Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 */
41bool device_property_present(struct device *dev, const char *propname)
42{
43 return fwnode_property_present(dev_fwnode(dev), propname);
44}
45EXPORT_SYMBOL_GPL(device_property_present);
46
47/**
48 * fwnode_property_present - check if a property of a firmware node is present
49 * @fwnode: Firmware node whose property to check
50 * @propname: Name of the property
51 */
52bool fwnode_property_present(const struct fwnode_handle *fwnode,
53 const char *propname)
54{
55 bool ret;
56
57 if (IS_ERR_OR_NULL(fwnode))
58 return false;
59
60 ret = fwnode_call_bool_op(fwnode, property_present, propname);
61 if (ret)
62 return ret;
63
64 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
65}
66EXPORT_SYMBOL_GPL(fwnode_property_present);
67
68/**
69 * device_property_read_u8_array - return a u8 array property of a device
70 * @dev: Device to get the property of
71 * @propname: Name of the property
72 * @val: The values are stored here or %NULL to return the number of values
73 * @nval: Size of the @val array
74 *
75 * Function reads an array of u8 properties with @propname from the device
76 * firmware description and stores them to @val if found.
77 *
78 * It's recommended to call device_property_count_u8() instead of calling
79 * this function with @val equals %NULL and @nval equals 0.
80 *
81 * Return: number of values if @val was %NULL,
82 * %0 if the property was found (success),
83 * %-EINVAL if given arguments are not valid,
84 * %-ENODATA if the property does not have a value,
85 * %-EPROTO if the property is not an array of numbers,
86 * %-EOVERFLOW if the size of the property is not as expected.
87 * %-ENXIO if no suitable firmware interface is present.
88 */
89int device_property_read_u8_array(struct device *dev, const char *propname,
90 u8 *val, size_t nval)
91{
92 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
93}
94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
95
96/**
97 * device_property_read_u16_array - return a u16 array property of a device
98 * @dev: Device to get the property of
99 * @propname: Name of the property
100 * @val: The values are stored here or %NULL to return the number of values
101 * @nval: Size of the @val array
102 *
103 * Function reads an array of u16 properties with @propname from the device
104 * firmware description and stores them to @val if found.
105 *
106 * It's recommended to call device_property_count_u16() instead of calling
107 * this function with @val equals %NULL and @nval equals 0.
108 *
109 * Return: number of values if @val was %NULL,
110 * %0 if the property was found (success),
111 * %-EINVAL if given arguments are not valid,
112 * %-ENODATA if the property does not have a value,
113 * %-EPROTO if the property is not an array of numbers,
114 * %-EOVERFLOW if the size of the property is not as expected.
115 * %-ENXIO if no suitable firmware interface is present.
116 */
117int device_property_read_u16_array(struct device *dev, const char *propname,
118 u16 *val, size_t nval)
119{
120 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
121}
122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
123
124/**
125 * device_property_read_u32_array - return a u32 array property of a device
126 * @dev: Device to get the property of
127 * @propname: Name of the property
128 * @val: The values are stored here or %NULL to return the number of values
129 * @nval: Size of the @val array
130 *
131 * Function reads an array of u32 properties with @propname from the device
132 * firmware description and stores them to @val if found.
133 *
134 * It's recommended to call device_property_count_u32() instead of calling
135 * this function with @val equals %NULL and @nval equals 0.
136 *
137 * Return: number of values if @val was %NULL,
138 * %0 if the property was found (success),
139 * %-EINVAL if given arguments are not valid,
140 * %-ENODATA if the property does not have a value,
141 * %-EPROTO if the property is not an array of numbers,
142 * %-EOVERFLOW if the size of the property is not as expected.
143 * %-ENXIO if no suitable firmware interface is present.
144 */
145int device_property_read_u32_array(struct device *dev, const char *propname,
146 u32 *val, size_t nval)
147{
148 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
149}
150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
151
152/**
153 * device_property_read_u64_array - return a u64 array property of a device
154 * @dev: Device to get the property of
155 * @propname: Name of the property
156 * @val: The values are stored here or %NULL to return the number of values
157 * @nval: Size of the @val array
158 *
159 * Function reads an array of u64 properties with @propname from the device
160 * firmware description and stores them to @val if found.
161 *
162 * It's recommended to call device_property_count_u64() instead of calling
163 * this function with @val equals %NULL and @nval equals 0.
164 *
165 * Return: number of values if @val was %NULL,
166 * %0 if the property was found (success),
167 * %-EINVAL if given arguments are not valid,
168 * %-ENODATA if the property does not have a value,
169 * %-EPROTO if the property is not an array of numbers,
170 * %-EOVERFLOW if the size of the property is not as expected.
171 * %-ENXIO if no suitable firmware interface is present.
172 */
173int device_property_read_u64_array(struct device *dev, const char *propname,
174 u64 *val, size_t nval)
175{
176 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
177}
178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
179
180/**
181 * device_property_read_string_array - return a string array property of device
182 * @dev: Device to get the property of
183 * @propname: Name of the property
184 * @val: The values are stored here or %NULL to return the number of values
185 * @nval: Size of the @val array
186 *
187 * Function reads an array of string properties with @propname from the device
188 * firmware description and stores them to @val if found.
189 *
190 * It's recommended to call device_property_string_array_count() instead of calling
191 * this function with @val equals %NULL and @nval equals 0.
192 *
193 * Return: number of values read on success if @val is non-NULL,
194 * number of values available on success if @val is NULL,
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
198 * %-EOVERFLOW if the size of the property is not as expected.
199 * %-ENXIO if no suitable firmware interface is present.
200 */
201int device_property_read_string_array(struct device *dev, const char *propname,
202 const char **val, size_t nval)
203{
204 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
205}
206EXPORT_SYMBOL_GPL(device_property_read_string_array);
207
208/**
209 * device_property_read_string - return a string property of a device
210 * @dev: Device to get the property of
211 * @propname: Name of the property
212 * @val: The value is stored here
213 *
214 * Function reads property @propname from the device firmware description and
215 * stores the value into @val if found. The value is checked to be a string.
