Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/x86_64/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   8 */
   9
  10#include <linux/signal.h>
  11#include <linux/sched.h>
  12#include <linux/kernel.h>
  13#include <linux/errno.h>
  14#include <linux/string.h>
  15#include <linux/types.h>
  16#include <linux/ptrace.h>
  17#include <linux/mman.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/smp.h>
  21#include <linux/init.h>
  22#include <linux/initrd.h>
  23#include <linux/pagemap.h>
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/memory.h>
  31#include <linux/memory_hotplug.h>
  32#include <linux/memremap.h>
  33#include <linux/nmi.h>
  34#include <linux/gfp.h>
  35#include <linux/kcore.h>
  36#include <linux/bootmem_info.h>
  37
  38#include <asm/processor.h>
  39#include <asm/bios_ebda.h>
  40#include <linux/uaccess.h>
 
  41#include <asm/pgalloc.h>
  42#include <asm/dma.h>
  43#include <asm/fixmap.h>
  44#include <asm/e820/api.h>
  45#include <asm/apic.h>
  46#include <asm/tlb.h>
  47#include <asm/mmu_context.h>
  48#include <asm/proto.h>
  49#include <asm/smp.h>
  50#include <asm/sections.h>
  51#include <asm/kdebug.h>
  52#include <asm/numa.h>
  53#include <asm/set_memory.h>
  54#include <asm/init.h>
  55#include <asm/uv/uv.h>
  56#include <asm/setup.h>
  57#include <asm/ftrace.h>
  58
  59#include "mm_internal.h"
  60
  61#include "ident_map.c"
  62
  63#define DEFINE_POPULATE(fname, type1, type2, init)		\
  64static inline void fname##_init(struct mm_struct *mm,		\
  65		type1##_t *arg1, type2##_t *arg2, bool init)	\
  66{								\
  67	if (init)						\
  68		fname##_safe(mm, arg1, arg2);			\
  69	else							\
  70		fname(mm, arg1, arg2);				\
  71}
  72
  73DEFINE_POPULATE(p4d_populate, p4d, pud, init)
  74DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
  75DEFINE_POPULATE(pud_populate, pud, pmd, init)
  76DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
  77
  78#define DEFINE_ENTRY(type1, type2, init)			\
  79static inline void set_##type1##_init(type1##_t *arg1,		\
  80			type2##_t arg2, bool init)		\
  81{								\
  82	if (init)						\
  83		set_##type1##_safe(arg1, arg2);			\
  84	else							\
  85		set_##type1(arg1, arg2);			\
  86}
  87
  88DEFINE_ENTRY(p4d, p4d, init)
  89DEFINE_ENTRY(pud, pud, init)
  90DEFINE_ENTRY(pmd, pmd, init)
  91DEFINE_ENTRY(pte, pte, init)
  92
  93static inline pgprot_t prot_sethuge(pgprot_t prot)
  94{
  95	WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
  96
  97	return __pgprot(pgprot_val(prot) | _PAGE_PSE);
  98}
  99
 100/*
 101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 102 * physical space so we can cache the place of the first one and move
 103 * around without checking the pgd every time.
 104 */
 105
 106/* Bits supported by the hardware: */
 107pteval_t __supported_pte_mask __read_mostly = ~0;
 108/* Bits allowed in normal kernel mappings: */
 109pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 110EXPORT_SYMBOL_GPL(__supported_pte_mask);
 111/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
 112EXPORT_SYMBOL(__default_kernel_pte_mask);
 113
 114int force_personality32;
 115
 116/*
 117 * noexec32=on|off
 118 * Control non executable heap for 32bit processes.
 
 119 *
 120 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 121 * off	PROT_READ implies PROT_EXEC
 122 */
 123static int __init nonx32_setup(char *str)
 124{
 125	if (!strcmp(str, "on"))
 126		force_personality32 &= ~READ_IMPLIES_EXEC;
 127	else if (!strcmp(str, "off"))
 128		force_personality32 |= READ_IMPLIES_EXEC;
 129	return 1;
 130}
 131__setup("noexec32=", nonx32_setup);
 132
 133static void sync_global_pgds_l5(unsigned long start, unsigned long end)
 134{
 135	unsigned long addr;
 136
 137	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 138		const pgd_t *pgd_ref = pgd_offset_k(addr);
 139		struct page *page;
 140
 141		/* Check for overflow */
 142		if (addr < start)
 143			break;
 144
 145		if (pgd_none(*pgd_ref))
 146			continue;
 147
 148		spin_lock(&pgd_lock);
 149		list_for_each_entry(page, &pgd_list, lru) {
 150			pgd_t *pgd;
 151			spinlock_t *pgt_lock;
 152
 153			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 154			/* the pgt_lock only for Xen */
 155			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 156			spin_lock(pgt_lock);
 157
 158			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 159				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 160
 161			if (pgd_none(*pgd))
 162				set_pgd(pgd, *pgd_ref);
 163
 164			spin_unlock(pgt_lock);
 165		}
 166		spin_unlock(&pgd_lock);
 167	}
 168}
 169
 170static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 171{
 172	unsigned long addr;
 173
 174	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 175		pgd_t *pgd_ref = pgd_offset_k(addr);
 176		const p4d_t *p4d_ref;
 177		struct page *page;
 178
 179		/*
 180		 * With folded p4d, pgd_none() is always false, we need to
 181		 * handle synchronization on p4d level.
 182		 */
 183		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 184		p4d_ref = p4d_offset(pgd_ref, addr);
 185
 186		if (p4d_none(*p4d_ref))
 187			continue;
 188
 189		spin_lock(&pgd_lock);
 190		list_for_each_entry(page, &pgd_list, lru) {
 191			pgd_t *pgd;
 192			p4d_t *p4d;
 193			spinlock_t *pgt_lock;
 194
 195			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 196			p4d = p4d_offset(pgd, addr);
 197			/* the pgt_lock only for Xen */
 198			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 199			spin_lock(pgt_lock);
 200
 201			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 202				BUG_ON(p4d_pgtable(*p4d)
 203				       != p4d_pgtable(*p4d_ref));
 204
 205			if (p4d_none(*p4d))
 206				set_p4d(p4d, *p4d_ref);
 207
 208			spin_unlock(pgt_lock);
 209		}
 210		spin_unlock(&pgd_lock);
 211	}
 212}
 213
 214/*
 215 * When memory was added make sure all the processes MM have
 216 * suitable PGD entries in the local PGD level page.
 217 */
 218static void sync_global_pgds(unsigned long start, unsigned long end)
 219{
 220	if (pgtable_l5_enabled())
 221		sync_global_pgds_l5(start, end);
 222	else
 223		sync_global_pgds_l4(start, end);
 224}
 225
 226/*
 227 * NOTE: This function is marked __ref because it calls __init function
 228 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 229 */
 230static __ref void *spp_getpage(void)
 231{
 232	void *ptr;
 233
 234	if (after_bootmem)
 235		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 236	else
 237		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 238
 239	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 240		panic("set_pte_phys: cannot allocate page data %s\n",
 241			after_bootmem ? "after bootmem" : "");
 242	}
 243
 244	pr_debug("spp_getpage %p\n", ptr);
 245
 246	return ptr;
 247}
 248
 249static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 250{
 251	if (pgd_none(*pgd)) {
 252		p4d_t *p4d = (p4d_t *)spp_getpage();
 253		pgd_populate(&init_mm, pgd, p4d);
 254		if (p4d != p4d_offset(pgd, 0))
 255			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 256			       p4d, p4d_offset(pgd, 0));
 257	}
 258	return p4d_offset(pgd, vaddr);
 259}
 260
 261static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 262{
 263	if (p4d_none(*p4d)) {
 264		pud_t *pud = (pud_t *)spp_getpage();
 265		p4d_populate(&init_mm, p4d, pud);
 266		if (pud != pud_offset(p4d, 0))
 267			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 268			       pud, pud_offset(p4d, 0));
 269	}
 270	return pud_offset(p4d, vaddr);
 271}
 272
 273static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 274{
 275	if (pud_none(*pud)) {
 276		pmd_t *pmd = (pmd_t *) spp_getpage();
 277		pud_populate(&init_mm, pud, pmd);
 278		if (pmd != pmd_offset(pud, 0))
 279			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 280			       pmd, pmd_offset(pud, 0));
 281	}
 282	return pmd_offset(pud, vaddr);
 283}
 284
 285static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 286{
 287	if (pmd_none(*pmd)) {
 288		pte_t *pte = (pte_t *) spp_getpage();
 289		pmd_populate_kernel(&init_mm, pmd, pte);
 290		if (pte != pte_offset_kernel(pmd, 0))
 291			printk(KERN_ERR "PAGETABLE BUG #03!\n");
 292	}
 293	return pte_offset_kernel(pmd, vaddr);
 294}
 295
 296static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 297{
 298	pmd_t *pmd = fill_pmd(pud, vaddr);
 299	pte_t *pte = fill_pte(pmd, vaddr);
 300
 301	set_pte(pte, new_pte);
 302
 303	/*
 304	 * It's enough to flush this one mapping.
 305	 * (PGE mappings get flushed as well)
 306	 */
 307	flush_tlb_one_kernel(vaddr);
 308}
 309
 310void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 311{
 312	p4d_t *p4d = p4d_page + p4d_index(vaddr);
 313	pud_t *pud = fill_pud(p4d, vaddr);
 314
 315	__set_pte_vaddr(pud, vaddr, new_pte);
 316}
 317
 318void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 319{
 320	pud_t *pud = pud_page + pud_index(vaddr);
 321
 322	__set_pte_vaddr(pud, vaddr, new_pte);
 323}
 324
 325void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 326{
 327	pgd_t *pgd;
 328	p4d_t *p4d_page;
 329
 330	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 331
 332	pgd = pgd_offset_k(vaddr);
 333	if (pgd_none(*pgd)) {
 334		printk(KERN_ERR
 335			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 336		return;
 337	}
 338
 339	p4d_page = p4d_offset(pgd, 0);
 340	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 341}
 342
 343pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 344{
 345	pgd_t *pgd;
 346	p4d_t *p4d;
 347	pud_t *pud;
 348
 349	pgd = pgd_offset_k(vaddr);
 350	p4d = fill_p4d(pgd, vaddr);
 351	pud = fill_pud(p4d, vaddr);
 352	return fill_pmd(pud, vaddr);
 353}
 354
 355pte_t * __init populate_extra_pte(unsigned long vaddr)
 356{
 357	pmd_t *pmd;
 358
 359	pmd = populate_extra_pmd(vaddr);
 360	return fill_pte(pmd, vaddr);
 361}
 362
 363/*
 364 * Create large page table mappings for a range of physical addresses.
 365 */
 366static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 367					enum page_cache_mode cache)
 368{
 369	pgd_t *pgd;
 370	p4d_t *p4d;
 371	pud_t *pud;
 372	pmd_t *pmd;
 373	pgprot_t prot;
 374
 375	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 376		protval_4k_2_large(cachemode2protval(cache));
 377	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 378	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 379		pgd = pgd_offset_k((unsigned long)__va(phys));
 380		if (pgd_none(*pgd)) {
 381			p4d = (p4d_t *) spp_getpage();
 382			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 383						_PAGE_USER));
 384		}
 385		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 386		if (p4d_none(*p4d)) {
 387			pud = (pud_t *) spp_getpage();
 388			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 389						_PAGE_USER));
 390		}
 391		pud = pud_offset(p4d, (unsigned long)__va(phys));
 392		if (pud_none(*pud)) {
 393			pmd = (pmd_t *) spp_getpage();
 394			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 395						_PAGE_USER));
 396		}
 397		pmd = pmd_offset(pud, phys);
 398		BUG_ON(!pmd_none(*pmd));
 399		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 400	}
 401}
 402
 403void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 404{
 405	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 406}
 407
 408void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 409{
 410	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 411}
 412
 413/*
 414 * The head.S code sets up the kernel high mapping:
 415 *
 416 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 417 *
 418 * phys_base holds the negative offset to the kernel, which is added
 419 * to the compile time generated pmds. This results in invalid pmds up
 420 * to the point where we hit the physaddr 0 mapping.
 421 *
 422 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 423 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 424 * well, as they are located before _text:
 425 */
 426void __init cleanup_highmap(void)
 427{
 428	unsigned long vaddr = __START_KERNEL_map;
 429	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 430	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 431	pmd_t *pmd = level2_kernel_pgt;
 432
 433	/*
 434	 * Native path, max_pfn_mapped is not set yet.
 435	 * Xen has valid max_pfn_mapped set in
 436	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 437	 */
 438	if (max_pfn_mapped)
 439		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 440
 441	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 442		if (pmd_none(*pmd))
 443			continue;
 444		if (vaddr < (unsigned long) _text || vaddr > end)
 445			set_pmd(pmd, __pmd(0));
 446	}
 447}
 448
 449/*
 450 * Create PTE level page table mapping for physical addresses.
 451 * It returns the last physical address mapped.
 452 */
 453static unsigned long __meminit
 454phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 455	      pgprot_t prot, bool init)
 456{
 457	unsigned long pages = 0, paddr_next;
 458	unsigned long paddr_last = paddr_end;
 459	pte_t *pte;
 460	int i;
 461
 462	pte = pte_page + pte_index(paddr);
 463	i = pte_index(paddr);
 464
 465	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 466		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 467		if (paddr >= paddr_end) {
 468			if (!after_bootmem &&
 469			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 470					     E820_TYPE_RAM) &&
 471			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 472					     E820_TYPE_RESERVED_KERN))
 473				set_pte_init(pte, __pte(0), init);
 474			continue;
 475		}
 476
 477		/*
 478		 * We will re-use the existing mapping.
 479		 * Xen for example has some special requirements, like mapping
 480		 * pagetable pages as RO. So assume someone who pre-setup
 481		 * these mappings are more intelligent.
 482		 */
 483		if (!pte_none(*pte)) {
 484			if (!after_bootmem)
 485				pages++;
 486			continue;
 487		}
 488
 489		if (0)
 490			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 491				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 492		pages++;
 493		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
 494		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 495	}
 496
 497	update_page_count(PG_LEVEL_4K, pages);
 498
 499	return paddr_last;
 500}
 501
 502/*
 503 * Create PMD level page table mapping for physical addresses. The virtual
 504 * and physical address have to be aligned at this level.
 505 * It returns the last physical address mapped.
 506 */
 507static unsigned long __meminit
 508phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 509	      unsigned long page_size_mask, pgprot_t prot, bool init)
 510{
 511	unsigned long pages = 0, paddr_next;
 512	unsigned long paddr_last = paddr_end;
 513
 514	int i = pmd_index(paddr);
 515
 516	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 517		pmd_t *pmd = pmd_page + pmd_index(paddr);
 518		pte_t *pte;
 519		pgprot_t new_prot = prot;
 520
 521		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 522		if (paddr >= paddr_end) {
 523			if (!after_bootmem &&
 524			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 525					     E820_TYPE_RAM) &&
 526			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 527					     E820_TYPE_RESERVED_KERN))
 528				set_pmd_init(pmd, __pmd(0), init);
 529			continue;
 530		}
 531
 532		if (!pmd_none(*pmd)) {
 533			if (!pmd_large(*pmd)) {
 534				spin_lock(&init_mm.page_table_lock);
 535				pte = (pte_t *)pmd_page_vaddr(*pmd);
 536				paddr_last = phys_pte_init(pte, paddr,
 537							   paddr_end, prot,
 538							   init);
 539				spin_unlock(&init_mm.page_table_lock);
 540				continue;
 541			}
 542			/*
 543			 * If we are ok with PG_LEVEL_2M mapping, then we will
 544			 * use the existing mapping,
 545			 *
 546			 * Otherwise, we will split the large page mapping but
 547			 * use the same existing protection bits except for
 548			 * large page, so that we don't violate Intel's TLB
 549			 * Application note (317080) which says, while changing
 550			 * the page sizes, new and old translations should
 551			 * not differ with respect to page frame and
 552			 * attributes.
 553			 */
 554			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 555				if (!after_bootmem)
 556					pages++;
 557				paddr_last = paddr_next;
 558				continue;
 559			}
 560			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 561		}
 562
 563		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 564			pages++;
 565			spin_lock(&init_mm.page_table_lock);
 566			set_pmd_init(pmd,
 567				     pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
 
