
 820		return fwnode;
 821
 822	return fwnode_call_ptr_op(fwnode, get);
 823}
 824EXPORT_SYMBOL_GPL(fwnode_handle_get);
 825
 826/**
 827 * fwnode_handle_put - Drop reference to a device node
 828 * @fwnode: Pointer to the device node to drop the reference to.
 829 *
 830 * This has to be used when terminating device_for_each_child_node() iteration
 831 * with break or return to prevent stale device node references from being left
 832 * behind.
 833 */
 834void fwnode_handle_put(struct fwnode_handle *fwnode)
 835{
 836	fwnode_call_void_op(fwnode, put);
 837}
 838EXPORT_SYMBOL_GPL(fwnode_handle_put);
 839
 840/**
 841 * fwnode_device_is_available - check if a device is available for use
 842 * @fwnode: Pointer to the fwnode of the device.
 843 *
 844 * For fwnode node types that don't implement the .device_is_available()
 845 * operation, this function returns true.
 846 */
 847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 848{
 849	if (IS_ERR_OR_NULL(fwnode))
 850		return false;
 851
 852	if (!fwnode_has_op(fwnode, device_is_available))
 853		return true;
 854
 855	return fwnode_call_bool_op(fwnode, device_is_available);
 856}
 857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 858
 859/**
 860 * device_get_child_node_count - return the number of child nodes for device
 861 * @dev: Device to cound the child nodes for
 862 */
 863unsigned int device_get_child_node_count(const struct device *dev)
 864{
 865	struct fwnode_handle *child;
 866	unsigned int count = 0;
 867
 868	device_for_each_child_node(dev, child)
 869		count++;
 870
 871	return count;
 872}
 873EXPORT_SYMBOL_GPL(device_get_child_node_count);
 874
 875bool device_dma_supported(const struct device *dev)
 876{
 877	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 
 
 
 
 
 
 
 878}
 879EXPORT_SYMBOL_GPL(device_dma_supported);
 880
 881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 882{
 883	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 884		return DEV_DMA_NOT_SUPPORTED;
 885
 886	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 
 
 
 
 
 
 
 
 887}
 888EXPORT_SYMBOL_GPL(device_get_dma_attr);
 889
 890/**
 891 * fwnode_get_phy_mode - Get phy mode for given firmware node
 892 * @fwnode:	Pointer to the given node
 893 *
 894 * The function gets phy interface string from property 'phy-mode' or
 895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 896 * error case.
 897 */
 898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
 899{
 900	const char *pm;
 901	int err, i;
 902
 903	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 904	if (err < 0)
 905		err = fwnode_property_read_string(fwnode,
 906						  "phy-connection-type", &pm);
 907	if (err < 0)
 908		return err;
 909
 910	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 911		if (!strcasecmp(pm, phy_modes(i)))
 912			return i;
 913
 914	return -ENODEV;
 915}
 916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 917
 918/**
 919 * device_get_phy_mode - Get phy mode for given device
 920 * @dev:	Pointer to the given device
 921 *
 922 * The function gets phy interface string from property 'phy-mode' or
 923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 924 * error case.
 925 */
 926int device_get_phy_mode(struct device *dev)
 927{
 928	return fwnode_get_phy_mode(dev_fwnode(dev));
 929}
 930EXPORT_SYMBOL_GPL(device_get_phy_mode);
 931
 
 
 
 
 
 
 
 
 
 
 
 932/**
 933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
 934 * @fwnode:	Pointer to the firmware node
 935 * @index:	Index of the IO range
 
 936 *
 937 * Returns a pointer to the mapped memory.
 938 */
 939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940{
 941	return fwnode_call_ptr_op(fwnode, iomap, index);
 
 
 
 
 
 
 
 
 
 
 942}
 943EXPORT_SYMBOL(fwnode_iomap);
 944
 945/**
 946 * fwnode_irq_get - Get IRQ directly from a fwnode
 947 * @fwnode:	Pointer to the firmware node
 948 * @index:	Zero-based index of the IRQ
 949 *
 950 * Returns Linux IRQ number on success. Other values are determined
 951 * accordingly to acpi_/of_ irq_get() operation.
 952 */
 953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
 954{
 955	return fwnode_call_int_op(fwnode, irq_get, index);
 956}
 957EXPORT_SYMBOL(fwnode_irq_get);
 958
 959/**
 960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
 961 * @fwnode:	Pointer to the firmware node
 962 * @name:	IRQ name
 963 *
 964 * Description:
 965 * Find a match to the string @name in the 'interrupt-names' string array
 966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
 967 * number of the IRQ resource corresponding to the index of the matched
 968 * string.
 969 *
 970 * Return:
 971 * Linux IRQ number on success, or negative errno otherwise.
 972 */
 973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
 974{
 975	int index;
 
 
 976
 977	if (!name)
 978		return -EINVAL;
 979
 980	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
 981	if (index < 0)
 982		return index;
 983
 984	return fwnode_irq_get(fwnode, index);
 985}
 986EXPORT_SYMBOL(fwnode_irq_get_byname);
 987
 988/**
 989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
 990 * @fwnode: Pointer to the parent firmware node
 991 * @prev: Previous endpoint node or %NULL to get the first
 992 *
 993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 994 * are available.
 995 */
 996struct fwnode_handle *
 997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 998			       struct fwnode_handle *prev)
 999{
1000	struct fwnode_handle *ep, *port_parent = NULL;
1001	const struct fwnode_handle *parent;
1002
1003	/*
1004	 * If this function is in a loop and the previous iteration returned
1005	 * an endpoint from fwnode->secondary, then we need to use the secondary
1006	 * as parent rather than @fwnode.
1007	 */
1008	if (prev) {
1009		port_parent = fwnode_graph_get_port_parent(prev);
1010		parent = port_parent;
1011	} else {
1012		parent = fwnode;
1013	}
1014	if (IS_ERR_OR_NULL(parent))
1015		return NULL;
1016
1017	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018	if (ep)
1019		goto out_put_port_parent;
1020
1021	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024	fwnode_handle_put(port_parent);
1025	return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038	struct fwnode_handle *port, *parent;
1039
1040	port = fwnode_get_parent(endpoint);
1041	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043	fwnode_handle_put(port);
1044
1045	return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058	struct fwnode_handle *endpoint, *parent;
1059
1060	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061	parent = fwnode_graph_get_port_parent(endpoint);
1062
1063	fwnode_handle_put(endpoint);
1064
1065	return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
 
