Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include <asm/syscalls_32.h>
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
 
  50#endif
  51
  52#include "signal.h"
  53
  54
  55#ifdef CONFIG_PPC64
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
 
 
  61/*
  62 * Userspace code may pass a ucontext which doesn't include VSX added
  63 * at the end.  We need to check for this case.
  64 */
  65#define UCONTEXTSIZEWITHOUTVSX \
  66		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  67
  68/*
  69 * Returning 0 means we return to userspace via
  70 * ret_from_except and thus restore all user
  71 * registers from *regs.  This is what we need
  72 * to do when a signal has been delivered.
  73 */
  74
  75#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  76#undef __SIGNAL_FRAMESIZE
  77#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  78#undef ELF_NVRREG
  79#define ELF_NVRREG	ELF_NVRREG32
  80
  81/*
  82 * Functions for flipping sigsets (thanks to brain dead generic
  83 * implementation that makes things simple for little endian only)
  84 */
  85#define unsafe_put_sigset_t	unsafe_put_compat_sigset
  86#define unsafe_get_sigset_t	unsafe_get_compat_sigset
 
 
 
 
 
 
 
 
  87
  88#define to_user_ptr(p)		ptr_to_compat(p)
  89#define from_user_ptr(p)	compat_ptr(p)
  90
  91static __always_inline int
  92__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
  93{
  94	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
  95	int val, i;
 
 
  96
  97	for (i = 0; i <= PT_RESULT; i ++) {
  98		/* Force usr to alway see softe as 1 (interrupts enabled) */
  99		if (i == PT_SOFTE)
 100			val = 1;
 101		else
 102			val = gregs[i];
 103
 104		unsafe_put_user(val, &frame->mc_gregs[i], failed);
 
 
 
 
 
 
 
 
 
 
 105	}
 106	return 0;
 107
 108failed:
 109	return 1;
 110}
 111
 112static __always_inline int
 113__unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 114{
 115	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 116	int i;
 117
 118	for (i = 0; i <= PT_RESULT; i++) {
 119		if ((i == PT_MSR) || (i == PT_SOFTE))
 120			continue;
 121		unsafe_get_user(gregs[i], &sr->mc_gregs[i], failed);
 
 122	}
 123	return 0;
 124
 125failed:
 126	return 1;
 127}
 128
 129#else /* CONFIG_PPC64 */
 130
 131#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 132
 133#define unsafe_put_sigset_t(uset, set, label) do {			\
 134	sigset_t __user *__us = uset	;				\
 135	const sigset_t *__s = set;					\
 136									\
 137	unsafe_copy_to_user(__us, __s, sizeof(*__us), label);		\
 138} while (0)
 139
 140#define unsafe_get_sigset_t	unsafe_get_user_sigset
 
 
 
 141
 142#define to_user_ptr(p)		((unsigned long)(p))
 143#define from_user_ptr(p)	((void __user *)(p))
 144
 145static __always_inline int
 146__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
 147{
 148	unsafe_copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE, failed);
 149	return 0;
 150
 151failed:
 152	return 1;
 153}
 154
 155static __always_inline
 156int __unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 157{
 158	/* copy up to but not including MSR */
 159	unsafe_copy_from_user(regs, &sr->mc_gregs, PT_MSR * sizeof(elf_greg_t), failed);
 160
 
 161	/* copy from orig_r3 (the word after the MSR) up to the end */
 162	unsafe_copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 163			      GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t), failed);
 164
 165	return 0;
 166
 167failed:
 168	return 1;
 169}
 170#endif
 171
 172#define unsafe_save_general_regs(regs, frame, label) do {	\
 173	if (__unsafe_save_general_regs(regs, frame))		\
 174		goto label;					\
 175} while (0)
 176
 177#define unsafe_restore_general_regs(regs, frame, label) do {	\
 178	if (__unsafe_restore_general_regs(regs, frame))		\
 179		goto label;					\
 180} while (0)
 181
 182/*
 183 * When we have signals to deliver, we set up on the
 184 * user stack, going down from the original stack pointer:
 185 *	an ABI gap of 56 words
 186 *	an mcontext struct
 187 *	a sigcontext struct
 188 *	a gap of __SIGNAL_FRAMESIZE bytes
 189 *
 190 * Each of these things must be a multiple of 16 bytes in size. The following
 191 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 192 *
 193 */
 194struct sigframe {
 195	struct sigcontext sctx;		/* the sigcontext */
 196	struct mcontext	mctx;		/* all the register values */
 197#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 198	struct sigcontext sctx_transact;
 199	struct mcontext	mctx_transact;
 200#endif
 201	/*
 202	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 203	 * regs and 18 fp regs below sp before decrementing it.
 204	 */
 205	int			abigap[56];
 206};
 207
 
 
 
 208/*
 209 *  When we have rt signals to deliver, we set up on the
 210 *  user stack, going down from the original stack pointer:
 211 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 212 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 213 *  (the +16 is to get the siginfo and ucontext in the same
 214 *  positions as in older kernels).
 215 *
 216 *  Each of these things must be a multiple of 16 bytes in size.
 217 *
 218 */
 219struct rt_sigframe {
 220#ifdef CONFIG_PPC64
 221	compat_siginfo_t info;
 222#else
 223	struct siginfo info;
 224#endif
 225	struct ucontext	uc;
 226#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 227	struct ucontext	uc_transact;
 228#endif
 229	/*
 230	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 231	 * regs and 18 fp regs below sp before decrementing it.
 232	 */
 233	int			abigap[56];
 234};
 235
 236unsigned long get_min_sigframe_size_32(void)
 
 
 237{
 238	return max(sizeof(struct rt_sigframe) + __SIGNAL_FRAMESIZE + 16,
 239		   sizeof(struct sigframe) + __SIGNAL_FRAMESIZE);
 
 
 
 
 
 
 240}
 241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242/*
 243 * Save the current user registers on the user stack.
 244 * We only save the altivec/spe registers if the process has used
 245 * altivec/spe instructions at some point.
 246 */
 247static void prepare_save_user_regs(int ctx_has_vsx_region)
 
 
 248{
 
 
 249	/* Make sure floating point registers are stored in regs */
 250	flush_fp_to_thread(current);
 251#ifdef CONFIG_ALTIVEC
 252	if (current->thread.used_vr)
 253		flush_altivec_to_thread(current);
 254	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 255		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 256#endif
 257#ifdef CONFIG_VSX
 258	if (current->thread.used_vsr && ctx_has_vsx_region)
 259		flush_vsx_to_thread(current);
 260#endif
 261#ifdef CONFIG_SPE
 262	if (current->thread.used_spe)
 263		flush_spe_to_thread(current);
 264#endif
 265}
 266
 267static int __unsafe_save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 268				   struct mcontext __user *tm_frame, int ctx_has_vsx_region)
 269{
 270	unsigned long msr = regs->msr;
 271
 272	/* save general registers */
 273	unsafe_save_general_regs(regs, frame, failed);
 
 274
 275#ifdef CONFIG_ALTIVEC
 276	/* save altivec registers */
 277	if (current->thread.used_vr) {
 278		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 279				    ELF_NVRREG * sizeof(vector128), failed);
 
 
 280		/* set MSR_VEC in the saved MSR value to indicate that
 281		   frame->mc_vregs contains valid data */
 282		msr |= MSR_VEC;
 283	}
 284	/* else assert((regs->msr & MSR_VEC) == 0) */
 285
 286	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 287	 * use altivec. Since VSCR only contains 32 bits saved in the least
 288	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 289	 * most significant bits of that same vector. --BenH
 290	 * Note that the current VRSAVE value is in the SPR at this point.
 291	 */
 292	unsafe_put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32],
 293			failed);
 
 
 294#endif /* CONFIG_ALTIVEC */
 295	unsafe_copy_fpr_to_user(&frame->mc_fregs, current, failed);
 
 296
 297	/*
 298	 * Clear the MSR VSX bit to indicate there is no valid state attached
 299	 * to this context, except in the specific case below where we set it.
 300	 */
 301	msr &= ~MSR_VSX;
 302#ifdef CONFIG_VSX
 303	/*
 304	 * Copy VSR 0-31 upper half from thread_struct to local
 305	 * buffer, then write that to userspace.  Also set MSR_VSX in
 306	 * the saved MSR value to indicate that frame->mc_vregs
 307	 * contains valid data
 308	 */
 309	if (current->thread.used_vsr && ctx_has_vsx_region) {
 310		unsafe_copy_vsx_to_user(&frame->mc_vsregs, current, failed);
 
 
 311		msr |= MSR_VSX;
 312	}
 313#endif /* CONFIG_VSX */
 314#ifdef CONFIG_SPE
 315	/* save spe registers */
 316	if (current->thread.used_spe) {
 317		unsafe_copy_to_user(&frame->mc_vregs, current->thread.evr,
 318				    ELF_NEVRREG * sizeof(u32), failed);
 
 
 319		/* set MSR_SPE in the saved MSR value to indicate that
 320		   frame->mc_vregs contains valid data */
 321		msr |= MSR_SPE;
 322	}
 323	/* else assert((regs->msr & MSR_SPE) == 0) */
 324
 325	/* We always copy to/from spefscr */
 326	unsafe_put_user(current->thread.spefscr,
 327			(u32 __user *)&frame->mc_vregs + ELF_NEVRREG, failed);
 328#endif /* CONFIG_SPE */
 329
 330	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 331
 332	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 333	 * can check it on the restore to see if TM is active
 334	 */
 335	if (tm_frame)
 336		unsafe_put_user(0, &tm_frame->mc_gregs[PT_MSR], failed);
 337
 338	return 0;
 
 
 
 
 
 
 
 339
 340failed:
 341	return 1;
 342}
 343
 344#define unsafe_save_user_regs(regs, frame, tm_frame, has_vsx, label) do { \
 345	if (__unsafe_save_user_regs(regs, frame, tm_frame, has_vsx))	\
 346		goto label;						\
 347} while (0)
 348
 349#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 350/*
 351 * Save the current user registers on the user stack.
 352 * We only save the altivec/spe registers if the process has used
 353 * altivec/spe instructions at some point.
 354 * We also save the transactional registers to a second ucontext in the
 355 * frame.
 356 *
 357 * See __unsafe_save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 358 */
 359static void prepare_save_tm_user_regs(void)
 
 
 360{
 
 
 361	WARN_ON(tm_suspend_disabled);
 362
 363	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 364		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 365}
 
 
 
 366
 367static int save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 368				    struct mcontext __user *tm_frame, unsigned long msr)
 369{
 370	/* Save both sets of general registers */
 371	unsafe_save_general_regs(&current->thread.ckpt_regs, frame, failed);
 372	unsafe_save_general_regs(regs, tm_frame, failed);
 
 373
 374	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 375	 * of the transactional mcontext.  This way we have a backward-compatible
 376	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 377	 * also look at what type of transaction (T or S) was active at the
 378	 * time of the signal.
 379	 */
 380	unsafe_put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR], failed);
 
 381
 
 382	/* save altivec registers */
 383	if (current->thread.used_vr) {
 384		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 385				    ELF_NVRREG * sizeof(vector128), failed);
 386		if (msr & MSR_VEC)
 387			unsafe_copy_to_user(&tm_frame->mc_vregs,
 388					    &current->thread.vr_state,
 389					    ELF_NVRREG * sizeof(vector128), failed);
 390		else
 391			unsafe_copy_to_user(&tm_frame->mc_vregs,
 392					    &current->thread.ckvr_state,
 393					    ELF_NVRREG * sizeof(vector128), failed);
 