 568				     init);
 569			spin_unlock(&init_mm.page_table_lock);
 570			paddr_last = paddr_next;
 571			continue;
 572		}
 573
 574		pte = alloc_low_page();
 575		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
 576
 577		spin_lock(&init_mm.page_table_lock);
 578		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
 579		spin_unlock(&init_mm.page_table_lock);
 580	}
 581	update_page_count(PG_LEVEL_2M, pages);
 582	return paddr_last;
 583}
 584
 585/*
 586 * Create PUD level page table mapping for physical addresses. The virtual
 587 * and physical address do not have to be aligned at this level. KASLR can
 588 * randomize virtual addresses up to this level.
 589 * It returns the last physical address mapped.
 590 */
 591static unsigned long __meminit
 592phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 593	      unsigned long page_size_mask, pgprot_t _prot, bool init)
 594{
 595	unsigned long pages = 0, paddr_next;
 596	unsigned long paddr_last = paddr_end;
 597	unsigned long vaddr = (unsigned long)__va(paddr);
 598	int i = pud_index(vaddr);
 599
 600	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 601		pud_t *pud;
 602		pmd_t *pmd;
 603		pgprot_t prot = _prot;
 604
 605		vaddr = (unsigned long)__va(paddr);
 606		pud = pud_page + pud_index(vaddr);
 607		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 608
 609		if (paddr >= paddr_end) {
 610			if (!after_bootmem &&
 611			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 612					     E820_TYPE_RAM) &&
 613			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 614					     E820_TYPE_RESERVED_KERN))
 615				set_pud_init(pud, __pud(0), init);
 616			continue;
 617		}
 618
 619		if (!pud_none(*pud)) {
 620			if (!pud_large(*pud)) {
 621				pmd = pmd_offset(pud, 0);
 622				paddr_last = phys_pmd_init(pmd, paddr,
 623							   paddr_end,
 624							   page_size_mask,
 625							   prot, init);
 626				continue;
 627			}
 628			/*
 629			 * If we are ok with PG_LEVEL_1G mapping, then we will
 630			 * use the existing mapping.
 631			 *
 632			 * Otherwise, we will split the gbpage mapping but use
 633			 * the same existing protection  bits except for large
 634			 * page, so that we don't violate Intel's TLB
 635			 * Application note (317080) which says, while changing
 636			 * the page sizes, new and old translations should
 637			 * not differ with respect to page frame and
 638			 * attributes.
 639			 */
 640			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 641				if (!after_bootmem)
 642					pages++;
 643				paddr_last = paddr_next;
 644				continue;
 645			}
 646			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 647		}
 648
 649		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 650			pages++;
 651			spin_lock(&init_mm.page_table_lock);
 652			set_pud_init(pud,
 653				     pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
 
 654				     init);
 655			spin_unlock(&init_mm.page_table_lock);
 656			paddr_last = paddr_next;
 657			continue;
 658		}
 659
 660		pmd = alloc_low_page();
 661		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 662					   page_size_mask, prot, init);
 663
 664		spin_lock(&init_mm.page_table_lock);
 665		pud_populate_init(&init_mm, pud, pmd, init);
 666		spin_unlock(&init_mm.page_table_lock);
 667	}
 668
 669	update_page_count(PG_LEVEL_1G, pages);
 670
 671	return paddr_last;
 672}
 673
 674static unsigned long __meminit
 675phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 676	      unsigned long page_size_mask, pgprot_t prot, bool init)
 677{
 678	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
 679
 680	paddr_last = paddr_end;
 681	vaddr = (unsigned long)__va(paddr);
 682	vaddr_end = (unsigned long)__va(paddr_end);
 683
 684	if (!pgtable_l5_enabled())
 685		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
 686				     page_size_mask, prot, init);
 687
 688	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 689		p4d_t *p4d = p4d_page + p4d_index(vaddr);
 690		pud_t *pud;
 691
 692		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
 693		paddr = __pa(vaddr);
 694
 695		if (paddr >= paddr_end) {
 696			paddr_next = __pa(vaddr_next);
 697			if (!after_bootmem &&
 698			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 699					     E820_TYPE_RAM) &&
 700			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 701					     E820_TYPE_RESERVED_KERN))
 702				set_p4d_init(p4d, __p4d(0), init);
 703			continue;
 704		}
 705
 706		if (!p4d_none(*p4d)) {
 707			pud = pud_offset(p4d, 0);
 708			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 709					page_size_mask, prot, init);
 710			continue;
 711		}
 712
 713		pud = alloc_low_page();
 714		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 715					   page_size_mask, prot, init);
 716
 717		spin_lock(&init_mm.page_table_lock);
 718		p4d_populate_init(&init_mm, p4d, pud, init);
 719		spin_unlock(&init_mm.page_table_lock);
 720	}
 721
 722	return paddr_last;
 723}
 724
 725static unsigned long __meminit
 726__kernel_physical_mapping_init(unsigned long paddr_start,
 727			       unsigned long paddr_end,
 728			       unsigned long page_size_mask,
 729			       pgprot_t prot, bool init)
 730{
 731	bool pgd_changed = false;
 732	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 733
 734	paddr_last = paddr_end;
 735	vaddr = (unsigned long)__va(paddr_start);
 736	vaddr_end = (unsigned long)__va(paddr_end);
 737	vaddr_start = vaddr;
 738
 739	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 740		pgd_t *pgd = pgd_offset_k(vaddr);
 741		p4d_t *p4d;
 742
 743		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 744
 745		if (pgd_val(*pgd)) {
 746			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 747			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 748						   __pa(vaddr_end),
 749						   page_size_mask,
 750						   prot, init);
 751			continue;
 752		}
 753
 754		p4d = alloc_low_page();
 755		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 756					   page_size_mask, prot, init);
 757
 758		spin_lock(&init_mm.page_table_lock);
 759		if (pgtable_l5_enabled())
 760			pgd_populate_init(&init_mm, pgd, p4d, init);
 761		else
 762			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
 763					  (pud_t *) p4d, init);
 764
 765		spin_unlock(&init_mm.page_table_lock);
 766		pgd_changed = true;
 767	}
 768
 769	if (pgd_changed)
 770		sync_global_pgds(vaddr_start, vaddr_end - 1);
 771
 772	return paddr_last;
 773}
 774
 775
 776/*
 777 * Create page table mapping for the physical memory for specific physical
 778 * addresses. Note that it can only be used to populate non-present entries.
 779 * The virtual and physical addresses have to be aligned on PMD level
 780 * down. It returns the last physical address mapped.
 781 */
 782unsigned long __meminit
 783kernel_physical_mapping_init(unsigned long paddr_start,
 784			     unsigned long paddr_end,
 785			     unsigned long page_size_mask, pgprot_t prot)
 786{
 787	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 788					      page_size_mask, prot, true);
 789}
 790
 791/*
 792 * This function is similar to kernel_physical_mapping_init() above with the
 793 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
 794 * when updating the mapping. The caller is responsible to flush the TLBs after
 795 * the function returns.
 796 */
 797unsigned long __meminit
 798kernel_physical_mapping_change(unsigned long paddr_start,
 799			       unsigned long paddr_end,
 800			       unsigned long page_size_mask)
 801{
 802	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 803					      page_size_mask, PAGE_KERNEL,
 804					      false);
 805}
 806
 807#ifndef CONFIG_NUMA
 808void __init initmem_init(void)
 809{
 810	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 811}
 812#endif
 813
 814void __init paging_init(void)
 815{
 
 816	sparse_init();
 817
 818	/*
 819	 * clear the default setting with node 0
 820	 * note: don't use nodes_clear here, that is really clearing when
 821	 *	 numa support is not compiled in, and later node_set_state
 822	 *	 will not set it back.
 823	 */
 824	node_clear_state(0, N_MEMORY);
 825	node_clear_state(0, N_NORMAL_MEMORY);
 