 
 
 
 
 
 
 
 
 
 
1096{
1097	struct fwnode_handle *dev_node;
1098	bool available;
 
 
 
 
 
 
 
 
1099
1100	dev_node = fwnode_graph_get_remote_port_parent(ep);
1101	available = fwnode_device_is_available(dev_node);
1102	fwnode_handle_put(dev_node);
 
 
 
1103
1104	return available;
 
 
 
1105}
 
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129				u32 port, u32 endpoint, unsigned long flags)
1130{
1131	struct fwnode_handle *ep, *best_ep = NULL;
1132	unsigned int best_ep_id = 0;
1133	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136	fwnode_graph_for_each_endpoint(fwnode, ep) {
1137		struct fwnode_endpoint fwnode_ep = { 0 };
1138		int ret;
1139
1140		if (enabled_only && !fwnode_graph_remote_available(ep))
1141			continue;
 
 
 
 
 
 
 
 
1142
1143		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144		if (ret < 0)
1145			continue;
1146
1147		if (fwnode_ep.port != port)
1148			continue;
1149
1150		if (fwnode_ep.id == endpoint)
1151			return ep;
1152
1153		if (!endpoint_next)
1154			continue;
1155
1156		/*
1157		 * If the endpoint that has just been found is not the first
1158		 * matching one and the ID of the one found previously is closer
1159		 * to the requested endpoint ID, skip it.
1160		 */
1161		if (fwnode_ep.id < endpoint ||
1162		    (best_ep && best_ep_id < fwnode_ep.id))
1163			continue;
1164
1165		fwnode_handle_put(best_ep);
1166		best_ep = fwnode_handle_get(ep);
1167		best_ep_id = fwnode_ep.id;
1168	}
1169
1170	return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184					     unsigned long flags)
1185{
1186	struct fwnode_handle *ep;
1187	unsigned int count = 0;
1188
1189	fwnode_graph_for_each_endpoint(fwnode, ep) {
1190		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191		    fwnode_graph_remote_available(ep))
1192			count++;
1193	}
1194
1195	return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209				struct fwnode_endpoint *endpoint)
1210{
1211	memset(endpoint, 0, sizeof(*endpoint));
1212
1213	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224						const char *con_id, void *data,
1225						devcon_match_fn_t match,
1226						void **matches,
1227						unsigned int matches_len)
1228{
1229	struct fwnode_handle *node;
1230	struct fwnode_handle *ep;
1231	unsigned int count = 0;
1232	void *ret;
1233
1234	fwnode_graph_for_each_endpoint(fwnode, ep) {
1235		if (matches && count >= matches_len) {
1236			fwnode_handle_put(ep);
1237			break;
1238		}
1239
1240		node = fwnode_graph_get_remote_port_parent(ep);
1241		if (!fwnode_device_is_available(node)) {
1242			fwnode_handle_put(node);
1243			continue;
1244		}
1245
1246		ret = match(node, con_id, data);
1247		fwnode_handle_put(node);
1248		if (ret) {
1249			if (matches)
1250				matches[count] = ret;
1251			count++;
1252		}
1253	}
1254	return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258					  const char *con_id, void *data,
1259					  devcon_match_fn_t match,
1260					  void **matches,
1261					  unsigned int matches_len)
1262{
1263	struct fwnode_handle *node;
1264	unsigned int count = 0;
1265	unsigned int i;
1266	void *ret;
1267
1268	for (i = 0; ; i++) {
1269		if (matches && count >= matches_len)
1270			break;
1271
1272		node = fwnode_find_reference(fwnode, con_id, i);
1273		if (IS_ERR(node))
1274			break;
1275
1276		ret = match(node, NULL, data);
1277		fwnode_handle_put(node);
1278		if (ret) {
1279			if (matches)
1280				matches[count] = ret;
1281			count++;
1282		}
1283	}
1284
1285	return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300				   const char *con_id, void *data,
1301				   devcon_match_fn_t match)
1302{
1303	unsigned int count;
1304	void *ret;
1305
1306	if (!fwnode || !match)
1307		return NULL;
1308
1309	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310	if (count)
1311		return ret;
1312
1313	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314	return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337				   const char *con_id, void *data,
1338				   devcon_match_fn_t match,
1339				   void **matches, unsigned int matches_len)
1340{
1341	unsigned int count_graph;
1342	unsigned int count_ref;
1343
1344	if (!fwnode || !match)
1345		return -EINVAL;
1346
1347	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348						  matches, matches_len);
1349
1350	if (matches) {
1351		matches += count_graph;
1352		matches_len -= count_graph;
1353	}
1354
1355	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356					  matches, matches_len);
1357
1358	return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
  20
  21struct fwnode_handle *dev_fwnode(struct device *dev)
  22{
  23	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  24		&dev->of_node->fwnode : dev->fwnode;
  25}
  26EXPORT_SYMBOL_GPL(dev_fwnode);
 
 
 
 
 
