Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
 
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
  24#include <linux/sched/sysctl.h>
  25#include <linux/sched/topology.h>
  26#include <linux/sched/signal.h>
  27#include <linux/delay.h>
  28#include <linux/crash_dump.h>
  29#include <linux/prefetch.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/part_stat.h>
  32
  33#include <trace/events/block.h>
  34
  35#include <linux/blk-mq.h>
  36#include <linux/t10-pi.h>
  37#include "blk.h"
  38#include "blk-mq.h"
  39#include "blk-mq-debugfs.h"
  40#include "blk-mq-tag.h"
  41#include "blk-pm.h"
  42#include "blk-stat.h"
  43#include "blk-mq-sched.h"
  44#include "blk-rq-qos.h"
  45#include "blk-ioprio.h"
  46
  47static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  48
  49static void blk_mq_poll_stats_start(struct request_queue *q);
  50static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  51
  52static int blk_mq_poll_stats_bkt(const struct request *rq)
  53{
  54	int ddir, sectors, bucket;
  55
  56	ddir = rq_data_dir(rq);
  57	sectors = blk_rq_stats_sectors(rq);
  58
  59	bucket = ddir + 2 * ilog2(sectors);
  60
  61	if (bucket < 0)
  62		return -1;
  63	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  64		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  65
  66	return bucket;
  67}
  68
  69#define BLK_QC_T_SHIFT		16
  70#define BLK_QC_T_INTERNAL	(1U << 31)
  71
  72static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
  73		blk_qc_t qc)
  74{
  75	return xa_load(&q->hctx_table,
  76			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
  77}
  78
  79static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
  80		blk_qc_t qc)
  81{
  82	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
  83
  84	if (qc & BLK_QC_T_INTERNAL)
  85		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
  86	return blk_mq_tag_to_rq(hctx->tags, tag);
  87}
  88
  89static inline blk_qc_t blk_rq_to_qc(struct request *rq)
  90{
  91	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
  92		(rq->tag != -1 ?
  93		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
  94}
  95
  96/*
  97 * Check if any of the ctx, dispatch list or elevator
  98 * have pending work in this hardware queue.
  99 */
 100static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
 101{
 102	return !list_empty_careful(&hctx->dispatch) ||
 103		sbitmap_any_bit_set(&hctx->ctx_map) ||
 104			blk_mq_sched_has_work(hctx);
 105}
 106
 107/*
 108 * Mark this ctx as having pending work in this hardware queue
 109 */
 110static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
 111				     struct blk_mq_ctx *ctx)
 112{
 113	const int bit = ctx->index_hw[hctx->type];
 114
 115	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
 116		sbitmap_set_bit(&hctx->ctx_map, bit);
 117}
 118
 119static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
 120				      struct blk_mq_ctx *ctx)
 121{
 122	const int bit = ctx->index_hw[hctx->type];
 123
 124	sbitmap_clear_bit(&hctx->ctx_map, bit);
 125}
 126
 127struct mq_inflight {
 128	struct block_device *part;
 129	unsigned int inflight[2];
 130};
 131
 132static bool blk_mq_check_inflight(struct request *rq, void *priv)
 
 
 133{
 134	struct mq_inflight *mi = priv;
 135
 136	if (rq->part && blk_do_io_stat(rq) &&
 137	    (!mi->part->bd_partno || rq->part == mi->part) &&
 138	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
 139		mi->inflight[rq_data_dir(rq)]++;
 
 140
 141	return true;
 142}
 143
 144unsigned int blk_mq_in_flight(struct request_queue *q,
 145		struct block_device *part)
 146{
 147	struct mq_inflight mi = { .part = part };
 
 148
 
 149	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 150
 151	return mi.inflight[0] + mi.inflight[1];
 152}
 153
 154void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 155		unsigned int inflight[2])
 
 156{
 157	struct mq_inflight mi = { .part = part };
 158
 159	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 160	inflight[0] = mi.inflight[0];
 161	inflight[1] = mi.inflight[1];
 
 
 
 
 
 
 
 
 
 
 162}
 163
 164void blk_freeze_queue_start(struct request_queue *q)
 165{
 166	mutex_lock(&q->mq_freeze_lock);
 167	if (++q->mq_freeze_depth == 1) {
 168		percpu_ref_kill(&q->q_usage_counter);
 169		mutex_unlock(&q->mq_freeze_lock);
 170		if (queue_is_mq(q))
 171			blk_mq_run_hw_queues(q, false);
 172	} else {
 173		mutex_unlock(&q->mq_freeze_lock);
 174	}
 175}
 176EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 177
 178void blk_mq_freeze_queue_wait(struct request_queue *q)
 179{
 180	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 181}
 182EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 183
 184int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 185				     unsigned long timeout)
 186{
 187	return wait_event_timeout(q->mq_freeze_wq,
 188					percpu_ref_is_zero(&q->q_usage_counter),
 189					timeout);
 190}
 191EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 192
 193/*
 194 * Guarantee no request is in use, so we can change any data structure of
 195 * the queue afterward.
 196 */
 197void blk_freeze_queue(struct request_queue *q)
 198{
 199	/*
 200	 * In the !blk_mq case we are only calling this to kill the
 201	 * q_usage_counter, otherwise this increases the freeze depth
 202	 * and waits for it to return to zero.  For this reason there is
 203	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 204	 * exported to drivers as the only user for unfreeze is blk_mq.
 205	 */
 206	blk_freeze_queue_start(q);
 207	blk_mq_freeze_queue_wait(q);
 208}
 209
 210void blk_mq_freeze_queue(struct request_queue *q)
 211{
 212	/*
 213	 * ...just an alias to keep freeze and unfreeze actions balanced
 214	 * in the blk_mq_* namespace
 215	 */
 216	blk_freeze_queue(q);
 217}
 218EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 219
 220void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 221{
 222	mutex_lock(&q->mq_freeze_lock);
 223	if (force_atomic)
 224		q->q_usage_counter.data->force_atomic = true;
 225	q->mq_freeze_depth--;
 226	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 227	if (!q->mq_freeze_depth) {
 228		percpu_ref_resurrect(&q->q_usage_counter);
 229		wake_up_all(&q->mq_freeze_wq);
 230	}
 231	mutex_unlock(&q->mq_freeze_lock);
 232}
 233
 234void blk_mq_unfreeze_queue(struct request_queue *q)
 235{
 236	__blk_mq_unfreeze_queue(q, false);
 237}
 238EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 239
 240/*
 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 242 * mpt3sas driver such that this function can be removed.
 243 */
 244void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 245{
 246	unsigned long flags;
 247
 248	spin_lock_irqsave(&q->queue_lock, flags);
 249	if (!q->quiesce_depth++)
 250		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 251	spin_unlock_irqrestore(&q->queue_lock, flags);
 252}
 253EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 254
 255/**
 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 257 * @set: tag_set to wait on
 258 *
 259 * Note: it is driver's responsibility for making sure that quiesce has
 260 * been started on or more of the request_queues of the tag_set.  This
 261 * function only waits for the quiesce on those request_queues that had
 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 263 */
 264void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 265{
 266	if (set->flags & BLK_MQ_F_BLOCKING)
 267		synchronize_srcu(set->srcu);
 268	else
 269		synchronize_rcu();
 270}
 271EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 272
 273/**
 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 275 * @q: request queue.
 276 *
 277 * Note: this function does not prevent that the struct request end_io()
 278 * callback function is invoked. Once this function is returned, we make
 279 * sure no dispatch can happen until the queue is unquiesced via
 280 * blk_mq_unquiesce_queue().
 281 */
 282void blk_mq_quiesce_queue(struct request_queue *q)
 283{
 
 
 
 
 284	blk_mq_quiesce_queue_nowait(q);
 285	/* nothing to wait for non-mq queues */
 286	if (queue_is_mq(q))
 287		blk_mq_wait_quiesce_done(q->tag_set);
 
 
 
 
 
 
 288}
 289EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 290
 291/*
 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 293 * @q: request queue.
 294 *
 295 * This function recovers queue into the state before quiescing
 296 * which is done by blk_mq_quiesce_queue.
 297 */
 298void blk_mq_unquiesce_queue(struct request_queue *q)
 299{
 300	unsigned long flags;
 301	bool run_queue = false;
 302
 303	spin_lock_irqsave(&q->queue_lock, flags);
 304	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 305		;
 306	} else if (!--q->quiesce_depth) {
 307		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 308		run_queue = true;
 309	}
 310	spin_unlock_irqrestore(&q->queue_lock, flags);
 311
 312	/* dispatch requests which are inserted during quiescing */
 313	if (run_queue)
 314		blk_mq_run_hw_queues(q, true);
 315}
 316EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 317
 318void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 319{
 320	struct request_queue *q;
 321
 322	mutex_lock(&set->tag_list_lock);
 323	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 324		if (!blk_queue_skip_tagset_quiesce(q))
 325			blk_mq_quiesce_queue_nowait(q);
 326	}
 327	blk_mq_wait_quiesce_done(set);
 328	mutex_unlock(&set->tag_list_lock);
 329}
 330EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 331
 332void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 333{
 334	struct request_queue *q;
 335
 336	mutex_lock(&set->tag_list_lock);
 337	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 338		if (!blk_queue_skip_tagset_quiesce(q))
 339			blk_mq_unquiesce_queue(q);
 340	}
 341	mutex_unlock(&set->tag_list_lock);
 342}
 343EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 344
 345void blk_mq_wake_waiters(struct request_queue *q)
 346{
 347	struct blk_mq_hw_ctx *hctx;
 348	unsigned long i;
 349
 350	queue_for_each_hw_ctx(q, hctx, i)
 351		if (blk_mq_hw_queue_mapped(hctx))
 352			blk_mq_tag_wakeup_all(hctx->tags, true);
 353}
 354
 355void blk_rq_init(struct request_queue *q, struct request *rq)
 356{
 357	memset(rq, 0, sizeof(*rq));
 
 
 358
 359	INIT_LIST_HEAD(&rq->queuelist);
 360	rq->q = q;
 361	rq->__sector = (sector_t) -1;
 362	INIT_HLIST_NODE(&rq->hash);
 363	RB_CLEAR_NODE(&rq->rb_node);
 364	rq->tag = BLK_MQ_NO_TAG;
 365	rq->internal_tag = BLK_MQ_NO_TAG;
 366	rq->start_time_ns = ktime_get_ns();
 367	rq->part = NULL;
 368	blk_crypto_rq_set_defaults(rq);
 369}
 370EXPORT_SYMBOL(blk_rq_init);
 371
 372static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 373		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
 374{
 375	struct blk_mq_ctx *ctx = data->ctx;
 376	struct blk_mq_hw_ctx *hctx = data->hctx;
 377	struct request_queue *q = data->q;
 378	struct request *rq = tags->static_rqs[tag];
 
 379
 380	rq->q = q;
 381	rq->mq_ctx = ctx;
 382	rq->mq_hctx = hctx;
 383	rq->cmd_flags = data->cmd_flags;
 384
 385	if (data->flags & BLK_MQ_REQ_PM)
 386		data->rq_flags |= RQF_PM;
 387	if (blk_queue_io_stat(q))
 388		data->rq_flags |= RQF_IO_STAT;
 389	rq->rq_flags = data->rq_flags;
 390
 391	if (!(data->rq_flags & RQF_ELV)) {
 392		rq->tag = tag;
 393		rq->internal_tag = BLK_MQ_NO_TAG;
 394	} else {
 395		rq->tag = BLK_MQ_NO_TAG;
 396		rq->internal_tag = tag;
 
 
 
 
 
 
 
 
 397	}
 398	rq->timeout = 0;
 399
 400	if (blk_mq_need_time_stamp(rq))
 401		rq->start_time_ns = ktime_get_ns();
 402	else
 403		rq->start_time_ns = 0;
 
 
 
 
 
 
 
 
 
 
 404	rq->part = NULL;
 405#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 406	rq->alloc_time_ns = alloc_time_ns;
 407#endif
 
 
 
 
 408	rq->io_start_time_ns = 0;
 409	rq->stats_sectors = 0;
 410	rq->nr_phys_segments = 0;
 411#if defined(CONFIG_BLK_DEV_INTEGRITY)
 412	rq->nr_integrity_segments = 0;
 413#endif
 414	rq->end_io = NULL;
 415	rq->end_io_data = NULL;
 416
 417	blk_crypto_rq_set_defaults(rq);
 418	INIT_LIST_HEAD(&rq->queuelist);
 419	/* tag was already set */
 
 420	WRITE_ONCE(rq->deadline, 0);
 421	req_ref_set(rq, 1);
 422
 423	if (rq->rq_flags & RQF_ELV) {
 424		struct elevator_queue *e = data->q->elevator;
 425
 426		INIT_HLIST_NODE(&rq->hash);
 427		RB_CLEAR_NODE(&rq->rb_node);
 428
 429		if (!op_is_flush(data->cmd_flags) &&
 430		    e->type->ops.prepare_request) {
 431			e->type->ops.prepare_request(rq);
 432			rq->rq_flags |= RQF_ELVPRIV;
 433		}
 434	}
 435
 
 
 436	return rq;
 437}
 438
 439static inline struct request *
 440__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
 441		u64 alloc_time_ns)
 442{
 443	unsigned int tag, tag_offset;
 444	struct blk_mq_tags *tags;
 445	struct request *rq;
 446	unsigned long tag_mask;
 447	int i, nr = 0;
 448
 449	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 450	if (unlikely(!tag_mask))
 451		return NULL;
 452
 453	tags = blk_mq_tags_from_data(data);
 454	for (i = 0; tag_mask; i++) {
 455		if (!(tag_mask & (1UL << i)))
 456			continue;
 457		tag = tag_offset + i;
 458		prefetch(tags->static_rqs[tag]);
 459		tag_mask &= ~(1UL << i);
 460		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
 461		rq_list_add(data->cached_rq, rq);
 462		nr++;
 463	}
 464	/* caller already holds a reference, add for remainder */
 465	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 466	data->nr_tags -= nr;
 467
 468	return rq_list_pop(data->cached_rq);
 469}
 470
 471static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 472{
 473	struct request_queue *q = data->q;
 474	u64 alloc_time_ns = 0;
 475	struct request *rq;
 476	unsigned int tag;
 
 
 
 
 477
 478	/* alloc_time includes depth and tag waits */
 479	if (blk_queue_rq_alloc_time(q))
 480		alloc_time_ns = ktime_get_ns();
 481
 
 
 
 
 
 
 
 
 482	if (data->cmd_flags & REQ_NOWAIT)
 483		data->flags |= BLK_MQ_REQ_NOWAIT;
 484
 485	if (q->elevator) {
 486		struct elevator_queue *e = q->elevator;
 487
 488		data->rq_flags |= RQF_ELV;
 489
 490		/*
 491		 * Flush/passthrough requests are special and go directly to the
 492		 * dispatch list. Don't include reserved tags in the
 493		 * limiting, as it isn't useful.
 494		 */
 495		if (!op_is_flush(data->cmd_flags) &&
 496		    !blk_op_is_passthrough(data->cmd_flags) &&
 497		    e->type->ops.limit_depth &&
 498		    !(data->flags & BLK_MQ_REQ_RESERVED))
 499			e->type->ops.limit_depth(data->cmd_flags, data);
 500	}
 501
 502retry:
 503	data->ctx = blk_mq_get_ctx(q);
 504	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 505	if (!(data->rq_flags & RQF_ELV))
 506		blk_mq_tag_busy(data->hctx);
 507
 508	if (data->flags & BLK_MQ_REQ_RESERVED)
 509		data->rq_flags |= RQF_RESV;
 510
 511	/*
 512	 * Try batched alloc if we want more than 1 tag.
 513	 */
 514	if (data->nr_tags > 1) {
 515		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
 516		if (rq)
 517			return rq;
 518		data->nr_tags = 1;
 519	}
 520
 521	/*
 522	 * Waiting allocations only fail because of an inactive hctx.  In that
 523	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 524	 * should have migrated us to an online CPU by now.
 525	 */
 526	tag = blk_mq_get_tag(data);
 527	if (tag == BLK_MQ_NO_TAG) {
 528		if (data->flags & BLK_MQ_REQ_NOWAIT)
 529			return NULL;
 530		/*
 531		 * Give up the CPU and sleep for a random short time to
 532		 * ensure that thread using a realtime scheduling class
 533		 * are migrated off the CPU, and thus off the hctx that
 534		 * is going away.
 535		 */
 536		msleep(3);
 537		goto retry;
 538	}
 539
 540	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
 541					alloc_time_ns);
 542}
 543
 544static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 545					    struct blk_plug *plug,
 546					    blk_opf_t opf,
 547					    blk_mq_req_flags_t flags)
 548{
 549	struct blk_mq_alloc_data data = {
 550		.q		= q,
 551		.flags		= flags,
 552		.cmd_flags	= opf,
 553		.nr_tags	= plug->nr_ios,
 554		.cached_rq	= &plug->cached_rq,
 555	};
 556	struct request *rq;
 557
 558	if (blk_queue_enter(q, flags))
 559		return NULL;
 560
 561	plug->nr_ios = 1;
 562
 563	rq = __blk_mq_alloc_requests(&data);
 564	if (unlikely(!rq))
 565		blk_queue_exit(q);
 566	return rq;
 567}
 568
 569static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 570						   blk_opf_t opf,
 571						   blk_mq_req_flags_t flags)
 572{
 573	struct blk_plug *plug = current->plug;
 574	struct request *rq;
 575
 576	if (!plug)
 577		return NULL;
 
 578
 579	if (rq_list_empty(plug->cached_rq)) {
 580		if (plug->nr_ios == 1)
 581			return NULL;
 582		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 583		if (!rq)
 584			return NULL;
 585	} else {
 586		rq = rq_list_peek(&plug->cached_rq);
 587		if (!rq || rq->q != q)
 588			return NULL;
 589
 590		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 591			return NULL;
 592		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 593			return NULL;
 594
 595		plug->cached_rq = rq_list_next(rq);
 
 
 596	}
 597
 598	rq->cmd_flags = opf;
 599	INIT_LIST_HEAD(&rq->queuelist);
 600	return rq;
 601}
 602
 603struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 604		blk_mq_req_flags_t flags)
 605{
 
 606	struct request *rq;
 
 607
 608	rq = blk_mq_alloc_cached_request(q, opf, flags);
 609	if (!rq) {
 610		struct blk_mq_alloc_data data = {
 611			.q		= q,
 612			.flags		= flags,
 613			.cmd_flags	= opf,
 614			.nr_tags	= 1,
 615		};
 616		int ret;
 617
 618		ret = blk_queue_enter(q, flags);
 619		if (ret)
 620			return ERR_PTR(ret);
 
 
 621
 622		rq = __blk_mq_alloc_requests(&data);
 623		if (!rq)
 624			goto out_queue_exit;
 625	}
 626	rq->__data_len = 0;
 627	rq->__sector = (sector_t) -1;
 628	rq->bio = rq->biotail = NULL;
 629	return rq;
 630out_queue_exit:
 631	blk_queue_exit(q);
 632	return ERR_PTR(-EWOULDBLOCK);
 633}
 634EXPORT_SYMBOL(blk_mq_alloc_request);
 635
 636struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 637	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 638{
 639	struct blk_mq_alloc_data data = {
 640		.q		= q,
 641		.flags		= flags,
 642		.cmd_flags	= opf,
 643		.nr_tags	= 1,
 644	};
 645	u64 alloc_time_ns = 0;
 646	struct request *rq;
 647	unsigned int cpu;
 648	unsigned int tag;
 649	int ret;
 650
 651	/* alloc_time includes depth and tag waits */
 652	if (blk_queue_rq_alloc_time(q))
 653		alloc_time_ns = ktime_get_ns();
 654
 655	/*
 656	 * If the tag allocator sleeps we could get an allocation for a
 657	 * different hardware context.  No need to complicate the low level
 658	 * allocator for this for the rare use case of a command tied to
 659	 * a specific queue.
 660	 */
 661	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
 662		return ERR_PTR(-EINVAL);
 663
 664	if (hctx_idx >= q->nr_hw_queues)
 665		return ERR_PTR(-EIO);
 666
 667	ret = blk_queue_enter(q, flags);
 668	if (ret)
 669		return ERR_PTR(ret);
 670
 671	/*
 672	 * Check if the hardware context is actually mapped to anything.
 673	 * If not tell the caller that it should skip this queue.
 674	 */
 675	ret = -EXDEV;
 676	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 677	if (!blk_mq_hw_queue_mapped(data.hctx))
 678		goto out_queue_exit;
 679	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 680	if (cpu >= nr_cpu_ids)
 681		goto out_queue_exit;
 682	data.ctx = __blk_mq_get_ctx(q, cpu);
 683
 684	if (!q->elevator)
 685		blk_mq_tag_busy(data.hctx);
 686	else
 687		data.rq_flags |= RQF_ELV;
 688
 689	if (flags & BLK_MQ_REQ_RESERVED)
 690		data.rq_flags |= RQF_RESV;
 691
 692	ret = -EWOULDBLOCK;
 693	tag = blk_mq_get_tag(&data);
 694	if (tag == BLK_MQ_NO_TAG)
 695		goto out_queue_exit;
 696	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
 697					alloc_time_ns);
 698	rq->__data_len = 0;
 699	rq->__sector = (sector_t) -1;
 700	rq->bio = rq->biotail = NULL;
 701	return rq;
 702
 703out_queue_exit:
 704	blk_queue_exit(q);
 705	return ERR_PTR(ret);
 706}
 707EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 708
 709static void __blk_mq_free_request(struct request *rq)
 710{
 711	struct request_queue *q = rq->q;
 712	struct blk_mq_ctx *ctx = rq->mq_ctx;
 713	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 714	const int sched_tag = rq->internal_tag;
 715
 716	blk_crypto_free_request(rq);
 717	blk_pm_mark_last_busy(rq);
 718	rq->mq_hctx = NULL;
 719	if (rq->tag != BLK_MQ_NO_TAG)
 720		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 721	if (sched_tag != BLK_MQ_NO_TAG)
 722		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 723	blk_mq_sched_restart(hctx);
 724	blk_queue_exit(q);
 725}
 726
 727void blk_mq_free_request(struct request *rq)
 728{
 729	struct request_queue *q = rq->q;
 
 
 730	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 731
 732	if ((rq->rq_flags & RQF_ELVPRIV) &&
 733	    q->elevator->type->ops.finish_request)
 734		q->elevator->type->ops.finish_request(rq);
 
 
 
 
 
 735
 
 736	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 737		__blk_mq_dec_active_requests(hctx);
 738
 739	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 740		laptop_io_completion(q->disk->bdi);
 741
 742	rq_qos_done(q, rq);
 743
 744	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 745	if (req_ref_put_and_test(rq))
 746		__blk_mq_free_request(rq);
 747}
 748EXPORT_SYMBOL_GPL(blk_mq_free_request);
 749
 750void blk_mq_free_plug_rqs(struct blk_plug *plug)
 751{
 752	struct request *rq;
 753
 754	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
 755		blk_mq_free_request(rq);
 756}
 757
 758void blk_dump_rq_flags(struct request *rq, char *msg)
 759{
 760	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 761		rq->q->disk ? rq->q->disk->disk_name : "?",
 762		(__force unsigned long long) rq->cmd_flags);
 763
 764	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 765	       (unsigned long long)blk_rq_pos(rq),
 766	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 767	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 768	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 769}
 770EXPORT_SYMBOL(blk_dump_rq_flags);
 771
 772static void req_bio_endio(struct request *rq, struct bio *bio,
 773			  unsigned int nbytes, blk_status_t error)
 774{
 775	if (unlikely(error)) {
 776		bio->bi_status = error;
 777	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
 778		/*
 779		 * Partial zone append completions cannot be supported as the
 780		 * BIO fragments may end up not being written sequentially.
 781		 */
 782		if (bio->bi_iter.bi_size != nbytes)
 783			bio->bi_status = BLK_STS_IOERR;
 784		else
 785			bio->bi_iter.bi_sector = rq->__sector;
 786	}
 787
 788	bio_advance(bio, nbytes);
 789
 790	if (unlikely(rq->rq_flags & RQF_QUIET))
 791		bio_set_flag(bio, BIO_QUIET);
 792	/* don't actually finish bio if it's part of flush sequence */
 793	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 794		bio_endio(bio);
 795}
 796
 797static void blk_account_io_completion(struct request *req, unsigned int bytes)
 798{
 799	if (req->part && blk_do_io_stat(req)) {
 800		const int sgrp = op_stat_group(req_op(req));
 801
 802		part_stat_lock();
 803		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 804		part_stat_unlock();
 805	}
 806}
 807
 808static void blk_print_req_error(struct request *req, blk_status_t status)
 809{
 810	printk_ratelimited(KERN_ERR
 811		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 812		"phys_seg %u prio class %u\n",
 813		blk_status_to_str(status),
 814		req->q->disk ? req->q->disk->disk_name : "?",
 815		blk_rq_pos(req), (__force u32)req_op(req),
 816		blk_op_str(req_op(req)),
 817		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 818		req->nr_phys_segments,
 819		IOPRIO_PRIO_CLASS(req->ioprio));
 820}
 821
 822/*
 823 * Fully end IO on a request. Does not support partial completions, or
 824 * errors.
 825 */
 826static void blk_complete_request(struct request *req)
 827{
 828	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 829	int total_bytes = blk_rq_bytes(req);
 830	struct bio *bio = req->bio;
 831
 832	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 833
 834	if (!bio)
 835		return;
 836
 837#ifdef CONFIG_BLK_DEV_INTEGRITY
 838	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 839		req->q->integrity.profile->complete_fn(req, total_bytes);
 840#endif
 841
 842	blk_account_io_completion(req, total_bytes);
 843
 844	do {
 845		struct bio *next = bio->bi_next;
 846
 847		/* Completion has already been traced */
 848		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 849
 850		if (req_op(req) == REQ_OP_ZONE_APPEND)
 851			bio->bi_iter.bi_sector = req->__sector;
 852
 853		if (!is_flush)
 854			bio_endio(bio);
 855		bio = next;
 856	} while (bio);
 857
 858	/*
 859	 * Reset counters so that the request stacking driver
 860	 * can find how many bytes remain in the request
 861	 * later.
 862	 */
 863	if (!req->end_io) {
 864		req->bio = NULL;
 865		req->__data_len = 0;
 866	}
 867}
 868
 869/**
 870 * blk_update_request - Complete multiple bytes without completing the request
 871 * @req:      the request being processed
 872 * @error:    block status code
 873 * @nr_bytes: number of bytes to complete for @req
 874 *
 875 * Description:
 876 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 877 *     the request structure even if @req doesn't have leftover.
 878 *     If @req has leftover, sets it up for the next range of segments.
 879 *
 880 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 881 *     %false return from this function.
 882 *
 883 * Note:
 884 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 885 *      except in the consistency check at the end of this function.
 886 *
 887 * Return:
 888 *     %false - this request doesn't have any more data
 889 *     %true  - this request has more data
 890 **/
 891bool blk_update_request(struct request *req, blk_status_t error,
 892		unsigned int nr_bytes)
 893{
 894	int total_bytes;
 895
 896	trace_block_rq_complete(req, error, nr_bytes);
 897
 898	if (!req->bio)
 899		return false;
 900
 901#ifdef CONFIG_BLK_DEV_INTEGRITY
 902	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 903	    error == BLK_STS_OK)
 904		req->q->integrity.profile->complete_fn(req, nr_bytes);
 905#endif
 906
 907	if (unlikely(error && !blk_rq_is_passthrough(req) &&
 908		     !(req->rq_flags & RQF_QUIET)) &&
 909		     !test_bit(GD_DEAD, &req->q->disk->state)) {
 910		blk_print_req_error(req, error);
 911		trace_block_rq_error(req, error, nr_bytes);
 912	}
 913
 914	blk_account_io_completion(req, nr_bytes);
 915
 916	total_bytes = 0;
 917	while (req->bio) {
 918		struct bio *bio = req->bio;
 919		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 920
 921		if (bio_bytes == bio->bi_iter.bi_size)
 922			req->bio = bio->bi_next;
 923
 924		/* Completion has already been traced */
 925		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 926		req_bio_endio(req, bio, bio_bytes, error);
 927
 928		total_bytes += bio_bytes;
 929		nr_bytes -= bio_bytes;
 930
 931		if (!nr_bytes)
 932			break;
 933	}
 934
 935	/*
 936	 * completely done
 937	 */
 938	if (!req->bio) {
 939		/*
 940		 * Reset counters so that the request stacking driver
 941		 * can find how many bytes remain in the request
 942		 * later.
 943		 */
 944		req->__data_len = 0;
 945		return false;
 946	}
 947
 948	req->__data_len -= total_bytes;
 949
 950	/* update sector only for requests with clear definition of sector */
 951	if (!blk_rq_is_passthrough(req))
 952		req->__sector += total_bytes >> 9;
 953
 954	/* mixed attributes always follow the first bio */
 955	if (req->rq_flags & RQF_MIXED_MERGE) {
 956		req->cmd_flags &= ~REQ_FAILFAST_MASK;
 957		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
 958	}
 959
 960	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
 961		/*
 962		 * If total number of sectors is less than the first segment
 963		 * size, something has gone terribly wrong.
 964		 */
 965		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
 966			blk_dump_rq_flags(req, "request botched");
 967			req->__data_len = blk_rq_cur_bytes(req);
 968		}
 969
 970		/* recalculate the number of segments */
 971		req->nr_phys_segments = blk_recalc_rq_segments(req);
 972	}
 973
 974	return true;
 975}
 976EXPORT_SYMBOL_GPL(blk_update_request);
 977
 978static void __blk_account_io_done(struct request *req, u64 now)
 979{
 980	const int sgrp = op_stat_group(req_op(req));
 981
 982	part_stat_lock();
 983	update_io_ticks(req->part, jiffies, true);
 984	part_stat_inc(req->part, ios[sgrp]);
 985	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
 986	part_stat_unlock();
 987}
 988
 989static inline void blk_account_io_done(struct request *req, u64 now)
 990{
 991	/*
 992	 * Account IO completion.  flush_rq isn't accounted as a
 993	 * normal IO on queueing nor completion.  Accounting the
 994	 * containing request is enough.
 995	 */
 996	if (blk_do_io_stat(req) && req->part &&
 997	    !(req->rq_flags & RQF_FLUSH_SEQ))
 998		__blk_account_io_done(req, now);
 999}
1000
1001static void __blk_account_io_start(struct request *rq)
1002{
1003	/*
1004	 * All non-passthrough requests are created from a bio with one
1005	 * exception: when a flush command that is part of a flush sequence
1006	 * generated by the state machine in blk-flush.c is cloned onto the
1007	 * lower device by dm-multipath we can get here without a bio.
1008	 */
1009	if (rq->bio)
1010		rq->part = rq->bio->bi_bdev;
1011	else
1012		rq->part = rq->q->disk->part0;
1013
1014	part_stat_lock();
1015	update_io_ticks(rq->part, jiffies, false);
1016	part_stat_unlock();
1017}
1018
1019static inline void blk_account_io_start(struct request *req)
1020{
1021	if (blk_do_io_stat(req))
1022		__blk_account_io_start(req);
1023}
1024
1025static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026{
1027	if (rq->rq_flags & RQF_STATS) {
1028		blk_mq_poll_stats_start(rq->q);
1029		blk_stat_add(rq, now);
1030	}
1031
1032	blk_mq_sched_completed_request(rq, now);
1033	blk_account_io_done(rq, now);
1034}
1035
1036inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037{
1038	if (blk_mq_need_time_stamp(rq))
1039		__blk_mq_end_request_acct(rq, ktime_get_ns());
1040
1041	if (rq->end_io) {
1042		rq_qos_done(rq->q, rq);
1043		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044			blk_mq_free_request(rq);
1045	} else {
1046		blk_mq_free_request(rq);
1047	}
1048}
1049EXPORT_SYMBOL(__blk_mq_end_request);
1050
1051void blk_mq_end_request(struct request *rq, blk_status_t error)
1052{
1053	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054		BUG();
1055	__blk_mq_end_request(rq, error);
1056}
1057EXPORT_SYMBOL(blk_mq_end_request);
1058
1059#define TAG_COMP_BATCH		32
1060
1061static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062					  int *tag_array, int nr_tags)
1063{
1064	struct request_queue *q = hctx->queue;
1065
1066	/*
1067	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1068	 * update hctx->nr_active in batch
1069	 */
1070	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1071		__blk_mq_sub_active_requests(hctx, nr_tags);
1072
1073	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075}
1076
1077void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078{
1079	int tags[TAG_COMP_BATCH], nr_tags = 0;
1080	struct blk_mq_hw_ctx *cur_hctx = NULL;
1081	struct request *rq;
1082	u64 now = 0;
1083
1084	if (iob->need_ts)
1085		now = ktime_get_ns();
1086
1087	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088		prefetch(rq->bio);
1089		prefetch(rq->rq_next);
1090
1091		blk_complete_request(rq);
1092		if (iob->need_ts)
1093			__blk_mq_end_request_acct(rq, now);
1094
1095		rq_qos_done(rq->q, rq);
1096
1097		/*
1098		 * If end_io handler returns NONE, then it still has
1099		 * ownership of the request.
1100		 */
1101		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102			continue;
1103
1104		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105		if (!req_ref_put_and_test(rq))
1106			continue;
1107
1108		blk_crypto_free_request(rq);
1109		blk_pm_mark_last_busy(rq);
1110
1111		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112			if (cur_hctx)
1113				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114			nr_tags = 0;
1115			cur_hctx = rq->mq_hctx;
1116		}
1117		tags[nr_tags++] = rq->tag;
 
