Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
 
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 111			       (void __user *)regs->tpc, lvl);
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 
 205out:
 206	exception_exit(prev_state);
 207}
 208
 209void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 210{
 211	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 212		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 213		return;
 214
 215	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 216	spitfire_insn_access_exception(regs, sfsr, sfar);
 217}
 218
 219void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 220{
 221	unsigned short type = (type_ctx >> 16);
 222	unsigned short ctx  = (type_ctx & 0xffff);
 223
 224	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 225		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 226		return;
 227
 228	if (regs->tstate & TSTATE_PRIV) {
 229		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 230		       "CTX[%04x] TYPE[%04x], going.\n",
 231		       addr, ctx, type);
 232		die_if_kernel("Iax", regs);
 233	}
 234
 235	if (test_thread_flag(TIF_32BIT)) {
 236		regs->tpc &= 0xffffffff;
 237		regs->tnpc &= 0xffffffff;
 238	}
 239	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 240}
 241
 242void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 243{
 244	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 245		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 246		return;
 247
 248	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 249	sun4v_insn_access_exception(regs, addr, type_ctx);
 250}
 251
 252bool is_no_fault_exception(struct pt_regs *regs)
 253{
 254	unsigned char asi;
 255	u32 insn;
 256
 257	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 258		return false;
 259
 260	/*
 261	 * Must do a little instruction decoding here in order to
 262	 * decide on a course of action. The bits of interest are:
 263	 *  insn[31:30] = op, where 3 indicates the load/store group
 264	 *  insn[24:19] = op3, which identifies individual opcodes
 265	 *  insn[13] indicates an immediate offset
 266	 *  op3[4]=1 identifies alternate space instructions
 267	 *  op3[5:4]=3 identifies floating point instructions
 268	 *  op3[2]=1 identifies stores
 269	 * See "Opcode Maps" in the appendix of any Sparc V9
 270	 * architecture spec for full details.
 271	 */
 272	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 273		if (insn & 0x2000)		    /* immediate offset */
 274			asi = (regs->tstate >> 24); /* saved %asi       */
 275		else
 276			asi = (insn >> 5);	    /* immediate asi    */
 277		if ((asi & 0xf6) == ASI_PNF) {
 278			if (insn & 0x200000)        /* op3[2], stores   */
 279				return false;
 280			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 281				handle_ldf_stq(insn, regs);
 282			else
 283				handle_ld_nf(insn, regs);
 
 
 
 284			return true;
 285		}
 286	}
 287	return false;
 288}
 289
 290void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 291{
 292	enum ctx_state prev_state = exception_enter();
 293
 294	if (notify_die(DIE_TRAP, "data access exception", regs,
 295		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 296		goto out;
 297
 298	if (regs->tstate & TSTATE_PRIV) {
 299		/* Test if this comes from uaccess places. */
 300		const struct exception_table_entry *entry;
 301
 302		entry = search_exception_tables(regs->tpc);
 303		if (entry) {
 304			/* Ouch, somebody is trying VM hole tricks on us... */
 305#ifdef DEBUG_EXCEPTIONS
 306			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 307			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 308			       regs->tpc, entry->fixup);
 309#endif
 310			regs->tpc = entry->fixup;
 311			regs->tnpc = regs->tpc + 4;
 312			goto out;
 313		}
 314		/* Shit... */
 315		printk("spitfire_data_access_exception: SFSR[%016lx] "
 316		       "SFAR[%016lx], going.\n", sfsr, sfar);
 317		die_if_kernel("Dax", regs);
 318	}
 319
 320	if (is_no_fault_exception(regs))
 321		return;
 322
 323	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 324out:
 325	exception_exit(prev_state);
 326}
 327
 328void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 329{
 330	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 331		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 332		return;
 333
 334	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 335	spitfire_data_access_exception(regs, sfsr, sfar);
 336}
 337
 338void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 339{
 340	unsigned short type = (type_ctx >> 16);
 341	unsigned short ctx  = (type_ctx & 0xffff);
 342
 343	if (notify_die(DIE_TRAP, "data access exception", regs,
 344		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 345		return;
 346
 347	if (regs->tstate & TSTATE_PRIV) {
 348		/* Test if this comes from uaccess places. */
 349		const struct exception_table_entry *entry;
 350
 351		entry = search_exception_tables(regs->tpc);
 352		if (entry) {
 353			/* Ouch, somebody is trying VM hole tricks on us... */
 354#ifdef DEBUG_EXCEPTIONS
 355			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 356			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 357			       regs->tpc, entry->fixup);
 358#endif
 359			regs->tpc = entry->fixup;
 360			regs->tnpc = regs->tpc + 4;
 361			return;
 362		}
 363		printk("sun4v_data_access_exception: ADDR[%016lx] "
 364		       "CTX[%04x] TYPE[%04x], going.\n",
 365		       addr, ctx, type);
 366		die_if_kernel("Dax", regs);
 367	}
 368
 369	if (test_thread_flag(TIF_32BIT)) {
 370		regs->tpc &= 0xffffffff;
 371		regs->tnpc &= 0xffffffff;
 372	}
 373	if (is_no_fault_exception(regs))
 374		return;
 375
 376	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 377	 * is vectored thorugh data access exception trap with fault type
 378	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 379	 * Accessing an address with invalid ASI for the address, for
 380	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 381	 * when TTE.mcd is not set for the VA, is also vectored into
 382	 * kerbel by HV as data access exception with fault type set to
 383	 * HV_FAULT_TYPE_INV_ASI.
 384	 */
 385	switch (type) {
 386	case HV_FAULT_TYPE_INV_ASI:
 387		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 388		break;
 389	case HV_FAULT_TYPE_MCD_DIS:
 390		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 391		break;
 392	default:
 393		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 394		break;
 395	}
 396}
 397
 398void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 399{
 400	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 401		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 402		return;
 403
 404	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 405	sun4v_data_access_exception(regs, addr, type_ctx);
 406}
 407
 408#ifdef CONFIG_PCI
 409#include "pci_impl.h"
 410#endif
 411
 412/* When access exceptions happen, we must do this. */
 413static void spitfire_clean_and_reenable_l1_caches(void)
 414{
 415	unsigned long va;
 416
 417	if (tlb_type != spitfire)
 418		BUG();
 419
 420	/* Clean 'em. */
 421	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 422		spitfire_put_icache_tag(va, 0x0);
 423		spitfire_put_dcache_tag(va, 0x0);
 424	}
 425
 426	/* Re-enable in LSU. */
 427	__asm__ __volatile__("flush %%g6\n\t"
 428			     "membar #Sync\n\t"
 429			     "stxa %0, [%%g0] %1\n\t"
 430			     "membar #Sync"
 431			     : /* no outputs */
 432			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 433				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 434			     "i" (ASI_LSU_CONTROL)
 435			     : "memory");
 436}
 437
 438static void spitfire_enable_estate_errors(void)
 439{
 440	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 441			     "membar	#Sync"
 442			     : /* no outputs */
 443			     : "r" (ESTATE_ERR_ALL),
 444			       "i" (ASI_ESTATE_ERROR_EN));
 445}
 446
 447static char ecc_syndrome_table[] = {
 448	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 449	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 450	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 451	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 452	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 453	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 454	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 455	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 456	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 457	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 458	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 459	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 460	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 461	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 462	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 463	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 464	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 465	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 466	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 467	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 468	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 469	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 470	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 471	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 472	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 473	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 474	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 475	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 477	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 479	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 480};
 481
 482static char *syndrome_unknown = "<Unknown>";
 483
 484static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 485{
 486	unsigned short scode;
 487	char memmod_str[64], *p;
 488
 489	if (udbl & bit) {
 490		scode = ecc_syndrome_table[udbl & 0xff];
 491		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 492			p = syndrome_unknown;
 493		else
 494			p = memmod_str;
 495		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 496		       "Memory Module \"%s\"\n",
 497		       smp_processor_id(), scode, p);
 498	}
 499
 500	if (udbh & bit) {
 501		scode = ecc_syndrome_table[udbh & 0xff];
 502		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 503			p = syndrome_unknown;
 504		else
 505			p = memmod_str;
 506		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 507		       "Memory Module \"%s\"\n",
 508		       smp_processor_id(), scode, p);
 509	}
 510
 511}
 512
 513static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 514{
 515
 516	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 517	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 518	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 519
 520	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 521
 522	/* We always log it, even if someone is listening for this
 523	 * trap.
 524	 */
 525	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 526		   0, TRAP_TYPE_CEE, SIGTRAP);
 527
 528	/* The Correctable ECC Error trap does not disable I/D caches.  So
 529	 * we only have to restore the ESTATE Error Enable register.
 530	 */
 531	spitfire_enable_estate_errors();
 532}
 533
 534static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 535{
 536	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 537	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 538	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 539
 540	/* XXX add more human friendly logging of the error status
 541	 * XXX as is implemented for cheetah
 542	 */
 543
 544	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 545
 546	/* We always log it, even if someone is listening for this
 547	 * trap.
 548	 */
 549	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 550		   0, tt, SIGTRAP);
 551
 552	if (regs->tstate & TSTATE_PRIV) {
 553		if (tl1)
 554			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 555		die_if_kernel("UE", regs);
 556	}
 557
 558	/* XXX need more intelligent processing here, such as is implemented
 559	 * XXX for cheetah errors, in fact if the E-cache still holds the
 560	 * XXX line with bad parity this will loop
 561	 */
 562
 563	spitfire_clean_and_reenable_l1_caches();
 564	spitfire_enable_estate_errors();
 565
 566	if (test_thread_flag(TIF_32BIT)) {
 567		regs->tpc &= 0xffffffff;
 568		regs->tnpc &= 0xffffffff;
 569	}
 570	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 571}
 572
 573void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 574{
 575	unsigned long afsr, tt, udbh, udbl;
 576	int tl1;
 577
 578	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 579	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 580	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 581	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 582	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 583
 584#ifdef CONFIG_PCI
 585	if (tt == TRAP_TYPE_DAE &&
 586	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 587		spitfire_clean_and_reenable_l1_caches();
 588		spitfire_enable_estate_errors();
 589
 590		pci_poke_faulted = 1;
 591		regs->tnpc = regs->tpc + 4;
 592		return;
 593	}
 594#endif
 595
 596	if (afsr & SFAFSR_UE)
 597		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 598
 599	if (tt == TRAP_TYPE_CEE) {
 600		/* Handle the case where we took a CEE trap, but ACK'd
 601		 * only the UE state in the UDB error registers.
 602		 */
 603		if (afsr & SFAFSR_UE) {
 604			if (udbh & UDBE_CE) {
 605				__asm__ __volatile__(
 606					"stxa	%0, [%1] %2\n\t"
 607					"membar	#Sync"
 608					: /* no outputs */
 609					: "r" (udbh & UDBE_CE),
 610					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 611			}
 612			if (udbl & UDBE_CE) {
 613				__asm__ __volatile__(
 614					"stxa	%0, [%1] %2\n\t"
 615					"membar	#Sync"
 616					: /* no outputs */
 617					: "r" (udbl & UDBE_CE),
 618					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 619			}
 620		}
 621
 622		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 623	}
 624}
 625
 626int cheetah_pcache_forced_on;
 627
 628void cheetah_enable_pcache(void)
 629{
 630	unsigned long dcr;
 631
 632	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 633	       smp_processor_id());
 634
 635	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 636			     : "=r" (dcr)
 637			     : "i" (ASI_DCU_CONTROL_REG));
 638	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 639	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 640			     "membar #Sync"
 641			     : /* no outputs */
 642			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 643}
 644
 645/* Cheetah error trap handling. */
 646static unsigned long ecache_flush_physbase;
 647static unsigned long ecache_flush_linesize;
 648static unsigned long ecache_flush_size;
 649
 650/* This table is ordered in priority of errors and matches the
 651 * AFAR overwrite policy as well.
 652 */
 653
 654struct afsr_error_table {
 655	unsigned long mask;
 656	const char *name;
 657};
 658
 659static const char CHAFSR_PERR_msg[] =
 660	"System interface protocol error";
 661static const char CHAFSR_IERR_msg[] =
 662	"Internal processor error";
 663static const char CHAFSR_ISAP_msg[] =
 664	"System request parity error on incoming address";
 665static const char CHAFSR_UCU_msg[] =
 666	"Uncorrectable E-cache ECC error for ifetch/data";
 667static const char CHAFSR_UCC_msg[] =
 668	"SW Correctable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UE_msg[] =
 670	"Uncorrectable system bus data ECC error for read";
 671static const char CHAFSR_EDU_msg[] =
 672	"Uncorrectable E-cache ECC error for stmerge/blkld";
 673static const char CHAFSR_EMU_msg[] =
 674	"Uncorrectable system bus MTAG error";
 675static const char CHAFSR_WDU_msg[] =
 676	"Uncorrectable E-cache ECC error for writeback";
 677static const char CHAFSR_CPU_msg[] =
 678	"Uncorrectable ECC error for copyout";
 679static const char CHAFSR_CE_msg[] =
 680	"HW corrected system bus data ECC error for read";
 681static const char CHAFSR_EDC_msg[] =
 682	"HW corrected E-cache ECC error for stmerge/blkld";
 683static const char CHAFSR_EMC_msg[] =
 684	"HW corrected system bus MTAG ECC error";
 685static const char CHAFSR_WDC_msg[] =
 686	"HW corrected E-cache ECC error for writeback";
 687static const char CHAFSR_CPC_msg[] =
 688	"HW corrected ECC error for copyout";
 689static const char CHAFSR_TO_msg[] =
 690	"Unmapped error from system bus";
 691static const char CHAFSR_BERR_msg[] =
 692	"Bus error response from system bus";
 693static const char CHAFSR_IVC_msg[] =
 694	"HW corrected system bus data ECC error for ivec read";
 695static const char CHAFSR_IVU_msg[] =
 696	"Uncorrectable system bus data ECC error for ivec read";
 697static struct afsr_error_table __cheetah_error_table[] = {
 698	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 699	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 700	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 701	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 702	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 703	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 704	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 705	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 706	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 707	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 708	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 709	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 710	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 711	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 712	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 713	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 714	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 715	/* These two do not update the AFAR. */
 716	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 717	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 718	{	0,		NULL			},
 719};
 720static const char CHPAFSR_DTO_msg[] =
 721	"System bus unmapped error for prefetch/storequeue-read";
 722static const char CHPAFSR_DBERR_msg[] =
 723	"System bus error for prefetch/storequeue-read";
 724static const char CHPAFSR_THCE_msg[] =
 725	"Hardware corrected E-cache Tag ECC error";
 726static const char CHPAFSR_TSCE_msg[] =
 727	"SW handled correctable E-cache Tag ECC error";
 728static const char CHPAFSR_TUE_msg[] =
 729	"Uncorrectable E-cache Tag ECC error";
 730static const char CHPAFSR_DUE_msg[] =
 731	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 732static struct afsr_error_table __cheetah_plus_error_table[] = {
 733	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 734	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 735	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 736	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 737	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 738	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 739	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 740	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 741	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 742	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 743	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 744	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 745	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 746	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 747	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 748	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 749	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 750	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 751	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 752	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 753	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 754	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 755	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 756	/* These two do not update the AFAR. */
 757	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 758	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 759	{	0,		NULL			},
 760};
 761static const char JPAFSR_JETO_msg[] =
 762	"System interface protocol error, hw timeout caused";
 763static const char JPAFSR_SCE_msg[] =
 764	"Parity error on system snoop results";
 765static const char JPAFSR_JEIC_msg[] =
 766	"System interface protocol error, illegal command detected";
 767static const char JPAFSR_JEIT_msg[] =
 768	"System interface protocol error, illegal ADTYPE detected";
 769static const char JPAFSR_OM_msg[] =
 770	"Out of range memory error has occurred";
 771static const char JPAFSR_ETP_msg[] =
 772	"Parity error on L2 cache tag SRAM";
 773static const char JPAFSR_UMS_msg[] =
 774	"Error due to unsupported store";
 775static const char JPAFSR_RUE_msg[] =
 776	"Uncorrectable ECC error from remote cache/memory";
 777static const char JPAFSR_RCE_msg[] =
 778	"Correctable ECC error from remote cache/memory";
 779static const char JPAFSR_BP_msg[] =
 780	"JBUS parity error on returned read data";
 781static const char JPAFSR_WBP_msg[] =
 782	"JBUS parity error on data for writeback or block store";
 783static const char JPAFSR_FRC_msg[] =
 784	"Foreign read to DRAM incurring correctable ECC error";
 785static const char JPAFSR_FRU_msg[] =
 786	"Foreign read to DRAM incurring uncorrectable ECC error";
 787static struct afsr_error_table __jalapeno_error_table[] = {
 788	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 789	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 790	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 791	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 792	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 793	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 794	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 795	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 796	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 797	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 798	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 799	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 800	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 801	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 802	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 803	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 804	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 805	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 806	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 807	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 808	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 809	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 810	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 811	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 812	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 813	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 814	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 815	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 816	/* These two do not update the AFAR. */
 817	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 818	{	0,		NULL			},
 819};
 820static struct afsr_error_table *cheetah_error_table;
 821static unsigned long cheetah_afsr_errors;
 822
 823struct cheetah_err_info *cheetah_error_log;
 824
 825static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 826{
 827	struct cheetah_err_info *p;
 828	int cpu = smp_processor_id();
 829
 830	if (!cheetah_error_log)
 831		return NULL;
 832
 833	p = cheetah_error_log + (cpu * 2);
 834	if ((afsr & CHAFSR_TL1) != 0UL)
 835		p++;
 836
 837	return p;
 838}
 839
 840extern unsigned int tl0_icpe[], tl1_icpe[];
 841extern unsigned int tl0_dcpe[], tl1_dcpe[];
 842extern unsigned int tl0_fecc[], tl1_fecc[];
 843extern unsigned int tl0_cee[], tl1_cee[];
 844extern unsigned int tl0_iae[], tl1_iae[];
 845extern unsigned int tl0_dae[], tl1_dae[];
 846extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 847extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 848extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 849extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 850extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 851
 852void __init cheetah_ecache_flush_init(void)
 853{
 854	unsigned long largest_size, smallest_linesize, order, ver;
 855	int i, sz;
 856
 857	/* Scan all cpu device tree nodes, note two values:
 858	 * 1) largest E-cache size
 859	 * 2) smallest E-cache line size
 860	 */
 861	largest_size = 0UL;
 862	smallest_linesize = ~0UL;
 863
 864	for (i = 0; i < NR_CPUS; i++) {
 865		unsigned long val;
 866
 867		val = cpu_data(i).ecache_size;
 868		if (!val)
 869			continue;
 870
 871		if (val > largest_size)
 872			largest_size = val;
 873
 874		val = cpu_data(i).ecache_line_size;
 875		if (val < smallest_linesize)
 876			smallest_linesize = val;
 877
 878	}
 879
 880	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 881		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 882			    "parameters.\n");
 883		prom_halt();
 884	}
 885
 886	ecache_flush_size = (2 * largest_size);
 887	ecache_flush_linesize = smallest_linesize;
 888
 889	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 890
 891	if (ecache_flush_physbase == ~0UL) {
 892		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 893			    "contiguous physical memory.\n",
 894			    ecache_flush_size);
 895		prom_halt();
 896	}
 897
 898	/* Now allocate error trap reporting scoreboard. */
 899	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 900	for (order = 0; order < MAX_ORDER; order++) {
 901		if ((PAGE_SIZE << order) >= sz)
 902			break;
 903	}
 904	cheetah_error_log = (struct cheetah_err_info *)
 905		__get_free_pages(GFP_KERNEL, order);
 906	if (!cheetah_error_log) {
 907		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 908			    "error logging scoreboard (%d bytes).\n", sz);
 909		prom_halt();
 910	}
 911	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 912
 913	/* Mark all AFSRs as invalid so that the trap handler will
 914	 * log new new information there.