 
 
  27
  28/**
  29 * device_property_present - check if a property of a device is present
  30 * @dev: Device whose property is being checked
  31 * @propname: Name of the property
  32 *
  33 * Check if property @propname is present in the device firmware description.
  34 */
  35bool device_property_present(struct device *dev, const char *propname)
  36{
  37	return fwnode_property_present(dev_fwnode(dev), propname);
  38}
  39EXPORT_SYMBOL_GPL(device_property_present);
  40
  41/**
  42 * fwnode_property_present - check if a property of a firmware node is present
  43 * @fwnode: Firmware node whose property to check
  44 * @propname: Name of the property
  45 */
  46bool fwnode_property_present(const struct fwnode_handle *fwnode,
  47			     const char *propname)
  48{
  49	bool ret;
  50
 
 
 
  51	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  52	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
  53	    !IS_ERR_OR_NULL(fwnode->secondary))
  54		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
  55					 propname);
  56	return ret;
  57}
  58EXPORT_SYMBOL_GPL(fwnode_property_present);
  59
  60/**
  61 * device_property_read_u8_array - return a u8 array property of a device
  62 * @dev: Device to get the property of
  63 * @propname: Name of the property
  64 * @val: The values are stored here or %NULL to return the number of values
  65 * @nval: Size of the @val array
  66 *
  67 * Function reads an array of u8 properties with @propname from the device
  68 * firmware description and stores them to @val if found.
  69 *
 
 
 
  70 * Return: number of values if @val was %NULL,
  71 *         %0 if the property was found (success),
  72 *	   %-EINVAL if given arguments are not valid,
  73 *	   %-ENODATA if the property does not have a value,
  74 *	   %-EPROTO if the property is not an array of numbers,
  75 *	   %-EOVERFLOW if the size of the property is not as expected.
  76 *	   %-ENXIO if no suitable firmware interface is present.
  77 */
  78int device_property_read_u8_array(struct device *dev, const char *propname,
  79				  u8 *val, size_t nval)
  80{
  81	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  82}
  83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  84
  85/**
  86 * device_property_read_u16_array - return a u16 array property of a device
  87 * @dev: Device to get the property of
  88 * @propname: Name of the property
  89 * @val: The values are stored here or %NULL to return the number of values
  90 * @nval: Size of the @val array
  91 *
  92 * Function reads an array of u16 properties with @propname from the device
  93 * firmware description and stores them to @val if found.
  94 *
 
 
 
  95 * Return: number of values if @val was %NULL,
  96 *         %0 if the property was found (success),
  97 *	   %-EINVAL if given arguments are not valid,
  98 *	   %-ENODATA if the property does not have a value,
  99 *	   %-EPROTO if the property is not an array of numbers,
 100 *	   %-EOVERFLOW if the size of the property is not as expected.
 101 *	   %-ENXIO if no suitable firmware interface is present.
 102 */
 103int device_property_read_u16_array(struct device *dev, const char *propname,
 104				   u16 *val, size_t nval)
 105{
 106	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 107}
 108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 109
 110/**
 111 * device_property_read_u32_array - return a u32 array property of a device
 112 * @dev: Device to get the property of
 113 * @propname: Name of the property
 114 * @val: The values are stored here or %NULL to return the number of values
 115 * @nval: Size of the @val array
 116 *
 117 * Function reads an array of u32 properties with @propname from the device
 118 * firmware description and stores them to @val if found.
 119 *
 
 
 
 120 * Return: number of values if @val was %NULL,
 121 *         %0 if the property was found (success),
 122 *	   %-EINVAL if given arguments are not valid,
 123 *	   %-ENODATA if the property does not have a value,
 124 *	   %-EPROTO if the property is not an array of numbers,
 125 *	   %-EOVERFLOW if the size of the property is not as expected.
 126 *	   %-ENXIO if no suitable firmware interface is present.
 127 */
 128int device_property_read_u32_array(struct device *dev, const char *propname,
 129				   u32 *val, size_t nval)
 130{
 131	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 132}
 133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 134
 135/**
 136 * device_property_read_u64_array - return a u64 array property of a device
 137 * @dev: Device to get the property of
 138 * @propname: Name of the property
 139 * @val: The values are stored here or %NULL to return the number of values
 140 * @nval: Size of the @val array
 141 *
 142 * Function reads an array of u64 properties with @propname from the device
 143 * firmware description and stores them to @val if found.
 144 *
 
 
 
 145 * Return: number of values if @val was %NULL,
 146 *         %0 if the property was found (success),
 147 *	   %-EINVAL if given arguments are not valid,
 148 *	   %-ENODATA if the property does not have a value,
 149 *	   %-EPROTO if the property is not an array of numbers,
 150 *	   %-EOVERFLOW if the size of the property is not as expected.
 151 *	   %-ENXIO if no suitable firmware interface is present.
 152 */
 153int device_property_read_u64_array(struct device *dev, const char *propname,
 154				   u64 *val, size_t nval)
 155{
 156	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 157}
 158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 159
 160/**
 161 * device_property_read_string_array - return a string array property of device
 162 * @dev: Device to get the property of
 163 * @propname: Name of the property
 164 * @val: The values are stored here or %NULL to return the number of values
 165 * @nval: Size of the @val array
 166 *
 167 * Function reads an array of string properties with @propname from the device
 168 * firmware description and stores them to @val if found.
 169 *
 
 
 
