Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * algif_aead: User-space interface for AEAD algorithms
  4 *
  5 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
  6 *
  7 * This file provides the user-space API for AEAD ciphers.
  8 *
  9 * The following concept of the memory management is used:
 10 *
 11 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
 12 * filled by user space with the data submitted via sendpage/sendmsg. Filling
 13 * up the TX SGL does not cause a crypto operation -- the data will only be
 14 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
 15 * provide a buffer which is tracked with the RX SGL.
 16 *
 17 * During the processing of the recvmsg operation, the cipher request is
 18 * allocated and prepared. As part of the recvmsg operation, the processed
 19 * TX buffers are extracted from the TX SGL into a separate SGL.
 20 *
 21 * After the completion of the crypto operation, the RX SGL and the cipher
 22 * request is released. The extracted TX SGL parts are released together with
 23 * the RX SGL release.
 24 */
 25
 26#include <crypto/internal/aead.h>
 27#include <crypto/scatterwalk.h>
 28#include <crypto/if_alg.h>
 29#include <crypto/skcipher.h>
 30#include <crypto/null.h>
 31#include <linux/init.h>
 32#include <linux/list.h>
 33#include <linux/kernel.h>
 34#include <linux/mm.h>
 35#include <linux/module.h>
 36#include <linux/net.h>
 37#include <net/sock.h>
 38
 39struct aead_tfm {
 40	struct crypto_aead *aead;
 41	struct crypto_sync_skcipher *null_tfm;
 42};
 43
 44static inline bool aead_sufficient_data(struct sock *sk)
 45{
 46	struct alg_sock *ask = alg_sk(sk);
 47	struct sock *psk = ask->parent;
 48	struct alg_sock *pask = alg_sk(psk);
 49	struct af_alg_ctx *ctx = ask->private;
 50	struct aead_tfm *aeadc = pask->private;
 51	struct crypto_aead *tfm = aeadc->aead;
 52	unsigned int as = crypto_aead_authsize(tfm);
 53
 54	/*
 55	 * The minimum amount of memory needed for an AEAD cipher is
 56	 * the AAD and in case of decryption the tag.
 57	 */
 58	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
 59}
 60
 61static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 62{
 63	struct sock *sk = sock->sk;
 64	struct alg_sock *ask = alg_sk(sk);
 65	struct sock *psk = ask->parent;
 66	struct alg_sock *pask = alg_sk(psk);
 67	struct aead_tfm *aeadc = pask->private;
 68	struct crypto_aead *tfm = aeadc->aead;
 69	unsigned int ivsize = crypto_aead_ivsize(tfm);
 70
 71	return af_alg_sendmsg(sock, msg, size, ivsize);
 72}
 73
 74static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm,
 75				struct scatterlist *src,
 76				struct scatterlist *dst, unsigned int len)
 77{
 78	SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
 79
 80	skcipher_request_set_sync_tfm(skreq, null_tfm);
 81	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_SLEEP,
 82				      NULL, NULL);
 83	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
 84
 85	return crypto_skcipher_encrypt(skreq);
 86}
 87
 88static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
 89			 size_t ignored, int flags)
 90{
 91	struct sock *sk = sock->sk;
 92	struct alg_sock *ask = alg_sk(sk);
 93	struct sock *psk = ask->parent;
 94	struct alg_sock *pask = alg_sk(psk);
 95	struct af_alg_ctx *ctx = ask->private;
 96	struct aead_tfm *aeadc = pask->private;
 97	struct crypto_aead *tfm = aeadc->aead;
 98	struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm;
 99	unsigned int i, as = crypto_aead_authsize(tfm);
100	struct af_alg_async_req *areq;
101	struct af_alg_tsgl *tsgl, *tmp;
102	struct scatterlist *rsgl_src, *tsgl_src = NULL;
103	int err = 0;
104	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
105	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
106	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
107	size_t processed = 0;		/* [in]  TX bufs to be consumed */
108
109	if (!ctx->init || ctx->more) {
110		err = af_alg_wait_for_data(sk, flags, 0);
111		if (err)
112			return err;
113	}
114
115	/*
116	 * Data length provided by caller via sendmsg/sendpage that has not
117	 * yet been processed.
118	 */
119	used = ctx->used;
120
121	/*
122	 * Make sure sufficient data is present -- note, the same check is
123	 * also present in sendmsg/sendpage. The checks in sendpage/sendmsg
124	 * shall provide an information to the data sender that something is
125	 * wrong, but they are irrelevant to maintain the kernel integrity.
126	 * We need this check here too in case user space decides to not honor
127	 * the error message in sendmsg/sendpage and still call recvmsg. This
128	 * check here protects the kernel integrity.