 
 
 
 394
 395		/* set MSR_VEC in the saved MSR value to indicate that
 396		 * frame->mc_vregs contains valid data
 397		 */
 398		msr |= MSR_VEC;
 399	}
 400
 401	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 402	 * use altivec. Since VSCR only contains 32 bits saved in the least
 403	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 404	 * most significant bits of that same vector. --BenH
 405	 */
 406	unsafe_put_user(current->thread.ckvrsave,
 407			(u32 __user *)&frame->mc_vregs[32], failed);
 408	if (msr & MSR_VEC)
 409		unsafe_put_user(current->thread.vrsave,
 410				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 411	else
 412		unsafe_put_user(current->thread.ckvrsave,
 413				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 
 
 
 
 
 
 
 414
 415	unsafe_copy_ckfpr_to_user(&frame->mc_fregs, current, failed);
 416	if (msr & MSR_FP)
 417		unsafe_copy_fpr_to_user(&tm_frame->mc_fregs, current, failed);
 418	else
 419		unsafe_copy_ckfpr_to_user(&tm_frame->mc_fregs, current, failed);
 
 
 
 
 420
 
 421	/*
 422	 * Copy VSR 0-31 upper half from thread_struct to local
 423	 * buffer, then write that to userspace.  Also set MSR_VSX in
 424	 * the saved MSR value to indicate that frame->mc_vregs
 425	 * contains valid data
 426	 */
 427	if (current->thread.used_vsr) {
 428		unsafe_copy_ckvsx_to_user(&frame->mc_vsregs, current, failed);
 429		if (msr & MSR_VSX)
 430			unsafe_copy_vsx_to_user(&tm_frame->mc_vsregs, current, failed);
 431		else
 432			unsafe_copy_ckvsx_to_user(&tm_frame->mc_vsregs, current, failed);
 
 
 
 
 
 433
 434		msr |= MSR_VSX;
 435	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436
 437	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 438
 439	return 0;
 
 440
 441failed:
 442	return 1;
 443}
 444#else
 445static void prepare_save_tm_user_regs(void) { }
 
 
 
 
 
 446
 447static int save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 448				    struct mcontext __user *tm_frame, unsigned long msr)
 449{
 450	return 0;
 451}
 452#endif
 453
 454#define unsafe_save_tm_user_regs(regs, frame, tm_frame, msr, label) do { \
 455	if (save_tm_user_regs_unsafe(regs, frame, tm_frame, msr))	\
 456		goto label;						\
 457} while (0)
 458
 459/*
 460 * Restore the current user register values from the user stack,
 461 * (except for MSR).
 462 */
 463static long restore_user_regs(struct pt_regs *regs,
 464			      struct mcontext __user *sr, int sig)
 465{
 
 466	unsigned int save_r2 = 0;
 467	unsigned long msr;
 468#ifdef CONFIG_VSX
 469	int i;
 470#endif
 471
 472	if (!user_read_access_begin(sr, sizeof(*sr)))
 473		return 1;
 474	/*
 475	 * restore general registers but not including MSR or SOFTE. Also
 476	 * take care of keeping r2 (TLS) intact if not a signal
 477	 */
 478	if (!sig)
 479		save_r2 = (unsigned int)regs->gpr[2];
 480	unsafe_restore_general_regs(regs, sr, failed);
 481	set_trap_norestart(regs);
 482	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 483	if (!sig)
 484		regs->gpr[2] = (unsigned long) save_r2;
 
 
 485
 486	/* if doing signal return, restore the previous little-endian mode */
 487	if (sig)
 488		regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 489
 490#ifdef CONFIG_ALTIVEC
 491	/*
 492	 * Force the process to reload the altivec registers from
 493	 * current->thread when it next does altivec instructions
 494	 */
 495	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 496	if (msr & MSR_VEC) {
 497		/* restore altivec registers from the stack */
 498		unsafe_copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 499				      sizeof(sr->mc_vregs), failed);
 
 500		current->thread.used_vr = true;
 501	} else if (current->thread.used_vr)
 502		memset(&current->thread.vr_state, 0,
 503		       ELF_NVRREG * sizeof(vector128));
 504
 505	/* Always get VRSAVE back */
 506	unsafe_get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32], failed);
 
 507	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 508		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 509#endif /* CONFIG_ALTIVEC */
 510	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 511
 512#ifdef CONFIG_VSX
 513	/*
 514	 * Force the process to reload the VSX registers from
 515	 * current->thread when it next does VSX instruction.
 516	 */
 517	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 518	if (msr & MSR_VSX) {
 519		/*
 520		 * Restore altivec registers from the stack to a local
 521		 * buffer, then write this out to the thread_struct
 522		 */
 523		unsafe_copy_vsx_from_user(current, &sr->mc_vsregs, failed);
 
 524		current->thread.used_vsr = true;
 525	} else if (current->thread.used_vsr)
 526		for (i = 0; i < 32 ; i++)
 527			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 528#endif /* CONFIG_VSX */
 529	/*
 530	 * force the process to reload the FP registers from
 531	 * current->thread when it next does FP instructions
 532	 */
 533	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 534
 535#ifdef CONFIG_SPE
 536	/*
 537	 * Force the process to reload the spe registers from
 538	 * current->thread when it next does spe instructions.
 539	 * Since this is user ABI, we must enforce the sizing.
 540	 */
 541	BUILD_BUG_ON(sizeof(current->thread.spe) != ELF_NEVRREG * sizeof(u32));
 542	regs_set_return_msr(regs, regs->msr & ~MSR_SPE);
 543	if (msr & MSR_SPE) {
 544		/* restore spe registers from the stack */
 545		unsafe_copy_from_user(&current->thread.spe, &sr->mc_vregs,
 546				      sizeof(current->thread.spe), failed);
 
 547		current->thread.used_spe = true;
 548	} else if (current->thread.used_spe)
 549		memset(&current->thread.spe, 0, sizeof(current->thread.spe));
 550
 551	/* Always get SPEFSCR back */
 552	unsafe_get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG, failed);
 
 553#endif /* CONFIG_SPE */
 554
 555	user_read_access_end();
 556	return 0;
 557
 558failed:
 559	user_read_access_end();
 560	return 1;
 561}
 562
 563#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 564/*
 565 * Restore the current user register values from the user stack, except for
 566 * MSR, and recheckpoint the original checkpointed register state for processes
 567 * in transactions.
 568 */
 569static long restore_tm_user_regs(struct pt_regs *regs,
 570				 struct mcontext __user *sr,
 571				 struct mcontext __user *tm_sr)
 572{
 
 573	unsigned long msr, msr_hi;
 
 574	int i;
 
 575
 576	if (tm_suspend_disabled)
 577		return 1;
 578	/*
 579	 * restore general registers but not including MSR or SOFTE. Also
 580	 * take care of keeping r2 (TLS) intact if not a signal.
 581	 * See comment in signal_64.c:restore_tm_sigcontexts();
 582	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 583	 * were set by the signal delivery.
 584	 */
 585	if (!user_read_access_begin(sr, sizeof(*sr)))
 586		return 1;
 
 
 587
 588	unsafe_restore_general_regs(&current->thread.ckpt_regs, sr, failed);
 589	unsafe_get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP], failed);
 590	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 591
 592	/* Restore the previous little-endian mode */
 593	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 594
 595	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 
 596	if (msr & MSR_VEC) {
 597		/* restore altivec registers from the stack */
 598		unsafe_copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 599				      sizeof(sr->mc_vregs), failed);
 
 
 
 
 600		current->thread.used_vr = true;
 601	} else if (current->thread.used_vr) {
 602		memset(&current->thread.vr_state, 0,
 603		       ELF_NVRREG * sizeof(vector128));
 604		memset(&current->thread.ckvr_state, 0,
 605		       ELF_NVRREG * sizeof(vector128));
 606	}
 607
 608	/* Always get VRSAVE back */
 609	unsafe_get_user(current->thread.ckvrsave,
 610			(u32 __user *)&sr->mc_vregs[32], failed);
 
 
 
 611	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 612		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 
 613
 614	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 615
 616	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 
 617
 618	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 
 619	if (msr & MSR_VSX) {
 620		/*
 621		 * Restore altivec registers from the stack to a local
 622		 * buffer, then write this out to the thread_struct
 623		 */
 624		unsafe_copy_ckvsx_from_user(current, &sr->mc_vsregs, failed);
 
 
 625		current->thread.used_vsr = true;
 626	} else if (current->thread.used_vsr)
 627		for (i = 0; i < 32 ; i++) {
 628			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 629			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 630		}
 
 631
 632	user_read_access_end();
 
 
 
 
 
 
 
 
 
 
 
 633
 634	if (!user_read_access_begin(tm_sr, sizeof(*tm_sr)))
 
 
 635		return 1;
 636
 637	unsafe_restore_general_regs(regs, tm_sr, failed);
 638
 639	/* restore altivec registers from the stack */
 640	if (msr & MSR_VEC)
 641		unsafe_copy_from_user(&current->thread.vr_state, &tm_sr->mc_vregs,
 642				      sizeof(sr->mc_vregs), failed);
 643
 644	/* Always get VRSAVE back */
 645	unsafe_get_user(current->thread.vrsave,
 646			(u32 __user *)&tm_sr->mc_vregs[32], failed);
 647
 648	unsafe_copy_ckfpr_from_user(current, &tm_sr->mc_fregs, failed);
 649
 650	if (msr & MSR_VSX) {
 651		/*
 652		 * Restore altivec registers from the stack to a local
 653		 * buffer, then write this out to the thread_struct
 654		 */
 655		unsafe_copy_vsx_from_user(current, &tm_sr->mc_vsregs, failed);
 656		current->thread.used_vsr = true;
 657	}
 658
 659	/* Get the top half of the MSR from the user context */
 660	unsafe_get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR], failed);
 
 661	msr_hi <<= 32;
 662
 663	user_read_access_end();
 664
 665	/* If TM bits are set to the reserved value, it's an invalid context */
 666	if (MSR_TM_RESV(msr_hi))
 667		return 1;
 668
 669	/*
 670	 * Disabling preemption, since it is unsafe to be preempted
 671	 * with MSR[TS] set without recheckpointing.
 672	 */
 673	preempt_disable();
 674
 675	/*
 676	 * CAUTION:
 677	 * After regs->MSR[TS] being updated, make sure that get_user(),
 678	 * put_user() or similar functions are *not* called. These
 679	 * functions can generate page faults which will cause the process
 680	 * to be de-scheduled with MSR[TS] set but without calling
 681	 * tm_recheckpoint(). This can cause a bug.
 682	 *
 683	 * Pull in the MSR TM bits from the user context
 684	 */
 685	regs_set_return_msr(regs, (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK));
 686	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 687	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 688	 * transactional versions should be loaded.
 689	 */
 690	tm_enable();
 691	/* Make sure the transaction is marked as failed */
 692	current->thread.tm_texasr |= TEXASR_FS;
 693	/* This loads the checkpointed FP/VEC state, if used */
 694	tm_recheckpoint(&current->thread);
 695
 696	/* This loads the speculative FP/VEC state, if used */
 697	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 698	if (msr & MSR_FP) {
 699		load_fp_state(&current->thread.fp_state);
 700		regs_set_return_msr(regs, regs->msr | (MSR_FP | current->thread.fpexc_mode));
 701	}
 