 
 
 
 
 
1118	}
1119
1120	if (nr_tags)
1121		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122}
1123EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125static void blk_complete_reqs(struct llist_head *list)
1126{
1127	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128	struct request *rq, *next;
1129
1130	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131		rq->q->mq_ops->complete(rq);
1132}
1133
1134static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135{
1136	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137}
1138
1139static int blk_softirq_cpu_dead(unsigned int cpu)
1140{
1141	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142	return 0;
1143}
1144
1145static void __blk_mq_complete_request_remote(void *data)
1146{
1147	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148}
1149
1150static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151{
1152	int cpu = raw_smp_processor_id();
1153
1154	if (!IS_ENABLED(CONFIG_SMP) ||
1155	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156		return false;
1157	/*
1158	 * With force threaded interrupts enabled, raising softirq from an SMP
1159	 * function call will always result in waking the ksoftirqd thread.
1160	 * This is probably worse than completing the request on a different
1161	 * cache domain.
1162	 */
1163	if (force_irqthreads())
1164		return false;
1165
1166	/* same CPU or cache domain?  Complete locally */
1167	if (cpu == rq->mq_ctx->cpu ||
1168	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170		return false;
1171
1172	/* don't try to IPI to an offline CPU */
1173	return cpu_online(rq->mq_ctx->cpu);
1174}
1175
1176static void blk_mq_complete_send_ipi(struct request *rq)
1177{
1178	struct llist_head *list;
1179	unsigned int cpu;
1180
1181	cpu = rq->mq_ctx->cpu;
1182	list = &per_cpu(blk_cpu_done, cpu);
1183	if (llist_add(&rq->ipi_list, list)) {
1184		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185		smp_call_function_single_async(cpu, &rq->csd);
 
 
 
 
 
 
1186	}
 
1187}
1188
1189static void blk_mq_raise_softirq(struct request *rq)
 
1190{
1191	struct llist_head *list;
1192
1193	preempt_disable();
1194	list = this_cpu_ptr(&blk_cpu_done);
1195	if (llist_add(&rq->ipi_list, list))
1196		raise_softirq(BLOCK_SOFTIRQ);
1197	preempt_enable();
1198}
1199
1200bool blk_mq_complete_request_remote(struct request *rq)
 
1201{
1202	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204	/*
1205	 * For request which hctx has only one ctx mapping,
1206	 * or a polled request, always complete locally,
1207	 * it's pointless to redirect the completion.
1208	 */
1209	if (rq->mq_hctx->nr_ctx == 1 ||
1210		rq->cmd_flags & REQ_POLLED)
1211		return false;
1212
1213	if (blk_mq_complete_need_ipi(rq)) {
1214		blk_mq_complete_send_ipi(rq);
1215		return true;
1216	}
1217
1218	if (rq->q->nr_hw_queues == 1) {
1219		blk_mq_raise_softirq(rq);
1220		return true;
1221	}
1222	return false;
1223}
1224EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226/**
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq:		the request being processed
1229 *
1230 * Description:
1231 *	Complete a request by scheduling the ->complete_rq operation.
 
1232 **/
1233void blk_mq_complete_request(struct request *rq)
1234{
1235	if (!blk_mq_complete_request_remote(rq))
1236		rq->q->mq_ops->complete(rq);
 
 
1237}
1238EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240/**
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1243 *
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1247 */
 
 
 
 
1248void blk_mq_start_request(struct request *rq)
1249{
1250	struct request_queue *q = rq->q;
1251
1252	trace_block_rq_issue(rq);
1253
1254	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255		rq->io_start_time_ns = ktime_get_ns();
1256		rq->stats_sectors = blk_rq_sectors(rq);
1257		rq->rq_flags |= RQF_STATS;
1258		rq_qos_issue(q, rq);
1259	}
1260
1261	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263	blk_add_timer(rq);
1264	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265
 
 
 
 
 
 
 
 
 
1266#ifdef CONFIG_BLK_DEV_INTEGRITY
1267	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268		q->integrity.profile->prepare_fn(rq);
1269#endif
1270	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1272}
1273EXPORT_SYMBOL(blk_mq_start_request);
1274
1275/*
1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277 * queues. This is important for md arrays to benefit from merging
1278 * requests.
1279 */
1280static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281{
1282	if (plug->multiple_queues)
1283		return BLK_MAX_REQUEST_COUNT * 2;
1284	return BLK_MAX_REQUEST_COUNT;
1285}
1286
1287static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288{
1289	struct request *last = rq_list_peek(&plug->mq_list);
1290
1291	if (!plug->rq_count) {
1292		trace_block_plug(rq->q);
1293	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294		   (!blk_queue_nomerges(rq->q) &&
1295		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296		blk_mq_flush_plug_list(plug, false);
1297		last = NULL;
1298		trace_block_plug(rq->q);
1299	}
1300
1301	if (!plug->multiple_queues && last && last->q != rq->q)
1302		plug->multiple_queues = true;
1303	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1304		plug->has_elevator = true;
1305	rq->rq_next = NULL;
1306	rq_list_add(&plug->mq_list, rq);
1307	plug->rq_count++;
1308}
1309
1310/**
1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312 * @rq:		request to insert
1313 * @at_head:    insert request at head or tail of queue
1314 *
1315 * Description:
1316 *    Insert a fully prepared request at the back of the I/O scheduler queue
1317 *    for execution.  Don't wait for completion.
1318 *
1319 * Note:
1320 *    This function will invoke @done directly if the queue is dead.
1321 */
1322void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323{
1324	WARN_ON(irqs_disabled());
1325	WARN_ON(!blk_rq_is_passthrough(rq));
1326
1327	blk_account_io_start(rq);
1328
1329	/*
1330	 * As plugging can be enabled for passthrough requests on a zoned
1331	 * device, directly accessing the plug instead of using blk_mq_plug()
1332	 * should not have any consequences.
1333	 */
1334	if (current->plug)
1335		blk_add_rq_to_plug(current->plug, rq);
1336	else
1337		blk_mq_sched_insert_request(rq, at_head, true, false);
1338}
1339EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
1341struct blk_rq_wait {
1342	struct completion done;
1343	blk_status_t ret;
1344};
1345
1346static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347{
1348	struct blk_rq_wait *wait = rq->end_io_data;
1349
1350	wait->ret = ret;
1351	complete(&wait->done);
1352	return RQ_END_IO_NONE;
1353}
1354
1355bool blk_rq_is_poll(struct request *rq)
1356{
1357	if (!rq->mq_hctx)
1358		return false;
1359	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360		return false;
1361	if (WARN_ON_ONCE(!rq->bio))
1362		return false;
1363	return true;
1364}
1365EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1366
1367static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1368{
1369	do {
1370		bio_poll(rq->bio, NULL, 0);
1371		cond_resched();
1372	} while (!completion_done(wait));
1373}
1374
1375/**
1376 * blk_execute_rq - insert a request into queue for execution
1377 * @rq:		request to insert
1378 * @at_head:    insert request at head or tail of queue
1379 *
1380 * Description:
1381 *    Insert a fully prepared request at the back of the I/O scheduler queue
1382 *    for execution and wait for completion.
1383 * Return: The blk_status_t result provided to blk_mq_end_request().
1384 */
1385blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1386{
1387	struct blk_rq_wait wait = {
1388		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1389	};
1390
1391	WARN_ON(irqs_disabled());
1392	WARN_ON(!blk_rq_is_passthrough(rq));
1393
1394	rq->end_io_data = &wait;
1395	rq->end_io = blk_end_sync_rq;
1396
1397	blk_account_io_start(rq);
1398	blk_mq_sched_insert_request(rq, at_head, true, false);
1399
1400	if (blk_rq_is_poll(rq)) {
1401		blk_rq_poll_completion(rq, &wait.done);
1402	} else {
1403		/*
1404		 * Prevent hang_check timer from firing at us during very long
1405		 * I/O
1406		 */
1407		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1408
1409		if (hang_check)
1410			while (!wait_for_completion_io_timeout(&wait.done,
1411					hang_check * (HZ/2)))
1412				;
1413		else
1414			wait_for_completion_io(&wait.done);
1415	}
1416
1417	return wait.ret;
1418}
1419EXPORT_SYMBOL(blk_execute_rq);
1420
1421static void __blk_mq_requeue_request(struct request *rq)
1422{
1423	struct request_queue *q = rq->q;
1424
1425	blk_mq_put_driver_tag(rq);
1426
1427	trace_block_rq_requeue(rq);
1428	rq_qos_requeue(q, rq);
1429
1430	if (blk_mq_request_started(rq)) {
1431		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432		rq->rq_flags &= ~RQF_TIMED_OUT;
 
 
1433	}
1434}
1435
1436void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437{
1438	__blk_mq_requeue_request(rq);
1439
1440	/* this request will be re-inserted to io scheduler queue */
1441	blk_mq_sched_requeue_request(rq);
1442
 
1443	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1444}
1445EXPORT_SYMBOL(blk_mq_requeue_request);
1446
1447static void blk_mq_requeue_work(struct work_struct *work)
1448{
1449	struct request_queue *q =
1450		container_of(work, struct request_queue, requeue_work.work);
1451	LIST_HEAD(rq_list);
1452	struct request *rq, *next;
1453
1454	spin_lock_irq(&q->requeue_lock);
1455	list_splice_init(&q->requeue_list, &rq_list);
1456	spin_unlock_irq(&q->requeue_lock);
1457
1458	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1459		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1460			continue;
1461
1462		rq->rq_flags &= ~RQF_SOFTBARRIER;
1463		list_del_init(&rq->queuelist);
1464		/*
1465		 * If RQF_DONTPREP, rq has contained some driver specific
1466		 * data, so insert it to hctx dispatch list to avoid any
1467		 * merge.
1468		 */
1469		if (rq->rq_flags & RQF_DONTPREP)
1470			blk_mq_request_bypass_insert(rq, false, false);
1471		else
1472			blk_mq_sched_insert_request(rq, true, false, false);
1473	}
1474
1475	while (!list_empty(&rq_list)) {
1476		rq = list_entry(rq_list.next, struct request, queuelist);
1477		list_del_init(&rq->queuelist);
1478		blk_mq_sched_insert_request(rq, false, false, false);
1479	}
1480
1481	blk_mq_run_hw_queues(q, false);
1482}
1483
1484void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1485				bool kick_requeue_list)
1486{
1487	struct request_queue *q = rq->q;
1488	unsigned long flags;
1489
1490	/*
1491	 * We abuse this flag that is otherwise used by the I/O scheduler to
1492	 * request head insertion from the workqueue.
1493	 */
1494	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1495
1496	spin_lock_irqsave(&q->requeue_lock, flags);
1497	if (at_head) {
1498		rq->rq_flags |= RQF_SOFTBARRIER;
1499		list_add(&rq->queuelist, &q->requeue_list);
1500	} else {
1501		list_add_tail(&rq->queuelist, &q->requeue_list);
1502	}
1503	spin_unlock_irqrestore(&q->requeue_lock, flags);
1504
1505	if (kick_requeue_list)
1506		blk_mq_kick_requeue_list(q);
1507}
1508
1509void blk_mq_kick_requeue_list(struct request_queue *q)
1510{
1511	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1512}
1513EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1514
1515void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1516				    unsigned long msecs)
1517{
1518	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1519				    msecs_to_jiffies(msecs));
1520}
1521EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1522
1523static bool blk_mq_rq_inflight(struct request *rq, void *priv)
 
 
 
 
 
 
 
 
 
 
 
 
1524{
1525	/*
1526	 * If we find a request that isn't idle we know the queue is busy
1527	 * as it's checked in the iter.
1528	 * Return false to stop the iteration.
1529	 */
1530	if (blk_mq_request_started(rq)) {
1531		bool *busy = priv;
1532
1533		*busy = true;
1534		return false;
1535	}
1536
1537	return true;
1538}
1539
1540bool blk_mq_queue_inflight(struct request_queue *q)
1541{
1542	bool busy = false;
1543
1544	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1545	return busy;
1546}
1547EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1548
1549static void blk_mq_rq_timed_out(struct request *req)
1550{
1551	req->rq_flags |= RQF_TIMED_OUT;
1552	if (req->q->mq_ops->timeout) {
1553		enum blk_eh_timer_return ret;
1554
1555		ret = req->q->mq_ops->timeout(req);
1556		if (ret == BLK_EH_DONE)
1557			return;
1558		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1559	}
1560
1561	blk_add_timer(req);
1562}
1563
1564struct blk_expired_data {
1565	bool has_timedout_rq;
1566	unsigned long next;
1567	unsigned long timeout_start;
1568};
1569
1570static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1571{
1572	unsigned long deadline;
1573
1574	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1575		return false;
1576	if (rq->rq_flags & RQF_TIMED_OUT)
1577		return false;
1578
1579	deadline = READ_ONCE(rq->deadline);
1580	if (time_after_eq(expired->timeout_start, deadline))
1581		return true;
1582
1583	if (expired->next == 0)
1584		expired->next = deadline;
1585	else if (time_after(expired->next, deadline))
1586		expired->next = deadline;
1587	return false;
1588}
1589
1590void blk_mq_put_rq_ref(struct request *rq)
 
1591{
1592	if (is_flush_rq(rq)) {
1593		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1594			blk_mq_free_request(rq);
1595	} else if (req_ref_put_and_test(rq)) {
1596		__blk_mq_free_request(rq);
1597	}
1598}
1599
1600static bool blk_mq_check_expired(struct request *rq, void *priv)
1601{
1602	struct blk_expired_data *expired = priv;
 
 
 
1603
1604	/*
1605	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1606	 * be reallocated underneath the timeout handler's processing, then
1607	 * the expire check is reliable. If the request is not expired, then
1608	 * it was completed and reallocated as a new request after returning
1609	 * from blk_mq_check_expired().
 
 
1610	 */
1611	if (blk_mq_req_expired(rq, expired)) {
1612		expired->has_timedout_rq = true;
1613		return false;
1614	}
1615	return true;
1616}
1617
1618static bool blk_mq_handle_expired(struct request *rq, void *priv)
1619{
1620	struct blk_expired_data *expired = priv;
 
 
 
 
 
 
 
 
 
 
1621
1622	if (blk_mq_req_expired(rq, expired))
1623		blk_mq_rq_timed_out(rq);
1624	return true;
1625}
1626
1627static void blk_mq_timeout_work(struct work_struct *work)
1628{
1629	struct request_queue *q =
1630		container_of(work, struct request_queue, timeout_work);
1631	struct blk_expired_data expired = {
1632		.timeout_start = jiffies,
1633	};
1634	struct blk_mq_hw_ctx *hctx;
1635	unsigned long i;
1636
1637	/* A deadlock might occur if a request is stuck requiring a
1638	 * timeout at the same time a queue freeze is waiting
1639	 * completion, since the timeout code would not be able to
1640	 * acquire the queue reference here.
1641	 *
1642	 * That's why we don't use blk_queue_enter here; instead, we use
1643	 * percpu_ref_tryget directly, because we need to be able to
1644	 * obtain a reference even in the short window between the queue
1645	 * starting to freeze, by dropping the first reference in
1646	 * blk_freeze_queue_start, and the moment the last request is
1647	 * consumed, marked by the instant q_usage_counter reaches
1648	 * zero.
1649	 */
1650	if (!percpu_ref_tryget(&q->q_usage_counter))
1651		return;
1652
1653	/* check if there is any timed-out request */
1654	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1655	if (expired.has_timedout_rq) {
1656		/*
1657		 * Before walking tags, we must ensure any submit started
1658		 * before the current time has finished. Since the submit
1659		 * uses srcu or rcu, wait for a synchronization point to
1660		 * ensure all running submits have finished
1661		 */
1662		blk_mq_wait_quiesce_done(q->tag_set);
1663
1664		expired.next = 0;
1665		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1666	}
1667
1668	if (expired.next != 0) {
1669		mod_timer(&q->timeout, expired.next);
1670	} else {
1671		/*
1672		 * Request timeouts are handled as a forward rolling timer. If
1673		 * we end up here it means that no requests are pending and
1674		 * also that no request has been pending for a while. Mark
1675		 * each hctx as idle.
1676		 */
1677		queue_for_each_hw_ctx(q, hctx, i) {
1678			/* the hctx may be unmapped, so check it here */
1679			if (blk_mq_hw_queue_mapped(hctx))
1680				blk_mq_tag_idle(hctx);
1681		}
1682	}
1683	blk_queue_exit(q);
1684}
1685
1686struct flush_busy_ctx_data {
1687	struct blk_mq_hw_ctx *hctx;
1688	struct list_head *list;
1689};
1690
1691static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1692{
1693	struct flush_busy_ctx_data *flush_data = data;
1694	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1695	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696	enum hctx_type type = hctx->type;
1697
1698	spin_lock(&ctx->lock);
1699	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1700	sbitmap_clear_bit(sb, bitnr);
1701	spin_unlock(&ctx->lock);
1702	return true;
1703}
1704
1705/*
1706 * Process software queues that have been marked busy, splicing them
1707 * to the for-dispatch
1708 */
1709void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1710{
1711	struct flush_busy_ctx_data data = {
1712		.hctx = hctx,
1713		.list = list,
1714	};
1715
1716	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1717}
1718EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1719
1720struct dispatch_rq_data {
1721	struct blk_mq_hw_ctx *hctx;
1722	struct request *rq;
1723};
1724
1725static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1726		void *data)
1727{
1728	struct dispatch_rq_data *dispatch_data = data;
1729	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1730	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1731	enum hctx_type type = hctx->type;
1732
1733	spin_lock(&ctx->lock);
1734	if (!list_empty(&ctx->rq_lists[type])) {
1735		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1736		list_del_init(&dispatch_data->rq->queuelist);
1737		if (list_empty(&ctx->rq_lists[type]))
1738			sbitmap_clear_bit(sb, bitnr);
1739	}
1740	spin_unlock(&ctx->lock);
1741
1742	return !dispatch_data->rq;
1743}
1744
1745struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1746					struct blk_mq_ctx *start)
1747{
1748	unsigned off = start ? start->index_hw[hctx->type] : 0;
1749	struct dispatch_rq_data data = {
1750		.hctx = hctx,
1751		.rq   = NULL,
1752	};
1753
1754	__sbitmap_for_each_set(&hctx->ctx_map, off,
1755			       dispatch_rq_from_ctx, &data);
1756
1757	return data.rq;
1758}
1759
1760static bool __blk_mq_alloc_driver_tag(struct request *rq)
1761{
1762	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1763	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1764	int tag;
1765
1766	blk_mq_tag_busy(rq->mq_hctx);
1767
1768	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1769		bt = &rq->mq_hctx->tags->breserved_tags;
1770		tag_offset = 0;
1771	} else {
1772		if (!hctx_may_queue(rq->mq_hctx, bt))
1773			return false;
1774	}
1775
1776	tag = __sbitmap_queue_get(bt);
1777	if (tag == BLK_MQ_NO_TAG)
1778		return false;
1779
1780	rq->tag = tag + tag_offset;
1781	return true;
1782}
1783
1784bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1785{
1786	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1787		return false;
 
 
 
 
 
 
 
 
 
 
 
1788
1789	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1790			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1791		rq->rq_flags |= RQF_MQ_INFLIGHT;
1792		__blk_mq_inc_active_requests(hctx);
 
 
 
 
1793	}
1794	hctx->tags->rqs[rq->tag] = rq;
1795	return true;
 
1796}
1797
1798static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1799				int flags, void *key)
1800{
1801	struct blk_mq_hw_ctx *hctx;
1802
1803	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1804
1805	spin_lock(&hctx->dispatch_wait_lock);
1806	if (!list_empty(&wait->entry)) {
1807		struct sbitmap_queue *sbq;
1808
1809		list_del_init(&wait->entry);
1810		sbq = &hctx->tags->bitmap_tags;
1811		atomic_dec(&sbq->ws_active);
1812	}
1813	spin_unlock(&hctx->dispatch_wait_lock);
1814
1815	blk_mq_run_hw_queue(hctx, true);
1816	return 1;
1817}
1818
1819/*
1820 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1821 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1822 * restart. For both cases, take care to check the condition again after
1823 * marking us as waiting.
1824 */
1825static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1826				 struct request *rq)
1827{
1828	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1829	struct wait_queue_head *wq;
1830	wait_queue_entry_t *wait;
1831	bool ret;
1832
1833	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1834		blk_mq_sched_mark_restart_hctx(hctx);
1835
1836		/*
1837		 * It's possible that a tag was freed in the window between the
1838		 * allocation failure and adding the hardware queue to the wait
1839		 * queue.
1840		 *
1841		 * Don't clear RESTART here, someone else could have set it.
1842		 * At most this will cost an extra queue run.
1843		 */
1844		return blk_mq_get_driver_tag(rq);
1845	}
1846
1847	wait = &hctx->dispatch_wait;
1848	if (!list_empty_careful(&wait->entry))
1849		return false;
1850
1851	wq = &bt_wait_ptr(sbq, hctx)->wait;
1852
1853	spin_lock_irq(&wq->lock);
1854	spin_lock(&hctx->dispatch_wait_lock);
1855	if (!list_empty(&wait->entry)) {
1856		spin_unlock(&hctx->dispatch_wait_lock);
1857		spin_unlock_irq(&wq->lock);
1858		return false;
1859	}
1860
1861	atomic_inc(&sbq->ws_active);
1862	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1863	__add_wait_queue(wq, wait);
1864
1865	/*
1866	 * It's possible that a tag was freed in the window between the
1867	 * allocation failure and adding the hardware queue to the wait
1868	 * queue.
1869	 */
1870	ret = blk_mq_get_driver_tag(rq);
1871	if (!ret) {
1872		spin_unlock(&hctx->dispatch_wait_lock);
1873		spin_unlock_irq(&wq->lock);
1874		return false;
1875	}
1876
1877	/*
1878	 * We got a tag, remove ourselves from the wait queue to ensure
1879	 * someone else gets the wakeup.
1880	 */
1881	list_del_init(&wait->entry);
1882	atomic_dec(&sbq->ws_active);
1883	spin_unlock(&hctx->dispatch_wait_lock);
1884	spin_unlock_irq(&wq->lock);
1885
1886	return true;
1887}
1888
1889#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891/*
1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893 * - EWMA is one simple way to compute running average value
1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895 * - take 4 as factor for avoiding to get too small(0) result, and this
1896 *   factor doesn't matter because EWMA decreases exponentially
1897 */
1898static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899{
1900	unsigned int ewma;
1901
 
 
 
1902	ewma = hctx->dispatch_busy;
1903
1904	if (!ewma && !busy)
1905		return;
1906
1907	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908	if (busy)
1909		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911
1912	hctx->dispatch_busy = ewma;
1913}
1914
1915#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1916
1917static void blk_mq_handle_dev_resource(struct request *rq,
1918				       struct list_head *list)
1919{
1920	struct request *next =
1921		list_first_entry_or_null(list, struct request, queuelist);
1922
1923	/*
1924	 * If an I/O scheduler has been configured and we got a driver tag for
1925	 * the next request already, free it.
1926	 */
1927	if (next)
1928		blk_mq_put_driver_tag(next);
1929
1930	list_add(&rq->queuelist, list);
1931	__blk_mq_requeue_request(rq);
1932}
1933
1934static void blk_mq_handle_zone_resource(struct request *rq,
1935					struct list_head *zone_list)
1936{
1937	/*
1938	 * If we end up here it is because we cannot dispatch a request to a
1939	 * specific zone due to LLD level zone-write locking or other zone
1940	 * related resource not being available. In this case, set the request
1941	 * aside in zone_list for retrying it later.
1942	 */
1943	list_add(&rq->queuelist, zone_list);
1944	__blk_mq_requeue_request(rq);
1945}
1946
1947enum prep_dispatch {
1948	PREP_DISPATCH_OK,
1949	PREP_DISPATCH_NO_TAG,
1950	PREP_DISPATCH_NO_BUDGET,
1951};
1952
1953static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1954						  bool need_budget)
1955{
1956	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1957	int budget_token = -1;
1958
1959	if (need_budget) {
1960		budget_token = blk_mq_get_dispatch_budget(rq->q);
1961		if (budget_token < 0) {
1962			blk_mq_put_driver_tag(rq);
1963			return PREP_DISPATCH_NO_BUDGET;
1964		}
1965		blk_mq_set_rq_budget_token(rq, budget_token);
1966	}
1967
1968	if (!blk_mq_get_driver_tag(rq)) {
1969		/*
1970		 * The initial allocation attempt failed, so we need to
1971		 * rerun the hardware queue when a tag is freed. The
1972		 * waitqueue takes care of that. If the queue is run
1973		 * before we add this entry back on the dispatch list,
1974		 * we'll re-run it below.
1975		 */
1976		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1977			/*
1978			 * All budgets not got from this function will be put
1979			 * together during handling partial dispatch
1980			 */
1981			if (need_budget)
1982				blk_mq_put_dispatch_budget(rq->q, budget_token);
1983			return PREP_DISPATCH_NO_TAG;
1984		}
1985	}
1986
1987	return PREP_DISPATCH_OK;
1988}
1989
1990/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1991static void blk_mq_release_budgets(struct request_queue *q,
1992		struct list_head *list)
1993{
1994	struct request *rq;
1995
1996	list_for_each_entry(rq, list, queuelist) {
1997		int budget_token = blk_mq_get_rq_budget_token(rq);
1998
1999		if (budget_token >= 0)
2000			blk_mq_put_dispatch_budget(q, budget_token);
2001	}
2002}
2003
2004/*
2005 * Returns true if we did some work AND can potentially do more.
2006 */
2007bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2008			     unsigned int nr_budgets)
2009{
2010	enum prep_dispatch prep;
2011	struct request_queue *q = hctx->queue;
2012	struct request *rq, *nxt;
 
2013	int errors, queued;
2014	blk_status_t ret = BLK_STS_OK;
2015	LIST_HEAD(zone_list);
2016	bool needs_resource = false;
2017
2018	if (list_empty(list))
2019		return false;
2020
 
 
2021	/*
2022	 * Now process all the entries, sending them to the driver.
2023	 */
2024	errors = queued = 0;
2025	do {
2026		struct blk_mq_queue_data bd;
2027
2028		rq = list_first_entry(list, struct request, queuelist);
2029
2030		WARN_ON_ONCE(hctx != rq->mq_hctx);
2031		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2032		if (prep != PREP_DISPATCH_OK)
2033			break;
2034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2035		list_del_init(&rq->queuelist);
2036
2037		bd.rq = rq;
2038
2039		/*
2040		 * Flag last if we have no more requests, or if we have more
2041		 * but can't assign a driver tag to it.
2042		 */
2043		if (list_empty(list))
2044			bd.last = true;
2045		else {
2046			nxt = list_first_entry(list, struct request, queuelist);
2047			bd.last = !blk_mq_get_driver_tag(nxt);
2048		}
2049
2050		/*
2051		 * once the request is queued to lld, no need to cover the
2052		 * budget any more
2053		 */
2054		if (nr_budgets)
2055			nr_budgets--;
2056		ret = q->mq_ops->queue_rq(hctx, &bd);
2057		switch (ret) {
2058		case BLK_STS_OK:
2059			queued++;
2060			break;
2061		case BLK_STS_RESOURCE:
2062			needs_resource = true;
2063			fallthrough;
2064		case BLK_STS_DEV_RESOURCE:
2065			blk_mq_handle_dev_resource(rq, list);
2066			goto out;
2067		case BLK_STS_ZONE_RESOURCE:
2068			/*
2069			 * Move the request to zone_list and keep going through
2070			 * the dispatch list to find more requests the drive can
2071			 * accept.
2072			 */
2073			blk_mq_handle_zone_resource(rq, &zone_list);
2074			needs_resource = true;
 
 
 
 
2075			break;
2076		default:
 
 
2077			errors++;
2078			blk_mq_end_request(rq, ret);
 
2079		}
 
 
2080	} while (!list_empty(list));
2081out:
2082	if (!list_empty(&zone_list))
2083		list_splice_tail_init(&zone_list, list);
2084
2085	/* If we didn't flush the entire list, we could have told the driver
2086	 * there was more coming, but that turned out to be a lie.
2087	 */
2088	if ((!list_empty(list) || errors || needs_resource ||
2089	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2090		q->mq_ops->commit_rqs(hctx);
2091	/*
2092	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093	 * that is where we will continue on next queue run.
2094	 */
2095	if (!list_empty(list)) {
2096		bool needs_restart;
2097		/* For non-shared tags, the RESTART check will suffice */
2098		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2100
2101		if (nr_budgets)
2102			blk_mq_release_budgets(q, list);
 
 
 
 
 
