Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v6.2.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	SGI UltraViolet TLB flush routines.
   4 *
   5 *	(c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
   6 */
   7#include <linux/seq_file.h>
   8#include <linux/proc_fs.h>
   9#include <linux/debugfs.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/delay.h>
  13
  14#include <asm/mmu_context.h>
  15#include <asm/uv/uv.h>
  16#include <asm/uv/uv_mmrs.h>
  17#include <asm/uv/uv_hub.h>
  18#include <asm/uv/uv_bau.h>
  19#include <asm/apic.h>
  20#include <asm/tsc.h>
  21#include <asm/irq_vectors.h>
  22#include <asm/timer.h>
  23
  24static struct bau_operations ops __ro_after_init;
  25
  26/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
  27static const int timeout_base_ns[] = {
  28		20,
  29		160,
  30		1280,
  31		10240,
  32		81920,
  33		655360,
  34		5242880,
  35		167772160
  36};
  37
  38static int timeout_us;
  39static bool nobau = true;
  40static int nobau_perm;
  41
  42/* tunables: */
  43static int max_concurr		= MAX_BAU_CONCURRENT;
  44static int max_concurr_const	= MAX_BAU_CONCURRENT;
  45static int plugged_delay	= PLUGGED_DELAY;
  46static int plugsb4reset		= PLUGSB4RESET;
  47static int giveup_limit		= GIVEUP_LIMIT;
  48static int timeoutsb4reset	= TIMEOUTSB4RESET;
  49static int ipi_reset_limit	= IPI_RESET_LIMIT;
  50static int complete_threshold	= COMPLETE_THRESHOLD;
  51static int congested_respns_us	= CONGESTED_RESPONSE_US;
  52static int congested_reps	= CONGESTED_REPS;
  53static int disabled_period	= DISABLED_PERIOD;
  54
  55static struct tunables tunables[] = {
  56	{&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
  57	{&plugged_delay,         PLUGGED_DELAY},
  58	{&plugsb4reset,          PLUGSB4RESET},
  59	{&timeoutsb4reset,       TIMEOUTSB4RESET},
  60	{&ipi_reset_limit,       IPI_RESET_LIMIT},
  61	{&complete_threshold,    COMPLETE_THRESHOLD},
  62	{&congested_respns_us,   CONGESTED_RESPONSE_US},
  63	{&congested_reps,        CONGESTED_REPS},
  64	{&disabled_period,       DISABLED_PERIOD},
  65	{&giveup_limit,          GIVEUP_LIMIT}
  66};
  67
  68static struct dentry *tunables_dir;
  69
  70/* these correspond to the statistics printed by ptc_seq_show() */
  71static char *stat_description[] = {
  72	"sent:     number of shootdown messages sent",
  73	"stime:    time spent sending messages",
  74	"numuvhubs: number of hubs targeted with shootdown",
  75	"numuvhubs16: number times 16 or more hubs targeted",
  76	"numuvhubs8: number times 8 or more hubs targeted",
  77	"numuvhubs4: number times 4 or more hubs targeted",
  78	"numuvhubs2: number times 2 or more hubs targeted",
  79	"numuvhubs1: number times 1 hub targeted",
  80	"numcpus:  number of cpus targeted with shootdown",
  81	"dto:      number of destination timeouts",
  82	"retries:  destination timeout retries sent",
  83	"rok:   :  destination timeouts successfully retried",
  84	"resetp:   ipi-style resource resets for plugs",
  85	"resett:   ipi-style resource resets for timeouts",
  86	"giveup:   fall-backs to ipi-style shootdowns",
  87	"sto:      number of source timeouts",
  88	"bz:       number of stay-busy's",
  89	"throt:    number times spun in throttle",
  90	"swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
  91	"recv:     shootdown messages received",
  92	"rtime:    time spent processing messages",
  93	"all:      shootdown all-tlb messages",
  94	"one:      shootdown one-tlb messages",
  95	"mult:     interrupts that found multiple messages",
  96	"none:     interrupts that found no messages",
  97	"retry:    number of retry messages processed",
  98	"canc:     number messages canceled by retries",
  99	"nocan:    number retries that found nothing to cancel",
 100	"reset:    number of ipi-style reset requests processed",
 101	"rcan:     number messages canceled by reset requests",
 102	"disable:  number times use of the BAU was disabled",
 103	"enable:   number times use of the BAU was re-enabled"
 104};
 105
 106static int __init setup_bau(char *arg)
 107{
 108	int result;
 109
 110	if (!arg)
 111		return -EINVAL;
 112
 113	result = strtobool(arg, &nobau);
 114	if (result)
 115		return result;
 116
 117	/* we need to flip the logic here, so that bau=y sets nobau to false */
 118	nobau = !nobau;
 119
 120	if (!nobau)
 121		pr_info("UV BAU Enabled\n");
 122	else
 123		pr_info("UV BAU Disabled\n");
 124
 125	return 0;
 126}
 127early_param("bau", setup_bau);
 128
 129/* base pnode in this partition */
 130static int uv_base_pnode __read_mostly;
 131
 132static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 133static DEFINE_PER_CPU(struct bau_control, bau_control);
 134static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
 135
 136static void
 137set_bau_on(void)
 138{
 139	int cpu;
 140	struct bau_control *bcp;
 141
 142	if (nobau_perm) {
 143		pr_info("BAU not initialized; cannot be turned on\n");
 144		return;
 145	}
 146	nobau = false;
 147	for_each_present_cpu(cpu) {
 148		bcp = &per_cpu(bau_control, cpu);
 149		bcp->nobau = false;
 150	}
 151	pr_info("BAU turned on\n");
 152	return;
 153}
 154
 155static void
 156set_bau_off(void)
 157{
 158	int cpu;
 159	struct bau_control *bcp;
 160
 161	nobau = true;
 162	for_each_present_cpu(cpu) {
 163		bcp = &per_cpu(bau_control, cpu);
 164		bcp->nobau = true;
 165	}
 166	pr_info("BAU turned off\n");
 167	return;
 168}
 169
 170/*
 171 * Determine the first node on a uvhub. 'Nodes' are used for kernel
 172 * memory allocation.
 173 */
 174static int __init uvhub_to_first_node(int uvhub)
 175{
 176	int node, b;
 177
 178	for_each_online_node(node) {
 179		b = uv_node_to_blade_id(node);
 180		if (uvhub == b)
 181			return node;
 182	}
 183	return -1;
 184}
 185
 186/*
 187 * Determine the apicid of the first cpu on a uvhub.
 188 */
 189static int __init uvhub_to_first_apicid(int uvhub)
 190{
 191	int cpu;
 192
 193	for_each_present_cpu(cpu)
 194		if (uvhub == uv_cpu_to_blade_id(cpu))
 195			return per_cpu(x86_cpu_to_apicid, cpu);
 196	return -1;
 197}
 198
 199/*
 200 * Free a software acknowledge hardware resource by clearing its Pending
 201 * bit. This will return a reply to the sender.
 202 * If the message has timed out, a reply has already been sent by the
 203 * hardware but the resource has not been released. In that case our
 204 * clear of the Timeout bit (as well) will free the resource. No reply will
 205 * be sent (the hardware will only do one reply per message).
 206 */
 207static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
 208						int do_acknowledge)
 209{
 210	unsigned long dw;
 211	struct bau_pq_entry *msg;
 212
 213	msg = mdp->msg;
 214	if (!msg->canceled && do_acknowledge) {
 215		dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
 216		ops.write_l_sw_ack(dw);
 217	}
 218	msg->replied_to = 1;
 219	msg->swack_vec = 0;
 220}
 221
 222/*
 223 * Process the receipt of a RETRY message
 224 */
 225static void bau_process_retry_msg(struct msg_desc *mdp,
 226					struct bau_control *bcp)
 227{
 228	int i;
 229	int cancel_count = 0;
 230	unsigned long msg_res;
 231	unsigned long mmr = 0;
 232	struct bau_pq_entry *msg = mdp->msg;
 233	struct bau_pq_entry *msg2;
 234	struct ptc_stats *stat = bcp->statp;
 235
 236	stat->d_retries++;
 237	/*
 238	 * cancel any message from msg+1 to the retry itself
 239	 */
 240	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
 241		if (msg2 > mdp->queue_last)
 242			msg2 = mdp->queue_first;
 243		if (msg2 == msg)
 244			break;
 245
 246		/* same conditions for cancellation as do_reset */
 247		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
 248		    (msg2->swack_vec) && ((msg2->swack_vec &
 249			msg->swack_vec) == 0) &&
 250		    (msg2->sending_cpu == msg->sending_cpu) &&
 251		    (msg2->msg_type != MSG_NOOP)) {
 252			mmr = ops.read_l_sw_ack();
 253			msg_res = msg2->swack_vec;
 254			/*
 255			 * This is a message retry; clear the resources held
 256			 * by the previous message only if they timed out.
 257			 * If it has not timed out we have an unexpected
 258			 * situation to report.
 259			 */
 260			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
 261				unsigned long mr;
 262				/*
 263				 * Is the resource timed out?
 264				 * Make everyone ignore the cancelled message.
 265				 */
 266				msg2->canceled = 1;
 267				stat->d_canceled++;
 268				cancel_count++;
 269				mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 270				ops.write_l_sw_ack(mr);
 271			}
 272		}
 273	}
 274	if (!cancel_count)
 275		stat->d_nocanceled++;
 276}
 277
 278/*
 279 * Do all the things a cpu should do for a TLB shootdown message.