216 *
217 * Return: %0 if the property was found (success),
218 * %-EINVAL if given arguments are not valid,
219 * %-ENODATA if the property does not have a value,
220 * %-EPROTO or %-EILSEQ if the property type is not a string.
221 * %-ENXIO if no suitable firmware interface is present.
222 */
223int device_property_read_string(struct device *dev, const char *propname,
224 const char **val)
225{
226 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
227}
228EXPORT_SYMBOL_GPL(device_property_read_string);
229
230/**
231 * device_property_match_string - find a string in an array and return index
232 * @dev: Device to get the property of
233 * @propname: Name of the property holding the array
234 * @string: String to look for
235 *
236 * Find a given string in a string array and if it is found return the
237 * index back.
238 *
239 * Return: index, starting from %0, if the property was found (success),
240 * %-EINVAL if given arguments are not valid,
241 * %-ENODATA if the property does not have a value,
242 * %-EPROTO if the property is not an array of strings,
243 * %-ENXIO if no suitable firmware interface is present.
244 */
245int device_property_match_string(struct device *dev, const char *propname,
246 const char *string)
247{
248 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
249}
250EXPORT_SYMBOL_GPL(device_property_match_string);
251
252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
253 const char *propname,
254 unsigned int elem_size, void *val,
255 size_t nval)
256{
257 int ret;
258
259 if (IS_ERR_OR_NULL(fwnode))
260 return -EINVAL;
261
262 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
263 elem_size, val, nval);
264 if (ret != -EINVAL)
265 return ret;
266
267 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
268 elem_size, val, nval);
269}
270
271/**
272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
273 * @fwnode: Firmware node to get the property of
274 * @propname: Name of the property
275 * @val: The values are stored here or %NULL to return the number of values
276 * @nval: Size of the @val array
277 *
278 * Read an array of u8 properties with @propname from @fwnode and stores them to
279 * @val if found.
280 *
281 * It's recommended to call fwnode_property_count_u8() instead of calling
282 * this function with @val equals %NULL and @nval equals 0.
283 *
284 * Return: number of values if @val was %NULL,
285 * %0 if the property was found (success),
286 * %-EINVAL if given arguments are not valid,
287 * %-ENODATA if the property does not have a value,
288 * %-EPROTO if the property is not an array of numbers,
289 * %-EOVERFLOW if the size of the property is not as expected,
290 * %-ENXIO if no suitable firmware interface is present.
291 */
292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
293 const char *propname, u8 *val, size_t nval)
294{
295 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
296 val, nval);
297}
298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
299
300/**
301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
302 * @fwnode: Firmware node to get the property of
303 * @propname: Name of the property
304 * @val: The values are stored here or %NULL to return the number of values
305 * @nval: Size of the @val array
306 *
307 * Read an array of u16 properties with @propname from @fwnode and store them to
308 * @val if found.
309 *
310 * It's recommended to call fwnode_property_count_u16() instead of calling
311 * this function with @val equals %NULL and @nval equals 0.
312 *
313 * Return: number of values if @val was %NULL,
314 * %0 if the property was found (success),
315 * %-EINVAL if given arguments are not valid,
316 * %-ENODATA if the property does not have a value,
317 * %-EPROTO if the property is not an array of numbers,
318 * %-EOVERFLOW if the size of the property is not as expected,
319 * %-ENXIO if no suitable firmware interface is present.
320 */
321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
322 const char *propname, u16 *val, size_t nval)
323{
324 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
325 val, nval);
326}
327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
328
329/**
330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
331 * @fwnode: Firmware node to get the property of
332 * @propname: Name of the property
333 * @val: The values are stored here or %NULL to return the number of values
334 * @nval: Size of the @val array
335 *
336 * Read an array of u32 properties with @propname from @fwnode store them to
337 * @val if found.
338 *
339 * It's recommended to call fwnode_property_count_u32() instead of calling
340 * this function with @val equals %NULL and @nval equals 0.
341 *
342 * Return: number of values if @val was %NULL,
343 * %0 if the property was found (success),
344 * %-EINVAL if given arguments are not valid,
345 * %-ENODATA if the property does not have a value,
346 * %-EPROTO if the property is not an array of numbers,
347 * %-EOVERFLOW if the size of the property is not as expected,
348 * %-ENXIO if no suitable firmware interface is present.
349 */
350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
351 const char *propname, u32 *val, size_t nval)
352{
353 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
354 val, nval);
355}
356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
357
358/**
359 * fwnode_property_read_u64_array - return a u64 array property firmware node
360 * @fwnode: Firmware node to get the property of
361 * @propname: Name of the property
362 * @val: The values are stored here or %NULL to return the number of values
363 * @nval: Size of the @val array
364 *
365 * Read an array of u64 properties with @propname from @fwnode and store them to
366 * @val if found.
367 *
368 * It's recommended to call fwnode_property_count_u64() instead of calling
369 * this function with @val equals %NULL and @nval equals 0.
370 *
371 * Return: number of values if @val was %NULL,
372 * %0 if the property was found (success),
373 * %-EINVAL if given arguments are not valid,
374 * %-ENODATA if the property does not have a value,
375 * %-EPROTO if the property is not an array of numbers,
376 * %-EOVERFLOW if the size of the property is not as expected,
377 * %-ENXIO if no suitable firmware interface is present.
378 */
379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
380 const char *propname, u64 *val, size_t nval)
381{
382 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
383 val, nval);
384}
385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
386
387/**
388 * fwnode_property_read_string_array - return string array property of a node
389 * @fwnode: Firmware node to get the property of
390 * @propname: Name of the property
391 * @val: The values are stored here or %NULL to return the number of values
392 * @nval: Size of the @val array
393 *
394 * Read an string list property @propname from the given firmware node and store
395 * them to @val if found.
396 *
397 * It's recommended to call fwnode_property_string_array_count() instead of calling
398 * this function with @val equals %NULL and @nval equals 0.