 915	 */
 916	for (i = 0; i < 2 * NR_CPUS; i++)
 917		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 918
 919	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 920	if ((ver >> 32) == __JALAPENO_ID ||
 921	    (ver >> 32) == __SERRANO_ID) {
 922		cheetah_error_table = &__jalapeno_error_table[0];
 923		cheetah_afsr_errors = JPAFSR_ERRORS;
 924	} else if ((ver >> 32) == 0x003e0015) {
 925		cheetah_error_table = &__cheetah_plus_error_table[0];
 926		cheetah_afsr_errors = CHPAFSR_ERRORS;
 927	} else {
 928		cheetah_error_table = &__cheetah_error_table[0];
 929		cheetah_afsr_errors = CHAFSR_ERRORS;
 930	}
 931
 932	/* Now patch trap tables. */
 933	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 934	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 935	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 936	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 938	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	if (tlb_type == cheetah_plus) {
 942		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 943		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 944		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 945		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 946	}
 947	flushi(PAGE_OFFSET);
 948}
 949
 950static void cheetah_flush_ecache(void)
 951{
 952	unsigned long flush_base = ecache_flush_physbase;
 953	unsigned long flush_linesize = ecache_flush_linesize;
 954	unsigned long flush_size = ecache_flush_size;
 955
 956	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 957			     "   bne,pt	%%xcc, 1b\n\t"
 958			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 959			     : "=&r" (flush_size)
 960			     : "0" (flush_size), "r" (flush_base),
 961			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 962}
 963
 964static void cheetah_flush_ecache_line(unsigned long physaddr)
 965{
 966	unsigned long alias;
 967
 968	physaddr &= ~(8UL - 1UL);
 969	physaddr = (ecache_flush_physbase +
 970		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 971	alias = physaddr + (ecache_flush_size >> 1UL);
 972	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 973			     "ldxa [%1] %2, %%g0\n\t"
 974			     "membar #Sync"
 975			     : /* no outputs */
 976			     : "r" (physaddr), "r" (alias),
 977			       "i" (ASI_PHYS_USE_EC));
 978}
 979
 980/* Unfortunately, the diagnostic access to the I-cache tags we need to
 981 * use to clear the thing interferes with I-cache coherency transactions.
 982 *
 983 * So we must only flush the I-cache when it is disabled.
 984 */
 985static void __cheetah_flush_icache(void)
 986{
 987	unsigned int icache_size, icache_line_size;
 988	unsigned long addr;
 989
 990	icache_size = local_cpu_data().icache_size;
 991	icache_line_size = local_cpu_data().icache_line_size;
 992
 993	/* Clear the valid bits in all the tags. */
 994	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 995		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 996				     "membar #Sync"
 997				     : /* no outputs */
 998				     : "r" (addr | (2 << 3)),
 999				       "i" (ASI_IC_TAG));
1000	}
1001}
1002
1003static void cheetah_flush_icache(void)
1004{
1005	unsigned long dcu_save;
1006
1007	/* Save current DCU, disable I-cache. */
1008	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1009			     "or %0, %2, %%g1\n\t"
1010			     "stxa %%g1, [%%g0] %1\n\t"
1011			     "membar #Sync"
1012			     : "=r" (dcu_save)
1013			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1014			     : "g1");
1015
1016	__cheetah_flush_icache();
1017
1018	/* Restore DCU register */
1019	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1020			     "membar #Sync"
1021			     : /* no outputs */
1022			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1023}
1024
1025static void cheetah_flush_dcache(void)
1026{
1027	unsigned int dcache_size, dcache_line_size;
1028	unsigned long addr;
1029
1030	dcache_size = local_cpu_data().dcache_size;
1031	dcache_line_size = local_cpu_data().dcache_line_size;
1032
1033	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1034		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1035				     "membar #Sync"
1036				     : /* no outputs */
1037				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1038	}
1039}
1040
1041/* In order to make the even parity correct we must do two things.
1042 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1043 * Next, we clear out all 32-bytes of data for that line.  Data of
1044 * all-zero + tag parity value of zero == correct parity.
1045 */
1046static void cheetah_plus_zap_dcache_parity(void)
1047{
1048	unsigned int dcache_size, dcache_line_size;
1049	unsigned long addr;
1050
1051	dcache_size = local_cpu_data().dcache_size;
1052	dcache_line_size = local_cpu_data().dcache_line_size;
1053
1054	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1055		unsigned long tag = (addr >> 14);
1056		unsigned long line;
1057
1058		__asm__ __volatile__("membar	#Sync\n\t"
1059				     "stxa	%0, [%1] %2\n\t"
1060				     "membar	#Sync"
1061				     : /* no outputs */
1062				     : "r" (tag), "r" (addr),
1063				       "i" (ASI_DCACHE_UTAG));
1064		for (line = addr; line < addr + dcache_line_size; line += 8)
1065			__asm__ __volatile__("membar	#Sync\n\t"
1066					     "stxa	%%g0, [%0] %1\n\t"
1067					     "membar	#Sync"
1068					     : /* no outputs */
1069					     : "r" (line),
1070					       "i" (ASI_DCACHE_DATA));
1071	}
1072}
1073
1074/* Conversion tables used to frob Cheetah AFSR syndrome values into
1075 * something palatable to the memory controller driver get_unumber
1076 * routine.
1077 */
1078#define MT0	137
1079#define MT1	138
1080#define MT2	139
1081#define NONE	254
1082#define MTC0	140
1083#define MTC1	141
1084#define MTC2	142
1085#define MTC3	143
1086#define C0	128
1087#define C1	129
1088#define C2	130
1089#define C3	131
1090#define C4	132
1091#define C5	133
1092#define C6	134
1093#define C7	135
1094#define C8	136
1095#define M2	144
1096#define M3	145
1097#define M4	146
1098#define M	147
1099static unsigned char cheetah_ecc_syntab[] = {
1100/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1101/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1102/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1103/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1104/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1105/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1106/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1107/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1108/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1109/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1110/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1111/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1112/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1113/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1114/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1115/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1116/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1117/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1118/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1119/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1120/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1121/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1122/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1123/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1124/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1125/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1126/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1127/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1128/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1129/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1130/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1131/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1132};
1133static unsigned char cheetah_mtag_syntab[] = {
1134       NONE, MTC0,
1135       MTC1, NONE,
1136       MTC2, NONE,
1137       NONE, MT0,
1138       MTC3, NONE,
1139       NONE, MT1,
1140       NONE, MT2,
1141       NONE, NONE
1142};
1143
1144/* Return the highest priority error conditon mentioned. */
1145static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1146{
1147	unsigned long tmp = 0;
1148	int i;
1149
1150	for (i = 0; cheetah_error_table[i].mask; i++) {
1151		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1152			return tmp;
1153	}
1154	return tmp;
1155}
1156
1157static const char *cheetah_get_string(unsigned long bit)
1158{
1159	int i;
1160
1161	for (i = 0; cheetah_error_table[i].mask; i++) {
1162		if ((bit & cheetah_error_table[i].mask) != 0UL)
1163			return cheetah_error_table[i].name;
1164	}
1165	return "???";
1166}
1167
1168static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1169			       unsigned long afsr, unsigned long afar, int recoverable)
1170{
1171	unsigned long hipri;
1172	char unum[256];
1173
1174	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1175	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1176	       afsr, afar,
1177	       (afsr & CHAFSR_TL1) ? 1 : 0);
1178	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1179	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1180	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1181	printk("%s" "ERROR(%d): ",
1182	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1183	printk("TPC<%pS>\n", (void *) regs->tpc);
1184	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1185	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1186	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1187	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1189	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1190	hipri = cheetah_get_hipri(afsr);
1191	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1192	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1193	       hipri, cheetah_get_string(hipri));
1194
1195	/* Try to get unumber if relevant. */
1196#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1197			 CHAFSR_CPC | CHAFSR_CPU | \
1198			 CHAFSR_UE  | CHAFSR_CE  | \
1199			 CHAFSR_EDC | CHAFSR_EDU  | \
1200			 CHAFSR_UCC | CHAFSR_UCU  | \
1201			 CHAFSR_WDU | CHAFSR_WDC)
1202#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1203	if (afsr & ESYND_ERRORS) {
1204		int syndrome;
1205		int ret;
1206
1207		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1208		syndrome = cheetah_ecc_syntab[syndrome];
1209		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1210		if (ret != -1)
1211			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1212			       (recoverable ? KERN_WARNING : KERN_CRIT),
1213			       smp_processor_id(), unum);
1214	} else if (afsr & MSYND_ERRORS) {
1215		int syndrome;
1216		int ret;
1217
1218		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1219		syndrome = cheetah_mtag_syntab[syndrome];
1220		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1221		if (ret != -1)
1222			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1223			       (recoverable ? KERN_WARNING : KERN_CRIT),
1224			       smp_processor_id(), unum);
1225	}
1226
1227	/* Now dump the cache snapshots. */
1228	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1229	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1230	       (int) info->dcache_index,
1231	       info->dcache_tag,
1232	       info->dcache_utag,
1233	       info->dcache_stag);
1234	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1235	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1236	       info->dcache_data[0],
1237	       info->dcache_data[1],
1238	       info->dcache_data[2],
1239	       info->dcache_data[3]);
1240	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1241	       "u[%016llx] l[%016llx]\n",
1242	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1243	       (int) info->icache_index,
1244	       info->icache_tag,
1245	       info->icache_utag,
1246	       info->icache_stag,
1247	       info->icache_upper,
1248	       info->icache_lower);
1249	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1250	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1251	       info->icache_data[0],
1252	       info->icache_data[1],
1253	       info->icache_data[2],
1254	       info->icache_data[3]);
1255	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1256	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1257	       info->icache_data[4],
1258	       info->icache_data[5],
1259	       info->icache_data[6],
1260	       info->icache_data[7]);
1261	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->ecache_index, info->ecache_tag);
1264	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1265	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1266	       info->ecache_data[0],
1267	       info->ecache_data[1],
1268	       info->ecache_data[2],
1269	       info->ecache_data[3]);
1270
1271	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1272	while (afsr != 0UL) {
1273		unsigned long bit = cheetah_get_hipri(afsr);
1274
1275		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1276		       (recoverable ? KERN_WARNING : KERN_CRIT),
1277		       bit, cheetah_get_string(bit));
1278
1279		afsr &= ~bit;
1280	}
1281
1282	if (!recoverable)
1283		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1284}
1285
1286static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1287{
1288	unsigned long afsr, afar;
1289	int ret = 0;
1290
1291	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1292			     : "=r" (afsr)
1293			     : "i" (ASI_AFSR));
1294	if ((afsr & cheetah_afsr_errors) != 0) {
1295		if (logp != NULL) {
1296			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1297					     : "=r" (afar)
1298					     : "i" (ASI_AFAR));
1299			logp->afsr = afsr;
1300			logp->afar = afar;
1301		}
1302		ret = 1;
1303	}
1304	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1305			     "membar #Sync\n\t"
1306			     : : "r" (afsr), "i" (ASI_AFSR));
1307
1308	return ret;
1309}
1310
1311void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1312{
1313	struct cheetah_err_info local_snapshot, *p;
1314	int recoverable;
1315
1316	/* Flush E-cache */
1317	cheetah_flush_ecache();
1318
1319	p = cheetah_get_error_log(afsr);
1320	if (!p) {
1321		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1322			    afsr, afar);
1323		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1324			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1325		prom_halt();
1326	}
1327
1328	/* Grab snapshot of logged error. */
1329	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1330
1331	/* If the current trap snapshot does not match what the
1332	 * trap handler passed along into our args, big trouble.
1333	 * In such a case, mark the local copy as invalid.
1334	 *
1335	 * Else, it matches and we mark the afsr in the non-local
1336	 * copy as invalid so we may log new error traps there.
1337	 */
1338	if (p->afsr != afsr || p->afar != afar)
1339		local_snapshot.afsr = CHAFSR_INVALID;
1340	else
1341		p->afsr = CHAFSR_INVALID;
1342
1343	cheetah_flush_icache();
1344	cheetah_flush_dcache();
1345
1346	/* Re-enable I-cache/D-cache */
1347	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1348			     "or %%g1, %1, %%g1\n\t"
1349			     "stxa %%g1, [%%g0] %0\n\t"
1350			     "membar #Sync"
1351			     : /* no outputs */
1352			     : "i" (ASI_DCU_CONTROL_REG),
1353			       "i" (DCU_DC | DCU_IC)
1354			     : "g1");
1355
1356	/* Re-enable error reporting */
1357	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1358			     "or %%g1, %1, %%g1\n\t"
1359			     "stxa %%g1, [%%g0] %0\n\t"
1360			     "membar #Sync"
1361			     : /* no outputs */
1362			     : "i" (ASI_ESTATE_ERROR_EN),
1363			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1364			     : "g1");
1365
1366	/* Decide if we can continue after handling this trap and
1367	 * logging the error.
1368	 */
1369	recoverable = 1;
1370	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1371		recoverable = 0;
1372
1373	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1374	 * error was logged while we had error reporting traps disabled.
1375	 */
1376	if (cheetah_recheck_errors(&local_snapshot)) {
1377		unsigned long new_afsr = local_snapshot.afsr;
1378
1379		/* If we got a new asynchronous error, die... */
1380		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1381				CHAFSR_WDU | CHAFSR_CPU |
1382				CHAFSR_IVU | CHAFSR_UE |
1383				CHAFSR_BERR | CHAFSR_TO))
1384			recoverable = 0;
1385	}
1386
1387	/* Log errors. */
1388	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1389
1390	if (!recoverable)
1391		panic("Irrecoverable Fast-ECC error trap.\n");
1392
1393	/* Flush E-cache to kick the error trap handlers out. */
1394	cheetah_flush_ecache();
1395}
1396
1397/* Try to fix a correctable error by pushing the line out from
1398 * the E-cache.  Recheck error reporting registers to see if the
1399 * problem is intermittent.
1400 */
1401static int cheetah_fix_ce(unsigned long physaddr)
1402{
1403	unsigned long orig_estate;
1404	unsigned long alias1, alias2;
1405	int ret;
1406
1407	/* Make sure correctable error traps are disabled. */
1408	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1409			     "andn	%0, %1, %%g1\n\t"
1410			     "stxa	%%g1, [%%g0] %2\n\t"
1411			     "membar	#Sync"
1412			     : "=&r" (orig_estate)
1413			     : "i" (ESTATE_ERROR_CEEN),
1414			       "i" (ASI_ESTATE_ERROR_EN)
1415			     : "g1");
1416
1417	/* We calculate alias addresses that will force the
1418	 * cache line in question out of the E-cache.  Then
1419	 * we bring it back in with an atomic instruction so
1420	 * that we get it in some modified/exclusive state,
1421	 * then we displace it again to try and get proper ECC
1422	 * pushed back into the system.
1423	 */
1424	physaddr &= ~(8UL - 1UL);
1425	alias1 = (ecache_flush_physbase +
1426		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1427	alias2 = alias1 + (ecache_flush_size >> 1);
1428	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1429			     "ldxa	[%1] %3, %%g0\n\t"
1430			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1431			     "ldxa	[%0] %3, %%g0\n\t"
1432			     "ldxa	[%1] %3, %%g0\n\t"
1433			     "membar	#Sync"
1434			     : /* no outputs */
1435			     : "r" (alias1), "r" (alias2),
1436			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1437
1438	/* Did that trigger another error? */
1439	if (cheetah_recheck_errors(NULL)) {
1440		/* Try one more time. */
1441		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1442				     "membar #Sync"
1443				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1444		if (cheetah_recheck_errors(NULL))
1445			ret = 2;
1446		else
1447			ret = 1;
1448	} else {
1449		/* No new error, intermittent problem. */
1450		ret = 0;
1451	}
1452
1453	/* Restore error enables. */
1454	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1455			     "membar	#Sync"
1456			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1457
1458	return ret;
1459}
1460
1461/* Return non-zero if PADDR is a valid physical memory address. */
1462static int cheetah_check_main_memory(unsigned long paddr)
1463{
1464	unsigned long vaddr = PAGE_OFFSET + paddr;
1465
1466	if (vaddr > (unsigned long) high_memory)
1467		return 0;
1468
1469	return kern_addr_valid(vaddr);
1470}
1471
1472void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1473{
1474	struct cheetah_err_info local_snapshot, *p;
1475	int recoverable, is_memory;
1476
1477	p = cheetah_get_error_log(afsr);
1478	if (!p) {
1479		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1480			    afsr, afar);
1481		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1482			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1483		prom_halt();
1484	}
1485
1486	/* Grab snapshot of logged error. */
1487	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1488
1489	/* If the current trap snapshot does not match what the
1490	 * trap handler passed along into our args, big trouble.
1491	 * In such a case, mark the local copy as invalid.
1492	 *
1493	 * Else, it matches and we mark the afsr in the non-local
1494	 * copy as invalid so we may log new error traps there.
1495	 */
1496	if (p->afsr != afsr || p->afar != afar)
1497		local_snapshot.afsr = CHAFSR_INVALID;
1498	else
1499		p->afsr = CHAFSR_INVALID;
1500
1501	is_memory = cheetah_check_main_memory(afar);
1502
1503	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1504		/* XXX Might want to log the results of this operation
1505		 * XXX somewhere... -DaveM
1506		 */
1507		cheetah_fix_ce(afar);
1508	}
1509
1510	{
1511		int flush_all, flush_line;
1512
1513		flush_all = flush_line = 0;
1514		if ((afsr & CHAFSR_EDC) != 0UL) {
1515			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1516				flush_line = 1;
1517			else
1518				flush_all = 1;
1519		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1520			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1521				flush_line = 1;
1522			else
1523				flush_all = 1;
1524		}
1525
1526		/* Trap handler only disabled I-cache, flush it. */
1527		cheetah_flush_icache();
1528
1529		/* Re-enable I-cache */
1530		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1531				     "or %%g1, %1, %%g1\n\t"
1532				     "stxa %%g1, [%%g0] %0\n\t"
1533				     "membar #Sync"
1534				     : /* no outputs */
1535				     : "i" (ASI_DCU_CONTROL_REG),
1536				     "i" (DCU_IC)
1537				     : "g1");
1538
1539		if (flush_all)
1540			cheetah_flush_ecache();
1541		else if (flush_line)
1542			cheetah_flush_ecache_line(afar);
1543	}
1544
1545	/* Re-enable error reporting */
1546	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1547			     "or %%g1, %1, %%g1\n\t"
1548			     "stxa %%g1, [%%g0] %0\n\t"
1549			     "membar #Sync"
1550			     : /* no outputs */
1551			     : "i" (ASI_ESTATE_ERROR_EN),
1552			       "i" (ESTATE_ERROR_CEEN)
1553			     : "g1");
1554
1555	/* Decide if we can continue after handling this trap and
1556	 * logging the error.