 170 * Return: number of values read on success if @val is non-NULL,
 171 *	   number of values available on success if @val is NULL,
 172 *	   %-EINVAL if given arguments are not valid,
 173 *	   %-ENODATA if the property does not have a value,
 174 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 175 *	   %-EOVERFLOW if the size of the property is not as expected.
 176 *	   %-ENXIO if no suitable firmware interface is present.
 177 */
 178int device_property_read_string_array(struct device *dev, const char *propname,
 179				      const char **val, size_t nval)
 180{
 181	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 182}
 183EXPORT_SYMBOL_GPL(device_property_read_string_array);
 184
 185/**
 186 * device_property_read_string - return a string property of a device
 187 * @dev: Device to get the property of
 188 * @propname: Name of the property
 189 * @val: The value is stored here
 190 *
 191 * Function reads property @propname from the device firmware description and
 192 * stores the value into @val if found. The value is checked to be a string.
 193 *
 194 * Return: %0 if the property was found (success),
 195 *	   %-EINVAL if given arguments are not valid,
 196 *	   %-ENODATA if the property does not have a value,
 197 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 198 *	   %-ENXIO if no suitable firmware interface is present.
 199 */
 200int device_property_read_string(struct device *dev, const char *propname,
 201				const char **val)
 202{
 203	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 204}
 205EXPORT_SYMBOL_GPL(device_property_read_string);
 206
 207/**
 208 * device_property_match_string - find a string in an array and return index
 209 * @dev: Device to get the property of
 210 * @propname: Name of the property holding the array
 211 * @string: String to look for
 212 *
 213 * Find a given string in a string array and if it is found return the
 214 * index back.
 215 *
 216 * Return: %0 if the property was found (success),
 217 *	   %-EINVAL if given arguments are not valid,
 218 *	   %-ENODATA if the property does not have a value,
 219 *	   %-EPROTO if the property is not an array of strings,
 220 *	   %-ENXIO if no suitable firmware interface is present.
 221 */
 222int device_property_match_string(struct device *dev, const char *propname,
 223				 const char *string)
 224{
 225	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 226}
 227EXPORT_SYMBOL_GPL(device_property_match_string);
 228
 229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 230					  const char *propname,
 231					  unsigned int elem_size, void *val,
 232					  size_t nval)
 233{
 234	int ret;
 235
 
 
 
 236	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 237				 elem_size, val, nval);
 238	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 239	    !IS_ERR_OR_NULL(fwnode->secondary))
 240		ret = fwnode_call_int_op(
 241			fwnode->secondary, property_read_int_array, propname,
 242			elem_size, val, nval);
 243
 244	return ret;
 
 245}
 246
 247/**
 248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 249 * @fwnode: Firmware node to get the property of
 250 * @propname: Name of the property
 251 * @val: The values are stored here or %NULL to return the number of values
 252 * @nval: Size of the @val array
 253 *
 254 * Read an array of u8 properties with @propname from @fwnode and stores them to
 255 * @val if found.
 256 *
 
 
 
 257 * Return: number of values if @val was %NULL,
 258 *         %0 if the property was found (success),
 259 *	   %-EINVAL if given arguments are not valid,
 260 *	   %-ENODATA if the property does not have a value,
 261 *	   %-EPROTO if the property is not an array of numbers,
 262 *	   %-EOVERFLOW if the size of the property is not as expected,
 263 *	   %-ENXIO if no suitable firmware interface is present.
 264 */
 265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 266				  const char *propname, u8 *val, size_t nval)
 267{
 268	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 269					      val, nval);
 270}
 271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 272
 273/**
 274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 275 * @fwnode: Firmware node to get the property of
 276 * @propname: Name of the property
 277 * @val: The values are stored here or %NULL to return the number of values
 278 * @nval: Size of the @val array
 279 *
 280 * Read an array of u16 properties with @propname from @fwnode and store them to
 281 * @val if found.
 282 *
 
 
 
 283 * Return: number of values if @val was %NULL,
 284 *         %0 if the property was found (success),
 285 *	   %-EINVAL if given arguments are not valid,
 286 *	   %-ENODATA if the property does not have a value,
 287 *	   %-EPROTO if the property is not an array of numbers,
 288 *	   %-EOVERFLOW if the size of the property is not as expected,
 289 *	   %-ENXIO if no suitable firmware interface is present.
 290 */
 291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 292				   const char *propname, u16 *val, size_t nval)
 293{
 294	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 295					      val, nval);
 296}
 297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 298
 299/**
 300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 301 * @fwnode: Firmware node to get the property of
 302 * @propname: Name of the property
 303 * @val: The values are stored here or %NULL to return the number of values
 304 * @nval: Size of the @val array
 305 *
 306 * Read an array of u32 properties with @propname from @fwnode store them to
 307 * @val if found.
 308 *
 
 
 
 309 * Return: number of values if @val was %NULL,
 310 *         %0 if the property was found (success),
 311 *	   %-EINVAL if given arguments are not valid,
 312 *	   %-ENODATA if the property does not have a value,
 313 *	   %-EPROTO if the property is not an array of numbers,
 314 *	   %-EOVERFLOW if the size of the property is not as expected,
 315 *	   %-ENXIO if no suitable firmware interface is present.
 316 */
 317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 318				   const char *propname, u32 *val, size_t nval)
 319{
 320	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 321					      val, nval);
 322}
 323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 324
 325/**
 326 * fwnode_property_read_u64_array - return a u64 array property firmware node
 327 * @fwnode: Firmware node to get the property of
 328 * @propname: Name of the property
 329 * @val: The values are stored here or %NULL to return the number of values
 330 * @nval: Size of the @val array
 331 *
 332 * Read an array of u64 properties with @propname from @fwnode and store them to
 333 * @val if found.
 334 *
 
 
 