399 *
400 * Return: number of values read on success if @val is non-NULL,
401 * number of values available on success if @val is NULL,
402 * %-EINVAL if given arguments are not valid,
403 * %-ENODATA if the property does not have a value,
404 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
405 * %-EOVERFLOW if the size of the property is not as expected,
406 * %-ENXIO if no suitable firmware interface is present.
407 */
408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
409 const char *propname, const char **val,
410 size_t nval)
411{
412 int ret;
413
414 if (IS_ERR_OR_NULL(fwnode))
415 return -EINVAL;
416
417 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
418 val, nval);
419 if (ret != -EINVAL)
420 return ret;
421
422 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
423 val, nval);
424}
425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
426
427/**
428 * fwnode_property_read_string - return a string property of a firmware node
429 * @fwnode: Firmware node to get the property of
430 * @propname: Name of the property
431 * @val: The value is stored here
432 *
433 * Read property @propname from the given firmware node and store the value into
434 * @val if found. The value is checked to be a string.
435 *
436 * Return: %0 if the property was found (success),
437 * %-EINVAL if given arguments are not valid,
438 * %-ENODATA if the property does not have a value,
439 * %-EPROTO or %-EILSEQ if the property is not a string,
440 * %-ENXIO if no suitable firmware interface is present.
441 */
442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
443 const char *propname, const char **val)
444{
445 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
446
447 return ret < 0 ? ret : 0;
448}
449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
450
451/**
452 * fwnode_property_match_string - find a string in an array and return index
453 * @fwnode: Firmware node to get the property of
454 * @propname: Name of the property holding the array
455 * @string: String to look for
456 *
457 * Find a given string in a string array and if it is found return the
458 * index back.
459 *
460 * Return: index, starting from %0, if the property was found (success),
461 * %-EINVAL if given arguments are not valid,
462 * %-ENODATA if the property does not have a value,
463 * %-EPROTO if the property is not an array of strings,
464 * %-ENXIO if no suitable firmware interface is present.
465 */
466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
467 const char *propname, const char *string)
468{
469 const char **values;
470 int nval, ret;
471
472 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
473 if (nval < 0)
474 return nval;
475
476 if (nval == 0)
477 return -ENODATA;
478
479 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
480 if (!values)
481 return -ENOMEM;
482
483 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
484 if (ret < 0)
485 goto out_free;
486
487 ret = match_string(values, nval, string);
488 if (ret < 0)
489 ret = -ENODATA;
490
491out_free:
492 kfree(values);
493 return ret;
494}
495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
496
497/**
498 * fwnode_property_get_reference_args() - Find a reference with arguments
499 * @fwnode: Firmware node where to look for the reference
500 * @prop: The name of the property
501 * @nargs_prop: The name of the property telling the number of
502 * arguments in the referred node. NULL if @nargs is known,
503 * otherwise @nargs is ignored. Only relevant on OF.
504 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
505 * @index: Index of the reference, from zero onwards.
506 * @args: Result structure with reference and integer arguments.
507 *
508 * Obtain a reference based on a named property in an fwnode, with
509 * integer arguments.
510 *
511 * Caller is responsible to call fwnode_handle_put() on the returned
512 * args->fwnode pointer.
513 *
514 * Returns: %0 on success
515 * %-ENOENT when the index is out of bounds, the index has an empty
516 * reference or the property was not found
517 * %-EINVAL on parse error
518 */
519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
520 const char *prop, const char *nargs_prop,
521 unsigned int nargs, unsigned int index,
522 struct fwnode_reference_args *args)
523{
524 int ret;
525
526 if (IS_ERR_OR_NULL(fwnode))
527 return -ENOENT;
528
529 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
530 nargs, index, args);
531 if (ret == 0)
532 return ret;
533
534 if (IS_ERR_OR_NULL(fwnode->secondary))
535 return ret;
536
537 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
538 nargs, index, args);
539}
540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
541
542/**
543 * fwnode_find_reference - Find named reference to a fwnode_handle
544 * @fwnode: Firmware node where to look for the reference
545 * @name: The name of the reference
546 * @index: Index of the reference
547 *
548 * @index can be used when the named reference holds a table of references.
549 *
550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
551 * call fwnode_handle_put() on the returned fwnode pointer.
552 */
553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
554 const char *name,
555 unsigned int index)
556{
557 struct fwnode_reference_args args;
558 int ret;
559
560 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
561 &args);
562 return ret ? ERR_PTR(ret) : args.fwnode;
563}
564EXPORT_SYMBOL_GPL(fwnode_find_reference);
565
566/**
567 * fwnode_get_name - Return the name of a node
568 * @fwnode: The firmware node
569 *
570 * Returns a pointer to the node name.
571 */
572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
573{
574 return fwnode_call_ptr_op(fwnode, get_name);
575}
576EXPORT_SYMBOL_GPL(fwnode_get_name);
577
578/**
579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
580 * @fwnode: The firmware node
581 *
582 * Returns the prefix of a node, intended to be printed right before the node.
583 * The prefix works also as a separator between the nodes.
584 */
585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
586{
587 return fwnode_call_ptr_op(fwnode, get_name_prefix);
588}
589
590/**
591 * fwnode_get_parent - Return parent firwmare node
592 * @fwnode: Firmware whose parent is retrieved
593 *
594 * Return parent firmware node of the given node if possible or %NULL if no
595 * parent was available.
596 */
597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
598{
599 return fwnode_call_ptr_op(fwnode, get_parent);
600}
601EXPORT_SYMBOL_GPL(fwnode_get_parent);
602
603/**
604 * fwnode_get_next_parent - Iterate to the node's parent
605 * @fwnode: Firmware whose parent is retrieved
606 *
607 * This is like fwnode_get_parent() except that it drops the refcount
608 * on the passed node, making it suitable for iterating through a
609 * node's parents.
610 *
611 * Returns a node pointer with refcount incremented, use
612 * fwnode_handle_put() on it when done.
613 */
614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
615{
616 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
617
618 fwnode_handle_put(fwnode);
619
620 return parent;
621}
622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
623
624/**
625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
626 * @fwnode: firmware node
627 *
628 * Given a firmware node (@fwnode), this function finds its closest ancestor
629 * firmware node that has a corresponding struct device and returns that struct
630 * device.