 826
 827	zone_sizes_init();
 828}
 829
 830#ifdef CONFIG_SPARSEMEM_VMEMMAP
 831#define PAGE_UNUSED 0xFD
 832
 833/*
 834 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
 835 * from unused_pmd_start to next PMD_SIZE boundary.
 836 */
 837static unsigned long unused_pmd_start __meminitdata;
 838
 839static void __meminit vmemmap_flush_unused_pmd(void)
 840{
 841	if (!unused_pmd_start)
 842		return;
 843	/*
 844	 * Clears (unused_pmd_start, PMD_END]
 845	 */
 846	memset((void *)unused_pmd_start, PAGE_UNUSED,
 847	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
 848	unused_pmd_start = 0;
 849}
 850
 851#ifdef CONFIG_MEMORY_HOTPLUG
 852/* Returns true if the PMD is completely unused and thus it can be freed */
 853static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
 854{
 855	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
 856
 857	/*
 858	 * Flush the unused range cache to ensure that memchr_inv() will work
 859	 * for the whole range.
 860	 */
 861	vmemmap_flush_unused_pmd();
 862	memset((void *)addr, PAGE_UNUSED, end - addr);
 863
 864	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
 865}
 866#endif
 867
 868static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
 869{
 870	/*
 871	 * As we expect to add in the same granularity as we remove, it's
 872	 * sufficient to mark only some piece used to block the memmap page from
 873	 * getting removed when removing some other adjacent memmap (just in
 874	 * case the first memmap never gets initialized e.g., because the memory
 875	 * block never gets onlined).
 876	 */
 877	memset((void *)start, 0, sizeof(struct page));
 878}
 879
 880static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
 881{
 882	/*
 883	 * We only optimize if the new used range directly follows the
 884	 * previously unused range (esp., when populating consecutive sections).
 885	 */
 886	if (unused_pmd_start == start) {
 887		if (likely(IS_ALIGNED(end, PMD_SIZE)))
 888			unused_pmd_start = 0;
 889		else
 890			unused_pmd_start = end;
 891		return;
 892	}
 893
 894	/*
 895	 * If the range does not contiguously follows previous one, make sure
 896	 * to mark the unused range of the previous one so it can be removed.
 897	 */
 898	vmemmap_flush_unused_pmd();
 899	__vmemmap_use_sub_pmd(start);
 900}
 901
 902
 903static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
 904{
 905	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
 906
 907	vmemmap_flush_unused_pmd();
 908
 909	/*
 910	 * Could be our memmap page is filled with PAGE_UNUSED already from a
 911	 * previous remove. Make sure to reset it.
 912	 */
 913	__vmemmap_use_sub_pmd(start);
 914
 915	/*
 916	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
 917	 */
 918	if (!IS_ALIGNED(start, PMD_SIZE))
 919		memset((void *)page, PAGE_UNUSED, start - page);
 920
 921	/*
 922	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
 923	 * consecutive sections. Remember for the last added PMD where the
 924	 * unused range begins.
 925	 */
 926	if (!IS_ALIGNED(end, PMD_SIZE))
 927		unused_pmd_start = end;
 928}
 929#endif
 930
 931/*
 932 * Memory hotplug specific functions
 933 */
 934#ifdef CONFIG_MEMORY_HOTPLUG
 935/*
 936 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 937 * updating.
 938 */
 939static void update_end_of_memory_vars(u64 start, u64 size)
 940{
 941	unsigned long end_pfn = PFN_UP(start + size);
 942
 943	if (end_pfn > max_pfn) {
 944		max_pfn = end_pfn;
 945		max_low_pfn = end_pfn;
 946		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 947	}
 948}
 949
 950int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 951	      struct mhp_params *params)
 952{
 953	int ret;
 954
 955	ret = __add_pages(nid, start_pfn, nr_pages, params);
 956	WARN_ON_ONCE(ret);
 957
 958	/* update max_pfn, max_low_pfn and high_memory */
 959	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 960				  nr_pages << PAGE_SHIFT);
 961
 962	return ret;
 963}
 964
 965int arch_add_memory(int nid, u64 start, u64 size,
 966		    struct mhp_params *params)
 967{
 968	unsigned long start_pfn = start >> PAGE_SHIFT;
 969	unsigned long nr_pages = size >> PAGE_SHIFT;
 970
 971	init_memory_mapping(start, start + size, params->pgprot);
 972
 973	return add_pages(nid, start_pfn, nr_pages, params);
 974}
 975
 
 
 976static void __meminit free_pagetable(struct page *page, int order)
 977{
 978	unsigned long magic;
 979	unsigned int nr_pages = 1 << order;
 980
 981	/* bootmem page has reserved flag */
 982	if (PageReserved(page)) {
 983		__ClearPageReserved(page);
 984
 985		magic = page->index;
 986		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 987			while (nr_pages--)
 988				put_page_bootmem(page++);
 989		} else
 990			while (nr_pages--)
 991				free_reserved_page(page++);
 992	} else
 993		free_pages((unsigned long)page_address(page), order);
 994}
 995
 996static void __meminit free_hugepage_table(struct page *page,
 997		struct vmem_altmap *altmap)
 998{
 999	if (altmap)
1000		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1001	else
1002		free_pagetable(page, get_order(PMD_SIZE));
1003}
1004
1005static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1006{
1007	pte_t *pte;
1008	int i;
1009
1010	for (i = 0; i < PTRS_PER_PTE; i++) {
1011		pte = pte_start + i;
1012		if (!pte_none(*pte))
1013			return;
1014	}
1015
1016	/* free a pte talbe */
1017	free_pagetable(pmd_page(*pmd), 0);
1018	spin_lock(&init_mm.page_table_lock);
1019	pmd_clear(pmd);
1020	spin_unlock(&init_mm.page_table_lock);
1021}
1022
1023static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1024{
1025	pmd_t *pmd;
1026	int i;
1027
1028	for (i = 0; i < PTRS_PER_PMD; i++) {
1029		pmd = pmd_start + i;
1030		if (!pmd_none(*pmd))
1031			return;
1032	}
1033
1034	/* free a pmd talbe */
1035	free_pagetable(pud_page(*pud), 0);
1036	spin_lock(&init_mm.page_table_lock);
1037	pud_clear(pud);
1038	spin_unlock(&init_mm.page_table_lock);
1039}
1040
1041static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1042{
1043	pud_t *pud;
1044	int i;
1045
1046	for (i = 0; i < PTRS_PER_PUD; i++) {
1047		pud = pud_start + i;
1048		if (!pud_none(*pud))
1049			return;
1050	}
1051
1052	/* free a pud talbe */
1053	free_pagetable(p4d_page(*p4d), 0);
1054	spin_lock(&init_mm.page_table_lock);
1055	p4d_clear(p4d);
1056	spin_unlock(&init_mm.page_table_lock);
1057}
1058
1059static void __meminit
1060remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1061		 bool direct)
1062{
1063	unsigned long next, pages = 0;
1064	pte_t *pte;
 
1065	phys_addr_t phys_addr;
1066
1067	pte = pte_start + pte_index(addr);
1068	for (; addr < end; addr = next, pte++) {
1069		next = (addr + PAGE_SIZE) & PAGE_MASK;
1070		if (next > end)
1071			next = end;
1072
1073		if (!pte_present(*pte))
1074			continue;
1075
1076		/*
1077		 * We mapped [0,1G) memory as identity mapping when
1078		 * initializing, in arch/x86/kernel/head_64.S. These
1079		 * pagetables cannot be removed.
1080		 */
1081		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1082		if (phys_addr < (phys_addr_t)0x40000000)
1083			return;
1084
1085		if (!direct)
1086			free_pagetable(pte_page(*pte), 0);
 
 
 
 
 
1087
1088		spin_lock(&init_mm.page_table_lock);
1089		pte_clear(&init_mm, addr, pte);
1090		spin_unlock(&init_mm.page_table_lock);
1091
1092		/* For non-direct mapping, pages means nothing. */
1093		pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	}
1095
1096	/* Call free_pte_table() in remove_pmd_table(). */
1097	flush_tlb_all();
1098	if (direct)
1099		update_page_count(PG_LEVEL_4K, -pages);
1100}
1101
1102static void __meminit
1103remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1104		 bool direct, struct vmem_altmap *altmap)
1105{
1106	unsigned long next, pages = 0;
1107	pte_t *pte_base;
1108	pmd_t *pmd;
 
1109
1110	pmd = pmd_start + pmd_index(addr);
1111	for (; addr < end; addr = next, pmd++) {
1112		next = pmd_addr_end(addr, end);
1113
1114		if (!pmd_present(*pmd))
1115			continue;
1116
1117		if (pmd_large(*pmd)) {
1118			if (IS_ALIGNED(addr, PMD_SIZE) &&
1119			    IS_ALIGNED(next, PMD_SIZE)) {
1120				if (!direct)
1121					free_hugepage_table(pmd_page(*pmd),
1122							    altmap);
1123
1124				spin_lock(&init_mm.page_table_lock);
1125				pmd_clear(pmd);
1126				spin_unlock(&init_mm.page_table_lock);
1127				pages++;
1128			}
1129#ifdef CONFIG_SPARSEMEM_VMEMMAP
1130			else if (vmemmap_pmd_is_unused(addr, next)) {
 
 
 
 
1131					free_hugepage_table(pmd_page(*pmd),
1132							    altmap);
 
1133					spin_lock(&init_mm.page_table_lock);
1134					pmd_clear(pmd);
1135					spin_unlock(&init_mm.page_table_lock);
 
1136			}
1137#endif
1138			continue;
1139		}
1140
1141		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1142		remove_pte_table(pte_base, addr, next, direct);
1143		free_pte_table(pte_base, pmd);
1144	}
1145
1146	/* Call free_pmd_table() in remove_pud_table(). */
1147	if (direct)
1148		update_page_count(PG_LEVEL_2M, -pages);
1149}
1150
1151static void __meminit
1152remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1153		 struct vmem_altmap *altmap, bool direct)
1154{
1155	unsigned long next, pages = 0;
1156	pmd_t *pmd_base;
1157	pud_t *pud;
 
1158
1159	pud = pud_start + pud_index(addr);
1160	for (; addr < end; addr = next, pud++) {
1161		next = pud_addr_end(addr, end);
1162
1163		if (!pud_present(*pud))
1164			continue;
1165
1166		if (pud_large(*pud) &&
1167		    IS_ALIGNED(addr, PUD_SIZE) &&
1168		    IS_ALIGNED(next, PUD_SIZE)) {
1169			spin_lock(&init_mm.page_table_lock);
1170			pud_clear(pud);
1171			spin_unlock(&init_mm.page_table_lock);
1172			pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173			continue;
1174		}
1175
1176		pmd_base = pmd_offset(pud, 0);
1177		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1178		free_pmd_table(pmd_base, pud);
1179	}
1180
1181	if (direct)
1182		update_page_count(PG_LEVEL_1G, -pages);
1183}
1184
1185static void __meminit
1186remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1187		 struct vmem_altmap *altmap, bool direct)
1188{
1189	unsigned long next, pages = 0;
1190	pud_t *pud_base;
1191	p4d_t *p4d;
1192
1193	p4d = p4d_start + p4d_index(addr);
1194	for (; addr < end; addr = next, p4d++) {
1195		next = p4d_addr_end(addr, end);
1196
1197		if (!p4d_present(*p4d))
1198			continue;
1199
1200		BUILD_BUG_ON(p4d_large(*p4d));
1201
1202		pud_base = pud_offset(p4d, 0);
1203		remove_pud_table(pud_base, addr, next, altmap, direct);
1204		/*
1205		 * For 4-level page tables we do not want to free PUDs, but in the
1206		 * 5-level case we should free them. This code will have to change
1207		 * to adapt for boot-time switching between 4 and 5 level page tables.
1208		 */
1209		if (pgtable_l5_enabled())
1210			free_pud_table(pud_base, p4d);
1211	}
1212
1213	if (direct)
1214		update_page_count(PG_LEVEL_512G, -pages);
1215}
1216
1217/* start and end are both virtual address. */
1218static void __meminit
1219remove_pagetable(unsigned long start, unsigned long end, bool direct,
1220		struct vmem_altmap *altmap)
1221{
1222	unsigned long next;
1223	unsigned long addr;
1224	pgd_t *pgd;
1225	p4d_t *p4d;
1226
1227	for (addr = start; addr < end; addr = next) {
1228		next = pgd_addr_end(addr, end);
1229
1230		pgd = pgd_offset_k(addr);
1231		if (!pgd_present(*pgd))
1232			continue;
1233
1234		p4d = p4d_offset(pgd, 0);
1235		remove_p4d_table(p4d, addr, next, altmap, direct);
1236	}
1237
1238	flush_tlb_all();
1239}
1240
1241void __ref vmemmap_free(unsigned long start, unsigned long end,
1242		struct vmem_altmap *altmap)
1243{
1244	VM_BUG_ON(!PAGE_ALIGNED(start));
1245	VM_BUG_ON(!PAGE_ALIGNED(end));
1246
1247	remove_pagetable(start, end, false, altmap);
1248}
1249
1250static void __meminit
1251kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1252{
1253	start = (unsigned long)__va(start);
1254	end = (unsigned long)__va(end);
1255
1256	remove_pagetable(start, end, true, NULL);
1257}
1258
1259void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
 