 280 * Other cpu's may come here at the same time for this message.
 281 */
 282static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
 283						int do_acknowledge)
 284{
 285	short socket_ack_count = 0;
 286	short *sp;
 287	struct atomic_short *asp;
 288	struct ptc_stats *stat = bcp->statp;
 289	struct bau_pq_entry *msg = mdp->msg;
 290	struct bau_control *smaster = bcp->socket_master;
 291
 292	/*
 293	 * This must be a normal message, or retry of a normal message
 294	 */
 295	if (msg->address == TLB_FLUSH_ALL) {
 296		local_flush_tlb();
 297		stat->d_alltlb++;
 298	} else {
 299		__flush_tlb_one_user(msg->address);
 300		stat->d_onetlb++;
 301	}
 302	stat->d_requestee++;
 303
 304	/*
 305	 * One cpu on each uvhub has the additional job on a RETRY
 306	 * of releasing the resource held by the message that is
 307	 * being retried.  That message is identified by sending
 308	 * cpu number.
 309	 */
 310	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
 311		bau_process_retry_msg(mdp, bcp);
 312
 313	/*
 314	 * This is a swack message, so we have to reply to it.
 315	 * Count each responding cpu on the socket. This avoids
 316	 * pinging the count's cache line back and forth between
 317	 * the sockets.
 318	 */
 319	sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
 320	asp = (struct atomic_short *)sp;
 321	socket_ack_count = atom_asr(1, asp);
 322	if (socket_ack_count == bcp->cpus_in_socket) {
 323		int msg_ack_count;
 324		/*
 325		 * Both sockets dump their completed count total into
 326		 * the message's count.
 327		 */
 328		*sp = 0;
 329		asp = (struct atomic_short *)&msg->acknowledge_count;
 330		msg_ack_count = atom_asr(socket_ack_count, asp);
 331
 332		if (msg_ack_count == bcp->cpus_in_uvhub) {
 333			/*
 334			 * All cpus in uvhub saw it; reply
 335			 * (unless we are in the UV2 workaround)
 336			 */
 337			reply_to_message(mdp, bcp, do_acknowledge);
 338		}
 339	}
 340
 341	return;
 342}
 343
 344/*
 345 * Determine the first cpu on a pnode.
 346 */
 347static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
 348{
 349	int cpu;
 350	struct hub_and_pnode *hpp;
 351
 352	for_each_present_cpu(cpu) {
 353		hpp = &smaster->thp[cpu];
 354		if (pnode == hpp->pnode)
 355			return cpu;
 356	}
 357	return -1;
 358}
 359
 360/*
 361 * Last resort when we get a large number of destination timeouts is
 362 * to clear resources held by a given cpu.
 363 * Do this with IPI so that all messages in the BAU message queue
 364 * can be identified by their nonzero swack_vec field.
 365 *
 366 * This is entered for a single cpu on the uvhub.
 367 * The sender want's this uvhub to free a specific message's
 368 * swack resources.
 369 */
 370static void do_reset(void *ptr)
 371{
 372	int i;
 373	struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
 374	struct reset_args *rap = (struct reset_args *)ptr;
 375	struct bau_pq_entry *msg;
 376	struct ptc_stats *stat = bcp->statp;
 377
 378	stat->d_resets++;
 379	/*
 380	 * We're looking for the given sender, and
 381	 * will free its swack resource.
 382	 * If all cpu's finally responded after the timeout, its
 383	 * message 'replied_to' was set.
 384	 */
 385	for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
 386		unsigned long msg_res;
 387		/* do_reset: same conditions for cancellation as
 388		   bau_process_retry_msg() */
 389		if ((msg->replied_to == 0) &&
 390		    (msg->canceled == 0) &&
 391		    (msg->sending_cpu == rap->sender) &&
 392		    (msg->swack_vec) &&
 393		    (msg->msg_type != MSG_NOOP)) {
 394			unsigned long mmr;
 395			unsigned long mr;
 396			/*
 397			 * make everyone else ignore this message
 398			 */
 399			msg->canceled = 1;
 400			/*
 401			 * only reset the resource if it is still pending
 402			 */
 403			mmr = ops.read_l_sw_ack();
 404			msg_res = msg->swack_vec;
 405			mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 406			if (mmr & msg_res) {
 407				stat->d_rcanceled++;
 408				ops.write_l_sw_ack(mr);
 409			}
 410		}
 411	}
 412	return;
 413}
 414
 415/*
 416 * Use IPI to get all target uvhubs to release resources held by
 417 * a given sending cpu number.
 418 */
 419static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
 420{
 421	int pnode;
 422	int apnode;
 423	int maskbits;
 424	int sender = bcp->cpu;
 425	cpumask_t *mask = bcp->uvhub_master->cpumask;
 426	struct bau_control *smaster = bcp->socket_master;
 427	struct reset_args reset_args;
 428
 429	reset_args.sender = sender;
 430	cpumask_clear(mask);
 431	/* find a single cpu for each uvhub in this distribution mask */
 432	maskbits = sizeof(struct pnmask) * BITSPERBYTE;
 433	/* each bit is a pnode relative to the partition base pnode */
 434	for (pnode = 0; pnode < maskbits; pnode++) {
 435		int cpu;
 436		if (!bau_uvhub_isset(pnode, distribution))
 437			continue;
 438		apnode = pnode + bcp->partition_base_pnode;
 439		cpu = pnode_to_first_cpu(apnode, smaster);
 440		cpumask_set_cpu(cpu, mask);
 441	}
 442
 443	/* IPI all cpus; preemption is already disabled */
 444	smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
 445	return;
 446}
 447
 448/*
 449 * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
 450 * number, not an absolute. It converts a duration in cycles to a duration in
 451 * ns.
 452 */
 453static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 454{
 455	struct cyc2ns_data data;
 456	unsigned long long ns;
 457
 458	cyc2ns_read_begin(&data);
 459	ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 460	cyc2ns_read_end();
 461
 462	return ns;
 463}
 464
 465/*
 466 * The reverse of the above; converts a duration in ns to a duration in cycles.
 467 */
 468static inline unsigned long long ns_2_cycles(unsigned long long ns)
 469{
 470	struct cyc2ns_data data;
 471	unsigned long long cyc;
 472
 473	cyc2ns_read_begin(&data);
 474	cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
 475	cyc2ns_read_end();
 476
 477	return cyc;
 478}
 479
 480static inline unsigned long cycles_2_us(unsigned long long cyc)
 481{
 482	return cycles_2_ns(cyc) / NSEC_PER_USEC;
 483}
 484
 485static inline cycles_t sec_2_cycles(unsigned long sec)
 486{
 487	return ns_2_cycles(sec * NSEC_PER_SEC);
 488}
 489
 490static inline unsigned long long usec_2_cycles(unsigned long usec)
 491{
 492	return ns_2_cycles(usec * NSEC_PER_USEC);
 493}
 494
 495/*
 496 * wait for all cpus on this hub to finish their sends and go quiet
 497 * leaves uvhub_quiesce set so that no new broadcasts are started by
 498 * bau_flush_send_and_wait()
 499 */
 500static inline void quiesce_local_uvhub(struct bau_control *hmaster)
 501{
 502	atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 503}
 504
 505/*
 506 * mark this quiet-requestor as done
 507 */
 508static inline void end_uvhub_quiesce(struct bau_control *hmaster)
 509{
 510	atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 511}
 512
 513static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
 514{
 515	unsigned long descriptor_status;
 516
 517	descriptor_status = uv_read_local_mmr(mmr_offset);
 518	descriptor_status >>= right_shift;
 519	descriptor_status &= UV_ACT_STATUS_MASK;
 520	return descriptor_status;
 521}
 522
 523/*
 524 * Wait for completion of a broadcast software ack message
 525 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
 526 */
 527static int uv1_wait_completion(struct bau_desc *bau_desc,
 528				struct bau_control *bcp, long try)
 529{
 530	unsigned long descriptor_status;
 531	cycles_t ttm;
 532	u64 mmr_offset = bcp->status_mmr;
 533	int right_shift = bcp->status_index;
 534	struct ptc_stats *stat = bcp->statp;
 535
 536	descriptor_status = uv1_read_status(mmr_offset, right_shift);
 537	/* spin on the status MMR, waiting for it to go idle */
 538	while ((descriptor_status != DS_IDLE)) {
 539		/*
 540		 * Our software ack messages may be blocked because
 541		 * there are no swack resources available.  As long
 542		 * as none of them has timed out hardware will NACK
 543		 * our message and its state will stay IDLE.
 544		 */
 545		if (descriptor_status == DS_SOURCE_TIMEOUT) {
 546			stat->s_stimeout++;
 547			return FLUSH_GIVEUP;
 548		} else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
 549			stat->s_dtimeout++;
 550			ttm = get_cycles();
 551
 552			/*
 553			 * Our retries may be blocked by all destination
 554			 * swack resources being consumed, and a timeout
 555			 * pending.  In that case hardware returns the
 556			 * ERROR that looks like a destination timeout.
 557			 */
 558			if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 559				bcp->conseccompletes = 0;
 560				return FLUSH_RETRY_PLUGGED;
 561			}
 562
 563			bcp->conseccompletes = 0;
 564			return FLUSH_RETRY_TIMEOUT;
 565		} else {
 566			/*
 567			 * descriptor_status is still BUSY
 568			 */
 569			cpu_relax();
 570		}
 571		descriptor_status = uv1_read_status(mmr_offset, right_shift);
 572	}
 573	bcp->conseccompletes++;
 574	return FLUSH_COMPLETE;
 575}
 576
 577/*
 578 * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
 579 * But not currently used.