129	 */
130	if (!aead_sufficient_data(sk))
131		return -EINVAL;
132
133	/*
134	 * Calculate the minimum output buffer size holding the result of the
135	 * cipher operation. When encrypting data, the receiving buffer is
136	 * larger by the tag length compared to the input buffer as the
137	 * encryption operation generates the tag. For decryption, the input
138	 * buffer provides the tag which is consumed resulting in only the
139	 * plaintext without a buffer for the tag returned to the caller.
140	 */
141	if (ctx->enc)
142		outlen = used + as;
143	else
144		outlen = used - as;
145
146	/*
147	 * The cipher operation input data is reduced by the associated data
148	 * length as this data is processed separately later on.
149	 */
150	used -= ctx->aead_assoclen;
151
152	/* Allocate cipher request for current operation. */
153	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
154				     crypto_aead_reqsize(tfm));
155	if (IS_ERR(areq))
156		return PTR_ERR(areq);
157
158	/* convert iovecs of output buffers into RX SGL */
159	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
160	if (err)
161		goto free;
162
163	/*
164	 * Ensure output buffer is sufficiently large. If the caller provides
165	 * less buffer space, only use the relative required input size. This
166	 * allows AIO operation where the caller sent all data to be processed
167	 * and the AIO operation performs the operation on the different chunks
168	 * of the input data.
169	 */
170	if (usedpages < outlen) {
171		size_t less = outlen - usedpages;
172
173		if (used < less) {
174			err = -EINVAL;
175			goto free;
176		}
177		used -= less;
178		outlen -= less;
179	}
180
181	processed = used + ctx->aead_assoclen;
182	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
183		for (i = 0; i < tsgl->cur; i++) {
184			struct scatterlist *process_sg = tsgl->sg + i;
185
186			if (!(process_sg->length) || !sg_page(process_sg))
187				continue;
188			tsgl_src = process_sg;
189			break;
190		}
191		if (tsgl_src)
192			break;
193	}
194	if (processed && !tsgl_src) {
195		err = -EFAULT;
196		goto free;
197	}
198
199	/*
200	 * Copy of AAD from source to destination
201	 *
202	 * The AAD is copied to the destination buffer without change. Even
203	 * when user space uses an in-place cipher operation, the kernel
204	 * will copy the data as it does not see whether such in-place operation
205	 * is initiated.
206	 *
207	 * To ensure efficiency, the following implementation ensure that the
208	 * ciphers are invoked to perform a crypto operation in-place. This
209	 * is achieved by memory management specified as follows.
210	 */
211
212	/* Use the RX SGL as source (and destination) for crypto op. */
213	rsgl_src = areq->first_rsgl.sgl.sg;
214
215	if (ctx->enc) {
216		/*
217		 * Encryption operation - The in-place cipher operation is
218		 * achieved by the following operation:
219		 *
220		 * TX SGL: AAD || PT
221		 *	    |	   |
222		 *	    | copy |
223		 *	    v	   v
224		 * RX SGL: AAD || PT || Tag
225		 */
226		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
227					   areq->first_rsgl.sgl.sg, processed);
228		if (err)
229			goto free;
230		af_alg_pull_tsgl(sk, processed, NULL, 0);
231	} else {
232		/*
233		 * Decryption operation - To achieve an in-place cipher
234		 * operation, the following  SGL structure is used:
235		 *
236		 * TX SGL: AAD || CT || Tag
237		 *	    |	   |	 ^
238		 *	    | copy |	 | Create SGL link.
239		 *	    v	   v	 |
240		 * RX SGL: AAD || CT ----+
241		 */
242
243		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
244		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
245					   areq->first_rsgl.sgl.sg, outlen);
246		if (err)
247			goto free;
248
249		/* Create TX SGL for tag and chain it to RX SGL. */
250		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
251						       processed - as);
252		if (!areq->tsgl_entries)
253			areq->tsgl_entries = 1;
254		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
255							 areq->tsgl_entries),
256					  GFP_KERNEL);
257		if (!areq->tsgl) {
258			err = -ENOMEM;
259			goto free;
260		}
261		sg_init_table(areq->tsgl, areq->tsgl_entries);
262
263		/* Release TX SGL, except for tag data and reassign tag data. */
264		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
265
266		/* chain the areq TX SGL holding the tag with RX SGL */
267		if (usedpages) {
268			/* RX SGL present */
269			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
270
271			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
272			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
273				 areq->tsgl);
274		} else
275			/* no RX SGL present (e.g. authentication only) */
276			rsgl_src = areq->tsgl;
277	}
278
279	/* Initialize the crypto operation */
280	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
281			       areq->first_rsgl.sgl.sg, used, ctx->iv);
282	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
283	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
284
285	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
286		/* AIO operation */
287		sock_hold(sk);
288		areq->iocb = msg->msg_iocb;
289
290		/* Remember output size that will be generated. */
291		areq->outlen = outlen;
292
293		aead_request_set_callback(&areq->cra_u.aead_req,
294					  CRYPTO_TFM_REQ_MAY_SLEEP,
295					  af_alg_async_cb, areq);
296		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
297				 crypto_aead_decrypt(&areq->cra_u.aead_req);
298
299		/* AIO operation in progress */
300		if (err == -EINPROGRESS)
301			return -EIOCBQUEUED;
302
303		sock_put(sk);
304	} else {
305		/* Synchronous operation */
306		aead_request_set_callback(&areq->cra_u.aead_req,
307					  CRYPTO_TFM_REQ_MAY_SLEEP |
308					  CRYPTO_TFM_REQ_MAY_BACKLOG,
309					  crypto_req_done, &ctx->wait);
310		err = crypto_wait_req(ctx->enc ?