631 *
632 * The caller of this function is expected to call put_device() on the returned
633 * device when they are done.
634 */
635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
636{
637 struct fwnode_handle *parent;
638 struct device *dev;
639
640 fwnode_for_each_parent_node(fwnode, parent) {
641 dev = get_dev_from_fwnode(parent);
642 if (dev) {
643 fwnode_handle_put(parent);
644 return dev;
645 }
646 }
647 return NULL;
648}
649
650/**
651 * fwnode_count_parents - Return the number of parents a node has
652 * @fwnode: The node the parents of which are to be counted
653 *
654 * Returns the number of parents a node has.
655 */
656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
657{
658 struct fwnode_handle *parent;
659 unsigned int count = 0;
660
661 fwnode_for_each_parent_node(fwnode, parent)
662 count++;
663
664 return count;
665}
666EXPORT_SYMBOL_GPL(fwnode_count_parents);
667
668/**
669 * fwnode_get_nth_parent - Return an nth parent of a node
670 * @fwnode: The node the parent of which is requested
671 * @depth: Distance of the parent from the node
672 *
673 * Returns the nth parent of a node. If there is no parent at the requested
674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
676 *
677 * The caller is responsible for calling fwnode_handle_put() for the returned
678 * node.
679 */
680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
681 unsigned int depth)
682{
683 struct fwnode_handle *parent;
684
685 if (depth == 0)
686 return fwnode_handle_get(fwnode);
687
688 fwnode_for_each_parent_node(fwnode, parent) {
689 if (--depth == 0)
690 return parent;
691 }
692 return NULL;
693}
694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
695
696/**
697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
698 * @ancestor: Firmware which is tested for being an ancestor
699 * @child: Firmware which is tested for being the child
700 *
701 * A node is considered an ancestor of itself too.
702 *
703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
704 */
705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
706{
707 struct fwnode_handle *parent;
708
709 if (IS_ERR_OR_NULL(ancestor))
710 return false;
711
712 if (child == ancestor)
713 return true;
714
715 fwnode_for_each_parent_node(child, parent) {
716 if (parent == ancestor) {
717 fwnode_handle_put(parent);
718 return true;
719 }
720 }
721 return false;
722}
723
724/**
725 * fwnode_get_next_child_node - Return the next child node handle for a node
726 * @fwnode: Firmware node to find the next child node for.
727 * @child: Handle to one of the node's child nodes or a %NULL handle.
728 */
729struct fwnode_handle *
730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
731 struct fwnode_handle *child)
732{
733 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
734}
735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
736
737/**
738 * fwnode_get_next_available_child_node - Return the next
739 * available child node handle for a node
740 * @fwnode: Firmware node to find the next child node for.
741 * @child: Handle to one of the node's child nodes or a %NULL handle.
742 */
743struct fwnode_handle *
744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
745 struct fwnode_handle *child)
746{
747 struct fwnode_handle *next_child = child;
748
749 if (IS_ERR_OR_NULL(fwnode))
750 return NULL;
751
752 do {
753 next_child = fwnode_get_next_child_node(fwnode, next_child);
754 if (!next_child)
755 return NULL;
756 } while (!fwnode_device_is_available(next_child));
757
758 return next_child;
759}
760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
761
762/**
763 * device_get_next_child_node - Return the next child node handle for a device
764 * @dev: Device to find the next child node for.
765 * @child: Handle to one of the device's child nodes or a null handle.
766 */
767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
768 struct fwnode_handle *child)
769{
770 const struct fwnode_handle *fwnode = dev_fwnode(dev);
771 struct fwnode_handle *next;
772
773 if (IS_ERR_OR_NULL(fwnode))
774 return NULL;
775
776 /* Try to find a child in primary fwnode */
777 next = fwnode_get_next_child_node(fwnode, child);
778 if (next)
779 return next;
780
781 /* When no more children in primary, continue with secondary */
782 return fwnode_get_next_child_node(fwnode->secondary, child);
783}
784EXPORT_SYMBOL_GPL(device_get_next_child_node);
785
786/**
787 * fwnode_get_named_child_node - Return first matching named child node handle
788 * @fwnode: Firmware node to find the named child node for.
789 * @childname: String to match child node name against.
790 */
791struct fwnode_handle *
792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
793 const char *childname)
794{
795 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
796}
797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
798
799/**
800 * device_get_named_child_node - Return first matching named child node handle
801 * @dev: Device to find the named child node for.
802 * @childname: String to match child node name against.
803 */
804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
805 const char *childname)
806{
807 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
808}
809EXPORT_SYMBOL_GPL(device_get_named_child_node);
810
811/**
812 * fwnode_handle_get - Obtain a reference to a device node
813 * @fwnode: Pointer to the device node to obtain the reference to.
814 *
815 * Returns the fwnode handle.
816 */
817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
818{
819 if (!fwnode_has_op(fwnode, get))
820 return fwnode;
821
822 return fwnode_call_ptr_op(fwnode, get);
823}
824EXPORT_SYMBOL_GPL(fwnode_handle_get);
825
826/**
827 * fwnode_handle_put - Drop reference to a device node
828 * @fwnode: Pointer to the device node to drop the reference to.
829 *
830 * This has to be used when terminating device_for_each_child_node() iteration
831 * with break or return to prevent stale device node references from being left
832 * behind.
833 */
834void fwnode_handle_put(struct fwnode_handle *fwnode)
835{
836 fwnode_call_void_op(fwnode, put);
837}
838EXPORT_SYMBOL_GPL(fwnode_handle_put);
839
840/**
841 * fwnode_device_is_available - check if a device is available for use
842 * @fwnode: Pointer to the fwnode of the device.
843 *
844 * For fwnode node types that don't implement the .device_is_available()
845 * operation, this function returns true.