 335 * Return: number of values if @val was %NULL,
 336 *         %0 if the property was found (success),
 337 *	   %-EINVAL if given arguments are not valid,
 338 *	   %-ENODATA if the property does not have a value,
 339 *	   %-EPROTO if the property is not an array of numbers,
 340 *	   %-EOVERFLOW if the size of the property is not as expected,
 341 *	   %-ENXIO if no suitable firmware interface is present.
 342 */
 343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 344				   const char *propname, u64 *val, size_t nval)
 345{
 346	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 347					      val, nval);
 348}
 349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 350
 351/**
 352 * fwnode_property_read_string_array - return string array property of a node
 353 * @fwnode: Firmware node to get the property of
 354 * @propname: Name of the property
 355 * @val: The values are stored here or %NULL to return the number of values
 356 * @nval: Size of the @val array
 357 *
 358 * Read an string list property @propname from the given firmware node and store
 359 * them to @val if found.
 360 *
 
 
 
 361 * Return: number of values read on success if @val is non-NULL,
 362 *	   number of values available on success if @val is NULL,
 363 *	   %-EINVAL if given arguments are not valid,
 364 *	   %-ENODATA if the property does not have a value,
 365 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 366 *	   %-EOVERFLOW if the size of the property is not as expected,
 367 *	   %-ENXIO if no suitable firmware interface is present.
 368 */
 369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 370				      const char *propname, const char **val,
 371				      size_t nval)
 372{
 373	int ret;
 374
 
 
 
 375	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 376				 val, nval);
 377	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 378	    !IS_ERR_OR_NULL(fwnode->secondary))
 379		ret = fwnode_call_int_op(fwnode->secondary,
 380					 property_read_string_array, propname,
 381					 val, nval);
 382	return ret;
 383}
 384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 385
 386/**
 387 * fwnode_property_read_string - return a string property of a firmware node
 388 * @fwnode: Firmware node to get the property of
 389 * @propname: Name of the property
 390 * @val: The value is stored here
 391 *
 392 * Read property @propname from the given firmware node and store the value into
 393 * @val if found.  The value is checked to be a string.
 394 *
 395 * Return: %0 if the property was found (success),
 396 *	   %-EINVAL if given arguments are not valid,
 397 *	   %-ENODATA if the property does not have a value,
 398 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 399 *	   %-ENXIO if no suitable firmware interface is present.
 400 */
 401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 402				const char *propname, const char **val)
 403{
 404	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 405
 406	return ret < 0 ? ret : 0;
 407}
 408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 409
 410/**
 411 * fwnode_property_match_string - find a string in an array and return index
 412 * @fwnode: Firmware node to get the property of
 413 * @propname: Name of the property holding the array
 414 * @string: String to look for
 415 *
 416 * Find a given string in a string array and if it is found return the
 417 * index back.
 418 *
 419 * Return: %0 if the property was found (success),
 420 *	   %-EINVAL if given arguments are not valid,
 421 *	   %-ENODATA if the property does not have a value,
 422 *	   %-EPROTO if the property is not an array of strings,
 423 *	   %-ENXIO if no suitable firmware interface is present.
 424 */
 425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 426	const char *propname, const char *string)
 427{
 428	const char **values;
 429	int nval, ret;
 430
 431	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 432	if (nval < 0)
 433		return nval;
 434
 435	if (nval == 0)
 436		return -ENODATA;
 437
 438	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 439	if (!values)
 440		return -ENOMEM;
 441
 442	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 443	if (ret < 0)
 444		goto out;
 445
 446	ret = match_string(values, nval, string);
 447	if (ret < 0)
 448		ret = -ENODATA;
 449out:
 
 450	kfree(values);
 451	return ret;
 452}
 453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 454
 455/**
 456 * fwnode_property_get_reference_args() - Find a reference with arguments
 457 * @fwnode:	Firmware node where to look for the reference
 458 * @prop:	The name of the property
 459 * @nargs_prop:	The name of the property telling the number of
 460 *		arguments in the referred node. NULL if @nargs is known,
 461 *		otherwise @nargs is ignored. Only relevant on OF.
 462 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 463 * @index:	Index of the reference, from zero onwards.
 464 * @args:	Result structure with reference and integer arguments.
 465 *
 466 * Obtain a reference based on a named property in an fwnode, with
 467 * integer arguments.
 468 *
 469 * Caller is responsible to call fwnode_handle_put() on the returned
 470 * args->fwnode pointer.
 471 *
 472 * Returns: %0 on success
 473 *	    %-ENOENT when the index is out of bounds, the index has an empty
 474 *		     reference or the property was not found
 475 *	    %-EINVAL on parse error
 476 */
 477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 478				       const char *prop, const char *nargs_prop,
 479				       unsigned int nargs, unsigned int index,
 480				       struct fwnode_reference_args *args)
 481{
 482	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 
 
 
 
 
 
 
 
 
 
 
 
 
 483				  nargs, index, args);
 484}
 485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 486
 487/**
 488 * fwnode_find_reference - Find named reference to a fwnode_handle
 489 * @fwnode: Firmware node where to look for the reference
 490 * @name: The name of the reference
 491 * @index: Index of the reference
 492 *
 493 * @index can be used when the named reference holds a table of references.
 494 *
 495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
 496 * call fwnode_handle_put() on the returned fwnode pointer.
 497 */
 498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 499					    const char *name,
 500					    unsigned int index)
 501{
 502	struct fwnode_reference_args args;
 503	int ret;
 504
 505	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 506						 &args);
 507	return ret ? ERR_PTR(ret) : args.fwnode;
 508}
 509EXPORT_SYMBOL_GPL(fwnode_find_reference);
 510
 511/**
 512 * device_remove_properties - Remove properties from a device object.
 513 * @dev: Device whose properties to remove.
 514 *
 515 * The function removes properties previously associated to the device
 516 * firmware node with device_add_properties(). Memory allocated to the
 517 * properties will also be released.
 518 */
 519void device_remove_properties(struct device *dev)
 520{
 521	struct fwnode_handle *fwnode = dev_fwnode(dev);
 