1260{
1261	unsigned long start_pfn = start >> PAGE_SHIFT;
1262	unsigned long nr_pages = size >> PAGE_SHIFT;
 
 
1263
1264	__remove_pages(start_pfn, nr_pages, altmap);
1265	kernel_physical_mapping_remove(start, start + size);
1266}
1267#endif /* CONFIG_MEMORY_HOTPLUG */
1268
1269static struct kcore_list kcore_vsyscall;
1270
1271static void __init register_page_bootmem_info(void)
1272{
1273#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1274	int i;
1275
1276	for_each_online_node(i)
1277		register_page_bootmem_info_node(NODE_DATA(i));
1278#endif
1279}
1280
1281/*
1282 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1283 * Only the level which needs to be synchronized between all page-tables is
1284 * allocated because the synchronization can be expensive.
1285 */
1286static void __init preallocate_vmalloc_pages(void)
1287{
1288	unsigned long addr;
1289	const char *lvl;
1290
1291	for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1292		pgd_t *pgd = pgd_offset_k(addr);
1293		p4d_t *p4d;
1294		pud_t *pud;
1295
1296		lvl = "p4d";
1297		p4d = p4d_alloc(&init_mm, pgd, addr);
1298		if (!p4d)
1299			goto failed;
1300
1301		if (pgtable_l5_enabled())
1302			continue;
1303
1304		/*
1305		 * The goal here is to allocate all possibly required
1306		 * hardware page tables pointed to by the top hardware
1307		 * level.
1308		 *
1309		 * On 4-level systems, the P4D layer is folded away and
1310		 * the above code does no preallocation.  Below, go down
1311		 * to the pud _software_ level to ensure the second
1312		 * hardware level is allocated on 4-level systems too.
1313		 */
1314		lvl = "pud";
1315		pud = pud_alloc(&init_mm, p4d, addr);
1316		if (!pud)
1317			goto failed;
1318	}
1319
1320	return;
1321
1322failed:
1323
1324	/*
1325	 * The pages have to be there now or they will be missing in
1326	 * process page-tables later.
1327	 */
1328	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1329}
1330
1331void __init mem_init(void)
1332{
1333	pci_iommu_alloc();
1334
1335	/* clear_bss() already clear the empty_zero_page */
1336
1337	/* this will put all memory onto the freelists */
1338	memblock_free_all();
1339	after_bootmem = 1;
1340	x86_init.hyper.init_after_bootmem();
1341
1342	/*
1343	 * Must be done after boot memory is put on freelist, because here we
1344	 * might set fields in deferred struct pages that have not yet been
1345	 * initialized, and memblock_free_all() initializes all the reserved
1346	 * deferred pages for us.
1347	 */
1348	register_page_bootmem_info();
1349
1350	/* Register memory areas for /proc/kcore */
1351	if (get_gate_vma(&init_mm))
1352		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1353
1354	preallocate_vmalloc_pages();
1355}
1356
1357#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1358int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
 
1359{
 
 
 
 
 
 
 
 
 
1360	/*
1361	 * More CPUs always led to greater speedups on tested systems, up to
1362	 * all the nodes' CPUs.  Use all since the system is otherwise idle
1363	 * now.
1364	 */
1365	return max_t(int, cpumask_weight(node_cpumask), 1);
1366}
1367#endif
1368
1369int kernel_set_to_readonly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370
1371void mark_rodata_ro(void)
1372{
1373	unsigned long start = PFN_ALIGN(_text);
1374	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1375	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1376	unsigned long text_end = PFN_ALIGN(_etext);
1377	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1378	unsigned long all_end;
1379
1380	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1381	       (end - start) >> 10);
1382	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1383
1384	kernel_set_to_readonly = 1;
1385
1386	/*
1387	 * The rodata/data/bss/brk section (but not the kernel text!)
1388	 * should also be not-executable.
1389	 *
1390	 * We align all_end to PMD_SIZE because the existing mapping
1391	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1392	 * split the PMD and the reminder between _brk_end and the end
1393	 * of the PMD will remain mapped executable.
1394	 *
1395	 * Any PMD which was setup after the one which covers _brk_end
1396	 * has been zapped already via cleanup_highmem().
1397	 */
1398	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1399	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1400
1401	set_ftrace_ops_ro();
1402
1403#ifdef CONFIG_CPA_DEBUG
1404	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1405	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1406
1407	printk(KERN_INFO "Testing CPA: again\n");
1408	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1409#endif
1410
1411	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1412				(void *)text_end, (void *)rodata_start);
1413	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1414				(void *)rodata_end, (void *)_sdata);
1415
1416	debug_checkwx();
1417}
1418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419/*
1420 * Block size is the minimum amount of memory which can be hotplugged or
1421 * hotremoved. It must be power of two and must be equal or larger than
1422 * MIN_MEMORY_BLOCK_SIZE.
1423 */
1424#define MAX_BLOCK_SIZE (2UL << 30)
1425
1426/* Amount of ram needed to start using large blocks */
1427#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1428
1429/* Adjustable memory block size */
1430static unsigned long set_memory_block_size;
1431int __init set_memory_block_size_order(unsigned int order)
1432{
1433	unsigned long size = 1UL << order;
1434
1435	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1436		return -EINVAL;
1437
1438	set_memory_block_size = size;
1439	return 0;
1440}
1441
1442static unsigned long probe_memory_block_size(void)
1443{
1444	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1445	unsigned long bz;
1446
1447	/* If memory block size has been set, then use it */
1448	bz = set_memory_block_size;
1449	if (bz)
1450		goto done;
1451
1452	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1453	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1454		bz = MIN_MEMORY_BLOCK_SIZE;
1455		goto done;
1456	}
1457
1458	/*
1459	 * Use max block size to minimize overhead on bare metal, where
1460	 * alignment for memory hotplug isn't a concern.
1461	 */
1462	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1463		bz = MAX_BLOCK_SIZE;
1464		goto done;
1465	}
1466
1467	/* Find the largest allowed block size that aligns to memory end */
1468	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1469		if (IS_ALIGNED(boot_mem_end, bz))
1470			break;
1471	}
1472done:
1473	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1474
1475	return bz;
1476}
1477
1478static unsigned long memory_block_size_probed;
1479unsigned long memory_block_size_bytes(void)
1480{
1481	if (!memory_block_size_probed)
1482		memory_block_size_probed = probe_memory_block_size();
1483
1484	return memory_block_size_probed;
1485}
1486
1487#ifdef CONFIG_SPARSEMEM_VMEMMAP
1488/*
1489 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1490 */
1491static long __meminitdata addr_start, addr_end;
1492static void __meminitdata *p_start, *p_end;
1493static int __meminitdata node_start;
1494
1495void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1496			       unsigned long addr, unsigned long next)
1497{
1498	pte_t entry;
 
 
 
 
 
1499
1500	entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1501			PAGE_KERNEL_LARGE);
1502	set_pmd(pmd, __pmd(pte_val(entry)));
1503
1504	/* check to see if we have contiguous blocks */
1505	if (p_end != p || node_start != node) {
1506		if (p_start)
1507			pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1508				addr_start, addr_end-1, p_start, p_end-1, node_start);
1509		addr_start = addr;
1510		node_start = node;
1511		p_start = p;
1512	}
1513
1514	addr_end = addr + PMD_SIZE;
1515	p_end = p + PMD_SIZE;
 
1516
1517	if (!IS_ALIGNED(addr, PMD_SIZE) ||
1518		!IS_ALIGNED(next, PMD_SIZE))
1519		vmemmap_use_new_sub_pmd(addr, next);
1520}
1521
1522int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1523				unsigned long addr, unsigned long next)
1524{
1525	int large = pmd_large(*pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	if (pmd_large(*pmd)) {
1528		vmemmap_verify((pte_t *)pmd, node, addr, next);
1529		vmemmap_use_sub_pmd(addr, next);
 
 
 
 
 
 
 
 
1530	}
1531
1532	return large;
1533}
1534
1535int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1536		struct vmem_altmap *altmap)
1537{
1538	int err;
1539
1540	VM_BUG_ON(!PAGE_ALIGNED(start));
1541	VM_BUG_ON(!PAGE_ALIGNED(end));
1542
1543	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1544		err = vmemmap_populate_basepages(start, end, node, NULL);
1545	else if (boot_cpu_has(X86_FEATURE_PSE))
1546		err = vmemmap_populate_hugepages(start, end, node, altmap);
1547	else if (altmap) {
1548		pr_err_once("%s: no cpu support for altmap allocations\n",
1549				__func__);
1550		err = -ENOMEM;
1551	} else
1552		err = vmemmap_populate_basepages(start, end, node, NULL);
1553	if (!err)
1554		sync_global_pgds(start, end - 1);
1555	return err;
1556}
1557
1558#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1559void register_page_bootmem_memmap(unsigned long section_nr,
1560				  struct page *start_page, unsigned long nr_pages)
1561{
1562	unsigned long addr = (unsigned long)start_page;
1563	unsigned long end = (unsigned long)(start_page + nr_pages);
1564	unsigned long next;
1565	pgd_t *pgd;
1566	p4d_t *p4d;
1567	pud_t *pud;
1568	pmd_t *pmd;
1569	unsigned int nr_pmd_pages;
1570	struct page *page;
1571
1572	for (; addr < end; addr = next) {
1573		pte_t *pte = NULL;
1574
1575		pgd = pgd_offset_k(addr);
1576		if (pgd_none(*pgd)) {
1577			next = (addr + PAGE_SIZE) & PAGE_MASK;
1578			continue;
1579		}
1580		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1581
1582		p4d = p4d_offset(pgd, addr);
1583		if (p4d_none(*p4d)) {
1584			next = (addr + PAGE_SIZE) & PAGE_MASK;
1585			continue;
1586		}
1587		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1588
1589		pud = pud_offset(p4d, addr);
1590		if (pud_none(*pud)) {
1591			next = (addr + PAGE_SIZE) & PAGE_MASK;
1592			continue;
1593		}
1594		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1595
1596		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1597			next = (addr + PAGE_SIZE) & PAGE_MASK;
1598			pmd = pmd_offset(pud, addr);
1599			if (pmd_none(*pmd))
1600				continue;
1601			get_page_bootmem(section_nr, pmd_page(*pmd),
1602					 MIX_SECTION_INFO);
1603
1604			pte = pte_offset_kernel(pmd, addr);
1605			if (pte_none(*pte))
1606				continue;
1607			get_page_bootmem(section_nr, pte_page(*pte),
1608					 SECTION_INFO);
1609		} else {
1610			next = pmd_addr_end(addr, end);
1611
1612			pmd = pmd_offset(pud, addr);
1613			if (pmd_none(*pmd))
1614				continue;
1615
1616			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1617			page = pmd_page(*pmd);
1618			while (nr_pmd_pages--)
1619				get_page_bootmem(section_nr, page++,
1620						 SECTION_INFO);
1621		}
1622	}
1623}
1624#endif
1625
1626void __meminit vmemmap_populate_print_last(void)
1627{
1628	if (p_start) {
1629		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1630			addr_start, addr_end-1, p_start, p_end-1, node_start);
1631		p_start = NULL;
1632		p_end = NULL;
1633		node_start = 0;
1634	}
1635}
1636#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/x86_64/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   8 */
   9
  10#include <linux/signal.h>
  11#include <linux/sched.h>
  12#include <linux/kernel.h>
  13#include <linux/errno.h>
  14#include <linux/string.h>
  15#include <linux/types.h>
  16#include <linux/ptrace.h>
  17#include <linux/mman.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/smp.h>
  21#include <linux/init.h>
  22#include <linux/initrd.h>
  23#include <linux/pagemap.h>
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/memory.h>
  31#include <linux/memory_hotplug.h>
  32#include <linux/memremap.h>
  33#include <linux/nmi.h>
  34#include <linux/gfp.h>
  35#include <linux/kcore.h>
 
