Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
  27#include <linux/debugfs.h>
  28#include <linux/of.h>
  29#include <linux/of_fdt.h>
  30
 
  31#include <asm/page.h>
 
  32#include <asm/fadump.h>
  33#include <asm/fadump-internal.h>
  34#include <asm/setup.h>
  35#include <asm/interrupt.h>
  36
  37/*
  38 * The CPU who acquired the lock to trigger the fadump crash should
  39 * wait for other CPUs to enter.
  40 *
  41 * The timeout is in milliseconds.
  42 */
  43#define CRASH_TIMEOUT		500
  44
  45static struct fw_dump fw_dump;
  46
  47static void __init fadump_reserve_crash_area(u64 base);
  48
  49#ifndef CONFIG_PRESERVE_FA_DUMP
  50
  51static struct kobject *fadump_kobj;
  52
  53static atomic_t cpus_in_fadump;
  54static DEFINE_MUTEX(fadump_mutex);
  55
  56static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
  57
  58#define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
  59#define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
  60				 sizeof(struct fadump_memory_range))
  61static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
  62static struct fadump_mrange_info
  63reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
  64
  65static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
  66
  67#ifdef CONFIG_CMA
  68static struct cma *fadump_cma;
  69
  70/*
  71 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  72 *
  73 * This function initializes CMA area from fadump reserved memory.
  74 * The total size of fadump reserved memory covers for boot memory size
  75 * + cpu data size + hpte size and metadata.
  76 * Initialize only the area equivalent to boot memory size for CMA use.
  77 * The remaining portion of fadump reserved memory will be not given
  78 * to CMA and pages for those will stay reserved. boot memory size is
  79 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  80 * But for some reason even if it fails we still have the memory reservation
  81 * with us and we can still continue doing fadump.
  82 */
  83static int __init fadump_cma_init(void)
  84{
  85	unsigned long long base, size;
  86	int rc;
  87
  88	if (!fw_dump.fadump_enabled)
  89		return 0;
  90
  91	/*
  92	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  93	 * Return 1 to continue with fadump old behaviour.
  94	 */
  95	if (fw_dump.nocma)
  96		return 1;
  97
  98	base = fw_dump.reserve_dump_area_start;
  99	size = fw_dump.boot_memory_size;
 100
 101	if (!size)
 102		return 0;
 103
 104	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
 105	if (rc) {
 106		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
 107		/*
 108		 * Though the CMA init has failed we still have memory
 109		 * reservation with us. The reserved memory will be
 110		 * blocked from production system usage.  Hence return 1,
 111		 * so that we can continue with fadump.
 112		 */
 113		return 1;
 114	}
 115
 116	/*
 117	 *  If CMA activation fails, keep the pages reserved, instead of
 118	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
 119	 */
 120	cma_reserve_pages_on_error(fadump_cma);
 121
 122	/*
 123	 * So we now have successfully initialized cma area for fadump.
 124	 */
 125	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
 126		"bytes of memory reserved for firmware-assisted dump\n",
 127		cma_get_size(fadump_cma),
 128		(unsigned long)cma_get_base(fadump_cma) >> 20,
 129		fw_dump.reserve_dump_area_size);
 130	return 1;
 131}
 132#else
 133static int __init fadump_cma_init(void) { return 1; }
 134#endif /* CONFIG_CMA */
 135
 136/* Scan the Firmware Assisted dump configuration details. */
 137int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 138				      int depth, void *data)
 139{
 140	if (depth == 0) {
 141		early_init_dt_scan_reserved_ranges(node);
 142		return 0;
 143	}
 144
 145	if (depth != 1)
 146		return 0;
 147
 148	if (strcmp(uname, "rtas") == 0) {
 149		rtas_fadump_dt_scan(&fw_dump, node);
 150		return 1;
 151	}
 152
 153	if (strcmp(uname, "ibm,opal") == 0) {
 154		opal_fadump_dt_scan(&fw_dump, node);
 155		return 1;
 156	}
 157
 158	return 0;
 159}
 160
 161/*
 162 * If fadump is registered, check if the memory provided
 163 * falls within boot memory area and reserved memory area.
 164 */
 165int is_fadump_memory_area(u64 addr, unsigned long size)
 166{
 167	u64 d_start, d_end;
 168
 169	if (!fw_dump.dump_registered)
 170		return 0;
 171
 172	if (!size)
 173		return 0;
 174
 175	d_start = fw_dump.reserve_dump_area_start;
 176	d_end = d_start + fw_dump.reserve_dump_area_size;
 177	if (((addr + size) > d_start) && (addr <= d_end))
 178		return 1;
 179
 180	return (addr <= fw_dump.boot_mem_top);
 181}
 182
 183int should_fadump_crash(void)
 184{
 185	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 186		return 0;
 187	return 1;
 188}
 189
 190int is_fadump_active(void)
 191{
 192	return fw_dump.dump_active;
 193}
 194
 195/*
 196 * Returns true, if there are no holes in memory area between d_start to d_end,
 197 * false otherwise.
 198 */
 199static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 200{
 201	phys_addr_t reg_start, reg_end;
 202	bool ret = false;
 203	u64 i, start, end;
 204
 205	for_each_mem_range(i, &reg_start, &reg_end) {
 206		start = max_t(u64, d_start, reg_start);
 207		end = min_t(u64, d_end, reg_end);
 208		if (d_start < end) {
 209			/* Memory hole from d_start to start */
 210			if (start > d_start)
 211				break;
 212
 213			if (end == d_end) {
 214				ret = true;
 215				break;
 216			}
 217
 218			d_start = end + 1;
 219		}
 220	}
 221
 222	return ret;
 223}
 224
 225/*
 226 * Returns true, if there are no holes in boot memory area,
 227 * false otherwise.
 228 */
 229bool is_fadump_boot_mem_contiguous(void)
 230{
 231	unsigned long d_start, d_end;
 232	bool ret = false;
 233	int i;
 234
 235	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 236		d_start = fw_dump.boot_mem_addr[i];
 237		d_end   = d_start + fw_dump.boot_mem_sz[i];
 238
 239		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 240		if (!ret)
 241			break;
 242	}
 243
 244	return ret;
 245}
 246
 247/*
 248 * Returns true, if there are no holes in reserved memory area,
 249 * false otherwise.
 250 */
 251bool is_fadump_reserved_mem_contiguous(void)
 252{
 253	u64 d_start, d_end;
 254
 255	d_start	= fw_dump.reserve_dump_area_start;
 256	d_end	= d_start + fw_dump.reserve_dump_area_size;
 257	return is_fadump_mem_area_contiguous(d_start, d_end);
 258}
 259
 260/* Print firmware assisted dump configurations for debugging purpose. */
 261static void __init fadump_show_config(void)
 262{
 263	int i;
 264
 265	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 266			(fw_dump.fadump_supported ? "present" : "no support"));
 267
 268	if (!fw_dump.fadump_supported)
 269		return;
 270
 271	pr_debug("Fadump enabled    : %s\n",
 272				(fw_dump.fadump_enabled ? "yes" : "no"));
 273	pr_debug("Dump Active       : %s\n",
 274				(fw_dump.dump_active ? "yes" : "no"));
 275	pr_debug("Dump section sizes:\n");
 276	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 277	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 278	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 279	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 280	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 281	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 282		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 283			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 284	}
 285}
 286
 287/**
 288 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 289 *
 290 * Function to find the largest memory size we need to reserve during early
 291 * boot process. This will be the size of the memory that is required for a
 292 * kernel to boot successfully.
 293 *
 294 * This function has been taken from phyp-assisted dump feature implementation.
 295 *
 296 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 297 *
 298 * TODO: Come up with better approach to find out more accurate memory size
 299 * that is required for a kernel to boot successfully.
 300 *
 301 */
 302static __init u64 fadump_calculate_reserve_size(void)
 303{
 304	u64 base, size, bootmem_min;
 305	int ret;
 306
 307	if (fw_dump.reserve_bootvar)
 308		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 309
 310	/*
 311	 * Check if the size is specified through crashkernel= cmdline
 312	 * option. If yes, then use that but ignore base as fadump reserves
 313	 * memory at a predefined offset.
 314	 */
 315	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 316				&size, &base);
 317	if (ret == 0 && size > 0) {
 318		unsigned long max_size;
 319
 320		if (fw_dump.reserve_bootvar)
 321			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 322
 323		fw_dump.reserve_bootvar = (unsigned long)size;
 324
 325		/*
 326		 * Adjust if the boot memory size specified is above
 327		 * the upper limit.
 328		 */
 329		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 330		if (fw_dump.reserve_bootvar > max_size) {
 331			fw_dump.reserve_bootvar = max_size;
 332			pr_info("Adjusted boot memory size to %luMB\n",
 333				(fw_dump.reserve_bootvar >> 20));
 334		}
 335
 336		return fw_dump.reserve_bootvar;
 337	} else if (fw_dump.reserve_bootvar) {
 338		/*
 339		 * 'fadump_reserve_mem=' is being used to reserve memory
 340		 * for firmware-assisted dump.
 341		 */
 342		return fw_dump.reserve_bootvar;
 343	}
 344
 345	/* divide by 20 to get 5% of value */
 346	size = memblock_phys_mem_size() / 20;
 347
 348	/* round it down in multiples of 256 */
 349	size = size & ~0x0FFFFFFFUL;
 350
 351	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 352	if (memory_limit && size > memory_limit)
 353		size = memory_limit;
 354
 355	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 356	return (size > bootmem_min ? size : bootmem_min);
 357}
 358
 359/*
 360 * Calculate the total memory size required to be reserved for
 361 * firmware-assisted dump registration.
 362 */
 363static unsigned long __init get_fadump_area_size(void)
 364{
 365	unsigned long size = 0;
 366
 367	size += fw_dump.cpu_state_data_size;
 368	size += fw_dump.hpte_region_size;
 369	/*
 370	 * Account for pagesize alignment of boot memory area destination address.
 371	 * This faciliates in mmap reading of first kernel's memory.
 372	 */
 373	size = PAGE_ALIGN(size);
 374	size += fw_dump.boot_memory_size;
 375	size += sizeof(struct fadump_crash_info_header);
 376	size += sizeof(struct elfhdr); /* ELF core header.*/
 377	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 378	/* Program headers for crash memory regions. */
 379	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 380
 381	size = PAGE_ALIGN(size);
 382
 383	/* This is to hold kernel metadata on platforms that support it */
 384	size += (fw_dump.ops->fadump_get_metadata_size ?
 385		 fw_dump.ops->fadump_get_metadata_size() : 0);
 386	return size;
 387}
 388
 389static int __init add_boot_mem_region(unsigned long rstart,
 390				      unsigned long rsize)
 391{
 392	int i = fw_dump.boot_mem_regs_cnt++;
 393
 394	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 395		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 396		return 0;
 397	}
 398
 399	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 400		 i, rstart, (rstart + rsize));
 401	fw_dump.boot_mem_addr[i] = rstart;
 402	fw_dump.boot_mem_sz[i] = rsize;
 403	return 1;
 404}
 405
 406/*
 407 * Firmware usually has a hard limit on the data it can copy per region.
 408 * Honour that by splitting a memory range into multiple regions.
 409 */
 410static int __init add_boot_mem_regions(unsigned long mstart,
 411				       unsigned long msize)
 412{
 413	unsigned long rstart, rsize, max_size;
 414	int ret = 1;
 415
 416	rstart = mstart;
 417	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 418	while (msize) {
 419		if (msize > max_size)
 420			rsize = max_size;
 421		else
 422			rsize = msize;
 423
 424		ret = add_boot_mem_region(rstart, rsize);
 425		if (!ret)
 426			break;
 427
 428		msize -= rsize;
 429		rstart += rsize;
 430	}
 431
 432	return ret;
 433}
 434
 435static int __init fadump_get_boot_mem_regions(void)
 436{
 437	unsigned long size, cur_size, hole_size, last_end;
 438	unsigned long mem_size = fw_dump.boot_memory_size;
 439	phys_addr_t reg_start, reg_end;
 440	int ret = 1;
 441	u64 i;
 442
 443	fw_dump.boot_mem_regs_cnt = 0;
 444
 445	last_end = 0;
 446	hole_size = 0;
 447	cur_size = 0;
 448	for_each_mem_range(i, &reg_start, &reg_end) {
 449		size = reg_end - reg_start;
 450		hole_size += (reg_start - last_end);
 