2103
2104		spin_lock(&hctx->lock);
2105		list_splice_tail_init(list, &hctx->dispatch);
2106		spin_unlock(&hctx->lock);
2107
2108		/*
2109		 * Order adding requests to hctx->dispatch and checking
2110		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2111		 * in blk_mq_sched_restart(). Avoid restart code path to
2112		 * miss the new added requests to hctx->dispatch, meantime
2113		 * SCHED_RESTART is observed here.
2114		 */
2115		smp_mb();
2116
2117		/*
2118		 * If SCHED_RESTART was set by the caller of this function and
2119		 * it is no longer set that means that it was cleared by another
2120		 * thread and hence that a queue rerun is needed.
2121		 *
2122		 * If 'no_tag' is set, that means that we failed getting
2123		 * a driver tag with an I/O scheduler attached. If our dispatch
2124		 * waitqueue is no longer active, ensure that we run the queue
2125		 * AFTER adding our entries back to the list.
2126		 *
2127		 * If no I/O scheduler has been configured it is possible that
2128		 * the hardware queue got stopped and restarted before requests
2129		 * were pushed back onto the dispatch list. Rerun the queue to
2130		 * avoid starvation. Notes:
2131		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2132		 *   been stopped before rerunning a queue.
2133		 * - Some but not all block drivers stop a queue before
2134		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2135		 *   and dm-rq.
2136		 *
2137		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2138		 * bit is set, run queue after a delay to avoid IO stalls
2139		 * that could otherwise occur if the queue is idle.  We'll do
2140		 * similar if we couldn't get budget or couldn't lock a zone
2141		 * and SCHED_RESTART is set.
2142		 */
2143		needs_restart = blk_mq_sched_needs_restart(hctx);
2144		if (prep == PREP_DISPATCH_NO_BUDGET)
2145			needs_resource = true;
2146		if (!needs_restart ||
2147		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2148			blk_mq_run_hw_queue(hctx, true);
2149		else if (needs_resource)
2150			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2151
2152		blk_mq_update_dispatch_busy(hctx, true);
2153		return false;
2154	} else
2155		blk_mq_update_dispatch_busy(hctx, false);
2156
 
 
 
 
 
 
 
2157	return (queued + errors) != 0;
2158}
2159
2160/**
2161 * __blk_mq_run_hw_queue - Run a hardware queue.
2162 * @hctx: Pointer to the hardware queue to run.
2163 *
2164 * Send pending requests to the hardware.
2165 */
2166static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2167{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168	/*
2169	 * We can't run the queue inline with ints disabled. Ensure that
2170	 * we catch bad users of this early.
2171	 */
2172	WARN_ON_ONCE(in_interrupt());
2173
2174	blk_mq_run_dispatch_ops(hctx->queue,
2175			blk_mq_sched_dispatch_requests(hctx));
 
 
 
2176}
2177
2178static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2179{
2180	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2181
2182	if (cpu >= nr_cpu_ids)
2183		cpu = cpumask_first(hctx->cpumask);
2184	return cpu;
2185}
2186
2187/*
2188 * It'd be great if the workqueue API had a way to pass
2189 * in a mask and had some smarts for more clever placement.
2190 * For now we just round-robin here, switching for every
2191 * BLK_MQ_CPU_WORK_BATCH queued items.
2192 */
2193static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2194{
2195	bool tried = false;
2196	int next_cpu = hctx->next_cpu;
2197
2198	if (hctx->queue->nr_hw_queues == 1)
2199		return WORK_CPU_UNBOUND;
2200
2201	if (--hctx->next_cpu_batch <= 0) {
2202select_cpu:
2203		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2204				cpu_online_mask);
2205		if (next_cpu >= nr_cpu_ids)
2206			next_cpu = blk_mq_first_mapped_cpu(hctx);
2207		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2208	}
2209
2210	/*
2211	 * Do unbound schedule if we can't find a online CPU for this hctx,
2212	 * and it should only happen in the path of handling CPU DEAD.
2213	 */
2214	if (!cpu_online(next_cpu)) {
2215		if (!tried) {
2216			tried = true;
2217			goto select_cpu;
2218		}
2219
2220		/*
2221		 * Make sure to re-select CPU next time once after CPUs
2222		 * in hctx->cpumask become online again.
2223		 */
2224		hctx->next_cpu = next_cpu;
2225		hctx->next_cpu_batch = 1;
2226		return WORK_CPU_UNBOUND;
2227	}
2228
2229	hctx->next_cpu = next_cpu;
2230	return next_cpu;
2231}
2232
2233/**
2234 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2235 * @hctx: Pointer to the hardware queue to run.
2236 * @async: If we want to run the queue asynchronously.
2237 * @msecs: Milliseconds of delay to wait before running the queue.
2238 *
2239 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2240 * with a delay of @msecs.
2241 */
2242static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2243					unsigned long msecs)
2244{
2245	if (unlikely(blk_mq_hctx_stopped(hctx)))
2246		return;
2247
2248	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2249		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
 
2250			__blk_mq_run_hw_queue(hctx);
 
2251			return;
2252		}
 
 
2253	}
2254
2255	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2256				    msecs_to_jiffies(msecs));
2257}
2258
2259/**
2260 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2261 * @hctx: Pointer to the hardware queue to run.
2262 * @msecs: Milliseconds of delay to wait before running the queue.
2263 *
2264 * Run a hardware queue asynchronously with a delay of @msecs.
2265 */
2266void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2267{
2268	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2269}
2270EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2271
2272/**
2273 * blk_mq_run_hw_queue - Start to run a hardware queue.
2274 * @hctx: Pointer to the hardware queue to run.
2275 * @async: If we want to run the queue asynchronously.
2276 *
2277 * Check if the request queue is not in a quiesced state and if there are
2278 * pending requests to be sent. If this is true, run the queue to send requests
2279 * to hardware.
2280 */
2281void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2282{
 
2283	bool need_run;
2284
2285	/*
2286	 * When queue is quiesced, we may be switching io scheduler, or
2287	 * updating nr_hw_queues, or other things, and we can't run queue
2288	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2289	 *
2290	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2291	 * quiesced.
2292	 */
2293	__blk_mq_run_dispatch_ops(hctx->queue, false,
2294		need_run = !blk_queue_quiesced(hctx->queue) &&
2295		blk_mq_hctx_has_pending(hctx));
 
2296
2297	if (need_run)
2298		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2299}
2300EXPORT_SYMBOL(blk_mq_run_hw_queue);
2301
2302/*
2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2304 * scheduler.
2305 */
2306static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2307{
2308	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2309	/*
2310	 * If the IO scheduler does not respect hardware queues when
2311	 * dispatching, we just don't bother with multiple HW queues and
2312	 * dispatch from hctx for the current CPU since running multiple queues
2313	 * just causes lock contention inside the scheduler and pointless cache
2314	 * bouncing.
2315	 */
2316	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2317
2318	if (!blk_mq_hctx_stopped(hctx))
2319		return hctx;
2320	return NULL;
2321}
 
2322
2323/**
2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325 * @q: Pointer to the request queue to run.
2326 * @async: If we want to run the queue asynchronously.
2327 */
2328void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2329{
2330	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2331	unsigned long i;
2332
2333	sq_hctx = NULL;
2334	if (blk_queue_sq_sched(q))
2335		sq_hctx = blk_mq_get_sq_hctx(q);
2336	queue_for_each_hw_ctx(q, hctx, i) {
2337		if (blk_mq_hctx_stopped(hctx))
2338			continue;
2339		/*
2340		 * Dispatch from this hctx either if there's no hctx preferred
2341		 * by IO scheduler or if it has requests that bypass the
2342		 * scheduler.
2343		 */
2344		if (!sq_hctx || sq_hctx == hctx ||
2345		    !list_empty_careful(&hctx->dispatch))
2346			blk_mq_run_hw_queue(hctx, async);
2347	}
2348}
2349EXPORT_SYMBOL(blk_mq_run_hw_queues);
2350
2351/**
2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353 * @q: Pointer to the request queue to run.
2354 * @msecs: Milliseconds of delay to wait before running the queues.
 
 
2355 */
2356void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2357{
2358	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2359	unsigned long i;
2360
2361	sq_hctx = NULL;
2362	if (blk_queue_sq_sched(q))
2363		sq_hctx = blk_mq_get_sq_hctx(q);
2364	queue_for_each_hw_ctx(q, hctx, i) {
2365		if (blk_mq_hctx_stopped(hctx))
2366			continue;
2367		/*
2368		 * If there is already a run_work pending, leave the
2369		 * pending delay untouched. Otherwise, a hctx can stall
2370		 * if another hctx is re-delaying the other's work
2371		 * before the work executes.
2372		 */
2373		if (delayed_work_pending(&hctx->run_work))
2374			continue;
2375		/*
2376		 * Dispatch from this hctx either if there's no hctx preferred
2377		 * by IO scheduler or if it has requests that bypass the
2378		 * scheduler.
2379		 */
2380		if (!sq_hctx || sq_hctx == hctx ||
2381		    !list_empty_careful(&hctx->dispatch))
2382			blk_mq_delay_run_hw_queue(hctx, msecs);
2383	}
2384}
2385EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2386
2387/*
2388 * This function is often used for pausing .queue_rq() by driver when
2389 * there isn't enough resource or some conditions aren't satisfied, and
2390 * BLK_STS_RESOURCE is usually returned.
2391 *
2392 * We do not guarantee that dispatch can be drained or blocked
2393 * after blk_mq_stop_hw_queue() returns. Please use
2394 * blk_mq_quiesce_queue() for that requirement.
2395 */
2396void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2397{
2398	cancel_delayed_work(&hctx->run_work);
2399
2400	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401}
2402EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2403
2404/*
2405 * This function is often used for pausing .queue_rq() by driver when
2406 * there isn't enough resource or some conditions aren't satisfied, and
2407 * BLK_STS_RESOURCE is usually returned.
2408 *
2409 * We do not guarantee that dispatch can be drained or blocked
2410 * after blk_mq_stop_hw_queues() returns. Please use
2411 * blk_mq_quiesce_queue() for that requirement.
2412 */
2413void blk_mq_stop_hw_queues(struct request_queue *q)
2414{
2415	struct blk_mq_hw_ctx *hctx;
2416	unsigned long i;
2417
2418	queue_for_each_hw_ctx(q, hctx, i)
2419		blk_mq_stop_hw_queue(hctx);
2420}
2421EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2422
2423void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2424{
2425	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426
2427	blk_mq_run_hw_queue(hctx, false);
2428}
2429EXPORT_SYMBOL(blk_mq_start_hw_queue);
2430
2431void blk_mq_start_hw_queues(struct request_queue *q)
2432{
2433	struct blk_mq_hw_ctx *hctx;
2434	unsigned long i;
2435
2436	queue_for_each_hw_ctx(q, hctx, i)
2437		blk_mq_start_hw_queue(hctx);
2438}
2439EXPORT_SYMBOL(blk_mq_start_hw_queues);
2440
2441void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2442{
2443	if (!blk_mq_hctx_stopped(hctx))
2444		return;
2445
2446	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447	blk_mq_run_hw_queue(hctx, async);
2448}
2449EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2450
2451void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2452{
2453	struct blk_mq_hw_ctx *hctx;
2454	unsigned long i;
2455
2456	queue_for_each_hw_ctx(q, hctx, i)
2457		blk_mq_start_stopped_hw_queue(hctx, async);
2458}
2459EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2460
2461static void blk_mq_run_work_fn(struct work_struct *work)
2462{
2463	struct blk_mq_hw_ctx *hctx;
2464
2465	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2466
2467	/*
2468	 * If we are stopped, don't run the queue.
2469	 */
2470	if (blk_mq_hctx_stopped(hctx))
2471		return;
2472
2473	__blk_mq_run_hw_queue(hctx);
2474}
2475
2476static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2477					    struct request *rq,
2478					    bool at_head)
2479{
2480	struct blk_mq_ctx *ctx = rq->mq_ctx;
2481	enum hctx_type type = hctx->type;
2482
2483	lockdep_assert_held(&ctx->lock);
2484
2485	trace_block_rq_insert(rq);
2486
2487	if (at_head)
2488		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2489	else
2490		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2491}
2492
2493void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2494			     bool at_head)
2495{
2496	struct blk_mq_ctx *ctx = rq->mq_ctx;
2497
2498	lockdep_assert_held(&ctx->lock);
2499
2500	__blk_mq_insert_req_list(hctx, rq, at_head);
2501	blk_mq_hctx_mark_pending(hctx, ctx);
2502}
2503
2504/**
2505 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2506 * @rq: Pointer to request to be inserted.
2507 * @at_head: true if the request should be inserted at the head of the list.
2508 * @run_queue: If we should run the hardware queue after inserting the request.
2509 *
2510 * Should only be used carefully, when the caller knows we want to
2511 * bypass a potential IO scheduler on the target device.
2512 */
2513void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2514				  bool run_queue)
2515{
2516	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2517
2518	spin_lock(&hctx->lock);
2519	if (at_head)
2520		list_add(&rq->queuelist, &hctx->dispatch);
2521	else
2522		list_add_tail(&rq->queuelist, &hctx->dispatch);
2523	spin_unlock(&hctx->lock);
2524
2525	if (run_queue)
2526		blk_mq_run_hw_queue(hctx, false);
2527}
2528
2529void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2530			    struct list_head *list)
2531
2532{
2533	struct request *rq;
2534	enum hctx_type type = hctx->type;
2535
2536	/*
2537	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538	 * offline now
2539	 */
2540	list_for_each_entry(rq, list, queuelist) {
2541		BUG_ON(rq->mq_ctx != ctx);
2542		trace_block_rq_insert(rq);
2543	}
2544
2545	spin_lock(&ctx->lock);
2546	list_splice_tail_init(list, &ctx->rq_lists[type]);
2547	blk_mq_hctx_mark_pending(hctx, ctx);
2548	spin_unlock(&ctx->lock);
2549}
2550
2551static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2552			      bool from_schedule)
2553{
2554	if (hctx->queue->mq_ops->commit_rqs) {
2555		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2556		hctx->queue->mq_ops->commit_rqs(hctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557	}
2558	*queued = 0;
2559}
2560
2561static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562		unsigned int nr_segs)
2563{
2564	int err;
2565
2566	if (bio->bi_opf & REQ_RAHEAD)
2567		rq->cmd_flags |= REQ_FAILFAST_MASK;
2568
2569	rq->__sector = bio->bi_iter.bi_sector;
 
2570	blk_rq_bio_prep(rq, bio, nr_segs);
2571
2572	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2573	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2574	WARN_ON_ONCE(err);
2575
2576	blk_account_io_start(rq);
2577}
2578
2579static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2580					    struct request *rq, bool last)
 
2581{
2582	struct request_queue *q = rq->q;
2583	struct blk_mq_queue_data bd = {
2584		.rq = rq,
2585		.last = last,
2586	};
 
2587	blk_status_t ret;
2588
 
 
2589	/*
2590	 * For OK queue, we are done. For error, caller may kill it.
2591	 * Any other error (busy), just add it to our list as we
2592	 * previously would have done.
2593	 */
2594	ret = q->mq_ops->queue_rq(hctx, &bd);
2595	switch (ret) {
2596	case BLK_STS_OK:
2597		blk_mq_update_dispatch_busy(hctx, false);
 
2598		break;
2599	case BLK_STS_RESOURCE:
2600	case BLK_STS_DEV_RESOURCE:
2601		blk_mq_update_dispatch_busy(hctx, true);
2602		__blk_mq_requeue_request(rq);
2603		break;
2604	default:
2605		blk_mq_update_dispatch_busy(hctx, false);
 
2606		break;
2607	}
2608
2609	return ret;
2610}
2611
2612static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2613						struct request *rq,
 
2614						bool bypass_insert, bool last)
2615{
2616	struct request_queue *q = rq->q;
2617	bool run_queue = true;
2618	int budget_token;
2619
2620	/*
2621	 * RCU or SRCU read lock is needed before checking quiesced flag.
2622	 *
2623	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2624	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2625	 * and avoid driver to try to dispatch again.
2626	 */
2627	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2628		run_queue = false;
2629		bypass_insert = false;
2630		goto insert;
2631	}
2632
2633	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2634		goto insert;
2635
2636	budget_token = blk_mq_get_dispatch_budget(q);
2637	if (budget_token < 0)
2638		goto insert;
2639
2640	blk_mq_set_rq_budget_token(rq, budget_token);
2641
2642	if (!blk_mq_get_driver_tag(rq)) {
2643		blk_mq_put_dispatch_budget(q, budget_token);
2644		goto insert;
2645	}
2646
2647	return __blk_mq_issue_directly(hctx, rq, last);
2648insert:
2649	if (bypass_insert)
2650		return BLK_STS_RESOURCE;
2651
2652	blk_mq_sched_insert_request(rq, false, run_queue, false);
2653
2654	return BLK_STS_OK;
2655}
2656
2657/**
2658 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2659 * @hctx: Pointer of the associated hardware queue.
2660 * @rq: Pointer to request to be sent.
2661 *
2662 * If the device has enough resources to accept a new request now, send the
2663 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2664 * we can try send it another time in the future. Requests inserted at this
2665 * queue have higher priority.
2666 */
2667static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2668		struct request *rq)
2669{
2670	blk_status_t ret =
2671		__blk_mq_try_issue_directly(hctx, rq, false, true);
 
 
2672
 
 
 
2673	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2674		blk_mq_request_bypass_insert(rq, false, true);
2675	else if (ret != BLK_STS_OK)
2676		blk_mq_end_request(rq, ret);
2677}
2678
2679static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2680{
2681	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2682}
2683
2684static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2685{
2686	struct blk_mq_hw_ctx *hctx = NULL;
2687	struct request *rq;
2688	int queued = 0;
2689	int errors = 0;
2690
2691	while ((rq = rq_list_pop(&plug->mq_list))) {
2692		bool last = rq_list_empty(plug->mq_list);
2693		blk_status_t ret;
2694
2695		if (hctx != rq->mq_hctx) {
2696			if (hctx)
2697				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2698			hctx = rq->mq_hctx;
2699		}
2700
2701		ret = blk_mq_request_issue_directly(rq, last);
2702		switch (ret) {
2703		case BLK_STS_OK:
2704			queued++;
2705			break;
2706		case BLK_STS_RESOURCE:
2707		case BLK_STS_DEV_RESOURCE:
2708			blk_mq_request_bypass_insert(rq, false, true);
2709			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2710			return;
2711		default:
2712			blk_mq_end_request(rq, ret);
2713			errors++;
2714			break;
2715		}
2716	}
2717
2718	/*
2719	 * If we didn't flush the entire list, we could have told the driver
2720	 * there was more coming, but that turned out to be a lie.
2721	 */
2722	if (errors)
2723		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2724}
2725
2726static void __blk_mq_flush_plug_list(struct request_queue *q,
2727				     struct blk_plug *plug)
2728{
2729	if (blk_queue_quiesced(q))
2730		return;
2731	q->mq_ops->queue_rqs(&plug->mq_list);
2732}
2733
2734static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735{
2736	struct blk_mq_hw_ctx *this_hctx = NULL;
2737	struct blk_mq_ctx *this_ctx = NULL;
2738	struct request *requeue_list = NULL;
2739	unsigned int depth = 0;
2740	LIST_HEAD(list);
2741
2742	do {
2743		struct request *rq = rq_list_pop(&plug->mq_list);
2744
2745		if (!this_hctx) {
2746			this_hctx = rq->mq_hctx;
2747			this_ctx = rq->mq_ctx;
2748		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2749			rq_list_add(&requeue_list, rq);
2750			continue;
2751		}
2752		list_add_tail(&rq->queuelist, &list);
2753		depth++;
2754	} while (!rq_list_empty(plug->mq_list));
2755
2756	plug->mq_list = requeue_list;
2757	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2759}
2760
2761void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2762{
2763	struct request *rq;
2764
2765	if (rq_list_empty(plug->mq_list))
2766		return;
2767	plug->rq_count = 0;
2768
2769	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2770		struct request_queue *q;
2771
2772		rq = rq_list_peek(&plug->mq_list);
2773		q = rq->q;
2774
2775		/*
2776		 * Peek first request and see if we have a ->queue_rqs() hook.
2777		 * If we do, we can dispatch the whole plug list in one go. We
2778		 * already know at this point that all requests belong to the
2779		 * same queue, caller must ensure that's the case.
2780		 *
2781		 * Since we pass off the full list to the driver at this point,
2782		 * we do not increment the active request count for the queue.
2783		 * Bypass shared tags for now because of that.
2784		 */
2785		if (q->mq_ops->queue_rqs &&
2786		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2787			blk_mq_run_dispatch_ops(q,
2788				__blk_mq_flush_plug_list(q, plug));
2789			if (rq_list_empty(plug->mq_list))
2790				return;
2791		}
2792
2793		blk_mq_run_dispatch_ops(q,
2794				blk_mq_plug_issue_direct(plug, false));
2795		if (rq_list_empty(plug->mq_list))
2796			return;
2797	}
2798
2799	do {
2800		blk_mq_dispatch_plug_list(plug, from_schedule);
2801	} while (!rq_list_empty(plug->mq_list));
2802}
2803
2804void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805		struct list_head *list)
2806{
2807	int queued = 0;
2808	int errors = 0;
2809
2810	while (!list_empty(list)) {
2811		blk_status_t ret;
2812		struct request *rq = list_first_entry(list, struct request,
2813				queuelist);
2814
2815		list_del_init(&rq->queuelist);
2816		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2817		if (ret != BLK_STS_OK) {
2818			errors++;
2819			if (ret == BLK_STS_RESOURCE ||
2820					ret == BLK_STS_DEV_RESOURCE) {
2821				blk_mq_request_bypass_insert(rq, false,
2822							list_empty(list));
2823				break;
2824			}
2825			blk_mq_end_request(rq, ret);
2826		} else
2827			queued++;
2828	}
2829
2830	/*
2831	 * If we didn't flush the entire list, we could have told
2832	 * the driver there was more coming, but that turned out to
2833	 * be a lie.
2834	 */
2835	if ((!list_empty(list) || errors) &&
2836	     hctx->queue->mq_ops->commit_rqs && queued)
2837		hctx->queue->mq_ops->commit_rqs(hctx);
2838}
2839
2840static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2841				     struct bio *bio, unsigned int nr_segs)
2842{
2843	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2844		if (blk_attempt_plug_merge(q, bio, nr_segs))
2845			return true;
2846		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2847			return true;
2848	}
2849	return false;
2850}
2851
2852static struct request *blk_mq_get_new_requests(struct request_queue *q,
2853					       struct blk_plug *plug,
2854					       struct bio *bio,
2855					       unsigned int nsegs)
2856{
2857	struct blk_mq_alloc_data data = {
2858		.q		= q,
2859		.nr_tags	= 1,
2860		.cmd_flags	= bio->bi_opf,
2861	};
2862	struct request *rq;
2863
2864	if (unlikely(bio_queue_enter(bio)))
2865		return NULL;
2866
2867	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868		goto queue_exit;
2869
2870	rq_qos_throttle(q, bio);
2871
2872	if (plug) {
2873		data.nr_tags = plug->nr_ios;
2874		plug->nr_ios = 1;
2875		data.cached_rq = &plug->cached_rq;
2876	}
2877
2878	rq = __blk_mq_alloc_requests(&data);
2879	if (rq)
2880		return rq;
2881	rq_qos_cleanup(q, bio);
2882	if (bio->bi_opf & REQ_NOWAIT)
2883		bio_wouldblock_error(bio);
2884queue_exit:
2885	blk_queue_exit(q);
2886	return NULL;
2887}
2888
2889static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2890		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2891{
2892	struct request *rq;
2893	enum hctx_type type, hctx_type;
2894
2895	if (!plug)
2896		return NULL;
2897	rq = rq_list_peek(&plug->cached_rq);
2898	if (!rq || rq->q != q)
2899		return NULL;
2900
2901	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2902		*bio = NULL;
2903		return NULL;
 
2904	}
2905
2906	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2907	hctx_type = rq->mq_hctx->type;
2908	if (type != hctx_type &&
2909	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2910		return NULL;
2911	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2912		return NULL;
2913
2914	/*
2915	 * If any qos ->throttle() end up blocking, we will have flushed the
2916	 * plug and hence killed the cached_rq list as well. Pop this entry
2917	 * before we throttle.
2918	 */
2919	plug->cached_rq = rq_list_next(rq);
2920	rq_qos_throttle(q, *bio);
2921
2922	rq->cmd_flags = (*bio)->bi_opf;
2923	INIT_LIST_HEAD(&rq->queuelist);
2924	return rq;
2925}
2926
2927static void bio_set_ioprio(struct bio *bio)
2928{
2929	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2930	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2931		bio->bi_ioprio = get_current_ioprio();
2932	blkcg_set_ioprio(bio);
2933}
2934
2935/**
2936 * blk_mq_submit_bio - Create and send a request to block device.
2937 * @bio: Bio pointer.
2938 *
2939 * Builds up a request structure from @q and @bio and send to the device. The
2940 * request may not be queued directly to hardware if:
2941 * * This request can be merged with another one
2942 * * We want to place request at plug queue for possible future merging
2943 * * There is an IO scheduler active at this queue
2944 *
2945 * It will not queue the request if there is an error with the bio, or at the
2946 * request creation.
2947 */
2948void blk_mq_submit_bio(struct bio *bio)
2949{
2950	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951	struct blk_plug *plug = blk_mq_plug(bio);
2952	const int is_sync = op_is_sync(bio->bi_opf);
 
 
2953	struct request *rq;
2954	unsigned int nr_segs = 1;
2955	blk_status_t ret;
 
 
2956
2957	bio = blk_queue_bounce(bio, q);
2958	if (bio_may_exceed_limits(bio, &q->limits)) {
2959		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2960		if (!bio)
2961			return;
2962	}
2963
2964	if (!bio_integrity_prep(bio))
2965		return;
2966
2967	bio_set_ioprio(bio);
 
 
2968
2969	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2970	if (!rq) {
2971		if (!bio)
2972			return;
2973		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2974		if (unlikely(!rq))
2975			return;
 
 
 
 
 
2976	}
2977
2978	trace_block_getrq(bio);
2979
2980	rq_qos_track(q, rq, bio);
2981
2982	blk_mq_bio_to_request(rq, bio, nr_segs);
2983
2984	ret = blk_crypto_init_request(rq);
2985	if (ret != BLK_STS_OK) {
2986		bio->bi_status = ret;
2987		bio_endio(bio);
2988		blk_mq_free_request(rq);
2989		return;
2990	}
2991
2992	if (op_is_flush(bio->bi_opf)) {
 
 
2993		blk_insert_flush(rq);
2994		return;
2995	}
2996
2997	if (plug)
2998		blk_add_rq_to_plug(plug, rq);
2999	else if ((rq->rq_flags & RQF_ELV) ||
3000		 (rq->mq_hctx->dispatch_busy &&
3001		  (q->nr_hw_queues == 1 || !is_sync)))
3002		blk_mq_sched_insert_request(rq, false, true, true);
3003	else
3004		blk_mq_run_dispatch_ops(rq->q,
3005				blk_mq_try_issue_directly(rq->mq_hctx, rq));
3006}
3007
3008#ifdef CONFIG_BLK_MQ_STACKING
3009/**
3010 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3011 * @rq: the request being queued
3012 */
3013blk_status_t blk_insert_cloned_request(struct request *rq)
3014{
3015	struct request_queue *q = rq->q;
3016	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3017	blk_status_t ret;
3018
3019	if (blk_rq_sectors(rq) > max_sectors) {
3020		/*
3021		 * SCSI device does not have a good way to return if
3022		 * Write Same/Zero is actually supported. If a device rejects
3023		 * a non-read/write command (discard, write same,etc.) the
3024		 * low-level device driver will set the relevant queue limit to
3025		 * 0 to prevent blk-lib from issuing more of the offending
3026		 * operations. Commands queued prior to the queue limit being
3027		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3028		 * errors being propagated to upper layers.
3029		 */
3030		if (max_sectors == 0)
3031			return BLK_STS_NOTSUPP;
3032
3033		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3034			__func__, blk_rq_sectors(rq), max_sectors);
3035		return BLK_STS_IOERR;
3036	}
3037
3038	/*
3039	 * The queue settings related to segment counting may differ from the
3040	 * original queue.
3041	 */
3042	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3043	if (rq->nr_phys_segments > queue_max_segments(q)) {
3044		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3045			__func__, rq->nr_phys_segments, queue_max_segments(q));
3046		return BLK_STS_IOERR;
3047	}
3048
3049	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3050		return BLK_STS_IOERR;
3051
3052	if (blk_crypto_insert_cloned_request(rq))
3053		return BLK_STS_IOERR;
3054
3055	blk_account_io_start(rq);
3056
3057	/*
3058	 * Since we have a scheduler attached on the top device,
3059	 * bypass a potential scheduler on the bottom device for
3060	 * insert.
3061	 */
3062	blk_mq_run_dispatch_ops(q,
3063			ret = blk_mq_request_issue_directly(rq, true));
3064	if (ret)
3065		blk_account_io_done(rq, ktime_get_ns());
3066	return ret;
3067}
3068EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3069
3070/**
3071 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3072 * @rq: the clone request to be cleaned up
3073 *
3074 * Description:
3075 *     Free all bios in @rq for a cloned request.
3076 */
3077void blk_rq_unprep_clone(struct request *rq)
3078{
3079	struct bio *bio;
3080
3081	while ((bio = rq->bio) != NULL) {
3082		rq->bio = bio->bi_next;
3083
3084		bio_put(bio);
3085	}
3086}
3087EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3088
3089/**
3090 * blk_rq_prep_clone - Helper function to setup clone request
3091 * @rq: the request to be setup
3092 * @rq_src: original request to be cloned
3093 * @bs: bio_set that bios for clone are allocated from
3094 * @gfp_mask: memory allocation mask for bio
3095 * @bio_ctr: setup function to be called for each clone bio.
3096 *           Returns %0 for success, non %0 for failure.
3097 * @data: private data to be passed to @bio_ctr
3098 *
3099 * Description:
3100 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3101 *     Also, pages which the original bios are pointing to are not copied
3102 *     and the cloned bios just point same pages.
3103 *     So cloned bios must be completed before original bios, which means
3104 *     the caller must complete @rq before @rq_src.
3105 */
3106int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3107		      struct bio_set *bs, gfp_t gfp_mask,
3108		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3109		      void *data)
3110{
3111	struct bio *bio, *bio_src;
3112
3113	if (!bs)
3114		bs = &fs_bio_set;
3115
3116	__rq_for_each_bio(bio_src, rq_src) {
3117		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3118				      bs);
3119		if (!bio)
3120			goto free_and_out;
3121
3122		if (bio_ctr && bio_ctr(bio, bio_src, data))
3123			goto free_and_out;
3124
3125		if (rq->bio) {
3126			rq->biotail->bi_next = bio;
3127			rq->biotail = bio;
3128		} else {
3129			rq->bio = rq->biotail = bio;
3130		}
3131		bio = NULL;
3132	}
3133
3134	/* Copy attributes of the original request to the clone request. */
3135	rq->__sector = blk_rq_pos(rq_src);
3136	rq->__data_len = blk_rq_bytes(rq_src);
3137	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3138		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3139		rq->special_vec = rq_src->special_vec;
3140	}
3141	rq->nr_phys_segments = rq_src->nr_phys_segments;
3142	rq->ioprio = rq_src->ioprio;
3143
3144	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3145		goto free_and_out;
3146
3147	return 0;
3148
3149free_and_out:
3150	if (bio)
3151		bio_put(bio);
3152	blk_rq_unprep_clone(rq);
3153
3154	return -ENOMEM;
3155}
3156EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3157#endif /* CONFIG_BLK_MQ_STACKING */
3158
3159/*
3160 * Steal bios from a request and add them to a bio list.
3161 * The request must not have been partially completed before.
3162 */
3163void blk_steal_bios(struct bio_list *list, struct request *rq)
3164{
3165	if (rq->bio) {
3166		if (list->tail)
3167			list->tail->bi_next = rq->bio;
3168		else
3169			list->head = rq->bio;
3170		list->tail = rq->biotail;
3171
3172		rq->bio = NULL;
3173		rq->biotail = NULL;
3174	}
3175
3176	rq->__data_len = 0;
3177}
3178EXPORT_SYMBOL_GPL(blk_steal_bios);
3179
3180static size_t order_to_size(unsigned int order)
3181{
3182	return (size_t)PAGE_SIZE << order;
3183}
3184
3185/* called before freeing request pool in @tags */
3186static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3187				    struct blk_mq_tags *tags)
3188{
3189	struct page *page;
3190	unsigned long flags;
3191
3192	/*
3193	 * There is no need to clear mapping if driver tags is not initialized
3194	 * or the mapping belongs to the driver tags.
3195	 */
3196	if (!drv_tags || drv_tags == tags)
3197		return;
3198
3199	list_for_each_entry(page, &tags->page_list, lru) {
3200		unsigned long start = (unsigned long)page_address(page);
3201		unsigned long end = start + order_to_size(page->private);
3202		int i;
3203
3204		for (i = 0; i < drv_tags->nr_tags; i++) {
3205			struct request *rq = drv_tags->rqs[i];
3206			unsigned long rq_addr = (unsigned long)rq;
3207
3208			if (rq_addr >= start && rq_addr < end) {
3209				WARN_ON_ONCE(req_ref_read(rq) != 0);
3210				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3211			}
 