 580 */
 581static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
 582{
 583	return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
 584}
 585
 586/*
 587 * Entered when a bau descriptor has gone into a permanent busy wait because
 588 * of a hardware bug.
 589 * Workaround the bug.
 590 */
 591static int handle_uv2_busy(struct bau_control *bcp)
 592{
 593	struct ptc_stats *stat = bcp->statp;
 594
 595	stat->s_uv2_wars++;
 596	bcp->busy = 1;
 597	return FLUSH_GIVEUP;
 598}
 599
 600static int uv2_3_wait_completion(struct bau_desc *bau_desc,
 601				struct bau_control *bcp, long try)
 602{
 603	unsigned long descriptor_stat;
 604	cycles_t ttm;
 605	u64 mmr_offset = bcp->status_mmr;
 606	int right_shift = bcp->status_index;
 607	int desc = bcp->uvhub_cpu;
 608	long busy_reps = 0;
 609	struct ptc_stats *stat = bcp->statp;
 610
 611	descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 612
 613	/* spin on the status MMR, waiting for it to go idle */
 614	while (descriptor_stat != UV2H_DESC_IDLE) {
 615		if (descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) {
 616			/*
 617			 * A h/w bug on the destination side may
 618			 * have prevented the message being marked
 619			 * pending, thus it doesn't get replied to
 620			 * and gets continually nacked until it times
 621			 * out with a SOURCE_TIMEOUT.
 622			 */
 623			stat->s_stimeout++;
 624			return FLUSH_GIVEUP;
 625		} else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
 626			ttm = get_cycles();
 627
 628			/*
 629			 * Our retries may be blocked by all destination
 630			 * swack resources being consumed, and a timeout
 631			 * pending.  In that case hardware returns the
 632			 * ERROR that looks like a destination timeout.
 633			 * Without using the extended status we have to
 634			 * deduce from the short time that this was a
 635			 * strong nack.
 636			 */
 637			if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 638				bcp->conseccompletes = 0;
 639				stat->s_plugged++;
 640				/* FLUSH_RETRY_PLUGGED causes hang on boot */
 641				return FLUSH_GIVEUP;
 642			}
 643			stat->s_dtimeout++;
 644			bcp->conseccompletes = 0;
 645			/* FLUSH_RETRY_TIMEOUT causes hang on boot */
 646			return FLUSH_GIVEUP;
 647		} else {
 648			busy_reps++;
 649			if (busy_reps > 1000000) {
 650				/* not to hammer on the clock */
 651				busy_reps = 0;
 652				ttm = get_cycles();
 653				if ((ttm - bcp->send_message) > bcp->timeout_interval)
 654					return handle_uv2_busy(bcp);
 655			}
 656			/*
 657			 * descriptor_stat is still BUSY
 658			 */
 659			cpu_relax();
 660		}
 661		descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 662	}
 663	bcp->conseccompletes++;
 664	return FLUSH_COMPLETE;
 665}
 666
 667/*
 668 * Returns the status of current BAU message for cpu desc as a bit field
 669 * [Error][Busy][Aux]
 670 */
 671static u64 read_status(u64 status_mmr, int index, int desc)
 672{
 673	u64 stat;
 674
 675	stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
 676	stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
 677
 678	return stat;
 679}
 680
 681static int uv4_wait_completion(struct bau_desc *bau_desc,
 682				struct bau_control *bcp, long try)
 683{
 684	struct ptc_stats *stat = bcp->statp;
 685	u64 descriptor_stat;
 686	u64 mmr = bcp->status_mmr;
 687	int index = bcp->status_index;
 688	int desc = bcp->uvhub_cpu;
 689
 690	descriptor_stat = read_status(mmr, index, desc);
 691
 692	/* spin on the status MMR, waiting for it to go idle */
 693	while (descriptor_stat != UV2H_DESC_IDLE) {
 694		switch (descriptor_stat) {
 695		case UV2H_DESC_SOURCE_TIMEOUT:
 696			stat->s_stimeout++;
 697			return FLUSH_GIVEUP;
 698
 699		case UV2H_DESC_DEST_TIMEOUT:
 700			stat->s_dtimeout++;
 701			bcp->conseccompletes = 0;
 702			return FLUSH_RETRY_TIMEOUT;
 703
 704		case UV2H_DESC_DEST_STRONG_NACK:
 705			stat->s_plugged++;
 706			bcp->conseccompletes = 0;
 707			return FLUSH_RETRY_PLUGGED;
 708
 709		case UV2H_DESC_DEST_PUT_ERR:
 710			bcp->conseccompletes = 0;
 711			return FLUSH_GIVEUP;
 712
 713		default:
 714			/* descriptor_stat is still BUSY */
 715			cpu_relax();
 716		}
 717		descriptor_stat = read_status(mmr, index, desc);
 718	}
 719	bcp->conseccompletes++;
 720	return FLUSH_COMPLETE;
 721}
 722
 723/*
 724 * Our retries are blocked by all destination sw ack resources being
 725 * in use, and a timeout is pending. In that case hardware immediately
 726 * returns the ERROR that looks like a destination timeout.
 727 */
 728static void destination_plugged(struct bau_desc *bau_desc,
 729			struct bau_control *bcp,
 730			struct bau_control *hmaster, struct ptc_stats *stat)
 731{
 732	udelay(bcp->plugged_delay);
 733	bcp->plugged_tries++;
 734
 735	if (bcp->plugged_tries >= bcp->plugsb4reset) {
 736		bcp->plugged_tries = 0;
 737
 738		quiesce_local_uvhub(hmaster);
 739
 740		spin_lock(&hmaster->queue_lock);
 741		reset_with_ipi(&bau_desc->distribution, bcp);
 742		spin_unlock(&hmaster->queue_lock);
 743
 744		end_uvhub_quiesce(hmaster);
 745
 746		bcp->ipi_attempts++;
 747		stat->s_resets_plug++;
 748	}
 749}
 750
 751static void destination_timeout(struct bau_desc *bau_desc,
 752			struct bau_control *bcp, struct bau_control *hmaster,
 753			struct ptc_stats *stat)
 754{
 755	hmaster->max_concurr = 1;
 756	bcp->timeout_tries++;
 757	if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
 758		bcp->timeout_tries = 0;
 759
 760		quiesce_local_uvhub(hmaster);
 761
 762		spin_lock(&hmaster->queue_lock);
 763		reset_with_ipi(&bau_desc->distribution, bcp);
 764		spin_unlock(&hmaster->queue_lock);
 765
 766		end_uvhub_quiesce(hmaster);
 767
 768		bcp->ipi_attempts++;
 769		stat->s_resets_timeout++;
 770	}
 771}
 772
 773/*
 774 * Stop all cpus on a uvhub from using the BAU for a period of time.
 775 * This is reversed by check_enable.
 776 */
 777static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
 778{
 779	int tcpu;
 780	struct bau_control *tbcp;
 781	struct bau_control *hmaster;
 782	cycles_t tm1;
 783
 784	hmaster = bcp->uvhub_master;
 785	spin_lock(&hmaster->disable_lock);
 786	if (!bcp->baudisabled) {
 787		stat->s_bau_disabled++;
 788		tm1 = get_cycles();
 789		for_each_present_cpu(tcpu) {
 790			tbcp = &per_cpu(bau_control, tcpu);
 791			if (tbcp->uvhub_master == hmaster) {
 792				tbcp->baudisabled = 1;
 793				tbcp->set_bau_on_time =
 794					tm1 + bcp->disabled_period;
 795			}
 796		}
 797	}
 798	spin_unlock(&hmaster->disable_lock);
 799}
 800
 801static void count_max_concurr(int stat, struct bau_control *bcp,
 802				struct bau_control *hmaster)
 803{
 804	bcp->plugged_tries = 0;
 805	bcp->timeout_tries = 0;
 806	if (stat != FLUSH_COMPLETE)
 807		return;
 808	if (bcp->conseccompletes <= bcp->complete_threshold)
 809		return;
 810	if (hmaster->max_concurr >= hmaster->max_concurr_const)
 811		return;
 812	hmaster->max_concurr++;
 813}
 814
 815static void record_send_stats(cycles_t time1, cycles_t time2,
 816		struct bau_control *bcp, struct ptc_stats *stat,
 817		int completion_status, int try)
 818{
 819	cycles_t elapsed;
 820
 821	if (time2 > time1) {
 822		elapsed = time2 - time1;
 823		stat->s_time += elapsed;
 824
 825		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
 826			bcp->period_requests++;
 827			bcp->period_time += elapsed;
 828			if ((elapsed > usec_2_cycles(bcp->cong_response_us)) &&
 829			    (bcp->period_requests > bcp->cong_reps) &&
 830			    ((bcp->period_time / bcp->period_requests) >
 831					usec_2_cycles(bcp->cong_response_us))) {
 832				stat->s_congested++;
 833				disable_for_period(bcp, stat);
 834			}
 835		}
 836	} else
 837		stat->s_requestor--;
 838
 839	if (completion_status == FLUSH_COMPLETE && try > 1)
 840		stat->s_retriesok++;
 841	else if (completion_status == FLUSH_GIVEUP) {
 842		stat->s_giveup++;
 843		if (get_cycles() > bcp->period_end)
 844			bcp->period_giveups = 0;
 845		bcp->period_giveups++;
 846		if (bcp->period_giveups == 1)
 847			bcp->period_end = get_cycles() + bcp->disabled_period;
 848		if (bcp->period_giveups > bcp->giveup_limit) {
 849			disable_for_period(bcp, stat);
 850			stat->s_giveuplimit++;
 851		}
 852	}
 853}
 854
 855/*
 856 * Because of a uv1 hardware bug only a limited number of concurrent
 857 * requests can be made.