 
 522
 523	if (!fwnode)
 524		return;
 525
 526	if (is_software_node(fwnode->secondary)) {
 527		fwnode_remove_software_node(fwnode->secondary);
 528		set_secondary_fwnode(dev, NULL);
 529	}
 
 
 
 530}
 531EXPORT_SYMBOL_GPL(device_remove_properties);
 532
 533/**
 534 * device_add_properties - Add a collection of properties to a device object.
 535 * @dev: Device to add properties to.
 536 * @properties: Collection of properties to add.
 537 *
 538 * Associate a collection of device properties represented by @properties with
 539 * @dev. The function takes a copy of @properties.
 540 *
 541 * WARNING: The callers should not use this function if it is known that there
 542 * is no real firmware node associated with @dev! In that case the callers
 543 * should create a software node and assign it to @dev directly.
 544 */
 545int device_add_properties(struct device *dev,
 546			  const struct property_entry *properties)
 547{
 548	struct fwnode_handle *fwnode;
 549
 550	fwnode = fwnode_create_software_node(properties, NULL);
 551	if (IS_ERR(fwnode))
 552		return PTR_ERR(fwnode);
 553
 554	set_secondary_fwnode(dev, fwnode);
 555	return 0;
 556}
 557EXPORT_SYMBOL_GPL(device_add_properties);
 558
 559/**
 560 * fwnode_get_next_parent - Iterate to the node's parent
 561 * @fwnode: Firmware whose parent is retrieved
 562 *
 563 * This is like fwnode_get_parent() except that it drops the refcount
 564 * on the passed node, making it suitable for iterating through a
 565 * node's parents.
 566 *
 567 * Returns a node pointer with refcount incremented, use
 568 * fwnode_handle_node() on it when done.
 569 */
 570struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 571{
 572	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 573
 574	fwnode_handle_put(fwnode);
 575
 576	return parent;
 577}
 578EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 579
 580/**
 581 * fwnode_get_parent - Return parent firwmare node
 582 * @fwnode: Firmware whose parent is retrieved
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583 *
 584 * Return parent firmware node of the given node if possible or %NULL if no
 585 * parent was available.
 586 */
 587struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 588{
 589	return fwnode_call_ptr_op(fwnode, get_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590}
 591EXPORT_SYMBOL_GPL(fwnode_get_parent);
 592
 593/**
 594 * fwnode_get_next_child_node - Return the next child node handle for a node
 595 * @fwnode: Firmware node to find the next child node for.
 596 * @child: Handle to one of the node's child nodes or a %NULL handle.
 597 */
 598struct fwnode_handle *
 599fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 600			   struct fwnode_handle *child)
 601{
 602	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 603}
 604EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 605
 606/**
 607 * fwnode_get_next_available_child_node - Return the next
 608 * available child node handle for a node
 609 * @fwnode: Firmware node to find the next child node for.
 610 * @child: Handle to one of the node's child nodes or a %NULL handle.
 611 */
 612struct fwnode_handle *
 613fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 614				     struct fwnode_handle *child)
 615{
 616	struct fwnode_handle *next_child = child;
 617
 618	if (!fwnode)
 619		return NULL;
 620
 621	do {
 622		next_child = fwnode_get_next_child_node(fwnode, next_child);
 623
 624		if (!next_child || fwnode_device_is_available(next_child))
 625			break;
 626	} while (next_child);
 627
 628	return next_child;
 629}
 630EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 631
 632/**
 633 * device_get_next_child_node - Return the next child node handle for a device
 634 * @dev: Device to find the next child node for.
 635 * @child: Handle to one of the device's child nodes or a null handle.
 636 */
 637struct fwnode_handle *device_get_next_child_node(struct device *dev,
 638						 struct fwnode_handle *child)
 639{
 640	struct acpi_device *adev = ACPI_COMPANION(dev);
 641	struct fwnode_handle *fwnode = NULL;
 642
 643	if (dev->of_node)
 644		fwnode = &dev->of_node->fwnode;
 645	else if (adev)
 646		fwnode = acpi_fwnode_handle(adev);
 647
 648	return fwnode_get_next_child_node(fwnode, child);
 
 
 
 
 
 
 649}
 650EXPORT_SYMBOL_GPL(device_get_next_child_node);
 651
 652/**
 653 * fwnode_get_named_child_node - Return first matching named child node handle
 654 * @fwnode: Firmware node to find the named child node for.
 655 * @childname: String to match child node name against.
 656 */
 657struct fwnode_handle *
 658fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 659			    const char *childname)
 660{
 661	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 662}
 663EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 664
 665/**
 666 * device_get_named_child_node - Return first matching named child node handle
 667 * @dev: Device to find the named child node for.
 668 * @childname: String to match child node name against.
 669 */
 670struct fwnode_handle *device_get_named_child_node(struct device *dev,
 671						  const char *childname)
 672{
 673	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 674}
 675EXPORT_SYMBOL_GPL(device_get_named_child_node);
 676
 677/**
 678 * fwnode_handle_get - Obtain a reference to a device node
 679 * @fwnode: Pointer to the device node to obtain the reference to.
 680 *
 681 * Returns the fwnode handle.
 682 */
 683struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 684{
 685	if (!fwnode_has_op(fwnode, get))
 686		return fwnode;
 687
 688	return fwnode_call_ptr_op(fwnode, get);
 689}
 690EXPORT_SYMBOL_GPL(fwnode_handle_get);
 691
 692/**
 693 * fwnode_handle_put - Drop reference to a device node
 694 * @fwnode: Pointer to the device node to drop the reference to.
 695 *
 696 * This has to be used when terminating device_for_each_child_node() iteration
 697 * with break or return to prevent stale device node references from being left
 698 * behind.
 699 */
 700void fwnode_handle_put(struct fwnode_handle *fwnode)
 701{
 702	fwnode_call_void_op(fwnode, put);
 703}
 704EXPORT_SYMBOL_GPL(fwnode_handle_put);
 705
 706/**
 707 * fwnode_device_is_available - check if a device is available for use
 708 * @fwnode: Pointer to the fwnode of the device.
 