846 */
847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
848{
849 if (IS_ERR_OR_NULL(fwnode))
850 return false;
851
852 if (!fwnode_has_op(fwnode, device_is_available))
853 return true;
854
855 return fwnode_call_bool_op(fwnode, device_is_available);
856}
857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
858
859/**
860 * device_get_child_node_count - return the number of child nodes for device
861 * @dev: Device to cound the child nodes for
862 */
863unsigned int device_get_child_node_count(const struct device *dev)
864{
865 struct fwnode_handle *child;
866 unsigned int count = 0;
867
868 device_for_each_child_node(dev, child)
869 count++;
870
871 return count;
872}
873EXPORT_SYMBOL_GPL(device_get_child_node_count);
874
875bool device_dma_supported(const struct device *dev)
876{
877 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
878}
879EXPORT_SYMBOL_GPL(device_dma_supported);
880
881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
882{
883 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
884 return DEV_DMA_NOT_SUPPORTED;
885
886 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
887}
888EXPORT_SYMBOL_GPL(device_get_dma_attr);
889
890/**
891 * fwnode_get_phy_mode - Get phy mode for given firmware node
892 * @fwnode: Pointer to the given node
893 *
894 * The function gets phy interface string from property 'phy-mode' or
895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
896 * error case.
897 */
898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
899{
900 const char *pm;
901 int err, i;
902
903 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
904 if (err < 0)
905 err = fwnode_property_read_string(fwnode,
906 "phy-connection-type", &pm);
907 if (err < 0)
908 return err;
909
910 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
911 if (!strcasecmp(pm, phy_modes(i)))
912 return i;
913
914 return -ENODEV;
915}
916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
917
918/**
919 * device_get_phy_mode - Get phy mode for given device
920 * @dev: Pointer to the given device
921 *
922 * The function gets phy interface string from property 'phy-mode' or
923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
924 * error case.
925 */
926int device_get_phy_mode(struct device *dev)
927{
928 return fwnode_get_phy_mode(dev_fwnode(dev));
929}
930EXPORT_SYMBOL_GPL(device_get_phy_mode);
931
932/**
933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
934 * @fwnode: Pointer to the firmware node
935 * @index: Index of the IO range
936 *
937 * Returns a pointer to the mapped memory.
938 */
939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
940{
941 return fwnode_call_ptr_op(fwnode, iomap, index);
942}
943EXPORT_SYMBOL(fwnode_iomap);
944
945/**
946 * fwnode_irq_get - Get IRQ directly from a fwnode
947 * @fwnode: Pointer to the firmware node
948 * @index: Zero-based index of the IRQ
949 *
950 * Returns Linux IRQ number on success. Other values are determined
951 * accordingly to acpi_/of_ irq_get() operation.
952 */
953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
954{
955 return fwnode_call_int_op(fwnode, irq_get, index);
956}
957EXPORT_SYMBOL(fwnode_irq_get);
958
959/**
960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
961 * @fwnode: Pointer to the firmware node
962 * @name: IRQ name
963 *
964 * Description:
965 * Find a match to the string @name in the 'interrupt-names' string array
966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
967 * number of the IRQ resource corresponding to the index of the matched
968 * string.
969 *
970 * Return:
971 * Linux IRQ number on success, or negative errno otherwise.
972 */
973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
974{
975 int index;
976
977 if (!name)
978 return -EINVAL;
979
980 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
981 if (index < 0)
982 return index;
983
984 return fwnode_irq_get(fwnode, index);
985}
986EXPORT_SYMBOL(fwnode_irq_get_byname);
987
988/**
989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
990 * @fwnode: Pointer to the parent firmware node
991 * @prev: Previous endpoint node or %NULL to get the first
992 *
993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
994 * are available.
995 */
996struct fwnode_handle *
997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
998 struct fwnode_handle *prev)
999{
1000 struct fwnode_handle *ep, *port_parent = NULL;
1001 const struct fwnode_handle *parent;
1002
1003 /*
1004 * If this function is in a loop and the previous iteration returned
1005 * an endpoint from fwnode->secondary, then we need to use the secondary
1006 * as parent rather than @fwnode.
1007 */
1008 if (prev) {
1009 port_parent = fwnode_graph_get_port_parent(prev);
1010 parent = port_parent;
1011 } else {
1012 parent = fwnode;
1013 }
1014 if (IS_ERR_OR_NULL(parent))
1015 return NULL;
1016
1017 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018 if (ep)
1019 goto out_put_port_parent;
1020
1021 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024 fwnode_handle_put(port_parent);
1025 return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038 struct fwnode_handle *port, *parent;
1039
1040 port = fwnode_get_parent(endpoint);
1041 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043 fwnode_handle_put(port);
1044
1045 return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058 struct fwnode_handle *endpoint, *parent;
1059
1060 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061 parent = fwnode_graph_get_port_parent(endpoint);
1062
1063 fwnode_handle_put(endpoint);
1064
1065 return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096{
1097 struct fwnode_handle *dev_node;
1098 bool available;
1099
1100 dev_node = fwnode_graph_get_remote_port_parent(ep);
1101 available = fwnode_device_is_available(dev_node);
1102 fwnode_handle_put(dev_node);
1103
1104 return available;
1105}
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129 u32 port, u32 endpoint, unsigned long flags)
1130{
1131 struct fwnode_handle *ep, *best_ep = NULL;
1132 unsigned int best_ep_id = 0;
1133 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136 fwnode_graph_for_each_endpoint(fwnode, ep) {
1137 struct fwnode_endpoint fwnode_ep = { 0 };
1138 int ret;
1139
1140 if (enabled_only && !fwnode_graph_remote_available(ep))
1141 continue;
1142
1143 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144 if (ret < 0)
1145 continue;
1146
1147 if (fwnode_ep.port != port)
1148 continue;
1149
1150 if (fwnode_ep.id == endpoint)
1151 return ep;
1152
1153 if (!endpoint_next)
1154 continue;
1155
1156 /*
1157 * If the endpoint that has just been found is not the first
1158 * matching one and the ID of the one found previously is closer
1159 * to the requested endpoint ID, skip it.