 
 
 
 
 
 
 
3212		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213	}
3214
3215	/*
3216	 * Wait until all pending iteration is done.
3217	 *
3218	 * Request reference is cleared and it is guaranteed to be observed
3219	 * after the ->lock is released.
3220	 */
3221	spin_lock_irqsave(&drv_tags->lock, flags);
3222	spin_unlock_irqrestore(&drv_tags->lock, flags);
3223}
3224
3225void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3226		     unsigned int hctx_idx)
3227{
3228	struct blk_mq_tags *drv_tags;
3229	struct page *page;
3230
3231	if (list_empty(&tags->page_list))
3232		return;
3233
3234	if (blk_mq_is_shared_tags(set->flags))
3235		drv_tags = set->shared_tags;
3236	else
3237		drv_tags = set->tags[hctx_idx];
3238
3239	if (tags->static_rqs && set->ops->exit_request) {
3240		int i;
3241
3242		for (i = 0; i < tags->nr_tags; i++) {
3243			struct request *rq = tags->static_rqs[i];
3244
3245			if (!rq)
3246				continue;
3247			set->ops->exit_request(set, rq, hctx_idx);
3248			tags->static_rqs[i] = NULL;
3249		}
3250	}
3251
3252	blk_mq_clear_rq_mapping(drv_tags, tags);
3253
3254	while (!list_empty(&tags->page_list)) {
3255		page = list_first_entry(&tags->page_list, struct page, lru);
3256		list_del_init(&page->lru);
3257		/*
3258		 * Remove kmemleak object previously allocated in
3259		 * blk_mq_alloc_rqs().
3260		 */
3261		kmemleak_free(page_address(page));
3262		__free_pages(page, page->private);
3263	}
3264}
3265
3266void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3267{
3268	kfree(tags->rqs);
3269	tags->rqs = NULL;
3270	kfree(tags->static_rqs);
3271	tags->static_rqs = NULL;
3272
3273	blk_mq_free_tags(tags);
3274}
3275
3276static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3277		unsigned int hctx_idx)
3278{
3279	int i;
3280
3281	for (i = 0; i < set->nr_maps; i++) {
3282		unsigned int start = set->map[i].queue_offset;
3283		unsigned int end = start + set->map[i].nr_queues;
3284
3285		if (hctx_idx >= start && hctx_idx < end)
3286			break;
3287	}
3288
3289	if (i >= set->nr_maps)
3290		i = HCTX_TYPE_DEFAULT;
3291
3292	return i;
3293}
3294
3295static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3296		unsigned int hctx_idx)
3297{
3298	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3299
3300	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3301}
3302
3303static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3304					       unsigned int hctx_idx,
3305					       unsigned int nr_tags,
3306					       unsigned int reserved_tags)
3307{
3308	int node = blk_mq_get_hctx_node(set, hctx_idx);
3309	struct blk_mq_tags *tags;
 
3310
 
3311	if (node == NUMA_NO_NODE)
3312		node = set->numa_node;
3313
3314	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3315				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3316	if (!tags)
3317		return NULL;
3318
3319	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3320				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3321				 node);
3322	if (!tags->rqs)
3323		goto err_free_tags;
 
 
3324
3325	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3326					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3327					node);
3328	if (!tags->static_rqs)
3329		goto err_free_rqs;
 
 
 
3330
3331	return tags;
 
3332
3333err_free_rqs:
3334	kfree(tags->rqs);
3335err_free_tags:
3336	blk_mq_free_tags(tags);
3337	return NULL;
3338}
3339
3340static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3341			       unsigned int hctx_idx, int node)
3342{
3343	int ret;
3344
3345	if (set->ops->init_request) {
3346		ret = set->ops->init_request(set, rq, hctx_idx, node);
3347		if (ret)
3348			return ret;
3349	}
3350
3351	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3352	return 0;
3353}
3354
3355static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3356			    struct blk_mq_tags *tags,
3357			    unsigned int hctx_idx, unsigned int depth)
3358{
3359	unsigned int i, j, entries_per_page, max_order = 4;
3360	int node = blk_mq_get_hctx_node(set, hctx_idx);
3361	size_t rq_size, left;
 
3362
 
3363	if (node == NUMA_NO_NODE)
3364		node = set->numa_node;
3365
3366	INIT_LIST_HEAD(&tags->page_list);
3367
3368	/*
3369	 * rq_size is the size of the request plus driver payload, rounded
3370	 * to the cacheline size
3371	 */
3372	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3373				cache_line_size());
3374	left = rq_size * depth;
3375
3376	for (i = 0; i < depth; ) {
3377		int this_order = max_order;
3378		struct page *page;
3379		int to_do;
3380		void *p;
3381
3382		while (this_order && left < order_to_size(this_order - 1))
3383			this_order--;
3384
3385		do {
3386			page = alloc_pages_node(node,
3387				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3388				this_order);
3389			if (page)
3390				break;
3391			if (!this_order--)
3392				break;
3393			if (order_to_size(this_order) < rq_size)
3394				break;
3395		} while (1);
3396
3397		if (!page)
3398			goto fail;
3399
3400		page->private = this_order;
3401		list_add_tail(&page->lru, &tags->page_list);
3402
3403		p = page_address(page);
3404		/*
3405		 * Allow kmemleak to scan these pages as they contain pointers
3406		 * to additional allocations like via ops->init_request().
3407		 */
3408		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3409		entries_per_page = order_to_size(this_order) / rq_size;
3410		to_do = min(entries_per_page, depth - i);
3411		left -= to_do * rq_size;
3412		for (j = 0; j < to_do; j++) {
3413			struct request *rq = p;
3414
3415			tags->static_rqs[i] = rq;
3416			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3417				tags->static_rqs[i] = NULL;
3418				goto fail;
3419			}
3420
3421			p += rq_size;
3422			i++;
3423		}
3424	}
3425	return 0;
3426
3427fail:
3428	blk_mq_free_rqs(set, tags, hctx_idx);
3429	return -ENOMEM;
3430}
3431
3432struct rq_iter_data {
3433	struct blk_mq_hw_ctx *hctx;
3434	bool has_rq;
3435};
3436
3437static bool blk_mq_has_request(struct request *rq, void *data)
3438{
3439	struct rq_iter_data *iter_data = data;
3440
3441	if (rq->mq_hctx != iter_data->hctx)
3442		return true;
3443	iter_data->has_rq = true;
3444	return false;
3445}
3446
3447static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3448{
3449	struct blk_mq_tags *tags = hctx->sched_tags ?
3450			hctx->sched_tags : hctx->tags;
3451	struct rq_iter_data data = {
3452		.hctx	= hctx,
3453	};
3454
3455	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3456	return data.has_rq;
3457}
3458
3459static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3460		struct blk_mq_hw_ctx *hctx)
3461{
3462	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3463		return false;
3464	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3465		return false;
3466	return true;
3467}
3468
3469static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3470{
3471	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3472			struct blk_mq_hw_ctx, cpuhp_online);
3473
3474	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3475	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3476		return 0;
3477
3478	/*
3479	 * Prevent new request from being allocated on the current hctx.
3480	 *
3481	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3482	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3483	 * seen once we return from the tag allocator.
3484	 */
3485	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3486	smp_mb__after_atomic();
3487
3488	/*
3489	 * Try to grab a reference to the queue and wait for any outstanding
3490	 * requests.  If we could not grab a reference the queue has been
3491	 * frozen and there are no requests.
3492	 */
3493	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3494		while (blk_mq_hctx_has_requests(hctx))
3495			msleep(5);
3496		percpu_ref_put(&hctx->queue->q_usage_counter);
3497	}
3498
3499	return 0;
3500}
3501
3502static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3503{
3504	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3505			struct blk_mq_hw_ctx, cpuhp_online);
3506
3507	if (cpumask_test_cpu(cpu, hctx->cpumask))
3508		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3509	return 0;
3510}
3511
3512/*
3513 * 'cpu' is going away. splice any existing rq_list entries from this
3514 * software queue to the hw queue dispatch list, and ensure that it
3515 * gets run.
3516 */
3517static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3518{
3519	struct blk_mq_hw_ctx *hctx;
3520	struct blk_mq_ctx *ctx;
3521	LIST_HEAD(tmp);
3522	enum hctx_type type;
3523
3524	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3525	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3526		return 0;
3527
3528	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3529	type = hctx->type;
3530
3531	spin_lock(&ctx->lock);
3532	if (!list_empty(&ctx->rq_lists[type])) {
3533		list_splice_init(&ctx->rq_lists[type], &tmp);
3534		blk_mq_hctx_clear_pending(hctx, ctx);
3535	}
3536	spin_unlock(&ctx->lock);
3537
3538	if (list_empty(&tmp))
3539		return 0;
3540
3541	spin_lock(&hctx->lock);
3542	list_splice_tail_init(&tmp, &hctx->dispatch);
3543	spin_unlock(&hctx->lock);
3544
3545	blk_mq_run_hw_queue(hctx, true);
3546	return 0;
3547}
3548
3549static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3550{
3551	if (!(hctx->flags & BLK_MQ_F_STACKING))
3552		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3553						    &hctx->cpuhp_online);
3554	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3555					    &hctx->cpuhp_dead);
3556}
3557
3558/*
3559 * Before freeing hw queue, clearing the flush request reference in
3560 * tags->rqs[] for avoiding potential UAF.
3561 */
3562static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3563		unsigned int queue_depth, struct request *flush_rq)
3564{
3565	int i;
3566	unsigned long flags;
3567
3568	/* The hw queue may not be mapped yet */
3569	if (!tags)
3570		return;
3571
3572	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3573
3574	for (i = 0; i < queue_depth; i++)
3575		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3576
3577	/*
3578	 * Wait until all pending iteration is done.
3579	 *
3580	 * Request reference is cleared and it is guaranteed to be observed
3581	 * after the ->lock is released.
3582	 */
3583	spin_lock_irqsave(&tags->lock, flags);
3584	spin_unlock_irqrestore(&tags->lock, flags);
3585}
3586
3587/* hctx->ctxs will be freed in queue's release handler */
3588static void blk_mq_exit_hctx(struct request_queue *q,
3589		struct blk_mq_tag_set *set,
3590		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3591{
3592	struct request *flush_rq = hctx->fq->flush_rq;
3593
3594	if (blk_mq_hw_queue_mapped(hctx))
3595		blk_mq_tag_idle(hctx);
3596
3597	if (blk_queue_init_done(q))
3598		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3599				set->queue_depth, flush_rq);
3600	if (set->ops->exit_request)
3601		set->ops->exit_request(set, flush_rq, hctx_idx);
3602
3603	if (set->ops->exit_hctx)
3604		set->ops->exit_hctx(hctx, hctx_idx);
3605
3606	blk_mq_remove_cpuhp(hctx);
3607
3608	xa_erase(&q->hctx_table, hctx_idx);
3609
3610	spin_lock(&q->unused_hctx_lock);
3611	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3612	spin_unlock(&q->unused_hctx_lock);
3613}
3614
3615static void blk_mq_exit_hw_queues(struct request_queue *q,
3616		struct blk_mq_tag_set *set, int nr_queue)
3617{
3618	struct blk_mq_hw_ctx *hctx;
3619	unsigned long i;
3620
3621	queue_for_each_hw_ctx(q, hctx, i) {
3622		if (i == nr_queue)
3623			break;
 
3624		blk_mq_exit_hctx(q, set, hctx, i);
3625	}
3626}
3627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628static int blk_mq_init_hctx(struct request_queue *q,
3629		struct blk_mq_tag_set *set,
3630		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3631{
3632	hctx->queue_num = hctx_idx;
3633
3634	if (!(hctx->flags & BLK_MQ_F_STACKING))
3635		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3636				&hctx->cpuhp_online);
3637	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3638
3639	hctx->tags = set->tags[hctx_idx];
3640
3641	if (set->ops->init_hctx &&
3642	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3643		goto unregister_cpu_notifier;
3644
3645	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3646				hctx->numa_node))
3647		goto exit_hctx;
3648
3649	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3650		goto exit_flush_rq;
3651
3652	return 0;
3653
3654 exit_flush_rq:
3655	if (set->ops->exit_request)
3656		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3657 exit_hctx:
3658	if (set->ops->exit_hctx)
3659		set->ops->exit_hctx(hctx, hctx_idx);
3660 unregister_cpu_notifier:
3661	blk_mq_remove_cpuhp(hctx);
3662	return -1;
3663}
3664
3665static struct blk_mq_hw_ctx *
3666blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3667		int node)
3668{
3669	struct blk_mq_hw_ctx *hctx;
3670	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3671
3672	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3673	if (!hctx)
3674		goto fail_alloc_hctx;
3675
3676	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3677		goto free_hctx;
3678
3679	atomic_set(&hctx->nr_active, 0);
3680	if (node == NUMA_NO_NODE)
3681		node = set->numa_node;
3682	hctx->numa_node = node;
3683
3684	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3685	spin_lock_init(&hctx->lock);
3686	INIT_LIST_HEAD(&hctx->dispatch);
3687	hctx->queue = q;
3688	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3689
3690	INIT_LIST_HEAD(&hctx->hctx_list);
3691
3692	/*
3693	 * Allocate space for all possible cpus to avoid allocation at
3694	 * runtime
3695	 */
3696	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3697			gfp, node);
3698	if (!hctx->ctxs)
3699		goto free_cpumask;
3700
3701	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3702				gfp, node, false, false))
3703		goto free_ctxs;
3704	hctx->nr_ctx = 0;
3705
3706	spin_lock_init(&hctx->dispatch_wait_lock);
3707	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3708	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3709
3710	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
 
3711	if (!hctx->fq)
3712		goto free_bitmap;
3713
 
 
3714	blk_mq_hctx_kobj_init(hctx);
3715
3716	return hctx;
3717
3718 free_bitmap:
3719	sbitmap_free(&hctx->ctx_map);
3720 free_ctxs:
3721	kfree(hctx->ctxs);
3722 free_cpumask:
3723	free_cpumask_var(hctx->cpumask);
3724 free_hctx:
3725	kfree(hctx);
3726 fail_alloc_hctx:
3727	return NULL;
3728}
3729
3730static void blk_mq_init_cpu_queues(struct request_queue *q,
3731				   unsigned int nr_hw_queues)
3732{
3733	struct blk_mq_tag_set *set = q->tag_set;
3734	unsigned int i, j;
3735
3736	for_each_possible_cpu(i) {
3737		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3738		struct blk_mq_hw_ctx *hctx;
3739		int k;
3740
3741		__ctx->cpu = i;
3742		spin_lock_init(&__ctx->lock);
3743		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3744			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3745
3746		__ctx->queue = q;
3747
3748		/*
3749		 * Set local node, IFF we have more than one hw queue. If
3750		 * not, we remain on the home node of the device
3751		 */
3752		for (j = 0; j < set->nr_maps; j++) {
3753			hctx = blk_mq_map_queue_type(q, j, i);
3754			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3755				hctx->numa_node = cpu_to_node(i);
3756		}
3757	}
3758}
3759
3760struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3761					     unsigned int hctx_idx,
3762					     unsigned int depth)
3763{
3764	struct blk_mq_tags *tags;
3765	int ret;
3766
3767	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3768	if (!tags)
3769		return NULL;
3770
3771	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3772	if (ret) {
3773		blk_mq_free_rq_map(tags);
3774		return NULL;
3775	}
3776
3777	return tags;
3778}
3779
3780static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3781				       int hctx_idx)
3782{
3783	if (blk_mq_is_shared_tags(set->flags)) {
3784		set->tags[hctx_idx] = set->shared_tags;
3785
 
 
 
3786		return true;
3787	}
3788
3789	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3790						       set->queue_depth);
3791
3792	return set->tags[hctx_idx];
 
 
3793}
3794
3795void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3796			     struct blk_mq_tags *tags,
3797			     unsigned int hctx_idx)
3798{
3799	if (tags) {
3800		blk_mq_free_rqs(set, tags, hctx_idx);
3801		blk_mq_free_rq_map(tags);
 
3802	}
3803}
3804
3805static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3806				      unsigned int hctx_idx)
3807{
3808	if (!blk_mq_is_shared_tags(set->flags))
3809		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3810
3811	set->tags[hctx_idx] = NULL;
3812}
3813
3814static void blk_mq_map_swqueue(struct request_queue *q)
3815{
3816	unsigned int j, hctx_idx;
3817	unsigned long i;
3818	struct blk_mq_hw_ctx *hctx;
3819	struct blk_mq_ctx *ctx;
3820	struct blk_mq_tag_set *set = q->tag_set;
3821
3822	queue_for_each_hw_ctx(q, hctx, i) {
3823		cpumask_clear(hctx->cpumask);
3824		hctx->nr_ctx = 0;
3825		hctx->dispatch_from = NULL;
3826	}
3827
3828	/*
3829	 * Map software to hardware queues.
3830	 *
3831	 * If the cpu isn't present, the cpu is mapped to first hctx.
3832	 */
3833	for_each_possible_cpu(i) {
 
 
 
 
 
 
 
 
 
 
 
 
3834
3835		ctx = per_cpu_ptr(q->queue_ctx, i);
3836		for (j = 0; j < set->nr_maps; j++) {
3837			if (!set->map[j].nr_queues) {
3838				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3839						HCTX_TYPE_DEFAULT, i);
3840				continue;
3841			}
3842			hctx_idx = set->map[j].mq_map[i];
3843			/* unmapped hw queue can be remapped after CPU topo changed */
3844			if (!set->tags[hctx_idx] &&
3845			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3846				/*
3847				 * If tags initialization fail for some hctx,
3848				 * that hctx won't be brought online.  In this
3849				 * case, remap the current ctx to hctx[0] which
3850				 * is guaranteed to always have tags allocated
3851				 */
3852				set->map[j].mq_map[i] = 0;
3853			}
3854
3855			hctx = blk_mq_map_queue_type(q, j, i);
3856			ctx->hctxs[j] = hctx;
3857			/*
3858			 * If the CPU is already set in the mask, then we've
3859			 * mapped this one already. This can happen if
3860			 * devices share queues across queue maps.
3861			 */
3862			if (cpumask_test_cpu(i, hctx->cpumask))
3863				continue;
3864
3865			cpumask_set_cpu(i, hctx->cpumask);
3866			hctx->type = j;
3867			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3868			hctx->ctxs[hctx->nr_ctx++] = ctx;
3869
3870			/*
3871			 * If the nr_ctx type overflows, we have exceeded the
3872			 * amount of sw queues we can support.
3873			 */
3874			BUG_ON(!hctx->nr_ctx);
3875		}
3876
3877		for (; j < HCTX_MAX_TYPES; j++)
3878			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3879					HCTX_TYPE_DEFAULT, i);
3880	}
3881
3882	queue_for_each_hw_ctx(q, hctx, i) {
3883		/*
3884		 * If no software queues are mapped to this hardware queue,
3885		 * disable it and free the request entries.
3886		 */
3887		if (!hctx->nr_ctx) {
3888			/* Never unmap queue 0.  We need it as a
3889			 * fallback in case of a new remap fails
3890			 * allocation
3891			 */
3892			if (i)
3893				__blk_mq_free_map_and_rqs(set, i);
3894
3895			hctx->tags = NULL;
3896			continue;
3897		}
3898
3899		hctx->tags = set->tags[i];
3900		WARN_ON(!hctx->tags);
3901
3902		/*
3903		 * Set the map size to the number of mapped software queues.
3904		 * This is more accurate and more efficient than looping
3905		 * over all possibly mapped software queues.
3906		 */
3907		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3908
3909		/*
3910		 * Initialize batch roundrobin counts
3911		 */
3912		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3913		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3914	}
3915}
3916
3917/*
3918 * Caller needs to ensure that we're either frozen/quiesced, or that
3919 * the queue isn't live yet.
3920 */
3921static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3922{
3923	struct blk_mq_hw_ctx *hctx;
3924	unsigned long i;
3925
3926	queue_for_each_hw_ctx(q, hctx, i) {
3927		if (shared) {
3928			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3929		} else {
3930			blk_mq_tag_idle(hctx);
3931			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3932		}
3933	}
3934}
3935
3936static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3937					 bool shared)
3938{
3939	struct request_queue *q;
3940
3941	lockdep_assert_held(&set->tag_list_lock);
3942
3943	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3944		blk_mq_freeze_queue(q);
3945		queue_set_hctx_shared(q, shared);
3946		blk_mq_unfreeze_queue(q);
3947	}
3948}
3949
3950static void blk_mq_del_queue_tag_set(struct request_queue *q)
3951{
3952	struct blk_mq_tag_set *set = q->tag_set;
3953
3954	mutex_lock(&set->tag_list_lock);
3955	list_del(&q->tag_set_list);
3956	if (list_is_singular(&set->tag_list)) {
3957		/* just transitioned to unshared */
3958		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959		/* update existing queue */
3960		blk_mq_update_tag_set_shared(set, false);
3961	}
3962	mutex_unlock(&set->tag_list_lock);
3963	INIT_LIST_HEAD(&q->tag_set_list);
3964}
3965
3966static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3967				     struct request_queue *q)
3968{
3969	mutex_lock(&set->tag_list_lock);
3970
3971	/*
3972	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3973	 */
3974	if (!list_empty(&set->tag_list) &&
3975	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3976		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3977		/* update existing queue */
3978		blk_mq_update_tag_set_shared(set, true);
3979	}
3980	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3981		queue_set_hctx_shared(q, true);
3982	list_add_tail(&q->tag_set_list, &set->tag_list);
3983
3984	mutex_unlock(&set->tag_list_lock);
3985}
3986
3987/* All allocations will be freed in release handler of q->mq_kobj */
3988static int blk_mq_alloc_ctxs(struct request_queue *q)
3989{
3990	struct blk_mq_ctxs *ctxs;
3991	int cpu;
3992
3993	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3994	if (!ctxs)
3995		return -ENOMEM;
3996
3997	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3998	if (!ctxs->queue_ctx)
3999		goto fail;
4000
4001	for_each_possible_cpu(cpu) {
4002		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4003		ctx->ctxs = ctxs;
4004	}
4005
4006	q->mq_kobj = &ctxs->kobj;
4007	q->queue_ctx = ctxs->queue_ctx;
4008
4009	return 0;
4010 fail:
4011	kfree(ctxs);
4012	return -ENOMEM;
4013}
4014
4015/*
4016 * It is the actual release handler for mq, but we do it from
4017 * request queue's release handler for avoiding use-after-free
4018 * and headache because q->mq_kobj shouldn't have been introduced,
4019 * but we can't group ctx/kctx kobj without it.
4020 */
4021void blk_mq_release(struct request_queue *q)
4022{
4023	struct blk_mq_hw_ctx *hctx, *next;
4024	unsigned long i;
4025
4026	queue_for_each_hw_ctx(q, hctx, i)
4027		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4028
4029	/* all hctx are in .unused_hctx_list now */
4030	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4031		list_del_init(&hctx->hctx_list);
4032		kobject_put(&hctx->kobj);
4033	}
4034
4035	xa_destroy(&q->hctx_table);
4036
4037	/*
4038	 * release .mq_kobj and sw queue's kobject now because
4039	 * both share lifetime with request queue.
4040	 */
4041	blk_mq_sysfs_deinit(q);
4042}
4043
4044static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4045		void *queuedata)
4046{
4047	struct request_queue *q;
4048	int ret;
4049
4050	q = blk_alloc_queue(set->numa_node);
4051	if (!q)
4052		return ERR_PTR(-ENOMEM);
4053	q->queuedata = queuedata;
4054	ret = blk_mq_init_allocated_queue(set, q);
4055	if (ret) {
4056		blk_put_queue(q);
4057		return ERR_PTR(ret);
4058	}
4059	return q;
4060}
4061
4062struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4063{
4064	return blk_mq_init_queue_data(set, NULL);
 
 
 
 
 
 
4065}
4066EXPORT_SYMBOL(blk_mq_init_queue);
4067
4068/**
4069 * blk_mq_destroy_queue - shutdown a request queue
4070 * @q: request queue to shutdown
4071 *
4072 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4073 * requests will be failed with -ENODEV. The caller is responsible for dropping
4074 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4075 *
4076 * Context: can sleep
4077 */
4078void blk_mq_destroy_queue(struct request_queue *q)
4079{
4080	WARN_ON_ONCE(!queue_is_mq(q));
4081	WARN_ON_ONCE(blk_queue_registered(q));
4082
4083	might_sleep();
4084
4085	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4086	blk_queue_start_drain(q);
4087	blk_mq_freeze_queue_wait(q);
4088
4089	blk_sync_queue(q);
4090	blk_mq_cancel_work_sync(q);
4091	blk_mq_exit_queue(q);
4092}
4093EXPORT_SYMBOL(blk_mq_destroy_queue);
4094
4095struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4096		struct lock_class_key *lkclass)
4097{
4098	struct request_queue *q;
4099	struct gendisk *disk;
4100
4101	q = blk_mq_init_queue_data(set, queuedata);
4102	if (IS_ERR(q))
4103		return ERR_CAST(q);
 
 
 
 
4104
4105	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4106	if (!disk) {
4107		blk_mq_destroy_queue(q);
4108		blk_put_queue(q);
4109		return ERR_PTR(-ENOMEM);
4110	}
4111	set_bit(GD_OWNS_QUEUE, &disk->state);
4112	return disk;
4113}
4114EXPORT_SYMBOL(__blk_mq_alloc_disk);
4115
4116struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4117		struct lock_class_key *lkclass)
4118{
4119	struct gendisk *disk;
 
4120
4121	if (!blk_get_queue(q))
4122		return NULL;
4123	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4124	if (!disk)
4125		blk_put_queue(q);
4126	return disk;
4127}
4128EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4129
4130static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4131		struct blk_mq_tag_set *set, struct request_queue *q,
4132		int hctx_idx, int node)
4133{
4134	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4135
4136	/* reuse dead hctx first */
4137	spin_lock(&q->unused_hctx_lock);
4138	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4139		if (tmp->numa_node == node) {
4140			hctx = tmp;
4141			break;
4142		}
4143	}
4144	if (hctx)
4145		list_del_init(&hctx->hctx_list);
4146	spin_unlock(&q->unused_hctx_lock);
4147
4148	if (!hctx)
4149		hctx = blk_mq_alloc_hctx(q, set, node);
4150	if (!hctx)
4151		goto fail;
4152
4153	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4154		goto free_hctx;
4155
4156	return hctx;
4157
4158 free_hctx:
4159	kobject_put(&hctx->kobj);
4160 fail:
4161	return NULL;
4162}
4163
4164static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4165						struct request_queue *q)
4166{
4167	struct blk_mq_hw_ctx *hctx;
4168	unsigned long i, j;
4169
4170	/* protect against switching io scheduler  */
4171	mutex_lock(&q->sysfs_lock);
4172	for (i = 0; i < set->nr_hw_queues; i++) {
4173		int old_node;
4174		int node = blk_mq_get_hctx_node(set, i);
4175		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4176
4177		if (old_hctx) {
4178			old_node = old_hctx->numa_node;
4179			blk_mq_exit_hctx(q, set, old_hctx, i);
4180		}
 
 
 
4181
4182		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4183			if (!old_hctx)
 
 
 
 
 
 
 
 
 
4184				break;
4185			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4186					node, old_node);
4187			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4188			WARN_ON_ONCE(!hctx);
4189		}
4190	}
4191	/*
4192	 * Increasing nr_hw_queues fails. Free the newly allocated
4193	 * hctxs and keep the previous q->nr_hw_queues.
4194	 */
4195	if (i != set->nr_hw_queues) {
4196		j = q->nr_hw_queues;
 
4197	} else {
4198		j = i;
 
4199		q->nr_hw_queues = set->nr_hw_queues;
4200	}
4201
4202	xa_for_each_start(&q->hctx_table, j, hctx, j)
4203		blk_mq_exit_hctx(q, set, hctx, j);
 
 
 
 
 
 
 
 
4204	mutex_unlock(&q->sysfs_lock);
4205}
4206
4207static void blk_mq_update_poll_flag(struct request_queue *q)
 
 
 
 
 
4208{
4209	struct blk_mq_tag_set *set = q->tag_set;
 
4210
4211	if (set->nr_maps > HCTX_TYPE_POLL &&
4212	    set->map[HCTX_TYPE_POLL].nr_queues)
4213		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4214	else
4215		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4216}
4217
4218int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4219		struct request_queue *q)
 
4220{
4221	/* mark the queue as mq asap */
4222	q->mq_ops = set->ops;
4223
4224	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4225					     blk_mq_poll_stats_bkt,
4226					     BLK_MQ_POLL_STATS_BKTS, q);
4227	if (!q->poll_cb)
4228		goto err_exit;
4229
4230	if (blk_mq_alloc_ctxs(q))
4231		goto err_poll;
4232
4233	/* init q->mq_kobj and sw queues' kobjects */
4234	blk_mq_sysfs_init(q);
4235
 
 
 
 
 
 
4236	INIT_LIST_HEAD(&q->unused_hctx_list);
4237	spin_lock_init(&q->unused_hctx_lock);
4238
4239	xa_init(&q->hctx_table);
4240
4241	blk_mq_realloc_hw_ctxs(set, q);
4242	if (!q->nr_hw_queues)
4243		goto err_hctxs;
4244
4245	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4246	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4247
4248	q->tag_set = set;
4249
4250	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4251	blk_mq_update_poll_flag(q);
 
 
 
 
4252
4253	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4254	INIT_LIST_HEAD(&q->requeue_list);
4255	spin_lock_init(&q->requeue_lock);
4256
 
 
 
 
 
4257	q->nr_requests = set->queue_depth;
4258
4259	/*
4260	 * Default to classic polling
4261	 */
4262	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4263
4264	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4265	blk_mq_add_queue_tag_set(set, q);
4266	blk_mq_map_swqueue(q);
4267	return 0;
 
 
 
 
4268
4269err_hctxs:
4270	blk_mq_release(q);
 
 
 
4271err_poll:
4272	blk_stat_free_callback(q->poll_cb);
4273	q->poll_cb = NULL;
4274err_exit:
4275	q->mq_ops = NULL;
4276	return -ENOMEM;
4277}
4278EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4279
4280/* tags can _not_ be used after returning from blk_mq_exit_queue */
4281void blk_mq_exit_queue(struct request_queue *q)
4282{
4283	struct blk_mq_tag_set *set = q->tag_set;
4284
4285	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4286	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4287	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4288	blk_mq_del_queue_tag_set(q);
 