311				crypto_aead_encrypt(&areq->cra_u.aead_req) :
312				crypto_aead_decrypt(&areq->cra_u.aead_req),
313				&ctx->wait);
314	}
315
316
317free:
318	af_alg_free_resources(areq);
319
320	return err ? err : outlen;
321}
322
323static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
324			size_t ignored, int flags)
325{
326	struct sock *sk = sock->sk;
327	int ret = 0;
328
329	lock_sock(sk);
330	while (msg_data_left(msg)) {
331		int err = _aead_recvmsg(sock, msg, ignored, flags);
332
333		/*
334		 * This error covers -EIOCBQUEUED which implies that we can
335		 * only handle one AIO request. If the caller wants to have
336		 * multiple AIO requests in parallel, he must make multiple
337		 * separate AIO calls.
338		 *
339		 * Also return the error if no data has been processed so far.
340		 */
341		if (err <= 0) {
342			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
343				ret = err;
344			goto out;
345		}
346
347		ret += err;
348	}
349
350out:
351	af_alg_wmem_wakeup(sk);
352	release_sock(sk);
353	return ret;
354}
355
356static struct proto_ops algif_aead_ops = {
357	.family		=	PF_ALG,
358
359	.connect	=	sock_no_connect,
360	.socketpair	=	sock_no_socketpair,
361	.getname	=	sock_no_getname,
362	.ioctl		=	sock_no_ioctl,
363	.listen		=	sock_no_listen,
364	.shutdown	=	sock_no_shutdown,
 
365	.mmap		=	sock_no_mmap,
366	.bind		=	sock_no_bind,
367	.accept		=	sock_no_accept,
 
368
369	.release	=	af_alg_release,
370	.sendmsg	=	aead_sendmsg,
371	.sendpage	=	af_alg_sendpage,
372	.recvmsg	=	aead_recvmsg,
373	.poll		=	af_alg_poll,
374};
375
376static int aead_check_key(struct socket *sock)
377{
378	int err = 0;
379	struct sock *psk;
380	struct alg_sock *pask;
381	struct aead_tfm *tfm;
382	struct sock *sk = sock->sk;
383	struct alg_sock *ask = alg_sk(sk);
384
385	lock_sock(sk);
386	if (!atomic_read(&ask->nokey_refcnt))
387		goto unlock_child;
388
389	psk = ask->parent;
390	pask = alg_sk(ask->parent);
391	tfm = pask->private;
392
393	err = -ENOKEY;
394	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
395	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
396		goto unlock;
397
398	atomic_dec(&pask->nokey_refcnt);
399	atomic_set(&ask->nokey_refcnt, 0);
 
 
 
400
401	err = 0;
402
403unlock:
404	release_sock(psk);
405unlock_child:
406	release_sock(sk);
407
408	return err;
409}
410
411static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
412				  size_t size)
413{
414	int err;
415
416	err = aead_check_key(sock);
417	if (err)
418		return err;
419
420	return aead_sendmsg(sock, msg, size);
421}
422
423static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
424				       int offset, size_t size, int flags)
425{
426	int err;
427
428	err = aead_check_key(sock);
429	if (err)
430		return err;
431
432	return af_alg_sendpage(sock, page, offset, size, flags);
433}
434
435static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
436				  size_t ignored, int flags)
437{
438	int err;
439
440	err = aead_check_key(sock);
441	if (err)
442		return err;
443
444	return aead_recvmsg(sock, msg, ignored, flags);
445}
446
447static struct proto_ops algif_aead_ops_nokey = {
448	.family		=	PF_ALG,
449
450	.connect	=	sock_no_connect,
451	.socketpair	=	sock_no_socketpair,
452	.getname	=	sock_no_getname,
453	.ioctl		=	sock_no_ioctl,
454	.listen		=	sock_no_listen,
455	.shutdown	=	sock_no_shutdown,
 
456	.mmap		=	sock_no_mmap,
457	.bind		=	sock_no_bind,
458	.accept		=	sock_no_accept,
 
459
460	.release	=	af_alg_release,
461	.sendmsg	=	aead_sendmsg_nokey,
462	.sendpage	=	aead_sendpage_nokey,
463	.recvmsg	=	aead_recvmsg_nokey,
464	.poll		=	af_alg_poll,
465};
466
467static void *aead_bind(const char *name, u32 type, u32 mask)
468{
469	struct aead_tfm *tfm;