 702	if (msr & MSR_VEC) {
 703		load_vr_state(&current->thread.vr_state);
 704		regs_set_return_msr(regs, regs->msr | MSR_VEC);
 705	}
 
 706
 707	preempt_enable();
 708
 709	return 0;
 710
 711failed:
 712	user_read_access_end();
 713	return 1;
 714}
 715#else
 716static long restore_tm_user_regs(struct pt_regs *regs, struct mcontext __user *sr,
 717				 struct mcontext __user *tm_sr)
 718{
 719	return 0;
 720}
 721#endif
 722
 723#ifdef CONFIG_PPC64
 724
 725#define copy_siginfo_to_user	copy_siginfo_to_user32
 726
 727#endif /* CONFIG_PPC64 */
 728
 729/*
 730 * Set up a signal frame for a "real-time" signal handler
 731 * (one which gets siginfo).
 732 */
 733int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 734		       struct task_struct *tsk)
 735{
 736	struct rt_sigframe __user *frame;
 737	struct mcontext __user *mctx;
 738	struct mcontext __user *tm_mctx = NULL;
 
 739	unsigned long newsp = 0;
 
 740	unsigned long tramp;
 741	struct pt_regs *regs = tsk->thread.regs;
 742	/* Save the thread's msr before get_tm_stackpointer() changes it */
 743	unsigned long msr = regs->msr;
 744
 745	/* Set up Signal Frame */
 746	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 747	mctx = &frame->uc.uc_mcontext;
 748#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 749	tm_mctx = &frame->uc_transact.uc_mcontext;
 750#endif
 751	if (MSR_TM_ACTIVE(msr))
 752		prepare_save_tm_user_regs();
 753	else
 754		prepare_save_user_regs(1);
 755
 756	if (!user_access_begin(frame, sizeof(*frame)))
 
 
 
 
 757		goto badframe;
 758
 759	/* Put the siginfo & fill in most of the ucontext */
 760	unsafe_put_user(0, &frame->uc.uc_flags, failed);
 761#ifdef CONFIG_PPC64
 762	unsafe_compat_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 763#else
 764	unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 765#endif
 766	unsafe_put_user(to_user_ptr(&frame->uc.uc_mcontext), &frame->uc.uc_regs, failed);
 767
 768	if (MSR_TM_ACTIVE(msr)) {
 769#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 770		unsafe_put_user((unsigned long)&frame->uc_transact,
 771				&frame->uc.uc_link, failed);
 772		unsafe_put_user((unsigned long)tm_mctx,
 773				&frame->uc_transact.uc_regs, failed);
 774#endif
 775		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 776	} else {
 777		unsafe_put_user(0, &frame->uc.uc_link, failed);
 778		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 779	}
 780
 781	/* Save user registers on the stack */
 782	if (tsk->mm->context.vdso) {
 783		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp_rt32);
 
 
 
 784	} else {
 785		tramp = (unsigned long)mctx->mc_pad;
 786		unsafe_put_user(PPC_RAW_LI(_R0, __NR_rt_sigreturn), &mctx->mc_pad[0], failed);
 787		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 788		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 789	}
 790	unsafe_put_sigset_t(&frame->uc.uc_sigmask, oldset, failed);
 791
 792	user_access_end();
 793
 794	if (copy_siginfo_to_user(&frame->info, &ksig->info))
 795		goto badframe;
 796
 797	regs->link = tramp;
 798
 799#ifdef CONFIG_PPC_FPU_REGS
 800	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 801#endif
 802
 803	/* create a stack frame for the caller of the handler */
 804	newsp = ((unsigned long)frame) - (__SIGNAL_FRAMESIZE + 16);
 805	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 806		goto badframe;
 807
 808	/* Fill registers for signal handler */
 809	regs->gpr[1] = newsp;
 810	regs->gpr[3] = ksig->sig;
 811	regs->gpr[4] = (unsigned long)&frame->info;
 812	regs->gpr[5] = (unsigned long)&frame->uc;
 813	regs->gpr[6] = (unsigned long)frame;
 814	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 815	/* enter the signal handler in native-endian mode */
 816	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 817
 818	return 0;
 819
 820failed:
 821	user_access_end();
 822
 823badframe:
 824	signal_fault(tsk, regs, "handle_rt_signal32", frame);
 825
 826	return 1;
 827}
 828
 829/*
 830 * OK, we're invoking a handler
 831 */
 832int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
 833		struct task_struct *tsk)
 834{
 835	struct sigcontext __user *sc;
 836	struct sigframe __user *frame;
 837	struct mcontext __user *mctx;
 838	struct mcontext __user *tm_mctx = NULL;
 839	unsigned long newsp = 0;
 840	unsigned long tramp;
 841	struct pt_regs *regs = tsk->thread.regs;
 842	/* Save the thread's msr before get_tm_stackpointer() changes it */
 843	unsigned long msr = regs->msr;
 844
 845	/* Set up Signal Frame */
 846	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 847	mctx = &frame->mctx;
 848#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 849	tm_mctx = &frame->mctx_transact;
 850#endif
 851	if (MSR_TM_ACTIVE(msr))
 852		prepare_save_tm_user_regs();
 
 
 
 
 
 
 853	else
 854		prepare_save_user_regs(1);
 855
 856	if (!user_access_begin(frame, sizeof(*frame)))
 857		goto badframe;
 858	sc = (struct sigcontext __user *) &frame->sctx;
 859
 860#if _NSIG != 64
 861#error "Please adjust handle_signal()"
 862#endif
 863	unsafe_put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler, failed);
 864	unsafe_put_user(oldset->sig[0], &sc->oldmask, failed);
 865#ifdef CONFIG_PPC64
 866	unsafe_put_user((oldset->sig[0] >> 32), &sc->_unused[3], failed);
 867#else
 868	unsafe_put_user(oldset->sig[1], &sc->_unused[3], failed);
 869#endif
 870	unsafe_put_user(to_user_ptr(mctx), &sc->regs, failed);
 871	unsafe_put_user(ksig->sig, &sc->signal, failed);
 872
 873	if (MSR_TM_ACTIVE(msr))
 874		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 875	else
 876		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 877
 878	if (tsk->mm->context.vdso) {
 879		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp32);
 880	} else {
 881		tramp = (unsigned long)mctx->mc_pad;
 882		unsafe_put_user(PPC_RAW_LI(_R0, __NR_sigreturn), &mctx->mc_pad[0], failed);
 883		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 884		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 885	}
 886	user_access_end();
 887
 888	regs->link = tramp;
 889
 890#ifdef CONFIG_PPC_FPU_REGS
 891	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 892#endif
 893
 894	/* create a stack frame for the caller of the handler */
 895	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
 
 896	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 897		goto badframe;
 898
 
 899	regs->gpr[1] = newsp;
 900	regs->gpr[3] = ksig->sig;
 901	regs->gpr[4] = (unsigned long) sc;
 902	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 
 
 903	/* enter the signal handler in native-endian mode */
 904	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 905
 906	return 0;
 907
 908failed:
 909	user_access_end();
 910
 911badframe:
 912	signal_fault(tsk, regs, "handle_signal32", frame);
 
 
 
 
 
 913
 914	return 1;
 915}
 916
 917static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 918{
 919	sigset_t set;
 920	struct mcontext __user *mcp;
 921
 922	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 923		return -EFAULT;
 924
 925	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 926#ifdef CONFIG_PPC64
 927	{
 928		u32 cmcp;
 929
 930		unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 
 931		mcp = (struct mcontext __user *)(u64)cmcp;
 
 932	}
 933#else
 934	unsafe_get_user(mcp, &ucp->uc_regs, failed);
 
 
 
 935#endif
 936	user_read_access_end();
 937
 938	set_current_blocked(&set);
 939	if (restore_user_regs(regs, mcp, sig))
 940		return -EFAULT;
 941
 942	return 0;
 943
 944failed:
 945	user_read_access_end();
 946	return -EFAULT;
 947}
 948
 949#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 950static int do_setcontext_tm(struct ucontext __user *ucp,
 951			    struct ucontext __user *tm_ucp,
 952			    struct pt_regs *regs)
 953{
 954	sigset_t set;
 955	struct mcontext __user *mcp;
 956	struct mcontext __user *tm_mcp;
 957	u32 cmcp;
 958	u32 tm_cmcp;
 959
 960	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 961		return -EFAULT;
 962
 963	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 964	unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 965
 966	user_read_access_end();
 967
 968	if (__get_user(tm_cmcp, &tm_ucp->uc_regs))
 969		return -EFAULT;
 970	mcp = (struct mcontext __user *)(u64)cmcp;
 971	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 972	/* no need to check access_ok(mcp), since mcp < 4GB */
 973
 974	set_current_blocked(&set);
 975	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 976		return -EFAULT;
 977
 978	return 0;
 979
 980failed:
 981	user_read_access_end();
 982	return -EFAULT;
 983}
 984#endif
 985
 986#ifdef CONFIG_PPC64
 987COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 988		       struct ucontext __user *, new_ctx, int, ctx_size)
 989#else
 990SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 991		       struct ucontext __user *, new_ctx, long, ctx_size)
 992#endif
 993{
 994	struct pt_regs *regs = current_pt_regs();
 995	int ctx_has_vsx_region = 0;
 996
 997#ifdef CONFIG_PPC64
 998	unsigned long new_msr = 0;
 999
1000	if (new_ctx) {
1001		struct mcontext __user *mcp;
1002		u32 cmcp;
1003
1004		/*
1005		 * Get pointer to the real mcontext.  No need for
1006		 * access_ok since we are dealing with compat
1007		 * pointers.
1008		 */
1009		if (__get_user(cmcp, &new_ctx->uc_regs))
1010			return -EFAULT;
1011		mcp = (struct mcontext __user *)(u64)cmcp;
1012		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1013			return -EFAULT;
1014	}
1015	/*
1016	 * Check that the context is not smaller than the original
1017	 * size (with VMX but without VSX)
1018	 */
1019	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1020		return -EINVAL;
1021	/*
1022	 * If the new context state sets the MSR VSX bits but
1023	 * it doesn't provide VSX state.
1024	 */
1025	if ((ctx_size < sizeof(struct ucontext)) &&
1026	    (new_msr & MSR_VSX))
1027		return -EINVAL;
1028	/* Does the context have enough room to store VSX data? */
1029	if (ctx_size >= sizeof(struct ucontext))
1030		ctx_has_vsx_region = 1;
1031#else
1032	/* Context size is for future use. Right now, we only make sure
1033	 * we are passed something we understand
1034	 */
1035	if (ctx_size < sizeof(struct ucontext))
1036		return -EINVAL;
1037#endif
1038	if (old_ctx != NULL) {
1039		struct mcontext __user *mctx;
1040
1041		/*
1042		 * old_ctx might not be 16-byte aligned, in which
1043		 * case old_ctx->uc_mcontext won't be either.
1044		 * Because we have the old_ctx->uc_pad2 field
1045		 * before old_ctx->uc_mcontext, we need to round down
1046		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1047		 */
1048		mctx = (struct mcontext __user *)
1049			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1050		prepare_save_user_regs(ctx_has_vsx_region);
1051		if (!user_write_access_begin(old_ctx, ctx_size))
 