4289}
4290
4291static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4292{
4293	int i;
4294
4295	if (blk_mq_is_shared_tags(set->flags)) {
4296		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4297						BLK_MQ_NO_HCTX_IDX,
4298						set->queue_depth);
4299		if (!set->shared_tags)
4300			return -ENOMEM;
4301	}
4302
4303	for (i = 0; i < set->nr_hw_queues; i++) {
4304		if (!__blk_mq_alloc_map_and_rqs(set, i))
4305			goto out_unwind;
4306		cond_resched();
4307	}
4308
4309	return 0;
4310
4311out_unwind:
4312	while (--i >= 0)
4313		__blk_mq_free_map_and_rqs(set, i);
4314
4315	if (blk_mq_is_shared_tags(set->flags)) {
4316		blk_mq_free_map_and_rqs(set, set->shared_tags,
4317					BLK_MQ_NO_HCTX_IDX);
4318	}
4319
4320	return -ENOMEM;
4321}
4322
4323/*
4324 * Allocate the request maps associated with this tag_set. Note that this
4325 * may reduce the depth asked for, if memory is tight. set->queue_depth
4326 * will be updated to reflect the allocated depth.
4327 */
4328static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4329{
4330	unsigned int depth;
4331	int err;
4332
4333	depth = set->queue_depth;
4334	do {
4335		err = __blk_mq_alloc_rq_maps(set);
4336		if (!err)
4337			break;
4338
4339		set->queue_depth >>= 1;
4340		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4341			err = -ENOMEM;
4342			break;
4343		}
4344	} while (set->queue_depth);
4345
4346	if (!set->queue_depth || err) {
4347		pr_err("blk-mq: failed to allocate request map\n");
4348		return -ENOMEM;
4349	}
4350
4351	if (depth != set->queue_depth)
4352		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4353						depth, set->queue_depth);
4354
4355	return 0;
4356}
4357
4358static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4359{
4360	/*
4361	 * blk_mq_map_queues() and multiple .map_queues() implementations
4362	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4363	 * number of hardware queues.
4364	 */
4365	if (set->nr_maps == 1)
4366		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4367
4368	if (set->ops->map_queues && !is_kdump_kernel()) {
4369		int i;
4370
4371		/*
4372		 * transport .map_queues is usually done in the following
4373		 * way:
4374		 *
4375		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4376		 * 	mask = get_cpu_mask(queue)
4377		 * 	for_each_cpu(cpu, mask)
4378		 * 		set->map[x].mq_map[cpu] = queue;
4379		 * }
4380		 *
4381		 * When we need to remap, the table has to be cleared for
4382		 * killing stale mapping since one CPU may not be mapped
4383		 * to any hw queue.
4384		 */
4385		for (i = 0; i < set->nr_maps; i++)
4386			blk_mq_clear_mq_map(&set->map[i]);
4387
4388		set->ops->map_queues(set);
4389	} else {
4390		BUG_ON(set->nr_maps > 1);
4391		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4392	}
4393}
4394
4395static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4396				       int new_nr_hw_queues)
4397{
4398	struct blk_mq_tags **new_tags;
4399
4400	if (set->nr_hw_queues >= new_nr_hw_queues)
4401		goto done;
4402
4403	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4404				GFP_KERNEL, set->numa_node);
4405	if (!new_tags)
4406		return -ENOMEM;
4407
4408	if (set->tags)
4409		memcpy(new_tags, set->tags, set->nr_hw_queues *
4410		       sizeof(*set->tags));
4411	kfree(set->tags);
4412	set->tags = new_tags;
4413done:
4414	set->nr_hw_queues = new_nr_hw_queues;
4415	return 0;
4416}
4417
4418/*
4419 * Alloc a tag set to be associated with one or more request queues.
4420 * May fail with EINVAL for various error conditions. May adjust the
4421 * requested depth down, if it's too large. In that case, the set
4422 * value will be stored in set->queue_depth.
4423 */
4424int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4425{
4426	int i, ret;
4427
4428	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4429
4430	if (!set->nr_hw_queues)
4431		return -EINVAL;
4432	if (!set->queue_depth)
4433		return -EINVAL;
4434	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4435		return -EINVAL;
4436
4437	if (!set->ops->queue_rq)
4438		return -EINVAL;
4439
4440	if (!set->ops->get_budget ^ !set->ops->put_budget)
4441		return -EINVAL;
4442
4443	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4444		pr_info("blk-mq: reduced tag depth to %u\n",
4445			BLK_MQ_MAX_DEPTH);
4446		set->queue_depth = BLK_MQ_MAX_DEPTH;
4447	}
4448
4449	if (!set->nr_maps)
4450		set->nr_maps = 1;
4451	else if (set->nr_maps > HCTX_MAX_TYPES)
4452		return -EINVAL;
4453
4454	/*
4455	 * If a crashdump is active, then we are potentially in a very
4456	 * memory constrained environment. Limit us to 1 queue and
4457	 * 64 tags to prevent using too much memory.
4458	 */
4459	if (is_kdump_kernel()) {
4460		set->nr_hw_queues = 1;
4461		set->nr_maps = 1;
4462		set->queue_depth = min(64U, set->queue_depth);
4463	}
4464	/*
4465	 * There is no use for more h/w queues than cpus if we just have
4466	 * a single map
4467	 */
4468	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4469		set->nr_hw_queues = nr_cpu_ids;
4470
4471	if (set->flags & BLK_MQ_F_BLOCKING) {
4472		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4473		if (!set->srcu)
4474			return -ENOMEM;
4475		ret = init_srcu_struct(set->srcu);
4476		if (ret)
4477			goto out_free_srcu;
4478	}
4479
4480	ret = -ENOMEM;
4481	set->tags = kcalloc_node(set->nr_hw_queues,
4482				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4483				 set->numa_node);
4484	if (!set->tags)
4485		goto out_cleanup_srcu;
4486
 
4487	for (i = 0; i < set->nr_maps; i++) {
4488		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4489						  sizeof(set->map[i].mq_map[0]),
4490						  GFP_KERNEL, set->numa_node);
4491		if (!set->map[i].mq_map)
4492			goto out_free_mq_map;
4493		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4494	}
4495
4496	blk_mq_update_queue_map(set);
 
 
4497
4498	ret = blk_mq_alloc_set_map_and_rqs(set);
4499	if (ret)
4500		goto out_free_mq_map;
4501
4502	mutex_init(&set->tag_list_lock);
4503	INIT_LIST_HEAD(&set->tag_list);
4504
4505	return 0;
4506
4507out_free_mq_map:
4508	for (i = 0; i < set->nr_maps; i++) {
4509		kfree(set->map[i].mq_map);
4510		set->map[i].mq_map = NULL;
4511	}
4512	kfree(set->tags);
4513	set->tags = NULL;
4514out_cleanup_srcu:
4515	if (set->flags & BLK_MQ_F_BLOCKING)
4516		cleanup_srcu_struct(set->srcu);
4517out_free_srcu:
4518	if (set->flags & BLK_MQ_F_BLOCKING)
4519		kfree(set->srcu);
4520	return ret;
4521}
4522EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4523
4524/* allocate and initialize a tagset for a simple single-queue device */
4525int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4526		const struct blk_mq_ops *ops, unsigned int queue_depth,
4527		unsigned int set_flags)
4528{
4529	memset(set, 0, sizeof(*set));
4530	set->ops = ops;
4531	set->nr_hw_queues = 1;
4532	set->nr_maps = 1;
4533	set->queue_depth = queue_depth;
4534	set->numa_node = NUMA_NO_NODE;
4535	set->flags = set_flags;
4536	return blk_mq_alloc_tag_set(set);
4537}
4538EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4539
4540void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4541{
4542	int i, j;
4543
4544	for (i = 0; i < set->nr_hw_queues; i++)
4545		__blk_mq_free_map_and_rqs(set, i);
4546
4547	if (blk_mq_is_shared_tags(set->flags)) {
4548		blk_mq_free_map_and_rqs(set, set->shared_tags,
4549					BLK_MQ_NO_HCTX_IDX);
4550	}
4551
4552	for (j = 0; j < set->nr_maps; j++) {
4553		kfree(set->map[j].mq_map);
4554		set->map[j].mq_map = NULL;
4555	}
4556
4557	kfree(set->tags);
4558	set->tags = NULL;
4559	if (set->flags & BLK_MQ_F_BLOCKING) {
4560		cleanup_srcu_struct(set->srcu);
4561		kfree(set->srcu);
4562	}
4563}
4564EXPORT_SYMBOL(blk_mq_free_tag_set);
4565
4566int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4567{
4568	struct blk_mq_tag_set *set = q->tag_set;
4569	struct blk_mq_hw_ctx *hctx;
4570	int ret;
4571	unsigned long i;
4572
4573	if (!set)
4574		return -EINVAL;
4575
4576	if (q->nr_requests == nr)
4577		return 0;
4578
4579	blk_mq_freeze_queue(q);
4580	blk_mq_quiesce_queue(q);
4581
4582	ret = 0;
4583	queue_for_each_hw_ctx(q, hctx, i) {
4584		if (!hctx->tags)
4585			continue;
4586		/*
4587		 * If we're using an MQ scheduler, just update the scheduler
4588		 * queue depth. This is similar to what the old code would do.
4589		 */
4590		if (hctx->sched_tags) {
4591			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4592						      nr, true);
4593		} else {
4594			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4595						      false);
 
 
 
4596		}
4597		if (ret)
4598			break;
4599		if (q->elevator && q->elevator->type->ops.depth_updated)
4600			q->elevator->type->ops.depth_updated(hctx);
4601	}
4602	if (!ret) {
 
4603		q->nr_requests = nr;
4604		if (blk_mq_is_shared_tags(set->flags)) {
4605			if (q->elevator)
4606				blk_mq_tag_update_sched_shared_tags(q);
4607			else
4608				blk_mq_tag_resize_shared_tags(set, nr);
4609		}
4610	}
4611
4612	blk_mq_unquiesce_queue(q);
4613	blk_mq_unfreeze_queue(q);
4614
4615	return ret;
4616}
4617
4618/*
4619 * request_queue and elevator_type pair.
4620 * It is just used by __blk_mq_update_nr_hw_queues to cache
4621 * the elevator_type associated with a request_queue.
4622 */
4623struct blk_mq_qe_pair {
4624	struct list_head node;
4625	struct request_queue *q;
4626	struct elevator_type *type;
4627};
4628
4629/*
4630 * Cache the elevator_type in qe pair list and switch the
4631 * io scheduler to 'none'
4632 */
4633static bool blk_mq_elv_switch_none(struct list_head *head,
4634		struct request_queue *q)
4635{
4636	struct blk_mq_qe_pair *qe;
4637
4638	if (!q->elevator)
4639		return true;
4640
4641	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4642	if (!qe)
4643		return false;
4644
4645	/* q->elevator needs protection from ->sysfs_lock */
4646	mutex_lock(&q->sysfs_lock);
4647
4648	INIT_LIST_HEAD(&qe->node);
4649	qe->q = q;
4650	qe->type = q->elevator->type;
4651	/* keep a reference to the elevator module as we'll switch back */
4652	__elevator_get(qe->type);
4653	list_add(&qe->node, head);
4654	elevator_disable(q);
 
 
 
 
 
 
 
 
 
 
4655	mutex_unlock(&q->sysfs_lock);
4656
4657	return true;
4658}
4659
4660static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4661						struct request_queue *q)
4662{
4663	struct blk_mq_qe_pair *qe;
 
4664
4665	list_for_each_entry(qe, head, node)
4666		if (qe->q == q)
4667			return qe;
4668
4669	return NULL;
4670}
4671
4672static void blk_mq_elv_switch_back(struct list_head *head,
4673				  struct request_queue *q)
4674{
4675	struct blk_mq_qe_pair *qe;
4676	struct elevator_type *t;
4677
4678	qe = blk_lookup_qe_pair(head, q);
4679	if (!qe)
4680		return;
4681	t = qe->type;
4682	list_del(&qe->node);
4683	kfree(qe);
4684
4685	mutex_lock(&q->sysfs_lock);
4686	elevator_switch(q, t);
4687	/* drop the reference acquired in blk_mq_elv_switch_none */
4688	elevator_put(t);
4689	mutex_unlock(&q->sysfs_lock);
4690}
4691
4692static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4693							int nr_hw_queues)
4694{
4695	struct request_queue *q;
4696	LIST_HEAD(head);
4697	int prev_nr_hw_queues;
4698
4699	lockdep_assert_held(&set->tag_list_lock);
4700
4701	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4702		nr_hw_queues = nr_cpu_ids;
4703	if (nr_hw_queues < 1)
4704		return;
4705	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4706		return;
4707
4708	list_for_each_entry(q, &set->tag_list, tag_set_list)
4709		blk_mq_freeze_queue(q);
4710	/*
 
 
 
 
4711	 * Switch IO scheduler to 'none', cleaning up the data associated
4712	 * with the previous scheduler. We will switch back once we are done
4713	 * updating the new sw to hw queue mappings.
4714	 */
4715	list_for_each_entry(q, &set->tag_list, tag_set_list)
4716		if (!blk_mq_elv_switch_none(&head, q))
4717			goto switch_back;
4718
4719	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4720		blk_mq_debugfs_unregister_hctxs(q);
4721		blk_mq_sysfs_unregister_hctxs(q);
4722	}
4723
4724	prev_nr_hw_queues = set->nr_hw_queues;
4725	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4726		goto reregister;
4727
4728fallback:
4729	blk_mq_update_queue_map(set);
 
4730	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4731		blk_mq_realloc_hw_ctxs(set, q);
4732		blk_mq_update_poll_flag(q);
4733		if (q->nr_hw_queues != set->nr_hw_queues) {
4734			int i = prev_nr_hw_queues;
4735
4736			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4737					nr_hw_queues, prev_nr_hw_queues);
4738			for (; i < set->nr_hw_queues; i++)
4739				__blk_mq_free_map_and_rqs(set, i);
4740
4741			set->nr_hw_queues = prev_nr_hw_queues;
4742			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4743			goto fallback;
4744		}
4745		blk_mq_map_swqueue(q);
4746	}
4747
4748reregister:
4749	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750		blk_mq_sysfs_register_hctxs(q);
4751		blk_mq_debugfs_register_hctxs(q);
4752	}
4753
4754switch_back:
4755	list_for_each_entry(q, &set->tag_list, tag_set_list)
4756		blk_mq_elv_switch_back(&head, q);
4757
4758	list_for_each_entry(q, &set->tag_list, tag_set_list)
4759		blk_mq_unfreeze_queue(q);
4760}
4761
4762void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4763{
4764	mutex_lock(&set->tag_list_lock);
4765	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4766	mutex_unlock(&set->tag_list_lock);
4767}
4768EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4769
4770/* Enable polling stats and return whether they were already enabled. */
4771static bool blk_poll_stats_enable(struct request_queue *q)
4772{
4773	if (q->poll_stat)
 
4774		return true;
4775
4776	return blk_stats_alloc_enable(q);
4777}
4778
4779static void blk_mq_poll_stats_start(struct request_queue *q)
4780{
4781	/*
4782	 * We don't arm the callback if polling stats are not enabled or the
4783	 * callback is already active.
4784	 */
4785	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
 
4786		return;
4787
4788	blk_stat_activate_msecs(q->poll_cb, 100);
4789}
4790
4791static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4792{
4793	struct request_queue *q = cb->data;
4794	int bucket;
4795
4796	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4797		if (cb->stat[bucket].nr_samples)
4798			q->poll_stat[bucket] = cb->stat[bucket];
4799	}
4800}
4801
4802static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
 
4803				       struct request *rq)
4804{
4805	unsigned long ret = 0;
4806	int bucket;
4807
4808	/*
4809	 * If stats collection isn't on, don't sleep but turn it on for
4810	 * future users
4811	 */
4812	if (!blk_poll_stats_enable(q))
4813		return 0;
4814
4815	/*
4816	 * As an optimistic guess, use half of the mean service time
4817	 * for this type of request. We can (and should) make this smarter.
4818	 * For instance, if the completion latencies are tight, we can
4819	 * get closer than just half the mean. This is especially
4820	 * important on devices where the completion latencies are longer
4821	 * than ~10 usec. We do use the stats for the relevant IO size
4822	 * if available which does lead to better estimates.
4823	 */
4824	bucket = blk_mq_poll_stats_bkt(rq);
4825	if (bucket < 0)
4826		return ret;
4827
4828	if (q->poll_stat[bucket].nr_samples)
4829		ret = (q->poll_stat[bucket].mean + 1) / 2;
4830
4831	return ret;
4832}
4833
4834static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
 
 
4835{
4836	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4837	struct request *rq = blk_qc_to_rq(hctx, qc);
4838	struct hrtimer_sleeper hs;
4839	enum hrtimer_mode mode;
4840	unsigned int nsecs;
4841	ktime_t kt;
4842
4843	/*
4844	 * If a request has completed on queue that uses an I/O scheduler, we
4845	 * won't get back a request from blk_qc_to_rq.
4846	 */
4847	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4848		return false;
4849
4850	/*
4851	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4852	 *
4853	 *  0:	use half of prev avg
4854	 * >0:	use this specific value
4855	 */
4856	if (q->poll_nsec > 0)
4857		nsecs = q->poll_nsec;
4858	else
4859		nsecs = blk_mq_poll_nsecs(q, rq);
4860
4861	if (!nsecs)
4862		return false;
4863
4864	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4865
4866	/*
4867	 * This will be replaced with the stats tracking code, using
4868	 * 'avg_completion_time / 2' as the pre-sleep target.
4869	 */
4870	kt = nsecs;
4871
4872	mode = HRTIMER_MODE_REL;
4873	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4874	hrtimer_set_expires(&hs.timer, kt);
4875
4876	do {
4877		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4878			break;
4879		set_current_state(TASK_UNINTERRUPTIBLE);
4880		hrtimer_sleeper_start_expires(&hs, mode);
4881		if (hs.task)
4882			io_schedule();
4883		hrtimer_cancel(&hs.timer);
4884		mode = HRTIMER_MODE_ABS;
4885	} while (hs.task && !signal_pending(current));
4886
4887	__set_current_state(TASK_RUNNING);
4888	destroy_hrtimer_on_stack(&hs.timer);
4889
4890	/*
4891	 * If we sleep, have the caller restart the poll loop to reset the
4892	 * state.  Like for the other success return cases, the caller is
4893	 * responsible for checking if the IO completed.  If the IO isn't
4894	 * complete, we'll get called again and will go straight to the busy
4895	 * poll loop.
4896	 */
4897	return true;
4898}
4899
4900static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4901			       struct io_comp_batch *iob, unsigned int flags)
4902{
4903	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4904	long state = get_current_state();
4905	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4906
 
4907	do {
4908		ret = q->mq_ops->poll(hctx, iob);
 
 
 
 
4909		if (ret > 0) {
 
4910			__set_current_state(TASK_RUNNING);
4911			return ret;
4912		}
4913
4914		if (signal_pending_state(state, current))
4915			__set_current_state(TASK_RUNNING);
4916		if (task_is_running(current))
4917			return 1;
4918
4919		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
 
 
4920			break;
4921		cpu_relax();
4922	} while (!need_resched());
4923
4924	__set_current_state(TASK_RUNNING);
4925	return 0;
4926}
4927
4928int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4929		unsigned int flags)
4930{
4931	if (!(flags & BLK_POLL_NOSLEEP) &&
4932	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4933		if (blk_mq_poll_hybrid(q, cookie))
4934			return 1;
4935	}
4936	return blk_mq_poll_classic(q, cookie, iob, flags);
4937}
4938
4939unsigned int blk_mq_rq_cpu(struct request *rq)
4940{
4941	return rq->mq_ctx->cpu;
4942}
4943EXPORT_SYMBOL(blk_mq_rq_cpu);
4944
4945void blk_mq_cancel_work_sync(struct request_queue *q)
4946{
4947	struct blk_mq_hw_ctx *hctx;
4948	unsigned long i;
4949
4950	cancel_delayed_work_sync(&q->requeue_work);
4951
4952	queue_for_each_hw_ctx(q, hctx, i)
4953		cancel_delayed_work_sync(&hctx->run_work);
4954}
4955
4956static int __init blk_mq_init(void)
4957{
4958	int i;
4959
4960	for_each_possible_cpu(i)
4961		init_llist_head(&per_cpu(blk_cpu_done, i));
4962	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4963
4964	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4965				  "block/softirq:dead", NULL,
4966				  blk_softirq_cpu_dead);
4967	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4968				blk_mq_hctx_notify_dead);
4969	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4970				blk_mq_hctx_notify_online,
4971				blk_mq_hctx_notify_offline);
4972	return 0;
4973}
4974subsys_initcall(blk_mq_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
 
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
 
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
 
 
  29
  30#include <trace/events/block.h>
  31
  32#include <linux/blk-mq.h>
  33#include <linux/t10-pi.h>
  34#include "blk.h"
  35#include "blk-mq.h"
  36#include "blk-mq-debugfs.h"
  37#include "blk-mq-tag.h"
  38#include "blk-pm.h"
  39#include "blk-stat.h"
  40#include "blk-mq-sched.h"
  41#include "blk-rq-qos.h"
 
 
 
  42
  43static void blk_mq_poll_stats_start(struct request_queue *q);
  44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  45
  46static int blk_mq_poll_stats_bkt(const struct request *rq)
  47{
  48	int ddir, sectors, bucket;
  49
  50	ddir = rq_data_dir(rq);
  51	sectors = blk_rq_stats_sectors(rq);
  52
  53	bucket = ddir + 2 * ilog2(sectors);
  54
  55	if (bucket < 0)
  56		return -1;
  57	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  58		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  59
  60	return bucket;
  61}
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63/*
  64 * Check if any of the ctx, dispatch list or elevator
  65 * have pending work in this hardware queue.
  66 */
  67static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  68{
  69	return !list_empty_careful(&hctx->dispatch) ||
  70		sbitmap_any_bit_set(&hctx->ctx_map) ||
  71			blk_mq_sched_has_work(hctx);
  72}
  73
  74/*
  75 * Mark this ctx as having pending work in this hardware queue
  76 */
  77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  78				     struct blk_mq_ctx *ctx)
  79{
  80	const int bit = ctx->index_hw[hctx->type];
  81
  82	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  83		sbitmap_set_bit(&hctx->ctx_map, bit);
  84}
  85
  86static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  87				      struct blk_mq_ctx *ctx)
  88{
  89	const int bit = ctx->index_hw[hctx->type];
  90
  91	sbitmap_clear_bit(&hctx->ctx_map, bit);
  92}
  93
  94struct mq_inflight {
  95	struct hd_struct *part;
  96	unsigned int *inflight;
  97};
  98
  99static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
 100				  struct request *rq, void *priv,
 101				  bool reserved)
 102{
 103	struct mq_inflight *mi = priv;
 104
 105	/*
 106	 * index[0] counts the specific partition that was asked for.
 107	 */
 108	if (rq->part == mi->part)
 109		mi->inflight[0]++;
 110
 111	return true;
 112}
 113
 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
 
 115{
 116	unsigned inflight[2];
 117	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 118
 119	inflight[0] = inflight[1] = 0;
 120	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 121
 122	return inflight[0];
 123}
 124
 125static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
 126				     struct request *rq, void *priv,
 127				     bool reserved)
 128{
 129	struct mq_inflight *mi = priv;
 130
 131	if (rq->part == mi->part)
 132		mi->inflight[rq_data_dir(rq)]++;
 133
 134	return true;
 135}
 136
 137void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 138			 unsigned int inflight[2])
 139{
 140	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 141
 142	inflight[0] = inflight[1] = 0;
 143	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
 144}
 145
 146void blk_freeze_queue_start(struct request_queue *q)
 147{
 148	mutex_lock(&q->mq_freeze_lock);
 149	if (++q->mq_freeze_depth == 1) {
 150		percpu_ref_kill(&q->q_usage_counter);
 151		mutex_unlock(&q->mq_freeze_lock);
 152		if (queue_is_mq(q))
 153			blk_mq_run_hw_queues(q, false);
 154	} else {
 155		mutex_unlock(&q->mq_freeze_lock);
 156	}
 157}
 158EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 159
 160void blk_mq_freeze_queue_wait(struct request_queue *q)
 161{
 162	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 163}
 164EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 165
 166int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 167				     unsigned long timeout)
 168{
 169	return wait_event_timeout(q->mq_freeze_wq,
 170					percpu_ref_is_zero(&q->q_usage_counter),
 171					timeout);
 172}
 173EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 174
 175/*
 176 * Guarantee no request is in use, so we can change any data structure of
 177 * the queue afterward.
 178 */
 179void blk_freeze_queue(struct request_queue *q)
 180{
 181	/*
 182	 * In the !blk_mq case we are only calling this to kill the
 183	 * q_usage_counter, otherwise this increases the freeze depth
 184	 * and waits for it to return to zero.  For this reason there is
 185	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 186	 * exported to drivers as the only user for unfreeze is blk_mq.
 187	 */
 188	blk_freeze_queue_start(q);
 189	blk_mq_freeze_queue_wait(q);
 190}
 191
 192void blk_mq_freeze_queue(struct request_queue *q)
 193{
 194	/*
 195	 * ...just an alias to keep freeze and unfreeze actions balanced
 196	 * in the blk_mq_* namespace
 197	 */
 198	blk_freeze_queue(q);
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 201
 202void blk_mq_unfreeze_queue(struct request_queue *q)
 203{
 204	mutex_lock(&q->mq_freeze_lock);
 
 
 205	q->mq_freeze_depth--;
 206	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 207	if (!q->mq_freeze_depth) {
 208		percpu_ref_resurrect(&q->q_usage_counter);
 209		wake_up_all(&q->mq_freeze_wq);
 210	}
 211	mutex_unlock(&q->mq_freeze_lock);
 212}
 
 
 
 
 
 213EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 214
 215/*
 216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 217 * mpt3sas driver such that this function can be removed.
 218 */
 219void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 220{
 221	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 
 
 
 
 
 222}
 223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 224
 225/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 227 * @q: request queue.
 228 *
 229 * Note: this function does not prevent that the struct request end_io()
 230 * callback function is invoked. Once this function is returned, we make
 231 * sure no dispatch can happen until the queue is unquiesced via
 232 * blk_mq_unquiesce_queue().
 233 */
 234void blk_mq_quiesce_queue(struct request_queue *q)
 235{
 236	struct blk_mq_hw_ctx *hctx;
 237	unsigned int i;
 238	bool rcu = false;
 239
 240	blk_mq_quiesce_queue_nowait(q);
 241
 242	queue_for_each_hw_ctx(q, hctx, i) {
 243		if (hctx->flags & BLK_MQ_F_BLOCKING)
 244			synchronize_srcu(hctx->srcu);
 245		else
 246			rcu = true;
 247	}
 248	if (rcu)
 249		synchronize_rcu();
 250}
 251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 252
 253/*
 254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 255 * @q: request queue.
 256 *
 257 * This function recovers queue into the state before quiescing
 258 * which is done by blk_mq_quiesce_queue.
 259 */
 260void blk_mq_unquiesce_queue(struct request_queue *q)
 261{
 262	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 
 
 
 
 
 
 
 
 
 
 263
 264	/* dispatch requests which are inserted during quiescing */
 265	blk_mq_run_hw_queues(q, true);
 
 266}
 267EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269void blk_mq_wake_waiters(struct request_queue *q)
 270{
 271	struct blk_mq_hw_ctx *hctx;
 272	unsigned int i;
 273
 274	queue_for_each_hw_ctx(q, hctx, i)
 275		if (blk_mq_hw_queue_mapped(hctx))
 276			blk_mq_tag_wakeup_all(hctx->tags, true);
 277}
 278
 279bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 280{
 281	return blk_mq_has_free_tags(hctx->tags);
 282}
 283EXPORT_SYMBOL(blk_mq_can_queue);
 284
 285/*
 286 * Only need start/end time stamping if we have iostat or
 287 * blk stats enabled, or using an IO scheduler.
 288 */
 289static inline bool blk_mq_need_time_stamp(struct request *rq)
 290{
 291	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
 
 
 
 292}
 
 293
 294static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 295		unsigned int tag, unsigned int op, u64 alloc_time_ns)
 296{
 297	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 
 
 298	struct request *rq = tags->static_rqs[tag];
 299	req_flags_t rq_flags = 0;
 300
 301	if (data->flags & BLK_MQ_REQ_INTERNAL) {
 302		rq->tag = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303		rq->internal_tag = tag;
 304	} else {
 305		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
 306			rq_flags = RQF_MQ_INFLIGHT;
 307			atomic_inc(&data->hctx->nr_active);
 308		}
 309		rq->tag = tag;
 310		rq->internal_tag = -1;
 311		data->hctx->tags->rqs[rq->tag] = rq;
 312	}
 
 313
 314	/* csd/requeue_work/fifo_time is initialized before use */
 315	rq->q = data->q;
 316	rq->mq_ctx = data->ctx;
 317	rq->mq_hctx = data->hctx;
 318	rq->rq_flags = rq_flags;
 319	rq->cmd_flags = op;
 320	if (data->flags & BLK_MQ_REQ_PREEMPT)
 321		rq->rq_flags |= RQF_PREEMPT;
 322	if (blk_queue_io_stat(data->q))
 323		rq->rq_flags |= RQF_IO_STAT;
 324	INIT_LIST_HEAD(&rq->queuelist);
 325	INIT_HLIST_NODE(&rq->hash);
 326	RB_CLEAR_NODE(&rq->rb_node);
 327	rq->rq_disk = NULL;
 328	rq->part = NULL;
 329#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 330	rq->alloc_time_ns = alloc_time_ns;
 331#endif
 332	if (blk_mq_need_time_stamp(rq))
 333		rq->start_time_ns = ktime_get_ns();
 334	else
 335		rq->start_time_ns = 0;
 336	rq->io_start_time_ns = 0;
 337	rq->stats_sectors = 0;
 338	rq->nr_phys_segments = 0;
 339#if defined(CONFIG_BLK_DEV_INTEGRITY)
 340	rq->nr_integrity_segments = 0;
 341#endif
 
 
 
 
 
 342	/* tag was already set */
 343	rq->extra_len = 0;
 344	WRITE_ONCE(rq->deadline, 0);
 
 345
 346	rq->timeout = 0;
 
 
 
 
 347
 348	rq->end_io = NULL;
 349	rq->end_io_data = NULL;
 
 
 
 
 350
 351	data->ctx->rq_dispatched[op_is_sync(op)]++;
 352	refcount_set(&rq->ref, 1);
 353	return rq;
 354}
 355
 356static struct request *blk_mq_get_request(struct request_queue *q,
 357					  struct bio *bio,
 358					  struct blk_mq_alloc_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359{
 360	struct elevator_queue *e = q->elevator;
 
 361	struct request *rq;
 362	unsigned int tag;
 363	bool clear_ctx_on_error = false;
 364	u64 alloc_time_ns = 0;
 365
 366	blk_queue_enter_live(q);
 367
 368	/* alloc_time includes depth and tag waits */
 369	if (blk_queue_rq_alloc_time(q))
 370		alloc_time_ns = ktime_get_ns();
 371
 372	data->q = q;
 373	if (likely(!data->ctx)) {
 374		data->ctx = blk_mq_get_ctx(q);
 375		clear_ctx_on_error = true;
 376	}
 377	if (likely(!data->hctx))
 378		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
 379						data->ctx);
 380	if (data->cmd_flags & REQ_NOWAIT)
 381		data->flags |= BLK_MQ_REQ_NOWAIT;
 382
 383	if (e) {
 384		data->flags |= BLK_MQ_REQ_INTERNAL;
 
 
 385
 386		/*
 387		 * Flush requests are special and go directly to the
 388		 * dispatch list. Don't include reserved tags in the
 389		 * limiting, as it isn't useful.
 390		 */
 391		if (!op_is_flush(data->cmd_flags) &&
 