  36
  37#include <asm/processor.h>
  38#include <asm/bios_ebda.h>
  39#include <linux/uaccess.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/dma.h>
  43#include <asm/fixmap.h>
  44#include <asm/e820/api.h>
  45#include <asm/apic.h>
  46#include <asm/tlb.h>
  47#include <asm/mmu_context.h>
  48#include <asm/proto.h>
  49#include <asm/smp.h>
  50#include <asm/sections.h>
  51#include <asm/kdebug.h>
  52#include <asm/numa.h>
  53#include <asm/set_memory.h>
  54#include <asm/init.h>
  55#include <asm/uv/uv.h>
  56#include <asm/setup.h>
 
  57
  58#include "mm_internal.h"
  59
  60#include "ident_map.c"
  61
  62#define DEFINE_POPULATE(fname, type1, type2, init)		\
  63static inline void fname##_init(struct mm_struct *mm,		\
  64		type1##_t *arg1, type2##_t *arg2, bool init)	\
  65{								\
  66	if (init)						\
  67		fname##_safe(mm, arg1, arg2);			\
  68	else							\
  69		fname(mm, arg1, arg2);				\
  70}
  71
  72DEFINE_POPULATE(p4d_populate, p4d, pud, init)
  73DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
  74DEFINE_POPULATE(pud_populate, pud, pmd, init)
  75DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
  76
  77#define DEFINE_ENTRY(type1, type2, init)			\
  78static inline void set_##type1##_init(type1##_t *arg1,		\
  79			type2##_t arg2, bool init)		\
  80{								\
  81	if (init)						\
  82		set_##type1##_safe(arg1, arg2);			\
  83	else							\
  84		set_##type1(arg1, arg2);			\
  85}
  86
  87DEFINE_ENTRY(p4d, p4d, init)
  88DEFINE_ENTRY(pud, pud, init)
  89DEFINE_ENTRY(pmd, pmd, init)
  90DEFINE_ENTRY(pte, pte, init)
  91
 
 
 
 
 