 
1052			return -EFAULT;
1053		unsafe_save_user_regs(regs, mctx, NULL, ctx_has_vsx_region, failed);
1054		unsafe_put_sigset_t(&old_ctx->uc_sigmask, &current->blocked, failed);
1055		unsafe_put_user(to_user_ptr(mctx), &old_ctx->uc_regs, failed);
1056		user_write_access_end();
1057	}
1058	if (new_ctx == NULL)
1059		return 0;
1060	if (!access_ok(new_ctx, ctx_size) ||
1061	    fault_in_readable((char __user *)new_ctx, ctx_size))
1062		return -EFAULT;
1063
1064	/*
1065	 * If we get a fault copying the context into the kernel's
1066	 * image of the user's registers, we can't just return -EFAULT
1067	 * because the user's registers will be corrupted.  For instance
1068	 * the NIP value may have been updated but not some of the
1069	 * other registers.  Given that we have done the access_ok
1070	 * and successfully read the first and last bytes of the region
1071	 * above, this should only happen in an out-of-memory situation
1072	 * or if another thread unmaps the region containing the context.
1073	 * We kill the task with a SIGSEGV in this situation.
1074	 */
1075	if (do_setcontext(new_ctx, regs, 0)) {
1076		force_exit_sig(SIGSEGV);
1077		return -EFAULT;
1078	}
1079
1080	set_thread_flag(TIF_RESTOREALL);
1081	return 0;
1082
1083failed:
1084	user_write_access_end();
1085	return -EFAULT;
1086}
1087
1088#ifdef CONFIG_PPC64
1089COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1090#else
1091SYSCALL_DEFINE0(rt_sigreturn)
1092#endif
1093{
1094	struct rt_sigframe __user *rt_sf;
1095	struct pt_regs *regs = current_pt_regs();
1096	int tm_restore = 0;
1097#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1098	struct ucontext __user *uc_transact;
1099	unsigned long msr_hi;
1100	unsigned long tmp;
1101#endif
1102	/* Always make any pending restarted system calls return -EINTR */
1103	current->restart_block.fn = do_no_restart_syscall;
1104
1105	rt_sf = (struct rt_sigframe __user *)
1106		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1107	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1108		goto bad;
1109
1110#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1111	/*
1112	 * If there is a transactional state then throw it away.
1113	 * The purpose of a sigreturn is to destroy all traces of the
1114	 * signal frame, this includes any transactional state created
1115	 * within in. We only check for suspended as we can never be
1116	 * active in the kernel, we are active, there is nothing better to
1117	 * do than go ahead and Bad Thing later.
1118	 * The cause is not important as there will never be a
1119	 * recheckpoint so it's not user visible.
1120	 */
1121	if (MSR_TM_SUSPENDED(mfmsr()))
1122		tm_reclaim_current(0);
1123
1124	if (__get_user(tmp, &rt_sf->uc.uc_link))
1125		goto bad;
1126	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1127	if (uc_transact) {
1128		u32 cmcp;
1129		struct mcontext __user *mcp;
1130
1131		if (__get_user(cmcp, &uc_transact->uc_regs))
1132			return -EFAULT;
1133		mcp = (struct mcontext __user *)(u64)cmcp;
1134		/* The top 32 bits of the MSR are stashed in the transactional
1135		 * ucontext. */
1136		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1137			goto bad;
1138
1139		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1140			/* Trying to start TM on non TM system */
1141			if (!cpu_has_feature(CPU_FTR_TM))
1142				goto bad;
1143			/* We only recheckpoint on return if we're
1144			 * transaction.
1145			 */
1146			tm_restore = 1;
1147			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1148				goto bad;
1149		}
1150	}
1151	if (!tm_restore) {
1152		/*
1153		 * Unset regs->msr because ucontext MSR TS is not
1154		 * set, and recheckpoint was not called. This avoid
1155		 * hitting a TM Bad thing at RFID
1156		 */
1157		regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
1158	}
1159	/* Fall through, for non-TM restore */
1160#endif
1161	if (!tm_restore)
1162		if (do_setcontext(&rt_sf->uc, regs, 1))
1163			goto bad;
1164
1165	/*
1166	 * It's not clear whether or why it is desirable to save the
1167	 * sigaltstack setting on signal delivery and restore it on
1168	 * signal return.  But other architectures do this and we have
1169	 * always done it up until now so it is probably better not to
1170	 * change it.  -- paulus
1171	 */
1172#ifdef CONFIG_PPC64
1173	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1174		goto bad;
1175#else
1176	if (restore_altstack(&rt_sf->uc.uc_stack))
1177		goto bad;
1178#endif
1179	set_thread_flag(TIF_RESTOREALL);
1180	return 0;
1181
1182 bad:
1183	signal_fault(current, regs, "sys_rt_sigreturn", rt_sf);
 
 
 
 
 
1184
1185	force_sig(SIGSEGV);
1186	return 0;
1187}
1188
1189#ifdef CONFIG_PPC32
1190SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1191			 int, ndbg, struct sig_dbg_op __user *, dbg)
1192{
1193	struct pt_regs *regs = current_pt_regs();
1194	struct sig_dbg_op op;
1195	int i;
1196	unsigned long new_msr = regs->msr;
1197#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1198	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1199#endif
1200
1201	for (i=0; i<ndbg; i++) {
1202		if (copy_from_user(&op, dbg + i, sizeof(op)))
1203			return -EFAULT;
1204		switch (op.dbg_type) {
1205		case SIG_DBG_SINGLE_STEPPING:
1206#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1207			if (op.dbg_value) {
1208				new_msr |= MSR_DE;
1209				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1210			} else {
1211				new_dbcr0 &= ~DBCR0_IC;
1212				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1213						current->thread.debug.dbcr1)) {
1214					new_msr &= ~MSR_DE;
1215					new_dbcr0 &= ~DBCR0_IDM;
1216				}
1217			}
1218#else
1219			if (op.dbg_value)
1220				new_msr |= MSR_SE;
1221			else
1222				new_msr &= ~MSR_SE;
1223#endif
1224			break;
1225		case SIG_DBG_BRANCH_TRACING:
1226#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1227			return -EINVAL;
1228#else
1229			if (op.dbg_value)
1230				new_msr |= MSR_BE;
1231			else
1232				new_msr &= ~MSR_BE;
1233#endif
1234			break;
1235
1236		default:
1237			return -EINVAL;
1238		}
1239	}
1240
1241	/* We wait until here to actually install the values in the
1242	   registers so if we fail in the above loop, it will not
1243	   affect the contents of these registers.  After this point,
1244	   failure is a problem, anyway, and it's very unlikely unless
1245	   the user is really doing something wrong. */
1246	regs_set_return_msr(regs, new_msr);
1247#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1248	current->thread.debug.dbcr0 = new_dbcr0;
1249#endif
1250
1251	if (!access_ok(ctx, sizeof(*ctx)) ||
1252	    fault_in_readable((char __user *)ctx, sizeof(*ctx)))
1253		return -EFAULT;
1254
1255	/*
1256	 * If we get a fault copying the context into the kernel's
1257	 * image of the user's registers, we can't just return -EFAULT
1258	 * because the user's registers will be corrupted.  For instance
1259	 * the NIP value may have been updated but not some of the
1260	 * other registers.  Given that we have done the access_ok
1261	 * and successfully read the first and last bytes of the region
1262	 * above, this should only happen in an out-of-memory situation
1263	 * or if another thread unmaps the region containing the context.
1264	 * We kill the task with a SIGSEGV in this situation.
1265	 */
1266	if (do_setcontext(ctx, regs, 1)) {
1267		signal_fault(current, regs, "sys_debug_setcontext", ctx);
 
 
 
 
 
1268
1269		force_sig(SIGSEGV);
1270		goto out;
1271	}
1272
1273	/*
1274	 * It's not clear whether or why it is desirable to save the
1275	 * sigaltstack setting on signal delivery and restore it on
1276	 * signal return.  But other architectures do this and we have
1277	 * always done it up until now so it is probably better not to
1278	 * change it.  -- paulus
1279	 */
1280	restore_altstack(&ctx->uc_stack);
1281
1282	set_thread_flag(TIF_RESTOREALL);
1283 out:
1284	return 0;
1285}
1286#endif
1287
1288/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289 * Do a signal return; undo the signal stack.
1290 */
1291#ifdef CONFIG_PPC64
1292COMPAT_SYSCALL_DEFINE0(sigreturn)
1293#else
1294SYSCALL_DEFINE0(sigreturn)
1295#endif
1296{
1297	struct pt_regs *regs = current_pt_regs();
1298	struct sigframe __user *sf;
1299	struct sigcontext __user *sc;
1300	struct sigcontext sigctx;
1301	struct mcontext __user *sr;
 
1302	sigset_t set;
1303	struct mcontext __user *mcp;
1304	struct mcontext __user *tm_mcp = NULL;
1305	unsigned long long msr_hi = 0;
 
1306
1307	/* Always make any pending restarted system calls return -EINTR */
1308	current->restart_block.fn = do_no_restart_syscall;
1309
1310	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1311	sc = &sf->sctx;
 
1312	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1313		goto badframe;
1314
1315#ifdef CONFIG_PPC64
1316	/*
1317	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1318	 * unused part of the signal stackframe
1319	 */
1320	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1321#else
1322	set.sig[0] = sigctx.oldmask;
1323	set.sig[1] = sigctx._unused[3];
1324#endif
1325	set_current_blocked(&set);
1326
1327	mcp = (struct mcontext __user *)&sf->mctx;
1328#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
1329	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1330	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1331		goto badframe;
1332#endif
1333	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1334		if (!cpu_has_feature(CPU_FTR_TM))
1335			goto badframe;
1336		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1337			goto badframe;
1338	} else {
 
 
1339		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1340		if (restore_user_regs(regs, sr, 1)) {
1341			signal_fault(current, regs, "sys_sigreturn", sr);
1342
1343			force_sig(SIGSEGV);
1344			return 0;
1345		}
1346	}
1347
1348	set_thread_flag(TIF_RESTOREALL);
1349	return 0;
1350
1351badframe:
1352	signal_fault(current, regs, "sys_sigreturn", sc);
 
 
 
 
 
1353
1354	force_sig(SIGSEGV);
1355	return 0;
1356}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include "ppc32.h"
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
  50#include <asm/pgtable.h>
  51#endif
  52
  53#include "signal.h"
  54
  55
  56#ifdef CONFIG_PPC64
  57#define old_sigaction	old_sigaction32
  58#define sigcontext	sigcontext32
  59#define mcontext	mcontext32
  60#define ucontext	ucontext32
  61
  62#define __save_altstack __compat_save_altstack
  63
  64/*
  65 * Userspace code may pass a ucontext which doesn't include VSX added
  66 * at the end.  We need to check for this case.
  67 */
  68#define UCONTEXTSIZEWITHOUTVSX \
  69		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  70
  71/*
  72 * Returning 0 means we return to userspace via
  73 * ret_from_except and thus restore all user
  74 * registers from *regs.  This is what we need
  75 * to do when a signal has been delivered.
  76 */
  77
  78#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  79#undef __SIGNAL_FRAMESIZE
  80#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  81#undef ELF_NVRREG
  82#define ELF_NVRREG	ELF_NVRREG32
  83
  84/*
  85 * Functions for flipping sigsets (thanks to brain dead generic
  86 * implementation that makes things simple for little endian only)
  87 */
  88static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  89{
  90	return put_compat_sigset(uset, set, sizeof(*uset));
  91}
  92
  93static inline int get_sigset_t(sigset_t *set,
  94			       const compat_sigset_t __user *uset)
  95{
  96	return get_compat_sigset(set, uset);
  97}
  98
  99#define to_user_ptr(p)		ptr_to_compat(p)
 100#define from_user_ptr(p)	compat_ptr(p)
 101
 102static inline int save_general_regs(struct pt_regs *regs,
 103		struct mcontext __user *frame)
 104{
 105	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 106	int i;
 107	/* Force usr to alway see softe as 1 (interrupts enabled) */
 108	elf_greg_t64 softe = 0x1;
 109
 110	WARN_ON(!FULL_REGS(regs));
 