1160 */
1161 if (fwnode_ep.id < endpoint ||
1162 (best_ep && best_ep_id < fwnode_ep.id))
1163 continue;
1164
1165 fwnode_handle_put(best_ep);
1166 best_ep = fwnode_handle_get(ep);
1167 best_ep_id = fwnode_ep.id;
1168 }
1169
1170 return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184 unsigned long flags)
1185{
1186 struct fwnode_handle *ep;
1187 unsigned int count = 0;
1188
1189 fwnode_graph_for_each_endpoint(fwnode, ep) {
1190 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191 fwnode_graph_remote_available(ep))
1192 count++;
1193 }
1194
1195 return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209 struct fwnode_endpoint *endpoint)
1210{
1211 memset(endpoint, 0, sizeof(*endpoint));
1212
1213 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224 const char *con_id, void *data,
1225 devcon_match_fn_t match,
1226 void **matches,
1227 unsigned int matches_len)
1228{
1229 struct fwnode_handle *node;
1230 struct fwnode_handle *ep;
1231 unsigned int count = 0;
1232 void *ret;
1233
1234 fwnode_graph_for_each_endpoint(fwnode, ep) {
1235 if (matches && count >= matches_len) {
1236 fwnode_handle_put(ep);
1237 break;
1238 }
1239
1240 node = fwnode_graph_get_remote_port_parent(ep);
1241 if (!fwnode_device_is_available(node)) {
1242 fwnode_handle_put(node);
1243 continue;
1244 }
1245
1246 ret = match(node, con_id, data);
1247 fwnode_handle_put(node);
1248 if (ret) {
1249 if (matches)
1250 matches[count] = ret;
1251 count++;
1252 }
1253 }
1254 return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258 const char *con_id, void *data,
1259 devcon_match_fn_t match,
1260 void **matches,
1261 unsigned int matches_len)
1262{
1263 struct fwnode_handle *node;
1264 unsigned int count = 0;
1265 unsigned int i;
1266 void *ret;
1267
1268 for (i = 0; ; i++) {
1269 if (matches && count >= matches_len)
1270 break;
1271
1272 node = fwnode_find_reference(fwnode, con_id, i);
1273 if (IS_ERR(node))
1274 break;
1275
1276 ret = match(node, NULL, data);
1277 fwnode_handle_put(node);
1278 if (ret) {
1279 if (matches)
1280 matches[count] = ret;
1281 count++;
1282 }
1283 }
1284
1285 return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300 const char *con_id, void *data,
1301 devcon_match_fn_t match)
1302{
1303 unsigned int count;
1304 void *ret;
1305
1306 if (!fwnode || !match)
1307 return NULL;
1308
1309 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310 if (count)
1311 return ret;
1312
1313 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314 return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337 const char *con_id, void *data,
1338 devcon_match_fn_t match,
1339 void **matches, unsigned int matches_len)
1340{
1341 unsigned int count_graph;
1342 unsigned int count_ref;
1343
1344 if (!fwnode || !match)
1345 return -EINVAL;
1346
1347 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348 matches, matches_len);
1349
1350 if (matches) {
1351 matches += count_graph;
1352 matches_len -= count_graph;
1353 }
1354
1355 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356 matches, matches_len);
1357
1358 return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37 return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48{
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80{
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105{
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130{
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155{
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180{
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202{
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224{
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233{
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267{
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293{
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319{
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345{
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372{
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403{
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427{
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449out:
450 kfree(values);
451 return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481{
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501{
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547{
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_next_parent - Iterate to the node's parent
561 * @fwnode: Firmware whose parent is retrieved
562 *
563 * This is like fwnode_get_parent() except that it drops the refcount
564 * on the passed node, making it suitable for iterating through a
565 * node's parents.
566 *
567 * Returns a node pointer with refcount incremented, use
568 * fwnode_handle_node() on it when done.
569 */
570struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
571{
572 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
573
574 fwnode_handle_put(fwnode);
575
576 return parent;
577}
578EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
579
580/**
581 * fwnode_get_parent - Return parent firwmare node
582 * @fwnode: Firmware whose parent is retrieved
583 *
584 * Return parent firmware node of the given node if possible or %NULL if no
585 * parent was available.
586 */
587struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
588{
589 return fwnode_call_ptr_op(fwnode, get_parent);
590}
591EXPORT_SYMBOL_GPL(fwnode_get_parent);
592
593/**
594 * fwnode_get_next_child_node - Return the next child node handle for a node
595 * @fwnode: Firmware node to find the next child node for.
596 * @child: Handle to one of the node's child nodes or a %NULL handle.
597 */
598struct fwnode_handle *
599fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
600 struct fwnode_handle *child)
601{
602 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
603}
604EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
605
606/**
607 * fwnode_get_next_available_child_node - Return the next
608 * available child node handle for a node
609 * @fwnode: Firmware node to find the next child node for.
610 * @child: Handle to one of the node's child nodes or a %NULL handle.
611 */
612struct fwnode_handle *
613fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
614 struct fwnode_handle *child)
615{
616 struct fwnode_handle *next_child = child;
617
618 if (!fwnode)
619 return NULL;
620
621 do {
622 next_child = fwnode_get_next_child_node(fwnode, next_child);
623
624 if (!next_child || fwnode_device_is_available(next_child))
625 break;
626 } while (next_child);
627
628 return next_child;
629}
630EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
631
632/**
633 * device_get_next_child_node - Return the next child node handle for a device
634 * @dev: Device to find the next child node for.
635 * @child: Handle to one of the device's child nodes or a null handle.
636 */
637struct fwnode_handle *device_get_next_child_node(struct device *dev,
638 struct fwnode_handle *child)
639{
640 struct acpi_device *adev = ACPI_COMPANION(dev);
641 struct fwnode_handle *fwnode = NULL;
642
643 if (dev->of_node)
644 fwnode = &dev->of_node->fwnode;
645 else if (adev)
646 fwnode = acpi_fwnode_handle(adev);
647
648 return fwnode_get_next_child_node(fwnode, child);
649}
650EXPORT_SYMBOL_GPL(device_get_next_child_node);
651
652/**
653 * fwnode_get_named_child_node - Return first matching named child node handle
654 * @fwnode: Firmware node to find the named child node for.