 451
 452		if ((cur_size + size) >= mem_size) {
 453			size = (mem_size - cur_size);
 454			ret = add_boot_mem_regions(reg_start, size);
 455			break;
 456		}
 457
 458		mem_size -= size;
 459		cur_size += size;
 460		ret = add_boot_mem_regions(reg_start, size);
 461		if (!ret)
 462			break;
 463
 464		last_end = reg_end;
 465	}
 466	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 467
 468	return ret;
 469}
 470
 471/*
 472 * Returns true, if the given range overlaps with reserved memory ranges
 473 * starting at idx. Also, updates idx to index of overlapping memory range
 474 * with the given memory range.
 475 * False, otherwise.
 476 */
 477static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
 478{
 479	bool ret = false;
 480	int i;
 481
 482	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
 483		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
 484		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
 485
 486		if (end <= rbase)
 487			break;
 488
 489		if ((end > rbase) &&  (base < rend)) {
 490			*idx = i;
 491			ret = true;
 492			break;
 493		}
 494	}
 495
 496	return ret;
 497}
 498
 499/*
 500 * Locate a suitable memory area to reserve memory for FADump. While at it,
 501 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
 502 */
 503static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
 504{
 505	struct fadump_memory_range *mrngs;
 506	phys_addr_t mstart, mend;
 507	int idx = 0;
 508	u64 i, ret = 0;
 509
 510	mrngs = reserved_mrange_info.mem_ranges;
 511	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 512				&mstart, &mend, NULL) {
 513		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
 514			 i, mstart, mend, base);
 515
 516		if (mstart > base)
 517			base = PAGE_ALIGN(mstart);
 518
 519		while ((mend > base) && ((mend - base) >= size)) {
 520			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
 521				ret = base;
 522				goto out;
 523			}
 524
 525			base = mrngs[idx].base + mrngs[idx].size;
 526			base = PAGE_ALIGN(base);
 527		}
 528	}
 529
 530out:
 531	return ret;
 532}
 533
 534int __init fadump_reserve_mem(void)
 535{
 536	u64 base, size, mem_boundary, bootmem_min;
 
 537	int ret = 1;
 538
 539	if (!fw_dump.fadump_enabled)
 540		return 0;
 541
 542	if (!fw_dump.fadump_supported) {
 543		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 544		goto error_out;
 545	}
 546
 547	/*
 548	 * Initialize boot memory size
 549	 * If dump is active then we have already calculated the size during
 550	 * first kernel.
 551	 */
 552	if (!fw_dump.dump_active) {
 553		fw_dump.boot_memory_size =
 554			PAGE_ALIGN(fadump_calculate_reserve_size());
 555#ifdef CONFIG_CMA
 556		if (!fw_dump.nocma) {
 