1557	 */
1558	recoverable = 1;
1559	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1560		recoverable = 0;
1561
1562	/* Re-check AFSR/AFAR */
1563	(void) cheetah_recheck_errors(&local_snapshot);
1564
1565	/* Log errors. */
1566	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1567
1568	if (!recoverable)
1569		panic("Irrecoverable Correctable-ECC error trap.\n");
1570}
1571
1572void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1573{
1574	struct cheetah_err_info local_snapshot, *p;
1575	int recoverable, is_memory;
1576
1577#ifdef CONFIG_PCI
1578	/* Check for the special PCI poke sequence. */
1579	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1580		cheetah_flush_icache();
1581		cheetah_flush_dcache();
1582
1583		/* Re-enable I-cache/D-cache */
1584		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1585				     "or %%g1, %1, %%g1\n\t"
1586				     "stxa %%g1, [%%g0] %0\n\t"
1587				     "membar #Sync"
1588				     : /* no outputs */
1589				     : "i" (ASI_DCU_CONTROL_REG),
1590				       "i" (DCU_DC | DCU_IC)
1591				     : "g1");
1592
1593		/* Re-enable error reporting */
1594		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1595				     "or %%g1, %1, %%g1\n\t"
1596				     "stxa %%g1, [%%g0] %0\n\t"
1597				     "membar #Sync"
1598				     : /* no outputs */
1599				     : "i" (ASI_ESTATE_ERROR_EN),
1600				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1601				     : "g1");
1602
1603		(void) cheetah_recheck_errors(NULL);
1604
1605		pci_poke_faulted = 1;
1606		regs->tpc += 4;
1607		regs->tnpc = regs->tpc + 4;
1608		return;
1609	}
1610#endif
1611
1612	p = cheetah_get_error_log(afsr);
1613	if (!p) {
1614		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1615			    afsr, afar);
1616		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1617			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1618		prom_halt();
1619	}
1620
1621	/* Grab snapshot of logged error. */
1622	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1623
1624	/* If the current trap snapshot does not match what the
1625	 * trap handler passed along into our args, big trouble.
1626	 * In such a case, mark the local copy as invalid.
1627	 *
1628	 * Else, it matches and we mark the afsr in the non-local
1629	 * copy as invalid so we may log new error traps there.
1630	 */
1631	if (p->afsr != afsr || p->afar != afar)
1632		local_snapshot.afsr = CHAFSR_INVALID;
1633	else
1634		p->afsr = CHAFSR_INVALID;
1635
1636	is_memory = cheetah_check_main_memory(afar);
1637
1638	{
1639		int flush_all, flush_line;
1640
1641		flush_all = flush_line = 0;
1642		if ((afsr & CHAFSR_EDU) != 0UL) {
1643			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1644				flush_line = 1;
1645			else
1646				flush_all = 1;
1647		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1648			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1649				flush_line = 1;
1650			else
1651				flush_all = 1;
1652		}
1653
1654		cheetah_flush_icache();
1655		cheetah_flush_dcache();
1656
1657		/* Re-enable I/D caches */
1658		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1659				     "or %%g1, %1, %%g1\n\t"
1660				     "stxa %%g1, [%%g0] %0\n\t"
1661				     "membar #Sync"
1662				     : /* no outputs */
1663				     : "i" (ASI_DCU_CONTROL_REG),
1664				     "i" (DCU_IC | DCU_DC)
1665				     : "g1");
1666
1667		if (flush_all)
1668			cheetah_flush_ecache();
1669		else if (flush_line)
1670			cheetah_flush_ecache_line(afar);
1671	}
1672
1673	/* Re-enable error reporting */
1674	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1675			     "or %%g1, %1, %%g1\n\t"
1676			     "stxa %%g1, [%%g0] %0\n\t"
1677			     "membar #Sync"
1678			     : /* no outputs */
1679			     : "i" (ASI_ESTATE_ERROR_EN),
1680			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1681			     : "g1");
1682
1683	/* Decide if we can continue after handling this trap and
1684	 * logging the error.
1685	 */
1686	recoverable = 1;
1687	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1688		recoverable = 0;
1689
1690	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1691	 * error was logged while we had error reporting traps disabled.
1692	 */
1693	if (cheetah_recheck_errors(&local_snapshot)) {
1694		unsigned long new_afsr = local_snapshot.afsr;
1695
1696		/* If we got a new asynchronous error, die... */
1697		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1698				CHAFSR_WDU | CHAFSR_CPU |
1699				CHAFSR_IVU | CHAFSR_UE |
1700				CHAFSR_BERR | CHAFSR_TO))
1701			recoverable = 0;
1702	}
1703
1704	/* Log errors. */
1705	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1706
1707	/* "Recoverable" here means we try to yank the page from ever
1708	 * being newly used again.  This depends upon a few things:
1709	 * 1) Must be main memory, and AFAR must be valid.
1710	 * 2) If we trapped from user, OK.
1711	 * 3) Else, if we trapped from kernel we must find exception
1712	 *    table entry (ie. we have to have been accessing user
1713	 *    space).
1714	 *
1715	 * If AFAR is not in main memory, or we trapped from kernel
1716	 * and cannot find an exception table entry, it is unacceptable
1717	 * to try and continue.
1718	 */
1719	if (recoverable && is_memory) {
1720		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1721			/* OK, usermode access. */
1722			recoverable = 1;
1723		} else {
1724			const struct exception_table_entry *entry;
1725
1726			entry = search_exception_tables(regs->tpc);
1727			if (entry) {
1728				/* OK, kernel access to userspace. */
1729				recoverable = 1;
1730
1731			} else {
1732				/* BAD, privileged state is corrupted. */
1733				recoverable = 0;
1734			}
1735
1736			if (recoverable) {
1737				if (pfn_valid(afar >> PAGE_SHIFT))
1738					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1739				else
1740					recoverable = 0;
1741
1742				/* Only perform fixup if we still have a
1743				 * recoverable condition.
1744				 */
1745				if (recoverable) {
1746					regs->tpc = entry->fixup;
1747					regs->tnpc = regs->tpc + 4;
1748				}
1749			}
1750		}
1751	} else {
1752		recoverable = 0;
1753	}
1754
1755	if (!recoverable)
1756		panic("Irrecoverable deferred error trap.\n");
1757}
1758
1759/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1760 *
1761 * Bit0:	0=dcache,1=icache
1762 * Bit1:	0=recoverable,1=unrecoverable
1763 *
1764 * The hardware has disabled both the I-cache and D-cache in
1765 * the %dcr register.  
1766 */
1767void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1768{
1769	if (type & 0x1)
1770		__cheetah_flush_icache();
1771	else
1772		cheetah_plus_zap_dcache_parity();
1773	cheetah_flush_dcache();
1774
1775	/* Re-enable I-cache/D-cache */
1776	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1777			     "or %%g1, %1, %%g1\n\t"
1778			     "stxa %%g1, [%%g0] %0\n\t"
1779			     "membar #Sync"
1780			     : /* no outputs */
1781			     : "i" (ASI_DCU_CONTROL_REG),
1782			       "i" (DCU_DC | DCU_IC)
1783			     : "g1");
1784
1785	if (type & 0x2) {
1786		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1787		       smp_processor_id(),
1788		       (type & 0x1) ? 'I' : 'D',
1789		       regs->tpc);
1790		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1791		panic("Irrecoverable Cheetah+ parity error.");
1792	}
1793
1794	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1795	       smp_processor_id(),
1796	       (type & 0x1) ? 'I' : 'D',
1797	       regs->tpc);
1798	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1799}
1800
1801struct sun4v_error_entry {
1802	/* Unique error handle */
1803/*0x00*/u64		err_handle;
1804
1805	/* %stick value at the time of the error */
1806/*0x08*/u64		err_stick;
1807
1808/*0x10*/u8		reserved_1[3];
1809
1810	/* Error type */
1811/*0x13*/u8		err_type;
1812#define SUN4V_ERR_TYPE_UNDEFINED	0
1813#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1814#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1815#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1816#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1817#define SUN4V_ERR_TYPE_DUMP_CORE	5
1818#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1819#define SUN4V_ERR_TYPE_NUM		7
1820
1821	/* Error attributes */
1822/*0x14*/u32		err_attrs;
1823#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1824#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1825#define SUN4V_ERR_ATTRS_PIO		0x00000004
1826#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1827#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1828#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1829#define SUN4V_ERR_ATTRS_ASR		0x00000040
1830#define SUN4V_ERR_ATTRS_ASI		0x00000080
1831#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1832#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1833#define SUN4V_ERR_ATTRS_MCD		0x00000800
1834#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1835#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1836#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1837#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1838
1839#define SUN4V_ERR_SPSTATE_FAULTED	0
1840#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1841#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1842
1843#define SUN4V_ERR_MODE_USER		1
1844#define SUN4V_ERR_MODE_PRIV		2
1845
1846	/* Real address of the memory region or PIO transaction */
1847/*0x18*/u64		err_raddr;
1848
1849	/* Size of the operation triggering the error, in bytes */
1850/*0x20*/u32		err_size;
1851
1852	/* ID of the CPU */
1853/*0x24*/u16		err_cpu;
1854
1855	/* Grace periof for shutdown, in seconds */
1856/*0x26*/u16		err_secs;
1857
1858	/* Value of the %asi register */
1859/*0x28*/u8		err_asi;
1860
1861/*0x29*/u8		reserved_2;
1862
1863	/* Value of the ASR register number */
1864/*0x2a*/u16		err_asr;
1865#define SUN4V_ERR_ASR_VALID		0x8000
1866
1867/*0x2c*/u32		reserved_3;
1868/*0x30*/u64		reserved_4;
1869/*0x38*/u64		reserved_5;
1870};
1871
1872static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1873static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1874
1875static const char *sun4v_err_type_to_str(u8 type)
1876{
1877	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1878		"undefined",
1879		"uncorrected resumable",
1880		"precise nonresumable",
1881		"deferred nonresumable",
1882		"shutdown request",
1883		"dump core",
1884		"SP state change",
1885	};
1886
1887	if (type < SUN4V_ERR_TYPE_NUM)
1888		return types[type];
1889
1890	return "unknown";
1891}
1892
1893static void sun4v_emit_err_attr_strings(u32 attrs)
1894{
1895	static const char *attr_names[] = {
1896		"processor",
1897		"memory",
1898		"PIO",
1899		"int-registers",
1900		"fpu-registers",
1901		"shutdown-request",
1902		"ASR",
1903		"ASI",
1904		"priv-reg",
1905	};
1906	static const char *sp_states[] = {
1907		"sp-faulted",
1908		"sp-available",
1909		"sp-not-present",
1910		"sp-state-reserved",
1911	};
1912	static const char *modes[] = {
1913		"mode-reserved0",
1914		"user",
1915		"priv",
1916		"mode-reserved1",
1917	};
1918	u32 sp_state, mode;
1919	int i;
1920
1921	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1922		if (attrs & (1U << i)) {
1923			const char *s = attr_names[i];
1924
1925			pr_cont("%s ", s);
1926		}
1927	}
1928
1929	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1930		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1931	pr_cont("%s ", sp_states[sp_state]);
1932
1933	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1934		SUN4V_ERR_ATTRS_MODE_SHFT);
1935	pr_cont("%s ", modes[mode]);
1936
1937	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1938		pr_cont("res-queue-full ");
1939}
1940
1941/* When the report contains a real-address of "-1" it means that the
1942 * hardware did not provide the address.  So we compute the effective
1943 * address of the load or store instruction at regs->tpc and report
1944 * that.  Usually when this happens it's a PIO and in such a case we
1945 * are using physical addresses with bypass ASIs anyways, so what we
1946 * report here is exactly what we want.
1947 */
1948static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1949{
1950	unsigned int insn;
1951	u64 addr;
1952
1953	if (!(regs->tstate & TSTATE_PRIV))
1954		return;
1955
1956	insn = *(unsigned int *) regs->tpc;
1957
1958	addr = compute_effective_address(regs, insn, 0);
1959
1960	printk("%s: insn effective address [0x%016llx]\n",
1961	       pfx, addr);
1962}
1963
1964static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1965			    int cpu, const char *pfx, atomic_t *ocnt)
1966{
1967	u64 *raw_ptr = (u64 *) ent;
1968	u32 attrs;
1969	int cnt;
1970
1971	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1972	printk("%s: TPC [0x%016lx] <%pS>\n",
1973	       pfx, regs->tpc, (void *) regs->tpc);
1974
1975	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1976	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1977	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1978	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1979
1980	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1981	       pfx, ent->err_handle, ent->err_stick);
1982
1983	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1984
1985	attrs = ent->err_attrs;
1986	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1987	sun4v_emit_err_attr_strings(attrs);
1988	pr_cont(">\n");
1989
1990	/* Various fields in the error report are only valid if
1991	 * certain attribute bits are set.
1992	 */
1993	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1994		     SUN4V_ERR_ATTRS_PIO |
1995		     SUN4V_ERR_ATTRS_ASI)) {
1996		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1997
1998		if (ent->err_raddr == ~(u64)0)
1999			sun4v_report_real_raddr(pfx, regs);
2000	}
2001
2002	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2003		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2004
2005	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2006		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2007		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2008		     SUN4V_ERR_ATTRS_PRIV_REG))
2009		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2010
2011	if (attrs & SUN4V_ERR_ATTRS_ASI)
2012		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2013
2014	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2015		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2016		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2017	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2018		printk("%s: reg [0x%04x]\n",
2019		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2020
2021	show_regs(regs);
2022
2023	if ((cnt = atomic_read(ocnt)) != 0) {
2024		atomic_set(ocnt, 0);
2025		wmb();
2026		printk("%s: Queue overflowed %d times.\n",
2027		       pfx, cnt);
2028	}
2029}
2030
2031/* Handle memory corruption detected error which is vectored in
2032 * through resumable error trap.
2033 */
2034void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2035{
2036	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2037		       SIGSEGV) == NOTIFY_STOP)
2038		return;
2039
2040	if (regs->tstate & TSTATE_PRIV) {
2041		/* MCD exception could happen because the task was
2042		 * running a system call with MCD enabled and passed a
2043		 * non-versioned pointer or pointer with bad version
2044		 * tag to the system call. In such cases, hypervisor
2045		 * places the address of offending instruction in the
2046		 * resumable error report. This is a deferred error,
2047		 * so the read/write that caused the trap was potentially
2048		 * retired long time back and we may have no choice
2049		 * but to send SIGSEGV to the process.
2050		 */
2051		const struct exception_table_entry *entry;
2052
2053		entry = search_exception_tables(regs->tpc);
2054		if (entry) {
2055			/* Looks like a bad syscall parameter */
2056#ifdef DEBUG_EXCEPTIONS
2057			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2058				 regs->tpc);
2059			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2060				 ent.err_raddr, entry->fixup);
2061#endif
2062			regs->tpc = entry->fixup;
2063			regs->tnpc = regs->tpc + 4;
2064			return;
2065		}
2066	}
2067
2068	/* Send SIGSEGV to the userspace process with the right signal
2069	 * code
2070	 */
2071	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
 
2072}
2073
2074/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2075 * Log the event and clear the first word of the entry.
2076 */
2077void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2078{
2079	enum ctx_state prev_state = exception_enter();
2080	struct sun4v_error_entry *ent, local_copy;
2081	struct trap_per_cpu *tb;
2082	unsigned long paddr;
2083	int cpu;
2084
2085	cpu = get_cpu();
2086
2087	tb = &trap_block[cpu];
2088	paddr = tb->resum_kernel_buf_pa + offset;
2089	ent = __va(paddr);
2090
2091	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2092
2093	/* We have a local copy now, so release the entry.  */
2094	ent->err_handle = 0;
2095	wmb();
2096
2097	put_cpu();
2098
2099	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2100		/* We should really take the seconds field of
2101		 * the error report and use it for the shutdown
2102		 * invocation, but for now do the same thing we
2103		 * do for a DS shutdown request.
2104		 */
2105		pr_info("Shutdown request, %u seconds...\n",
2106			local_copy.err_secs);
2107		orderly_poweroff(true);
2108		goto out;
2109	}
2110
2111	/* If this is a memory corruption detected error vectored in
2112	 * by HV through resumable error trap, call the handler
2113	 */
2114	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2115		do_mcd_err(regs, local_copy);
2116		return;
2117	}
2118
2119	sun4v_log_error(regs, &local_copy, cpu,
2120			KERN_ERR "RESUMABLE ERROR",
2121			&sun4v_resum_oflow_cnt);
2122out:
2123	exception_exit(prev_state);
2124}
2125
2126/* If we try to printk() we'll probably make matters worse, by trying
2127 * to retake locks this cpu already holds or causing more errors. So
2128 * just bump a counter, and we'll report these counter bumps above.
2129 */
2130void sun4v_resum_overflow(struct pt_regs *regs)
2131{
2132	atomic_inc(&sun4v_resum_oflow_cnt);
2133}
2134
2135/* Given a set of registers, get the virtual addressi that was being accessed
2136 * by the faulting instructions at tpc.
2137 */
2138static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2139{
2140	unsigned int insn;
2141
2142	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2143		return compute_effective_address(regs, insn,
2144						 (insn >> 25) & 0x1f);
2145	}
2146	return 0;
2147}
2148
2149/* Attempt to handle non-resumable errors generated from userspace.
2150 * Returns true if the signal was handled, false otherwise.
2151 */
2152bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2153				  struct sun4v_error_entry *ent) {
2154
2155	unsigned int attrs = ent->err_attrs;
2156
2157	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2158		unsigned long addr = ent->err_raddr;
2159
2160		if (addr == ~(u64)0) {
2161			/* This seems highly unlikely to ever occur */
2162			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2163		} else {
2164			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2165							      PAGE_SIZE);
2166
2167			/* Break the unfortunate news. */
2168			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2169				 addr);
2170			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2171				 page_cnt);
2172
2173			while (page_cnt-- > 0) {
2174				if (pfn_valid(addr >> PAGE_SHIFT))
2175					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2176				addr += PAGE_SIZE;
2177			}
2178		}
2179		force_sig(SIGKILL);
2180
2181		return true;
2182	}
2183	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2184		force_sig_fault(SIGBUS, BUS_ADRERR,
2185				(void __user *)sun4v_get_vaddr(regs));
2186		return true;
2187	}
2188
2189	/* Default to doing nothing */
2190	return false;
2191}
2192
2193/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2194 * Log the event, clear the first word of the entry, and die.
2195 */
2196void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2197{
2198	struct sun4v_error_entry *ent, local_copy;
2199	struct trap_per_cpu *tb;
2200	unsigned long paddr;
2201	int cpu;
2202
2203	cpu = get_cpu();
2204
2205	tb = &trap_block[cpu];
2206	paddr = tb->nonresum_kernel_buf_pa + offset;
2207	ent = __va(paddr);
2208
2209	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2210
2211	/* We have a local copy now, so release the entry.  */
2212	ent->err_handle = 0;
2213	wmb();
2214
2215	put_cpu();
2216
2217	if (!(regs->tstate & TSTATE_PRIV) &&
2218	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2219		/* DON'T PANIC: This userspace error was handled. */
2220		return;
2221	}
2222
2223#ifdef CONFIG_PCI
2224	/* Check for the special PCI poke sequence. */
2225	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2226		pci_poke_faulted = 1;
2227		regs->tpc += 4;
2228		regs->tnpc = regs->tpc + 4;
2229		return;
2230	}
2231#endif
2232
2233	sun4v_log_error(regs, &local_copy, cpu,
2234			KERN_EMERG "NON-RESUMABLE ERROR",
2235			&sun4v_nonresum_oflow_cnt);
2236
2237	panic("Non-resumable error.");
2238}
2239
2240/* If we try to printk() we'll probably make matters worse, by trying
2241 * to retake locks this cpu already holds or causing more errors. So
2242 * just bump a counter, and we'll report these counter bumps above.