 
 
 
 
 111
 112	for (i = 0; i <= PT_RESULT; i ++) {
 113		if (i == 14 && !FULL_REGS(regs))
 114			i = 32;
 115		if ( i == PT_SOFTE) {
 116			if(__put_user((unsigned int)softe, &frame->mc_gregs[i]))
 117				return -EFAULT;
 118			else
 119				continue;
 120		}
 121		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 122			return -EFAULT;
 123	}
 124	return 0;
 
 
 
 125}
 126
 127static inline int restore_general_regs(struct pt_regs *regs,
 128		struct mcontext __user *sr)
 129{
 130	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 131	int i;
 132
 133	for (i = 0; i <= PT_RESULT; i++) {
 134		if ((i == PT_MSR) || (i == PT_SOFTE))
 135			continue;
 136		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 137			return -EFAULT;
 138	}
 139	return 0;
 
 
 
 140}
 141
 142#else /* CONFIG_PPC64 */
 143
 144#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 145
 146static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 147{
 148	return copy_to_user(uset, set, sizeof(*uset));
 149}
 
 
 150
 151static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 152{
 153	return copy_from_user(set, uset, sizeof(*uset));
 154}
 155
 156#define to_user_ptr(p)		((unsigned long)(p))
 157#define from_user_ptr(p)	((void __user *)(p))
 158
 159static inline int save_general_regs(struct pt_regs *regs,
 160		struct mcontext __user *frame)
 161{
 162	WARN_ON(!FULL_REGS(regs));
 163	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 
 
 
 164}
 165
 166static inline int restore_general_regs(struct pt_regs *regs,
 167		struct mcontext __user *sr)
 168{
 169	/* copy up to but not including MSR */
 170	if (__copy_from_user(regs, &sr->mc_gregs,
 171				PT_MSR * sizeof(elf_greg_t)))
 172		return -EFAULT;
 173	/* copy from orig_r3 (the word after the MSR) up to the end */
 174	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 175				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 176		return -EFAULT;
 177	return 0;
 
 
 
 178}
 179#endif
 180
 
 
 
 
 
 
 
 
 
 
 181/*
 182 * When we have signals to deliver, we set up on the
 183 * user stack, going down from the original stack pointer:
 184 *	an ABI gap of 56 words
 185 *	an mcontext struct
 186 *	a sigcontext struct
 187 *	a gap of __SIGNAL_FRAMESIZE bytes
 188 *
 189 * Each of these things must be a multiple of 16 bytes in size. The following
 190 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 191 *
 192 */
 193struct sigframe {
 194	struct sigcontext sctx;		/* the sigcontext */
 195	struct mcontext	mctx;		/* all the register values */
 196#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 197	struct sigcontext sctx_transact;
 198	struct mcontext	mctx_transact;
 199#endif
 200	/*
 201	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 202	 * regs and 18 fp regs below sp before decrementing it.
 203	 */
 204	int			abigap[56];
 205};
 206
 207/* We use the mc_pad field for the signal return trampoline. */
 208#define tramp	mc_pad
 209
 210/*
 211 *  When we have rt signals to deliver, we set up on the
 212 *  user stack, going down from the original stack pointer:
 213 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 214 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 215 *  (the +16 is to get the siginfo and ucontext in the same
 216 *  positions as in older kernels).
 217 *
 218 *  Each of these things must be a multiple of 16 bytes in size.
 219 *
 220 */
 221struct rt_sigframe {
 222#ifdef CONFIG_PPC64
 223	compat_siginfo_t info;
 224#else
 225	struct siginfo info;
 226#endif
 227	struct ucontext	uc;
 228#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 229	struct ucontext	uc_transact;
 230#endif
 231	/*
 232	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 233	 * regs and 18 fp regs below sp before decrementing it.
 234	 */
 235	int			abigap[56];
 236};
 237
 238#ifdef CONFIG_VSX
 239unsigned long copy_fpr_to_user(void __user *to,
 240			       struct task_struct *task)
 241{
 242	u64 buf[ELF_NFPREG];
 243	int i;
 244
 245	/* save FPR copy to local buffer then write to the thread_struct */
 246	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 247		buf[i] = task->thread.TS_FPR(i);
 248	buf[i] = task->thread.fp_state.fpscr;
 249	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 250}
 251
 252unsigned long copy_fpr_from_user(struct task_struct *task,
 253				 void __user *from)
 254{
 255	u64 buf[ELF_NFPREG];
 256	int i;
 257
 258	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 259		return 1;
 260	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 261		task->thread.TS_FPR(i) = buf[i];
 262	task->thread.fp_state.fpscr = buf[i];
 263
 264	return 0;
 265}
 266
 267unsigned long copy_vsx_to_user(void __user *to,
 268			       struct task_struct *task)
 269{
 270	u64 buf[ELF_NVSRHALFREG];
 271	int i;
 272
 273	/* save FPR copy to local buffer then write to the thread_struct */
 274	for (i = 0; i < ELF_NVSRHALFREG; i++)
 275		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 276	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 277}
 278
 279unsigned long copy_vsx_from_user(struct task_struct *task,
 280				 void __user *from)
 281{
 282	u64 buf[ELF_NVSRHALFREG];
 283	int i;
 284
 285	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 286		return 1;
 287	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 288		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 289	return 0;
 290}
 291
 292#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 293unsigned long copy_ckfpr_to_user(void __user *to,
 294				  struct task_struct *task)
 295{
 296	u64 buf[ELF_NFPREG];
 297	int i;
 298
 299	/* save FPR copy to local buffer then write to the thread_struct */
 300	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 301		buf[i] = task->thread.TS_CKFPR(i);
 302	buf[i] = task->thread.ckfp_state.fpscr;
 303	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 304}
 305
 306unsigned long copy_ckfpr_from_user(struct task_struct *task,
 307					  void __user *from)
 308{
 309	u64 buf[ELF_NFPREG];
 310	int i;
 311
 312	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 313		return 1;
 314	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 315		task->thread.TS_CKFPR(i) = buf[i];
 316	task->thread.ckfp_state.fpscr = buf[i];
 317
 318	return 0;
 319}
 320
 321unsigned long copy_ckvsx_to_user(void __user *to,
 322				  struct task_struct *task)
 323{
 324	u64 buf[ELF_NVSRHALFREG];
 325	int i;
 326
 327	/* save FPR copy to local buffer then write to the thread_struct */
 328	for (i = 0; i < ELF_NVSRHALFREG; i++)
 329		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
 330	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 331}
 332
 333unsigned long copy_ckvsx_from_user(struct task_struct *task,
 334					  void __user *from)
 335{
 336	u64 buf[ELF_NVSRHALFREG];
 337	int i;
 338
 339	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 340		return 1;
 341	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 342		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 343	return 0;
 344}
 345#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 346#else
 347inline unsigned long copy_fpr_to_user(void __user *to,
 348				      struct task_struct *task)
 349{
 350	return __copy_to_user(to, task->thread.fp_state.fpr,
 351			      ELF_NFPREG * sizeof(double));
 352}
 353
 354inline unsigned long copy_fpr_from_user(struct task_struct *task,
 355					void __user *from)
 356{
 357	return __copy_from_user(task->thread.fp_state.fpr, from,
 358			      ELF_NFPREG * sizeof(double));
 359}
 360
 361#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 362inline unsigned long copy_ckfpr_to_user(void __user *to,
 363					 struct task_struct *task)
 364{
 365	return __copy_to_user(to, task->thread.ckfp_state.fpr,
 366			      ELF_NFPREG * sizeof(double));
 367}
 368
 369inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
 370						 void __user *from)
 371{
 372	return __copy_from_user(task->thread.ckfp_state.fpr, from,
 373				ELF_NFPREG * sizeof(double));
 374}
 375#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 376#endif
 377
 378/*
 379 * Save the current user registers on the user stack.
 380 * We only save the altivec/spe registers if the process has used
 381 * altivec/spe instructions at some point.
 382 */
 383static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 384			  struct mcontext __user *tm_frame, int sigret,
 385			  int ctx_has_vsx_region)
 386{
 387	unsigned long msr = regs->msr;
 388
 389	/* Make sure floating point registers are stored in regs */
 390	flush_fp_to_thread(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392	/* save general registers */
 393	if (save_general_regs(regs, frame))
 394		return 1;
 395
 396#ifdef CONFIG_ALTIVEC
 397	/* save altivec registers */
 398	if (current->thread.used_vr) {
 399		flush_altivec_to_thread(current);
 400		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 401				   ELF_NVRREG * sizeof(vector128)))
 402			return 1;
 403		/* set MSR_VEC in the saved MSR value to indicate that
 404		   frame->mc_vregs contains valid data */
 405		msr |= MSR_VEC;
 406	}
 407	/* else assert((regs->msr & MSR_VEC) == 0) */
 408
 409	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 410	 * use altivec. Since VSCR only contains 32 bits saved in the least
 411	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 412	 * most significant bits of that same vector. --BenH
 413	 * Note that the current VRSAVE value is in the SPR at this point.
 414	 */
 415	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 416		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 417	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 418		return 1;
 419#endif /* CONFIG_ALTIVEC */
 420	if (copy_fpr_to_user(&frame->mc_fregs, current))
 421		return 1;
 422
 423	/*
 424	 * Clear the MSR VSX bit to indicate there is no valid state attached
 425	 * to this context, except in the specific case below where we set it.
 426	 */
 427	msr &= ~MSR_VSX;
 428#ifdef CONFIG_VSX
 429	/*
 430	 * Copy VSR 0-31 upper half from thread_struct to local
 431	 * buffer, then write that to userspace.  Also set MSR_VSX in
 432	 * the saved MSR value to indicate that frame->mc_vregs
 433	 * contains valid data
 434	 */
 435	if (current->thread.used_vsr && ctx_has_vsx_region) {
 436		flush_vsx_to_thread(current);
 437		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 438			return 1;
 439		msr |= MSR_VSX;
 440	}
 441#endif /* CONFIG_VSX */
 442#ifdef CONFIG_SPE
 443	/* save spe registers */
 444	if (current->thread.used_spe) {
 445		flush_spe_to_thread(current);
 446		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 447				   ELF_NEVRREG * sizeof(u32)))
 448			return 1;
 449		/* set MSR_SPE in the saved MSR value to indicate that
 450		   frame->mc_vregs contains valid data */
 451		msr |= MSR_SPE;
 452	}
 453	/* else assert((regs->msr & MSR_SPE) == 0) */
 454
 455	/* We always copy to/from spefscr */
 456	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 457		return 1;
 458#endif /* CONFIG_SPE */
 459
 460	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 461		return 1;
 462	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 463	 * can check it on the restore to see if TM is active
 464	 */
 465	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 466		return 1;
 467
 468	if (sigret) {
 469		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 470		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 471		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 472			return 1;
 473		flush_icache_range((unsigned long) &frame->tramp[0],
 474				   (unsigned long) &frame->tramp[2]);
 475	}
 476
 477	return 0;
 