 557			fw_dump.boot_memory_size =
 558				ALIGN(fw_dump.boot_memory_size,
 559				      CMA_MIN_ALIGNMENT_BYTES);
 560		}
 561#endif
 562
 563		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 564		if (fw_dump.boot_memory_size < bootmem_min) {
 565			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 566			       fw_dump.boot_memory_size, bootmem_min);
 567			goto error_out;
 568		}
 569
 570		if (!fadump_get_boot_mem_regions()) {
 571			pr_err("Too many holes in boot memory area to enable fadump\n");
 572			goto error_out;
 573		}
 574	}
 575
 576	/*
 577	 * Calculate the memory boundary.
 578	 * If memory_limit is less than actual memory boundary then reserve
 579	 * the memory for fadump beyond the memory_limit and adjust the
 580	 * memory_limit accordingly, so that the running kernel can run with
 581	 * specified memory_limit.
 582	 */
 583	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 584		size = get_fadump_area_size();
 585		if ((memory_limit + size) < memblock_end_of_DRAM())
 586			memory_limit += size;
 587		else
 588			memory_limit = memblock_end_of_DRAM();
 589		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 590				" dump, now %#016llx\n", memory_limit);
 591	}
 592	if (memory_limit)
 593		mem_boundary = memory_limit;
 594	else
 595		mem_boundary = memblock_end_of_DRAM();
 596
 597	base = fw_dump.boot_mem_top;
 598	size = get_fadump_area_size();
 599	fw_dump.reserve_dump_area_size = size;
 600	if (fw_dump.dump_active) {
 601		pr_info("Firmware-assisted dump is active.\n");
 602
 603#ifdef CONFIG_HUGETLB_PAGE
 604		/*
 605		 * FADump capture kernel doesn't care much about hugepages.
 606		 * In fact, handling hugepages in capture kernel is asking for
 607		 * trouble. So, disable HugeTLB support when fadump is active.
 608		 */
 609		hugetlb_disabled = true;
 610#endif
 611		/*
 612		 * If last boot has crashed then reserve all the memory
 613		 * above boot memory size so that we don't touch it until
 614		 * dump is written to disk by userspace tool. This memory
 615		 * can be released for general use by invalidating fadump.
 616		 */
 617		fadump_reserve_crash_area(base);
 618
 619		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 620		pr_debug("Reserve dump area start address: 0x%lx\n",
 621			 fw_dump.reserve_dump_area_start);
 622	} else {
 623		/*
 624		 * Reserve memory at an offset closer to bottom of the RAM to
 625		 * minimize the impact of memory hot-remove operation.
 626		 */
 627		base = fadump_locate_reserve_mem(base, size);
 
 628
 629		if (!base || (base + size > mem_boundary)) {
 
 
 
 630			pr_err("Failed to find memory chunk for reservation!\n");
 631			goto error_out;
 632		}
 633		fw_dump.reserve_dump_area_start = base;
 634
 635		/*
 636		 * Calculate the kernel metadata address and register it with
 637		 * f/w if the platform supports.
 638		 */
 639		if (fw_dump.ops->fadump_setup_metadata &&
 640		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 641			goto error_out;
 642
 643		if (memblock_reserve(base, size)) {
 644			pr_err("Failed to reserve memory!\n");
 645			goto error_out;
 646		}
 647
 648		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 649			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 650
 651		ret = fadump_cma_init();
 652	}
 653
 654	return ret;
 655error_out:
 656	fw_dump.fadump_enabled = 0;
 657	return 0;
 658}
 659
 660/* Look for fadump= cmdline option. */
 661static int __init early_fadump_param(char *p)
 662{
 663	if (!p)
 664		return 1;
 665
 666	if (strncmp(p, "on", 2) == 0)
 667		fw_dump.fadump_enabled = 1;
 668	else if (strncmp(p, "off", 3) == 0)
 669		fw_dump.fadump_enabled = 0;
 670	else if (strncmp(p, "nocma", 5) == 0) {
 671		fw_dump.fadump_enabled = 1;
 672		fw_dump.nocma = 1;
 673	}
 674
 675	return 0;
 676}
 677early_param("fadump", early_fadump_param);
 678
 679/*
 680 * Look for fadump_reserve_mem= cmdline option
 681 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 682 *       the sooner 'crashkernel=' parameter is accustomed to.
 683 */
 684static int __init early_fadump_reserve_mem(char *p)
 685{
 686	if (p)
 687		fw_dump.reserve_bootvar = memparse(p, &p);
 688	return 0;
 689}
 690early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 691
 692void crash_fadump(struct pt_regs *regs, const char *str)
 693{
 694	unsigned int msecs;
 695	struct fadump_crash_info_header *fdh = NULL;
 696	int old_cpu, this_cpu;
 697	/* Do not include first CPU */
 698	unsigned int ncpus = num_online_cpus() - 1;
 699
 700	if (!should_fadump_crash())
 701		return;
 702
 703	/*
 704	 * old_cpu == -1 means this is the first CPU which has come here,
 705	 * go ahead and trigger fadump.
 706	 *
 707	 * old_cpu != -1 means some other CPU has already on it's way
 708	 * to trigger fadump, just keep looping here.
 709	 */
 710	this_cpu = smp_processor_id();
 711	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 712
 713	if (old_cpu != -1) {
 714		atomic_inc(&cpus_in_fadump);
 715
 716		/*
 717		 * We can't loop here indefinitely. Wait as long as fadump
 718		 * is in force. If we race with fadump un-registration this
 719		 * loop will break and then we go down to normal panic path
 720		 * and reboot. If fadump is in force the first crashing
 721		 * cpu will definitely trigger fadump.
 722		 */
 723		while (fw_dump.dump_registered)
 724			cpu_relax();
 725		return;
 726	}
 727
 728	fdh = __va(fw_dump.fadumphdr_addr);
 729	fdh->crashing_cpu = crashing_cpu;
 730	crash_save_vmcoreinfo();
 731
 732	if (regs)
 733		fdh->regs = *regs;
 734	else
 735		ppc_save_regs(&fdh->regs);
 736
 737	fdh->cpu_mask = *cpu_online_mask;
 738
 739	/*
 740	 * If we came in via system reset, wait a while for the secondary
 741	 * CPUs to enter.
 742	 */
 743	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
 744		msecs = CRASH_TIMEOUT;
 745		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
 746			mdelay(1);
 747	}
 748
 749	fw_dump.ops->fadump_trigger(fdh, str);
 750}
 751
 752u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 753{
 754	struct elf_prstatus prstatus;
 755
 756	memset(&prstatus, 0, sizeof(prstatus));
 757	/*
 758	 * FIXME: How do i get PID? Do I really need it?
 759	 * prstatus.pr_pid = ????
 760	 */
 761	elf_core_copy_regs(&prstatus.pr_reg, regs);
 762	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 763			      &prstatus, sizeof(prstatus));
 764	return buf;
 765}
 766
 767void __init fadump_update_elfcore_header(char *bufp)
 768{
 