2243 */
2244void sun4v_nonresum_overflow(struct pt_regs *regs)
2245{
2246	/* XXX Actually even this can make not that much sense.  Perhaps
2247	 * XXX we should just pull the plug and panic directly from here?
2248	 */
2249	atomic_inc(&sun4v_nonresum_oflow_cnt);
2250}
2251
2252static void sun4v_tlb_error(struct pt_regs *regs)
2253{
2254	die_if_kernel("TLB/TSB error", regs);
2255}
2256
2257unsigned long sun4v_err_itlb_vaddr;
2258unsigned long sun4v_err_itlb_ctx;
2259unsigned long sun4v_err_itlb_pte;
2260unsigned long sun4v_err_itlb_error;
2261
2262void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2263{
2264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2265
2266	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2267	       regs->tpc, tl);
2268	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2269	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2271	       (void *) regs->u_regs[UREG_I7]);
2272	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2273	       "pte[%lx] error[%lx]\n",
2274	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2275	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2276
2277	sun4v_tlb_error(regs);
2278}
2279
2280unsigned long sun4v_err_dtlb_vaddr;
2281unsigned long sun4v_err_dtlb_ctx;
2282unsigned long sun4v_err_dtlb_pte;
2283unsigned long sun4v_err_dtlb_error;
2284
2285void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2286{
2287	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2288
2289	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2290	       regs->tpc, tl);
2291	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2292	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2294	       (void *) regs->u_regs[UREG_I7]);
2295	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2296	       "pte[%lx] error[%lx]\n",
2297	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2298	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2299
2300	sun4v_tlb_error(regs);
2301}
2302
2303void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2304{
2305	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2306	       err, op);
2307}
2308
2309void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2310{
2311	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2312	       err, op);
2313}
2314
2315static void do_fpe_common(struct pt_regs *regs)
2316{
2317	if (regs->tstate & TSTATE_PRIV) {
2318		regs->tpc = regs->tnpc;
2319		regs->tnpc += 4;
2320	} else {
2321		unsigned long fsr = current_thread_info()->xfsr[0];
2322		int code;
2323
2324		if (test_thread_flag(TIF_32BIT)) {
2325			regs->tpc &= 0xffffffff;
2326			regs->tnpc &= 0xffffffff;
2327		}
2328		code = FPE_FLTUNK;
2329		if ((fsr & 0x1c000) == (1 << 14)) {
2330			if (fsr & 0x10)
2331				code = FPE_FLTINV;
2332			else if (fsr & 0x08)
2333				code = FPE_FLTOVF;
2334			else if (fsr & 0x04)
2335				code = FPE_FLTUND;
2336			else if (fsr & 0x02)
2337				code = FPE_FLTDIV;
2338			else if (fsr & 0x01)
2339				code = FPE_FLTRES;
2340		}
2341		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
 
2342	}
2343}
2344
2345void do_fpieee(struct pt_regs *regs)
2346{
2347	enum ctx_state prev_state = exception_enter();
2348
2349	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2350		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2351		goto out;
2352
2353	do_fpe_common(regs);
2354out:
2355	exception_exit(prev_state);
2356}
2357
2358void do_fpother(struct pt_regs *regs)
2359{
2360	enum ctx_state prev_state = exception_enter();
2361	struct fpustate *f = FPUSTATE;
2362	int ret = 0;
2363
2364	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2365		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2366		goto out;
2367
2368	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2369	case (2 << 14): /* unfinished_FPop */
2370	case (3 << 14): /* unimplemented_FPop */
2371		ret = do_mathemu(regs, f, false);
2372		break;
2373	}
2374	if (ret)
2375		goto out;
2376	do_fpe_common(regs);
2377out:
2378	exception_exit(prev_state);
2379}
2380
2381void do_tof(struct pt_regs *regs)
2382{
2383	enum ctx_state prev_state = exception_enter();
2384
2385	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2386		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2387		goto out;
2388
2389	if (regs->tstate & TSTATE_PRIV)
2390		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2391	if (test_thread_flag(TIF_32BIT)) {
2392		regs->tpc &= 0xffffffff;
2393		regs->tnpc &= 0xffffffff;
2394	}
2395	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
 
2396out:
2397	exception_exit(prev_state);
2398}
2399
2400void do_div0(struct pt_regs *regs)
2401{
2402	enum ctx_state prev_state = exception_enter();
2403
2404	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2405		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2406		goto out;
2407
2408	if (regs->tstate & TSTATE_PRIV)
2409		die_if_kernel("TL0: Kernel divide by zero.", regs);
2410	if (test_thread_flag(TIF_32BIT)) {
2411		regs->tpc &= 0xffffffff;
2412		regs->tnpc &= 0xffffffff;
2413	}
2414	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
 
2415out:
2416	exception_exit(prev_state);
2417}
2418
2419static void instruction_dump(unsigned int *pc)
2420{
2421	int i;
2422
2423	if ((((unsigned long) pc) & 3))
2424		return;
2425
2426	printk("Instruction DUMP:");
2427	for (i = -3; i < 6; i++)
2428		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2429	printk("\n");
2430}
2431
2432static void user_instruction_dump(unsigned int __user *pc)
2433{
2434	int i;
2435	unsigned int buf[9];
2436	
2437	if ((((unsigned long) pc) & 3))
2438		return;
2439		
2440	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2441		return;
2442
2443	printk("Instruction DUMP:");
2444	for (i = 0; i < 9; i++)
2445		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2446	printk("\n");
2447}
2448
2449void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2450{
2451	unsigned long fp, ksp;
2452	struct thread_info *tp;
2453	int count = 0;
2454#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2455	int graph = 0;
2456#endif
2457
2458	ksp = (unsigned long) _ksp;
2459	if (!tsk)
2460		tsk = current;
2461	tp = task_thread_info(tsk);
2462	if (ksp == 0UL) {
2463		if (tsk == current)
2464			asm("mov %%fp, %0" : "=r" (ksp));
2465		else
2466			ksp = tp->ksp;
2467	}
2468	if (tp == current_thread_info())
2469		flushw_all();
2470
2471	fp = ksp + STACK_BIAS;
2472
2473	printk("%sCall Trace:\n", loglvl);
2474	do {
2475		struct sparc_stackf *sf;
2476		struct pt_regs *regs;
2477		unsigned long pc;
2478
2479		if (!kstack_valid(tp, fp))
2480			break;
2481		sf = (struct sparc_stackf *) fp;
2482		regs = (struct pt_regs *) (sf + 1);
2483
2484		if (kstack_is_trap_frame(tp, regs)) {
2485			if (!(regs->tstate & TSTATE_PRIV))
2486				break;
2487			pc = regs->tpc;
2488			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2489		} else {
2490			pc = sf->callers_pc;
2491			fp = (unsigned long)sf->fp + STACK_BIAS;
2492		}
2493
2494		print_ip_sym(loglvl, pc);
2495#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2496		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2497			struct ftrace_ret_stack *ret_stack;
2498			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2499			if (ret_stack) {
2500				pc = ret_stack->ret;
2501				print_ip_sym(loglvl, pc);
2502				graph++;
2503			}
2504		}
2505#endif
2506	} while (++count < 16);
2507}
2508
2509static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2510{
2511	unsigned long fp = rw->ins[6];
2512
2513	if (!fp)
2514		return NULL;
2515
2516	return (struct reg_window *) (fp + STACK_BIAS);
2517}
2518
2519void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2520{
2521	static int die_counter;
2522	int count = 0;
2523	
2524	/* Amuse the user. */
2525	printk(
2526"              \\|/ ____ \\|/\n"
2527"              \"@'/ .. \\`@\"\n"
2528"              /_| \\__/ |_\\\n"
2529"                 \\__U_/\n");
2530
2531	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2532	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2533	__asm__ __volatile__("flushw");
2534	show_regs(regs);
2535	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2536	if (regs->tstate & TSTATE_PRIV) {
2537		struct thread_info *tp = current_thread_info();
2538		struct reg_window *rw = (struct reg_window *)
2539			(regs->u_regs[UREG_FP] + STACK_BIAS);
2540
2541		/* Stop the back trace when we hit userland or we
2542		 * find some badly aligned kernel stack.
2543		 */
2544		while (rw &&
2545		       count++ < 30 &&
2546		       kstack_valid(tp, (unsigned long) rw)) {
2547			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2548			       (void *) rw->ins[7]);
2549
2550			rw = kernel_stack_up(rw);
2551		}
2552		instruction_dump ((unsigned int *) regs->tpc);
2553	} else {
2554		if (test_thread_flag(TIF_32BIT)) {
2555			regs->tpc &= 0xffffffff;
2556			regs->tnpc &= 0xffffffff;
2557		}
2558		user_instruction_dump ((unsigned int __user *) regs->tpc);
2559	}
2560	if (panic_on_oops)
2561		panic("Fatal exception");
2562	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
 
 
2563}
2564EXPORT_SYMBOL(die_if_kernel);
2565
2566#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2567#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2568
2569void do_illegal_instruction(struct pt_regs *regs)
2570{
2571	enum ctx_state prev_state = exception_enter();
2572	unsigned long pc = regs->tpc;
2573	unsigned long tstate = regs->tstate;
2574	u32 insn;
2575
2576	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2577		       0, 0x10, SIGILL) == NOTIFY_STOP)
2578		goto out;
2579
2580	if (tstate & TSTATE_PRIV)
2581		die_if_kernel("Kernel illegal instruction", regs);
2582	if (test_thread_flag(TIF_32BIT))
2583		pc = (u32)pc;
2584	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2585		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2586			if (handle_popc(insn, regs))
2587				goto out;
2588		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2589			if (handle_ldf_stq(insn, regs))
2590				goto out;
2591		} else if (tlb_type == hypervisor) {
2592			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2593				if (!vis_emul(regs, insn))
2594					goto out;
2595			} else {
2596				struct fpustate *f = FPUSTATE;
2597
2598				/* On UltraSPARC T2 and later, FPU insns which
2599				 * are not implemented in HW signal an illegal
2600				 * instruction trap and do not set the FP Trap
2601				 * Trap in the %fsr to unimplemented_FPop.
2602				 */
2603				if (do_mathemu(regs, f, true))
2604					goto out;
2605			}
2606		}
2607	}
2608	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
2609out:
2610	exception_exit(prev_state);
2611}
2612
2613void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2614{
2615	enum ctx_state prev_state = exception_enter();
2616
2617	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2618		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2619		goto out;
2620
2621	if (regs->tstate & TSTATE_PRIV) {
2622		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2623		goto out;
2624	}
2625	if (is_no_fault_exception(regs))
2626		return;
2627
2628	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
2629out:
2630	exception_exit(prev_state);
2631}
2632
2633void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2634{
2635	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2636		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2637		return;
2638
2639	if (regs->tstate & TSTATE_PRIV) {
2640		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2641		return;
2642	}
2643	if (is_no_fault_exception(regs))
2644		return;
2645
2646	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2647}
2648
2649/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2650 * tag mismatch.
2651 *
2652 * ADI version tag mismatch on a load from memory always results in a
2653 * precise exception. Tag mismatch on a store to memory will result in
2654 * precise exception if MCDPER or PMCDPER is set to 1.
2655 */
2656void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2657				      unsigned long context)
2658{
2659	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2660		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2661		return;
2662
2663	if (regs->tstate & TSTATE_PRIV) {
2664		/* MCD exception could happen because the task was running
2665		 * a system call with MCD enabled and passed a non-versioned
2666		 * pointer or pointer with bad version tag to  the system
2667		 * call.
2668		 */
2669		const struct exception_table_entry *entry;
2670
2671		entry = search_exception_tables(regs->tpc);
2672		if (entry) {
2673			/* Looks like a bad syscall parameter */
2674#ifdef DEBUG_EXCEPTIONS
2675			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2676				 regs->tpc);
2677			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2678				 regs->tpc, entry->fixup);
2679#endif
2680			regs->tpc = entry->fixup;
2681			regs->tnpc = regs->tpc + 4;
2682			return;
2683		}
2684		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2685			 __func__, addr, context);
2686		die_if_kernel("MCD precise", regs);
2687	}
2688
2689	if (test_thread_flag(TIF_32BIT)) {
2690		regs->tpc &= 0xffffffff;
2691		regs->tnpc &= 0xffffffff;
2692	}
2693	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2694}
2695
2696void do_privop(struct pt_regs *regs)
2697{
2698	enum ctx_state prev_state = exception_enter();
2699
2700	if (notify_die(DIE_TRAP, "privileged operation", regs,
2701		       0, 0x11, SIGILL) == NOTIFY_STOP)
2702		goto out;
2703
2704	if (test_thread_flag(TIF_32BIT)) {
2705		regs->tpc &= 0xffffffff;
2706		regs->tnpc &= 0xffffffff;
2707	}
2708	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
 
2709out:
2710	exception_exit(prev_state);
2711}
2712
2713void do_privact(struct pt_regs *regs)
2714{
2715	do_privop(regs);
2716}
2717
2718/* Trap level 1 stuff or other traps we should never see... */
2719void do_cee(struct pt_regs *regs)
2720{
2721	exception_enter();
2722	die_if_kernel("TL0: Cache Error Exception", regs);
2723}
2724
2725void do_div0_tl1(struct pt_regs *regs)
2726{
2727	exception_enter();
2728	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2729	die_if_kernel("TL1: DIV0 Exception", regs);
2730}
2731
2732void do_fpieee_tl1(struct pt_regs *regs)
2733{
2734	exception_enter();
2735	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2736	die_if_kernel("TL1: FPU IEEE Exception", regs);
2737}
2738
2739void do_fpother_tl1(struct pt_regs *regs)
2740{
2741	exception_enter();
2742	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2743	die_if_kernel("TL1: FPU Other Exception", regs);
2744}
2745
2746void do_ill_tl1(struct pt_regs *regs)
2747{
2748	exception_enter();
2749	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2750	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2751}
2752
2753void do_irq_tl1(struct pt_regs *regs)
2754{
2755	exception_enter();
2756	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2757	die_if_kernel("TL1: IRQ Exception", regs);
2758}
2759
2760void do_lddfmna_tl1(struct pt_regs *regs)
2761{
2762	exception_enter();
2763	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2764	die_if_kernel("TL1: LDDF Exception", regs);
2765}
2766
2767void do_stdfmna_tl1(struct pt_regs *regs)
2768{
2769	exception_enter();
2770	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2771	die_if_kernel("TL1: STDF Exception", regs);
2772}
2773
2774void do_paw(struct pt_regs *regs)
2775{
2776	exception_enter();
2777	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2778}
2779
2780void do_paw_tl1(struct pt_regs *regs)
2781{
2782	exception_enter();
2783	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2784	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2785}
2786
2787void do_vaw(struct pt_regs *regs)
2788{
2789	exception_enter();
2790	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2791}
2792
2793void do_vaw_tl1(struct pt_regs *regs)
2794{
2795	exception_enter();
2796	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2797	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2798}
2799
2800void do_tof_tl1(struct pt_regs *regs)
2801{
2802	exception_enter();
2803	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2804	die_if_kernel("TL1: Tag Overflow Exception", regs);
2805}
2806
2807void do_getpsr(struct pt_regs *regs)
2808{
2809	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2810	regs->tpc   = regs->tnpc;
2811	regs->tnpc += 4;
2812	if (test_thread_flag(TIF_32BIT)) {
2813		regs->tpc &= 0xffffffff;
2814		regs->tnpc &= 0xffffffff;
2815	}
2816}
2817
2818u64 cpu_mondo_counter[NR_CPUS] = {0};
2819struct trap_per_cpu trap_block[NR_CPUS];
2820EXPORT_SYMBOL(trap_block);
2821
2822/* This can get invoked before sched_init() so play it super safe
2823 * and use hard_smp_processor_id().
2824 */
2825void notrace init_cur_cpu_trap(struct thread_info *t)
2826{
2827	int cpu = hard_smp_processor_id();
2828	struct trap_per_cpu *p = &trap_block[cpu];
2829
2830	p->thread = t;
2831	p->pgd_paddr = 0;
2832}
2833
2834extern void thread_info_offsets_are_bolixed_dave(void);
2835extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2836extern void tsb_config_offsets_are_bolixed_dave(void);
2837
2838/* Only invoked on boot processor. */
2839void __init trap_init(void)
2840{
2841	/* Compile time sanity check. */
2842	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2843		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2844		     TI_CPU != offsetof(struct thread_info, cpu) ||
2845		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2846		     TI_KSP != offsetof(struct thread_info, ksp) ||
2847		     TI_FAULT_ADDR != offsetof(struct thread_info,
2848					       fault_address) ||
2849		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2850		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2851		     TI_REG_WINDOW != offsetof(struct thread_info,
2852					       reg_window) ||
2853		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2854					       rwbuf_stkptrs) ||
2855		     TI_GSR != offsetof(struct thread_info, gsr) ||
2856		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2857		     TI_PRE_COUNT != offsetof(struct thread_info,
2858					      preempt_count) ||
2859		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
 
 
2860		     TI_KUNA_REGS != offsetof(struct thread_info,
2861					      kern_una_regs) ||
2862		     TI_KUNA_INSN != offsetof(struct thread_info,
2863					      kern_una_insn) ||
2864		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2865		     (TI_FPREGS & (64 - 1)));
2866
2867	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2868						     thread) ||
2869		     (TRAP_PER_CPU_PGD_PADDR !=
2870		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2871		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2872		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2873		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2874		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2875		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2876		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2877		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2878		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2879		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2880		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2881		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2882		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2883		     (TRAP_PER_CPU_FAULT_INFO !=
2884		      offsetof(struct trap_per_cpu, fault_info)) ||
2885		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2886		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2887		     (TRAP_PER_CPU_CPU_LIST_PA !=
2888		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2889		     (TRAP_PER_CPU_TSB_HUGE !=
2890		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2891		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2892		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2893		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2894		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2895		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2896		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2897		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2898		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2899		     (TRAP_PER_CPU_RESUM_QMASK !=
2900		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2901		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2902		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2903		     (TRAP_PER_CPU_PER_CPU_BASE !=
2904		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2905
2906	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2907		      offsetof(struct tsb_config, tsb)) ||
2908		     (TSB_CONFIG_RSS_LIMIT !=
2909		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2910		     (TSB_CONFIG_NENTRIES !=
2911		      offsetof(struct tsb_config, tsb_nentries)) ||
2912		     (TSB_CONFIG_REG_VAL !=
2913		      offsetof(struct tsb_config, tsb_reg_val)) ||
2914		     (TSB_CONFIG_MAP_VADDR !=
2915		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2916		     (TSB_CONFIG_MAP_PTE !=
2917		      offsetof(struct tsb_config, tsb_map_pte)));
2918
2919	/* Attach to the address space of init_task.  On SMP we
2920	 * do this in smp.c:smp_callin for other cpus.