 858 */
 859static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
 860{
 861	spinlock_t *lock = &hmaster->uvhub_lock;
 862	atomic_t *v;
 863
 864	v = &hmaster->active_descriptor_count;
 865	if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
 866		stat->s_throttles++;
 867		do {
 868			cpu_relax();
 869		} while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
 870	}
 871}
 872
 873/*
 874 * Handle the completion status of a message send.
 875 */
 876static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
 877			struct bau_control *bcp, struct bau_control *hmaster,
 878			struct ptc_stats *stat)
 879{
 880	if (completion_status == FLUSH_RETRY_PLUGGED)
 881		destination_plugged(bau_desc, bcp, hmaster, stat);
 882	else if (completion_status == FLUSH_RETRY_TIMEOUT)
 883		destination_timeout(bau_desc, bcp, hmaster, stat);
 884}
 885
 886/*
 887 * Send a broadcast and wait for it to complete.
 888 *
 889 * The flush_mask contains the cpus the broadcast is to be sent to including
 890 * cpus that are on the local uvhub.
 891 *
 892 * Returns 0 if all flushing represented in the mask was done.
 893 * Returns 1 if it gives up entirely and the original cpu mask is to be
 894 * returned to the kernel.
 895 */
 896static int uv_flush_send_and_wait(struct cpumask *flush_mask,
 897				  struct bau_control *bcp,
 898				  struct bau_desc *bau_desc)
 899{
 900	int seq_number = 0;
 901	int completion_stat = 0;
 902	int uv1 = 0;
 903	long try = 0;
 904	unsigned long index;
 905	cycles_t time1;
 906	cycles_t time2;
 907	struct ptc_stats *stat = bcp->statp;
 908	struct bau_control *hmaster = bcp->uvhub_master;
 909	struct uv1_bau_msg_header *uv1_hdr = NULL;
 910	struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
 911
 912	if (bcp->uvhub_version == UV_BAU_V1) {
 913		uv1 = 1;
 914		uv1_throttle(hmaster, stat);
 915	}
 916
 917	while (hmaster->uvhub_quiesce)
 918		cpu_relax();
 919
 920	time1 = get_cycles();
 921	if (uv1)
 922		uv1_hdr = &bau_desc->header.uv1_hdr;
 923	else
 924		/* uv2 and uv3 */
 925		uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
 926
 927	do {
 928		if (try == 0) {
 929			if (uv1)
 930				uv1_hdr->msg_type = MSG_REGULAR;
 931			else
 932				uv2_3_hdr->msg_type = MSG_REGULAR;
 933			seq_number = bcp->message_number++;
 934		} else {
 935			if (uv1)
 936				uv1_hdr->msg_type = MSG_RETRY;
 937			else
 938				uv2_3_hdr->msg_type = MSG_RETRY;
 939			stat->s_retry_messages++;
 940		}
 941
 942		if (uv1)
 943			uv1_hdr->sequence = seq_number;
 944		else
 945			uv2_3_hdr->sequence = seq_number;
 946		index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
 947		bcp->send_message = get_cycles();
 948
 949		write_mmr_activation(index);
 950
 951		try++;
 952		completion_stat = ops.wait_completion(bau_desc, bcp, try);
 953
 954		handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
 955
 956		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
 957			bcp->ipi_attempts = 0;
 958			stat->s_overipilimit++;
 959			completion_stat = FLUSH_GIVEUP;
 960			break;
 961		}
 962		cpu_relax();
 963	} while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
 964		 (completion_stat == FLUSH_RETRY_TIMEOUT));
 965
 966	time2 = get_cycles();
 967
 968	count_max_concurr(completion_stat, bcp, hmaster);
 969
 970	while (hmaster->uvhub_quiesce)
 971		cpu_relax();
 972
 973	atomic_dec(&hmaster->active_descriptor_count);
 974
 975	record_send_stats(time1, time2, bcp, stat, completion_stat, try);
 976
 977	if (completion_stat == FLUSH_GIVEUP)
 978		/* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
 979		return 1;
 980	return 0;
 981}
 982
 983/*
 984 * The BAU is disabled for this uvhub. When the disabled time period has
 985 * expired re-enable it.
 986 * Return 0 if it is re-enabled for all cpus on this uvhub.
 987 */
 988static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
 989{
 990	int tcpu;
 991	struct bau_control *tbcp;
 992	struct bau_control *hmaster;
 993
 994	hmaster = bcp->uvhub_master;
 995	spin_lock(&hmaster->disable_lock);
 996	if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
 997		stat->s_bau_reenabled++;
 998		for_each_present_cpu(tcpu) {
 999			tbcp = &per_cpu(bau_control, tcpu);
1000			if (tbcp->uvhub_master == hmaster) {
1001				tbcp->baudisabled = 0;
1002				tbcp->period_requests = 0;
1003				tbcp->period_time = 0;
1004				tbcp->period_giveups = 0;
1005			}
1006		}
1007		spin_unlock(&hmaster->disable_lock);
1008		return 0;
1009	}
1010	spin_unlock(&hmaster->disable_lock);
1011	return -1;
1012}
1013
1014static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1015				int remotes, struct bau_desc *bau_desc)
1016{
1017	stat->s_requestor++;
1018	stat->s_ntargcpu += remotes + locals;
1019	stat->s_ntargremotes += remotes;
1020	stat->s_ntarglocals += locals;
1021
1022	/* uvhub statistics */
1023	hubs = bau_uvhub_weight(&bau_desc->distribution);
1024	if (locals) {
1025		stat->s_ntarglocaluvhub++;
1026		stat->s_ntargremoteuvhub += (hubs - 1);
1027	} else
1028		stat->s_ntargremoteuvhub += hubs;
1029
1030	stat->s_ntarguvhub += hubs;
1031
1032	if (hubs >= 16)
1033		stat->s_ntarguvhub16++;
1034	else if (hubs >= 8)
1035		stat->s_ntarguvhub8++;
1036	else if (hubs >= 4)
1037		stat->s_ntarguvhub4++;
1038	else if (hubs >= 2)
1039		stat->s_ntarguvhub2++;
1040	else
1041		stat->s_ntarguvhub1++;
1042}
1043
1044/*
1045 * Translate a cpu mask to the uvhub distribution mask in the BAU
1046 * activation descriptor.
1047 */
1048static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1049			struct bau_desc *bau_desc, int *localsp, int *remotesp)
1050{
1051	int cpu;
1052	int pnode;
1053	int cnt = 0;
1054	struct hub_and_pnode *hpp;
1055
1056	for_each_cpu(cpu, flush_mask) {
1057		/*
1058		 * The distribution vector is a bit map of pnodes, relative
1059		 * to the partition base pnode (and the partition base nasid
1060		 * in the header).
1061		 * Translate cpu to pnode and hub using a local memory array.
1062		 */
1063		hpp = &bcp->socket_master->thp[cpu];
1064		pnode = hpp->pnode - bcp->partition_base_pnode;
1065		bau_uvhub_set(pnode, &bau_desc->distribution);
1066		cnt++;
1067		if (hpp->uvhub == bcp->uvhub)
1068			(*localsp)++;
1069		else
1070			(*remotesp)++;
1071	}
1072	if (!cnt)
1073		return 1;
1074	return 0;
1075}
1076
1077/*
1078 * globally purge translation cache of a virtual address or all TLB's
1079 * @cpumask: mask of all cpu's in which the address is to be removed
1080 * @mm: mm_struct containing virtual address range
1081 * @start: start virtual address to be removed from TLB
1082 * @end: end virtual address to be remove from TLB
1083 * @cpu: the current cpu
1084 *
1085 * This is the entry point for initiating any UV global TLB shootdown.
1086 *
1087 * Purges the translation caches of all specified processors of the given
1088 * virtual address, or purges all TLB's on specified processors.
1089 *
1090 * The caller has derived the cpumask from the mm_struct.  This function
1091 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1092 *
1093 * The cpumask is converted into a uvhubmask of the uvhubs containing
1094 * those cpus.
1095 *
1096 * Note that this function should be called with preemption disabled.
1097 *
1098 * Returns NULL if all remote flushing was done.
1099 * Returns pointer to cpumask if some remote flushing remains to be
1100 * done.  The returned pointer is valid till preemption is re-enabled.
1101 */
1102const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1103					  const struct flush_tlb_info *info)
1104{
1105	unsigned int cpu = smp_processor_id();
1106	int locals = 0, remotes = 0, hubs = 0;
1107	struct bau_desc *bau_desc;
1108	struct cpumask *flush_mask;
1109	struct ptc_stats *stat;
1110	struct bau_control *bcp;
1111	unsigned long descriptor_status, status, address;
1112
1113	bcp = &per_cpu(bau_control, cpu);
1114
1115	if (bcp->nobau)
1116		return cpumask;
1117
1118	stat = bcp->statp;
1119	stat->s_enters++;
1120
1121	if (bcp->busy) {
1122		descriptor_status =
1123			read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1124		status = ((descriptor_status >> (bcp->uvhub_cpu *
1125			UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1126		if (status == UV2H_DESC_BUSY)
1127			return cpumask;
1128		bcp->busy = 0;
1129	}
1130
1131	/* bau was disabled due to slow response */
1132	if (bcp->baudisabled) {
1133		if (check_enable(bcp, stat)) {
1134			stat->s_ipifordisabled++;
1135			return cpumask;
1136		}
1137	}
1138
1139	/*
1140	 * Each sending cpu has a per-cpu mask which it fills from the caller's
1141	 * cpu mask.  All cpus are converted to uvhubs and copied to the
1142	 * activation descriptor.