 
  92
  93/*
  94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  95 * physical space so we can cache the place of the first one and move
  96 * around without checking the pgd every time.
  97 */
  98
  99/* Bits supported by the hardware: */
 100pteval_t __supported_pte_mask __read_mostly = ~0;
 101/* Bits allowed in normal kernel mappings: */
 102pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 103EXPORT_SYMBOL_GPL(__supported_pte_mask);
 104/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
 105EXPORT_SYMBOL(__default_kernel_pte_mask);
 106
 107int force_personality32;
 108
 109/*
 110 * noexec32=on|off
 111 * Control non executable heap for 32bit processes.
 112 * To control the stack too use noexec=off
 113 *
 114 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 115 * off	PROT_READ implies PROT_EXEC
 116 */
 117static int __init nonx32_setup(char *str)
 118{
 119	if (!strcmp(str, "on"))
 120		force_personality32 &= ~READ_IMPLIES_EXEC;
 121	else if (!strcmp(str, "off"))
 122		force_personality32 |= READ_IMPLIES_EXEC;
 123	return 1;
 124}
 125__setup("noexec32=", nonx32_setup);
 126
 127static void sync_global_pgds_l5(unsigned long start, unsigned long end)
 128{
 129	unsigned long addr;
 130
 131	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 132		const pgd_t *pgd_ref = pgd_offset_k(addr);
 133		struct page *page;
 134
 135		/* Check for overflow */
 136		if (addr < start)
 137			break;
 138
 139		if (pgd_none(*pgd_ref))
 140			continue;
 141
 142		spin_lock(&pgd_lock);
 143		list_for_each_entry(page, &pgd_list, lru) {
 144			pgd_t *pgd;
 145			spinlock_t *pgt_lock;
 146
 147			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 148			/* the pgt_lock only for Xen */
 149			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 150			spin_lock(pgt_lock);
 151
 152			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 153				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 154
 155			if (pgd_none(*pgd))
 156				set_pgd(pgd, *pgd_ref);
 157
 158			spin_unlock(pgt_lock);
 159		}
 160		spin_unlock(&pgd_lock);
 161	}
 162}
 163
 164static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 165{
 166	unsigned long addr;
 167
 168	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 169		pgd_t *pgd_ref = pgd_offset_k(addr);
 170		const p4d_t *p4d_ref;
 171		struct page *page;
 172
 173		/*
 174		 * With folded p4d, pgd_none() is always false, we need to
 175		 * handle synchonization on p4d level.
 176		 */
 177		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 178		p4d_ref = p4d_offset(pgd_ref, addr);
 179
 180		if (p4d_none(*p4d_ref))
 181			continue;
 182
 183		spin_lock(&pgd_lock);
 184		list_for_each_entry(page, &pgd_list, lru) {
 185			pgd_t *pgd;
 186			p4d_t *p4d;
 187			spinlock_t *pgt_lock;
 188
 189			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 190			p4d = p4d_offset(pgd, addr);
 191			/* the pgt_lock only for Xen */
 192			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 193			spin_lock(pgt_lock);
 194
 195			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 196				BUG_ON(p4d_page_vaddr(*p4d)
 197				       != p4d_page_vaddr(*p4d_ref));
 198
 199			if (p4d_none(*p4d))
 200				set_p4d(p4d, *p4d_ref);
 201
 202			spin_unlock(pgt_lock);
 203		}
 204		spin_unlock(&pgd_lock);
 205	}
 206}
 207
 208/*
 209 * When memory was added make sure all the processes MM have
 210 * suitable PGD entries in the local PGD level page.
 211 */
 212void sync_global_pgds(unsigned long start, unsigned long end)
 213{
 214	if (pgtable_l5_enabled())
 215		sync_global_pgds_l5(start, end);
 216	else
 217		sync_global_pgds_l4(start, end);
 218}
 219
 220/*
 221 * NOTE: This function is marked __ref because it calls __init function
 222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 223 */
 224static __ref void *spp_getpage(void)
 225{
 226	void *ptr;
 227
 228	if (after_bootmem)
 229		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 230	else
 231		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 232
 233	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 234		panic("set_pte_phys: cannot allocate page data %s\n",
 235			after_bootmem ? "after bootmem" : "");
 236	}
 237
 238	pr_debug("spp_getpage %p\n", ptr);
 239
 240	return ptr;
 241}
 242
 243static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 244{
 245	if (pgd_none(*pgd)) {
 246		p4d_t *p4d = (p4d_t *)spp_getpage();
 247		pgd_populate(&init_mm, pgd, p4d);
 248		if (p4d != p4d_offset(pgd, 0))
 249			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 250			       p4d, p4d_offset(pgd, 0));
 251	}
 252	return p4d_offset(pgd, vaddr);
 253}
 254
 255static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 256{
 257	if (p4d_none(*p4d)) {
 258		pud_t *pud = (pud_t *)spp_getpage();
 259		p4d_populate(&init_mm, p4d, pud);
 260		if (pud != pud_offset(p4d, 0))
 261			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 262			       pud, pud_offset(p4d, 0));
 263	}
 264	return pud_offset(p4d, vaddr);
 265}
 266
 267static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 268{
 269	if (pud_none(*pud)) {
 270		pmd_t *pmd = (pmd_t *) spp_getpage();
 271		pud_populate(&init_mm, pud, pmd);
 272		if (pmd != pmd_offset(pud, 0))
 273			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 274			       pmd, pmd_offset(pud, 0));
 275	}
 276	return pmd_offset(pud, vaddr);
 277}
 278
 279static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 280{
 281	if (pmd_none(*pmd)) {
 282		pte_t *pte = (pte_t *) spp_getpage();
 283		pmd_populate_kernel(&init_mm, pmd, pte);
 284		if (pte != pte_offset_kernel(pmd, 0))
 285			printk(KERN_ERR "PAGETABLE BUG #03!\n");
 286	}
 287	return pte_offset_kernel(pmd, vaddr);
 288}
 289
 290static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 291{
 292	pmd_t *pmd = fill_pmd(pud, vaddr);
 293	pte_t *pte = fill_pte(pmd, vaddr);
 294
 295	set_pte(pte, new_pte);
 296
 297	/*
 298	 * It's enough to flush this one mapping.
 299	 * (PGE mappings get flushed as well)
 300	 */
 301	__flush_tlb_one_kernel(vaddr);
 302}
 303
 304void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 305{
 306	p4d_t *p4d = p4d_page + p4d_index(vaddr);
 307	pud_t *pud = fill_pud(p4d, vaddr);
 308
 309	__set_pte_vaddr(pud, vaddr, new_pte);
 310}
 311
 312void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 313{
 314	pud_t *pud = pud_page + pud_index(vaddr);
 315
 316	__set_pte_vaddr(pud, vaddr, new_pte);
 317}
 318
 319void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 320{
 321	pgd_t *pgd;
 322	p4d_t *p4d_page;
 323
 324	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 325
 326	pgd = pgd_offset_k(vaddr);
 327	if (pgd_none(*pgd)) {
 328		printk(KERN_ERR
 329			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 330		return;
 331	}
 332
 333	p4d_page = p4d_offset(pgd, 0);
 334	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 335}
 336
 337pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 338{
 339	pgd_t *pgd;
 340	p4d_t *p4d;
 341	pud_t *pud;
 342
 343	pgd = pgd_offset_k(vaddr);
 344	p4d = fill_p4d(pgd, vaddr);
 345	pud = fill_pud(p4d, vaddr);
 346	return fill_pmd(pud, vaddr);
 347}
 348
 349pte_t * __init populate_extra_pte(unsigned long vaddr)
 350{
 351	pmd_t *pmd;
 352
 353	pmd = populate_extra_pmd(vaddr);
 354	return fill_pte(pmd, vaddr);
 355}
 356
 357/*
 358 * Create large page table mappings for a range of physical addresses.
 359 */
 360static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 361					enum page_cache_mode cache)
 362{
 363	pgd_t *pgd;
 364	p4d_t *p4d;
 365	pud_t *pud;
 366	pmd_t *pmd;
 367	pgprot_t prot;
 368
 369	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 370		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
 371	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 372	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 373		pgd = pgd_offset_k((unsigned long)__va(phys));
 374		if (pgd_none(*pgd)) {
 375			p4d = (p4d_t *) spp_getpage();
 376			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 377						_PAGE_USER));
 378		}
 379		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 380		if (p4d_none(*p4d)) {
 381			pud = (pud_t *) spp_getpage();
 382			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 383						_PAGE_USER));
 384		}
 385		pud = pud_offset(p4d, (unsigned long)__va(phys));
 386		if (pud_none(*pud)) {
 387			pmd = (pmd_t *) spp_getpage();
 388			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 389						_PAGE_USER));
 390		}
 391		pmd = pmd_offset(pud, phys);
 392		BUG_ON(!pmd_none(*pmd));
 393		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 394	}
 395}
 396
 397void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 398{
 399	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 400}
 401
 402void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 403{
 404	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 405}
 406
 407/*
 408 * The head.S code sets up the kernel high mapping:
 409 *
 410 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 411 *
 412 * phys_base holds the negative offset to the kernel, which is added
 413 * to the compile time generated pmds. This results in invalid pmds up
 414 * to the point where we hit the physaddr 0 mapping.
 415 *
 416 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 418 * well, as they are located before _text:
 419 */
 420void __init cleanup_highmap(void)
 421{
 422	unsigned long vaddr = __START_KERNEL_map;
 423	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 424	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 425	pmd_t *pmd = level2_kernel_pgt;
 426
 427	/*
 428	 * Native path, max_pfn_mapped is not set yet.
 429	 * Xen has valid max_pfn_mapped set in
 430	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 431	 */
 432	if (max_pfn_mapped)
 433		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 434
 435	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 436		if (pmd_none(*pmd))
 437			continue;
 438		if (vaddr < (unsigned long) _text || vaddr > end)
 439			set_pmd(pmd, __pmd(0));
 440	}
 441}
 442
 443/*
 444 * Create PTE level page table mapping for physical addresses.
 445 * It returns the last physical address mapped.
 446 */
 447static unsigned long __meminit
 448phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 449	      pgprot_t prot, bool init)
 450{
 451	unsigned long pages = 0, paddr_next;
 452	unsigned long paddr_last = paddr_end;
 453	pte_t *pte;
 454	int i;
 455
 456	pte = pte_page + pte_index(paddr);
 457	i = pte_index(paddr);
 458
 459	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 460		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 461		if (paddr >= paddr_end) {
 462			if (!after_bootmem &&
 463			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 464					     E820_TYPE_RAM) &&
 465			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 466					     E820_TYPE_RESERVED_KERN))
 467				set_pte_init(pte, __pte(0), init);
 468			continue;
 469		}
 470
 471		/*
 472		 * We will re-use the existing mapping.
 473		 * Xen for example has some special requirements, like mapping
 474		 * pagetable pages as RO. So assume someone who pre-setup
 475		 * these mappings are more intelligent.
 476		 */
 477		if (!pte_none(*pte)) {
 478			if (!after_bootmem)
 479				pages++;
 480			continue;
 481		}
 482
 483		if (0)
 484			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 485				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 486		pages++;
 487		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
 488		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 489	}
 490
 491	update_page_count(PG_LEVEL_4K, pages);
 492
 493	return paddr_last;
 494}
 495
 496/*
 497 * Create PMD level page table mapping for physical addresses. The virtual
 498 * and physical address have to be aligned at this level.
 499 * It returns the last physical address mapped.
 500 */
 501static unsigned long __meminit
 502phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 503	      unsigned long page_size_mask, pgprot_t prot, bool init)
 504{
 505	unsigned long pages = 0, paddr_next;
 506	unsigned long paddr_last = paddr_end;
 507
 508	int i = pmd_index(paddr);
 509
 510	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 511		pmd_t *pmd = pmd_page + pmd_index(paddr);
 512		pte_t *pte;
 513		pgprot_t new_prot = prot;
 514
 515		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 516		if (paddr >= paddr_end) {
 517			if (!after_bootmem &&
 518			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 519					     E820_TYPE_RAM) &&
 520			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 521					     E820_TYPE_RESERVED_KERN))
 522				set_pmd_init(pmd, __pmd(0), init);
 523			continue;
 524		}
 525
 526		if (!pmd_none(*pmd)) {
 527			if (!pmd_large(*pmd)) {
 528				spin_lock(&init_mm.page_table_lock);
 529				pte = (pte_t *)pmd_page_vaddr(*pmd);
 530				paddr_last = phys_pte_init(pte, paddr,
 531							   paddr_end, prot,
 532							   init);
 533				spin_unlock(&init_mm.page_table_lock);
 534				continue;
 535			}
 536			/*
 537			 * If we are ok with PG_LEVEL_2M mapping, then we will
 538			 * use the existing mapping,
 539			 *
 540			 * Otherwise, we will split the large page mapping but
 541			 * use the same existing protection bits except for
 542			 * large page, so that we don't violate Intel's TLB
 543			 * Application note (317080) which says, while changing
 544			 * the page sizes, new and old translations should
 545			 * not differ with respect to page frame and
 546			 * attributes.
 547			 */
 548			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 549				if (!after_bootmem)
 550					pages++;
 551				paddr_last = paddr_next;
 552				continue;
 553			}
 554			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 555		}
 556
 557		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 558			pages++;
 559			spin_lock(&init_mm.page_table_lock);
 560			set_pte_init((pte_t *)pmd,
 561				     pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
 562					     __pgprot(pgprot_val(prot) | _PAGE_PSE)),
 563				     init);
 564			spin_unlock(&init_mm.page_table_lock);
 565			paddr_last = paddr_next;
 566			continue;
 567		}
 568
 569		pte = alloc_low_page();
 570		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
 571
 572		spin_lock(&init_mm.page_table_lock);
 573		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
 574		spin_unlock(&init_mm.page_table_lock);
 575	}
 576	update_page_count(PG_LEVEL_2M, pages);
 577	return paddr_last;
 578}
 579
 580/*
 581 * Create PUD level page table mapping for physical addresses. The virtual
 582 * and physical address do not have to be aligned at this level. KASLR can
 583 * randomize virtual addresses up to this level.
 584 * It returns the last physical address mapped.
 585 */
 586static unsigned long __meminit
 587phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 588	      unsigned long page_size_mask, bool init)
 589{
 590	unsigned long pages = 0, paddr_next;
 591	unsigned long paddr_last = paddr_end;
 592	unsigned long vaddr = (unsigned long)__va(paddr);
 593	int i = pud_index(vaddr);
 594
 595	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 596		pud_t *pud;
 597		pmd_t *pmd;
 598		pgprot_t prot = PAGE_KERNEL;
 599
 600		vaddr = (unsigned long)__va(paddr);
 601		pud = pud_page + pud_index(vaddr);
 602		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 603
 604		if (paddr >= paddr_end) {
 605			if (!after_bootmem &&
 606			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 607					     E820_TYPE_RAM) &&
 608			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 609					     E820_TYPE_RESERVED_KERN))
 610				set_pud_init(pud, __pud(0), init);
 611			continue;
 612		}
 613
 614		if (!pud_none(*pud)) {
 615			if (!pud_large(*pud)) {
 616				pmd = pmd_offset(pud, 0);
 617				paddr_last = phys_pmd_init(pmd, paddr,
 618							   paddr_end,
 619							   page_size_mask,
 620							   prot, init);
 621				continue;
 622			}
 623			/*
 624			 * If we are ok with PG_LEVEL_1G mapping, then we will
 625			 * use the existing mapping.
 626			 *
 627			 * Otherwise, we will split the gbpage mapping but use
 628			 * the same existing protection  bits except for large
 629			 * page, so that we don't violate Intel's TLB
 630			 * Application note (317080) which says, while changing
 631			 * the page sizes, new and old translations should
 632			 * not differ with respect to page frame and
 633			 * attributes.
 634			 */
 635			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 636				if (!after_bootmem)
 637					pages++;
 638				paddr_last = paddr_next;
 639				continue;
 640			}
 641			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 642		}
 643
 644		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 645			pages++;
 646			spin_lock(&init_mm.page_table_lock);
 647			set_pte_init((pte_t *)pud,
 648				     pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
 649					     PAGE_KERNEL_LARGE),
 650				     init);
 651			spin_unlock(&init_mm.page_table_lock);
 652			paddr_last = paddr_next;
 653			continue;
 654		}
 655
 656		pmd = alloc_low_page();
 657		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 658					   page_size_mask, prot, init);
 659
 660		spin_lock(&init_mm.page_table_lock);
 661		pud_populate_init(&init_mm, pud, pmd, init);
 662		spin_unlock(&init_mm.page_table_lock);
 663	}
 664
 665	update_page_count(PG_LEVEL_1G, pages);
 666
 667	return paddr_last;
 668}
 669
 670static unsigned long __meminit
 671phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 672	      unsigned long page_size_mask, bool init)
 673{
 674	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
 675
 676	paddr_last = paddr_end;
 677	vaddr = (unsigned long)__va(paddr);
 678	vaddr_end = (unsigned long)__va(paddr_end);
 679
 680	if (!pgtable_l5_enabled())
 681		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
 682				     page_size_mask, init);
 683
 684	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 685		p4d_t *p4d = p4d_page + p4d_index(vaddr);
 686		pud_t *pud;
 687
 688		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
 689		paddr = __pa(vaddr);
 690
 691		if (paddr >= paddr_end) {
 692			paddr_next = __pa(vaddr_next);
 693			if (!after_bootmem &&
 694			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 695					     E820_TYPE_RAM) &&
 696			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 697					     E820_TYPE_RESERVED_KERN))
 698				set_p4d_init(p4d, __p4d(0), init);
 699			continue;
 700		}
 701
 702		if (!p4d_none(*p4d)) {
 703			pud = pud_offset(p4d, 0);
 704			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 705					page_size_mask, init);
 706			continue;
 707		}
 708
 709		pud = alloc_low_page();
 710		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 711					   page_size_mask, init);
 712
 713		spin_lock(&init_mm.page_table_lock);
 714		p4d_populate_init(&init_mm, p4d, pud, init);
 715		spin_unlock(&init_mm.page_table_lock);
 716	}
 717
 718	return paddr_last;
 719}
 720
 721static unsigned long __meminit
 722__kernel_physical_mapping_init(unsigned long paddr_start,
 723			       unsigned long paddr_end,
 724			       unsigned long page_size_mask,
 725			       bool init)
 726{
 727	bool pgd_changed = false;
 728	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 729
 730	paddr_last = paddr_end;
 731	vaddr = (unsigned long)__va(paddr_start);
 732	vaddr_end = (unsigned long)__va(paddr_end);
 733	vaddr_start = vaddr;
 734
 735	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 736		pgd_t *pgd = pgd_offset_k(vaddr);
 737		p4d_t *p4d;
 738
 739		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 740
 741		if (pgd_val(*pgd)) {
 742			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 743			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 744						   __pa(vaddr_end),
 745						   page_size_mask,
 746						   init);
 747			continue;
 748		}
 749
 750		p4d = alloc_low_page();
 751		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 752					   page_size_mask, init);
 753
 754		spin_lock(&init_mm.page_table_lock);
 755		if (pgtable_l5_enabled())
 756			pgd_populate_init(&init_mm, pgd, p4d, init);
 757		else
 758			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
 759					  (pud_t *) p4d, init);
 760
 761		spin_unlock(&init_mm.page_table_lock);
 762		pgd_changed = true;
 763	}
 764
 765	if (pgd_changed)
 766		sync_global_pgds(vaddr_start, vaddr_end - 1);
 767
 768	return paddr_last;
 769}
 770
 771
 772/*
 773 * Create page table mapping for the physical memory for specific physical
 774 * addresses. Note that it can only be used to populate non-present entries.
 775 * The virtual and physical addresses have to be aligned on PMD level
 776 * down. It returns the last physical address mapped.
 777 */
 778unsigned long __meminit
 779kernel_physical_mapping_init(unsigned long paddr_start,
 780			     unsigned long paddr_end,
 781			     unsigned long page_size_mask)
 782{
 783	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 784					      page_size_mask, true);
 785}
 786
 787/*
 788 * This function is similar to kernel_physical_mapping_init() above with the
 789 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
 790 * when updating the mapping. The caller is responsible to flush the TLBs after
 791 * the function returns.
 792 */
 793unsigned long __meminit
 794kernel_physical_mapping_change(unsigned long paddr_start,
 795			       unsigned long paddr_end,
 796			       unsigned long page_size_mask)
 797{
 798	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 799					      page_size_mask, false);
 