 769	struct elf_phdr *phdr;
 770
 
 771	bufp += sizeof(struct elfhdr);
 772
 773	/* First note is a place holder for cpu notes info. */
 774	phdr = (struct elf_phdr *)bufp;
 775
 776	if (phdr->p_type == PT_NOTE) {
 777		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 778		phdr->p_offset	= phdr->p_paddr;
 779		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 780		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 781	}
 782	return;
 783}
 784
 785static void *__init fadump_alloc_buffer(unsigned long size)
 786{
 787	unsigned long count, i;
 788	struct page *page;
 789	void *vaddr;
 790
 791	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 792	if (!vaddr)
 793		return NULL;
 794
 795	count = PAGE_ALIGN(size) / PAGE_SIZE;
 796	page = virt_to_page(vaddr);
 797	for (i = 0; i < count; i++)
 798		mark_page_reserved(page + i);
 799	return vaddr;
 800}
 801
 802static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 803{
 804	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 805}
 806
 807s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
 808{
 809	/* Allocate buffer to hold cpu crash notes. */
 810	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 811	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 812	fw_dump.cpu_notes_buf_vaddr =
 813		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 814	if (!fw_dump.cpu_notes_buf_vaddr) {
 815		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 816		       fw_dump.cpu_notes_buf_size);
 817		return -ENOMEM;
 818	}
 819
 820	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 821		 fw_dump.cpu_notes_buf_size,
 822		 fw_dump.cpu_notes_buf_vaddr);
 823	return 0;
 824}
 825
 826void fadump_free_cpu_notes_buf(void)
 827{
 828	if (!fw_dump.cpu_notes_buf_vaddr)
 829		return;
 830
 831	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 832			   fw_dump.cpu_notes_buf_size);
 833	fw_dump.cpu_notes_buf_vaddr = 0;
 834	fw_dump.cpu_notes_buf_size = 0;
 835}
 836
 837static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 838{
 839	if (mrange_info->is_static) {
 840		mrange_info->mem_range_cnt = 0;
 841		return;
 842	}
 843
 844	kfree(mrange_info->mem_ranges);
 845	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
 846	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
 
 847}
 848
 849/*
 850 * Allocate or reallocate mem_ranges array in incremental units
 851 * of PAGE_SIZE.
 852 */
 853static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 854{
 855	struct fadump_memory_range *new_array;
 856	u64 new_size;
 857
 858	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 859	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 860		 new_size, mrange_info->name);
 861
 862	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 863	if (new_array == NULL) {
 864		pr_err("Insufficient memory for setting up %s memory ranges\n",
 865		       mrange_info->name);
 866		fadump_free_mem_ranges(mrange_info);
 867		return -ENOMEM;
 868	}
 869
 870	mrange_info->mem_ranges = new_array;
 871	mrange_info->mem_ranges_sz = new_size;
 872	mrange_info->max_mem_ranges = (new_size /
 873				       sizeof(struct fadump_memory_range));
 874	return 0;
 875}
 
 876static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 877				       u64 base, u64 end)
 878{
 879	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 880	bool is_adjacent = false;
 881	u64 start, size;
 882
 883	if (base == end)
 884		return 0;
 885
 886	/*
 887	 * Fold adjacent memory ranges to bring down the memory ranges/
 888	 * PT_LOAD segments count.
 889	 */
 890	if (mrange_info->mem_range_cnt) {
 891		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 892		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 893
 894		/*
 895		 * Boot memory area needs separate PT_LOAD segment(s) as it
 896		 * is moved to a different location at the time of crash.
 897		 * So, fold only if the region is not boot memory area.
 898		 */
 899		if ((start + size) == base && start >= fw_dump.boot_mem_top)
 900			is_adjacent = true;
 901	}
 902	if (!is_adjacent) {
 903		/* resize the array on reaching the limit */
 904		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 905			int ret;
 906
 907			if (mrange_info->is_static) {
 908				pr_err("Reached array size limit for %s memory ranges\n",
 909				       mrange_info->name);
 910				return -ENOSPC;
 911			}
 912
 913			ret = fadump_alloc_mem_ranges(mrange_info);
 914			if (ret)
 915				return ret;
 916
 917			/* Update to the new resized array */
 918			mem_ranges = mrange_info->mem_ranges;
 919		}
 920
 921		start = base;
 922		mem_ranges[mrange_info->mem_range_cnt].base = start;
 923		mrange_info->mem_range_cnt++;
 924	}
 925
 926	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 927	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 928		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 929		 start, end - 1, (end - start));
 930	return 0;
 931}
 932
 933static int fadump_exclude_reserved_area(u64 start, u64 end)
 934{
 935	u64 ra_start, ra_end;
 936	int ret = 0;
 937
 938	ra_start = fw_dump.reserve_dump_area_start;
 939	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 940
 941	if ((ra_start < end) && (ra_end > start)) {
 942		if ((start < ra_start) && (end > ra_end)) {
 943			ret = fadump_add_mem_range(&crash_mrange_info,
 944						   start, ra_start);
 945			if (ret)
 946				return ret;
 947
 948			ret = fadump_add_mem_range(&crash_mrange_info,
 949						   ra_end, end);
 950		} else if (start < ra_start) {
 951			ret = fadump_add_mem_range(&crash_mrange_info,
 952						   start, ra_start);
 953		} else if (ra_end < end) {
 954			ret = fadump_add_mem_range(&crash_mrange_info,
 955						   ra_end, end);
 956		}
 957	} else
 958		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 959
 960	return ret;
 961}
 962
 963static int fadump_init_elfcore_header(char *bufp)
 964{
 965	struct elfhdr *elf;
 966
 967	elf = (struct elfhdr *) bufp;
 968	bufp += sizeof(struct elfhdr);
 969	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 970	elf->e_ident[EI_CLASS] = ELF_CLASS;
 971	elf->e_ident[EI_DATA] = ELF_DATA;
 972	elf->e_ident[EI_VERSION] = EV_CURRENT;
 973	elf->e_ident[EI_OSABI] = ELF_OSABI;
 974	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 975	elf->e_type = ET_CORE;
 976	elf->e_machine = ELF_ARCH;
 977	elf->e_version = EV_CURRENT;
 978	elf->e_entry = 0;
 979	elf->e_phoff = sizeof(struct elfhdr);
 980	elf->e_shoff = 0;
 981
 982	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
 983		elf->e_flags = 2;
 984	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
 985		elf->e_flags = 1;
 986	else
 987		elf->e_flags = 0;
 988
 989	elf->e_ehsize = sizeof(struct elfhdr);
 990	elf->e_phentsize = sizeof(struct elf_phdr);
 991	elf->e_phnum = 0;
 992	elf->e_shentsize = 0;
 993	elf->e_shnum = 0;
 994	elf->e_shstrndx = 0;
 995
 996	return 0;
 997}
 998
 999/*
1000 * Traverse through memblock structure and setup crash memory ranges. These
1001 * ranges will be used create PT_LOAD program headers in elfcore header.
1002 */
1003static int fadump_setup_crash_memory_ranges(void)
1004{
1005	u64 i, start, end;
1006	int ret;
 
1007
1008	pr_debug("Setup crash memory ranges.\n");
1009	crash_mrange_info.mem_range_cnt = 0;
1010
1011	/*
1012	 * Boot memory region(s) registered with firmware are moved to
1013	 * different location at the time of crash. Create separate program
1014	 * header(s) for this memory chunk(s) with the correct offset.
1015	 */
1016	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1017		start = fw_dump.boot_mem_addr[i];
1018		end = start + fw_dump.boot_mem_sz[i];
1019		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1020		if (ret)
1021			return ret;
1022	}
1023
1024	for_each_mem_range(i, &start, &end) {
 
 
 