1143	 */
1144	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1145	/* don't actually do a shootdown of the local cpu */
1146	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1147
1148	if (cpumask_test_cpu(cpu, cpumask))
1149		stat->s_ntargself++;
1150
1151	bau_desc = bcp->descriptor_base;
1152	bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1153	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1154	if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1155		return NULL;
1156
1157	record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1158
1159	if (!info->end || (info->end - info->start) <= PAGE_SIZE)
1160		address = info->start;
1161	else
1162		address = TLB_FLUSH_ALL;
1163
1164	switch (bcp->uvhub_version) {
1165	case UV_BAU_V1:
1166	case UV_BAU_V2:
1167	case UV_BAU_V3:
1168		bau_desc->payload.uv1_2_3.address = address;
1169		bau_desc->payload.uv1_2_3.sending_cpu = cpu;
1170		break;
1171	case UV_BAU_V4:
1172		bau_desc->payload.uv4.address = address;
1173		bau_desc->payload.uv4.sending_cpu = cpu;
1174		bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
1175		break;
1176	}
1177
1178	/*
1179	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1180	 * or 1 if it gave up and the original cpumask should be returned.
1181	 */
1182	if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1183		return NULL;
1184	else
1185		return cpumask;
1186}
1187
1188/*
1189 * Search the message queue for any 'other' unprocessed message with the
1190 * same software acknowledge resource bit vector as the 'msg' message.
1191 */
1192static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1193						  struct bau_control *bcp)
1194{
1195	struct bau_pq_entry *msg_next = msg + 1;
1196	unsigned char swack_vec = msg->swack_vec;
1197
1198	if (msg_next > bcp->queue_last)
1199		msg_next = bcp->queue_first;
1200	while (msg_next != msg) {
1201		if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1202				(msg_next->swack_vec == swack_vec))
1203			return msg_next;
1204		msg_next++;
1205		if (msg_next > bcp->queue_last)
1206			msg_next = bcp->queue_first;
1207	}
1208	return NULL;
1209}
1210
1211/*
1212 * UV2 needs to work around a bug in which an arriving message has not
1213 * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1214 * Such a message must be ignored.
1215 */
1216static void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1217{
1218	unsigned long mmr_image;
1219	unsigned char swack_vec;
1220	struct bau_pq_entry *msg = mdp->msg;
1221	struct bau_pq_entry *other_msg;
1222
1223	mmr_image = ops.read_l_sw_ack();
1224	swack_vec = msg->swack_vec;
1225
1226	if ((swack_vec & mmr_image) == 0) {
1227		/*
1228		 * This message was assigned a swack resource, but no
1229		 * reserved acknowlegment is pending.
1230		 * The bug has prevented this message from setting the MMR.
1231		 */
1232		/*
1233		 * Some message has set the MMR 'pending' bit; it might have
1234		 * been another message.  Look for that message.
1235		 */
1236		other_msg = find_another_by_swack(msg, bcp);
1237		if (other_msg) {
1238			/*
1239			 * There is another. Process this one but do not
1240			 * ack it.
1241			 */
1242			bau_process_message(mdp, bcp, 0);
1243			/*
1244			 * Let the natural processing of that other message
1245			 * acknowledge it. Don't get the processing of sw_ack's
1246			 * out of order.
1247			 */
1248			return;
1249		}
1250	}
1251
1252	/*
1253	 * Either the MMR shows this one pending a reply or there is no
1254	 * other message using this sw_ack, so it is safe to acknowledge it.
1255	 */
1256	bau_process_message(mdp, bcp, 1);
1257
1258	return;
1259}
1260
1261/*
1262 * The BAU message interrupt comes here. (registered by set_intr_gate)
1263 * See entry_64.S
1264 *
1265 * We received a broadcast assist message.
1266 *
1267 * Interrupts are disabled; this interrupt could represent
1268 * the receipt of several messages.
1269 *
1270 * All cores/threads on this hub get this interrupt.
1271 * The last one to see it does the software ack.
1272 * (the resource will not be freed until noninterruptable cpus see this
1273 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1274 */
1275void uv_bau_message_interrupt(struct pt_regs *regs)
1276{
1277	int count = 0;
1278	cycles_t time_start;
1279	struct bau_pq_entry *msg;
1280	struct bau_control *bcp;
1281	struct ptc_stats *stat;
1282	struct msg_desc msgdesc;
1283
1284	ack_APIC_irq();
1285	kvm_set_cpu_l1tf_flush_l1d();
1286	time_start = get_cycles();
1287
1288	bcp = &per_cpu(bau_control, smp_processor_id());
1289	stat = bcp->statp;
1290
1291	msgdesc.queue_first = bcp->queue_first;
1292	msgdesc.queue_last = bcp->queue_last;
1293
1294	msg = bcp->bau_msg_head;
1295	while (msg->swack_vec) {
1296		count++;
1297
1298		msgdesc.msg_slot = msg - msgdesc.queue_first;
1299		msgdesc.msg = msg;
1300		if (bcp->uvhub_version == UV_BAU_V2)
1301			process_uv2_message(&msgdesc, bcp);
1302		else
1303			/* no error workaround for uv1 or uv3 */
1304			bau_process_message(&msgdesc, bcp, 1);
1305
1306		msg++;
1307		if (msg > msgdesc.queue_last)
1308			msg = msgdesc.queue_first;
1309		bcp->bau_msg_head = msg;
1310	}
1311	stat->d_time += (get_cycles() - time_start);
1312	if (!count)
1313		stat->d_nomsg++;
1314	else if (count > 1)
1315		stat->d_multmsg++;
1316}
1317
1318/*
1319 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1320 * shootdown message timeouts enabled.  The timeout does not cause
1321 * an interrupt, but causes an error message to be returned to
1322 * the sender.
1323 */
1324static void __init enable_timeouts(void)
1325{
1326	int uvhub;
1327	int nuvhubs;
1328	int pnode;
1329	unsigned long mmr_image;
1330
1331	nuvhubs = uv_num_possible_blades();
1332
1333	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1334		if (!uv_blade_nr_possible_cpus(uvhub))
1335			continue;
1336
1337		pnode = uv_blade_to_pnode(uvhub);
1338		mmr_image = read_mmr_misc_control(pnode);
1339		/*
1340		 * Set the timeout period and then lock it in, in three
1341		 * steps; captures and locks in the period.
1342		 *
1343		 * To program the period, the SOFT_ACK_MODE must be off.
1344		 */
1345		mmr_image &= ~(1L << SOFTACK_MSHIFT);
1346		write_mmr_misc_control(pnode, mmr_image);
1347		/*
1348		 * Set the 4-bit period.
1349		 */
1350		mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1351		mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1352		write_mmr_misc_control(pnode, mmr_image);
1353		/*
1354		 * UV1:
1355		 * Subsequent reversals of the timebase bit (3) cause an
1356		 * immediate timeout of one or all INTD resources as
1357		 * indicated in bits 2:0 (7 causes all of them to timeout).
1358		 */
1359		mmr_image |= (1L << SOFTACK_MSHIFT);
1360		if (is_uv2_hub()) {
1361			/* do not touch the legacy mode bit */
1362			/* hw bug workaround; do not use extended status */
1363			mmr_image &= ~(1L << UV2_EXT_SHFT);
1364		} else if (is_uv3_hub()) {
1365			mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1366			mmr_image |= (1L << SB_STATUS_SHFT);
1367		}
1368		write_mmr_misc_control(pnode, mmr_image);
1369	}
1370}
1371
1372static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1373{
1374	if (*offset < num_possible_cpus())
1375		return offset;
1376	return NULL;
1377}
1378
1379static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1380{
1381	(*offset)++;
1382	if (*offset < num_possible_cpus())
1383		return offset;
1384	return NULL;
1385}
1386
1387static void ptc_seq_stop(struct seq_file *file, void *data)
1388{
1389}
1390
1391/*
1392 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1393 * 'data' points to the cpu number
1394 * Note: see the descriptions in stat_description[].