 478}
 479
 
 
 
 
 
 480#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 481/*
 482 * Save the current user registers on the user stack.
 483 * We only save the altivec/spe registers if the process has used
 484 * altivec/spe instructions at some point.
 485 * We also save the transactional registers to a second ucontext in the
 486 * frame.
 487 *
 488 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 489 */
 490static int save_tm_user_regs(struct pt_regs *regs,
 491			     struct mcontext __user *frame,
 492			     struct mcontext __user *tm_frame, int sigret)
 493{
 494	unsigned long msr = regs->msr;
 495
 496	WARN_ON(tm_suspend_disabled);
 497
 498	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 499	 * just indicates to userland that we were doing a transaction, but we
 500	 * don't want to return in transactional state.  This also ensures
 501	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 502	 */
 503	regs->msr &= ~MSR_TS_MASK;
 504
 
 
 
 505	/* Save both sets of general registers */
 506	if (save_general_regs(&current->thread.ckpt_regs, frame)
 507	    || save_general_regs(regs, tm_frame))
 508		return 1;
 509
 510	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 511	 * of the transactional mcontext.  This way we have a backward-compatible
 512	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 513	 * also look at what type of transaction (T or S) was active at the
 514	 * time of the signal.
 515	 */
 516	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 517		return 1;
 518
 519#ifdef CONFIG_ALTIVEC
 520	/* save altivec registers */
 521	if (current->thread.used_vr) {
 522		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 523				   ELF_NVRREG * sizeof(vector128)))
 524			return 1;
 525		if (msr & MSR_VEC) {
 526			if (__copy_to_user(&tm_frame->mc_vregs,
 527					   &current->thread.vr_state,
 528					   ELF_NVRREG * sizeof(vector128)))
 529				return 1;
 530		} else {
 531			if (__copy_to_user(&tm_frame->mc_vregs,
 532					   &current->thread.ckvr_state,
 533					   ELF_NVRREG * sizeof(vector128)))
 534				return 1;
 535		}
 536
 537		/* set MSR_VEC in the saved MSR value to indicate that
 538		 * frame->mc_vregs contains valid data
 539		 */
 540		msr |= MSR_VEC;
 541	}
 542
 543	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 544	 * use altivec. Since VSCR only contains 32 bits saved in the least
 545	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 546	 * most significant bits of that same vector. --BenH
 547	 */
 548	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 549		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 550	if (__put_user(current->thread.ckvrsave,
 551		       (u32 __user *)&frame->mc_vregs[32]))
 552		return 1;
 553	if (msr & MSR_VEC) {
 554		if (__put_user(current->thread.vrsave,
 555			       (u32 __user *)&tm_frame->mc_vregs[32]))
 556			return 1;
 557	} else {
 558		if (__put_user(current->thread.ckvrsave,
 559			       (u32 __user *)&tm_frame->mc_vregs[32]))
 560			return 1;
 561	}
 562#endif /* CONFIG_ALTIVEC */
 563
 564	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
 565		return 1;
 566	if (msr & MSR_FP) {
 567		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 568			return 1;
 569	} else {
 570		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
 571			return 1;
 572	}
 573
 574#ifdef CONFIG_VSX
 575	/*
 576	 * Copy VSR 0-31 upper half from thread_struct to local
 577	 * buffer, then write that to userspace.  Also set MSR_VSX in
 578	 * the saved MSR value to indicate that frame->mc_vregs
 579	 * contains valid data
 580	 */
 581	if (current->thread.used_vsr) {
 582		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
 583			return 1;
 584		if (msr & MSR_VSX) {
 585			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
 586						      current))
 587				return 1;
 588		} else {
 589			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
 590				return 1;
 591		}
 592
 593		msr |= MSR_VSX;
 594	}
 595#endif /* CONFIG_VSX */
 596#ifdef CONFIG_SPE
 597	/* SPE regs are not checkpointed with TM, so this section is
 598	 * simply the same as in save_user_regs().
 599	 */
 600	if (current->thread.used_spe) {
 601		flush_spe_to_thread(current);
 602		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 603				   ELF_NEVRREG * sizeof(u32)))
 604			return 1;
 605		/* set MSR_SPE in the saved MSR value to indicate that
 606		 * frame->mc_vregs contains valid data */
 607		msr |= MSR_SPE;
 608	}
 609
 610	/* We always copy to/from spefscr */
 611	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 612		return 1;
 613#endif /* CONFIG_SPE */
 614
 615	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 616		return 1;
 617	if (sigret) {
 618		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 619		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 620		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 621			return 1;
 622		flush_icache_range((unsigned long) &frame->tramp[0],
 623				   (unsigned long) &frame->tramp[2]);
 624	}
 625
 
 
 
 626	return 0;
 627}
 628#endif
 629
 
 
 
 
 
 630/*
 631 * Restore the current user register values from the user stack,
 632 * (except for MSR).
 633 */
 634static long restore_user_regs(struct pt_regs *regs,
 635			      struct mcontext __user *sr, int sig)
 636{
 637	long err;
 638	unsigned int save_r2 = 0;
 639	unsigned long msr;
 640#ifdef CONFIG_VSX
 641	int i;
 642#endif
 643
 
 
 644	/*
 645	 * restore general registers but not including MSR or SOFTE. Also
 646	 * take care of keeping r2 (TLS) intact if not a signal
 647	 */
 648	if (!sig)
 649		save_r2 = (unsigned int)regs->gpr[2];
 650	err = restore_general_regs(regs, sr);
 651	regs->trap = 0;
 652	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 653	if (!sig)
 654		regs->gpr[2] = (unsigned long) save_r2;
 655	if (err)
 656		return 1;
 657
 658	/* if doing signal return, restore the previous little-endian mode */
 659	if (sig)
 660		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 661
 662#ifdef CONFIG_ALTIVEC
 663	/*
 664	 * Force the process to reload the altivec registers from
 665	 * current->thread when it next does altivec instructions
 666	 */
 667	regs->msr &= ~MSR_VEC;
 668	if (msr & MSR_VEC) {
 669		/* restore altivec registers from the stack */
 670		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 671				     sizeof(sr->mc_vregs)))
 672			return 1;
 673		current->thread.used_vr = true;
 674	} else if (current->thread.used_vr)
 675		memset(&current->thread.vr_state, 0,
 676		       ELF_NVRREG * sizeof(vector128));
 677
 678	/* Always get VRSAVE back */
 679	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 680		return 1;
 681	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 682		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 683#endif /* CONFIG_ALTIVEC */
 684	if (copy_fpr_from_user(current, &sr->mc_fregs))
 685		return 1;
 686
 687#ifdef CONFIG_VSX
 688	/*
 689	 * Force the process to reload the VSX registers from
 690	 * current->thread when it next does VSX instruction.
 691	 */
 692	regs->msr &= ~MSR_VSX;
 693	if (msr & MSR_VSX) {
 694		/*
 695		 * Restore altivec registers from the stack to a local
 696		 * buffer, then write this out to the thread_struct
 697		 */
 698		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 699			return 1;
 700		current->thread.used_vsr = true;
 701	} else if (current->thread.used_vsr)
 702		for (i = 0; i < 32 ; i++)
 703			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 704#endif /* CONFIG_VSX */
 705	/*
 706	 * force the process to reload the FP registers from
 707	 * current->thread when it next does FP instructions
 708	 */
 709	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 710
 711#ifdef CONFIG_SPE
 712	/* force the process to reload the spe registers from
 713	   current->thread when it next does spe instructions */
 714	regs->msr &= ~MSR_SPE;
 
 
 
 
 715	if (msr & MSR_SPE) {
 716		/* restore spe registers from the stack */
 717		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 718				     ELF_NEVRREG * sizeof(u32)))
 719			return 1;
 720		current->thread.used_spe = true;
 721	} else if (current->thread.used_spe)
 722		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 723
 724	/* Always get SPEFSCR back */
 725	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 726		return 1;
 727#endif /* CONFIG_SPE */
 728
 
 729	return 0;
 
 
 
 
 730}
 731
 732#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 733/*
 734 * Restore the current user register values from the user stack, except for
 735 * MSR, and recheckpoint the original checkpointed register state for processes
 736 * in transactions.
 737 */
 738static long restore_tm_user_regs(struct pt_regs *regs,
 739				 struct mcontext __user *sr,
 740				 struct mcontext __user *tm_sr)
 741{
 742	long err;
 743	unsigned long msr, msr_hi;
 744#ifdef CONFIG_VSX
 745	int i;
 746#endif
 747
 748	if (tm_suspend_disabled)
 749		return 1;
 750	/*
 751	 * restore general registers but not including MSR or SOFTE. Also
 752	 * take care of keeping r2 (TLS) intact if not a signal.
 753	 * See comment in signal_64.c:restore_tm_sigcontexts();
 754	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 755	 * were set by the signal delivery.
 756	 */
 757	err = restore_general_regs(regs, tm_sr);
 758	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 759
 760	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 761
 762	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 763	if (err)
 764		return 1;
 765
 766	/* Restore the previous little-endian mode */
 767	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 768
 769#ifdef CONFIG_ALTIVEC
 770	regs->msr &= ~MSR_VEC;
 771	if (msr & MSR_VEC) {
 772		/* restore altivec registers from the stack */
 773		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 774				     sizeof(sr->mc_vregs)) ||
 775		    __copy_from_user(&current->thread.vr_state,
 776				     &tm_sr->mc_vregs,
 777				     sizeof(sr->mc_vregs)))
 778			return 1;
 779		current->thread.used_vr = true;
 780	} else if (current->thread.used_vr) {
 781		memset(&current->thread.vr_state, 0,
 782		       ELF_NVRREG * sizeof(vector128));
 783		memset(&current->thread.ckvr_state, 0,
 784		       ELF_NVRREG * sizeof(vector128));
 785	}
 786
 787	/* Always get VRSAVE back */
 788	if (__get_user(current->thread.ckvrsave,
 789		       (u32 __user *)&sr->mc_vregs[32]) ||
 790	    __get_user(current->thread.vrsave,
 791		       (u32 __user *)&tm_sr->mc_vregs[32]))
 792		return 1;
 793	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 794		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 795#endif /* CONFIG_ALTIVEC */
 796
 797	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 798
 799	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 800	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
 801		return 1;
 802
 803#ifdef CONFIG_VSX
 804	regs->msr &= ~MSR_VSX;
 805	if (msr & MSR_VSX) {
 806		/*
 807		 * Restore altivec registers from the stack to a local
 808		 * buffer, then write this out to the thread_struct
 809		 */
 810		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
 811		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
 812			return 1;
 813		current->thread.used_vsr = true;
 814	} else if (current->thread.used_vsr)
 815		for (i = 0; i < 32 ; i++) {
 816			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 817			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 818		}
 819#endif /* CONFIG_VSX */
 820
 821#ifdef CONFIG_SPE
 822	/* SPE regs are not checkpointed with TM, so this section is
 823	 * simply the same as in restore_user_regs().
 824	 */
 825	regs->msr &= ~MSR_SPE;
 826	if (msr & MSR_SPE) {
 827		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 828				     ELF_NEVRREG * sizeof(u32)))
 829			return 1;
 830		current->thread.used_spe = true;
 831	} else if (current->thread.used_spe)
 832		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 833
 834	/* Always get SPEFSCR back */
 835	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 836		       + ELF_NEVRREG))
 837		return 1;
 838#endif /* CONFIG_SPE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840	/* Get the top half of the MSR from the user context */
 841	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 842		return 1;
 843	msr_hi <<= 32;
 