655 * @childname: String to match child node name against.
656 */
657struct fwnode_handle *
658fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
659 const char *childname)
660{
661 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
662}
663EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
664
665/**
666 * device_get_named_child_node - Return first matching named child node handle
667 * @dev: Device to find the named child node for.
668 * @childname: String to match child node name against.
669 */
670struct fwnode_handle *device_get_named_child_node(struct device *dev,
671 const char *childname)
672{
673 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
674}
675EXPORT_SYMBOL_GPL(device_get_named_child_node);
676
677/**
678 * fwnode_handle_get - Obtain a reference to a device node
679 * @fwnode: Pointer to the device node to obtain the reference to.
680 *
681 * Returns the fwnode handle.
682 */
683struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
684{
685 if (!fwnode_has_op(fwnode, get))
686 return fwnode;
687
688 return fwnode_call_ptr_op(fwnode, get);
689}
690EXPORT_SYMBOL_GPL(fwnode_handle_get);
691
692/**
693 * fwnode_handle_put - Drop reference to a device node
694 * @fwnode: Pointer to the device node to drop the reference to.
695 *
696 * This has to be used when terminating device_for_each_child_node() iteration
697 * with break or return to prevent stale device node references from being left
698 * behind.
699 */
700void fwnode_handle_put(struct fwnode_handle *fwnode)
701{
702 fwnode_call_void_op(fwnode, put);
703}
704EXPORT_SYMBOL_GPL(fwnode_handle_put);
705
706/**
707 * fwnode_device_is_available - check if a device is available for use
708 * @fwnode: Pointer to the fwnode of the device.
709 */
710bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
711{
712 return fwnode_call_bool_op(fwnode, device_is_available);
713}
714EXPORT_SYMBOL_GPL(fwnode_device_is_available);
715
716/**
717 * device_get_child_node_count - return the number of child nodes for device
718 * @dev: Device to cound the child nodes for
719 */
720unsigned int device_get_child_node_count(struct device *dev)
721{
722 struct fwnode_handle *child;
723 unsigned int count = 0;
724
725 device_for_each_child_node(dev, child)
726 count++;
727
728 return count;
729}
730EXPORT_SYMBOL_GPL(device_get_child_node_count);
731
732bool device_dma_supported(struct device *dev)
733{
734 /* For DT, this is always supported.
735 * For ACPI, this depends on CCA, which
736 * is determined by the acpi_dma_supported().
737 */
738 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
739 return true;
740
741 return acpi_dma_supported(ACPI_COMPANION(dev));
742}
743EXPORT_SYMBOL_GPL(device_dma_supported);
744
745enum dev_dma_attr device_get_dma_attr(struct device *dev)
746{
747 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
748
749 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
750 if (of_dma_is_coherent(dev->of_node))
751 attr = DEV_DMA_COHERENT;
752 else
753 attr = DEV_DMA_NON_COHERENT;
754 } else
755 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
756
757 return attr;
758}
759EXPORT_SYMBOL_GPL(device_get_dma_attr);
760
761/**
762 * fwnode_get_phy_mode - Get phy mode for given firmware node
763 * @fwnode: Pointer to the given node
764 *
765 * The function gets phy interface string from property 'phy-mode' or
766 * 'phy-connection-type', and return its index in phy_modes table, or errno in
767 * error case.
768 */
769int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
770{
771 const char *pm;
772 int err, i;
773
774 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
775 if (err < 0)
776 err = fwnode_property_read_string(fwnode,
777 "phy-connection-type", &pm);
778 if (err < 0)
779 return err;
780
781 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
782 if (!strcasecmp(pm, phy_modes(i)))
783 return i;
784
785 return -ENODEV;
786}
787EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
788
789/**
790 * device_get_phy_mode - Get phy mode for given device
791 * @dev: Pointer to the given device
792 *
793 * The function gets phy interface string from property 'phy-mode' or
794 * 'phy-connection-type', and return its index in phy_modes table, or errno in
795 * error case.
796 */
797int device_get_phy_mode(struct device *dev)
798{
799 return fwnode_get_phy_mode(dev_fwnode(dev));
800}
801EXPORT_SYMBOL_GPL(device_get_phy_mode);
802
803static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
804 const char *name, char *addr,
805 int alen)
806{
807 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
808
809 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
810 return addr;
811 return NULL;
812}
813
814/**
815 * fwnode_get_mac_address - Get the MAC from the firmware node
816 * @fwnode: Pointer to the firmware node
817 * @addr: Address of buffer to store the MAC in
818 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
819 *
820 * Search the firmware node for the best MAC address to use. 'mac-address' is
821 * checked first, because that is supposed to contain to "most recent" MAC
822 * address. If that isn't set, then 'local-mac-address' is checked next,
823 * because that is the default address. If that isn't set, then the obsolete
824 * 'address' is checked, just in case we're using an old device tree.
825 *
826 * Note that the 'address' property is supposed to contain a virtual address of
827 * the register set, but some DTS files have redefined that property to be the
828 * MAC address.
829 *
830 * All-zero MAC addresses are rejected, because those could be properties that
831 * exist in the firmware tables, but were not updated by the firmware. For
832 * example, the DTS could define 'mac-address' and 'local-mac-address', with
833 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
834 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
835 * exists but is all zeros.
836*/
837void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
838{
839 char *res;
840
841 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
842 if (res)
843 return res;
844
845 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
846 if (res)
847 return res;
848
849 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
850}
851EXPORT_SYMBOL(fwnode_get_mac_address);
852
853/**
854 * device_get_mac_address - Get the MAC for a given device
855 * @dev: Pointer to the device
856 * @addr: Address of buffer to store the MAC in
857 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
858 */
859void *device_get_mac_address(struct device *dev, char *addr, int alen)
860{
861 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
862}
863EXPORT_SYMBOL(device_get_mac_address);
864
865/**
866 * fwnode_irq_get - Get IRQ directly from a fwnode
867 * @fwnode: Pointer to the firmware node
868 * @index: Zero-based index of the IRQ
869 *
870 * Returns Linux IRQ number on success. Other values are determined
871 * accordingly to acpi_/of_ irq_get() operation.