470	struct crypto_aead *aead;
471	struct crypto_sync_skcipher *null_tfm;
472
473	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
474	if (!tfm)
475		return ERR_PTR(-ENOMEM);
476
477	aead = crypto_alloc_aead(name, type, mask);
478	if (IS_ERR(aead)) {
479		kfree(tfm);
480		return ERR_CAST(aead);
481	}
482
483	null_tfm = crypto_get_default_null_skcipher();
484	if (IS_ERR(null_tfm)) {
485		crypto_free_aead(aead);
486		kfree(tfm);
487		return ERR_CAST(null_tfm);
488	}
489
490	tfm->aead = aead;
491	tfm->null_tfm = null_tfm;
492
493	return tfm;
494}
495
496static void aead_release(void *private)
497{
498	struct aead_tfm *tfm = private;
499
500	crypto_free_aead(tfm->aead);
501	crypto_put_default_null_skcipher();
502	kfree(tfm);
503}
504
505static int aead_setauthsize(void *private, unsigned int authsize)
506{
507	struct aead_tfm *tfm = private;
508
509	return crypto_aead_setauthsize(tfm->aead, authsize);
510}
511
512static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
513{
514	struct aead_tfm *tfm = private;
515
516	return crypto_aead_setkey(tfm->aead, key, keylen);
517}
518
519static void aead_sock_destruct(struct sock *sk)
520{
521	struct alg_sock *ask = alg_sk(sk);
522	struct af_alg_ctx *ctx = ask->private;
523	struct sock *psk = ask->parent;
524	struct alg_sock *pask = alg_sk(psk);
525	struct aead_tfm *aeadc = pask->private;
526	struct crypto_aead *tfm = aeadc->aead;
527	unsigned int ivlen = crypto_aead_ivsize(tfm);
528
529	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
530	sock_kzfree_s(sk, ctx->iv, ivlen);
531	sock_kfree_s(sk, ctx, ctx->len);
532	af_alg_release_parent(sk);
533}
534
535static int aead_accept_parent_nokey(void *private, struct sock *sk)
536{
537	struct af_alg_ctx *ctx;
538	struct alg_sock *ask = alg_sk(sk);
539	struct aead_tfm *tfm = private;
540	struct crypto_aead *aead = tfm->aead;
541	unsigned int len = sizeof(*ctx);
542	unsigned int ivlen = crypto_aead_ivsize(aead);
543
544	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
545	if (!ctx)
546		return -ENOMEM;
547	memset(ctx, 0, len);
548
549	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
550	if (!ctx->iv) {
551		sock_kfree_s(sk, ctx, len);
552		return -ENOMEM;
553	}
554	memset(ctx->iv, 0, ivlen);
555
556	INIT_LIST_HEAD(&ctx->tsgl_list);
557	ctx->len = len;
 
 
 
 
 
 
558	crypto_init_wait(&ctx->wait);
559
560	ask->private = ctx;
561
562	sk->sk_destruct = aead_sock_destruct;
563
564	return 0;
565}
566
567static int aead_accept_parent(void *private, struct sock *sk)
568{
569	struct aead_tfm *tfm = private;
570
571	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
572		return -ENOKEY;
573
574	return aead_accept_parent_nokey(private, sk);
575}
576
577static const struct af_alg_type algif_type_aead = {
578	.bind		=	aead_bind,
579	.release	=	aead_release,
580	.setkey		=	aead_setkey,
581	.setauthsize	=	aead_setauthsize,
582	.accept		=	aead_accept_parent,
583	.accept_nokey	=	aead_accept_parent_nokey,
584	.ops		=	&algif_aead_ops,
585	.ops_nokey	=	&algif_aead_ops_nokey,
586	.name		=	"aead",
587	.owner		=	THIS_MODULE
588};
589
590static int __init algif_aead_init(void)
591{
592	return af_alg_register_type(&algif_type_aead);
593}
594
595static void __exit algif_aead_exit(void)
596{
597	int err = af_alg_unregister_type(&algif_type_aead);
598	BUG_ON(err);
599}
600
601module_init(algif_aead_init);
602module_exit(algif_aead_exit);
603MODULE_LICENSE("GPL");
604MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
605MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * algif_aead: User-space interface for AEAD algorithms
  4 *
  5 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
  6 *
  7 * This file provides the user-space API for AEAD ciphers.