1395 */
1396static int ptc_seq_show(struct seq_file *file, void *data)
1397{
1398	struct ptc_stats *stat;
1399	struct bau_control *bcp;
1400	int cpu;
1401
1402	cpu = *(loff_t *)data;
1403	if (!cpu) {
1404		seq_puts(file,
1405			 "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1406		seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1407		seq_puts(file,
1408			 "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1409		seq_puts(file,
1410			 "rok resetp resett giveup sto bz throt disable ");
1411		seq_puts(file,
1412			 "enable wars warshw warwaits enters ipidis plugged ");
1413		seq_puts(file,
1414			 "ipiover glim cong swack recv rtime all one mult ");
1415		seq_puts(file, "none retry canc nocan reset rcan\n");
1416	}
1417	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1418		bcp = &per_cpu(bau_control, cpu);
1419		if (bcp->nobau) {
1420			seq_printf(file, "cpu %d bau disabled\n", cpu);
1421			return 0;
1422		}
1423		stat = bcp->statp;
1424		/* source side statistics */
1425		seq_printf(file,
1426			"cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1427			   cpu, bcp->nobau, stat->s_requestor,
1428			   cycles_2_us(stat->s_time),
1429			   stat->s_ntargself, stat->s_ntarglocals,
1430			   stat->s_ntargremotes, stat->s_ntargcpu,
1431			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1432			   stat->s_ntarguvhub, stat->s_ntarguvhub16);
1433		seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1434			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1435			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1436			   stat->s_dtimeout, stat->s_strongnacks);
1437		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1438			   stat->s_retry_messages, stat->s_retriesok,
1439			   stat->s_resets_plug, stat->s_resets_timeout,
1440			   stat->s_giveup, stat->s_stimeout,
1441			   stat->s_busy, stat->s_throttles);
1442		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1443			   stat->s_bau_disabled, stat->s_bau_reenabled,
1444			   stat->s_uv2_wars, stat->s_uv2_wars_hw,
1445			   stat->s_uv2_war_waits, stat->s_enters,
1446			   stat->s_ipifordisabled, stat->s_plugged,
1447			   stat->s_overipilimit, stat->s_giveuplimit,
1448			   stat->s_congested);
1449
1450		/* destination side statistics */
1451		seq_printf(file,
1452			"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1453			   ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1454			   stat->d_requestee, cycles_2_us(stat->d_time),
1455			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1456			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
1457			   stat->d_nocanceled, stat->d_resets,
1458			   stat->d_rcanceled);
1459	}
1460	return 0;
1461}
1462
1463/*
1464 * Display the tunables thru debugfs
1465 */
1466static ssize_t tunables_read(struct file *file, char __user *userbuf,
1467				size_t count, loff_t *ppos)
1468{
1469	char *buf;
1470	int ret;
1471
1472	buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1473		"max_concur plugged_delay plugsb4reset timeoutsb4reset",
1474		"ipi_reset_limit complete_threshold congested_response_us",
1475		"congested_reps disabled_period giveup_limit",
1476		max_concurr, plugged_delay, plugsb4reset,
1477		timeoutsb4reset, ipi_reset_limit, complete_threshold,
1478		congested_respns_us, congested_reps, disabled_period,
1479		giveup_limit);
1480
1481	if (!buf)
1482		return -ENOMEM;
1483
1484	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1485	kfree(buf);
1486	return ret;
1487}
1488
1489/*
1490 * handle a write to /proc/sgi_uv/ptc_statistics
1491 * -1: reset the statistics
1492 *  0: display meaning of the statistics
1493 */
1494static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1495				size_t count, loff_t *data)
1496{
1497	int cpu;
1498	int i;
1499	int elements;
1500	long input_arg;
1501	char optstr[64];
1502	struct ptc_stats *stat;
1503
1504	if (count == 0 || count > sizeof(optstr))
1505		return -EINVAL;
1506	if (copy_from_user(optstr, user, count))
1507		return -EFAULT;
1508	optstr[count - 1] = '\0';
1509
1510	if (!strcmp(optstr, "on")) {
1511		set_bau_on();
1512		return count;
1513	} else if (!strcmp(optstr, "off")) {
1514		set_bau_off();
1515		return count;
1516	}
1517
1518	if (kstrtol(optstr, 10, &input_arg) < 0) {
1519		pr_debug("%s is invalid\n", optstr);
1520		return -EINVAL;
1521	}
1522
1523	if (input_arg == 0) {
1524		elements = ARRAY_SIZE(stat_description);
1525		pr_debug("# cpu:      cpu number\n");
1526		pr_debug("Sender statistics:\n");
1527		for (i = 0; i < elements; i++)
1528			pr_debug("%s\n", stat_description[i]);
1529	} else if (input_arg == -1) {
1530		for_each_present_cpu(cpu) {
1531			stat = &per_cpu(ptcstats, cpu);
1532			memset(stat, 0, sizeof(struct ptc_stats));
1533		}
1534	}
1535
1536	return count;
1537}
1538
1539static int local_atoi(const char *name)
1540{
1541	int val = 0;
1542
1543	for (;; name++) {
1544		switch (*name) {
1545		case '0' ... '9':
1546			val = 10*val+(*name-'0');
1547			break;
1548		default:
1549			return val;
1550		}
1551	}
1552}
1553
1554/*
1555 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1556 * Zero values reset them to defaults.
1557 */
1558static int parse_tunables_write(struct bau_control *bcp, char *instr,
1559				int count)
1560{
1561	char *p;
1562	char *q;
1563	int cnt = 0;
1564	int val;
1565	int e = ARRAY_SIZE(tunables);
1566
1567	p = instr + strspn(instr, WHITESPACE);
1568	q = p;
1569	for (; *p; p = q + strspn(q, WHITESPACE)) {
1570		q = p + strcspn(p, WHITESPACE);
1571		cnt++;
1572		if (q == p)
1573			break;
1574	}
1575	if (cnt != e) {
1576		pr_info("bau tunable error: should be %d values\n", e);
1577		return -EINVAL;
1578	}
1579
1580	p = instr + strspn(instr, WHITESPACE);
1581	q = p;
1582	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1583		q = p + strcspn(p, WHITESPACE);
1584		val = local_atoi(p);
1585		switch (cnt) {
1586		case 0:
1587			if (val == 0) {
1588				max_concurr = MAX_BAU_CONCURRENT;
1589				max_concurr_const = MAX_BAU_CONCURRENT;
1590				continue;
1591			}
1592			if (val < 1 || val > bcp->cpus_in_uvhub) {
1593				pr_debug(
1594				"Error: BAU max concurrent %d is invalid\n",
1595				val);
1596				return -EINVAL;
1597			}
1598			max_concurr = val;
1599			max_concurr_const = val;
1600			continue;
1601		default:
1602			if (val == 0)
1603				*tunables[cnt].tunp = tunables[cnt].deflt;
1604			else
1605				*tunables[cnt].tunp = val;
1606			continue;
1607		}
1608	}
1609	return 0;
1610}
1611
1612/*
1613 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1614 */
1615static ssize_t tunables_write(struct file *file, const char __user *user,
1616				size_t count, loff_t *data)
1617{
1618	int cpu;
1619	int ret;
1620	char instr[100];
1621	struct bau_control *bcp;
1622
1623	if (count == 0 || count > sizeof(instr)-1)
1624		return -EINVAL;
1625	if (copy_from_user(instr, user, count))
1626		return -EFAULT;
1627
1628	instr[count] = '\0';
1629
1630	cpu = get_cpu();
1631	bcp = &per_cpu(bau_control, cpu);
1632	ret = parse_tunables_write(bcp, instr, count);
1633	put_cpu();
1634	if (ret)
1635		return ret;
1636
1637	for_each_present_cpu(cpu) {
1638		bcp = &per_cpu(bau_control, cpu);
1639		bcp->max_concurr         = max_concurr;
1640		bcp->max_concurr_const   = max_concurr;
1641		bcp->plugged_delay       = plugged_delay;
1642		bcp->plugsb4reset        = plugsb4reset;
1643		bcp->timeoutsb4reset     = timeoutsb4reset;
1644		bcp->ipi_reset_limit     = ipi_reset_limit;
1645		bcp->complete_threshold  = complete_threshold;
1646		bcp->cong_response_us    = congested_respns_us;
1647		bcp->cong_reps           = congested_reps;
1648		bcp->disabled_period     = sec_2_cycles(disabled_period);
1649		bcp->giveup_limit        = giveup_limit;
1650	}
1651	return count;
1652}
1653
1654static const struct seq_operations uv_ptc_seq_ops = {
1655	.start		= ptc_seq_start,
1656	.next		= ptc_seq_next,
1657	.stop		= ptc_seq_stop,
1658	.show		= ptc_seq_show
1659};
1660
1661static int ptc_proc_open(struct inode *inode, struct file *file)
1662{
1663	return seq_open(file, &uv_ptc_seq_ops);
1664}
1665
1666static int tunables_open(struct inode *inode, struct file *file)
1667{
1668	return 0;
1669}
1670
1671static const struct file_operations proc_uv_ptc_operations = {
1672	.open		= ptc_proc_open,
1673	.read		= seq_read,
1674	.write		= ptc_proc_write,
1675	.llseek		= seq_lseek,
1676	.release	= seq_release,
1677};
1678
1679static const struct file_operations tunables_fops = {
1680	.open		= tunables_open,
1681	.read		= tunables_read,
1682	.write		= tunables_write,
1683	.llseek		= default_llseek,
1684};
1685
1686static int __init uv_ptc_init(void)
1687{
1688	struct proc_dir_entry *proc_uv_ptc;
1689
1690	if (!is_uv_system())
1691		return 0;
1692
1693	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1694				  &proc_uv_ptc_operations);
1695	if (!proc_uv_ptc) {
1696		pr_err("unable to create %s proc entry\n",
1697		       UV_PTC_BASENAME);
1698		return -EINVAL;
1699	}
1700
1701	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1702	debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, tunables_dir, NULL,
1703			    &tunables_fops);
1704	return 0;
1705}
1706
1707/*
1708 * Initialize the sending side's sending buffers.