 
 
 844	/* If TM bits are set to the reserved value, it's an invalid context */
 845	if (MSR_TM_RESV(msr_hi))
 846		return 1;
 847
 848	/*
 849	 * Disabling preemption, since it is unsafe to be preempted
 850	 * with MSR[TS] set without recheckpointing.
 851	 */
 852	preempt_disable();
 853
 854	/*
 855	 * CAUTION:
 856	 * After regs->MSR[TS] being updated, make sure that get_user(),
 857	 * put_user() or similar functions are *not* called. These
 858	 * functions can generate page faults which will cause the process
 859	 * to be de-scheduled with MSR[TS] set but without calling
 860	 * tm_recheckpoint(). This can cause a bug.
 861	 *
 862	 * Pull in the MSR TM bits from the user context
 863	 */
 864	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 865	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 866	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 867	 * transactional versions should be loaded.
 868	 */
 869	tm_enable();
 870	/* Make sure the transaction is marked as failed */
 871	current->thread.tm_texasr |= TEXASR_FS;
 872	/* This loads the checkpointed FP/VEC state, if used */
 873	tm_recheckpoint(&current->thread);
 874
 875	/* This loads the speculative FP/VEC state, if used */
 876	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 877	if (msr & MSR_FP) {
 878		load_fp_state(&current->thread.fp_state);
 879		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 880	}
 881#ifdef CONFIG_ALTIVEC
 882	if (msr & MSR_VEC) {
 883		load_vr_state(&current->thread.vr_state);
 884		regs->msr |= MSR_VEC;
 885	}
 886#endif
 887
 888	preempt_enable();
 889
 890	return 0;
 
 
 
 
 
 
 
 
 
 
 891}
 892#endif
 893
 894#ifdef CONFIG_PPC64
 895
 896#define copy_siginfo_to_user	copy_siginfo_to_user32
 897
 898#endif /* CONFIG_PPC64 */
 899
 900/*
 901 * Set up a signal frame for a "real-time" signal handler
 902 * (one which gets siginfo).
 903 */
 904int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 905		       struct task_struct *tsk)
 906{
 907	struct rt_sigframe __user *rt_sf;
 908	struct mcontext __user *frame;
 909	struct mcontext __user *tm_frame = NULL;
 910	void __user *addr;
 911	unsigned long newsp = 0;
 912	int sigret;
 913	unsigned long tramp;
 914	struct pt_regs *regs = tsk->thread.regs;
 
 
 915
 916	BUG_ON(tsk != current);
 
 
 
 
 
 
 
 
 
 917
 918	/* Set up Signal Frame */
 919	/* Put a Real Time Context onto stack */
 920	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
 921	addr = rt_sf;
 922	if (unlikely(rt_sf == NULL))
 923		goto badframe;
 924
 925	/* Put the siginfo & fill in most of the ucontext */
 926	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 927	    || __put_user(0, &rt_sf->uc.uc_flags)
 928	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
 929	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 930		    &rt_sf->uc.uc_regs)
 931	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 932		goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934	/* Save user registers on the stack */
 935	frame = &rt_sf->uc.uc_mcontext;
 936	addr = frame;
 937	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
 938		sigret = 0;
 939		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
 940	} else {
 941		sigret = __NR_rt_sigreturn;
 942		tramp = (unsigned long) frame->tramp;
 
 
 943	}
 
 
 
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 946	tm_frame = &rt_sf->uc_transact.uc_mcontext;
 947	if (MSR_TM_ACTIVE(regs->msr)) {
 948		if (__put_user((unsigned long)&rt_sf->uc_transact,
 949			       &rt_sf->uc.uc_link) ||
 950		    __put_user((unsigned long)tm_frame,
 951			       &rt_sf->uc_transact.uc_regs))
 952			goto badframe;
 953		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
 954			goto badframe;
 955	}
 956	else
 
 
 
 
 
 
 
 
 957#endif
 958	{
 959		if (__put_user(0, &rt_sf->uc.uc_link))
 960			goto badframe;
 961		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
 962			goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963	}
 
 
 964	regs->link = tramp;
 965
 
 966	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 
 967
 968	/* create a stack frame for the caller of the handler */
 969	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
 970	addr = (void __user *)regs->gpr[1];
 971	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 972		goto badframe;
 973
 974	/* Fill registers for signal handler */
 975	regs->gpr[1] = newsp;
 976	regs->gpr[3] = ksig->sig;
 977	regs->gpr[4] = (unsigned long) &rt_sf->info;
 978	regs->gpr[5] = (unsigned long) &rt_sf->uc;
 979	regs->gpr[6] = (unsigned long) rt_sf;
 980	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
 981	/* enter the signal handler in native-endian mode */
 982	regs->msr &= ~MSR_LE;
 983	regs->msr |= (MSR_KERNEL & MSR_LE);
 984	return 0;
 985
 
 
 
 986badframe:
 987	if (show_unhandled_signals)
 988		printk_ratelimited(KERN_INFO
 989				   "%s[%d]: bad frame in handle_rt_signal32: "
 990				   "%p nip %08lx lr %08lx\n",
 991				   tsk->comm, tsk->pid,
 992				   addr, regs->nip, regs->link);
 993
 994	return 1;
 995}
 996
 997static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 998{
 999	sigset_t set;
1000	struct mcontext __user *mcp;
1001
1002	if (get_sigset_t(&set, &ucp->uc_sigmask))
1003		return -EFAULT;
 
 
1004#ifdef CONFIG_PPC64
1005	{
1006		u32 cmcp;
1007
1008		if (__get_user(cmcp, &ucp->uc_regs))
1009			return -EFAULT;
1010		mcp = (struct mcontext __user *)(u64)cmcp;
1011		/* no need to check access_ok(mcp), since mcp < 4GB */
1012	}
1013#else
1014	if (__get_user(mcp, &ucp->uc_regs))
1015		return -EFAULT;
1016	if (!access_ok(mcp, sizeof(*mcp)))
1017		return -EFAULT;
1018#endif
 
 
1019	set_current_blocked(&set);
1020	if (restore_user_regs(regs, mcp, sig))
1021		return -EFAULT;
1022
1023	return 0;
 
 
 
 
1024}
1025
1026#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1027static int do_setcontext_tm(struct ucontext __user *ucp,
1028			    struct ucontext __user *tm_ucp,
1029			    struct pt_regs *regs)
1030{
1031	sigset_t set;
1032	struct mcontext __user *mcp;
1033	struct mcontext __user *tm_mcp;
1034	u32 cmcp;
1035	u32 tm_cmcp;
1036
1037	if (get_sigset_t(&set, &ucp->uc_sigmask))
1038		return -EFAULT;
1039
1040	if (__get_user(cmcp, &ucp->uc_regs) ||
1041	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
 
 
 
 
1042		return -EFAULT;
1043	mcp = (struct mcontext __user *)(u64)cmcp;
1044	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1045	/* no need to check access_ok(mcp), since mcp < 4GB */
1046
1047	set_current_blocked(&set);
1048	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1049		return -EFAULT;
1050
1051	return 0;
 
 
 
 
1052}
1053#endif
1054
1055#ifdef CONFIG_PPC64
1056COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1057		       struct ucontext __user *, new_ctx, int, ctx_size)
1058#else
1059SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1060		       struct ucontext __user *, new_ctx, long, ctx_size)
1061#endif
1062{
1063	struct pt_regs *regs = current_pt_regs();
1064	int ctx_has_vsx_region = 0;
1065
1066#ifdef CONFIG_PPC64
1067	unsigned long new_msr = 0;
1068
1069	if (new_ctx) {
1070		struct mcontext __user *mcp;
1071		u32 cmcp;
1072
1073		/*
1074		 * Get pointer to the real mcontext.  No need for
1075		 * access_ok since we are dealing with compat
1076		 * pointers.
1077		 */
1078		if (__get_user(cmcp, &new_ctx->uc_regs))
1079			return -EFAULT;
1080		mcp = (struct mcontext __user *)(u64)cmcp;
1081		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1082			return -EFAULT;
1083	}
1084	/*
1085	 * Check that the context is not smaller than the original
1086	 * size (with VMX but without VSX)
1087	 */
1088	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1089		return -EINVAL;
1090	/*
1091	 * If the new context state sets the MSR VSX bits but
1092	 * it doesn't provide VSX state.
1093	 */
1094	if ((ctx_size < sizeof(struct ucontext)) &&
1095	    (new_msr & MSR_VSX))
1096		return -EINVAL;
1097	/* Does the context have enough room to store VSX data? */
1098	if (ctx_size >= sizeof(struct ucontext))
1099		ctx_has_vsx_region = 1;
1100#else
1101	/* Context size is for future use. Right now, we only make sure
1102	 * we are passed something we understand
1103	 */
1104	if (ctx_size < sizeof(struct ucontext))
1105		return -EINVAL;
1106#endif
1107	if (old_ctx != NULL) {
1108		struct mcontext __user *mctx;
1109
1110		/*
1111		 * old_ctx might not be 16-byte aligned, in which
1112		 * case old_ctx->uc_mcontext won't be either.
1113		 * Because we have the old_ctx->uc_pad2 field
1114		 * before old_ctx->uc_mcontext, we need to round down
1115		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1116		 */
1117		mctx = (struct mcontext __user *)
1118			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1119		if (!access_ok(old_ctx, ctx_size)
1120		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1121		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1122		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1123			return -EFAULT;
 
 
 
 
1124	}
1125	if (new_ctx == NULL)
1126		return 0;
1127	if (!access_ok(new_ctx, ctx_size) ||
1128	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
1129		return -EFAULT;
1130
1131	/*
1132	 * If we get a fault copying the context into the kernel's
1133	 * image of the user's registers, we can't just return -EFAULT
1134	 * because the user's registers will be corrupted.  For instance
1135	 * the NIP value may have been updated but not some of the
1136	 * other registers.  Given that we have done the access_ok
1137	 * and successfully read the first and last bytes of the region
1138	 * above, this should only happen in an out-of-memory situation
1139	 * or if another thread unmaps the region containing the context.
1140	 * We kill the task with a SIGSEGV in this situation.
1141	 */
1142	if (do_setcontext(new_ctx, regs, 0))
1143		do_exit(SIGSEGV);
 
 
1144
1145	set_thread_flag(TIF_RESTOREALL);
1146	return 0;
 
 
 