  8 *
  9 * The following concept of the memory management is used:
 10 *
 11 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
 12 * filled by user space with the data submitted via sendpage/sendmsg. Filling
 13 * up the TX SGL does not cause a crypto operation -- the data will only be
 14 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
 15 * provide a buffer which is tracked with the RX SGL.
 16 *
 17 * During the processing of the recvmsg operation, the cipher request is
 18 * allocated and prepared. As part of the recvmsg operation, the processed
 19 * TX buffers are extracted from the TX SGL into a separate SGL.
 20 *
 21 * After the completion of the crypto operation, the RX SGL and the cipher
 22 * request is released. The extracted TX SGL parts are released together with
 23 * the RX SGL release.
 24 */
 25
 26#include <crypto/internal/aead.h>
 27#include <crypto/scatterwalk.h>
 28#include <crypto/if_alg.h>
 29#include <crypto/skcipher.h>
 30#include <crypto/null.h>
 31#include <linux/init.h>
 32#include <linux/list.h>
 33#include <linux/kernel.h>
 34#include <linux/mm.h>
 35#include <linux/module.h>
 36#include <linux/net.h>
 37#include <net/sock.h>
 38
 39struct aead_tfm {
 40	struct crypto_aead *aead;
 41	struct crypto_sync_skcipher *null_tfm;
 42};
 43
 44static inline bool aead_sufficient_data(struct sock *sk)
 45{
 46	struct alg_sock *ask = alg_sk(sk);
 47	struct sock *psk = ask->parent;
 48	struct alg_sock *pask = alg_sk(psk);
 49	struct af_alg_ctx *ctx = ask->private;
 50	struct aead_tfm *aeadc = pask->private;
 51	struct crypto_aead *tfm = aeadc->aead;
 52	unsigned int as = crypto_aead_authsize(tfm);
 53
 54	/*
 55	 * The minimum amount of memory needed for an AEAD cipher is
 56	 * the AAD and in case of decryption the tag.
 57	 */
 58	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
 59}
 60
 61static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 62{
 63	struct sock *sk = sock->sk;
 64	struct alg_sock *ask = alg_sk(sk);
 65	struct sock *psk = ask->parent;
 66	struct alg_sock *pask = alg_sk(psk);
 67	struct aead_tfm *aeadc = pask->private;
 68	struct crypto_aead *tfm = aeadc->aead;
 69	unsigned int ivsize = crypto_aead_ivsize(tfm);
 70
 71	return af_alg_sendmsg(sock, msg, size, ivsize);
 72}
 73
 74static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm,
 75				struct scatterlist *src,
 76				struct scatterlist *dst, unsigned int len)
 77{
 78	SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
 79
 80	skcipher_request_set_sync_tfm(skreq, null_tfm);
 81	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
 82				      NULL, NULL);
 83	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
 84
 85	return crypto_skcipher_encrypt(skreq);
 86}
 87
 88static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
 89			 size_t ignored, int flags)
 90{
 91	struct sock *sk = sock->sk;
 92	struct alg_sock *ask = alg_sk(sk);
 93	struct sock *psk = ask->parent;
 94	struct alg_sock *pask = alg_sk(psk);
 95	struct af_alg_ctx *ctx = ask->private;
 96	struct aead_tfm *aeadc = pask->private;
 97	struct crypto_aead *tfm = aeadc->aead;
 98	struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm;
 99	unsigned int i, as = crypto_aead_authsize(tfm);
100	struct af_alg_async_req *areq;
101	struct af_alg_tsgl *tsgl, *tmp;
102	struct scatterlist *rsgl_src, *tsgl_src = NULL;
103	int err = 0;
104	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
105	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
106	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
107	size_t processed = 0;		/* [in]  TX bufs to be consumed */
108
109	if (!ctx->used) {
110		err = af_alg_wait_for_data(sk, flags);
111		if (err)
112			return err;
113	}
114
115	/*
116	 * Data length provided by caller via sendmsg/sendpage that has not
117	 * yet been processed.
118	 */
119	used = ctx->used;
120
121	/*
122	 * Make sure sufficient data is present -- note, the same check is
123	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
124	 * shall provide an information to the data sender that something is
125	 * wrong, but they are irrelevant to maintain the kernel integrity.
126	 * We need this check here too in case user space decides to not honor
127	 * the error message in sendmsg/sendpage and still call recvmsg. This
128	 * check here protects the kernel integrity.
129	 */
130	if (!aead_sufficient_data(sk))
131		return -EINVAL;
132
133	/*
134	 * Calculate the minimum output buffer size holding the result of the
135	 * cipher operation. When encrypting data, the receiving buffer is
136	 * larger by the tag length compared to the input buffer as the
137	 * encryption operation generates the tag. For decryption, the input
138	 * buffer provides the tag which is consumed resulting in only the
139	 * plaintext without a buffer for the tag returned to the caller.