 392		    e->type->ops.limit_depth &&
 393		    !(data->flags & BLK_MQ_REQ_RESERVED))
 394			e->type->ops.limit_depth(data->cmd_flags, data);
 395	} else {
 
 
 
 
 
 396		blk_mq_tag_busy(data->hctx);
 
 
 
 
 
 
 
 
 
 
 
 
 397	}
 398
 
 
 
 
 
 399	tag = blk_mq_get_tag(data);
 400	if (tag == BLK_MQ_TAG_FAIL) {
 401		if (clear_ctx_on_error)
 402			data->ctx = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403		blk_queue_exit(q);
 
 
 
 
 
 
 
 
 
 
 
 404		return NULL;
 405	}
 406
 407	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
 408	if (!op_is_flush(data->cmd_flags)) {
 409		rq->elv.icq = NULL;
 410		if (e && e->type->ops.prepare_request) {
 411			if (e->type->icq_cache)
 412				blk_mq_sched_assign_ioc(rq);
 
 
 
 
 
 
 
 
 
 413
 414			e->type->ops.prepare_request(rq, bio);
 415			rq->rq_flags |= RQF_ELVPRIV;
 416		}
 417	}
 418	data->hctx->queued++;
 
 
 419	return rq;
 420}
 421
 422struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 423		blk_mq_req_flags_t flags)
 424{
 425	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 426	struct request *rq;
 427	int ret;
 428
 429	ret = blk_queue_enter(q, flags);
 430	if (ret)
 431		return ERR_PTR(ret);
 
 
 
 
 
 
 432
 433	rq = blk_mq_get_request(q, NULL, &alloc_data);
 434	blk_queue_exit(q);
 435
 436	if (!rq)
 437		return ERR_PTR(-EWOULDBLOCK);
 438
 
 
 
 
 439	rq->__data_len = 0;
 440	rq->__sector = (sector_t) -1;
 441	rq->bio = rq->biotail = NULL;
 442	return rq;
 
 
 
 443}
 444EXPORT_SYMBOL(blk_mq_alloc_request);
 445
 446struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 447	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 448{
 449	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 
 
 
 
 
 
 450	struct request *rq;
 451	unsigned int cpu;
 
 452	int ret;
 453
 
 
 
 
 454	/*
 455	 * If the tag allocator sleeps we could get an allocation for a
 456	 * different hardware context.  No need to complicate the low level
 457	 * allocator for this for the rare use case of a command tied to
 458	 * a specific queue.
 459	 */
 460	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 461		return ERR_PTR(-EINVAL);
 462
 463	if (hctx_idx >= q->nr_hw_queues)
 464		return ERR_PTR(-EIO);
 465
 466	ret = blk_queue_enter(q, flags);
 467	if (ret)
 468		return ERR_PTR(ret);
 469
 470	/*
 471	 * Check if the hardware context is actually mapped to anything.
 472	 * If not tell the caller that it should skip this queue.
 473	 */
 474	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
 475	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
 476		blk_queue_exit(q);
 477		return ERR_PTR(-EXDEV);
 478	}
 479	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
 480	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
 
 481
 482	rq = blk_mq_get_request(q, NULL, &alloc_data);
 483	blk_queue_exit(q);
 
 
 484
 485	if (!rq)
 486		return ERR_PTR(-EWOULDBLOCK);
 487
 
 
 
 
 
 
 
 
 
 488	return rq;
 
 
 
 
 489}
 490EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 491
 492static void __blk_mq_free_request(struct request *rq)
 493{
 494	struct request_queue *q = rq->q;
 495	struct blk_mq_ctx *ctx = rq->mq_ctx;
 496	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 497	const int sched_tag = rq->internal_tag;
 498
 
 499	blk_pm_mark_last_busy(rq);
 500	rq->mq_hctx = NULL;
 501	if (rq->tag != -1)
 502		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
 503	if (sched_tag != -1)
 504		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
 505	blk_mq_sched_restart(hctx);
 506	blk_queue_exit(q);
 507}
 508
 509void blk_mq_free_request(struct request *rq)
 510{
 511	struct request_queue *q = rq->q;
 512	struct elevator_queue *e = q->elevator;
 513	struct blk_mq_ctx *ctx = rq->mq_ctx;
 514	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 515
 516	if (rq->rq_flags & RQF_ELVPRIV) {
 517		if (e && e->type->ops.finish_request)
 518			e->type->ops.finish_request(rq);
 519		if (rq->elv.icq) {
 520			put_io_context(rq->elv.icq->ioc);
 521			rq->elv.icq = NULL;
 522		}
 523	}
 524
 525	ctx->rq_completed[rq_is_sync(rq)]++;
 526	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 527		atomic_dec(&hctx->nr_active);
 528
 529	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 530		laptop_io_completion(q->backing_dev_info);
 531
 532	rq_qos_done(q, rq);
 533
 534	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 535	if (refcount_dec_and_test(&rq->ref))
 536		__blk_mq_free_request(rq);
 537}
 538EXPORT_SYMBOL_GPL(blk_mq_free_request);
 539
 540inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541{
 542	u64 now = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	if (blk_mq_need_time_stamp(rq))
 545		now = ktime_get_ns();
 
 
 
 546
 
 
 547	if (rq->rq_flags & RQF_STATS) {
 548		blk_mq_poll_stats_start(rq->q);
 549		blk_stat_add(rq, now);
 550	}
 551
 552	if (rq->internal_tag != -1)
 553		blk_mq_sched_completed_request(rq, now);
 
 554
 555	blk_account_io_done(rq, now);
 
 
 
 556
 557	if (rq->end_io) {
 558		rq_qos_done(rq->q, rq);
 559		rq->end_io(rq, error);
 
 560	} else {
 561		blk_mq_free_request(rq);
 562	}
 563}
 564EXPORT_SYMBOL(__blk_mq_end_request);
 565
 566void blk_mq_end_request(struct request *rq, blk_status_t error)
 567{
 568	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 569		BUG();
 570	__blk_mq_end_request(rq, error);
 571}
 572EXPORT_SYMBOL(blk_mq_end_request);
 573
 574static void __blk_mq_complete_request_remote(void *data)
 
 
 
 575{
 576	struct request *rq = data;
 577	struct request_queue *q = rq->q;
 
 
 
 
 
 
 578
 579	q->mq_ops->complete(rq);
 
 580}
 581
 582static void __blk_mq_complete_request(struct request *rq)
 583{
 584	struct blk_mq_ctx *ctx = rq->mq_ctx;
 585	struct request_queue *q = rq->q;
 586	bool shared = false;
 587	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 590	/*
 591	 * Most of single queue controllers, there is only one irq vector
 592	 * for handling IO completion, and the only irq's affinity is set
 593	 * as all possible CPUs. On most of ARCHs, this affinity means the
 594	 * irq is handled on one specific CPU.
 595	 *
 596	 * So complete IO reqeust in softirq context in case of single queue
 597	 * for not degrading IO performance by irqsoff latency.
 598	 */
 599	if (q->nr_hw_queues == 1) {
 600		__blk_complete_request(rq);
 601		return;
 602	}
 603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604	/*
 605	 * For a polled request, always complete locallly, it's pointless
 606	 * to redirect the completion.
 
 
 607	 */
 608	if ((rq->cmd_flags & REQ_HIPRI) ||
 609	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
 610		q->mq_ops->complete(rq);
 611		return;
 612	}
 
 
 
 
 
 
 
 
 
 
 
 
 613
 614	cpu = get_cpu();
 615	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
 616		shared = cpus_share_cache(cpu, ctx->cpu);
 617
 618	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 619		rq->csd.func = __blk_mq_complete_request_remote;
 620		rq->csd.info = rq;
 621		rq->csd.flags = 0;
 622		smp_call_function_single_async(ctx->cpu, &rq->csd);
 623	} else {
 624		q->mq_ops->complete(rq);
 625	}
 626	put_cpu();
 627}
 628
 629static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 630	__releases(hctx->srcu)
 631{
 632	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 633		rcu_read_unlock();
 634	else
 635		srcu_read_unlock(hctx->srcu, srcu_idx);
 
 
 
 636}
 637
 638static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 639	__acquires(hctx->srcu)
 640{
 641	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 642		/* shut up gcc false positive */
 643		*srcu_idx = 0;
 644		rcu_read_lock();
 645	} else
 646		*srcu_idx = srcu_read_lock(hctx->srcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647}
 
 648
 649/**
 650 * blk_mq_complete_request - end I/O on a request
 651 * @rq:		the request being processed
 652 *
 653 * Description:
 654 *	Ends all I/O on a request. It does not handle partial completions.
 655 *	The actual completion happens out-of-order, through a IPI handler.
 656 **/
 657bool blk_mq_complete_request(struct request *rq)
 658{
 659	if (unlikely(blk_should_fake_timeout(rq->q)))
 660		return false;
 661	__blk_mq_complete_request(rq);
 662	return true;
 663}
 664EXPORT_SYMBOL(blk_mq_complete_request);
 665
 666int blk_mq_request_started(struct request *rq)
 667{
 668	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
 669}
 670EXPORT_SYMBOL_GPL(blk_mq_request_started);
 671
 672int blk_mq_request_completed(struct request *rq)
 673{
 674	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
 675}
 676EXPORT_SYMBOL_GPL(blk_mq_request_completed);
 677
 678void blk_mq_start_request(struct request *rq)
 679{
 680	struct request_queue *q = rq->q;
 681
 682	trace_block_rq_issue(q, rq);
 683
 684	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 685		rq->io_start_time_ns = ktime_get_ns();
 686		rq->stats_sectors = blk_rq_sectors(rq);
 687		rq->rq_flags |= RQF_STATS;
 688		rq_qos_issue(q, rq);
 689	}
 690
 691	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 692
 693	blk_add_timer(rq);
 694	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 695
 696	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 697		/*
 698		 * Make sure space for the drain appears.  We know we can do
 699		 * this because max_hw_segments has been adjusted to be one
 700		 * fewer than the device can handle.
 701		 */
 702		rq->nr_phys_segments++;
 703	}
 704
 705#ifdef CONFIG_BLK_DEV_INTEGRITY
 706	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
 707		q->integrity.profile->prepare_fn(rq);
 708#endif
 
 
 709}
 710EXPORT_SYMBOL(blk_mq_start_request);
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712static void __blk_mq_requeue_request(struct request *rq)
 713{
 714	struct request_queue *q = rq->q;
 715
 716	blk_mq_put_driver_tag(rq);
 717
 718	trace_block_rq_requeue(q, rq);
 719	rq_qos_requeue(q, rq);
 720
 721	if (blk_mq_request_started(rq)) {
 722		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 723		rq->rq_flags &= ~RQF_TIMED_OUT;
 724		if (q->dma_drain_size && blk_rq_bytes(rq))
 725			rq->nr_phys_segments--;
 726	}
 727}
 728
 729void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 730{
 731	__blk_mq_requeue_request(rq);
 732
 733	/* this request will be re-inserted to io scheduler queue */
 734	blk_mq_sched_requeue_request(rq);
 735
 736	BUG_ON(!list_empty(&rq->queuelist));
 737	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 738}
 739EXPORT_SYMBOL(blk_mq_requeue_request);
 740
 741static void blk_mq_requeue_work(struct work_struct *work)
 742{
 743	struct request_queue *q =
 744		container_of(work, struct request_queue, requeue_work.work);
 745	LIST_HEAD(rq_list);
 746	struct request *rq, *next;
 747
 748	spin_lock_irq(&q->requeue_lock);
 749	list_splice_init(&q->requeue_list, &rq_list);
 750	spin_unlock_irq(&q->requeue_lock);
 751
 752	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 753		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 754			continue;
 755
 756		rq->rq_flags &= ~RQF_SOFTBARRIER;
 757		list_del_init(&rq->queuelist);
 758		/*
 759		 * If RQF_DONTPREP, rq has contained some driver specific
 760		 * data, so insert it to hctx dispatch list to avoid any
 761		 * merge.
 762		 */
 763		if (rq->rq_flags & RQF_DONTPREP)
 764			blk_mq_request_bypass_insert(rq, false);
 765		else
 766			blk_mq_sched_insert_request(rq, true, false, false);
 767	}
 768
 769	while (!list_empty(&rq_list)) {
 770		rq = list_entry(rq_list.next, struct request, queuelist);
 771		list_del_init(&rq->queuelist);
 772		blk_mq_sched_insert_request(rq, false, false, false);
 773	}
 774
 775	blk_mq_run_hw_queues(q, false);
 776}
 777
 778void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 779				bool kick_requeue_list)
 780{
 781	struct request_queue *q = rq->q;
 782	unsigned long flags;
 783
 784	/*
 785	 * We abuse this flag that is otherwise used by the I/O scheduler to
 786	 * request head insertion from the workqueue.
 787	 */
 788	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 789
 790	spin_lock_irqsave(&q->requeue_lock, flags);
 791	if (at_head) {
 792		rq->rq_flags |= RQF_SOFTBARRIER;
 793		list_add(&rq->queuelist, &q->requeue_list);
 794	} else {
 795		list_add_tail(&rq->queuelist, &q->requeue_list);
 796	}
 797	spin_unlock_irqrestore(&q->requeue_lock, flags);
 798
 799	if (kick_requeue_list)
 800		blk_mq_kick_requeue_list(q);
 801}
 802
 803void blk_mq_kick_requeue_list(struct request_queue *q)
 804{
 805	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 806}
 807EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 808
 809void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 810				    unsigned long msecs)
 811{
 812	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 813				    msecs_to_jiffies(msecs));
 814}
 815EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 816
 817struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 818{
 819	if (tag < tags->nr_tags) {
 820		prefetch(tags->rqs[tag]);
 821		return tags->rqs[tag];
 822	}
 823
 824	return NULL;
 825}
 826EXPORT_SYMBOL(blk_mq_tag_to_rq);
 827
 828static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 829			       void *priv, bool reserved)
 830{
 831	/*
 832	 * If we find a request that is inflight and the queue matches,
 833	 * we know the queue is busy. Return false to stop the iteration.
 
 834	 */
 835	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
 836		bool *busy = priv;
 837
 838		*busy = true;
 839		return false;
 840	}
 841
 842	return true;
 843}
 844
 845bool blk_mq_queue_inflight(struct request_queue *q)
 846{
 847	bool busy = false;
 848
 849	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 850	return busy;
 851}
 852EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 853
 854static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 855{
 856	req->rq_flags |= RQF_TIMED_OUT;
 857	if (req->q->mq_ops->timeout) {
 858		enum blk_eh_timer_return ret;
 859
 860		ret = req->q->mq_ops->timeout(req, reserved);
 861		if (ret == BLK_EH_DONE)
 862			return;
 863		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 864	}
 865
 866	blk_add_timer(req);
 867}
 868
 869static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 
 
 
 
 
 
 870{
 871	unsigned long deadline;
 872
 873	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 874		return false;
 875	if (rq->rq_flags & RQF_TIMED_OUT)
 876		return false;
 877
 878	deadline = READ_ONCE(rq->deadline);
 879	if (time_after_eq(jiffies, deadline))
 880		return true;
 881
 882	if (*next == 0)
 883		*next = deadline;
 884	else if (time_after(*next, deadline))
 885		*next = deadline;
 886	return false;
 887}
 888
 889static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 890		struct request *rq, void *priv, bool reserved)
 891{
 892	unsigned long *next = priv;
 
 
 
 
 
 
 893
 894	/*
 895	 * Just do a quick check if it is expired before locking the request in
 896	 * so we're not unnecessarilly synchronizing across CPUs.
 897	 */
 898	if (!blk_mq_req_expired(rq, next))
 899		return true;
 900
 901	/*
 902	 * We have reason to believe the request may be expired. Take a
 903	 * reference on the request to lock this request lifetime into its
 904	 * currently allocated context to prevent it from being reallocated in
 905	 * the event the completion by-passes this timeout handler.
 906	 *
 907	 * If the reference was already released, then the driver beat the
 908	 * timeout handler to posting a natural completion.
 909	 */
 910	if (!refcount_inc_not_zero(&rq->ref))
 911		return true;
 
 
 
 
 912
 913	/*
 914	 * The request is now locked and cannot be reallocated underneath the
 915	 * timeout handler's processing. Re-verify this exact request is truly
 916	 * expired; if it is not expired, then the request was completed and
 917	 * reallocated as a new request.
 918	 */
 919	if (blk_mq_req_expired(rq, next))
 920		blk_mq_rq_timed_out(rq, reserved);
 921
 922	if (is_flush_rq(rq, hctx))
 923		rq->end_io(rq, 0);
 924	else if (refcount_dec_and_test(&rq->ref))
 925		__blk_mq_free_request(rq);
 926
 
 
 927	return true;
 928}
 929
 930static void blk_mq_timeout_work(struct work_struct *work)
 931{
 932	struct request_queue *q =
 933		container_of(work, struct request_queue, timeout_work);
 934	unsigned long next = 0;
 
 
 935	struct blk_mq_hw_ctx *hctx;
 936	int i;
 937
 938	/* A deadlock might occur if a request is stuck requiring a
 939	 * timeout at the same time a queue freeze is waiting
 940	 * completion, since the timeout code would not be able to
 941	 * acquire the queue reference here.
 942	 *
 943	 * That's why we don't use blk_queue_enter here; instead, we use
 944	 * percpu_ref_tryget directly, because we need to be able to
 945	 * obtain a reference even in the short window between the queue
 946	 * starting to freeze, by dropping the first reference in
 947	 * blk_freeze_queue_start, and the moment the last request is
 948	 * consumed, marked by the instant q_usage_counter reaches
 949	 * zero.
 950	 */
 951	if (!percpu_ref_tryget(&q->q_usage_counter))
 952		return;
 953
 954	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 955
 956	if (next != 0) {
 957		mod_timer(&q->timeout, next);
 958	} else {
 959		/*
 960		 * Request timeouts are handled as a forward rolling timer. If
 961		 * we end up here it means that no requests are pending and
 962		 * also that no request has been pending for a while. Mark
 963		 * each hctx as idle.
 964		 */
 965		queue_for_each_hw_ctx(q, hctx, i) {
 966			/* the hctx may be unmapped, so check it here */
 967			if (blk_mq_hw_queue_mapped(hctx))
 968				blk_mq_tag_idle(hctx);
 969		}
 970	}
 971	blk_queue_exit(q);
 972}
 973
 974struct flush_busy_ctx_data {
 975	struct blk_mq_hw_ctx *hctx;
 976	struct list_head *list;
 977};
 978
 979static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 980{
 981	struct flush_busy_ctx_data *flush_data = data;
 982	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 983	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 984	enum hctx_type type = hctx->type;
 985
 986	spin_lock(&ctx->lock);
 987	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
 988	sbitmap_clear_bit(sb, bitnr);
 989	spin_unlock(&ctx->lock);
 990	return true;
 991}
 992
 993/*
 994 * Process software queues that have been marked busy, splicing them
 995 * to the for-dispatch
 996 */
 997void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 998{
 999	struct flush_busy_ctx_data data = {
1000		.hctx = hctx,
1001		.list = list,
1002	};
1003
1004	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1005}
1006EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1007
1008struct dispatch_rq_data {
1009	struct blk_mq_hw_ctx *hctx;
1010	struct request *rq;
1011};
1012
1013static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1014		void *data)
1015{
1016	struct dispatch_rq_data *dispatch_data = data;
1017	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1018	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1019	enum hctx_type type = hctx->type;
1020
1021	spin_lock(&ctx->lock);
1022	if (!list_empty(&ctx->rq_lists[type])) {
1023		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1024		list_del_init(&dispatch_data->rq->queuelist);
1025		if (list_empty(&ctx->rq_lists[type]))
1026			sbitmap_clear_bit(sb, bitnr);
1027	}
1028	spin_unlock(&ctx->lock);
1029
1030	return !dispatch_data->rq;
1031}
1032
1033struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034					struct blk_mq_ctx *start)
1035{
1036	unsigned off = start ? start->index_hw[hctx->type] : 0;
1037	struct dispatch_rq_data data = {
1038		.hctx = hctx,
1039		.rq   = NULL,
1040	};
1041
1042	__sbitmap_for_each_set(&hctx->ctx_map, off,
1043			       dispatch_rq_from_ctx, &data);
1044
1045	return data.rq;
1046}
1047
1048static inline unsigned int queued_to_index(unsigned int queued)
1049{
1050	if (!queued)
1051		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
 
1054}
1055
1056bool blk_mq_get_driver_tag(struct request *rq)
1057{
1058	struct blk_mq_alloc_data data = {
1059		.q = rq->q,
1060		.hctx = rq->mq_hctx,
1061		.flags = BLK_MQ_REQ_NOWAIT,
1062		.cmd_flags = rq->cmd_flags,
1063	};
1064	bool shared;
1065
1066	if (rq->tag != -1)
1067		goto done;
1068
1069	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1070		data.flags |= BLK_MQ_REQ_RESERVED;
1071
1072	shared = blk_mq_tag_busy(data.hctx);
1073	rq->tag = blk_mq_get_tag(&data);
1074	if (rq->tag >= 0) {
1075		if (shared) {
1076			rq->rq_flags |= RQF_MQ_INFLIGHT;
1077			atomic_inc(&data.hctx->nr_active);
1078		}
1079		data.hctx->tags->rqs[rq->tag] = rq;
1080	}
1081
1082done:
1083	return rq->tag != -1;
1084}
1085
1086static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1087				int flags, void *key)
1088{
1089	struct blk_mq_hw_ctx *hctx;
1090
1091	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1092
1093	spin_lock(&hctx->dispatch_wait_lock);
1094	if (!list_empty(&wait->entry)) {
1095		struct sbitmap_queue *sbq;
1096
1097		list_del_init(&wait->entry);
1098		sbq = &hctx->tags->bitmap_tags;
1099		atomic_dec(&sbq->ws_active);
1100	}
1101	spin_unlock(&hctx->dispatch_wait_lock);
1102
1103	blk_mq_run_hw_queue(hctx, true);
1104	return 1;
1105}
1106
1107/*
1108 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1109 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1110 * restart. For both cases, take care to check the condition again after
1111 * marking us as waiting.
1112 */
1113static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1114				 struct request *rq)
1115{
1116	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1117	struct wait_queue_head *wq;
1118	wait_queue_entry_t *wait;
1119	bool ret;
1120
1121	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1122		blk_mq_sched_mark_restart_hctx(hctx);
1123
1124		/*
1125		 * It's possible that a tag was freed in the window between the
1126		 * allocation failure and adding the hardware queue to the wait
1127		 * queue.
1128		 *
1129		 * Don't clear RESTART here, someone else could have set it.
1130		 * At most this will cost an extra queue run.
1131		 */
1132		return blk_mq_get_driver_tag(rq);
1133	}
1134
1135	wait = &hctx->dispatch_wait;
1136	if (!list_empty_careful(&wait->entry))
1137		return false;
1138
1139	wq = &bt_wait_ptr(sbq, hctx)->wait;
1140
1141	spin_lock_irq(&wq->lock);
1142	spin_lock(&hctx->dispatch_wait_lock);
1143	if (!list_empty(&wait->entry)) {
1144		spin_unlock(&hctx->dispatch_wait_lock);
1145		spin_unlock_irq(&wq->lock);
1146		return false;
1147	}
1148
1149	atomic_inc(&sbq->ws_active);
1150	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1151	__add_wait_queue(wq, wait);
1152
1153	/*
1154	 * It's possible that a tag was freed in the window between the
1155	 * allocation failure and adding the hardware queue to the wait
1156	 * queue.
1157	 */
1158	ret = blk_mq_get_driver_tag(rq);
1159	if (!ret) {
1160		spin_unlock(&hctx->dispatch_wait_lock);
1161		spin_unlock_irq(&wq->lock);
1162		return false;
1163	}
1164
1165	/*
1166	 * We got a tag, remove ourselves from the wait queue to ensure
1167	 * someone else gets the wakeup.
1168	 */
1169	list_del_init(&wait->entry);
1170	atomic_dec(&sbq->ws_active);
1171	spin_unlock(&hctx->dispatch_wait_lock);
1172	spin_unlock_irq(&wq->lock);
1173
1174	return true;
1175}
1176
1177#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1178#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1179/*
1180 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1181 * - EWMA is one simple way to compute running average value
1182 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1183 * - take 4 as factor for avoiding to get too small(0) result, and this
1184 *   factor doesn't matter because EWMA decreases exponentially
1185 */
1186static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1187{
1188	unsigned int ewma;
1189
1190	if (hctx->queue->elevator)
1191		return;
1192
1193	ewma = hctx->dispatch_busy;
1194
1195	if (!ewma && !busy)
1196		return;
1197
1198	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1199	if (busy)
1200		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1201	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1202
1203	hctx->dispatch_busy = ewma;
1204}
1205
1206#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208/*
1209 * Returns true if we did some work AND can potentially do more.
1210 */
1211bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1212			     bool got_budget)
1213{
1214	struct blk_mq_hw_ctx *hctx;
 
1215	struct request *rq, *nxt;
1216	bool no_tag = false;
1217	int errors, queued;
1218	blk_status_t ret = BLK_STS_OK;
 
 
1219
1220	if (list_empty(list))
1221		return false;
1222
1223	WARN_ON(!list_is_singular(list) && got_budget);
1224
1225	/*
1226	 * Now process all the entries, sending them to the driver.
1227	 */
1228	errors = queued = 0;
1229	do {
1230		struct blk_mq_queue_data bd;
1231
1232		rq = list_first_entry(list, struct request, queuelist);
1233
1234		hctx = rq->mq_hctx;
1235		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
 
1236			break;
1237
1238		if (!blk_mq_get_driver_tag(rq)) {
1239			/*
1240			 * The initial allocation attempt failed, so we need to
1241			 * rerun the hardware queue when a tag is freed. The
1242			 * waitqueue takes care of that. If the queue is run
1243			 * before we add this entry back on the dispatch list,
1244			 * we'll re-run it below.
1245			 */
1246			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1247				blk_mq_put_dispatch_budget(hctx);
1248				/*
1249				 * For non-shared tags, the RESTART check
1250				 * will suffice.
1251				 */
1252				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1253					no_tag = true;
1254				break;
1255			}
1256		}
1257
1258		list_del_init(&rq->queuelist);
1259
1260		bd.rq = rq;
1261
1262		/*
1263		 * Flag last if we have no more requests, or if we have more
1264		 * but can't assign a driver tag to it.
1265		 */
1266		if (list_empty(list))
1267			bd.last = true;
1268		else {
1269			nxt = list_first_entry(list, struct request, queuelist);
1270			bd.last = !blk_mq_get_driver_tag(nxt);
1271		}
1272
 
 
 
 
 
 
1273		ret = q->mq_ops->queue_rq(hctx, &bd);
1274		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
 
 
 
 
 
 
 
 
 
 
1275			/*
1276			 * If an I/O scheduler has been configured and we got a
1277			 * driver tag for the next request already, free it
1278			 * again.
1279			 */
1280			if (!list_empty(list)) {
1281				nxt = list_first_entry(list, struct request, queuelist);
1282				blk_mq_put_driver_tag(nxt);
1283			}
1284			list_add(&rq->queuelist, list);
1285			__blk_mq_requeue_request(rq);
1286			break;
1287		}
1288
1289		if (unlikely(ret != BLK_STS_OK)) {
1290			errors++;
1291			blk_mq_end_request(rq, BLK_STS_IOERR);
1292			continue;
1293		}
1294
1295		queued++;
1296	} while (!list_empty(list));
1297
1298	hctx->dispatched[queued_to_index(queued)]++;
1299
 
 
 
 
 
 
 
1300	/*
1301	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1302	 * that is where we will continue on next queue run.
1303	 */
1304	if (!list_empty(list)) {
1305		bool needs_restart;
 
 
 
1306
1307		/*
1308		 * If we didn't flush the entire list, we could have told
1309		 * the driver there was more coming, but that turned out to
1310		 * be a lie.
1311		 */
1312		if (q->mq_ops->commit_rqs)
1313			q->mq_ops->commit_rqs(hctx);
1314
1315		spin_lock(&hctx->lock);
1316		list_splice_init(list, &hctx->dispatch);
1317		spin_unlock(&hctx->lock);
1318
1319		/*
 
 
 
 
 
 
 
 
 
1320		 * If SCHED_RESTART was set by the caller of this function and
1321		 * it is no longer set that means that it was cleared by another
1322		 * thread and hence that a queue rerun is needed.
1323		 *
1324		 * If 'no_tag' is set, that means that we failed getting
1325		 * a driver tag with an I/O scheduler attached. If our dispatch
1326		 * waitqueue is no longer active, ensure that we run the queue
1327		 * AFTER adding our entries back to the list.
1328		 *
1329		 * If no I/O scheduler has been configured it is possible that
1330		 * the hardware queue got stopped and restarted before requests
1331		 * were pushed back onto the dispatch list. Rerun the queue to
1332		 * avoid starvation. Notes:
1333		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1334		 *   been stopped before rerunning a queue.
1335		 * - Some but not all block drivers stop a queue before
1336		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1337		 *   and dm-rq.
1338		 *
1339		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1340		 * bit is set, run queue after a delay to avoid IO stalls
1341		 * that could otherwise occur if the queue is idle.
 