2921	 */
2922	mmgrab(&init_mm);
2923	current->active_mm = &init_mm;
2924}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
 
  21#include <linux/kdebug.h>
  22#include <linux/ftrace.h>
  23#include <linux/reboot.h>
  24#include <linux/gfp.h>
  25#include <linux/context_tracking.h>
  26
  27#include <asm/smp.h>
  28#include <asm/delay.h>
  29#include <asm/ptrace.h>
  30#include <asm/oplib.h>
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault(SIGILL, ILL_ILLTRP,
 111			(void __user *)regs->tpc, lvl);
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR,
 205			(void __user *)regs->tpc, 0);
 206out:
 207	exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214		return;
 215
 216	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217	spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222	unsigned short type = (type_ctx >> 16);
 223	unsigned short ctx  = (type_ctx & 0xffff);
 224
 225	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227		return;
 228
 229	if (regs->tstate & TSTATE_PRIV) {
 230		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231		       "CTX[%04x] TYPE[%04x], going.\n",
 232		       addr, ctx, type);
 233		die_if_kernel("Iax", regs);
 234	}
 235
 236	if (test_thread_flag(TIF_32BIT)) {
 237		regs->tpc &= 0xffffffff;
 238		regs->tnpc &= 0xffffffff;
 239	}
 240	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0);
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247		return;
 248
 249	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250	sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255	unsigned char asi;
 256	u32 insn;
 257
 258	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259		return false;
 260
 261	/*
 262	 * Must do a little instruction decoding here in order to
 263	 * decide on a course of action. The bits of interest are:
 264	 *  insn[31:30] = op, where 3 indicates the load/store group
 265	 *  insn[24:19] = op3, which identifies individual opcodes
 266	 *  insn[13] indicates an immediate offset
 267	 *  op3[4]=1 identifies alternate space instructions
 268	 *  op3[5:4]=3 identifies floating point instructions
 269	 *  op3[2]=1 identifies stores
 270	 * See "Opcode Maps" in the appendix of any Sparc V9
 271	 * architecture spec for full details.
 272	 */
 273	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274		if (insn & 0x2000)		    /* immediate offset */
 275			asi = (regs->tstate >> 24); /* saved %asi       */
 276		else
 277			asi = (insn >> 5);	    /* immediate asi    */
 278		if ((asi & 0xf2) == ASI_PNF) {
 279			if (insn & 0x1000000) {     /* op3[5:4]=3       */
 
 
 280				handle_ldf_stq(insn, regs);
 281				return true;
 282			} else if (insn & 0x200000) { /* op3[2], stores */
 283				return false;
 284			}
 285			handle_ld_nf(insn, regs);
 286			return true;
 287		}
 288	}
 289	return false;
 290}
 291
 292void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 293{
 294	enum ctx_state prev_state = exception_enter();
 295
 296	if (notify_die(DIE_TRAP, "data access exception", regs,
 297		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 298		goto out;
 299
 300	if (regs->tstate & TSTATE_PRIV) {
 301		/* Test if this comes from uaccess places. */
 302		const struct exception_table_entry *entry;
 303
 304		entry = search_exception_tables(regs->tpc);
 305		if (entry) {
 306			/* Ouch, somebody is trying VM hole tricks on us... */
 307#ifdef DEBUG_EXCEPTIONS
 308			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 309			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 310			       regs->tpc, entry->fixup);
 311#endif
 312			regs->tpc = entry->fixup;
 313			regs->tnpc = regs->tpc + 4;
 314			goto out;
 315		}
 316		/* Shit... */
 317		printk("spitfire_data_access_exception: SFSR[%016lx] "
 318		       "SFAR[%016lx], going.\n", sfsr, sfar);
 319		die_if_kernel("Dax", regs);
 320	}
 321
 322	if (is_no_fault_exception(regs))
 323		return;
 324
 325	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0);
 326out:
 327	exception_exit(prev_state);
 328}
 329
 330void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 331{
 332	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 333		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 334		return;
 335
 336	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 337	spitfire_data_access_exception(regs, sfsr, sfar);
 338}
 339
 340void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 341{
 342	unsigned short type = (type_ctx >> 16);
 343	unsigned short ctx  = (type_ctx & 0xffff);
 344
 345	if (notify_die(DIE_TRAP, "data access exception", regs,
 346		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 347		return;
 348
 349	if (regs->tstate & TSTATE_PRIV) {
 350		/* Test if this comes from uaccess places. */
 351		const struct exception_table_entry *entry;
 352
 353		entry = search_exception_tables(regs->tpc);
 354		if (entry) {
 355			/* Ouch, somebody is trying VM hole tricks on us... */
 356#ifdef DEBUG_EXCEPTIONS
 357			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 358			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 359			       regs->tpc, entry->fixup);
 360#endif
 361			regs->tpc = entry->fixup;
 362			regs->tnpc = regs->tpc + 4;
 363			return;
 364		}
 365		printk("sun4v_data_access_exception: ADDR[%016lx] "
 366		       "CTX[%04x] TYPE[%04x], going.\n",
 367		       addr, ctx, type);
 368		die_if_kernel("Dax", regs);
 369	}
 370
 371	if (test_thread_flag(TIF_32BIT)) {
 372		regs->tpc &= 0xffffffff;
 373		regs->tnpc &= 0xffffffff;
 374	}
 375	if (is_no_fault_exception(regs))
 376		return;
 377
 378	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 379	 * is vectored thorugh data access exception trap with fault type
 380	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 381	 * Accessing an address with invalid ASI for the address, for
 382	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 383	 * when TTE.mcd is not set for the VA, is also vectored into
 384	 * kerbel by HV as data access exception with fault type set to
 385	 * HV_FAULT_TYPE_INV_ASI.
 386	 */
 387	switch (type) {
 388	case HV_FAULT_TYPE_INV_ASI:
 389		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0);
 390		break;
 391	case HV_FAULT_TYPE_MCD_DIS:
 392		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0);
 393		break;
 394	default:
 395		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0);
 396		break;
 397	}
 398}
 399
 400void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 401{
 402	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 403		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 404		return;
 405
 406	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 407	sun4v_data_access_exception(regs, addr, type_ctx);
 408}
 409
 410#ifdef CONFIG_PCI
 411#include "pci_impl.h"
 412#endif
 413
 414/* When access exceptions happen, we must do this. */
 415static void spitfire_clean_and_reenable_l1_caches(void)
 416{
 417	unsigned long va;
 418
 419	if (tlb_type != spitfire)
 420		BUG();
 421
 422	/* Clean 'em. */
 423	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 424		spitfire_put_icache_tag(va, 0x0);
 425		spitfire_put_dcache_tag(va, 0x0);
 426	}
 427
 428	/* Re-enable in LSU. */
 429	__asm__ __volatile__("flush %%g6\n\t"
 430			     "membar #Sync\n\t"
 431			     "stxa %0, [%%g0] %1\n\t"
 432			     "membar #Sync"
 433			     : /* no outputs */
 434			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 435				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 436			     "i" (ASI_LSU_CONTROL)
 437			     : "memory");
 438}
 439
 440static void spitfire_enable_estate_errors(void)
 441{
 442	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 443			     "membar	#Sync"
 444			     : /* no outputs */
 445			     : "r" (ESTATE_ERR_ALL),
 446			       "i" (ASI_ESTATE_ERROR_EN));
 447}
 448
 449static char ecc_syndrome_table[] = {
 450	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 451	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 452	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 453	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 454	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 455	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 456	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 457	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 458	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 459	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 460	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 461	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 462	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 463	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 464	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 465	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 466	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 467	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 468	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 469	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 470	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 471	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 472	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 473	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 474	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 475	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 477	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 479	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 480	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 481	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 482};
 483
 484static char *syndrome_unknown = "<Unknown>";
 485
 486static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 487{
 488	unsigned short scode;
 489	char memmod_str[64], *p;
 490
 491	if (udbl & bit) {
 492		scode = ecc_syndrome_table[udbl & 0xff];
 493		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 494			p = syndrome_unknown;
 495		else
 496			p = memmod_str;
 497		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 498		       "Memory Module \"%s\"\n",
 499		       smp_processor_id(), scode, p);
 500	}
 501
 502	if (udbh & bit) {
 503		scode = ecc_syndrome_table[udbh & 0xff];
 504		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 505			p = syndrome_unknown;
 506		else
 507			p = memmod_str;
 508		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 509		       "Memory Module \"%s\"\n",
 510		       smp_processor_id(), scode, p);
 511	}
 512
 513}
 514
 515static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 516{
 517
 518	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 519	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 520	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 521
 522	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 523
 524	/* We always log it, even if someone is listening for this
 525	 * trap.
 526	 */
 527	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 528		   0, TRAP_TYPE_CEE, SIGTRAP);
 529
 530	/* The Correctable ECC Error trap does not disable I/D caches.  So
 531	 * we only have to restore the ESTATE Error Enable register.
 532	 */
 533	spitfire_enable_estate_errors();
 534}
 535
 536static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 537{
 538	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 539	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 540	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 541
 542	/* XXX add more human friendly logging of the error status
 543	 * XXX as is implemented for cheetah
 544	 */
 545
 546	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 547
 548	/* We always log it, even if someone is listening for this
 549	 * trap.
 550	 */
 551	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 552		   0, tt, SIGTRAP);
 553
 554	if (regs->tstate & TSTATE_PRIV) {
 555		if (tl1)
 556			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 557		die_if_kernel("UE", regs);
 558	}
 559
 560	/* XXX need more intelligent processing here, such as is implemented
 561	 * XXX for cheetah errors, in fact if the E-cache still holds the
 562	 * XXX line with bad parity this will loop
 563	 */
 564
 565	spitfire_clean_and_reenable_l1_caches();
 566	spitfire_enable_estate_errors();
 567
 568	if (test_thread_flag(TIF_32BIT)) {
 569		regs->tpc &= 0xffffffff;
 570		regs->tnpc &= 0xffffffff;
 571	}
 572	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0);
 573}
 574
 575void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 576{
 577	unsigned long afsr, tt, udbh, udbl;
 578	int tl1;
 579
 580	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 581	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 582	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 583	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 584	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 585
 586#ifdef CONFIG_PCI
 587	if (tt == TRAP_TYPE_DAE &&
 588	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 589		spitfire_clean_and_reenable_l1_caches();
 590		spitfire_enable_estate_errors();
 591
 592		pci_poke_faulted = 1;
 593		regs->tnpc = regs->tpc + 4;
 594		return;
 595	}
 596#endif
 597
 598	if (afsr & SFAFSR_UE)
 599		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 600
 601	if (tt == TRAP_TYPE_CEE) {
 602		/* Handle the case where we took a CEE trap, but ACK'd
 603		 * only the UE state in the UDB error registers.
 604		 */
 605		if (afsr & SFAFSR_UE) {
 606			if (udbh & UDBE_CE) {
 607				__asm__ __volatile__(
 608					"stxa	%0, [%1] %2\n\t"
 609					"membar	#Sync"
 610					: /* no outputs */
 611					: "r" (udbh & UDBE_CE),
 612					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 613			}
 614			if (udbl & UDBE_CE) {
 615				__asm__ __volatile__(
 616					"stxa	%0, [%1] %2\n\t"
 617					"membar	#Sync"
 618					: /* no outputs */
 619					: "r" (udbl & UDBE_CE),
 620					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 621			}
 622		}
 623
 624		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 625	}
 626}
 627
 628int cheetah_pcache_forced_on;
 629
 630void cheetah_enable_pcache(void)
 631{
 632	unsigned long dcr;
 633
 634	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 635	       smp_processor_id());
 636
 637	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 638			     : "=r" (dcr)
 639			     : "i" (ASI_DCU_CONTROL_REG));
 640	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 641	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 642			     "membar #Sync"
 643			     : /* no outputs */
 644			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 645}
 646
 647/* Cheetah error trap handling. */
 648static unsigned long ecache_flush_physbase;
 649static unsigned long ecache_flush_linesize;
 650static unsigned long ecache_flush_size;
 651
 652/* This table is ordered in priority of errors and matches the
 653 * AFAR overwrite policy as well.
 654 */
 655
 656struct afsr_error_table {
 657	unsigned long mask;
 658	const char *name;
 659};
 660
 661static const char CHAFSR_PERR_msg[] =
 662	"System interface protocol error";
 663static const char CHAFSR_IERR_msg[] =
 664	"Internal processor error";
 665static const char CHAFSR_ISAP_msg[] =
 666	"System request parity error on incoming address";
 667static const char CHAFSR_UCU_msg[] =
 668	"Uncorrectable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UCC_msg[] =
 670	"SW Correctable E-cache ECC error for ifetch/data";
 671static const char CHAFSR_UE_msg[] =
 672	"Uncorrectable system bus data ECC error for read";
 673static const char CHAFSR_EDU_msg[] =
 674	"Uncorrectable E-cache ECC error for stmerge/blkld";
 675static const char CHAFSR_EMU_msg[] =
 676	"Uncorrectable system bus MTAG error";
 677static const char CHAFSR_WDU_msg[] =
 678	"Uncorrectable E-cache ECC error for writeback";
 679static const char CHAFSR_CPU_msg[] =
 680	"Uncorrectable ECC error for copyout";
 681static const char CHAFSR_CE_msg[] =
 682	"HW corrected system bus data ECC error for read";
 683static const char CHAFSR_EDC_msg[] =
 684	"HW corrected E-cache ECC error for stmerge/blkld";
 685static const char CHAFSR_EMC_msg[] =
 686	"HW corrected system bus MTAG ECC error";
 687static const char CHAFSR_WDC_msg[] =
 688	"HW corrected E-cache ECC error for writeback";
 689static const char CHAFSR_CPC_msg[] =
 690	"HW corrected ECC error for copyout";
 691static const char CHAFSR_TO_msg[] =
 692	"Unmapped error from system bus";
 693static const char CHAFSR_BERR_msg[] =
 694	"Bus error response from system bus";
 695static const char CHAFSR_IVC_msg[] =
 696	"HW corrected system bus data ECC error for ivec read";
 697static const char CHAFSR_IVU_msg[] =
 698	"Uncorrectable system bus data ECC error for ivec read";
 699static struct afsr_error_table __cheetah_error_table[] = {
 700	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 701	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 702	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 703	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 704	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 705	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 706	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 707	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 708	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 709	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 710	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 711	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 712	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 713	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 714	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 715	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 716	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 717	/* These two do not update the AFAR. */
 718	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 719	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 720	{	0,		NULL			},
 721};
 722static const char CHPAFSR_DTO_msg[] =
 723	"System bus unmapped error for prefetch/storequeue-read";
 724static const char CHPAFSR_DBERR_msg[] =
 725	"System bus error for prefetch/storequeue-read";
 726static const char CHPAFSR_THCE_msg[] =
 727	"Hardware corrected E-cache Tag ECC error";
 728static const char CHPAFSR_TSCE_msg[] =
 729	"SW handled correctable E-cache Tag ECC error";
 730static const char CHPAFSR_TUE_msg[] =
 731	"Uncorrectable E-cache Tag ECC error";
 732static const char CHPAFSR_DUE_msg[] =
 733	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 734static struct afsr_error_table __cheetah_plus_error_table[] = {
 735	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 736	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 737	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 738	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 739	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 740	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 741	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 742	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 743	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 744	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 745	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 746	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 747	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 748	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 749	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 750	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 751	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 752	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 753	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 754	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 755	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 756	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 757	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 758	/* These two do not update the AFAR. */
 759	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 760	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 761	{	0,		NULL			},
 762};
 763static const char JPAFSR_JETO_msg[] =
 764	"System interface protocol error, hw timeout caused";
 765static const char JPAFSR_SCE_msg[] =
 766	"Parity error on system snoop results";
 767static const char JPAFSR_JEIC_msg[] =
 768	"System interface protocol error, illegal command detected";
 769static const char JPAFSR_JEIT_msg[] =
 770	"System interface protocol error, illegal ADTYPE detected";
 771static const char JPAFSR_OM_msg[] =
 772	"Out of range memory error has occurred";
 773static const char JPAFSR_ETP_msg[] =
 774	"Parity error on L2 cache tag SRAM";
 775static const char JPAFSR_UMS_msg[] =
 776	"Error due to unsupported store";
 777static const char JPAFSR_RUE_msg[] =
 778	"Uncorrectable ECC error from remote cache/memory";
 779static const char JPAFSR_RCE_msg[] =
 780	"Correctable ECC error from remote cache/memory";
 781static const char JPAFSR_BP_msg[] =
 782	"JBUS parity error on returned read data";
 783static const char JPAFSR_WBP_msg[] =
 784	"JBUS parity error on data for writeback or block store";
 785static const char JPAFSR_FRC_msg[] =
 786	"Foreign read to DRAM incurring correctable ECC error";
 787static const char JPAFSR_FRU_msg[] =
 788	"Foreign read to DRAM incurring uncorrectable ECC error";
 789static struct afsr_error_table __jalapeno_error_table[] = {
 790	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 791	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 792	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 793	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 794	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 795	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 796	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 797	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 798	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 799	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 800	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 801	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 802	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 803	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 804	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 805	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 806	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 807	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 808	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 809	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 810	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 811	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 812	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 813	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 814	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 815	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 816	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 817	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 818	/* These two do not update the AFAR. */
 819	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 820	{	0,		NULL			},
 821};
 822static struct afsr_error_table *cheetah_error_table;
 823static unsigned long cheetah_afsr_errors;
 824
 825struct cheetah_err_info *cheetah_error_log;
 826
 827static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 828{
 829	struct cheetah_err_info *p;
 830	int cpu = smp_processor_id();
 831
 832	if (!cheetah_error_log)
 833		return NULL;
 834
 835	p = cheetah_error_log + (cpu * 2);
 836	if ((afsr & CHAFSR_TL1) != 0UL)
 837		p++;
 838
 839	return p;
 840}
 841
 842extern unsigned int tl0_icpe[], tl1_icpe[];
 843extern unsigned int tl0_dcpe[], tl1_dcpe[];
 844extern unsigned int tl0_fecc[], tl1_fecc[];
 845extern unsigned int tl0_cee[], tl1_cee[];
 846extern unsigned int tl0_iae[], tl1_iae[];
 847extern unsigned int tl0_dae[], tl1_dae[];
 848extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 849extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 850extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 851extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 852extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 853
 854void __init cheetah_ecache_flush_init(void)
 855{
 856	unsigned long largest_size, smallest_linesize, order, ver;
 857	int i, sz;
 858
 859	/* Scan all cpu device tree nodes, note two values:
 860	 * 1) largest E-cache size
 861	 * 2) smallest E-cache line size
 862	 */
 863	largest_size = 0UL;
 864	smallest_linesize = ~0UL;
 865
 866	for (i = 0; i < NR_CPUS; i++) {
 867		unsigned long val;
 868
 869		val = cpu_data(i).ecache_size;
 870		if (!val)
 871			continue;
 872
 873		if (val > largest_size)
 874			largest_size = val;
 875
 876		val = cpu_data(i).ecache_line_size;
 877		if (val < smallest_linesize)
 878			smallest_linesize = val;
 879
 880	}
 881
 882	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 883		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 884			    "parameters.\n");
 885		prom_halt();
 886	}
 887
 888	ecache_flush_size = (2 * largest_size);
 889	ecache_flush_linesize = smallest_linesize;
 890
 891	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 892
 893	if (ecache_flush_physbase == ~0UL) {
 894		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 895			    "contiguous physical memory.\n",
 896			    ecache_flush_size);
 897		prom_halt();
 898	}
 899
 900	/* Now allocate error trap reporting scoreboard. */
 901	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 902	for (order = 0; order < MAX_ORDER; order++) {
 903		if ((PAGE_SIZE << order) >= sz)
 904			break;
 905	}
 906	cheetah_error_log = (struct cheetah_err_info *)
 907		__get_free_pages(GFP_KERNEL, order);
 908	if (!cheetah_error_log) {
 909		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 910			    "error logging scoreboard (%d bytes).\n", sz);
 911		prom_halt();
 912	}
 913	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 914
 915	/* Mark all AFSRs as invalid so that the trap handler will
 916	 * log new new information there.