1709 */
1710static void activation_descriptor_init(int node, int pnode, int base_pnode)
1711{
1712	int i;
1713	int cpu;
1714	int uv1 = 0;
1715	unsigned long gpa;
1716	unsigned long m;
1717	unsigned long n;
1718	size_t dsize;
1719	struct bau_desc *bau_desc;
1720	struct bau_desc *bd2;
1721	struct uv1_bau_msg_header *uv1_hdr;
1722	struct uv2_3_bau_msg_header *uv2_3_hdr;
1723	struct bau_control *bcp;
1724
1725	/*
1726	 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1727	 * per cpu; and one per cpu on the uvhub (ADP_SZ)
1728	 */
1729	dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1730	bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1731	BUG_ON(!bau_desc);
1732
1733	gpa = uv_gpa(bau_desc);
1734	n = uv_gpa_to_gnode(gpa);
1735	m = ops.bau_gpa_to_offset(gpa);
1736	if (is_uv1_hub())
1737		uv1 = 1;
1738
1739	/* the 14-bit pnode */
1740	write_mmr_descriptor_base(pnode,
1741		(n << UVH_LB_BAU_SB_DESCRIPTOR_BASE_NODE_ID_SHFT | m));
1742	/*
1743	 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1744	 * cpu even though we only use the first one; one descriptor can
1745	 * describe a broadcast to 256 uv hubs.
1746	 */
1747	for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1748		memset(bd2, 0, sizeof(struct bau_desc));
1749		if (uv1) {
1750			uv1_hdr = &bd2->header.uv1_hdr;
1751			uv1_hdr->swack_flag = 1;
1752			/*
1753			 * The base_dest_nasid set in the message header
1754			 * is the nasid of the first uvhub in the partition.
1755			 * The bit map will indicate destination pnode numbers
1756			 * relative to that base. They may not be consecutive
1757			 * if nasid striding is being used.
1758			 */
1759			uv1_hdr->base_dest_nasid =
1760			                          UV_PNODE_TO_NASID(base_pnode);
1761			uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1762			uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1763			uv1_hdr->int_both        = 1;
1764			/*
1765			 * all others need to be set to zero:
1766			 *   fairness chaining multilevel count replied_to
1767			 */
1768		} else {
1769			/*
1770			 * BIOS uses legacy mode, but uv2 and uv3 hardware always
1771			 * uses native mode for selective broadcasts.
1772			 */
1773			uv2_3_hdr = &bd2->header.uv2_3_hdr;
1774			uv2_3_hdr->swack_flag      = 1;
1775			uv2_3_hdr->base_dest_nasid =
1776			                          UV_PNODE_TO_NASID(base_pnode);
1777			uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1778			uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1779		}
1780	}
1781	for_each_present_cpu(cpu) {
1782		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1783			continue;
1784		bcp = &per_cpu(bau_control, cpu);
1785		bcp->descriptor_base = bau_desc;
1786	}
1787}
1788
1789/*
1790 * initialize the destination side's receiving buffers
1791 * entered for each uvhub in the partition
1792 * - node is first node (kernel memory notion) on the uvhub
1793 * - pnode is the uvhub's physical identifier
1794 */
1795static void pq_init(int node, int pnode)
1796{
1797	int cpu;
1798	size_t plsize;
1799	char *cp;
1800	void *vp;
1801	unsigned long gnode, first, last, tail;
1802	struct bau_pq_entry *pqp;
1803	struct bau_control *bcp;
1804
1805	plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1806	vp = kmalloc_node(plsize, GFP_KERNEL, node);
1807	BUG_ON(!vp);
1808
1809	pqp = (struct bau_pq_entry *)vp;
1810	cp = (char *)pqp + 31;
1811	pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1812
1813	for_each_present_cpu(cpu) {
1814		if (pnode != uv_cpu_to_pnode(cpu))
1815			continue;
1816		/* for every cpu on this pnode: */
1817		bcp = &per_cpu(bau_control, cpu);
1818		bcp->queue_first	= pqp;
1819		bcp->bau_msg_head	= pqp;
1820		bcp->queue_last		= pqp + (DEST_Q_SIZE - 1);
1821	}
1822
1823	first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1824	last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1825
1826	/*
1827	 * Pre UV4, the gnode is required to locate the payload queue
1828	 * and the payload queue tail must be maintained by the kernel.
1829	 */
1830	bcp = &per_cpu(bau_control, smp_processor_id());
1831	if (bcp->uvhub_version <= UV_BAU_V3) {
1832		tail = first;
1833		gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1834		first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1835		write_mmr_payload_tail(pnode, tail);
1836	}
1837
1838	ops.write_payload_first(pnode, first);
1839	ops.write_payload_last(pnode, last);
1840
1841	/* in effect, all msg_type's are set to MSG_NOOP */
1842	memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1843}
1844
1845/*
1846 * Initialization of each UV hub's structures
1847 */
1848static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1849{
1850	int node;
1851	int pnode;
1852	unsigned long apicid;
1853
1854	node = uvhub_to_first_node(uvhub);
1855	pnode = uv_blade_to_pnode(uvhub);
1856
1857	activation_descriptor_init(node, pnode, base_pnode);
1858
1859	pq_init(node, pnode);
1860	/*
1861	 * The below initialization can't be in firmware because the
1862	 * messaging IRQ will be determined by the OS.
1863	 */
1864	apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1865	write_mmr_data_config(pnode, ((apicid << 32) | vector));
1866}
1867
1868/*
1869 * We will set BAU_MISC_CONTROL with a timeout period.
1870 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1871 * So the destination timeout period has to be calculated from them.
1872 */
1873static int calculate_destination_timeout(void)
1874{
1875	unsigned long mmr_image;
1876	int mult1;
1877	int mult2;
1878	int index;
1879	int base;
1880	int ret;
1881	unsigned long ts_ns;
1882
1883	if (is_uv1_hub()) {
1884		mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1885		mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1886		index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1887		mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1888		mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1889		ts_ns = timeout_base_ns[index];
1890		ts_ns *= (mult1 * mult2);
1891		ret = ts_ns / 1000;
1892	} else {
1893		/* same destination timeout for uv2 and uv3 */
1894		/* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1895		mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1896		mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1897		if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1898			base = 80;
1899		else
1900			base = 10;
1901		mult1 = mmr_image & UV2_ACK_MASK;
1902		ret = mult1 * base;
1903	}
1904	return ret;
1905}
1906
1907static void __init init_per_cpu_tunables(void)
1908{
1909	int cpu;
1910	struct bau_control *bcp;
1911
1912	for_each_present_cpu(cpu) {
1913		bcp = &per_cpu(bau_control, cpu);
1914		bcp->baudisabled		= 0;
1915		if (nobau)
1916			bcp->nobau		= true;
1917		bcp->statp			= &per_cpu(ptcstats, cpu);
1918		/* time interval to catch a hardware stay-busy bug */
1919		bcp->timeout_interval		= usec_2_cycles(2*timeout_us);
1920		bcp->max_concurr		= max_concurr;
1921		bcp->max_concurr_const		= max_concurr;
1922		bcp->plugged_delay		= plugged_delay;
1923		bcp->plugsb4reset		= plugsb4reset;
1924		bcp->timeoutsb4reset		= timeoutsb4reset;
1925		bcp->ipi_reset_limit		= ipi_reset_limit;
1926		bcp->complete_threshold		= complete_threshold;
1927		bcp->cong_response_us		= congested_respns_us;
1928		bcp->cong_reps			= congested_reps;
1929		bcp->disabled_period		= sec_2_cycles(disabled_period);
1930		bcp->giveup_limit		= giveup_limit;
1931		spin_lock_init(&bcp->queue_lock);
1932		spin_lock_init(&bcp->uvhub_lock);
1933		spin_lock_init(&bcp->disable_lock);
1934	}
1935}
1936
1937/*
1938 * Scan all cpus to collect blade and socket summaries.
1939 */
1940static int __init get_cpu_topology(int base_pnode,
1941					struct uvhub_desc *uvhub_descs,
1942					unsigned char *uvhub_mask)
1943{
1944	int cpu;
1945	int pnode;
1946	int uvhub;
1947	int socket;
1948	struct bau_control *bcp;
1949	struct uvhub_desc *bdp;
1950	struct socket_desc *sdp;
1951
1952	for_each_present_cpu(cpu) {
1953		bcp = &per_cpu(bau_control, cpu);
1954
1955		memset(bcp, 0, sizeof(struct bau_control));
1956
1957		pnode = uv_cpu_hub_info(cpu)->pnode;
1958		if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1959			pr_emerg(
1960				"cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1961				cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1962			return 1;
1963		}
1964
1965		bcp->osnode = cpu_to_node(cpu);
1966		bcp->partition_base_pnode = base_pnode;
1967
1968		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1969		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1970		bdp = &uvhub_descs[uvhub];
1971
1972		bdp->num_cpus++;
1973		bdp->uvhub = uvhub;
1974		bdp->pnode = pnode;
1975
1976		/* kludge: 'assuming' one node per socket, and assuming that
1977		   disabling a socket just leaves a gap in node numbers */
1978		socket = bcp->osnode & 1;
1979		bdp->socket_mask |= (1 << socket);
1980		sdp = &bdp->socket[socket];
1981		sdp->cpu_number[sdp->num_cpus] = cpu;
1982		sdp->num_cpus++;
1983		if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1984			pr_emerg("%d cpus per socket invalid\n",
1985				sdp->num_cpus);
1986			return 1;
1987		}
1988	}
1989	return 0;
1990}
1991
1992/*
1993 * Each socket is to get a local array of pnodes/hubs.