 
1342		 */
1343		needs_restart = blk_mq_sched_needs_restart(hctx);
 
 
1344		if (!needs_restart ||
1345		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1346			blk_mq_run_hw_queue(hctx, true);
1347		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1348			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1349
1350		blk_mq_update_dispatch_busy(hctx, true);
1351		return false;
1352	} else
1353		blk_mq_update_dispatch_busy(hctx, false);
1354
1355	/*
1356	 * If the host/device is unable to accept more work, inform the
1357	 * caller of that.
1358	 */
1359	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1360		return false;
1361
1362	return (queued + errors) != 0;
1363}
1364
 
 
 
 
 
 
1365static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1366{
1367	int srcu_idx;
1368
1369	/*
1370	 * We should be running this queue from one of the CPUs that
1371	 * are mapped to it.
1372	 *
1373	 * There are at least two related races now between setting
1374	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1375	 * __blk_mq_run_hw_queue():
1376	 *
1377	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1378	 *   but later it becomes online, then this warning is harmless
1379	 *   at all
1380	 *
1381	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1382	 *   but later it becomes offline, then the warning can't be
1383	 *   triggered, and we depend on blk-mq timeout handler to
1384	 *   handle dispatched requests to this hctx
1385	 */
1386	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1387		cpu_online(hctx->next_cpu)) {
1388		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1389			raw_smp_processor_id(),
1390			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1391		dump_stack();
1392	}
1393
1394	/*
1395	 * We can't run the queue inline with ints disabled. Ensure that
1396	 * we catch bad users of this early.
1397	 */
1398	WARN_ON_ONCE(in_interrupt());
1399
1400	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1401
1402	hctx_lock(hctx, &srcu_idx);
1403	blk_mq_sched_dispatch_requests(hctx);
1404	hctx_unlock(hctx, srcu_idx);
1405}
1406
1407static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1408{
1409	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1410
1411	if (cpu >= nr_cpu_ids)
1412		cpu = cpumask_first(hctx->cpumask);
1413	return cpu;
1414}
1415
1416/*
1417 * It'd be great if the workqueue API had a way to pass
1418 * in a mask and had some smarts for more clever placement.
1419 * For now we just round-robin here, switching for every
1420 * BLK_MQ_CPU_WORK_BATCH queued items.
1421 */
1422static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1423{
1424	bool tried = false;
1425	int next_cpu = hctx->next_cpu;
1426
1427	if (hctx->queue->nr_hw_queues == 1)
1428		return WORK_CPU_UNBOUND;
1429
1430	if (--hctx->next_cpu_batch <= 0) {
1431select_cpu:
1432		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1433				cpu_online_mask);
1434		if (next_cpu >= nr_cpu_ids)
1435			next_cpu = blk_mq_first_mapped_cpu(hctx);
1436		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1437	}
1438
1439	/*
1440	 * Do unbound schedule if we can't find a online CPU for this hctx,
1441	 * and it should only happen in the path of handling CPU DEAD.
1442	 */
1443	if (!cpu_online(next_cpu)) {
1444		if (!tried) {
1445			tried = true;
1446			goto select_cpu;
1447		}
1448
1449		/*
1450		 * Make sure to re-select CPU next time once after CPUs
1451		 * in hctx->cpumask become online again.
1452		 */
1453		hctx->next_cpu = next_cpu;
1454		hctx->next_cpu_batch = 1;
1455		return WORK_CPU_UNBOUND;
1456	}
1457
1458	hctx->next_cpu = next_cpu;
1459	return next_cpu;
1460}
1461
 
 
 
 
 
 
 
 
 
1462static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1463					unsigned long msecs)
1464{
1465	if (unlikely(blk_mq_hctx_stopped(hctx)))
1466		return;
1467
1468	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1469		int cpu = get_cpu();
1470		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1471			__blk_mq_run_hw_queue(hctx);
1472			put_cpu();
1473			return;
1474		}
1475
1476		put_cpu();
1477	}
1478
1479	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1480				    msecs_to_jiffies(msecs));
1481}
1482
 
 
 
 
 
 
 
1483void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1484{
1485	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1486}
1487EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1488
1489bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 
 
 
 
 
 
 
 
 
1490{
1491	int srcu_idx;
1492	bool need_run;
1493
1494	/*
1495	 * When queue is quiesced, we may be switching io scheduler, or
1496	 * updating nr_hw_queues, or other things, and we can't run queue
1497	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1498	 *
1499	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1500	 * quiesced.
1501	 */
1502	hctx_lock(hctx, &srcu_idx);
1503	need_run = !blk_queue_quiesced(hctx->queue) &&
1504		blk_mq_hctx_has_pending(hctx);
1505	hctx_unlock(hctx, srcu_idx);
1506
1507	if (need_run) {
1508		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1509		return true;
1510	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511
1512	return false;
 
 
1513}
1514EXPORT_SYMBOL(blk_mq_run_hw_queue);
1515
 
 
 
 
 
1516void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1517{
1518	struct blk_mq_hw_ctx *hctx;
1519	int i;
1520
 
 
 
1521	queue_for_each_hw_ctx(q, hctx, i) {
1522		if (blk_mq_hctx_stopped(hctx))
1523			continue;
1524
1525		blk_mq_run_hw_queue(hctx, async);
 
 
 
 
 
 
1526	}
1527}
1528EXPORT_SYMBOL(blk_mq_run_hw_queues);
1529
1530/**
1531 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1532 * @q: request queue.
1533 *
1534 * The caller is responsible for serializing this function against
1535 * blk_mq_{start,stop}_hw_queue().
1536 */
1537bool blk_mq_queue_stopped(struct request_queue *q)
1538{
1539	struct blk_mq_hw_ctx *hctx;
1540	int i;
1541
1542	queue_for_each_hw_ctx(q, hctx, i)
 
 
 
1543		if (blk_mq_hctx_stopped(hctx))
1544			return true;
1545
1546	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547}
1548EXPORT_SYMBOL(blk_mq_queue_stopped);
1549
1550/*
1551 * This function is often used for pausing .queue_rq() by driver when
1552 * there isn't enough resource or some conditions aren't satisfied, and
1553 * BLK_STS_RESOURCE is usually returned.
1554 *
1555 * We do not guarantee that dispatch can be drained or blocked
1556 * after blk_mq_stop_hw_queue() returns. Please use
1557 * blk_mq_quiesce_queue() for that requirement.
1558 */
1559void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1560{
1561	cancel_delayed_work(&hctx->run_work);
1562
1563	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1564}
1565EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1566
1567/*
1568 * This function is often used for pausing .queue_rq() by driver when
1569 * there isn't enough resource or some conditions aren't satisfied, and
1570 * BLK_STS_RESOURCE is usually returned.
1571 *
1572 * We do not guarantee that dispatch can be drained or blocked
1573 * after blk_mq_stop_hw_queues() returns. Please use
1574 * blk_mq_quiesce_queue() for that requirement.
1575 */
1576void blk_mq_stop_hw_queues(struct request_queue *q)
1577{
1578	struct blk_mq_hw_ctx *hctx;
1579	int i;
1580
1581	queue_for_each_hw_ctx(q, hctx, i)
1582		blk_mq_stop_hw_queue(hctx);
1583}
1584EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1585
1586void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1587{
1588	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589
1590	blk_mq_run_hw_queue(hctx, false);
1591}
1592EXPORT_SYMBOL(blk_mq_start_hw_queue);
1593
1594void blk_mq_start_hw_queues(struct request_queue *q)
1595{
1596	struct blk_mq_hw_ctx *hctx;
1597	int i;
1598
1599	queue_for_each_hw_ctx(q, hctx, i)
1600		blk_mq_start_hw_queue(hctx);
1601}
1602EXPORT_SYMBOL(blk_mq_start_hw_queues);
1603
1604void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1605{
1606	if (!blk_mq_hctx_stopped(hctx))
1607		return;
1608
1609	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1610	blk_mq_run_hw_queue(hctx, async);
1611}
1612EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1613
1614void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1615{
1616	struct blk_mq_hw_ctx *hctx;
1617	int i;
1618
1619	queue_for_each_hw_ctx(q, hctx, i)
1620		blk_mq_start_stopped_hw_queue(hctx, async);
1621}
1622EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1623
1624static void blk_mq_run_work_fn(struct work_struct *work)
1625{
1626	struct blk_mq_hw_ctx *hctx;
1627
1628	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1629
1630	/*
1631	 * If we are stopped, don't run the queue.
1632	 */
1633	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1634		return;
1635
1636	__blk_mq_run_hw_queue(hctx);
1637}
1638
1639static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1640					    struct request *rq,
1641					    bool at_head)
1642{
1643	struct blk_mq_ctx *ctx = rq->mq_ctx;
1644	enum hctx_type type = hctx->type;
1645
1646	lockdep_assert_held(&ctx->lock);
1647
1648	trace_block_rq_insert(hctx->queue, rq);
1649
1650	if (at_head)
1651		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1652	else
1653		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1654}
1655
1656void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1657			     bool at_head)
1658{
1659	struct blk_mq_ctx *ctx = rq->mq_ctx;
1660
1661	lockdep_assert_held(&ctx->lock);
1662
1663	__blk_mq_insert_req_list(hctx, rq, at_head);
1664	blk_mq_hctx_mark_pending(hctx, ctx);
1665}
1666
1667/*
 
 
 
 
 
1668 * Should only be used carefully, when the caller knows we want to
1669 * bypass a potential IO scheduler on the target device.
1670 */
1671void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
 
1672{
1673	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1674
1675	spin_lock(&hctx->lock);
1676	list_add_tail(&rq->queuelist, &hctx->dispatch);
 
 
 
1677	spin_unlock(&hctx->lock);
1678
1679	if (run_queue)
1680		blk_mq_run_hw_queue(hctx, false);
1681}
1682
1683void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1684			    struct list_head *list)
1685
1686{
1687	struct request *rq;
1688	enum hctx_type type = hctx->type;
1689
1690	/*
1691	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1692	 * offline now
1693	 */
1694	list_for_each_entry(rq, list, queuelist) {
1695		BUG_ON(rq->mq_ctx != ctx);
1696		trace_block_rq_insert(hctx->queue, rq);
1697	}
1698
1699	spin_lock(&ctx->lock);
1700	list_splice_tail_init(list, &ctx->rq_lists[type]);
1701	blk_mq_hctx_mark_pending(hctx, ctx);
1702	spin_unlock(&ctx->lock);
1703}
1704
1705static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1706{
1707	struct request *rqa = container_of(a, struct request, queuelist);
1708	struct request *rqb = container_of(b, struct request, queuelist);
1709
1710	if (rqa->mq_ctx < rqb->mq_ctx)
1711		return -1;
1712	else if (rqa->mq_ctx > rqb->mq_ctx)
1713		return 1;
1714	else if (rqa->mq_hctx < rqb->mq_hctx)
1715		return -1;
1716	else if (rqa->mq_hctx > rqb->mq_hctx)
1717		return 1;
1718
1719	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1720}
1721
1722void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1723{
1724	struct blk_mq_hw_ctx *this_hctx;
1725	struct blk_mq_ctx *this_ctx;
1726	struct request_queue *this_q;
1727	struct request *rq;
1728	LIST_HEAD(list);
1729	LIST_HEAD(rq_list);
1730	unsigned int depth;
1731
1732	list_splice_init(&plug->mq_list, &list);
1733
1734	if (plug->rq_count > 2 && plug->multiple_queues)
1735		list_sort(NULL, &list, plug_rq_cmp);
1736
1737	plug->rq_count = 0;
1738
1739	this_q = NULL;
1740	this_hctx = NULL;
1741	this_ctx = NULL;
1742	depth = 0;
1743
1744	while (!list_empty(&list)) {
1745		rq = list_entry_rq(list.next);
1746		list_del_init(&rq->queuelist);
1747		BUG_ON(!rq->q);
1748		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1749			if (this_hctx) {
1750				trace_block_unplug(this_q, depth, !from_schedule);
1751				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1752								&rq_list,
1753								from_schedule);
1754			}
1755
1756			this_q = rq->q;
1757			this_ctx = rq->mq_ctx;
1758			this_hctx = rq->mq_hctx;
1759			depth = 0;
1760		}
1761
1762		depth++;
1763		list_add_tail(&rq->queuelist, &rq_list);
1764	}
1765
1766	/*
1767	 * If 'this_hctx' is set, we know we have entries to complete
1768	 * on 'rq_list'. Do those.
1769	 */
1770	if (this_hctx) {
1771		trace_block_unplug(this_q, depth, !from_schedule);
1772		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1773						from_schedule);
1774	}
 
1775}
1776
1777static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1778		unsigned int nr_segs)
1779{
 
 
1780	if (bio->bi_opf & REQ_RAHEAD)
1781		rq->cmd_flags |= REQ_FAILFAST_MASK;
1782
1783	rq->__sector = bio->bi_iter.bi_sector;
1784	rq->write_hint = bio->bi_write_hint;
1785	blk_rq_bio_prep(rq, bio, nr_segs);
1786
1787	blk_account_io_start(rq, true);
 
 
 
 
1788}
1789
1790static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1791					    struct request *rq,
1792					    blk_qc_t *cookie, bool last)
1793{
1794	struct request_queue *q = rq->q;
1795	struct blk_mq_queue_data bd = {
1796		.rq = rq,
1797		.last = last,
1798	};
1799	blk_qc_t new_cookie;
1800	blk_status_t ret;
1801
1802	new_cookie = request_to_qc_t(hctx, rq);
1803
1804	/*
1805	 * For OK queue, we are done. For error, caller may kill it.
1806	 * Any other error (busy), just add it to our list as we
1807	 * previously would have done.
1808	 */
1809	ret = q->mq_ops->queue_rq(hctx, &bd);
1810	switch (ret) {
1811	case BLK_STS_OK:
1812		blk_mq_update_dispatch_busy(hctx, false);
1813		*cookie = new_cookie;
1814		break;
1815	case BLK_STS_RESOURCE:
1816	case BLK_STS_DEV_RESOURCE:
1817		blk_mq_update_dispatch_busy(hctx, true);
1818		__blk_mq_requeue_request(rq);
1819		break;
1820	default:
1821		blk_mq_update_dispatch_busy(hctx, false);
1822		*cookie = BLK_QC_T_NONE;
1823		break;
1824	}
1825
1826	return ret;
1827}
1828
1829static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1830						struct request *rq,
1831						blk_qc_t *cookie,
1832						bool bypass_insert, bool last)
1833{
1834	struct request_queue *q = rq->q;
1835	bool run_queue = true;
 
1836
1837	/*
1838	 * RCU or SRCU read lock is needed before checking quiesced flag.
1839	 *
1840	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1841	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1842	 * and avoid driver to try to dispatch again.
1843	 */
1844	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1845		run_queue = false;
1846		bypass_insert = false;
1847		goto insert;
1848	}
1849
1850	if (q->elevator && !bypass_insert)
1851		goto insert;
1852
1853	if (!blk_mq_get_dispatch_budget(hctx))
 
1854		goto insert;
1855
 
 
1856	if (!blk_mq_get_driver_tag(rq)) {
1857		blk_mq_put_dispatch_budget(hctx);
1858		goto insert;
1859	}
1860
1861	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1862insert:
1863	if (bypass_insert)
1864		return BLK_STS_RESOURCE;
1865
1866	blk_mq_request_bypass_insert(rq, run_queue);
 
1867	return BLK_STS_OK;
1868}
1869
 
 
 
 
 
 
 
 
 
 
1870static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1871		struct request *rq, blk_qc_t *cookie)
1872{
1873	blk_status_t ret;
1874	int srcu_idx;
1875
1876	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1877
1878	hctx_lock(hctx, &srcu_idx);
1879
1880	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1881	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1882		blk_mq_request_bypass_insert(rq, true);
1883	else if (ret != BLK_STS_OK)
1884		blk_mq_end_request(rq, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885
1886	hctx_unlock(hctx, srcu_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887}
1888
1889blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1890{
1891	blk_status_t ret;
1892	int srcu_idx;
1893	blk_qc_t unused_cookie;
1894	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895
1896	hctx_lock(hctx, &srcu_idx);
1897	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1898	hctx_unlock(hctx, srcu_idx);
 
 
1899
1900	return ret;
 
 
1901}
1902
1903void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1904		struct list_head *list)
1905{
 
 
 
1906	while (!list_empty(list)) {
1907		blk_status_t ret;
1908		struct request *rq = list_first_entry(list, struct request,
1909				queuelist);
1910
1911		list_del_init(&rq->queuelist);
1912		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1913		if (ret != BLK_STS_OK) {
 
1914			if (ret == BLK_STS_RESOURCE ||
1915					ret == BLK_STS_DEV_RESOURCE) {
1916				blk_mq_request_bypass_insert(rq,
1917							list_empty(list));
1918				break;
1919			}
1920			blk_mq_end_request(rq, ret);
1921		}
 
1922	}
1923
1924	/*
1925	 * If we didn't flush the entire list, we could have told
1926	 * the driver there was more coming, but that turned out to
1927	 * be a lie.
1928	 */
1929	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
 
1930		hctx->queue->mq_ops->commit_rqs(hctx);
1931}
1932
1933static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934{
1935	list_add_tail(&rq->queuelist, &plug->mq_list);
1936	plug->rq_count++;
1937	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1938		struct request *tmp;
 
 
 
 
1939
1940		tmp = list_first_entry(&plug->mq_list, struct request,
1941						queuelist);
1942		if (tmp->q != rq->q)
1943			plug->multiple_queues = true;
1944	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945}
1946
1947static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
1948{
 
 
1949	const int is_sync = op_is_sync(bio->bi_opf);
1950	const int is_flush_fua = op_is_flush(bio->bi_opf);
1951	struct blk_mq_alloc_data data = { .flags = 0};
1952	struct request *rq;
1953	struct blk_plug *plug;
1954	struct request *same_queue_rq = NULL;
1955	unsigned int nr_segs;
1956	blk_qc_t cookie;
1957
1958	blk_queue_bounce(q, &bio);
1959	__blk_queue_split(q, &bio, &nr_segs);
 
 
 
 
1960
1961	if (!bio_integrity_prep(bio))
1962		return BLK_QC_T_NONE;
1963
1964	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1965	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1966		return BLK_QC_T_NONE;
1967
1968	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1969		return BLK_QC_T_NONE;
1970
1971	rq_qos_throttle(q, bio);
1972
1973	data.cmd_flags = bio->bi_opf;
1974	rq = blk_mq_get_request(q, bio, &data);
1975	if (unlikely(!rq)) {
1976		rq_qos_cleanup(q, bio);
1977		if (bio->bi_opf & REQ_NOWAIT)
1978			bio_wouldblock_error(bio);
1979		return BLK_QC_T_NONE;
1980	}
1981
1982	trace_block_getrq(q, bio, bio->bi_opf);
1983
1984	rq_qos_track(q, rq, bio);
1985
1986	cookie = request_to_qc_t(data.hctx, rq);
1987
1988	blk_mq_bio_to_request(rq, bio, nr_segs);
 
 
 
 
 
 
1989
1990	plug = blk_mq_plug(q, bio);
1991	if (unlikely(is_flush_fua)) {
1992		/* bypass scheduler for flush rq */
1993		blk_insert_flush(rq);
1994		blk_mq_run_hw_queue(data.hctx, true);
1995	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1996				!blk_queue_nonrot(q))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997		/*
1998		 * Use plugging if we have a ->commit_rqs() hook as well, as
1999		 * we know the driver uses bd->last in a smart fashion.
2000		 *
2001		 * Use normal plugging if this disk is slow HDD, as sequential
2002		 * IO may benefit a lot from plug merging.
 
 
 
2003		 */
2004		unsigned int request_count = plug->rq_count;
2005		struct request *last = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006
2007		if (!request_count)
2008			trace_block_plug(q);
 
 
 
 
 
 
 
 
 
 
 
 
2009		else
2010			last = list_entry_rq(plug->mq_list.prev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011
2012		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2013		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2014			blk_flush_plug_list(plug, false);
2015			trace_block_plug(q);
2016		}
 
 
 
 
 
 
2017
2018		blk_add_rq_to_plug(plug, rq);
2019	} else if (q->elevator) {
2020		blk_mq_sched_insert_request(rq, false, true, true);
2021	} else if (plug && !blk_queue_nomerges(q)) {
2022		/*
2023		 * We do limited plugging. If the bio can be merged, do that.
2024		 * Otherwise the existing request in the plug list will be
2025		 * issued. So the plug list will have one request at most
2026		 * The plug list might get flushed before this. If that happens,
2027		 * the plug list is empty, and same_queue_rq is invalid.
2028		 */
2029		if (list_empty(&plug->mq_list))
2030			same_queue_rq = NULL;
2031		if (same_queue_rq) {
2032			list_del_init(&same_queue_rq->queuelist);
2033			plug->rq_count--;
2034		}
2035		blk_add_rq_to_plug(plug, rq);
2036		trace_block_plug(q);
2037
2038		if (same_queue_rq) {
2039			data.hctx = same_queue_rq->mq_hctx;
2040			trace_block_unplug(q, 1, true);
2041			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2042					&cookie);
2043		}
2044	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2045			!data.hctx->dispatch_busy) {
2046		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2047	} else {
2048		blk_mq_sched_insert_request(rq, false, true, true);
2049	}
2050
2051	return cookie;
 
 
 
 
 
 
 
2052}
2053
2054void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2055		     unsigned int hctx_idx)
2056{
 
2057	struct page *page;
2058
2059	if (tags->rqs && set->ops->exit_request) {
 
 
 
 
 
 
 
 
2060		int i;
2061
2062		for (i = 0; i < tags->nr_tags; i++) {
2063			struct request *rq = tags->static_rqs[i];
2064
2065			if (!rq)
2066				continue;
2067			set->ops->exit_request(set, rq, hctx_idx);
2068			tags->static_rqs[i] = NULL;
2069		}
2070	}
2071
 
 
2072	while (!list_empty(&tags->page_list)) {
2073		page = list_first_entry(&tags->page_list, struct page, lru);
2074		list_del_init(&page->lru);
2075		/*
2076		 * Remove kmemleak object previously allocated in
2077		 * blk_mq_alloc_rqs().
2078		 */
2079		kmemleak_free(page_address(page));
2080		__free_pages(page, page->private);
2081	}
2082}
2083
2084void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2085{
2086	kfree(tags->rqs);
2087	tags->rqs = NULL;
2088	kfree(tags->static_rqs);
2089	tags->static_rqs = NULL;
2090
2091	blk_mq_free_tags(tags);
2092}
2093
2094struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2095					unsigned int hctx_idx,
2096					unsigned int nr_tags,
2097					unsigned int reserved_tags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098{
 
 
 
 
 
 
 
 
 
 
 
2099	struct blk_mq_tags *tags;
2100	int node;
2101
2102	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2103	if (node == NUMA_NO_NODE)
2104		node = set->numa_node;
2105
2106	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2107				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2108	if (!tags)
2109		return NULL;
2110
2111	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2112				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2113				 node);
2114	if (!tags->rqs) {
2115		blk_mq_free_tags(tags);
2116		return NULL;
2117	}
2118
2119	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2120					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2121					node);
2122	if (!tags->static_rqs) {
2123		kfree(tags->rqs);
2124		blk_mq_free_tags(tags);
2125		return NULL;
2126	}
2127
2128	return tags;
2129}
2130
2131static size_t order_to_size(unsigned int order)
2132{
2133	return (size_t)PAGE_SIZE << order;
 
 
2134}
2135
2136static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2137			       unsigned int hctx_idx, int node)
2138{
2139	int ret;
2140
2141	if (set->ops->init_request) {
2142		ret = set->ops->init_request(set, rq, hctx_idx, node);
2143		if (ret)
2144			return ret;
2145	}
2146
2147	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2148	return 0;
2149}
2150
2151int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152		     unsigned int hctx_idx, unsigned int depth)
 
2153{
2154	unsigned int i, j, entries_per_page, max_order = 4;
 
2155	size_t rq_size, left;
2156	int node;
2157
2158	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2159	if (node == NUMA_NO_NODE)
2160		node = set->numa_node;
2161
2162	INIT_LIST_HEAD(&tags->page_list);
2163
2164	/*
2165	 * rq_size is the size of the request plus driver payload, rounded
2166	 * to the cacheline size
2167	 */
2168	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2169				cache_line_size());
2170	left = rq_size * depth;
2171
2172	for (i = 0; i < depth; ) {
2173		int this_order = max_order;
2174		struct page *page;
2175		int to_do;
2176		void *p;
2177
2178		while (this_order && left < order_to_size(this_order - 1))
2179			this_order--;
2180
2181		do {
2182			page = alloc_pages_node(node,
2183				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2184				this_order);
2185			if (page)
2186				break;
2187			if (!this_order--)
2188				break;
2189			if (order_to_size(this_order) < rq_size)
2190				break;
2191		} while (1);
2192
2193		if (!page)
2194			goto fail;
2195
2196		page->private = this_order;
2197		list_add_tail(&page->lru, &tags->page_list);
2198
2199		p = page_address(page);
2200		/*
2201		 * Allow kmemleak to scan these pages as they contain pointers
2202		 * to additional allocations like via ops->init_request().
2203		 */
2204		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2205		entries_per_page = order_to_size(this_order) / rq_size;
2206		to_do = min(entries_per_page, depth - i);
2207		left -= to_do * rq_size;
2208		for (j = 0; j < to_do; j++) {
2209			struct request *rq = p;
2210
2211			tags->static_rqs[i] = rq;
2212			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2213				tags->static_rqs[i] = NULL;
2214				goto fail;
2215			}
2216
2217			p += rq_size;
2218			i++;
2219		}
2220	}
2221	return 0;
2222
2223fail:
2224	blk_mq_free_rqs(set, tags, hctx_idx);
2225	return -ENOMEM;
2226}
2227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228/*
2229 * 'cpu' is going away. splice any existing rq_list entries from this
2230 * software queue to the hw queue dispatch list, and ensure that it
2231 * gets run.
2232 */
2233static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2234{
2235	struct blk_mq_hw_ctx *hctx;
2236	struct blk_mq_ctx *ctx;
2237	LIST_HEAD(tmp);
2238	enum hctx_type type;
2239
2240	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
 
 
 
2241	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2242	type = hctx->type;
2243
2244	spin_lock(&ctx->lock);
2245	if (!list_empty(&ctx->rq_lists[type])) {
2246		list_splice_init(&ctx->rq_lists[type], &tmp);
2247		blk_mq_hctx_clear_pending(hctx, ctx);
2248	}
2249	spin_unlock(&ctx->lock);
2250
2251	if (list_empty(&tmp))
2252		return 0;
2253
2254	spin_lock(&hctx->lock);
2255	list_splice_tail_init(&tmp, &hctx->dispatch);
2256	spin_unlock(&hctx->lock);
2257
2258	blk_mq_run_hw_queue(hctx, true);
2259	return 0;
2260}
2261
2262static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2263{
 
 
 
2264	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2265					    &hctx->cpuhp_dead);
2266}
2267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268/* hctx->ctxs will be freed in queue's release handler */
2269static void blk_mq_exit_hctx(struct request_queue *q,
2270		struct blk_mq_tag_set *set,
2271		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2272{
 
 
2273	if (blk_mq_hw_queue_mapped(hctx))
2274		blk_mq_tag_idle(hctx);
2275
 
 
 
2276	if (set->ops->exit_request)
2277		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2278
2279	if (set->ops->exit_hctx)
2280		set->ops->exit_hctx(hctx, hctx_idx);
2281
2282	blk_mq_remove_cpuhp(hctx);
2283
 
 
2284	spin_lock(&q->unused_hctx_lock);
2285	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2286	spin_unlock(&q->unused_hctx_lock);
2287}
2288
2289static void blk_mq_exit_hw_queues(struct request_queue *q,
2290		struct blk_mq_tag_set *set, int nr_queue)
2291{
2292	struct blk_mq_hw_ctx *hctx;
2293	unsigned int i;
2294
2295	queue_for_each_hw_ctx(q, hctx, i) {
2296		if (i == nr_queue)
2297			break;
2298		blk_mq_debugfs_unregister_hctx(hctx);
2299		blk_mq_exit_hctx(q, set, hctx, i);
2300	}
2301}
2302
2303static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2304{
2305	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2306
2307	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2308			   __alignof__(struct blk_mq_hw_ctx)) !=
2309		     sizeof(struct blk_mq_hw_ctx));
2310
2311	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2312		hw_ctx_size += sizeof(struct srcu_struct);
2313
2314	return hw_ctx_size;
2315}
2316
2317static int blk_mq_init_hctx(struct request_queue *q,
2318		struct blk_mq_tag_set *set,
2319		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2320{
2321	hctx->queue_num = hctx_idx;
2322
 
 
 
2323	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2324
2325	hctx->tags = set->tags[hctx_idx];
2326
2327	if (set->ops->init_hctx &&
2328	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2329		goto unregister_cpu_notifier;
2330
2331	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2332				hctx->numa_node))
2333		goto exit_hctx;
 
 
 
 
2334	return 0;
2335
 
 
 
2336 exit_hctx:
2337	if (set->ops->exit_hctx)
2338		set->ops->exit_hctx(hctx, hctx_idx);
2339 unregister_cpu_notifier:
2340	blk_mq_remove_cpuhp(hctx);
2341	return -1;
2342}
2343
2344static struct blk_mq_hw_ctx *
2345blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2346		int node)
2347{
2348	struct blk_mq_hw_ctx *hctx;
2349	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2350
2351	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2352	if (!hctx)
2353		goto fail_alloc_hctx;
2354
2355	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2356		goto free_hctx;
2357
2358	atomic_set(&hctx->nr_active, 0);
2359	if (node == NUMA_NO_NODE)
2360		node = set->numa_node;
2361	hctx->numa_node = node;
2362
2363	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2364	spin_lock_init(&hctx->lock);
2365	INIT_LIST_HEAD(&hctx->dispatch);
2366	hctx->queue = q;
2367	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2368
2369	INIT_LIST_HEAD(&hctx->hctx_list);
2370
2371	/*
2372	 * Allocate space for all possible cpus to avoid allocation at
2373	 * runtime
2374	 */
2375	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2376			gfp, node);
2377	if (!hctx->ctxs)
2378		goto free_cpumask;
2379
2380	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2381				gfp, node))
2382		goto free_ctxs;
2383	hctx->nr_ctx = 0;
2384
2385	spin_lock_init(&hctx->dispatch_wait_lock);
2386	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2387	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2388
2389	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2390			gfp);
2391	if (!hctx->fq)
2392		goto free_bitmap;
2393
2394	if (hctx->flags & BLK_MQ_F_BLOCKING)
2395		init_srcu_struct(hctx->srcu);
2396	blk_mq_hctx_kobj_init(hctx);
2397
2398	return hctx;
2399
2400 free_bitmap:
2401	sbitmap_free(&hctx->ctx_map);
2402 free_ctxs:
2403	kfree(hctx->ctxs);
2404 free_cpumask:
2405	free_cpumask_var(hctx->cpumask);
2406 free_hctx:
2407	kfree(hctx);
2408 fail_alloc_hctx:
2409	return NULL;
2410}
2411
2412static void blk_mq_init_cpu_queues(struct request_queue *q,
2413				   unsigned int nr_hw_queues)
2414{
2415	struct blk_mq_tag_set *set = q->tag_set;
2416	unsigned int i, j;
2417
2418	for_each_possible_cpu(i) {
2419		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2420		struct blk_mq_hw_ctx *hctx;
2421		int k;
2422
2423		__ctx->cpu = i;
2424		spin_lock_init(&__ctx->lock);
2425		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2426			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2427
2428		__ctx->queue = q;
2429
2430		/*
2431		 * Set local node, IFF we have more than one hw queue. If
2432		 * not, we remain on the home node of the device
2433		 */
2434		for (j = 0; j < set->nr_maps; j++) {
2435			hctx = blk_mq_map_queue_type(q, j, i);
2436			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2437				hctx->numa_node = local_memory_node(cpu_to_node(i));
2438		}
2439	}
2440}
2441
2442static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
 
 
2443{
2444	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
2445
2446	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2447					set->queue_depth, set->reserved_tags);
2448	if (!set->tags[hctx_idx])
2449		return false;
 
 
 
 
2450
2451	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2452				set->queue_depth);
2453	if (!ret)
2454		return true;
 
 
 
 
2455
2456	blk_mq_free_rq_map(set->tags[hctx_idx]);
2457	set->tags[hctx_idx] = NULL;
2458	return false;
2459}
2460
2461static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2462					 unsigned int hctx_idx)
 
2463{
2464	if (set->tags && set->tags[hctx_idx]) {
2465		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2466		blk_mq_free_rq_map(set->tags[hctx_idx]);
2467		set->tags[hctx_idx] = NULL;
2468	}
2469}
2470
 
 
 
 
 
 
 
 
 
2471static void blk_mq_map_swqueue(struct request_queue *q)
2472{
2473	unsigned int i, j, hctx_idx;
 
2474	struct blk_mq_hw_ctx *hctx;
2475	struct blk_mq_ctx *ctx;
2476	struct blk_mq_tag_set *set = q->tag_set;
2477
2478	queue_for_each_hw_ctx(q, hctx, i) {
2479		cpumask_clear(hctx->cpumask);
2480		hctx->nr_ctx = 0;
2481		hctx->dispatch_from = NULL;
2482	}
2483
2484	/*
2485	 * Map software to hardware queues.
2486	 *
2487	 * If the cpu isn't present, the cpu is mapped to first hctx.
2488	 */
2489	for_each_possible_cpu(i) {
2490		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2491		/* unmapped hw queue can be remapped after CPU topo changed */
2492		if (!set->tags[hctx_idx] &&
2493		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2494			/*
2495			 * If tags initialization fail for some hctx,
2496			 * that hctx won't be brought online.  In this
2497			 * case, remap the current ctx to hctx[0] which
2498			 * is guaranteed to always have tags allocated
2499			 */
2500			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2501		}
2502
2503		ctx = per_cpu_ptr(q->queue_ctx, i);
2504		for (j = 0; j < set->nr_maps; j++) {
2505			if (!set->map[j].nr_queues) {
2506				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2507						HCTX_TYPE_DEFAULT, i);
2508				continue;
2509			}
 