 917	 */
 918	for (i = 0; i < 2 * NR_CPUS; i++)
 919		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 920
 921	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 922	if ((ver >> 32) == __JALAPENO_ID ||
 923	    (ver >> 32) == __SERRANO_ID) {
 924		cheetah_error_table = &__jalapeno_error_table[0];
 925		cheetah_afsr_errors = JPAFSR_ERRORS;
 926	} else if ((ver >> 32) == 0x003e0015) {
 927		cheetah_error_table = &__cheetah_plus_error_table[0];
 928		cheetah_afsr_errors = CHPAFSR_ERRORS;
 929	} else {
 930		cheetah_error_table = &__cheetah_error_table[0];
 931		cheetah_afsr_errors = CHAFSR_ERRORS;
 932	}
 933
 934	/* Now patch trap tables. */
 935	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 936	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 938	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 942	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 943	if (tlb_type == cheetah_plus) {
 944		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 945		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 946		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 947		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 948	}
 949	flushi(PAGE_OFFSET);
 950}
 951
 952static void cheetah_flush_ecache(void)
 953{
 954	unsigned long flush_base = ecache_flush_physbase;
 955	unsigned long flush_linesize = ecache_flush_linesize;
 956	unsigned long flush_size = ecache_flush_size;
 957
 958	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 959			     "   bne,pt	%%xcc, 1b\n\t"
 960			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 961			     : "=&r" (flush_size)
 962			     : "0" (flush_size), "r" (flush_base),
 963			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 964}
 965
 966static void cheetah_flush_ecache_line(unsigned long physaddr)
 967{
 968	unsigned long alias;
 969
 970	physaddr &= ~(8UL - 1UL);
 971	physaddr = (ecache_flush_physbase +
 972		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 973	alias = physaddr + (ecache_flush_size >> 1UL);
 974	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 975			     "ldxa [%1] %2, %%g0\n\t"
 976			     "membar #Sync"
 977			     : /* no outputs */
 978			     : "r" (physaddr), "r" (alias),
 979			       "i" (ASI_PHYS_USE_EC));
 980}
 981
 982/* Unfortunately, the diagnostic access to the I-cache tags we need to
 983 * use to clear the thing interferes with I-cache coherency transactions.
 984 *
 985 * So we must only flush the I-cache when it is disabled.
 986 */
 987static void __cheetah_flush_icache(void)
 988{
 989	unsigned int icache_size, icache_line_size;
 990	unsigned long addr;
 991
 992	icache_size = local_cpu_data().icache_size;
 993	icache_line_size = local_cpu_data().icache_line_size;
 994
 995	/* Clear the valid bits in all the tags. */
 996	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 997		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 998				     "membar #Sync"
 999				     : /* no outputs */
1000				     : "r" (addr | (2 << 3)),
1001				       "i" (ASI_IC_TAG));
1002	}
1003}
1004
1005static void cheetah_flush_icache(void)
1006{
1007	unsigned long dcu_save;
1008
1009	/* Save current DCU, disable I-cache. */
1010	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1011			     "or %0, %2, %%g1\n\t"
1012			     "stxa %%g1, [%%g0] %1\n\t"
1013			     "membar #Sync"
1014			     : "=r" (dcu_save)
1015			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1016			     : "g1");
1017
1018	__cheetah_flush_icache();
1019
1020	/* Restore DCU register */
1021	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1022			     "membar #Sync"
1023			     : /* no outputs */
1024			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1025}
1026
1027static void cheetah_flush_dcache(void)
1028{
1029	unsigned int dcache_size, dcache_line_size;
1030	unsigned long addr;
1031
1032	dcache_size = local_cpu_data().dcache_size;
1033	dcache_line_size = local_cpu_data().dcache_line_size;
1034
1035	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1036		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1037				     "membar #Sync"
1038				     : /* no outputs */
1039				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1040	}
1041}
1042
1043/* In order to make the even parity correct we must do two things.
1044 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1045 * Next, we clear out all 32-bytes of data for that line.  Data of
1046 * all-zero + tag parity value of zero == correct parity.
1047 */
1048static void cheetah_plus_zap_dcache_parity(void)
1049{
1050	unsigned int dcache_size, dcache_line_size;
1051	unsigned long addr;
1052
1053	dcache_size = local_cpu_data().dcache_size;
1054	dcache_line_size = local_cpu_data().dcache_line_size;
1055
1056	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1057		unsigned long tag = (addr >> 14);
1058		unsigned long line;
1059
1060		__asm__ __volatile__("membar	#Sync\n\t"
1061				     "stxa	%0, [%1] %2\n\t"
1062				     "membar	#Sync"
1063				     : /* no outputs */
1064				     : "r" (tag), "r" (addr),
1065				       "i" (ASI_DCACHE_UTAG));
1066		for (line = addr; line < addr + dcache_line_size; line += 8)
1067			__asm__ __volatile__("membar	#Sync\n\t"
1068					     "stxa	%%g0, [%0] %1\n\t"
1069					     "membar	#Sync"
1070					     : /* no outputs */
1071					     : "r" (line),
1072					       "i" (ASI_DCACHE_DATA));
1073	}
1074}
1075
1076/* Conversion tables used to frob Cheetah AFSR syndrome values into
1077 * something palatable to the memory controller driver get_unumber
1078 * routine.
1079 */
1080#define MT0	137
1081#define MT1	138
1082#define MT2	139
1083#define NONE	254
1084#define MTC0	140
1085#define MTC1	141
1086#define MTC2	142
1087#define MTC3	143
1088#define C0	128
1089#define C1	129
1090#define C2	130
1091#define C3	131
1092#define C4	132
1093#define C5	133
1094#define C6	134
1095#define C7	135
1096#define C8	136
1097#define M2	144
1098#define M3	145
1099#define M4	146
1100#define M	147
1101static unsigned char cheetah_ecc_syntab[] = {
1102/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1103/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1104/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1105/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1106/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1107/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1108/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1109/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1110/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1111/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1112/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1113/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1114/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1115/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1116/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1117/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1118/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1119/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1120/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1121/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1122/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1123/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1124/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1125/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1126/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1127/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1128/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1129/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1130/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1131/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1132/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1133/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1134};
1135static unsigned char cheetah_mtag_syntab[] = {
1136       NONE, MTC0,
1137       MTC1, NONE,
1138       MTC2, NONE,
1139       NONE, MT0,
1140       MTC3, NONE,
1141       NONE, MT1,
1142       NONE, MT2,
1143       NONE, NONE
1144};
1145
1146/* Return the highest priority error conditon mentioned. */
1147static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1148{
1149	unsigned long tmp = 0;
1150	int i;
1151
1152	for (i = 0; cheetah_error_table[i].mask; i++) {
1153		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1154			return tmp;
1155	}
1156	return tmp;
1157}
1158
1159static const char *cheetah_get_string(unsigned long bit)
1160{
1161	int i;
1162
1163	for (i = 0; cheetah_error_table[i].mask; i++) {
1164		if ((bit & cheetah_error_table[i].mask) != 0UL)
1165			return cheetah_error_table[i].name;
1166	}
1167	return "???";
1168}
1169
1170static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1171			       unsigned long afsr, unsigned long afar, int recoverable)
1172{
1173	unsigned long hipri;
1174	char unum[256];
1175
1176	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1177	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1178	       afsr, afar,
1179	       (afsr & CHAFSR_TL1) ? 1 : 0);
1180	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1181	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1182	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1183	printk("%s" "ERROR(%d): ",
1184	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1185	printk("TPC<%pS>\n", (void *) regs->tpc);
1186	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1187	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1188	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1189	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1190	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1191	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1192	hipri = cheetah_get_hipri(afsr);
1193	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1194	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1195	       hipri, cheetah_get_string(hipri));
1196
1197	/* Try to get unumber if relevant. */
1198#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1199			 CHAFSR_CPC | CHAFSR_CPU | \
1200			 CHAFSR_UE  | CHAFSR_CE  | \
1201			 CHAFSR_EDC | CHAFSR_EDU  | \
1202			 CHAFSR_UCC | CHAFSR_UCU  | \
1203			 CHAFSR_WDU | CHAFSR_WDC)
1204#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1205	if (afsr & ESYND_ERRORS) {
1206		int syndrome;
1207		int ret;
1208
1209		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1210		syndrome = cheetah_ecc_syntab[syndrome];
1211		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1212		if (ret != -1)
1213			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1214			       (recoverable ? KERN_WARNING : KERN_CRIT),
1215			       smp_processor_id(), unum);
1216	} else if (afsr & MSYND_ERRORS) {
1217		int syndrome;
1218		int ret;
1219
1220		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1221		syndrome = cheetah_mtag_syntab[syndrome];
1222		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1223		if (ret != -1)
1224			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1225			       (recoverable ? KERN_WARNING : KERN_CRIT),
1226			       smp_processor_id(), unum);
1227	}
1228
1229	/* Now dump the cache snapshots. */
1230	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1231	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1232	       (int) info->dcache_index,
1233	       info->dcache_tag,
1234	       info->dcache_utag,
1235	       info->dcache_stag);
1236	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1237	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1238	       info->dcache_data[0],
1239	       info->dcache_data[1],
1240	       info->dcache_data[2],
1241	       info->dcache_data[3]);
1242	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1243	       "u[%016llx] l[%016llx]\n",
1244	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1245	       (int) info->icache_index,
1246	       info->icache_tag,
1247	       info->icache_utag,
1248	       info->icache_stag,
1249	       info->icache_upper,
1250	       info->icache_lower);
1251	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1252	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1253	       info->icache_data[0],
1254	       info->icache_data[1],
1255	       info->icache_data[2],
1256	       info->icache_data[3]);
1257	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1258	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1259	       info->icache_data[4],
1260	       info->icache_data[5],
1261	       info->icache_data[6],
1262	       info->icache_data[7]);
1263	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1264	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1265	       (int) info->ecache_index, info->ecache_tag);
1266	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1267	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1268	       info->ecache_data[0],
1269	       info->ecache_data[1],
1270	       info->ecache_data[2],
1271	       info->ecache_data[3]);
1272
1273	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1274	while (afsr != 0UL) {
1275		unsigned long bit = cheetah_get_hipri(afsr);
1276
1277		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1278		       (recoverable ? KERN_WARNING : KERN_CRIT),
1279		       bit, cheetah_get_string(bit));
1280
1281		afsr &= ~bit;
1282	}
1283
1284	if (!recoverable)
1285		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1286}
1287
1288static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1289{
1290	unsigned long afsr, afar;
1291	int ret = 0;
1292
1293	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1294			     : "=r" (afsr)
1295			     : "i" (ASI_AFSR));
1296	if ((afsr & cheetah_afsr_errors) != 0) {
1297		if (logp != NULL) {
1298			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1299					     : "=r" (afar)
1300					     : "i" (ASI_AFAR));
1301			logp->afsr = afsr;
1302			logp->afar = afar;
1303		}
1304		ret = 1;
1305	}
1306	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1307			     "membar #Sync\n\t"
1308			     : : "r" (afsr), "i" (ASI_AFSR));
1309
1310	return ret;
1311}
1312
1313void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1314{
1315	struct cheetah_err_info local_snapshot, *p;
1316	int recoverable;
1317
1318	/* Flush E-cache */
1319	cheetah_flush_ecache();
1320
1321	p = cheetah_get_error_log(afsr);
1322	if (!p) {
1323		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1324			    afsr, afar);
1325		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1326			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1327		prom_halt();
1328	}
1329
1330	/* Grab snapshot of logged error. */
1331	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1332
1333	/* If the current trap snapshot does not match what the
1334	 * trap handler passed along into our args, big trouble.
1335	 * In such a case, mark the local copy as invalid.
1336	 *
1337	 * Else, it matches and we mark the afsr in the non-local
1338	 * copy as invalid so we may log new error traps there.
1339	 */
1340	if (p->afsr != afsr || p->afar != afar)
1341		local_snapshot.afsr = CHAFSR_INVALID;
1342	else
1343		p->afsr = CHAFSR_INVALID;
1344
1345	cheetah_flush_icache();
1346	cheetah_flush_dcache();
1347
1348	/* Re-enable I-cache/D-cache */
1349	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1350			     "or %%g1, %1, %%g1\n\t"
1351			     "stxa %%g1, [%%g0] %0\n\t"
1352			     "membar #Sync"
1353			     : /* no outputs */
1354			     : "i" (ASI_DCU_CONTROL_REG),
1355			       "i" (DCU_DC | DCU_IC)
1356			     : "g1");
1357
1358	/* Re-enable error reporting */
1359	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1360			     "or %%g1, %1, %%g1\n\t"
1361			     "stxa %%g1, [%%g0] %0\n\t"
1362			     "membar #Sync"
1363			     : /* no outputs */
1364			     : "i" (ASI_ESTATE_ERROR_EN),
1365			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1366			     : "g1");
1367
1368	/* Decide if we can continue after handling this trap and
1369	 * logging the error.
1370	 */
1371	recoverable = 1;
1372	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1373		recoverable = 0;
1374
1375	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1376	 * error was logged while we had error reporting traps disabled.
1377	 */
1378	if (cheetah_recheck_errors(&local_snapshot)) {
1379		unsigned long new_afsr = local_snapshot.afsr;
1380
1381		/* If we got a new asynchronous error, die... */
1382		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1383				CHAFSR_WDU | CHAFSR_CPU |
1384				CHAFSR_IVU | CHAFSR_UE |
1385				CHAFSR_BERR | CHAFSR_TO))
1386			recoverable = 0;
1387	}
1388
1389	/* Log errors. */
1390	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1391
1392	if (!recoverable)
1393		panic("Irrecoverable Fast-ECC error trap.\n");
1394
1395	/* Flush E-cache to kick the error trap handlers out. */
1396	cheetah_flush_ecache();
1397}
1398
1399/* Try to fix a correctable error by pushing the line out from
1400 * the E-cache.  Recheck error reporting registers to see if the
1401 * problem is intermittent.
1402 */
1403static int cheetah_fix_ce(unsigned long physaddr)
1404{
1405	unsigned long orig_estate;
1406	unsigned long alias1, alias2;
1407	int ret;
1408
1409	/* Make sure correctable error traps are disabled. */
1410	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1411			     "andn	%0, %1, %%g1\n\t"
1412			     "stxa	%%g1, [%%g0] %2\n\t"
1413			     "membar	#Sync"
1414			     : "=&r" (orig_estate)
1415			     : "i" (ESTATE_ERROR_CEEN),
1416			       "i" (ASI_ESTATE_ERROR_EN)
1417			     : "g1");
1418
1419	/* We calculate alias addresses that will force the
1420	 * cache line in question out of the E-cache.  Then
1421	 * we bring it back in with an atomic instruction so
1422	 * that we get it in some modified/exclusive state,
1423	 * then we displace it again to try and get proper ECC
1424	 * pushed back into the system.
1425	 */
1426	physaddr &= ~(8UL - 1UL);
1427	alias1 = (ecache_flush_physbase +
1428		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1429	alias2 = alias1 + (ecache_flush_size >> 1);
1430	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1431			     "ldxa	[%1] %3, %%g0\n\t"
1432			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1433			     "ldxa	[%0] %3, %%g0\n\t"
1434			     "ldxa	[%1] %3, %%g0\n\t"
1435			     "membar	#Sync"
1436			     : /* no outputs */
1437			     : "r" (alias1), "r" (alias2),
1438			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1439
1440	/* Did that trigger another error? */
1441	if (cheetah_recheck_errors(NULL)) {
1442		/* Try one more time. */
1443		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1444				     "membar #Sync"
1445				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1446		if (cheetah_recheck_errors(NULL))
1447			ret = 2;
1448		else
1449			ret = 1;
1450	} else {
1451		/* No new error, intermittent problem. */
1452		ret = 0;
1453	}
1454
1455	/* Restore error enables. */
1456	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1457			     "membar	#Sync"
1458			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1459
1460	return ret;
1461}
1462
1463/* Return non-zero if PADDR is a valid physical memory address. */
1464static int cheetah_check_main_memory(unsigned long paddr)
1465{
1466	unsigned long vaddr = PAGE_OFFSET + paddr;
1467
1468	if (vaddr > (unsigned long) high_memory)
1469		return 0;
1470
1471	return kern_addr_valid(vaddr);
1472}
1473
1474void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1475{
1476	struct cheetah_err_info local_snapshot, *p;
1477	int recoverable, is_memory;
1478
1479	p = cheetah_get_error_log(afsr);
1480	if (!p) {
1481		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1482			    afsr, afar);
1483		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1484			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1485		prom_halt();
1486	}
1487
1488	/* Grab snapshot of logged error. */
1489	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1490
1491	/* If the current trap snapshot does not match what the
1492	 * trap handler passed along into our args, big trouble.
1493	 * In such a case, mark the local copy as invalid.
1494	 *
1495	 * Else, it matches and we mark the afsr in the non-local
1496	 * copy as invalid so we may log new error traps there.
1497	 */
1498	if (p->afsr != afsr || p->afar != afar)
1499		local_snapshot.afsr = CHAFSR_INVALID;
1500	else
1501		p->afsr = CHAFSR_INVALID;
1502
1503	is_memory = cheetah_check_main_memory(afar);
1504
1505	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1506		/* XXX Might want to log the results of this operation
1507		 * XXX somewhere... -DaveM
1508		 */
1509		cheetah_fix_ce(afar);
1510	}
1511
1512	{
1513		int flush_all, flush_line;
1514
1515		flush_all = flush_line = 0;
1516		if ((afsr & CHAFSR_EDC) != 0UL) {
1517			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1518				flush_line = 1;
1519			else
1520				flush_all = 1;
1521		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1522			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1523				flush_line = 1;
1524			else
1525				flush_all = 1;
1526		}
1527
1528		/* Trap handler only disabled I-cache, flush it. */
1529		cheetah_flush_icache();
1530
1531		/* Re-enable I-cache */
1532		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1533				     "or %%g1, %1, %%g1\n\t"
1534				     "stxa %%g1, [%%g0] %0\n\t"
1535				     "membar #Sync"
1536				     : /* no outputs */
1537				     : "i" (ASI_DCU_CONTROL_REG),
1538				     "i" (DCU_IC)
1539				     : "g1");
1540
1541		if (flush_all)
1542			cheetah_flush_ecache();
1543		else if (flush_line)
1544			cheetah_flush_ecache_line(afar);
1545	}
1546
1547	/* Re-enable error reporting */
1548	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1549			     "or %%g1, %1, %%g1\n\t"
1550			     "stxa %%g1, [%%g0] %0\n\t"
1551			     "membar #Sync"
1552			     : /* no outputs */
1553			     : "i" (ASI_ESTATE_ERROR_EN),
1554			       "i" (ESTATE_ERROR_CEEN)
1555			     : "g1");
1556
1557	/* Decide if we can continue after handling this trap and
1558	 * logging the error.