 
1147}
1148
1149#ifdef CONFIG_PPC64
1150COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1151#else
1152SYSCALL_DEFINE0(rt_sigreturn)
1153#endif
1154{
1155	struct rt_sigframe __user *rt_sf;
1156	struct pt_regs *regs = current_pt_regs();
1157	int tm_restore = 0;
1158#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1159	struct ucontext __user *uc_transact;
1160	unsigned long msr_hi;
1161	unsigned long tmp;
1162#endif
1163	/* Always make any pending restarted system calls return -EINTR */
1164	current->restart_block.fn = do_no_restart_syscall;
1165
1166	rt_sf = (struct rt_sigframe __user *)
1167		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1168	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1169		goto bad;
1170
1171#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1172	/*
1173	 * If there is a transactional state then throw it away.
1174	 * The purpose of a sigreturn is to destroy all traces of the
1175	 * signal frame, this includes any transactional state created
1176	 * within in. We only check for suspended as we can never be
1177	 * active in the kernel, we are active, there is nothing better to
1178	 * do than go ahead and Bad Thing later.
1179	 * The cause is not important as there will never be a
1180	 * recheckpoint so it's not user visible.
1181	 */
1182	if (MSR_TM_SUSPENDED(mfmsr()))
1183		tm_reclaim_current(0);
1184
1185	if (__get_user(tmp, &rt_sf->uc.uc_link))
1186		goto bad;
1187	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1188	if (uc_transact) {
1189		u32 cmcp;
1190		struct mcontext __user *mcp;
1191
1192		if (__get_user(cmcp, &uc_transact->uc_regs))
1193			return -EFAULT;
1194		mcp = (struct mcontext __user *)(u64)cmcp;
1195		/* The top 32 bits of the MSR are stashed in the transactional
1196		 * ucontext. */
1197		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1198			goto bad;
1199
1200		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1201			/* Trying to start TM on non TM system */
1202			if (!cpu_has_feature(CPU_FTR_TM))
1203				goto bad;
1204			/* We only recheckpoint on return if we're
1205			 * transaction.
1206			 */
1207			tm_restore = 1;
1208			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1209				goto bad;
1210		}
1211	}
1212	if (!tm_restore) {
1213		/*
1214		 * Unset regs->msr because ucontext MSR TS is not
1215		 * set, and recheckpoint was not called. This avoid
1216		 * hitting a TM Bad thing at RFID
1217		 */
1218		regs->msr &= ~MSR_TS_MASK;
1219	}
1220	/* Fall through, for non-TM restore */
1221#endif
1222	if (!tm_restore)
1223		if (do_setcontext(&rt_sf->uc, regs, 1))
1224			goto bad;
1225
1226	/*
1227	 * It's not clear whether or why it is desirable to save the
1228	 * sigaltstack setting on signal delivery and restore it on
1229	 * signal return.  But other architectures do this and we have
1230	 * always done it up until now so it is probably better not to
1231	 * change it.  -- paulus
1232	 */
1233#ifdef CONFIG_PPC64
1234	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1235		goto bad;
1236#else
1237	if (restore_altstack(&rt_sf->uc.uc_stack))
1238		goto bad;
1239#endif
1240	set_thread_flag(TIF_RESTOREALL);
1241	return 0;
1242
1243 bad:
1244	if (show_unhandled_signals)
1245		printk_ratelimited(KERN_INFO
1246				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1247				   "%p nip %08lx lr %08lx\n",
1248				   current->comm, current->pid,
1249				   rt_sf, regs->nip, regs->link);
1250
1251	force_sig(SIGSEGV);
1252	return 0;
1253}
1254
1255#ifdef CONFIG_PPC32
1256SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1257			 int, ndbg, struct sig_dbg_op __user *, dbg)
1258{
1259	struct pt_regs *regs = current_pt_regs();
1260	struct sig_dbg_op op;
1261	int i;
1262	unsigned long new_msr = regs->msr;
1263#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1264	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1265#endif
1266
1267	for (i=0; i<ndbg; i++) {
1268		if (copy_from_user(&op, dbg + i, sizeof(op)))
1269			return -EFAULT;
1270		switch (op.dbg_type) {
1271		case SIG_DBG_SINGLE_STEPPING:
1272#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1273			if (op.dbg_value) {
1274				new_msr |= MSR_DE;
1275				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1276			} else {
1277				new_dbcr0 &= ~DBCR0_IC;
1278				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1279						current->thread.debug.dbcr1)) {
1280					new_msr &= ~MSR_DE;
1281					new_dbcr0 &= ~DBCR0_IDM;
1282				}
1283			}
1284#else
1285			if (op.dbg_value)
1286				new_msr |= MSR_SE;
1287			else
1288				new_msr &= ~MSR_SE;
1289#endif
1290			break;
1291		case SIG_DBG_BRANCH_TRACING:
1292#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1293			return -EINVAL;
1294#else
1295			if (op.dbg_value)
1296				new_msr |= MSR_BE;
1297			else
1298				new_msr &= ~MSR_BE;
1299#endif
1300			break;
1301
1302		default:
1303			return -EINVAL;
1304		}
1305	}
1306
1307	/* We wait until here to actually install the values in the
1308	   registers so if we fail in the above loop, it will not
1309	   affect the contents of these registers.  After this point,
1310	   failure is a problem, anyway, and it's very unlikely unless
1311	   the user is really doing something wrong. */
1312	regs->msr = new_msr;
1313#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1314	current->thread.debug.dbcr0 = new_dbcr0;
1315#endif
1316
1317	if (!access_ok(ctx, sizeof(*ctx)) ||
1318	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
1319		return -EFAULT;
1320
1321	/*
1322	 * If we get a fault copying the context into the kernel's
1323	 * image of the user's registers, we can't just return -EFAULT
1324	 * because the user's registers will be corrupted.  For instance
1325	 * the NIP value may have been updated but not some of the
1326	 * other registers.  Given that we have done the access_ok
1327	 * and successfully read the first and last bytes of the region
1328	 * above, this should only happen in an out-of-memory situation
1329	 * or if another thread unmaps the region containing the context.
1330	 * We kill the task with a SIGSEGV in this situation.
1331	 */
1332	if (do_setcontext(ctx, regs, 1)) {
1333		if (show_unhandled_signals)
1334			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1335					   "sys_debug_setcontext: %p nip %08lx "
1336					   "lr %08lx\n",
1337					   current->comm, current->pid,
1338					   ctx, regs->nip, regs->link);
1339
1340		force_sig(SIGSEGV);
1341		goto out;
1342	}
1343
1344	/*
1345	 * It's not clear whether or why it is desirable to save the
1346	 * sigaltstack setting on signal delivery and restore it on
1347	 * signal return.  But other architectures do this and we have
1348	 * always done it up until now so it is probably better not to
1349	 * change it.  -- paulus
1350	 */
1351	restore_altstack(&ctx->uc_stack);
1352
1353	set_thread_flag(TIF_RESTOREALL);
1354 out:
1355	return 0;
1356}
1357#endif
1358
1359/*
1360 * OK, we're invoking a handler
1361 */
1362int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1363		struct task_struct *tsk)
1364{
1365	struct sigcontext __user *sc;
1366	struct sigframe __user *frame;
1367	struct mcontext __user *tm_mctx = NULL;
1368	unsigned long newsp = 0;
1369	int sigret;
1370	unsigned long tramp;
1371	struct pt_regs *regs = tsk->thread.regs;
1372
1373	BUG_ON(tsk != current);
1374
1375	/* Set up Signal Frame */
1376	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1377	if (unlikely(frame == NULL))
1378		goto badframe;
1379	sc = (struct sigcontext __user *) &frame->sctx;
1380
1381#if _NSIG != 64
1382#error "Please adjust handle_signal()"
1383#endif
1384	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1385	    || __put_user(oldset->sig[0], &sc->oldmask)
1386#ifdef CONFIG_PPC64
1387	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1388#else
1389	    || __put_user(oldset->sig[1], &sc->_unused[3])
1390#endif
1391	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1392	    || __put_user(ksig->sig, &sc->signal))
1393		goto badframe;
1394
1395	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1396		sigret = 0;
1397		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1398	} else {
1399		sigret = __NR_sigreturn;
1400		tramp = (unsigned long) frame->mctx.tramp;
1401	}
1402
1403#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1404	tm_mctx = &frame->mctx_transact;
1405	if (MSR_TM_ACTIVE(regs->msr)) {
1406		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1407				      sigret))
1408			goto badframe;
1409	}
1410	else
1411#endif
1412	{
1413		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1414			goto badframe;
1415	}
1416
1417	regs->link = tramp;
1418
1419	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1420
1421	/* create a stack frame for the caller of the handler */
1422	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1423	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1424		goto badframe;
1425
1426	regs->gpr[1] = newsp;
1427	regs->gpr[3] = ksig->sig;
1428	regs->gpr[4] = (unsigned long) sc;
1429	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1430	/* enter the signal handler in big-endian mode */
1431	regs->msr &= ~MSR_LE;
1432	return 0;
1433
1434badframe:
1435	if (show_unhandled_signals)
1436		printk_ratelimited(KERN_INFO
1437				   "%s[%d]: bad frame in handle_signal32: "
1438				   "%p nip %08lx lr %08lx\n",
1439				   tsk->comm, tsk->pid,
1440				   frame, regs->nip, regs->link);
1441
1442	return 1;
1443}
1444
1445/*
1446 * Do a signal return; undo the signal stack.
1447 */
1448#ifdef CONFIG_PPC64
1449COMPAT_SYSCALL_DEFINE0(sigreturn)
1450#else
1451SYSCALL_DEFINE0(sigreturn)
1452#endif
1453{
1454	struct pt_regs *regs = current_pt_regs();
1455	struct sigframe __user *sf;
1456	struct sigcontext __user *sc;
1457	struct sigcontext sigctx;
1458	struct mcontext __user *sr;
1459	void __user *addr;
1460	sigset_t set;
1461#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1462	struct mcontext __user *mcp, *tm_mcp;
1463	unsigned long msr_hi;
1464#endif
1465
1466	/* Always make any pending restarted system calls return -EINTR */
1467	current->restart_block.fn = do_no_restart_syscall;
1468
1469	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1470	sc = &sf->sctx;
1471	addr = sc;
1472	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1473		goto badframe;
1474
1475#ifdef CONFIG_PPC64
1476	/*
1477	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1478	 * unused part of the signal stackframe
1479	 */
1480	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1481#else
1482	set.sig[0] = sigctx.oldmask;
1483	set.sig[1] = sigctx._unused[3];
1484#endif
1485	set_current_blocked(&set);
1486
 
1487#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1488	mcp = (struct mcontext __user *)&sf->mctx;
1489	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1490	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1491		goto badframe;
 
1492	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1493		if (!cpu_has_feature(CPU_FTR_TM))
1494			goto badframe;
1495		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1496			goto badframe;
1497	} else
1498#endif
1499	{
1500		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1501		addr = sr;
1502		if (!access_ok(sr, sizeof(*sr))
1503		    || restore_user_regs(regs, sr, 1))
1504			goto badframe;
 
 
1505	}
1506
1507	set_thread_flag(TIF_RESTOREALL);
1508	return 0;
1509
1510badframe:
1511	if (show_unhandled_signals)
1512		printk_ratelimited(KERN_INFO
1513				   "%s[%d]: bad frame in sys_sigreturn: "
1514				   "%p nip %08lx lr %08lx\n",
1515				   current->comm, current->pid,
1516				   addr, regs->nip, regs->link);
1517
1518	force_sig(SIGSEGV);
1519	return 0;
1520}