 
 
 
 
 
 
 
 
 
 
 
2510
2511			hctx = blk_mq_map_queue_type(q, j, i);
2512			ctx->hctxs[j] = hctx;
2513			/*
2514			 * If the CPU is already set in the mask, then we've
2515			 * mapped this one already. This can happen if
2516			 * devices share queues across queue maps.
2517			 */
2518			if (cpumask_test_cpu(i, hctx->cpumask))
2519				continue;
2520
2521			cpumask_set_cpu(i, hctx->cpumask);
2522			hctx->type = j;
2523			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2524			hctx->ctxs[hctx->nr_ctx++] = ctx;
2525
2526			/*
2527			 * If the nr_ctx type overflows, we have exceeded the
2528			 * amount of sw queues we can support.
2529			 */
2530			BUG_ON(!hctx->nr_ctx);
2531		}
2532
2533		for (; j < HCTX_MAX_TYPES; j++)
2534			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2535					HCTX_TYPE_DEFAULT, i);
2536	}
2537
2538	queue_for_each_hw_ctx(q, hctx, i) {
2539		/*
2540		 * If no software queues are mapped to this hardware queue,
2541		 * disable it and free the request entries.
2542		 */
2543		if (!hctx->nr_ctx) {
2544			/* Never unmap queue 0.  We need it as a
2545			 * fallback in case of a new remap fails
2546			 * allocation
2547			 */
2548			if (i && set->tags[i])
2549				blk_mq_free_map_and_requests(set, i);
2550
2551			hctx->tags = NULL;
2552			continue;
2553		}
2554
2555		hctx->tags = set->tags[i];
2556		WARN_ON(!hctx->tags);
2557
2558		/*
2559		 * Set the map size to the number of mapped software queues.
2560		 * This is more accurate and more efficient than looping
2561		 * over all possibly mapped software queues.
2562		 */
2563		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2564
2565		/*
2566		 * Initialize batch roundrobin counts
2567		 */
2568		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2569		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2570	}
2571}
2572
2573/*
2574 * Caller needs to ensure that we're either frozen/quiesced, or that
2575 * the queue isn't live yet.
2576 */
2577static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2578{
2579	struct blk_mq_hw_ctx *hctx;
2580	int i;
2581
2582	queue_for_each_hw_ctx(q, hctx, i) {
2583		if (shared)
2584			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2585		else
2586			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
 
 
2587	}
2588}
2589
2590static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2591					bool shared)
2592{
2593	struct request_queue *q;
2594
2595	lockdep_assert_held(&set->tag_list_lock);
2596
2597	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2598		blk_mq_freeze_queue(q);
2599		queue_set_hctx_shared(q, shared);
2600		blk_mq_unfreeze_queue(q);
2601	}
2602}
2603
2604static void blk_mq_del_queue_tag_set(struct request_queue *q)
2605{
2606	struct blk_mq_tag_set *set = q->tag_set;
2607
2608	mutex_lock(&set->tag_list_lock);
2609	list_del_rcu(&q->tag_set_list);
2610	if (list_is_singular(&set->tag_list)) {
2611		/* just transitioned to unshared */
2612		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2613		/* update existing queue */
2614		blk_mq_update_tag_set_depth(set, false);
2615	}
2616	mutex_unlock(&set->tag_list_lock);
2617	INIT_LIST_HEAD(&q->tag_set_list);
2618}
2619
2620static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2621				     struct request_queue *q)
2622{
2623	mutex_lock(&set->tag_list_lock);
2624
2625	/*
2626	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2627	 */
2628	if (!list_empty(&set->tag_list) &&
2629	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2630		set->flags |= BLK_MQ_F_TAG_SHARED;
2631		/* update existing queue */
2632		blk_mq_update_tag_set_depth(set, true);
2633	}
2634	if (set->flags & BLK_MQ_F_TAG_SHARED)
2635		queue_set_hctx_shared(q, true);
2636	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2637
2638	mutex_unlock(&set->tag_list_lock);
2639}
2640
2641/* All allocations will be freed in release handler of q->mq_kobj */
2642static int blk_mq_alloc_ctxs(struct request_queue *q)
2643{
2644	struct blk_mq_ctxs *ctxs;
2645	int cpu;
2646
2647	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2648	if (!ctxs)
2649		return -ENOMEM;
2650
2651	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2652	if (!ctxs->queue_ctx)
2653		goto fail;
2654
2655	for_each_possible_cpu(cpu) {
2656		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2657		ctx->ctxs = ctxs;
2658	}
2659
2660	q->mq_kobj = &ctxs->kobj;
2661	q->queue_ctx = ctxs->queue_ctx;
2662
2663	return 0;
2664 fail:
2665	kfree(ctxs);
2666	return -ENOMEM;
2667}
2668
2669/*
2670 * It is the actual release handler for mq, but we do it from
2671 * request queue's release handler for avoiding use-after-free
2672 * and headache because q->mq_kobj shouldn't have been introduced,
2673 * but we can't group ctx/kctx kobj without it.
2674 */
2675void blk_mq_release(struct request_queue *q)
2676{
2677	struct blk_mq_hw_ctx *hctx, *next;
2678	int i;
2679
2680	queue_for_each_hw_ctx(q, hctx, i)
2681		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2682
2683	/* all hctx are in .unused_hctx_list now */
2684	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2685		list_del_init(&hctx->hctx_list);
2686		kobject_put(&hctx->kobj);
2687	}
2688
2689	kfree(q->queue_hw_ctx);
2690
2691	/*
2692	 * release .mq_kobj and sw queue's kobject now because
2693	 * both share lifetime with request queue.
2694	 */
2695	blk_mq_sysfs_deinit(q);
2696}
2697
2698struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
 
2699{
2700	struct request_queue *uninit_q, *q;
 
2701
2702	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2703	if (!uninit_q)
2704		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
2705
2706	/*
2707	 * Initialize the queue without an elevator. device_add_disk() will do
2708	 * the initialization.
2709	 */
2710	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2711	if (IS_ERR(q))
2712		blk_cleanup_queue(uninit_q);
2713
2714	return q;
2715}
2716EXPORT_SYMBOL(blk_mq_init_queue);
2717
2718/*
2719 * Helper for setting up a queue with mq ops, given queue depth, and
2720 * the passed in mq ops flags.
 
 
 
 
 
 
2721 */
2722struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2723					   const struct blk_mq_ops *ops,
2724					   unsigned int queue_depth,
2725					   unsigned int set_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726{
2727	struct request_queue *q;
2728	int ret;
2729
2730	memset(set, 0, sizeof(*set));
2731	set->ops = ops;
2732	set->nr_hw_queues = 1;
2733	set->nr_maps = 1;
2734	set->queue_depth = queue_depth;
2735	set->numa_node = NUMA_NO_NODE;
2736	set->flags = set_flags;
2737
2738	ret = blk_mq_alloc_tag_set(set);
2739	if (ret)
2740		return ERR_PTR(ret);
 
 
 
 
 
 
 
2741
2742	q = blk_mq_init_queue(set);
2743	if (IS_ERR(q)) {
2744		blk_mq_free_tag_set(set);
2745		return q;
2746	}
2747
2748	return q;
 
 
 
 
 
2749}
2750EXPORT_SYMBOL(blk_mq_init_sq_queue);
2751
2752static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2753		struct blk_mq_tag_set *set, struct request_queue *q,
2754		int hctx_idx, int node)
2755{
2756	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2757
2758	/* reuse dead hctx first */
2759	spin_lock(&q->unused_hctx_lock);
2760	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2761		if (tmp->numa_node == node) {
2762			hctx = tmp;
2763			break;
2764		}
2765	}
2766	if (hctx)
2767		list_del_init(&hctx->hctx_list);
2768	spin_unlock(&q->unused_hctx_lock);
2769
2770	if (!hctx)
2771		hctx = blk_mq_alloc_hctx(q, set, node);
2772	if (!hctx)
2773		goto fail;
2774
2775	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2776		goto free_hctx;
2777
2778	return hctx;
2779
2780 free_hctx:
2781	kobject_put(&hctx->kobj);
2782 fail:
2783	return NULL;
2784}
2785
2786static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2787						struct request_queue *q)
2788{
2789	int i, j, end;
2790	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2791
2792	/* protect against switching io scheduler  */
2793	mutex_lock(&q->sysfs_lock);
2794	for (i = 0; i < set->nr_hw_queues; i++) {
2795		int node;
2796		struct blk_mq_hw_ctx *hctx;
2797
2798		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2799		/*
2800		 * If the hw queue has been mapped to another numa node,
2801		 * we need to realloc the hctx. If allocation fails, fallback
2802		 * to use the previous one.
2803		 */
2804		if (hctxs[i] && (hctxs[i]->numa_node == node))
2805			continue;
2806
2807		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2808		if (hctx) {
2809			if (hctxs[i])
2810				blk_mq_exit_hctx(q, set, hctxs[i], i);
2811			hctxs[i] = hctx;
2812		} else {
2813			if (hctxs[i])
2814				pr_warn("Allocate new hctx on node %d fails,\
2815						fallback to previous one on node %d\n",
2816						node, hctxs[i]->numa_node);
2817			else
2818				break;
 
 
 
 
2819		}
2820	}
2821	/*
2822	 * Increasing nr_hw_queues fails. Free the newly allocated
2823	 * hctxs and keep the previous q->nr_hw_queues.
2824	 */
2825	if (i != set->nr_hw_queues) {
2826		j = q->nr_hw_queues;
2827		end = i;
2828	} else {
2829		j = i;
2830		end = q->nr_hw_queues;
2831		q->nr_hw_queues = set->nr_hw_queues;
2832	}
2833
2834	for (; j < end; j++) {
2835		struct blk_mq_hw_ctx *hctx = hctxs[j];
2836
2837		if (hctx) {
2838			if (hctx->tags)
2839				blk_mq_free_map_and_requests(set, j);
2840			blk_mq_exit_hctx(q, set, hctx, j);
2841			hctxs[j] = NULL;
2842		}
2843	}
2844	mutex_unlock(&q->sysfs_lock);
2845}
2846
2847/*
2848 * Maximum number of hardware queues we support. For single sets, we'll never
2849 * have more than the CPUs (software queues). For multiple sets, the tag_set
2850 * user may have set ->nr_hw_queues larger.
2851 */
2852static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2853{
2854	if (set->nr_maps == 1)
2855		return nr_cpu_ids;
2856
2857	return max(set->nr_hw_queues, nr_cpu_ids);
 
 
 
 
2858}
2859
2860struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2861						  struct request_queue *q,
2862						  bool elevator_init)
2863{
2864	/* mark the queue as mq asap */
2865	q->mq_ops = set->ops;
2866
2867	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2868					     blk_mq_poll_stats_bkt,
2869					     BLK_MQ_POLL_STATS_BKTS, q);
2870	if (!q->poll_cb)
2871		goto err_exit;
2872
2873	if (blk_mq_alloc_ctxs(q))
2874		goto err_poll;
2875
2876	/* init q->mq_kobj and sw queues' kobjects */
2877	blk_mq_sysfs_init(q);
2878
2879	q->nr_queues = nr_hw_queues(set);
2880	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2881						GFP_KERNEL, set->numa_node);
2882	if (!q->queue_hw_ctx)
2883		goto err_sys_init;
2884
2885	INIT_LIST_HEAD(&q->unused_hctx_list);
2886	spin_lock_init(&q->unused_hctx_lock);
2887
 
 
2888	blk_mq_realloc_hw_ctxs(set, q);
2889	if (!q->nr_hw_queues)
2890		goto err_hctxs;
2891
2892	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2893	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2894
2895	q->tag_set = set;
2896
2897	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2898	if (set->nr_maps > HCTX_TYPE_POLL &&
2899	    set->map[HCTX_TYPE_POLL].nr_queues)
2900		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2901
2902	q->sg_reserved_size = INT_MAX;
2903
2904	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2905	INIT_LIST_HEAD(&q->requeue_list);
2906	spin_lock_init(&q->requeue_lock);
2907
2908	blk_queue_make_request(q, blk_mq_make_request);
2909
2910	/*
2911	 * Do this after blk_queue_make_request() overrides it...
2912	 */
2913	q->nr_requests = set->queue_depth;
2914
2915	/*
2916	 * Default to classic polling
2917	 */
2918	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2919
2920	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2921	blk_mq_add_queue_tag_set(set, q);
2922	blk_mq_map_swqueue(q);
2923
2924	if (elevator_init)
2925		elevator_init_mq(q);
2926
2927	return q;
2928
2929err_hctxs:
2930	kfree(q->queue_hw_ctx);
2931	q->nr_hw_queues = 0;
2932err_sys_init:
2933	blk_mq_sysfs_deinit(q);
2934err_poll:
2935	blk_stat_free_callback(q->poll_cb);
2936	q->poll_cb = NULL;
2937err_exit:
2938	q->mq_ops = NULL;
2939	return ERR_PTR(-ENOMEM);
2940}
2941EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2942
2943/* tags can _not_ be used after returning from blk_mq_exit_queue */
2944void blk_mq_exit_queue(struct request_queue *q)
2945{
2946	struct blk_mq_tag_set	*set = q->tag_set;
2947
 
 
 
2948	blk_mq_del_queue_tag_set(q);
2949	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2950}
2951
2952static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2953{
2954	int i;
2955
2956	for (i = 0; i < set->nr_hw_queues; i++)
2957		if (!__blk_mq_alloc_rq_map(set, i))
 
 
 
 
 
 
 
 
2958			goto out_unwind;
 
 
2959
2960	return 0;
2961
2962out_unwind:
2963	while (--i >= 0)
2964		blk_mq_free_rq_map(set->tags[i]);
 
 
 
 
 
2965
2966	return -ENOMEM;
2967}
2968
2969/*
2970 * Allocate the request maps associated with this tag_set. Note that this
2971 * may reduce the depth asked for, if memory is tight. set->queue_depth
2972 * will be updated to reflect the allocated depth.
2973 */
2974static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2975{
2976	unsigned int depth;
2977	int err;
2978
2979	depth = set->queue_depth;
2980	do {
2981		err = __blk_mq_alloc_rq_maps(set);
2982		if (!err)
2983			break;
2984
2985		set->queue_depth >>= 1;
2986		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2987			err = -ENOMEM;
2988			break;
2989		}
2990	} while (set->queue_depth);
2991
2992	if (!set->queue_depth || err) {
2993		pr_err("blk-mq: failed to allocate request map\n");
2994		return -ENOMEM;
2995	}
2996
2997	if (depth != set->queue_depth)
2998		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2999						depth, set->queue_depth);
3000
3001	return 0;
3002}
3003
3004static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3005{
 
 
 
 
 
 
 
 
3006	if (set->ops->map_queues && !is_kdump_kernel()) {
3007		int i;
3008
3009		/*
3010		 * transport .map_queues is usually done in the following
3011		 * way:
3012		 *
3013		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3014		 * 	mask = get_cpu_mask(queue)
3015		 * 	for_each_cpu(cpu, mask)
3016		 * 		set->map[x].mq_map[cpu] = queue;
3017		 * }
3018		 *
3019		 * When we need to remap, the table has to be cleared for
3020		 * killing stale mapping since one CPU may not be mapped
3021		 * to any hw queue.
3022		 */
3023		for (i = 0; i < set->nr_maps; i++)
3024			blk_mq_clear_mq_map(&set->map[i]);
3025
3026		return set->ops->map_queues(set);
3027	} else {
3028		BUG_ON(set->nr_maps > 1);
3029		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3030	}
3031}
3032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3033/*
3034 * Alloc a tag set to be associated with one or more request queues.
3035 * May fail with EINVAL for various error conditions. May adjust the
3036 * requested depth down, if it's too large. In that case, the set
3037 * value will be stored in set->queue_depth.
3038 */
3039int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3040{
3041	int i, ret;
3042
3043	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3044
3045	if (!set->nr_hw_queues)
3046		return -EINVAL;
3047	if (!set->queue_depth)
3048		return -EINVAL;
3049	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3050		return -EINVAL;
3051
3052	if (!set->ops->queue_rq)
3053		return -EINVAL;
3054
3055	if (!set->ops->get_budget ^ !set->ops->put_budget)
3056		return -EINVAL;
3057
3058	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3059		pr_info("blk-mq: reduced tag depth to %u\n",
3060			BLK_MQ_MAX_DEPTH);
3061		set->queue_depth = BLK_MQ_MAX_DEPTH;
3062	}
3063
3064	if (!set->nr_maps)
3065		set->nr_maps = 1;
3066	else if (set->nr_maps > HCTX_MAX_TYPES)
3067		return -EINVAL;
3068
3069	/*
3070	 * If a crashdump is active, then we are potentially in a very
3071	 * memory constrained environment. Limit us to 1 queue and
3072	 * 64 tags to prevent using too much memory.
3073	 */
3074	if (is_kdump_kernel()) {
3075		set->nr_hw_queues = 1;
3076		set->nr_maps = 1;
3077		set->queue_depth = min(64U, set->queue_depth);
3078	}
3079	/*
3080	 * There is no use for more h/w queues than cpus if we just have
3081	 * a single map
3082	 */
3083	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3084		set->nr_hw_queues = nr_cpu_ids;
3085
3086	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3087				 GFP_KERNEL, set->numa_node);
 
 
 
 
 
 
 
 
 
 
 
3088	if (!set->tags)
3089		return -ENOMEM;
3090
3091	ret = -ENOMEM;
3092	for (i = 0; i < set->nr_maps; i++) {
3093		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3094						  sizeof(set->map[i].mq_map[0]),
3095						  GFP_KERNEL, set->numa_node);
3096		if (!set->map[i].mq_map)
3097			goto out_free_mq_map;
3098		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3099	}
3100
3101	ret = blk_mq_update_queue_map(set);
3102	if (ret)
3103		goto out_free_mq_map;
3104
3105	ret = blk_mq_alloc_rq_maps(set);
3106	if (ret)
3107		goto out_free_mq_map;
3108
3109	mutex_init(&set->tag_list_lock);
3110	INIT_LIST_HEAD(&set->tag_list);
3111
3112	return 0;
3113
3114out_free_mq_map:
3115	for (i = 0; i < set->nr_maps; i++) {
3116		kfree(set->map[i].mq_map);
3117		set->map[i].mq_map = NULL;
3118	}
3119	kfree(set->tags);
3120	set->tags = NULL;
 
 
 
 
 
 
3121	return ret;
3122}
3123EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3126{
3127	int i, j;
3128
3129	for (i = 0; i < nr_hw_queues(set); i++)
3130		blk_mq_free_map_and_requests(set, i);
 
 
 
 
 
3131
3132	for (j = 0; j < set->nr_maps; j++) {
3133		kfree(set->map[j].mq_map);
3134		set->map[j].mq_map = NULL;
3135	}
3136
3137	kfree(set->tags);
3138	set->tags = NULL;
 
 
 
 
3139}
3140EXPORT_SYMBOL(blk_mq_free_tag_set);
3141
3142int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3143{
3144	struct blk_mq_tag_set *set = q->tag_set;
3145	struct blk_mq_hw_ctx *hctx;
3146	int i, ret;
 
3147
3148	if (!set)
3149		return -EINVAL;
3150
3151	if (q->nr_requests == nr)
3152		return 0;
3153
3154	blk_mq_freeze_queue(q);
3155	blk_mq_quiesce_queue(q);
3156
3157	ret = 0;
3158	queue_for_each_hw_ctx(q, hctx, i) {
3159		if (!hctx->tags)
3160			continue;
3161		/*
3162		 * If we're using an MQ scheduler, just update the scheduler
3163		 * queue depth. This is similar to what the old code would do.
3164		 */
3165		if (!hctx->sched_tags) {
 
 
 
3166			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3167							false);
3168		} else {
3169			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3170							nr, true);
3171		}
3172		if (ret)
3173			break;
3174		if (q->elevator && q->elevator->type->ops.depth_updated)
3175			q->elevator->type->ops.depth_updated(hctx);
3176	}
3177
3178	if (!ret)
3179		q->nr_requests = nr;
 
 
 
 
 
 
 
3180
3181	blk_mq_unquiesce_queue(q);
3182	blk_mq_unfreeze_queue(q);
3183
3184	return ret;
3185}
3186
3187/*
3188 * request_queue and elevator_type pair.
3189 * It is just used by __blk_mq_update_nr_hw_queues to cache
3190 * the elevator_type associated with a request_queue.
3191 */
3192struct blk_mq_qe_pair {
3193	struct list_head node;
3194	struct request_queue *q;
3195	struct elevator_type *type;
3196};
3197
3198/*
3199 * Cache the elevator_type in qe pair list and switch the
3200 * io scheduler to 'none'
3201 */
3202static bool blk_mq_elv_switch_none(struct list_head *head,
3203		struct request_queue *q)
3204{
3205	struct blk_mq_qe_pair *qe;
3206
3207	if (!q->elevator)
3208		return true;
3209
3210	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3211	if (!qe)
3212		return false;
3213
 
 
 
3214	INIT_LIST_HEAD(&qe->node);
3215	qe->q = q;
3216	qe->type = q->elevator->type;
 
 
3217	list_add(&qe->node, head);
3218
3219	mutex_lock(&q->sysfs_lock);
3220	/*
3221	 * After elevator_switch_mq, the previous elevator_queue will be
3222	 * released by elevator_release. The reference of the io scheduler
3223	 * module get by elevator_get will also be put. So we need to get
3224	 * a reference of the io scheduler module here to prevent it to be
3225	 * removed.
3226	 */
3227	__module_get(qe->type->elevator_owner);
3228	elevator_switch_mq(q, NULL);
3229	mutex_unlock(&q->sysfs_lock);
3230
3231	return true;
3232}
3233
3234static void blk_mq_elv_switch_back(struct list_head *head,
3235		struct request_queue *q)
3236{
3237	struct blk_mq_qe_pair *qe;
3238	struct elevator_type *t = NULL;
3239
3240	list_for_each_entry(qe, head, node)
3241		if (qe->q == q) {
3242			t = qe->type;
3243			break;
3244		}
 
 
 
 
 
 
 
3245
3246	if (!t)
 
3247		return;
3248
3249	list_del(&qe->node);
3250	kfree(qe);
3251
3252	mutex_lock(&q->sysfs_lock);
3253	elevator_switch_mq(q, t);
 
 
3254	mutex_unlock(&q->sysfs_lock);
3255}
3256
3257static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3258							int nr_hw_queues)
3259{
3260	struct request_queue *q;
3261	LIST_HEAD(head);
3262	int prev_nr_hw_queues;
3263
3264	lockdep_assert_held(&set->tag_list_lock);
3265
3266	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3267		nr_hw_queues = nr_cpu_ids;
3268	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
 
 
3269		return;
3270
3271	list_for_each_entry(q, &set->tag_list, tag_set_list)
3272		blk_mq_freeze_queue(q);
3273	/*
3274	 * Sync with blk_mq_queue_tag_busy_iter.
3275	 */
3276	synchronize_rcu();
3277	/*
3278	 * Switch IO scheduler to 'none', cleaning up the data associated
3279	 * with the previous scheduler. We will switch back once we are done
3280	 * updating the new sw to hw queue mappings.
3281	 */
3282	list_for_each_entry(q, &set->tag_list, tag_set_list)
3283		if (!blk_mq_elv_switch_none(&head, q))
3284			goto switch_back;
3285
3286	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287		blk_mq_debugfs_unregister_hctxs(q);
3288		blk_mq_sysfs_unregister(q);
3289	}
3290
3291	prev_nr_hw_queues = set->nr_hw_queues;
3292	set->nr_hw_queues = nr_hw_queues;
 
 
 
3293	blk_mq_update_queue_map(set);
3294fallback:
3295	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296		blk_mq_realloc_hw_ctxs(set, q);
 
3297		if (q->nr_hw_queues != set->nr_hw_queues) {
 
 
3298			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3299					nr_hw_queues, prev_nr_hw_queues);
 
 
 
3300			set->nr_hw_queues = prev_nr_hw_queues;
3301			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3302			goto fallback;
3303		}
3304		blk_mq_map_swqueue(q);
3305	}
3306
 
3307	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3308		blk_mq_sysfs_register(q);
3309		blk_mq_debugfs_register_hctxs(q);
3310	}
3311
3312switch_back:
3313	list_for_each_entry(q, &set->tag_list, tag_set_list)
3314		blk_mq_elv_switch_back(&head, q);
3315
3316	list_for_each_entry(q, &set->tag_list, tag_set_list)
3317		blk_mq_unfreeze_queue(q);
3318}
3319
3320void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3321{
3322	mutex_lock(&set->tag_list_lock);
3323	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3324	mutex_unlock(&set->tag_list_lock);
3325}
3326EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3327
3328/* Enable polling stats and return whether they were already enabled. */
3329static bool blk_poll_stats_enable(struct request_queue *q)
3330{
3331	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3332	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3333		return true;
3334	blk_stat_add_callback(q, q->poll_cb);
3335	return false;
3336}
3337
3338static void blk_mq_poll_stats_start(struct request_queue *q)
3339{
3340	/*
3341	 * We don't arm the callback if polling stats are not enabled or the
3342	 * callback is already active.
3343	 */
3344	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3345	    blk_stat_is_active(q->poll_cb))
3346		return;
3347
3348	blk_stat_activate_msecs(q->poll_cb, 100);
3349}
3350
3351static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3352{
3353	struct request_queue *q = cb->data;
3354	int bucket;
3355
3356	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3357		if (cb->stat[bucket].nr_samples)
3358			q->poll_stat[bucket] = cb->stat[bucket];
3359	}
3360}
3361
3362static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3363				       struct blk_mq_hw_ctx *hctx,
3364				       struct request *rq)
3365{
3366	unsigned long ret = 0;
3367	int bucket;
3368
3369	/*
3370	 * If stats collection isn't on, don't sleep but turn it on for
3371	 * future users
3372	 */
3373	if (!blk_poll_stats_enable(q))
3374		return 0;
3375
3376	/*
3377	 * As an optimistic guess, use half of the mean service time
3378	 * for this type of request. We can (and should) make this smarter.
3379	 * For instance, if the completion latencies are tight, we can
3380	 * get closer than just half the mean. This is especially
3381	 * important on devices where the completion latencies are longer
3382	 * than ~10 usec. We do use the stats for the relevant IO size
3383	 * if available which does lead to better estimates.
3384	 */
3385	bucket = blk_mq_poll_stats_bkt(rq);
3386	if (bucket < 0)
3387		return ret;
3388
3389	if (q->poll_stat[bucket].nr_samples)
3390		ret = (q->poll_stat[bucket].mean + 1) / 2;
3391
3392	return ret;
3393}
3394
3395static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3396				     struct blk_mq_hw_ctx *hctx,
3397				     struct request *rq)
3398{
 
 
3399	struct hrtimer_sleeper hs;
3400	enum hrtimer_mode mode;
3401	unsigned int nsecs;
3402	ktime_t kt;
3403
3404	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
 
 
 
 
3405		return false;
3406
3407	/*
3408	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3409	 *
3410	 *  0:	use half of prev avg
3411	 * >0:	use this specific value
3412	 */
3413	if (q->poll_nsec > 0)
3414		nsecs = q->poll_nsec;
3415	else
3416		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3417
3418	if (!nsecs)
3419		return false;
3420
3421	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3422
3423	/*
3424	 * This will be replaced with the stats tracking code, using
3425	 * 'avg_completion_time / 2' as the pre-sleep target.
3426	 */
3427	kt = nsecs;
3428
3429	mode = HRTIMER_MODE_REL;
3430	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3431	hrtimer_set_expires(&hs.timer, kt);
3432
3433	do {
3434		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3435			break;
3436		set_current_state(TASK_UNINTERRUPTIBLE);
3437		hrtimer_sleeper_start_expires(&hs, mode);
3438		if (hs.task)
3439			io_schedule();
3440		hrtimer_cancel(&hs.timer);
3441		mode = HRTIMER_MODE_ABS;
3442	} while (hs.task && !signal_pending(current));
3443
3444	__set_current_state(TASK_RUNNING);
3445	destroy_hrtimer_on_stack(&hs.timer);
 
 
 
 
 
 
 
 
3446	return true;
3447}
3448
3449static bool blk_mq_poll_hybrid(struct request_queue *q,
3450			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3451{
3452	struct request *rq;
3453
3454	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3455		return false;
3456
3457	if (!blk_qc_t_is_internal(cookie))
3458		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3459	else {
3460		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3461		/*
3462		 * With scheduling, if the request has completed, we'll
3463		 * get a NULL return here, as we clear the sched tag when
3464		 * that happens. The request still remains valid, like always,
3465		 * so we should be safe with just the NULL check.
3466		 */
3467		if (!rq)
3468			return false;
3469	}
3470
3471	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3472}
3473
3474/**
3475 * blk_poll - poll for IO completions
3476 * @q:  the queue
3477 * @cookie: cookie passed back at IO submission time
3478 * @spin: whether to spin for completions
3479 *
3480 * Description:
3481 *    Poll for completions on the passed in queue. Returns number of
3482 *    completed entries found. If @spin is true, then blk_poll will continue
3483 *    looping until at least one completion is found, unless the task is
3484 *    otherwise marked running (or we need to reschedule).
3485 */
3486int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3487{
3488	struct blk_mq_hw_ctx *hctx;
3489	long state;
3490
3491	if (!blk_qc_t_valid(cookie) ||
3492	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3493		return 0;
3494
3495	if (current->plug)
3496		blk_flush_plug_list(current->plug, false);
3497
3498	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3499
3500	/*
3501	 * If we sleep, have the caller restart the poll loop to reset
3502	 * the state. Like for the other success return cases, the
3503	 * caller is responsible for checking if the IO completed. If
3504	 * the IO isn't complete, we'll get called again and will go
3505	 * straight to the busy poll loop.
3506	 */
3507	if (blk_mq_poll_hybrid(q, hctx, cookie))
3508		return 1;
3509
3510	hctx->poll_considered++;
3511
3512	state = current->state;
3513	do {
3514		int ret;
3515
3516		hctx->poll_invoked++;
3517
3518		ret = q->mq_ops->poll(hctx);
3519		if (ret > 0) {
3520			hctx->poll_success++;
3521			__set_current_state(TASK_RUNNING);
3522			return ret;
3523		}
3524
3525		if (signal_pending_state(state, current))
3526			__set_current_state(TASK_RUNNING);
 
 
3527
3528		if (current->state == TASK_RUNNING)
3529			return 1;
3530		if (ret < 0 || !spin)
3531			break;
3532		cpu_relax();
3533	} while (!need_resched());
3534
3535	__set_current_state(TASK_RUNNING);
3536	return 0;
3537}
3538EXPORT_SYMBOL_GPL(blk_poll);
 
 
 
 
 
 
 
 
 
 
3539
3540unsigned int blk_mq_rq_cpu(struct request *rq)
3541{
3542	return rq->mq_ctx->cpu;
3543}
3544EXPORT_SYMBOL(blk_mq_rq_cpu);
3545
 
 
 
 
 
 
 
 
 
 
 
3546static int __init blk_mq_init(void)
3547{
 
 
 
 
 
 
 
 
 
3548	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3549				blk_mq_hctx_notify_dead);
 
 
 
3550	return 0;
3551}
3552subsys_initcall(blk_mq_init);