1559	 */
1560	recoverable = 1;
1561	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1562		recoverable = 0;
1563
1564	/* Re-check AFSR/AFAR */
1565	(void) cheetah_recheck_errors(&local_snapshot);
1566
1567	/* Log errors. */
1568	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1569
1570	if (!recoverable)
1571		panic("Irrecoverable Correctable-ECC error trap.\n");
1572}
1573
1574void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1575{
1576	struct cheetah_err_info local_snapshot, *p;
1577	int recoverable, is_memory;
1578
1579#ifdef CONFIG_PCI
1580	/* Check for the special PCI poke sequence. */
1581	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1582		cheetah_flush_icache();
1583		cheetah_flush_dcache();
1584
1585		/* Re-enable I-cache/D-cache */
1586		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1587				     "or %%g1, %1, %%g1\n\t"
1588				     "stxa %%g1, [%%g0] %0\n\t"
1589				     "membar #Sync"
1590				     : /* no outputs */
1591				     : "i" (ASI_DCU_CONTROL_REG),
1592				       "i" (DCU_DC | DCU_IC)
1593				     : "g1");
1594
1595		/* Re-enable error reporting */
1596		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1597				     "or %%g1, %1, %%g1\n\t"
1598				     "stxa %%g1, [%%g0] %0\n\t"
1599				     "membar #Sync"
1600				     : /* no outputs */
1601				     : "i" (ASI_ESTATE_ERROR_EN),
1602				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1603				     : "g1");
1604
1605		(void) cheetah_recheck_errors(NULL);
1606
1607		pci_poke_faulted = 1;
1608		regs->tpc += 4;
1609		regs->tnpc = regs->tpc + 4;
1610		return;
1611	}
1612#endif
1613
1614	p = cheetah_get_error_log(afsr);
1615	if (!p) {
1616		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1617			    afsr, afar);
1618		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1619			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1620		prom_halt();
1621	}
1622
1623	/* Grab snapshot of logged error. */
1624	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1625
1626	/* If the current trap snapshot does not match what the
1627	 * trap handler passed along into our args, big trouble.
1628	 * In such a case, mark the local copy as invalid.
1629	 *
1630	 * Else, it matches and we mark the afsr in the non-local
1631	 * copy as invalid so we may log new error traps there.
1632	 */
1633	if (p->afsr != afsr || p->afar != afar)
1634		local_snapshot.afsr = CHAFSR_INVALID;
1635	else
1636		p->afsr = CHAFSR_INVALID;
1637
1638	is_memory = cheetah_check_main_memory(afar);
1639
1640	{
1641		int flush_all, flush_line;
1642
1643		flush_all = flush_line = 0;
1644		if ((afsr & CHAFSR_EDU) != 0UL) {
1645			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1646				flush_line = 1;
1647			else
1648				flush_all = 1;
1649		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1650			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1651				flush_line = 1;
1652			else
1653				flush_all = 1;
1654		}
1655
1656		cheetah_flush_icache();
1657		cheetah_flush_dcache();
1658
1659		/* Re-enable I/D caches */
1660		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1661				     "or %%g1, %1, %%g1\n\t"
1662				     "stxa %%g1, [%%g0] %0\n\t"
1663				     "membar #Sync"
1664				     : /* no outputs */
1665				     : "i" (ASI_DCU_CONTROL_REG),
1666				     "i" (DCU_IC | DCU_DC)
1667				     : "g1");
1668
1669		if (flush_all)
1670			cheetah_flush_ecache();
1671		else if (flush_line)
1672			cheetah_flush_ecache_line(afar);
1673	}
1674
1675	/* Re-enable error reporting */
1676	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1677			     "or %%g1, %1, %%g1\n\t"
1678			     "stxa %%g1, [%%g0] %0\n\t"
1679			     "membar #Sync"
1680			     : /* no outputs */
1681			     : "i" (ASI_ESTATE_ERROR_EN),
1682			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1683			     : "g1");
1684
1685	/* Decide if we can continue after handling this trap and
1686	 * logging the error.
1687	 */
1688	recoverable = 1;
1689	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1690		recoverable = 0;
1691
1692	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1693	 * error was logged while we had error reporting traps disabled.
1694	 */
1695	if (cheetah_recheck_errors(&local_snapshot)) {
1696		unsigned long new_afsr = local_snapshot.afsr;
1697
1698		/* If we got a new asynchronous error, die... */
1699		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1700				CHAFSR_WDU | CHAFSR_CPU |
1701				CHAFSR_IVU | CHAFSR_UE |
1702				CHAFSR_BERR | CHAFSR_TO))
1703			recoverable = 0;
1704	}
1705
1706	/* Log errors. */
1707	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1708
1709	/* "Recoverable" here means we try to yank the page from ever
1710	 * being newly used again.  This depends upon a few things:
1711	 * 1) Must be main memory, and AFAR must be valid.
1712	 * 2) If we trapped from user, OK.
1713	 * 3) Else, if we trapped from kernel we must find exception
1714	 *    table entry (ie. we have to have been accessing user
1715	 *    space).
1716	 *
1717	 * If AFAR is not in main memory, or we trapped from kernel
1718	 * and cannot find an exception table entry, it is unacceptable
1719	 * to try and continue.
1720	 */
1721	if (recoverable && is_memory) {
1722		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1723			/* OK, usermode access. */
1724			recoverable = 1;
1725		} else {
1726			const struct exception_table_entry *entry;
1727
1728			entry = search_exception_tables(regs->tpc);
1729			if (entry) {
1730				/* OK, kernel access to userspace. */
1731				recoverable = 1;
1732
1733			} else {
1734				/* BAD, privileged state is corrupted. */
1735				recoverable = 0;
1736			}
1737
1738			if (recoverable) {
1739				if (pfn_valid(afar >> PAGE_SHIFT))
1740					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1741				else
1742					recoverable = 0;
1743
1744				/* Only perform fixup if we still have a
1745				 * recoverable condition.
1746				 */
1747				if (recoverable) {
1748					regs->tpc = entry->fixup;
1749					regs->tnpc = regs->tpc + 4;
1750				}
1751			}
1752		}
1753	} else {
1754		recoverable = 0;
1755	}
1756
1757	if (!recoverable)
1758		panic("Irrecoverable deferred error trap.\n");
1759}
1760
1761/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1762 *
1763 * Bit0:	0=dcache,1=icache
1764 * Bit1:	0=recoverable,1=unrecoverable
1765 *
1766 * The hardware has disabled both the I-cache and D-cache in
1767 * the %dcr register.  
1768 */
1769void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1770{
1771	if (type & 0x1)
1772		__cheetah_flush_icache();
1773	else
1774		cheetah_plus_zap_dcache_parity();
1775	cheetah_flush_dcache();
1776
1777	/* Re-enable I-cache/D-cache */
1778	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1779			     "or %%g1, %1, %%g1\n\t"
1780			     "stxa %%g1, [%%g0] %0\n\t"
1781			     "membar #Sync"
1782			     : /* no outputs */
1783			     : "i" (ASI_DCU_CONTROL_REG),
1784			       "i" (DCU_DC | DCU_IC)
1785			     : "g1");
1786
1787	if (type & 0x2) {
1788		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1789		       smp_processor_id(),
1790		       (type & 0x1) ? 'I' : 'D',
1791		       regs->tpc);
1792		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1793		panic("Irrecoverable Cheetah+ parity error.");
1794	}
1795
1796	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1797	       smp_processor_id(),
1798	       (type & 0x1) ? 'I' : 'D',
1799	       regs->tpc);
1800	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1801}
1802
1803struct sun4v_error_entry {
1804	/* Unique error handle */
1805/*0x00*/u64		err_handle;
1806
1807	/* %stick value at the time of the error */
1808/*0x08*/u64		err_stick;
1809
1810/*0x10*/u8		reserved_1[3];
1811
1812	/* Error type */
1813/*0x13*/u8		err_type;
1814#define SUN4V_ERR_TYPE_UNDEFINED	0
1815#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1816#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1817#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1818#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1819#define SUN4V_ERR_TYPE_DUMP_CORE	5
1820#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1821#define SUN4V_ERR_TYPE_NUM		7
1822
1823	/* Error attributes */
1824/*0x14*/u32		err_attrs;
1825#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1826#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1827#define SUN4V_ERR_ATTRS_PIO		0x00000004
1828#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1829#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1830#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1831#define SUN4V_ERR_ATTRS_ASR		0x00000040
1832#define SUN4V_ERR_ATTRS_ASI		0x00000080
1833#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1834#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1835#define SUN4V_ERR_ATTRS_MCD		0x00000800
1836#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1837#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1838#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1839#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1840
1841#define SUN4V_ERR_SPSTATE_FAULTED	0
1842#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1843#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1844
1845#define SUN4V_ERR_MODE_USER		1
1846#define SUN4V_ERR_MODE_PRIV		2
1847
1848	/* Real address of the memory region or PIO transaction */
1849/*0x18*/u64		err_raddr;
1850
1851	/* Size of the operation triggering the error, in bytes */
1852/*0x20*/u32		err_size;
1853
1854	/* ID of the CPU */
1855/*0x24*/u16		err_cpu;
1856
1857	/* Grace periof for shutdown, in seconds */
1858/*0x26*/u16		err_secs;
1859
1860	/* Value of the %asi register */
1861/*0x28*/u8		err_asi;
1862
1863/*0x29*/u8		reserved_2;
1864
1865	/* Value of the ASR register number */
1866/*0x2a*/u16		err_asr;
1867#define SUN4V_ERR_ASR_VALID		0x8000
1868
1869/*0x2c*/u32		reserved_3;
1870/*0x30*/u64		reserved_4;
1871/*0x38*/u64		reserved_5;
1872};
1873
1874static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1875static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1876
1877static const char *sun4v_err_type_to_str(u8 type)
1878{
1879	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1880		"undefined",
1881		"uncorrected resumable",
1882		"precise nonresumable",
1883		"deferred nonresumable",
1884		"shutdown request",
1885		"dump core",
1886		"SP state change",
1887	};
1888
1889	if (type < SUN4V_ERR_TYPE_NUM)
1890		return types[type];
1891
1892	return "unknown";
1893}
1894
1895static void sun4v_emit_err_attr_strings(u32 attrs)
1896{
1897	static const char *attr_names[] = {
1898		"processor",
1899		"memory",
1900		"PIO",
1901		"int-registers",
1902		"fpu-registers",
1903		"shutdown-request",
1904		"ASR",
1905		"ASI",
1906		"priv-reg",
1907	};
1908	static const char *sp_states[] = {
1909		"sp-faulted",
1910		"sp-available",
1911		"sp-not-present",
1912		"sp-state-reserved",
1913	};
1914	static const char *modes[] = {
1915		"mode-reserved0",
1916		"user",
1917		"priv",
1918		"mode-reserved1",
1919	};
1920	u32 sp_state, mode;
1921	int i;
1922
1923	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1924		if (attrs & (1U << i)) {
1925			const char *s = attr_names[i];
1926
1927			pr_cont("%s ", s);
1928		}
1929	}
1930
1931	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1932		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1933	pr_cont("%s ", sp_states[sp_state]);
1934
1935	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1936		SUN4V_ERR_ATTRS_MODE_SHFT);
1937	pr_cont("%s ", modes[mode]);
1938
1939	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1940		pr_cont("res-queue-full ");
1941}
1942
1943/* When the report contains a real-address of "-1" it means that the
1944 * hardware did not provide the address.  So we compute the effective
1945 * address of the load or store instruction at regs->tpc and report
1946 * that.  Usually when this happens it's a PIO and in such a case we
1947 * are using physical addresses with bypass ASIs anyways, so what we
1948 * report here is exactly what we want.
1949 */
1950static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1951{
1952	unsigned int insn;
1953	u64 addr;
1954
1955	if (!(regs->tstate & TSTATE_PRIV))
1956		return;
1957
1958	insn = *(unsigned int *) regs->tpc;
1959
1960	addr = compute_effective_address(regs, insn, 0);
1961
1962	printk("%s: insn effective address [0x%016llx]\n",
1963	       pfx, addr);
1964}
1965
1966static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1967			    int cpu, const char *pfx, atomic_t *ocnt)
1968{
1969	u64 *raw_ptr = (u64 *) ent;
1970	u32 attrs;
1971	int cnt;
1972
1973	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1974	printk("%s: TPC [0x%016lx] <%pS>\n",
1975	       pfx, regs->tpc, (void *) regs->tpc);
1976
1977	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1978	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1979	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1980	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1981
1982	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1983	       pfx, ent->err_handle, ent->err_stick);
1984
1985	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1986
1987	attrs = ent->err_attrs;
1988	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1989	sun4v_emit_err_attr_strings(attrs);
1990	pr_cont(">\n");
1991
1992	/* Various fields in the error report are only valid if
1993	 * certain attribute bits are set.
1994	 */
1995	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1996		     SUN4V_ERR_ATTRS_PIO |
1997		     SUN4V_ERR_ATTRS_ASI)) {
1998		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1999
2000		if (ent->err_raddr == ~(u64)0)
2001			sun4v_report_real_raddr(pfx, regs);
2002	}
2003
2004	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2005		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2006
2007	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2008		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2009		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2010		     SUN4V_ERR_ATTRS_PRIV_REG))
2011		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2012
2013	if (attrs & SUN4V_ERR_ATTRS_ASI)
2014		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2015
2016	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2017		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2018		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2019	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2020		printk("%s: reg [0x%04x]\n",
2021		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2022
2023	show_regs(regs);
2024
2025	if ((cnt = atomic_read(ocnt)) != 0) {
2026		atomic_set(ocnt, 0);
2027		wmb();
2028		printk("%s: Queue overflowed %d times.\n",
2029		       pfx, cnt);
2030	}
2031}
2032
2033/* Handle memory corruption detected error which is vectored in
2034 * through resumable error trap.
2035 */
2036void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2037{
2038	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2039		       SIGSEGV) == NOTIFY_STOP)
2040		return;
2041
2042	if (regs->tstate & TSTATE_PRIV) {
2043		/* MCD exception could happen because the task was
2044		 * running a system call with MCD enabled and passed a
2045		 * non-versioned pointer or pointer with bad version
2046		 * tag to the system call. In such cases, hypervisor
2047		 * places the address of offending instruction in the
2048		 * resumable error report. This is a deferred error,
2049		 * so the read/write that caused the trap was potentially
2050		 * retired long time back and we may have no choice
2051		 * but to send SIGSEGV to the process.
2052		 */
2053		const struct exception_table_entry *entry;
2054
2055		entry = search_exception_tables(regs->tpc);
2056		if (entry) {
2057			/* Looks like a bad syscall parameter */
2058#ifdef DEBUG_EXCEPTIONS
2059			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2060				 regs->tpc);
2061			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2062				 ent.err_raddr, entry->fixup);
2063#endif
2064			regs->tpc = entry->fixup;
2065			regs->tnpc = regs->tpc + 4;
2066			return;
2067		}
2068	}
2069
2070	/* Send SIGSEGV to the userspace process with the right signal
2071	 * code
2072	 */
2073	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2074			0);
2075}
2076
2077/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2078 * Log the event and clear the first word of the entry.
2079 */
2080void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2081{
2082	enum ctx_state prev_state = exception_enter();
2083	struct sun4v_error_entry *ent, local_copy;
2084	struct trap_per_cpu *tb;
2085	unsigned long paddr;
2086	int cpu;
2087
2088	cpu = get_cpu();
2089
2090	tb = &trap_block[cpu];
2091	paddr = tb->resum_kernel_buf_pa + offset;
2092	ent = __va(paddr);
2093
2094	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2095
2096	/* We have a local copy now, so release the entry.  */
2097	ent->err_handle = 0;
2098	wmb();
2099
2100	put_cpu();
2101
2102	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2103		/* We should really take the seconds field of
2104		 * the error report and use it for the shutdown
2105		 * invocation, but for now do the same thing we
2106		 * do for a DS shutdown request.
2107		 */
2108		pr_info("Shutdown request, %u seconds...\n",
2109			local_copy.err_secs);
2110		orderly_poweroff(true);
2111		goto out;
2112	}
2113
2114	/* If this is a memory corruption detected error vectored in
2115	 * by HV through resumable error trap, call the handler
2116	 */
2117	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2118		do_mcd_err(regs, local_copy);
2119		return;
2120	}
2121
2122	sun4v_log_error(regs, &local_copy, cpu,
2123			KERN_ERR "RESUMABLE ERROR",
2124			&sun4v_resum_oflow_cnt);
2125out:
2126	exception_exit(prev_state);
2127}
2128
2129/* If we try to printk() we'll probably make matters worse, by trying
2130 * to retake locks this cpu already holds or causing more errors. So
2131 * just bump a counter, and we'll report these counter bumps above.
2132 */
2133void sun4v_resum_overflow(struct pt_regs *regs)
2134{
2135	atomic_inc(&sun4v_resum_oflow_cnt);
2136}
2137
2138/* Given a set of registers, get the virtual addressi that was being accessed
2139 * by the faulting instructions at tpc.
2140 */
2141static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2142{
2143	unsigned int insn;
2144
2145	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2146		return compute_effective_address(regs, insn,
2147						 (insn >> 25) & 0x1f);
2148	}
2149	return 0;
2150}
2151
2152/* Attempt to handle non-resumable errors generated from userspace.
2153 * Returns true if the signal was handled, false otherwise.
2154 */
2155bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2156				  struct sun4v_error_entry *ent) {
2157
2158	unsigned int attrs = ent->err_attrs;
2159
2160	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2161		unsigned long addr = ent->err_raddr;
2162
2163		if (addr == ~(u64)0) {
2164			/* This seems highly unlikely to ever occur */
2165			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2166		} else {
2167			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2168							      PAGE_SIZE);
2169
2170			/* Break the unfortunate news. */
2171			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2172				 addr);
2173			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2174				 page_cnt);
2175
2176			while (page_cnt-- > 0) {
2177				if (pfn_valid(addr >> PAGE_SHIFT))
2178					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2179				addr += PAGE_SIZE;
2180			}
2181		}
2182		force_sig(SIGKILL);
2183
2184		return true;
2185	}
2186	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2187		force_sig_fault(SIGBUS, BUS_ADRERR,
2188				(void __user *)sun4v_get_vaddr(regs), 0);
2189		return true;
2190	}
2191
2192	/* Default to doing nothing */
2193	return false;
2194}
2195
2196/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2197 * Log the event, clear the first word of the entry, and die.
2198 */
2199void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2200{
2201	struct sun4v_error_entry *ent, local_copy;
2202	struct trap_per_cpu *tb;
2203	unsigned long paddr;
2204	int cpu;
2205
2206	cpu = get_cpu();
2207
2208	tb = &trap_block[cpu];
2209	paddr = tb->nonresum_kernel_buf_pa + offset;
2210	ent = __va(paddr);
2211
2212	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2213
2214	/* We have a local copy now, so release the entry.  */
2215	ent->err_handle = 0;
2216	wmb();
2217
2218	put_cpu();
2219
2220	if (!(regs->tstate & TSTATE_PRIV) &&
2221	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2222		/* DON'T PANIC: This userspace error was handled. */
2223		return;
2224	}
2225
2226#ifdef CONFIG_PCI
2227	/* Check for the special PCI poke sequence. */
2228	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2229		pci_poke_faulted = 1;
2230		regs->tpc += 4;
2231		regs->tnpc = regs->tpc + 4;
2232		return;
2233	}
2234#endif
2235
2236	sun4v_log_error(regs, &local_copy, cpu,
2237			KERN_EMERG "NON-RESUMABLE ERROR",
2238			&sun4v_nonresum_oflow_cnt);
2239
2240	panic("Non-resumable error.");
2241}
2242
2243/* If we try to printk() we'll probably make matters worse, by trying
2244 * to retake locks this cpu already holds or causing more errors. So
2245 * just bump a counter, and we'll report these counter bumps above.