1025		/*
1026		 * skip the memory chunk that is already added
1027		 * (0 through boot_memory_top).
1028		 */
1029		if (start < fw_dump.boot_mem_top) {
1030			if (end > fw_dump.boot_mem_top)
1031				start = fw_dump.boot_mem_top;
1032			else
1033				continue;
1034		}
1035
1036		/* add this range excluding the reserved dump area. */
1037		ret = fadump_exclude_reserved_area(start, end);
1038		if (ret)
1039			return ret;
1040	}
1041
1042	return 0;
1043}
1044
1045/*
1046 * If the given physical address falls within the boot memory region then
1047 * return the relocated address that points to the dump region reserved
1048 * for saving initial boot memory contents.
1049 */
1050static inline unsigned long fadump_relocate(unsigned long paddr)
1051{
1052	unsigned long raddr, rstart, rend, rlast, hole_size;
1053	int i;
1054
1055	hole_size = 0;
1056	rlast = 0;
1057	raddr = paddr;
1058	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1059		rstart = fw_dump.boot_mem_addr[i];
1060		rend = rstart + fw_dump.boot_mem_sz[i];
1061		hole_size += (rstart - rlast);
1062
1063		if (paddr >= rstart && paddr < rend) {
1064			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1065			break;
1066		}
1067
1068		rlast = rend;
1069	}
1070
1071	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1072	return raddr;
1073}
1074
1075static int fadump_create_elfcore_headers(char *bufp)
1076{
1077	unsigned long long raddr, offset;
1078	struct elf_phdr *phdr;
1079	struct elfhdr *elf;
1080	int i, j;
1081
1082	fadump_init_elfcore_header(bufp);
1083	elf = (struct elfhdr *)bufp;
1084	bufp += sizeof(struct elfhdr);
1085
1086	/*
1087	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1088	 * will be populated during second kernel boot after crash. Hence
1089	 * this PT_NOTE will always be the first elf note.
1090	 *
1091	 * NOTE: Any new ELF note addition should be placed after this note.
1092	 */
1093	phdr = (struct elf_phdr *)bufp;
1094	bufp += sizeof(struct elf_phdr);
1095	phdr->p_type = PT_NOTE;
1096	phdr->p_flags = 0;
1097	phdr->p_vaddr = 0;
1098	phdr->p_align = 0;
1099
1100	phdr->p_offset = 0;
1101	phdr->p_paddr = 0;
1102	phdr->p_filesz = 0;
1103	phdr->p_memsz = 0;
1104
1105	(elf->e_phnum)++;
1106
1107	/* setup ELF PT_NOTE for vmcoreinfo */
1108	phdr = (struct elf_phdr *)bufp;
1109	bufp += sizeof(struct elf_phdr);
1110	phdr->p_type	= PT_NOTE;
1111	phdr->p_flags	= 0;
1112	phdr->p_vaddr	= 0;
1113	phdr->p_align	= 0;
1114
1115	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1116	phdr->p_offset	= phdr->p_paddr;
1117	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1118
1119	/* Increment number of program headers. */
1120	(elf->e_phnum)++;
1121
1122	/* setup PT_LOAD sections. */
1123	j = 0;
1124	offset = 0;
1125	raddr = fw_dump.boot_mem_addr[0];
1126	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1127		u64 mbase, msize;
1128
1129		mbase = crash_mrange_info.mem_ranges[i].base;
1130		msize = crash_mrange_info.mem_ranges[i].size;
1131		if (!msize)
1132			continue;
1133
1134		phdr = (struct elf_phdr *)bufp;
1135		bufp += sizeof(struct elf_phdr);
1136		phdr->p_type	= PT_LOAD;
1137		phdr->p_flags	= PF_R|PF_W|PF_X;
1138		phdr->p_offset	= mbase;
1139
1140		if (mbase == raddr) {
1141			/*
1142			 * The entire real memory region will be moved by
1143			 * firmware to the specified destination_address.
1144			 * Hence set the correct offset.
1145			 */
1146			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1147			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1148				offset += fw_dump.boot_mem_sz[j];
1149				raddr = fw_dump.boot_mem_addr[++j];
1150			}
1151		}
1152
1153		phdr->p_paddr = mbase;
1154		phdr->p_vaddr = (unsigned long)__va(mbase);
1155		phdr->p_filesz = msize;
1156		phdr->p_memsz = msize;
1157		phdr->p_align = 0;
1158
1159		/* Increment number of program headers. */
1160		(elf->e_phnum)++;
1161	}
1162	return 0;
1163}
1164
1165static unsigned long init_fadump_header(unsigned long addr)
1166{
1167	struct fadump_crash_info_header *fdh;
1168
1169	if (!addr)
1170		return 0;
1171
1172	fdh = __va(addr);
1173	addr += sizeof(struct fadump_crash_info_header);
1174
1175	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1176	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1177	fdh->elfcorehdr_addr = addr;
1178	/* We will set the crashing cpu id in crash_fadump() during crash. */
1179	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1180	/*
1181	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1182	 * register data is processed while exporting the vmcore.
1183	 */
1184	fdh->cpu_mask = *cpu_possible_mask;
1185
1186	return addr;
1187}
1188
1189static int register_fadump(void)
1190{
1191	unsigned long addr;
1192	void *vaddr;
1193	int ret;
1194
1195	/*
1196	 * If no memory is reserved then we can not register for firmware-
1197	 * assisted dump.
1198	 */
1199	if (!fw_dump.reserve_dump_area_size)
1200		return -ENODEV;
1201
1202	ret = fadump_setup_crash_memory_ranges();
1203	if (ret)
1204		return ret;
1205
1206	addr = fw_dump.fadumphdr_addr;
1207
1208	/* Initialize fadump crash info header. */
1209	addr = init_fadump_header(addr);
1210	vaddr = __va(addr);
1211
1212	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1213	fadump_create_elfcore_headers(vaddr);
1214
1215	/* register the future kernel dump with firmware. */
1216	pr_debug("Registering for firmware-assisted kernel dump...\n");
1217	return fw_dump.ops->fadump_register(&fw_dump);
1218}
1219
1220void fadump_cleanup(void)
1221{
1222	if (!fw_dump.fadump_supported)
1223		return;
1224
1225	/* Invalidate the registration only if dump is active. */
1226	if (fw_dump.dump_active) {
1227		pr_debug("Invalidating firmware-assisted dump registration\n");
1228		fw_dump.ops->fadump_invalidate(&fw_dump);
1229	} else if (fw_dump.dump_registered) {
1230		/* Un-register Firmware-assisted dump if it was registered. */
1231		fw_dump.ops->fadump_unregister(&fw_dump);
1232		fadump_free_mem_ranges(&crash_mrange_info);
1233	}
1234
1235	if (fw_dump.ops->fadump_cleanup)
1236		fw_dump.ops->fadump_cleanup(&fw_dump);
1237}
1238
1239static void fadump_free_reserved_memory(unsigned long start_pfn,
1240					unsigned long end_pfn)
1241{
1242	unsigned long pfn;
1243	unsigned long time_limit = jiffies + HZ;
1244
1245	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1246		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1247
1248	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1249		free_reserved_page(pfn_to_page(pfn));
1250
1251		if (time_after(jiffies, time_limit)) {
1252			cond_resched();
1253			time_limit = jiffies + HZ;
1254		}
1255	}
1256}
1257
1258/*
1259 * Skip memory holes and free memory that was actually reserved.
1260 */
1261static void fadump_release_reserved_area(u64 start, u64 end)
1262{
1263	unsigned long reg_spfn, reg_epfn;
1264	u64 tstart, tend, spfn, epfn;
1265	int i;
1266
1267	spfn = PHYS_PFN(start);
1268	epfn = PHYS_PFN(end);
1269
1270	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1271		tstart = max_t(u64, spfn, reg_spfn);
1272		tend   = min_t(u64, epfn, reg_epfn);
1273
1274		if (tstart < tend) {
1275			fadump_free_reserved_memory(tstart, tend);
1276
1277			if (tend == epfn)
1278				break;
1279
1280			spfn = tend;
1281		}
1282	}
1283}
1284
1285/*
1286 * Sort the mem ranges in-place and merge adjacent ranges
1287 * to minimize the memory ranges count.
1288 */
1289static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1290{
1291	struct fadump_memory_range *mem_ranges;
 