140	 */
141	if (ctx->enc)
142		outlen = used + as;
143	else
144		outlen = used - as;
145
146	/*
147	 * The cipher operation input data is reduced by the associated data
148	 * length as this data is processed separately later on.
149	 */
150	used -= ctx->aead_assoclen;
151
152	/* Allocate cipher request for current operation. */
153	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
154				     crypto_aead_reqsize(tfm));
155	if (IS_ERR(areq))
156		return PTR_ERR(areq);
157
158	/* convert iovecs of output buffers into RX SGL */
159	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
160	if (err)
161		goto free;
162
163	/*
164	 * Ensure output buffer is sufficiently large. If the caller provides
165	 * less buffer space, only use the relative required input size. This
166	 * allows AIO operation where the caller sent all data to be processed
167	 * and the AIO operation performs the operation on the different chunks
168	 * of the input data.
169	 */
170	if (usedpages < outlen) {
171		size_t less = outlen - usedpages;
172
173		if (used < less) {
174			err = -EINVAL;
175			goto free;
176		}
177		used -= less;
178		outlen -= less;
179	}
180
181	processed = used + ctx->aead_assoclen;
182	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
183		for (i = 0; i < tsgl->cur; i++) {
184			struct scatterlist *process_sg = tsgl->sg + i;
185
186			if (!(process_sg->length) || !sg_page(process_sg))
187				continue;
188			tsgl_src = process_sg;
189			break;
190		}
191		if (tsgl_src)
192			break;
193	}
194	if (processed && !tsgl_src) {
195		err = -EFAULT;
196		goto free;
197	}
198
199	/*
200	 * Copy of AAD from source to destination
201	 *
202	 * The AAD is copied to the destination buffer without change. Even
203	 * when user space uses an in-place cipher operation, the kernel
204	 * will copy the data as it does not see whether such in-place operation
205	 * is initiated.
206	 *
207	 * To ensure efficiency, the following implementation ensure that the
208	 * ciphers are invoked to perform a crypto operation in-place. This
209	 * is achieved by memory management specified as follows.
210	 */
211
212	/* Use the RX SGL as source (and destination) for crypto op. */
213	rsgl_src = areq->first_rsgl.sgl.sg;
214
215	if (ctx->enc) {
216		/*
217		 * Encryption operation - The in-place cipher operation is
218		 * achieved by the following operation:
219		 *
220		 * TX SGL: AAD || PT
221		 *	    |	   |
222		 *	    | copy |
223		 *	    v	   v
224		 * RX SGL: AAD || PT || Tag
225		 */
226		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
227					   areq->first_rsgl.sgl.sg, processed);
228		if (err)
229			goto free;
230		af_alg_pull_tsgl(sk, processed, NULL, 0);
231	} else {
232		/*
233		 * Decryption operation - To achieve an in-place cipher
234		 * operation, the following  SGL structure is used:
235		 *
236		 * TX SGL: AAD || CT || Tag
237		 *	    |	   |	 ^
238		 *	    | copy |	 | Create SGL link.
239		 *	    v	   v	 |
240		 * RX SGL: AAD || CT ----+
241		 */
242
243		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
244		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
245					   areq->first_rsgl.sgl.sg, outlen);
246		if (err)
247			goto free;
248
249		/* Create TX SGL for tag and chain it to RX SGL. */
250		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
251						       processed - as);
252		if (!areq->tsgl_entries)
253			areq->tsgl_entries = 1;
254		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
255							 areq->tsgl_entries),
256					  GFP_KERNEL);
257		if (!areq->tsgl) {
258			err = -ENOMEM;
259			goto free;
260		}
261		sg_init_table(areq->tsgl, areq->tsgl_entries);
262
263		/* Release TX SGL, except for tag data and reassign tag data. */
264		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
265
266		/* chain the areq TX SGL holding the tag with RX SGL */
267		if (usedpages) {
268			/* RX SGL present */
269			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
270
271			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
272			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
273				 areq->tsgl);
274		} else
275			/* no RX SGL present (e.g. authentication only) */
276			rsgl_src = areq->tsgl;
277	}
278
279	/* Initialize the crypto operation */
280	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
281			       areq->first_rsgl.sgl.sg, used, ctx->iv);
282	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
283	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
284
285	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
286		/* AIO operation */
287		sock_hold(sk);
288		areq->iocb = msg->msg_iocb;
289
290		/* Remember output size that will be generated. */
291		areq->outlen = outlen;
292
293		aead_request_set_callback(&areq->cra_u.aead_req,
294					  CRYPTO_TFM_REQ_MAY_BACKLOG,
295					  af_alg_async_cb, areq);
296		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
297				 crypto_aead_decrypt(&areq->cra_u.aead_req);
298
299		/* AIO operation in progress */
300		if (err == -EINPROGRESS || err == -EBUSY)
301			return -EIOCBQUEUED;
302
303		sock_put(sk);
304	} else {
305		/* Synchronous operation */
306		aead_request_set_callback(&areq->cra_u.aead_req,
 
307					  CRYPTO_TFM_REQ_MAY_BACKLOG,
308					  crypto_req_done, &ctx->wait);
309		err = crypto_wait_req(ctx->enc ?