872 */
873int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
874{
875 struct device_node *of_node = to_of_node(fwnode);
876 struct resource res;
877 int ret;
878
879 if (IS_ENABLED(CONFIG_OF) && of_node)
880 return of_irq_get(of_node, index);
881
882 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
883 if (ret)
884 return ret;
885
886 return res.start;
887}
888EXPORT_SYMBOL(fwnode_irq_get);
889
890/**
891 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
892 * @fwnode: Pointer to the parent firmware node
893 * @prev: Previous endpoint node or %NULL to get the first
894 *
895 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
896 * are available.
897 */
898struct fwnode_handle *
899fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
900 struct fwnode_handle *prev)
901{
902 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
903}
904EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
905
906/**
907 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
908 * @endpoint: Endpoint firmware node of the port
909 *
910 * Return: the firmware node of the device the @endpoint belongs to.
911 */
912struct fwnode_handle *
913fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
914{
915 struct fwnode_handle *port, *parent;
916
917 port = fwnode_get_parent(endpoint);
918 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
919
920 fwnode_handle_put(port);
921
922 return parent;
923}
924EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
925
926/**
927 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
928 * @fwnode: Endpoint firmware node pointing to the remote endpoint
929 *
930 * Extracts firmware node of a remote device the @fwnode points to.
931 */
932struct fwnode_handle *
933fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
934{
935 struct fwnode_handle *endpoint, *parent;
936
937 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
938 parent = fwnode_graph_get_port_parent(endpoint);
939
940 fwnode_handle_put(endpoint);
941
942 return parent;
943}
944EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
945
946/**
947 * fwnode_graph_get_remote_port - Return fwnode of a remote port
948 * @fwnode: Endpoint firmware node pointing to the remote endpoint
949 *
950 * Extracts firmware node of a remote port the @fwnode points to.
951 */
952struct fwnode_handle *
953fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
954{
955 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
956}
957EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
958
959/**
960 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
961 * @fwnode: Endpoint firmware node pointing to the remote endpoint
962 *
963 * Extracts firmware node of a remote endpoint the @fwnode points to.
964 */
965struct fwnode_handle *
966fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
967{
968 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
969}
970EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
971
972/**
973 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
974 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
975 * @port_id: identifier of the parent port node
976 * @endpoint_id: identifier of the endpoint node
977 *
978 * Return: Remote fwnode handle associated with remote endpoint node linked
979 * to @node. Use fwnode_node_put() on it when done.
980 */
981struct fwnode_handle *
982fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
983 u32 endpoint_id)
984{
985 struct fwnode_handle *endpoint = NULL;
986
987 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
988 struct fwnode_endpoint fwnode_ep;
989 struct fwnode_handle *remote;
990 int ret;
991
992 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
993 if (ret < 0)
994 continue;
995
996 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
997 continue;
998
999 remote = fwnode_graph_get_remote_port_parent(endpoint);
1000 if (!remote)
1001 return NULL;
1002
1003 return fwnode_device_is_available(remote) ? remote : NULL;
1004 }
1005
1006 return NULL;
1007}
1008EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1009
1010/**
1011 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1012 * @fwnode: parent fwnode_handle containing the graph
1013 * @port: identifier of the port node
1014 * @endpoint: identifier of the endpoint node under the port node
1015 * @flags: fwnode lookup flags
1016 *
1017 * Return the fwnode handle of the local endpoint corresponding the port and
1018 * endpoint IDs or NULL if not found.
1019 *
1020 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1021 * has not been found, look for the closest endpoint ID greater than the
1022 * specified one and return the endpoint that corresponds to it, if present.
1023 *
1024 * Do not return endpoints that belong to disabled devices, unless
1025 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1026 *
1027 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1028 * it when it is not needed any more.
1029 */
1030struct fwnode_handle *
1031fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1032 u32 port, u32 endpoint, unsigned long flags)
1033{
1034 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1035 unsigned int best_ep_id = 0;
1036 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1037 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1038
1039 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1040 struct fwnode_endpoint fwnode_ep = { 0 };
1041 int ret;
1042
1043 if (enabled_only) {
1044 struct fwnode_handle *dev_node;
1045 bool available;
1046
1047 dev_node = fwnode_graph_get_remote_port_parent(ep);
1048 available = fwnode_device_is_available(dev_node);
1049 fwnode_handle_put(dev_node);
1050 if (!available)
1051 continue;
1052 }
1053
1054 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1055 if (ret < 0)
1056 continue;
1057
1058 if (fwnode_ep.port != port)
1059 continue;
1060
1061 if (fwnode_ep.id == endpoint)
1062 return ep;
1063
1064 if (!endpoint_next)
1065 continue;
1066
1067 /*
1068 * If the endpoint that has just been found is not the first
1069 * matching one and the ID of the one found previously is closer
1070 * to the requested endpoint ID, skip it.
1071 */
1072 if (fwnode_ep.id < endpoint ||
1073 (best_ep && best_ep_id < fwnode_ep.id))
1074 continue;
1075
1076 fwnode_handle_put(best_ep);
1077 best_ep = fwnode_handle_get(ep);
1078 best_ep_id = fwnode_ep.id;
1079 }
1080
1081 return best_ep;
1082}
1083EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1084
1085/**
1086 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1087 * @fwnode: pointer to endpoint fwnode_handle
1088 * @endpoint: pointer to the fwnode endpoint data structure
1089 *
1090 * Parse @fwnode representing a graph endpoint node and store the
1091 * information in @endpoint. The caller must hold a reference to
1092 * @fwnode.
1093 */
1094int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1095 struct fwnode_endpoint *endpoint)
1096{
1097 memset(endpoint, 0, sizeof(*endpoint));
1098
1099 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1100}
1101EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1102
1103const void *device_get_match_data(struct device *dev)
1104{
1105 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1106}
1107EXPORT_SYMBOL_GPL(device_get_match_data);