1292	u64 base, size;
1293	int i, j, idx;
1294
1295	if (!reserved_mrange_info.mem_range_cnt)
1296		return;
1297
1298	/* Sort the memory ranges */
1299	mem_ranges = mrange_info->mem_ranges;
1300	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1301		idx = i;
1302		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1303			if (mem_ranges[idx].base > mem_ranges[j].base)
1304				idx = j;
1305		}
1306		if (idx != i)
1307			swap(mem_ranges[idx], mem_ranges[i]);
 
 
 
1308	}
1309
1310	/* Merge adjacent reserved ranges */
1311	idx = 0;
1312	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1313		base = mem_ranges[i-1].base;
1314		size = mem_ranges[i-1].size;
1315		if (mem_ranges[i].base == (base + size))
1316			mem_ranges[idx].size += mem_ranges[i].size;
1317		else {
1318			idx++;
1319			if (i == idx)
1320				continue;
1321
1322			mem_ranges[idx] = mem_ranges[i];
1323		}
1324	}
1325	mrange_info->mem_range_cnt = idx + 1;
1326}
1327
1328/*
1329 * Scan reserved-ranges to consider them while reserving/releasing
1330 * memory for FADump.
1331 */
1332static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1333{
 
1334	const __be32 *prop;
1335	int len, ret = -1;
1336	unsigned long i;
1337
1338	/* reserved-ranges already scanned */
1339	if (reserved_mrange_info.mem_range_cnt != 0)
1340		return;
1341
1342	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1343	if (!prop)
1344		return;
1345
1346	/*
1347	 * Each reserved range is an (address,size) pair, 2 cells each,
1348	 * totalling 4 cells per range.
1349	 */
1350	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1351		u64 base, size;
1352
1353		base = of_read_number(prop + (i * 4) + 0, 2);
1354		size = of_read_number(prop + (i * 4) + 2, 2);
1355
1356		if (size) {
1357			ret = fadump_add_mem_range(&reserved_mrange_info,
1358						   base, base + size);
1359			if (ret < 0) {
1360				pr_warn("some reserved ranges are ignored!\n");
1361				break;
1362			}
1363		}
1364	}
1365
1366	/* Compact reserved ranges */
1367	sort_and_merge_mem_ranges(&reserved_mrange_info);
1368}
1369
1370/*
1371 * Release the memory that was reserved during early boot to preserve the
1372 * crash'ed kernel's memory contents except reserved dump area (permanent
1373 * reservation) and reserved ranges used by F/W. The released memory will
1374 * be available for general use.
1375 */
1376static void fadump_release_memory(u64 begin, u64 end)
1377{
1378	u64 ra_start, ra_end, tstart;
1379	int i, ret;
1380
 
 
1381	ra_start = fw_dump.reserve_dump_area_start;
1382	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1383
1384	/*
1385	 * If reserved ranges array limit is hit, overwrite the last reserved
1386	 * memory range with reserved dump area to ensure it is excluded from
1387	 * the memory being released (reused for next FADump registration).
1388	 */
1389	if (reserved_mrange_info.mem_range_cnt ==
1390	    reserved_mrange_info.max_mem_ranges)
1391		reserved_mrange_info.mem_range_cnt--;
1392
1393	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1394	if (ret != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
1395		return;
 
1396
1397	/* Get the reserved ranges list in order first. */
1398	sort_and_merge_mem_ranges(&reserved_mrange_info);
1399
1400	/* Exclude reserved ranges and release remaining memory */
1401	tstart = begin;
1402	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1403		ra_start = reserved_mrange_info.mem_ranges[i].base;
1404		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1405
1406		if (tstart >= ra_end)
1407			continue;
1408
1409		if (tstart < ra_start)
1410			fadump_release_reserved_area(tstart, ra_start);
1411		tstart = ra_end;
1412	}
1413
1414	if (tstart < end)
1415		fadump_release_reserved_area(tstart, end);
1416}
1417
1418static void fadump_invalidate_release_mem(void)
1419{
1420	mutex_lock(&fadump_mutex);
1421	if (!fw_dump.dump_active) {
1422		mutex_unlock(&fadump_mutex);
1423		return;
1424	}
1425
1426	fadump_cleanup();
1427	mutex_unlock(&fadump_mutex);
1428
1429	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1430	fadump_free_cpu_notes_buf();
1431
1432	/*
1433	 * Setup kernel metadata and initialize the kernel dump
1434	 * memory structure for FADump re-registration.
1435	 */
1436	if (fw_dump.ops->fadump_setup_metadata &&
1437	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1438		pr_warn("Failed to setup kernel metadata!\n");
1439	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1440}
1441
1442static ssize_t release_mem_store(struct kobject *kobj,
1443				 struct kobj_attribute *attr,
1444				 const char *buf, size_t count)
1445{
1446	int input = -1;
1447
1448	if (!fw_dump.dump_active)
1449		return -EPERM;
1450
1451	if (kstrtoint(buf, 0, &input))
1452		return -EINVAL;
1453
1454	if (input == 1) {
1455		/*
1456		 * Take away the '/proc/vmcore'. We are releasing the dump
1457		 * memory, hence it will not be valid anymore.
1458		 */
1459#ifdef CONFIG_PROC_VMCORE
1460		vmcore_cleanup();
1461#endif
1462		fadump_invalidate_release_mem();
1463
1464	} else
1465		return -EINVAL;
1466	return count;
1467}
1468
1469/* Release the reserved memory and disable the FADump */
1470static void __init unregister_fadump(void)
1471{
1472	fadump_cleanup();
1473	fadump_release_memory(fw_dump.reserve_dump_area_start,
1474			      fw_dump.reserve_dump_area_size);
1475	fw_dump.fadump_enabled = 0;
1476	kobject_put(fadump_kobj);
1477}
1478
1479static ssize_t enabled_show(struct kobject *kobj,
1480			    struct kobj_attribute *attr,
1481			    char *buf)
1482{
1483	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1484}
1485
1486static ssize_t mem_reserved_show(struct kobject *kobj,
1487				 struct kobj_attribute *attr,
1488				 char *buf)
1489{
1490	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1491}
1492
1493static ssize_t registered_show(struct kobject *kobj,
1494			       struct kobj_attribute *attr,
1495			       char *buf)
1496{
1497	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1498}
1499
1500static ssize_t registered_store(struct kobject *kobj,
1501				struct kobj_attribute *attr,
1502				const char *buf, size_t count)
1503{
1504	int ret = 0;
1505	int input = -1;
1506
1507	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1508		return -EPERM;
1509
1510	if (kstrtoint(buf, 0, &input))
1511		return -EINVAL;
1512
1513	mutex_lock(&fadump_mutex);
1514
1515	switch (input) {
1516	case 0:
1517		if (fw_dump.dump_registered == 0) {
1518			goto unlock_out;
1519		}
1520
1521		/* Un-register Firmware-assisted dump */
1522		pr_debug("Un-register firmware-assisted dump\n");
1523		fw_dump.ops->fadump_unregister(&fw_dump);
1524		break;
1525	case 1:
1526		if (fw_dump.dump_registered == 1) {
1527			/* Un-register Firmware-assisted dump */
1528			fw_dump.ops->fadump_unregister(&fw_dump);
1529		}
1530		/* Register Firmware-assisted dump */
1531		ret = register_fadump();
1532		break;
1533	default:
1534		ret = -EINVAL;
1535		break;
1536	}
1537
1538unlock_out:
1539	mutex_unlock(&fadump_mutex);
1540	return ret < 0 ? ret : count;
1541}
1542
1543static int fadump_region_show(struct seq_file *m, void *private)
1544{
1545	if (!fw_dump.fadump_enabled)
1546		return 0;
1547
1548	mutex_lock(&fadump_mutex);
1549	fw_dump.ops->fadump_region_show(&fw_dump, m);
1550	mutex_unlock(&fadump_mutex);
1551	return 0;
1552}
1553
1554static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1555static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1556static struct kobj_attribute register_attr = __ATTR_RW(registered);
1557static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1558
1559static struct attribute *fadump_attrs[] = {
1560	&enable_attr.attr,
1561	&register_attr.attr,
1562	&mem_reserved_attr.attr,
1563	NULL,
1564};
1565
1566ATTRIBUTE_GROUPS(fadump);
1567
1568DEFINE_SHOW_ATTRIBUTE(fadump_region);
1569
1570static void __init fadump_init_files(void)
1571{
 