2246 */
2247void sun4v_nonresum_overflow(struct pt_regs *regs)
2248{
2249	/* XXX Actually even this can make not that much sense.  Perhaps
2250	 * XXX we should just pull the plug and panic directly from here?
2251	 */
2252	atomic_inc(&sun4v_nonresum_oflow_cnt);
2253}
2254
2255static void sun4v_tlb_error(struct pt_regs *regs)
2256{
2257	die_if_kernel("TLB/TSB error", regs);
2258}
2259
2260unsigned long sun4v_err_itlb_vaddr;
2261unsigned long sun4v_err_itlb_ctx;
2262unsigned long sun4v_err_itlb_pte;
2263unsigned long sun4v_err_itlb_error;
2264
2265void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2266{
2267	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2268
2269	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2270	       regs->tpc, tl);
2271	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2272	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2273	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2274	       (void *) regs->u_regs[UREG_I7]);
2275	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2276	       "pte[%lx] error[%lx]\n",
2277	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2278	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2279
2280	sun4v_tlb_error(regs);
2281}
2282
2283unsigned long sun4v_err_dtlb_vaddr;
2284unsigned long sun4v_err_dtlb_ctx;
2285unsigned long sun4v_err_dtlb_pte;
2286unsigned long sun4v_err_dtlb_error;
2287
2288void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2289{
2290	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2291
2292	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2293	       regs->tpc, tl);
2294	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2295	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2296	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2297	       (void *) regs->u_regs[UREG_I7]);
2298	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2299	       "pte[%lx] error[%lx]\n",
2300	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2301	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2302
2303	sun4v_tlb_error(regs);
2304}
2305
2306void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2307{
2308	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2309	       err, op);
2310}
2311
2312void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2313{
2314	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2315	       err, op);
2316}
2317
2318static void do_fpe_common(struct pt_regs *regs)
2319{
2320	if (regs->tstate & TSTATE_PRIV) {
2321		regs->tpc = regs->tnpc;
2322		regs->tnpc += 4;
2323	} else {
2324		unsigned long fsr = current_thread_info()->xfsr[0];
2325		int code;
2326
2327		if (test_thread_flag(TIF_32BIT)) {
2328			regs->tpc &= 0xffffffff;
2329			regs->tnpc &= 0xffffffff;
2330		}
2331		code = FPE_FLTUNK;
2332		if ((fsr & 0x1c000) == (1 << 14)) {
2333			if (fsr & 0x10)
2334				code = FPE_FLTINV;
2335			else if (fsr & 0x08)
2336				code = FPE_FLTOVF;
2337			else if (fsr & 0x04)
2338				code = FPE_FLTUND;
2339			else if (fsr & 0x02)
2340				code = FPE_FLTDIV;
2341			else if (fsr & 0x01)
2342				code = FPE_FLTRES;
2343		}
2344		force_sig_fault(SIGFPE, code,
2345				(void __user *)regs->tpc, 0);
2346	}
2347}
2348
2349void do_fpieee(struct pt_regs *regs)
2350{
2351	enum ctx_state prev_state = exception_enter();
2352
2353	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2354		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2355		goto out;
2356
2357	do_fpe_common(regs);
2358out:
2359	exception_exit(prev_state);
2360}
2361
2362void do_fpother(struct pt_regs *regs)
2363{
2364	enum ctx_state prev_state = exception_enter();
2365	struct fpustate *f = FPUSTATE;
2366	int ret = 0;
2367
2368	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2369		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2370		goto out;
2371
2372	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2373	case (2 << 14): /* unfinished_FPop */
2374	case (3 << 14): /* unimplemented_FPop */
2375		ret = do_mathemu(regs, f, false);
2376		break;
2377	}
2378	if (ret)
2379		goto out;
2380	do_fpe_common(regs);
2381out:
2382	exception_exit(prev_state);
2383}
2384
2385void do_tof(struct pt_regs *regs)
2386{
2387	enum ctx_state prev_state = exception_enter();
2388
2389	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2390		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2391		goto out;
2392
2393	if (regs->tstate & TSTATE_PRIV)
2394		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2395	if (test_thread_flag(TIF_32BIT)) {
2396		regs->tpc &= 0xffffffff;
2397		regs->tnpc &= 0xffffffff;
2398	}
2399	force_sig_fault(SIGEMT, EMT_TAGOVF,
2400			(void __user *)regs->tpc, 0);
2401out:
2402	exception_exit(prev_state);
2403}
2404
2405void do_div0(struct pt_regs *regs)
2406{
2407	enum ctx_state prev_state = exception_enter();
2408
2409	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2410		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2411		goto out;
2412
2413	if (regs->tstate & TSTATE_PRIV)
2414		die_if_kernel("TL0: Kernel divide by zero.", regs);
2415	if (test_thread_flag(TIF_32BIT)) {
2416		regs->tpc &= 0xffffffff;
2417		regs->tnpc &= 0xffffffff;
2418	}
2419	force_sig_fault(SIGFPE, FPE_INTDIV,
2420			(void __user *)regs->tpc, 0);
2421out:
2422	exception_exit(prev_state);
2423}
2424
2425static void instruction_dump(unsigned int *pc)
2426{
2427	int i;
2428
2429	if ((((unsigned long) pc) & 3))
2430		return;
2431
2432	printk("Instruction DUMP:");
2433	for (i = -3; i < 6; i++)
2434		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2435	printk("\n");
2436}
2437
2438static void user_instruction_dump(unsigned int __user *pc)
2439{
2440	int i;
2441	unsigned int buf[9];
2442	
2443	if ((((unsigned long) pc) & 3))
2444		return;
2445		
2446	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2447		return;
2448
2449	printk("Instruction DUMP:");
2450	for (i = 0; i < 9; i++)
2451		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2452	printk("\n");
2453}
2454
2455void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2456{
2457	unsigned long fp, ksp;
2458	struct thread_info *tp;
2459	int count = 0;
2460#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2461	int graph = 0;
2462#endif
2463
2464	ksp = (unsigned long) _ksp;
2465	if (!tsk)
2466		tsk = current;
2467	tp = task_thread_info(tsk);
2468	if (ksp == 0UL) {
2469		if (tsk == current)
2470			asm("mov %%fp, %0" : "=r" (ksp));
2471		else
2472			ksp = tp->ksp;
2473	}
2474	if (tp == current_thread_info())
2475		flushw_all();
2476
2477	fp = ksp + STACK_BIAS;
2478
2479	printk("Call Trace:\n");
2480	do {
2481		struct sparc_stackf *sf;
2482		struct pt_regs *regs;
2483		unsigned long pc;
2484
2485		if (!kstack_valid(tp, fp))
2486			break;
2487		sf = (struct sparc_stackf *) fp;
2488		regs = (struct pt_regs *) (sf + 1);
2489
2490		if (kstack_is_trap_frame(tp, regs)) {
2491			if (!(regs->tstate & TSTATE_PRIV))
2492				break;
2493			pc = regs->tpc;
2494			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2495		} else {
2496			pc = sf->callers_pc;
2497			fp = (unsigned long)sf->fp + STACK_BIAS;
2498		}
2499
2500		printk(" [%016lx] %pS\n", pc, (void *) pc);
2501#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2502		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2503			struct ftrace_ret_stack *ret_stack;
2504			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2505			if (ret_stack) {
2506				pc = ret_stack->ret;
2507				printk(" [%016lx] %pS\n", pc, (void *) pc);
2508				graph++;
2509			}
2510		}
2511#endif
2512	} while (++count < 16);
2513}
2514
2515static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2516{
2517	unsigned long fp = rw->ins[6];
2518
2519	if (!fp)
2520		return NULL;
2521
2522	return (struct reg_window *) (fp + STACK_BIAS);
2523}
2524
2525void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2526{
2527	static int die_counter;
2528	int count = 0;
2529	
2530	/* Amuse the user. */
2531	printk(
2532"              \\|/ ____ \\|/\n"
2533"              \"@'/ .. \\`@\"\n"
2534"              /_| \\__/ |_\\\n"
2535"                 \\__U_/\n");
2536
2537	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2538	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2539	__asm__ __volatile__("flushw");
2540	show_regs(regs);
2541	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2542	if (regs->tstate & TSTATE_PRIV) {
2543		struct thread_info *tp = current_thread_info();
2544		struct reg_window *rw = (struct reg_window *)
2545			(regs->u_regs[UREG_FP] + STACK_BIAS);
2546
2547		/* Stop the back trace when we hit userland or we
2548		 * find some badly aligned kernel stack.
2549		 */
2550		while (rw &&
2551		       count++ < 30 &&
2552		       kstack_valid(tp, (unsigned long) rw)) {
2553			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2554			       (void *) rw->ins[7]);
2555
2556			rw = kernel_stack_up(rw);
2557		}
2558		instruction_dump ((unsigned int *) regs->tpc);
2559	} else {
2560		if (test_thread_flag(TIF_32BIT)) {
2561			regs->tpc &= 0xffffffff;
2562			regs->tnpc &= 0xffffffff;
2563		}
2564		user_instruction_dump ((unsigned int __user *) regs->tpc);
2565	}
2566	if (panic_on_oops)
2567		panic("Fatal exception");
2568	if (regs->tstate & TSTATE_PRIV)
2569		do_exit(SIGKILL);
2570	do_exit(SIGSEGV);
2571}
2572EXPORT_SYMBOL(die_if_kernel);
2573
2574#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2575#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2576
2577void do_illegal_instruction(struct pt_regs *regs)
2578{
2579	enum ctx_state prev_state = exception_enter();
2580	unsigned long pc = regs->tpc;
2581	unsigned long tstate = regs->tstate;
2582	u32 insn;
2583
2584	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2585		       0, 0x10, SIGILL) == NOTIFY_STOP)
2586		goto out;
2587
2588	if (tstate & TSTATE_PRIV)
2589		die_if_kernel("Kernel illegal instruction", regs);
2590	if (test_thread_flag(TIF_32BIT))
2591		pc = (u32)pc;
2592	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2593		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2594			if (handle_popc(insn, regs))
2595				goto out;
2596		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2597			if (handle_ldf_stq(insn, regs))
2598				goto out;
2599		} else if (tlb_type == hypervisor) {
2600			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2601				if (!vis_emul(regs, insn))
2602					goto out;
2603			} else {
2604				struct fpustate *f = FPUSTATE;
2605
2606				/* On UltraSPARC T2 and later, FPU insns which
2607				 * are not implemented in HW signal an illegal
2608				 * instruction trap and do not set the FP Trap
2609				 * Trap in the %fsr to unimplemented_FPop.
2610				 */
2611				if (do_mathemu(regs, f, true))
2612					goto out;
2613			}
2614		}
2615	}
2616	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0);
2617out:
2618	exception_exit(prev_state);
2619}
2620
2621void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2622{
2623	enum ctx_state prev_state = exception_enter();
2624
2625	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2626		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2627		goto out;
2628
2629	if (regs->tstate & TSTATE_PRIV) {
2630		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2631		goto out;
2632	}
2633	if (is_no_fault_exception(regs))
2634		return;
2635
2636	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0);
2637out:
2638	exception_exit(prev_state);
2639}
2640
2641void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2642{
2643	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2644		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2645		return;
2646
2647	if (regs->tstate & TSTATE_PRIV) {
2648		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2649		return;
2650	}
2651	if (is_no_fault_exception(regs))
2652		return;
2653
2654	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0);
2655}
2656
2657/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2658 * tag mismatch.
2659 *
2660 * ADI version tag mismatch on a load from memory always results in a
2661 * precise exception. Tag mismatch on a store to memory will result in
2662 * precise exception if MCDPER or PMCDPER is set to 1.
2663 */
2664void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2665				      unsigned long context)
2666{
2667	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2668		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2669		return;
2670
2671	if (regs->tstate & TSTATE_PRIV) {
2672		/* MCD exception could happen because the task was running
2673		 * a system call with MCD enabled and passed a non-versioned
2674		 * pointer or pointer with bad version tag to  the system
2675		 * call.
2676		 */
2677		const struct exception_table_entry *entry;
2678
2679		entry = search_exception_tables(regs->tpc);
2680		if (entry) {
2681			/* Looks like a bad syscall parameter */
2682#ifdef DEBUG_EXCEPTIONS
2683			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2684				 regs->tpc);
2685			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2686				 regs->tpc, entry->fixup);
2687#endif
2688			regs->tpc = entry->fixup;
2689			regs->tnpc = regs->tpc + 4;
2690			return;
2691		}
2692		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2693			 __func__, addr, context);
2694		die_if_kernel("MCD precise", regs);
2695	}
2696
2697	if (test_thread_flag(TIF_32BIT)) {
2698		regs->tpc &= 0xffffffff;
2699		regs->tnpc &= 0xffffffff;
2700	}
2701	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0);
2702}
2703
2704void do_privop(struct pt_regs *regs)
2705{
2706	enum ctx_state prev_state = exception_enter();
2707
2708	if (notify_die(DIE_TRAP, "privileged operation", regs,
2709		       0, 0x11, SIGILL) == NOTIFY_STOP)
2710		goto out;
2711
2712	if (test_thread_flag(TIF_32BIT)) {
2713		regs->tpc &= 0xffffffff;
2714		regs->tnpc &= 0xffffffff;
2715	}
2716	force_sig_fault(SIGILL, ILL_PRVOPC,
2717			(void __user *)regs->tpc, 0);
2718out:
2719	exception_exit(prev_state);
2720}
2721
2722void do_privact(struct pt_regs *regs)
2723{
2724	do_privop(regs);
2725}
2726
2727/* Trap level 1 stuff or other traps we should never see... */
2728void do_cee(struct pt_regs *regs)
2729{
2730	exception_enter();
2731	die_if_kernel("TL0: Cache Error Exception", regs);
2732}
2733
2734void do_div0_tl1(struct pt_regs *regs)
2735{
2736	exception_enter();
2737	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2738	die_if_kernel("TL1: DIV0 Exception", regs);
2739}
2740
2741void do_fpieee_tl1(struct pt_regs *regs)
2742{
2743	exception_enter();
2744	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2745	die_if_kernel("TL1: FPU IEEE Exception", regs);
2746}
2747
2748void do_fpother_tl1(struct pt_regs *regs)
2749{
2750	exception_enter();
2751	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2752	die_if_kernel("TL1: FPU Other Exception", regs);
2753}
2754
2755void do_ill_tl1(struct pt_regs *regs)
2756{
2757	exception_enter();
2758	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2759	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2760}
2761
2762void do_irq_tl1(struct pt_regs *regs)
2763{
2764	exception_enter();
2765	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2766	die_if_kernel("TL1: IRQ Exception", regs);
2767}
2768
2769void do_lddfmna_tl1(struct pt_regs *regs)
2770{
2771	exception_enter();
2772	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2773	die_if_kernel("TL1: LDDF Exception", regs);
2774}
2775
2776void do_stdfmna_tl1(struct pt_regs *regs)
2777{
2778	exception_enter();
2779	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2780	die_if_kernel("TL1: STDF Exception", regs);
2781}
2782
2783void do_paw(struct pt_regs *regs)
2784{
2785	exception_enter();
2786	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2787}
2788
2789void do_paw_tl1(struct pt_regs *regs)
2790{
2791	exception_enter();
2792	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2793	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2794}
2795
2796void do_vaw(struct pt_regs *regs)
2797{
2798	exception_enter();
2799	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2800}
2801
2802void do_vaw_tl1(struct pt_regs *regs)
2803{
2804	exception_enter();
2805	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2806	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2807}
2808
2809void do_tof_tl1(struct pt_regs *regs)
2810{
2811	exception_enter();
2812	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2813	die_if_kernel("TL1: Tag Overflow Exception", regs);
2814}
2815
2816void do_getpsr(struct pt_regs *regs)
2817{
2818	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2819	regs->tpc   = regs->tnpc;
2820	regs->tnpc += 4;
2821	if (test_thread_flag(TIF_32BIT)) {
2822		regs->tpc &= 0xffffffff;
2823		regs->tnpc &= 0xffffffff;
2824	}
2825}
2826
2827u64 cpu_mondo_counter[NR_CPUS] = {0};
2828struct trap_per_cpu trap_block[NR_CPUS];
2829EXPORT_SYMBOL(trap_block);
2830
2831/* This can get invoked before sched_init() so play it super safe
2832 * and use hard_smp_processor_id().
2833 */
2834void notrace init_cur_cpu_trap(struct thread_info *t)
2835{
2836	int cpu = hard_smp_processor_id();
2837	struct trap_per_cpu *p = &trap_block[cpu];
2838
2839	p->thread = t;
2840	p->pgd_paddr = 0;
2841}
2842
2843extern void thread_info_offsets_are_bolixed_dave(void);
2844extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2845extern void tsb_config_offsets_are_bolixed_dave(void);
2846
2847/* Only invoked on boot processor. */
2848void __init trap_init(void)
2849{
2850	/* Compile time sanity check. */
2851	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2852		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2853		     TI_CPU != offsetof(struct thread_info, cpu) ||
2854		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2855		     TI_KSP != offsetof(struct thread_info, ksp) ||
2856		     TI_FAULT_ADDR != offsetof(struct thread_info,
2857					       fault_address) ||
2858		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2859		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2860		     TI_REG_WINDOW != offsetof(struct thread_info,
2861					       reg_window) ||
2862		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2863					       rwbuf_stkptrs) ||
2864		     TI_GSR != offsetof(struct thread_info, gsr) ||
2865		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2866		     TI_PRE_COUNT != offsetof(struct thread_info,
2867					      preempt_count) ||
2868		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2869		     TI_CURRENT_DS != offsetof(struct thread_info,
2870						current_ds) ||
2871		     TI_KUNA_REGS != offsetof(struct thread_info,
2872					      kern_una_regs) ||
2873		     TI_KUNA_INSN != offsetof(struct thread_info,
2874					      kern_una_insn) ||
2875		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2876		     (TI_FPREGS & (64 - 1)));
2877
2878	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2879						     thread) ||
2880		     (TRAP_PER_CPU_PGD_PADDR !=
2881		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2882		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2883		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2884		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2885		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2886		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2887		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2888		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2889		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2890		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2891		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2892		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2893		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2894		     (TRAP_PER_CPU_FAULT_INFO !=
2895		      offsetof(struct trap_per_cpu, fault_info)) ||
2896		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2897		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2898		     (TRAP_PER_CPU_CPU_LIST_PA !=
2899		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2900		     (TRAP_PER_CPU_TSB_HUGE !=
2901		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2902		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2903		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2904		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2905		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2906		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2907		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2908		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2909		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2910		     (TRAP_PER_CPU_RESUM_QMASK !=
2911		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2912		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2913		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2914		     (TRAP_PER_CPU_PER_CPU_BASE !=
2915		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2916
2917	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2918		      offsetof(struct tsb_config, tsb)) ||
2919		     (TSB_CONFIG_RSS_LIMIT !=
2920		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2921		     (TSB_CONFIG_NENTRIES !=
2922		      offsetof(struct tsb_config, tsb_nentries)) ||
2923		     (TSB_CONFIG_REG_VAL !=
2924		      offsetof(struct tsb_config, tsb_reg_val)) ||
2925		     (TSB_CONFIG_MAP_VADDR !=
2926		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2927		     (TSB_CONFIG_MAP_PTE !=
2928		      offsetof(struct tsb_config, tsb_map_pte)));
2929
2930	/* Attach to the address space of init_task.  On SMP we
2931	 * do this in smp.c:smp_callin for other cpus.
2932	 */
2933	mmgrab(&init_mm);
2934	current->active_mm = &init_mm;
2935}