1994 */
1995static void make_per_cpu_thp(struct bau_control *smaster)
1996{
1997	int cpu;
1998	size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1999
2000	smaster->thp = kzalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2001	for_each_present_cpu(cpu) {
2002		smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2003		smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2004	}
2005}
2006
2007/*
2008 * Each uvhub is to get a local cpumask.
2009 */
2010static void make_per_hub_cpumask(struct bau_control *hmaster)
2011{
2012	int sz = sizeof(cpumask_t);
2013
2014	hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2015}
2016
2017/*
2018 * Initialize all the per_cpu information for the cpu's on a given socket,
2019 * given what has been gathered into the socket_desc struct.
2020 * And reports the chosen hub and socket masters back to the caller.
2021 */
2022static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2023			struct bau_control **smasterp,
2024			struct bau_control **hmasterp)
2025{
2026	int i, cpu, uvhub_cpu;
2027	struct bau_control *bcp;
2028
2029	for (i = 0; i < sdp->num_cpus; i++) {
2030		cpu = sdp->cpu_number[i];
2031		bcp = &per_cpu(bau_control, cpu);
2032		bcp->cpu = cpu;
2033		if (i == 0) {
2034			*smasterp = bcp;
2035			if (!(*hmasterp))
2036				*hmasterp = bcp;
2037		}
2038		bcp->cpus_in_uvhub = bdp->num_cpus;
2039		bcp->cpus_in_socket = sdp->num_cpus;
2040		bcp->socket_master = *smasterp;
2041		bcp->uvhub = bdp->uvhub;
2042		if (is_uv1_hub())
2043			bcp->uvhub_version = UV_BAU_V1;
2044		else if (is_uv2_hub())
2045			bcp->uvhub_version = UV_BAU_V2;
2046		else if (is_uv3_hub())
2047			bcp->uvhub_version = UV_BAU_V3;
2048		else if (is_uv4_hub())
2049			bcp->uvhub_version = UV_BAU_V4;
2050		else {
2051			pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2052			return 1;
2053		}
2054		bcp->uvhub_master = *hmasterp;
2055		uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2056		bcp->uvhub_cpu = uvhub_cpu;
2057
2058		/*
2059		 * The ERROR and BUSY status registers are located pairwise over
2060		 * the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
2061		 */
2062		if (uvhub_cpu < UV_CPUS_PER_AS) {
2063			bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
2064			bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
2065		} else {
2066			bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
2067			bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
2068						* UV_ACT_STATUS_SIZE;
2069		}
2070
2071		if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2072			pr_emerg("%d cpus per uvhub invalid\n",
2073				bcp->uvhub_cpu);
2074			return 1;
2075		}
2076	}
2077	return 0;
2078}
2079
2080/*
2081 * Summarize the blade and socket topology into the per_cpu structures.
2082 */
2083static int __init summarize_uvhub_sockets(int nuvhubs,
2084			struct uvhub_desc *uvhub_descs,
2085			unsigned char *uvhub_mask)
2086{
2087	int socket;
2088	int uvhub;
2089	unsigned short socket_mask;
2090
2091	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2092		struct uvhub_desc *bdp;
2093		struct bau_control *smaster = NULL;
2094		struct bau_control *hmaster = NULL;
2095
2096		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2097			continue;
2098
2099		bdp = &uvhub_descs[uvhub];
2100		socket_mask = bdp->socket_mask;
2101		socket = 0;
2102		while (socket_mask) {
2103			struct socket_desc *sdp;
2104			if ((socket_mask & 1)) {
2105				sdp = &bdp->socket[socket];
2106				if (scan_sock(sdp, bdp, &smaster, &hmaster))
2107					return 1;
2108				make_per_cpu_thp(smaster);
2109			}
2110			socket++;
2111			socket_mask = (socket_mask >> 1);
2112		}
2113		make_per_hub_cpumask(hmaster);
2114	}
2115	return 0;
2116}
2117
2118/*
2119 * initialize the bau_control structure for each cpu
2120 */
2121static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2122{
2123	struct uvhub_desc *uvhub_descs;
2124	unsigned char *uvhub_mask = NULL;
2125
2126	if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2127		timeout_us = calculate_destination_timeout();
2128
2129	uvhub_descs = kcalloc(nuvhubs, sizeof(struct uvhub_desc), GFP_KERNEL);
2130	if (!uvhub_descs)
2131		goto fail;
2132
2133	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2134	if (!uvhub_mask)
2135		goto fail;
2136
2137	if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2138		goto fail;
2139
2140	if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2141		goto fail;
2142
2143	kfree(uvhub_descs);
2144	kfree(uvhub_mask);
2145	init_per_cpu_tunables();
2146	return 0;
2147
2148fail:
2149	kfree(uvhub_descs);
2150	kfree(uvhub_mask);
2151	return 1;
2152}
2153
2154static const struct bau_operations uv1_bau_ops __initconst = {
2155	.bau_gpa_to_offset       = uv_gpa_to_offset,
2156	.read_l_sw_ack           = read_mmr_sw_ack,
2157	.read_g_sw_ack           = read_gmmr_sw_ack,
2158	.write_l_sw_ack          = write_mmr_sw_ack,
2159	.write_g_sw_ack          = write_gmmr_sw_ack,
2160	.write_payload_first     = write_mmr_payload_first,
2161	.write_payload_last      = write_mmr_payload_last,
2162	.wait_completion	 = uv1_wait_completion,
2163};
2164
2165static const struct bau_operations uv2_3_bau_ops __initconst = {
2166	.bau_gpa_to_offset       = uv_gpa_to_offset,
2167	.read_l_sw_ack           = read_mmr_sw_ack,
2168	.read_g_sw_ack           = read_gmmr_sw_ack,
2169	.write_l_sw_ack          = write_mmr_sw_ack,
2170	.write_g_sw_ack          = write_gmmr_sw_ack,
2171	.write_payload_first     = write_mmr_payload_first,
2172	.write_payload_last      = write_mmr_payload_last,
2173	.wait_completion	 = uv2_3_wait_completion,
2174};
2175
2176static const struct bau_operations uv4_bau_ops __initconst = {
2177	.bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
2178	.read_l_sw_ack           = read_mmr_proc_sw_ack,
2179	.read_g_sw_ack           = read_gmmr_proc_sw_ack,
2180	.write_l_sw_ack          = write_mmr_proc_sw_ack,
2181	.write_g_sw_ack          = write_gmmr_proc_sw_ack,
2182	.write_payload_first     = write_mmr_proc_payload_first,
2183	.write_payload_last      = write_mmr_proc_payload_last,
2184	.wait_completion         = uv4_wait_completion,
2185};
2186
2187/*
2188 * Initialization of BAU-related structures
2189 */
2190static int __init uv_bau_init(void)
2191{
2192	int uvhub;
2193	int pnode;
2194	int nuvhubs;
2195	int cur_cpu;
2196	int cpus;
2197	int vector;
2198	cpumask_var_t *mask;
2199
2200	if (!is_uv_system())
2201		return 0;
2202
2203	if (is_uv4_hub())
2204		ops = uv4_bau_ops;
2205	else if (is_uv3_hub())
2206		ops = uv2_3_bau_ops;
2207	else if (is_uv2_hub())
2208		ops = uv2_3_bau_ops;
2209	else if (is_uv1_hub())
2210		ops = uv1_bau_ops;
2211
2212	nuvhubs = uv_num_possible_blades();
2213	if (nuvhubs < 2) {
2214		pr_crit("UV: BAU disabled - insufficient hub count\n");
2215		goto err_bau_disable;
2216	}
2217
2218	for_each_possible_cpu(cur_cpu) {
2219		mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2220		zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2221	}
2222
2223	uv_base_pnode = 0x7fffffff;
2224	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2225		cpus = uv_blade_nr_possible_cpus(uvhub);
2226		if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2227			uv_base_pnode = uv_blade_to_pnode(uvhub);
2228	}
2229
2230	/* software timeouts are not supported on UV4 */
2231	if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2232		enable_timeouts();
2233
2234	if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2235		pr_crit("UV: BAU disabled - per CPU init failed\n");
2236		goto err_bau_disable;
2237	}
2238
2239	vector = UV_BAU_MESSAGE;
2240	for_each_possible_blade(uvhub) {
2241		if (uv_blade_nr_possible_cpus(uvhub))
2242			init_uvhub(uvhub, vector, uv_base_pnode);
2243	}
2244
2245	for_each_possible_blade(uvhub) {
2246		if (uv_blade_nr_possible_cpus(uvhub)) {
2247			unsigned long val;
2248			unsigned long mmr;
2249			pnode = uv_blade_to_pnode(uvhub);
2250			/* INIT the bau */
2251			val = 1L << 63;
2252			write_gmmr_activation(pnode, val);
2253			mmr = 1; /* should be 1 to broadcast to both sockets */
2254			if (!is_uv1_hub())
2255				write_mmr_data_broadcast(pnode, mmr);
2256		}
2257	}
2258
2259	return 0;
2260
2261err_bau_disable:
2262
2263	for_each_possible_cpu(cur_cpu)
2264		free_cpumask_var(per_cpu(uv_flush_tlb_mask, cur_cpu));
2265
2266	set_bau_off();
2267	nobau_perm = 1;
2268
2269	return -EINVAL;
2270}
2271core_initcall(uv_bau_init);
2272fs_initcall(uv_ptc_init);