 
 
 709 */
 710bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 711{
 
 
 
 
 
 
 712	return fwnode_call_bool_op(fwnode, device_is_available);
 713}
 714EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 715
 716/**
 717 * device_get_child_node_count - return the number of child nodes for device
 718 * @dev: Device to cound the child nodes for
 719 */
 720unsigned int device_get_child_node_count(struct device *dev)
 721{
 722	struct fwnode_handle *child;
 723	unsigned int count = 0;
 724
 725	device_for_each_child_node(dev, child)
 726		count++;
 727
 728	return count;
 729}
 730EXPORT_SYMBOL_GPL(device_get_child_node_count);
 731
 732bool device_dma_supported(struct device *dev)
 733{
 734	/* For DT, this is always supported.
 735	 * For ACPI, this depends on CCA, which
 736	 * is determined by the acpi_dma_supported().
 737	 */
 738	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 739		return true;
 740
 741	return acpi_dma_supported(ACPI_COMPANION(dev));
 742}
 743EXPORT_SYMBOL_GPL(device_dma_supported);
 744
 745enum dev_dma_attr device_get_dma_attr(struct device *dev)
 746{
 747	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 
 748
 749	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 750		if (of_dma_is_coherent(dev->of_node))
 751			attr = DEV_DMA_COHERENT;
 752		else
 753			attr = DEV_DMA_NON_COHERENT;
 754	} else
 755		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 756
 757	return attr;
 758}
 759EXPORT_SYMBOL_GPL(device_get_dma_attr);
 760
 761/**
 762 * fwnode_get_phy_mode - Get phy mode for given firmware node
 763 * @fwnode:	Pointer to the given node
 764 *
 765 * The function gets phy interface string from property 'phy-mode' or
 766 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 767 * error case.
 768 */
 769int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
 770{
 771	const char *pm;
 772	int err, i;
 773
 774	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 775	if (err < 0)
 776		err = fwnode_property_read_string(fwnode,
 777						  "phy-connection-type", &pm);
 778	if (err < 0)
 779		return err;
 780
 781	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 782		if (!strcasecmp(pm, phy_modes(i)))
 783			return i;
 784
 785	return -ENODEV;
 786}
 787EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 788
 789/**
 790 * device_get_phy_mode - Get phy mode for given device
 791 * @dev:	Pointer to the given device
 792 *
 793 * The function gets phy interface string from property 'phy-mode' or
 794 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 795 * error case.
 796 */
 797int device_get_phy_mode(struct device *dev)
 798{
 799	return fwnode_get_phy_mode(dev_fwnode(dev));
 800}
 801EXPORT_SYMBOL_GPL(device_get_phy_mode);
 802
 803static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
 804				 const char *name, char *addr,
 805				 int alen)
 806{
 807	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
 808
 809	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
 810		return addr;
 811	return NULL;
 812}
 813
 814/**
 815 * fwnode_get_mac_address - Get the MAC from the firmware node
 816 * @fwnode:	Pointer to the firmware node
 817 * @addr:	Address of buffer to store the MAC in
 818 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 819 *
 820 * Search the firmware node for the best MAC address to use.  'mac-address' is
 821 * checked first, because that is supposed to contain to "most recent" MAC
 822 * address. If that isn't set, then 'local-mac-address' is checked next,
 823 * because that is the default address.  If that isn't set, then the obsolete
 824 * 'address' is checked, just in case we're using an old device tree.
 825 *
 826 * Note that the 'address' property is supposed to contain a virtual address of
 827 * the register set, but some DTS files have redefined that property to be the
 828 * MAC address.
 829 *
 830 * All-zero MAC addresses are rejected, because those could be properties that
 831 * exist in the firmware tables, but were not updated by the firmware.  For
 832 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 833 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 834 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 835 * exists but is all zeros.
 836*/
 837void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
 838{
 839	char *res;
 840
 841	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
 842	if (res)
 843		return res;
 844
 845	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
 846	if (res)
 847		return res;
 848
 849	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
 850}
 851EXPORT_SYMBOL(fwnode_get_mac_address);
 852
 853/**
 854 * device_get_mac_address - Get the MAC for a given device
 855 * @dev:	Pointer to the device
 856 * @addr:	Address of buffer to store the MAC in
 857 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 
 
 858 */
 859void *device_get_mac_address(struct device *dev, char *addr, int alen)
 860{
 861	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
 862}
 863EXPORT_SYMBOL(device_get_mac_address);
 864
 865/**
 866 * fwnode_irq_get - Get IRQ directly from a fwnode
 867 * @fwnode:	Pointer to the firmware node
 868 * @index:	Zero-based index of the IRQ
 
 
 
 
 