310				crypto_aead_encrypt(&areq->cra_u.aead_req) :
311				crypto_aead_decrypt(&areq->cra_u.aead_req),
312				&ctx->wait);
313	}
314
315
316free:
317	af_alg_free_resources(areq);
318
319	return err ? err : outlen;
320}
321
322static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
323			size_t ignored, int flags)
324{
325	struct sock *sk = sock->sk;
326	int ret = 0;
327
328	lock_sock(sk);
329	while (msg_data_left(msg)) {
330		int err = _aead_recvmsg(sock, msg, ignored, flags);
331
332		/*
333		 * This error covers -EIOCBQUEUED which implies that we can
334		 * only handle one AIO request. If the caller wants to have
335		 * multiple AIO requests in parallel, he must make multiple
336		 * separate AIO calls.
337		 *
338		 * Also return the error if no data has been processed so far.
339		 */
340		if (err <= 0) {
341			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
342				ret = err;
343			goto out;
344		}
345
346		ret += err;
347	}
348
349out:
350	af_alg_wmem_wakeup(sk);
351	release_sock(sk);
352	return ret;
353}
354
355static struct proto_ops algif_aead_ops = {
356	.family		=	PF_ALG,
357
358	.connect	=	sock_no_connect,
359	.socketpair	=	sock_no_socketpair,
360	.getname	=	sock_no_getname,
361	.ioctl		=	sock_no_ioctl,
362	.listen		=	sock_no_listen,
363	.shutdown	=	sock_no_shutdown,
364	.getsockopt	=	sock_no_getsockopt,
365	.mmap		=	sock_no_mmap,
366	.bind		=	sock_no_bind,
367	.accept		=	sock_no_accept,
368	.setsockopt	=	sock_no_setsockopt,
369
370	.release	=	af_alg_release,
371	.sendmsg	=	aead_sendmsg,
372	.sendpage	=	af_alg_sendpage,
373	.recvmsg	=	aead_recvmsg,
374	.poll		=	af_alg_poll,
375};
376
377static int aead_check_key(struct socket *sock)
378{
379	int err = 0;
380	struct sock *psk;
381	struct alg_sock *pask;
382	struct aead_tfm *tfm;
383	struct sock *sk = sock->sk;
384	struct alg_sock *ask = alg_sk(sk);
385
386	lock_sock(sk);
387	if (ask->refcnt)
388		goto unlock_child;
389
390	psk = ask->parent;
391	pask = alg_sk(ask->parent);
392	tfm = pask->private;
393
394	err = -ENOKEY;
395	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
396	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
397		goto unlock;
398
399	if (!pask->refcnt++)
400		sock_hold(psk);
401
402	ask->refcnt = 1;
403	sock_put(psk);
404
405	err = 0;
406
407unlock:
408	release_sock(psk);
409unlock_child:
410	release_sock(sk);
411
412	return err;
413}
414
415static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
416				  size_t size)
417{
418	int err;
419
420	err = aead_check_key(sock);
421	if (err)
422		return err;
423
424	return aead_sendmsg(sock, msg, size);
425}
426
427static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
428				       int offset, size_t size, int flags)
429{
430	int err;
431
432	err = aead_check_key(sock);
433	if (err)
434		return err;
435
436	return af_alg_sendpage(sock, page, offset, size, flags);
437}
438
439static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
440				  size_t ignored, int flags)
441{
442	int err;
443
444	err = aead_check_key(sock);
445	if (err)
446		return err;
447
448	return aead_recvmsg(sock, msg, ignored, flags);
449}
450
451static struct proto_ops algif_aead_ops_nokey = {
452	.family		=	PF_ALG,
453
454	.connect	=	sock_no_connect,
455	.socketpair	=	sock_no_socketpair,
456	.getname	=	sock_no_getname,
457	.ioctl		=	sock_no_ioctl,
458	.listen		=	sock_no_listen,
459	.shutdown	=	sock_no_shutdown,
460	.getsockopt	=	sock_no_getsockopt,
461	.mmap		=	sock_no_mmap,
462	.bind		=	sock_no_bind,
463	.accept		=	sock_no_accept,
464	.setsockopt	=	sock_no_setsockopt,
465
466	.release	=	af_alg_release,
467	.sendmsg	=	aead_sendmsg_nokey,
468	.sendpage	=	aead_sendpage_nokey,
469	.recvmsg	=	aead_recvmsg_nokey,
470	.poll		=	af_alg_poll,
471};
472