 800}
 801
 802#ifndef CONFIG_NUMA
 803void __init initmem_init(void)
 804{
 805	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 806}
 807#endif
 808
 809void __init paging_init(void)
 810{
 811	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 812	sparse_init();
 813
 814	/*
 815	 * clear the default setting with node 0
 816	 * note: don't use nodes_clear here, that is really clearing when
 817	 *	 numa support is not compiled in, and later node_set_state
 818	 *	 will not set it back.
 819	 */
 820	node_clear_state(0, N_MEMORY);
 821	if (N_MEMORY != N_NORMAL_MEMORY)
 822		node_clear_state(0, N_NORMAL_MEMORY);
 823
 824	zone_sizes_init();
 825}
 826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827/*
 828 * Memory hotplug specific functions
 829 */
 830#ifdef CONFIG_MEMORY_HOTPLUG
 831/*
 832 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 833 * updating.
 834 */
 835static void update_end_of_memory_vars(u64 start, u64 size)
 836{
 837	unsigned long end_pfn = PFN_UP(start + size);
 838
 839	if (end_pfn > max_pfn) {
 840		max_pfn = end_pfn;
 841		max_low_pfn = end_pfn;
 842		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 843	}
 844}
 845
 846int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 847				struct mhp_restrictions *restrictions)
 848{
 849	int ret;
 850
 851	ret = __add_pages(nid, start_pfn, nr_pages, restrictions);
 852	WARN_ON_ONCE(ret);
 853
 854	/* update max_pfn, max_low_pfn and high_memory */
 855	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 856				  nr_pages << PAGE_SHIFT);
 857
 858	return ret;
 859}
 860
 861int arch_add_memory(int nid, u64 start, u64 size,
 862			struct mhp_restrictions *restrictions)
 863{
 864	unsigned long start_pfn = start >> PAGE_SHIFT;
 865	unsigned long nr_pages = size >> PAGE_SHIFT;
 866
 867	init_memory_mapping(start, start + size);
 868
 869	return add_pages(nid, start_pfn, nr_pages, restrictions);
 870}
 871
 872#define PAGE_INUSE 0xFD
 873
 874static void __meminit free_pagetable(struct page *page, int order)
 875{
 876	unsigned long magic;
 877	unsigned int nr_pages = 1 << order;
 878
 879	/* bootmem page has reserved flag */
 880	if (PageReserved(page)) {
 881		__ClearPageReserved(page);
 882
 883		magic = (unsigned long)page->freelist;
 884		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 885			while (nr_pages--)
 886				put_page_bootmem(page++);
 887		} else
 888			while (nr_pages--)
 889				free_reserved_page(page++);
 890	} else
 891		free_pages((unsigned long)page_address(page), order);
 892}
 893
 894static void __meminit free_hugepage_table(struct page *page,
 895		struct vmem_altmap *altmap)
 896{
 897	if (altmap)
 898		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
 899	else
 900		free_pagetable(page, get_order(PMD_SIZE));
 901}
 902
 903static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
 904{
 905	pte_t *pte;
 906	int i;
 907
 908	for (i = 0; i < PTRS_PER_PTE; i++) {
 909		pte = pte_start + i;
 910		if (!pte_none(*pte))
 911			return;
 912	}
 913
 914	/* free a pte talbe */
 915	free_pagetable(pmd_page(*pmd), 0);
 916	spin_lock(&init_mm.page_table_lock);
 917	pmd_clear(pmd);
 918	spin_unlock(&init_mm.page_table_lock);
 919}
 920
 921static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 922{
 923	pmd_t *pmd;
 924	int i;
 925
 926	for (i = 0; i < PTRS_PER_PMD; i++) {
 927		pmd = pmd_start + i;
 928		if (!pmd_none(*pmd))
 929			return;
 930	}
 931
 932	/* free a pmd talbe */
 933	free_pagetable(pud_page(*pud), 0);
 934	spin_lock(&init_mm.page_table_lock);
 935	pud_clear(pud);
 936	spin_unlock(&init_mm.page_table_lock);
 937}
 938
 939static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
 940{
 941	pud_t *pud;
 942	int i;
 943
 944	for (i = 0; i < PTRS_PER_PUD; i++) {
 945		pud = pud_start + i;
 946		if (!pud_none(*pud))
 947			return;
 948	}
 949
 950	/* free a pud talbe */
 951	free_pagetable(p4d_page(*p4d), 0);
 952	spin_lock(&init_mm.page_table_lock);
 953	p4d_clear(p4d);
 954	spin_unlock(&init_mm.page_table_lock);
 955}
 956
 957static void __meminit
 958remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
 959		 bool direct)
 960{
 961	unsigned long next, pages = 0;
 962	pte_t *pte;
 963	void *page_addr;
 964	phys_addr_t phys_addr;
 965
 966	pte = pte_start + pte_index(addr);
 967	for (; addr < end; addr = next, pte++) {
 968		next = (addr + PAGE_SIZE) & PAGE_MASK;
 969		if (next > end)
 970			next = end;
 971
 972		if (!pte_present(*pte))
 973			continue;
 974
 975		/*
 976		 * We mapped [0,1G) memory as identity mapping when
 977		 * initializing, in arch/x86/kernel/head_64.S. These
 978		 * pagetables cannot be removed.
 979		 */
 980		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
 981		if (phys_addr < (phys_addr_t)0x40000000)
 982			return;
 983
 984		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
 985			/*
 986			 * Do not free direct mapping pages since they were
 987			 * freed when offlining, or simplely not in use.
 988			 */
 989			if (!direct)
 990				free_pagetable(pte_page(*pte), 0);
 991
 992			spin_lock(&init_mm.page_table_lock);
 993			pte_clear(&init_mm, addr, pte);
 994			spin_unlock(&init_mm.page_table_lock);
 995
 996			/* For non-direct mapping, pages means nothing. */
 997			pages++;
 998		} else {
 999			/*
1000			 * If we are here, we are freeing vmemmap pages since
1001			 * direct mapped memory ranges to be freed are aligned.
1002			 *
1003			 * If we are not removing the whole page, it means
1004			 * other page structs in this page are being used and
1005			 * we canot remove them. So fill the unused page_structs
1006			 * with 0xFD, and remove the page when it is wholly
1007			 * filled with 0xFD.
1008			 */
1009			memset((void *)addr, PAGE_INUSE, next - addr);
1010
1011			page_addr = page_address(pte_page(*pte));
1012			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1013				free_pagetable(pte_page(*pte), 0);
1014
1015				spin_lock(&init_mm.page_table_lock);
1016				pte_clear(&init_mm, addr, pte);
1017				spin_unlock(&init_mm.page_table_lock);
1018			}
1019		}
1020	}
1021
1022	/* Call free_pte_table() in remove_pmd_table(). */
1023	flush_tlb_all();
1024	if (direct)
1025		update_page_count(PG_LEVEL_4K, -pages);
1026}
1027
1028static void __meminit
1029remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1030		 bool direct, struct vmem_altmap *altmap)
1031{
1032	unsigned long next, pages = 0;
1033	pte_t *pte_base;
1034	pmd_t *pmd;
1035	void *page_addr;
1036
1037	pmd = pmd_start + pmd_index(addr);
1038	for (; addr < end; addr = next, pmd++) {
1039		next = pmd_addr_end(addr, end);
1040
1041		if (!pmd_present(*pmd))
1042			continue;
1043
1044		if (pmd_large(*pmd)) {
1045			if (IS_ALIGNED(addr, PMD_SIZE) &&
1046			    IS_ALIGNED(next, PMD_SIZE)) {
1047				if (!direct)
1048					free_hugepage_table(pmd_page(*pmd),
1049							    altmap);
1050
1051				spin_lock(&init_mm.page_table_lock);
1052				pmd_clear(pmd);
1053				spin_unlock(&init_mm.page_table_lock);
1054				pages++;
1055			} else {
1056				/* If here, we are freeing vmemmap pages. */
1057				memset((void *)addr, PAGE_INUSE, next - addr);
1058
1059				page_addr = page_address(pmd_page(*pmd));
1060				if (!memchr_inv(page_addr, PAGE_INUSE,
1061						PMD_SIZE)) {
1062					free_hugepage_table(pmd_page(*pmd),
1063							    altmap);
1064
1065					spin_lock(&init_mm.page_table_lock);
1066					pmd_clear(pmd);
1067					spin_unlock(&init_mm.page_table_lock);
1068				}
1069			}
1070
1071			continue;
1072		}
1073
1074		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1075		remove_pte_table(pte_base, addr, next, direct);
1076		free_pte_table(pte_base, pmd);
1077	}
1078
1079	/* Call free_pmd_table() in remove_pud_table(). */
1080	if (direct)
1081		update_page_count(PG_LEVEL_2M, -pages);
1082}
1083
1084static void __meminit
1085remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1086		 struct vmem_altmap *altmap, bool direct)
1087{
1088	unsigned long next, pages = 0;
1089	pmd_t *pmd_base;
1090	pud_t *pud;
1091	void *page_addr;
1092
1093	pud = pud_start + pud_index(addr);
1094	for (; addr < end; addr = next, pud++) {
1095		next = pud_addr_end(addr, end);
1096
1097		if (!pud_present(*pud))
1098			continue;
1099
1100		if (pud_large(*pud)) {
1101			if (IS_ALIGNED(addr, PUD_SIZE) &&
1102			    IS_ALIGNED(next, PUD_SIZE)) {
1103				if (!direct)
1104					free_pagetable(pud_page(*pud),
1105						       get_order(PUD_SIZE));
1106
1107				spin_lock(&init_mm.page_table_lock);
1108				pud_clear(pud);
1109				spin_unlock(&init_mm.page_table_lock);
1110				pages++;
1111			} else {
1112				/* If here, we are freeing vmemmap pages. */
1113				memset((void *)addr, PAGE_INUSE, next - addr);
1114
1115				page_addr = page_address(pud_page(*pud));
1116				if (!memchr_inv(page_addr, PAGE_INUSE,
1117						PUD_SIZE)) {
1118					free_pagetable(pud_page(*pud),
1119						       get_order(PUD_SIZE));
1120
1121					spin_lock(&init_mm.page_table_lock);
1122					pud_clear(pud);
1123					spin_unlock(&init_mm.page_table_lock);
1124				}
1125			}
1126
1127			continue;
1128		}
1129
1130		pmd_base = pmd_offset(pud, 0);
1131		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1132		free_pmd_table(pmd_base, pud);
1133	}
1134
1135	if (direct)
1136		update_page_count(PG_LEVEL_1G, -pages);
1137}
1138
1139static void __meminit
1140remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1141		 struct vmem_altmap *altmap, bool direct)
1142{
1143	unsigned long next, pages = 0;
1144	pud_t *pud_base;
1145	p4d_t *p4d;
1146
1147	p4d = p4d_start + p4d_index(addr);
1148	for (; addr < end; addr = next, p4d++) {
1149		next = p4d_addr_end(addr, end);
1150
1151		if (!p4d_present(*p4d))
1152			continue;
1153
1154		BUILD_BUG_ON(p4d_large(*p4d));
1155
1156		pud_base = pud_offset(p4d, 0);
1157		remove_pud_table(pud_base, addr, next, altmap, direct);
1158		/*
1159		 * For 4-level page tables we do not want to free PUDs, but in the
1160		 * 5-level case we should free them. This code will have to change
1161		 * to adapt for boot-time switching between 4 and 5 level page tables.
1162		 */
1163		if (pgtable_l5_enabled())
1164			free_pud_table(pud_base, p4d);
1165	}
1166
1167	if (direct)
1168		update_page_count(PG_LEVEL_512G, -pages);
1169}
1170
1171/* start and end are both virtual address. */
1172static void __meminit
1173remove_pagetable(unsigned long start, unsigned long end, bool direct,
1174		struct vmem_altmap *altmap)
1175{
1176	unsigned long next;
1177	unsigned long addr;
1178	pgd_t *pgd;
1179	p4d_t *p4d;
1180
1181	for (addr = start; addr < end; addr = next) {
1182		next = pgd_addr_end(addr, end);
1183
1184		pgd = pgd_offset_k(addr);
1185		if (!pgd_present(*pgd))
1186			continue;
1187
1188		p4d = p4d_offset(pgd, 0);
1189		remove_p4d_table(p4d, addr, next, altmap, direct);
1190	}
1191
1192	flush_tlb_all();
1193}
1194
1195void __ref vmemmap_free(unsigned long start, unsigned long end,
1196		struct vmem_altmap *altmap)
1197{
 
 
 