 
 869 *
 870 * Returns Linux IRQ number on success. Other values are determined
 871 * accordingly to acpi_/of_ irq_get() operation.
 872 */
 873int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
 874{
 875	struct device_node *of_node = to_of_node(fwnode);
 876	struct resource res;
 877	int ret;
 878
 879	if (IS_ENABLED(CONFIG_OF) && of_node)
 880		return of_irq_get(of_node, index);
 881
 882	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
 883	if (ret)
 884		return ret;
 885
 886	return res.start;
 887}
 888EXPORT_SYMBOL(fwnode_irq_get);
 889
 890/**
 891 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
 892 * @fwnode: Pointer to the parent firmware node
 893 * @prev: Previous endpoint node or %NULL to get the first
 894 *
 895 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 896 * are available.
 897 */
 898struct fwnode_handle *
 899fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 900			       struct fwnode_handle *prev)
 901{
 902	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903}
 904EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
 905
 906/**
 907 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 908 * @endpoint: Endpoint firmware node of the port
 909 *
 910 * Return: the firmware node of the device the @endpoint belongs to.
 911 */
 912struct fwnode_handle *
 913fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
 914{
 915	struct fwnode_handle *port, *parent;
 916
 917	port = fwnode_get_parent(endpoint);
 918	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
 919
 920	fwnode_handle_put(port);
 921
 922	return parent;
 923}
 924EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
 925
 926/**
 927 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 928 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 929 *
 930 * Extracts firmware node of a remote device the @fwnode points to.
 931 */
 932struct fwnode_handle *
 933fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
 934{
 935	struct fwnode_handle *endpoint, *parent;
 936
 937	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
 938	parent = fwnode_graph_get_port_parent(endpoint);
 939
 940	fwnode_handle_put(endpoint);
 941
 942	return parent;
 943}
 944EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
 945
 946/**
 947 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 948 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 949 *
 950 * Extracts firmware node of a remote port the @fwnode points to.
 951 */
 952struct fwnode_handle *
 953fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
 954{
 955	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
 956}
 957EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
 958
 959/**
 960 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 961 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 962 *
 963 * Extracts firmware node of a remote endpoint the @fwnode points to.
 964 */
 965struct fwnode_handle *
 966fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
 967{
 968	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
 969}
 970EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
 971
 972/**
 973 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
 974 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
 975 * @port_id: identifier of the parent port node
 976 * @endpoint_id: identifier of the endpoint node
 977 *
 978 * Return: Remote fwnode handle associated with remote endpoint node linked
 979 *	   to @node. Use fwnode_node_put() on it when done.
 980 */
 981struct fwnode_handle *
 982fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
 983			     u32 endpoint_id)
 984{
 985	struct fwnode_handle *endpoint = NULL;
 986
 987	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
 988		struct fwnode_endpoint fwnode_ep;
 989		struct fwnode_handle *remote;
 990		int ret;
 991
 992		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
 993		if (ret < 0)
 994			continue;
 995
 996		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
 997			continue;
 998
 999		remote = fwnode_graph_get_remote_port_parent(endpoint);
1000		if (!remote)
1001			return NULL;
1002
1003		return fwnode_device_is_available(remote) ? remote : NULL;
1004	}
1005
1006	return NULL;
1007}
1008EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1009
1010/**
1011 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1012 * @fwnode: parent fwnode_handle containing the graph
1013 * @port: identifier of the port node
1014 * @endpoint: identifier of the endpoint node under the port node
1015 * @flags: fwnode lookup flags
1016 *
1017 * Return the fwnode handle of the local endpoint corresponding the port and
1018 * endpoint IDs or NULL if not found.
1019 *
1020 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1021 * has not been found, look for the closest endpoint ID greater than the
1022 * specified one and return the endpoint that corresponds to it, if present.
1023 *
1024 * Do not return endpoints that belong to disabled devices, unless
1025 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1026 *
1027 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1028 * it when it is not needed any more.
1029 */
1030struct fwnode_handle *
1031fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1032				u32 port, u32 endpoint, unsigned long flags)
1033{
1034	struct fwnode_handle *ep = NULL, *best_ep = NULL;
1035	unsigned int best_ep_id = 0;
1036	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1037	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1038
1039	while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1040		struct fwnode_endpoint fwnode_ep = { 0 };
1041		int ret;
1042
1043		if (enabled_only) {
1044			struct fwnode_handle *dev_node;
1045			bool available;
1046
1047			dev_node = fwnode_graph_get_remote_port_parent(ep);
1048			available = fwnode_device_is_available(dev_node);
1049			fwnode_handle_put(dev_node);
1050			if (!available)
1051				continue;
1052		}
1053
1054		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1055		if (ret < 0)
1056			continue;
1057
1058		if (fwnode_ep.port != port)
1059			continue;
1060
1061		if (fwnode_ep.id == endpoint)
1062			return ep;
1063
1064		if (!endpoint_next)
1065			continue;
1066
1067		/*
1068		 * If the endpoint that has just been found is not the first
1069		 * matching one and the ID of the one found previously is closer
1070		 * to the requested endpoint ID, skip it.
1071		 */
1072		if (fwnode_ep.id < endpoint ||
1073		    (best_ep && best_ep_id < fwnode_ep.id))
1074			continue;
1075
1076		fwnode_handle_put(best_ep);
1077		best_ep = fwnode_handle_get(ep);
1078		best_ep_id = fwnode_ep.id;
1079	}
1080
1081	return best_ep;
1082}
1083EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1084
1085/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1087 * @fwnode: pointer to endpoint fwnode_handle
1088 * @endpoint: pointer to the fwnode endpoint data structure
1089 *
1090 * Parse @fwnode representing a graph endpoint node and store the
1091 * information in @endpoint. The caller must hold a reference to
1092 * @fwnode.
1093 */
1094int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1095				struct fwnode_endpoint *endpoint)
1096{
1097	memset(endpoint, 0, sizeof(*endpoint));
1098
1099	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1100}
1101EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1102
1103const void *device_get_match_data(struct device *dev)
1104{
1105	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1106}
1107EXPORT_SYMBOL_GPL(device_get_match_data);