473static void *aead_bind(const char *name, u32 type, u32 mask)
474{
475	struct aead_tfm *tfm;
476	struct crypto_aead *aead;
477	struct crypto_sync_skcipher *null_tfm;
478
479	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
480	if (!tfm)
481		return ERR_PTR(-ENOMEM);
482
483	aead = crypto_alloc_aead(name, type, mask);
484	if (IS_ERR(aead)) {
485		kfree(tfm);
486		return ERR_CAST(aead);
487	}
488
489	null_tfm = crypto_get_default_null_skcipher();
490	if (IS_ERR(null_tfm)) {
491		crypto_free_aead(aead);
492		kfree(tfm);
493		return ERR_CAST(null_tfm);
494	}
495
496	tfm->aead = aead;
497	tfm->null_tfm = null_tfm;
498
499	return tfm;
500}
501
502static void aead_release(void *private)
503{
504	struct aead_tfm *tfm = private;
505
506	crypto_free_aead(tfm->aead);
507	crypto_put_default_null_skcipher();
508	kfree(tfm);
509}
510
511static int aead_setauthsize(void *private, unsigned int authsize)
512{
513	struct aead_tfm *tfm = private;
514
515	return crypto_aead_setauthsize(tfm->aead, authsize);
516}
517
518static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
519{
520	struct aead_tfm *tfm = private;
521
522	return crypto_aead_setkey(tfm->aead, key, keylen);
523}
524
525static void aead_sock_destruct(struct sock *sk)
526{
527	struct alg_sock *ask = alg_sk(sk);
528	struct af_alg_ctx *ctx = ask->private;
529	struct sock *psk = ask->parent;
530	struct alg_sock *pask = alg_sk(psk);
531	struct aead_tfm *aeadc = pask->private;
532	struct crypto_aead *tfm = aeadc->aead;
533	unsigned int ivlen = crypto_aead_ivsize(tfm);
534
535	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
536	sock_kzfree_s(sk, ctx->iv, ivlen);
537	sock_kfree_s(sk, ctx, ctx->len);
538	af_alg_release_parent(sk);
539}
540
541static int aead_accept_parent_nokey(void *private, struct sock *sk)
542{
543	struct af_alg_ctx *ctx;
544	struct alg_sock *ask = alg_sk(sk);
545	struct aead_tfm *tfm = private;
546	struct crypto_aead *aead = tfm->aead;
547	unsigned int len = sizeof(*ctx);
548	unsigned int ivlen = crypto_aead_ivsize(aead);
549
550	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
551	if (!ctx)
552		return -ENOMEM;
553	memset(ctx, 0, len);
554
555	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
556	if (!ctx->iv) {
557		sock_kfree_s(sk, ctx, len);
558		return -ENOMEM;
559	}
560	memset(ctx->iv, 0, ivlen);
561
562	INIT_LIST_HEAD(&ctx->tsgl_list);
563	ctx->len = len;
564	ctx->used = 0;
565	atomic_set(&ctx->rcvused, 0);
566	ctx->more = 0;
567	ctx->merge = 0;
568	ctx->enc = 0;
569	ctx->aead_assoclen = 0;
570	crypto_init_wait(&ctx->wait);
571
572	ask->private = ctx;
573
574	sk->sk_destruct = aead_sock_destruct;
575
576	return 0;
577}
578
579static int aead_accept_parent(void *private, struct sock *sk)
580{
581	struct aead_tfm *tfm = private;
582
583	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
584		return -ENOKEY;
585
586	return aead_accept_parent_nokey(private, sk);
587}
588
589static const struct af_alg_type algif_type_aead = {
590	.bind		=	aead_bind,
591	.release	=	aead_release,
592	.setkey		=	aead_setkey,
593	.setauthsize	=	aead_setauthsize,
594	.accept		=	aead_accept_parent,
595	.accept_nokey	=	aead_accept_parent_nokey,
596	.ops		=	&algif_aead_ops,
597	.ops_nokey	=	&algif_aead_ops_nokey,
598	.name		=	"aead",
599	.owner		=	THIS_MODULE
600};
601
602static int __init algif_aead_init(void)
603{
604	return af_alg_register_type(&algif_type_aead);
605}
606
607static void __exit algif_aead_exit(void)
608{
609	int err = af_alg_unregister_type(&algif_type_aead);
610	BUG_ON(err);
611}
612
613module_init(algif_aead_init);
614module_exit(algif_aead_exit);
615MODULE_LICENSE("GPL");
616MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
617MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");