1572	int rc = 0;
1573
1574	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1575	if (!fadump_kobj) {
1576		pr_err("failed to create fadump kobject\n");
1577		return;
1578	}
1579
1580	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1581			    &fadump_region_fops);
1582
1583	if (fw_dump.dump_active) {
1584		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1585		if (rc)
1586			pr_err("unable to create release_mem sysfs file (%d)\n",
1587			       rc);
1588	}
1589
1590	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1591	if (rc) {
1592		pr_err("sysfs group creation failed (%d), unregistering FADump",
1593		       rc);
1594		unregister_fadump();
1595		return;
1596	}
1597
1598	/*
1599	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1600	 * create symlink at old location to maintain backward compatibility.
1601	 *
1602	 *      - fadump_enabled -> fadump/enabled
1603	 *      - fadump_registered -> fadump/registered
1604	 *      - fadump_release_mem -> fadump/release_mem
1605	 */
1606	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1607						  "enabled", "fadump_enabled");
1608	if (rc) {
1609		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1610		return;
1611	}
1612
1613	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1614						  "registered",
1615						  "fadump_registered");
1616	if (rc) {
1617		pr_err("unable to create fadump_registered symlink (%d)", rc);
1618		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1619		return;
1620	}
1621
1622	if (fw_dump.dump_active) {
1623		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1624							  fadump_kobj,
1625							  "release_mem",
1626							  "fadump_release_mem");
1627		if (rc)
1628			pr_err("unable to create fadump_release_mem symlink (%d)",
1629			       rc);
1630	}
1631	return;
1632}
1633
1634/*
1635 * Prepare for firmware-assisted dump.
1636 */
1637int __init setup_fadump(void)
1638{
1639	if (!fw_dump.fadump_supported)
1640		return 0;
1641
1642	fadump_init_files();
1643	fadump_show_config();
1644
1645	if (!fw_dump.fadump_enabled)
1646		return 1;
1647
 
1648	/*
1649	 * If dump data is available then see if it is valid and prepare for
1650	 * saving it to the disk.
1651	 */
1652	if (fw_dump.dump_active) {
1653		/*
1654		 * if dump process fails then invalidate the registration
1655		 * and release memory before proceeding for re-registration.
1656		 */
1657		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1658			fadump_invalidate_release_mem();
1659	}
1660	/* Initialize the kernel dump memory structure and register with f/w */
1661	else if (fw_dump.reserve_dump_area_size) {
1662		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1663		register_fadump();
1664	}
1665
1666	/*
1667	 * In case of panic, fadump is triggered via ppc_panic_event()
1668	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1669	 * lets panic() function take crash friendly path before panic
1670	 * notifiers are invoked.
1671	 */
1672	crash_kexec_post_notifiers = true;
1673
1674	return 1;
1675}
1676/*
1677 * Use subsys_initcall_sync() here because there is dependency with
1678 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1679 * is done before registering with f/w.
1680 */
1681subsys_initcall_sync(setup_fadump);
1682#else /* !CONFIG_PRESERVE_FA_DUMP */
1683
1684/* Scan the Firmware Assisted dump configuration details. */
1685int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1686				      int depth, void *data)
1687{
1688	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1689		return 0;
1690
1691	opal_fadump_dt_scan(&fw_dump, node);
1692	return 1;
1693}
1694
1695/*
1696 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1697 * preserve crash data. The subsequent memory preserving kernel boot
1698 * is likely to process this crash data.
1699 */
1700int __init fadump_reserve_mem(void)
1701{
1702	if (fw_dump.dump_active) {
1703		/*
1704		 * If last boot has crashed then reserve all the memory
1705		 * above boot memory to preserve crash data.
1706		 */
1707		pr_info("Preserving crash data for processing in next boot.\n");
1708		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1709	} else
1710		pr_debug("FADump-aware kernel..\n");
1711
1712	return 1;
1713}
1714#endif /* CONFIG_PRESERVE_FA_DUMP */
1715
1716/* Preserve everything above the base address */
1717static void __init fadump_reserve_crash_area(u64 base)
1718{
1719	u64 i, mstart, mend, msize;
 
1720
1721	for_each_mem_range(i, &mstart, &mend) {
1722		msize  = mend - mstart;
 
1723
1724		if ((mstart + msize) < base)
1725			continue;
1726
1727		if (mstart < base) {
1728			msize -= (base - mstart);
1729			mstart = base;
1730		}
1731
1732		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1733			(msize >> 20), mstart);
1734		memblock_reserve(mstart, msize);
1735	}
1736}
1737
1738unsigned long __init arch_reserved_kernel_pages(void)
1739{
1740	return memblock_reserved_size() / PAGE_SIZE;
1741}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
 
 
 
  27
  28#include <asm/debugfs.h>
  29#include <asm/page.h>
  30#include <asm/prom.h>
  31#include <asm/fadump.h>
  32#include <asm/fadump-internal.h>
  33#include <asm/setup.h>
 
 
 
 
 
 
 
 
 
  34
  35static struct fw_dump fw_dump;
  36
  37static void __init fadump_reserve_crash_area(u64 base);
  38
  39#ifndef CONFIG_PRESERVE_FA_DUMP
 
 
 
 
  40static DEFINE_MUTEX(fadump_mutex);
  41struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 };
  42struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 };
 
 
 
 
 
 
 
 
 
  43
  44#ifdef CONFIG_CMA
  45static struct cma *fadump_cma;
  46
  47/*
  48 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  49 *
  50 * This function initializes CMA area from fadump reserved memory.
  51 * The total size of fadump reserved memory covers for boot memory size
  52 * + cpu data size + hpte size and metadata.
  53 * Initialize only the area equivalent to boot memory size for CMA use.
  54 * The reamining portion of fadump reserved memory will be not given
  55 * to CMA and pages for thoes will stay reserved. boot memory size is
  56 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  57 * But for some reason even if it fails we still have the memory reservation
  58 * with us and we can still continue doing fadump.
  59 */
  60int __init fadump_cma_init(void)
  61{
  62	unsigned long long base, size;
  63	int rc;
  64
  65	if (!fw_dump.fadump_enabled)
  66		return 0;
  67
  68	/*
  69	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  70	 * Return 1 to continue with fadump old behaviour.
  71	 */
  72	if (fw_dump.nocma)
  73		return 1;
  74
  75	base = fw_dump.reserve_dump_area_start;
  76	size = fw_dump.boot_memory_size;
  77
  78	if (!size)
  79		return 0;
  80
  81	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
  82	if (rc) {
  83		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
  84		/*
  85		 * Though the CMA init has failed we still have memory
  86		 * reservation with us. The reserved memory will be
  87		 * blocked from production system usage.  Hence return 1,
  88		 * so that we can continue with fadump.
  89		 */
  90		return 1;
  91	}
  92
  93	/*
 
 
 
 
 