1198	remove_pagetable(start, end, false, altmap);
1199}
1200
1201static void __meminit
1202kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1203{
1204	start = (unsigned long)__va(start);
1205	end = (unsigned long)__va(end);
1206
1207	remove_pagetable(start, end, true, NULL);
1208}
1209
1210void __ref arch_remove_memory(int nid, u64 start, u64 size,
1211			      struct vmem_altmap *altmap)
1212{
1213	unsigned long start_pfn = start >> PAGE_SHIFT;
1214	unsigned long nr_pages = size >> PAGE_SHIFT;
1215	struct page *page = pfn_to_page(start_pfn) + vmem_altmap_offset(altmap);
1216	struct zone *zone = page_zone(page);
1217
1218	__remove_pages(zone, start_pfn, nr_pages, altmap);
1219	kernel_physical_mapping_remove(start, start + size);
1220}
1221#endif /* CONFIG_MEMORY_HOTPLUG */
1222
1223static struct kcore_list kcore_vsyscall;
1224
1225static void __init register_page_bootmem_info(void)
1226{
1227#ifdef CONFIG_NUMA
1228	int i;
1229
1230	for_each_online_node(i)
1231		register_page_bootmem_info_node(NODE_DATA(i));
1232#endif
1233}
1234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235void __init mem_init(void)
1236{
1237	pci_iommu_alloc();
1238
1239	/* clear_bss() already clear the empty_zero_page */
1240
1241	/* this will put all memory onto the freelists */
1242	memblock_free_all();
1243	after_bootmem = 1;
1244	x86_init.hyper.init_after_bootmem();
1245
1246	/*
1247	 * Must be done after boot memory is put on freelist, because here we
1248	 * might set fields in deferred struct pages that have not yet been
1249	 * initialized, and memblock_free_all() initializes all the reserved
1250	 * deferred pages for us.
1251	 */
1252	register_page_bootmem_info();
1253
1254	/* Register memory areas for /proc/kcore */
1255	if (get_gate_vma(&init_mm))
1256		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1257
1258	mem_init_print_info(NULL);
1259}
1260
1261int kernel_set_to_readonly;
1262
1263void set_kernel_text_rw(void)
1264{
1265	unsigned long start = PFN_ALIGN(_text);
1266	unsigned long end = PFN_ALIGN(__stop___ex_table);
1267
1268	if (!kernel_set_to_readonly)
1269		return;
1270
1271	pr_debug("Set kernel text: %lx - %lx for read write\n",
1272		 start, end);
1273
1274	/*
1275	 * Make the kernel identity mapping for text RW. Kernel text
1276	 * mapping will always be RO. Refer to the comment in
1277	 * static_protections() in pageattr.c
1278	 */
1279	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1280}
 
1281
1282void set_kernel_text_ro(void)
1283{
1284	unsigned long start = PFN_ALIGN(_text);
1285	unsigned long end = PFN_ALIGN(__stop___ex_table);
1286
1287	if (!kernel_set_to_readonly)
1288		return;
1289
1290	pr_debug("Set kernel text: %lx - %lx for read only\n",
1291		 start, end);
1292
1293	/*
1294	 * Set the kernel identity mapping for text RO.
1295	 */
1296	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1297}
1298
1299void mark_rodata_ro(void)
1300{
1301	unsigned long start = PFN_ALIGN(_text);
1302	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1303	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1304	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1305	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1306	unsigned long all_end;
1307
1308	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1309	       (end - start) >> 10);
1310	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1311
1312	kernel_set_to_readonly = 1;
1313
1314	/*
1315	 * The rodata/data/bss/brk section (but not the kernel text!)
1316	 * should also be not-executable.
1317	 *
1318	 * We align all_end to PMD_SIZE because the existing mapping
1319	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1320	 * split the PMD and the reminder between _brk_end and the end
1321	 * of the PMD will remain mapped executable.
1322	 *
1323	 * Any PMD which was setup after the one which covers _brk_end
1324	 * has been zapped already via cleanup_highmem().
1325	 */
1326	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1327	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1328
 
 
1329#ifdef CONFIG_CPA_DEBUG
1330	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1331	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1332
1333	printk(KERN_INFO "Testing CPA: again\n");
1334	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1335#endif
1336
1337	free_kernel_image_pages((void *)text_end, (void *)rodata_start);
1338	free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
 
 
1339
1340	debug_checkwx();
1341}
1342
1343int kern_addr_valid(unsigned long addr)
1344{
1345	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1346	pgd_t *pgd;
1347	p4d_t *p4d;
1348	pud_t *pud;
1349	pmd_t *pmd;
1350	pte_t *pte;
1351
1352	if (above != 0 && above != -1UL)
1353		return 0;
1354
1355	pgd = pgd_offset_k(addr);
1356	if (pgd_none(*pgd))
1357		return 0;
1358
1359	p4d = p4d_offset(pgd, addr);
1360	if (p4d_none(*p4d))
1361		return 0;
1362
1363	pud = pud_offset(p4d, addr);
1364	if (pud_none(*pud))
1365		return 0;
1366
1367	if (pud_large(*pud))
1368		return pfn_valid(pud_pfn(*pud));
1369
1370	pmd = pmd_offset(pud, addr);
1371	if (pmd_none(*pmd))
1372		return 0;
1373
1374	if (pmd_large(*pmd))
1375		return pfn_valid(pmd_pfn(*pmd));
1376
1377	pte = pte_offset_kernel(pmd, addr);
1378	if (pte_none(*pte))
1379		return 0;
1380
1381	return pfn_valid(pte_pfn(*pte));
1382}
1383
1384/*
1385 * Block size is the minimum amount of memory which can be hotplugged or
1386 * hotremoved. It must be power of two and must be equal or larger than
1387 * MIN_MEMORY_BLOCK_SIZE.
1388 */
1389#define MAX_BLOCK_SIZE (2UL << 30)
1390
1391/* Amount of ram needed to start using large blocks */
1392#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1393
1394/* Adjustable memory block size */
1395static unsigned long set_memory_block_size;
1396int __init set_memory_block_size_order(unsigned int order)
1397{
1398	unsigned long size = 1UL << order;
1399
1400	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1401		return -EINVAL;
1402
1403	set_memory_block_size = size;
1404	return 0;
1405}
1406
1407static unsigned long probe_memory_block_size(void)
1408{
1409	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1410	unsigned long bz;
1411
1412	/* If memory block size has been set, then use it */
1413	bz = set_memory_block_size;
1414	if (bz)
1415		goto done;
1416
1417	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1418	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1419		bz = MIN_MEMORY_BLOCK_SIZE;
1420		goto done;
1421	}
1422
 
 
 
 
 
 
 
 
 
1423	/* Find the largest allowed block size that aligns to memory end */
1424	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1425		if (IS_ALIGNED(boot_mem_end, bz))
1426			break;
1427	}
1428done:
1429	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1430
1431	return bz;
1432}
1433
1434static unsigned long memory_block_size_probed;
1435unsigned long memory_block_size_bytes(void)
1436{
1437	if (!memory_block_size_probed)
1438		memory_block_size_probed = probe_memory_block_size();
1439
1440	return memory_block_size_probed;
1441}
1442
1443#ifdef CONFIG_SPARSEMEM_VMEMMAP
1444/*
1445 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1446 */
1447static long __meminitdata addr_start, addr_end;
1448static void __meminitdata *p_start, *p_end;
1449static int __meminitdata node_start;
1450
1451static int __meminit vmemmap_populate_hugepages(unsigned long start,
1452		unsigned long end, int node, struct vmem_altmap *altmap)
1453{
1454	unsigned long addr;
1455	unsigned long next;
1456	pgd_t *pgd;
1457	p4d_t *p4d;
1458	pud_t *pud;
1459	pmd_t *pmd;
1460
1461	for (addr = start; addr < end; addr = next) {
1462		next = pmd_addr_end(addr, end);
 
1463
1464		pgd = vmemmap_pgd_populate(addr, node);
1465		if (!pgd)
1466			return -ENOMEM;
 
 
 
 
 
 
1467
1468		p4d = vmemmap_p4d_populate(pgd, addr, node);
1469		if (!p4d)
1470			return -ENOMEM;
1471
1472		pud = vmemmap_pud_populate(p4d, addr, node);
1473		if (!pud)
1474			return -ENOMEM;
 
1475
1476		pmd = pmd_offset(pud, addr);
1477		if (pmd_none(*pmd)) {
1478			void *p;
1479
1480			if (altmap)
1481				p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1482			else
1483				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1484			if (p) {
1485				pte_t entry;
1486
1487				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1488						PAGE_KERNEL_LARGE);
1489				set_pmd(pmd, __pmd(pte_val(entry)));
1490
1491				/* check to see if we have contiguous blocks */
1492				if (p_end != p || node_start != node) {
1493					if (p_start)
1494						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1495						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1496					addr_start = addr;
1497					node_start = node;
1498					p_start = p;
1499				}
1500
1501				addr_end = addr + PMD_SIZE;
1502				p_end = p + PMD_SIZE;
1503				continue;
1504			} else if (altmap)
1505				return -ENOMEM; /* no fallback */
1506		} else if (pmd_large(*pmd)) {
1507			vmemmap_verify((pte_t *)pmd, node, addr, next);
1508			continue;
1509		}
1510		if (vmemmap_populate_basepages(addr, next, node))
1511			return -ENOMEM;
1512	}
1513	return 0;
 
1514}
1515
1516int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1517		struct vmem_altmap *altmap)
1518{
1519	int err;
1520
 
 
 
1521	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1522		err = vmemmap_populate_basepages(start, end, node);
1523	else if (boot_cpu_has(X86_FEATURE_PSE))
1524		err = vmemmap_populate_hugepages(start, end, node, altmap);
1525	else if (altmap) {
1526		pr_err_once("%s: no cpu support for altmap allocations\n",
1527				__func__);
1528		err = -ENOMEM;
1529	} else
1530		err = vmemmap_populate_basepages(start, end, node);
1531	if (!err)
1532		sync_global_pgds(start, end - 1);
1533	return err;
1534}
1535
1536#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1537void register_page_bootmem_memmap(unsigned long section_nr,
1538				  struct page *start_page, unsigned long nr_pages)
1539{
1540	unsigned long addr = (unsigned long)start_page;
1541	unsigned long end = (unsigned long)(start_page + nr_pages);
1542	unsigned long next;
1543	pgd_t *pgd;
1544	p4d_t *p4d;
1545	pud_t *pud;
1546	pmd_t *pmd;
1547	unsigned int nr_pmd_pages;
1548	struct page *page;
1549
1550	for (; addr < end; addr = next) {
1551		pte_t *pte = NULL;
1552
1553		pgd = pgd_offset_k(addr);
1554		if (pgd_none(*pgd)) {
1555			next = (addr + PAGE_SIZE) & PAGE_MASK;
1556			continue;
1557		}
1558		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1559
1560		p4d = p4d_offset(pgd, addr);
1561		if (p4d_none(*p4d)) {
1562			next = (addr + PAGE_SIZE) & PAGE_MASK;
1563			continue;
1564		}
1565		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1566
1567		pud = pud_offset(p4d, addr);
1568		if (pud_none(*pud)) {
1569			next = (addr + PAGE_SIZE) & PAGE_MASK;
1570			continue;
1571		}
1572		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1573
1574		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1575			next = (addr + PAGE_SIZE) & PAGE_MASK;
1576			pmd = pmd_offset(pud, addr);
1577			if (pmd_none(*pmd))
1578				continue;
1579			get_page_bootmem(section_nr, pmd_page(*pmd),
1580					 MIX_SECTION_INFO);
1581
1582			pte = pte_offset_kernel(pmd, addr);
1583			if (pte_none(*pte))
1584				continue;
1585			get_page_bootmem(section_nr, pte_page(*pte),
1586					 SECTION_INFO);
1587		} else {
1588			next = pmd_addr_end(addr, end);
1589
1590			pmd = pmd_offset(pud, addr);
1591			if (pmd_none(*pmd))
1592				continue;
1593
1594			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1595			page = pmd_page(*pmd);
1596			while (nr_pmd_pages--)
1597				get_page_bootmem(section_nr, page++,
1598						 SECTION_INFO);
1599		}
1600	}
1601}
1602#endif
1603
1604void __meminit vmemmap_populate_print_last(void)
1605{
1606	if (p_start) {
1607		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1608			addr_start, addr_end-1, p_start, p_end-1, node_start);
1609		p_start = NULL;
1610		p_end = NULL;
1611		node_start = 0;
1612	}
1613}
1614#endif