 
  94	 * So we now have successfully initialized cma area for fadump.
  95	 */
  96	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
  97		"bytes of memory reserved for firmware-assisted dump\n",
  98		cma_get_size(fadump_cma),
  99		(unsigned long)cma_get_base(fadump_cma) >> 20,
 100		fw_dump.reserve_dump_area_size);
 101	return 1;
 102}
 103#else
 104static int __init fadump_cma_init(void) { return 1; }
 105#endif /* CONFIG_CMA */
 106
 107/* Scan the Firmware Assisted dump configuration details. */
 108int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 109				      int depth, void *data)
 110{
 
 
 
 
 
 111	if (depth != 1)
 112		return 0;
 113
 114	if (strcmp(uname, "rtas") == 0) {
 115		rtas_fadump_dt_scan(&fw_dump, node);
 116		return 1;
 117	}
 118
 119	if (strcmp(uname, "ibm,opal") == 0) {
 120		opal_fadump_dt_scan(&fw_dump, node);
 121		return 1;
 122	}
 123
 124	return 0;
 125}
 126
 127/*
 128 * If fadump is registered, check if the memory provided
 129 * falls within boot memory area and reserved memory area.
 130 */
 131int is_fadump_memory_area(u64 addr, unsigned long size)
 132{
 133	u64 d_start, d_end;
 134
 135	if (!fw_dump.dump_registered)
 136		return 0;
 137
 138	if (!size)
 139		return 0;
 140
 141	d_start = fw_dump.reserve_dump_area_start;
 142	d_end = d_start + fw_dump.reserve_dump_area_size;
 143	if (((addr + size) > d_start) && (addr <= d_end))
 144		return 1;
 145
 146	return (addr <= fw_dump.boot_mem_top);
 147}
 148
 149int should_fadump_crash(void)
 150{
 151	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 152		return 0;
 153	return 1;
 154}
 155
 156int is_fadump_active(void)
 157{
 158	return fw_dump.dump_active;
 159}
 160
 161/*
 162 * Returns true, if there are no holes in memory area between d_start to d_end,
 163 * false otherwise.
 164 */
 165static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 166{
 167	struct memblock_region *reg;
 168	bool ret = false;
 169	u64 start, end;
 170
 171	for_each_memblock(memory, reg) {
 172		start = max_t(u64, d_start, reg->base);
 173		end = min_t(u64, d_end, (reg->base + reg->size));
 174		if (d_start < end) {
 175			/* Memory hole from d_start to start */
 176			if (start > d_start)
 177				break;
 178
 179			if (end == d_end) {
 180				ret = true;
 181				break;
 182			}
 183
 184			d_start = end + 1;
 185		}
 186	}
 187
 188	return ret;
 189}
 190
 191/*
 192 * Returns true, if there are no holes in boot memory area,
 193 * false otherwise.
 194 */
 195bool is_fadump_boot_mem_contiguous(void)
 196{
 197	unsigned long d_start, d_end;
 198	bool ret = false;
 199	int i;
 200
 201	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 202		d_start = fw_dump.boot_mem_addr[i];
 203		d_end   = d_start + fw_dump.boot_mem_sz[i];
 204
 205		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 206		if (!ret)
 207			break;
 208	}
 209
 210	return ret;
 211}
 212
 213/*
 214 * Returns true, if there are no holes in reserved memory area,
 215 * false otherwise.
 216 */
 217bool is_fadump_reserved_mem_contiguous(void)
 218{
 219	u64 d_start, d_end;
 220
 221	d_start	= fw_dump.reserve_dump_area_start;
 222	d_end	= d_start + fw_dump.reserve_dump_area_size;
 223	return is_fadump_mem_area_contiguous(d_start, d_end);
 224}
 225
 226/* Print firmware assisted dump configurations for debugging purpose. */
 227static void fadump_show_config(void)
 228{
 229	int i;
 230
 231	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 232			(fw_dump.fadump_supported ? "present" : "no support"));
 233
 234	if (!fw_dump.fadump_supported)
 235		return;
 236
 237	pr_debug("Fadump enabled    : %s\n",
 238				(fw_dump.fadump_enabled ? "yes" : "no"));
 239	pr_debug("Dump Active       : %s\n",
 240				(fw_dump.dump_active ? "yes" : "no"));
 241	pr_debug("Dump section sizes:\n");
 242	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 243	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 244	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 245	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 246	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 247	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 248		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 249			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 250	}
 251}
 252
 253/**
 254 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 255 *
 256 * Function to find the largest memory size we need to reserve during early
 257 * boot process. This will be the size of the memory that is required for a
 258 * kernel to boot successfully.
 259 *
 260 * This function has been taken from phyp-assisted dump feature implementation.
 261 *
 262 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 263 *
 264 * TODO: Come up with better approach to find out more accurate memory size
 265 * that is required for a kernel to boot successfully.
 266 *
 267 */
 268static inline u64 fadump_calculate_reserve_size(void)
 269{
 270	u64 base, size, bootmem_min;
 271	int ret;
 272
 273	if (fw_dump.reserve_bootvar)
 274		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 275
 276	/*
 277	 * Check if the size is specified through crashkernel= cmdline
 278	 * option. If yes, then use that but ignore base as fadump reserves
 279	 * memory at a predefined offset.
 280	 */
 281	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 282				&size, &base);
 283	if (ret == 0 && size > 0) {
 284		unsigned long max_size;
 285
 286		if (fw_dump.reserve_bootvar)
 287			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 288
 289		fw_dump.reserve_bootvar = (unsigned long)size;
 290
 291		/*
 292		 * Adjust if the boot memory size specified is above
 293		 * the upper limit.
 294		 */
 295		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 296		if (fw_dump.reserve_bootvar > max_size) {
 297			fw_dump.reserve_bootvar = max_size;
 298			pr_info("Adjusted boot memory size to %luMB\n",
 299				(fw_dump.reserve_bootvar >> 20));
 300		}
 301
 302		return fw_dump.reserve_bootvar;
 303	} else if (fw_dump.reserve_bootvar) {
 304		/*
 305		 * 'fadump_reserve_mem=' is being used to reserve memory
 306		 * for firmware-assisted dump.
 307		 */
 308		return fw_dump.reserve_bootvar;
 309	}
 310
 311	/* divide by 20 to get 5% of value */
 312	size = memblock_phys_mem_size() / 20;
 313
 314	/* round it down in multiples of 256 */
 315	size = size & ~0x0FFFFFFFUL;
 316
 317	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 318	if (memory_limit && size > memory_limit)
 319		size = memory_limit;
 320
 321	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 322	return (size > bootmem_min ? size : bootmem_min);
 323}
 324
 325/*
 326 * Calculate the total memory size required to be reserved for
 327 * firmware-assisted dump registration.
 328 */
 329static unsigned long get_fadump_area_size(void)
 330{
 331	unsigned long size = 0;
 332
 333	size += fw_dump.cpu_state_data_size;
 334	size += fw_dump.hpte_region_size;
 
 
 
 
 
 335	size += fw_dump.boot_memory_size;
 336	size += sizeof(struct fadump_crash_info_header);
 337	size += sizeof(struct elfhdr); /* ELF core header.*/
 338	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 339	/* Program headers for crash memory regions. */
 340	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 341
 342	size = PAGE_ALIGN(size);
 343
 344	/* This is to hold kernel metadata on platforms that support it */
 345	size += (fw_dump.ops->fadump_get_metadata_size ?
 346		 fw_dump.ops->fadump_get_metadata_size() : 0);
 347	return size;
 348}
 349
 350static int __init add_boot_mem_region(unsigned long rstart,
 351				      unsigned long rsize)
 352{
 353	int i = fw_dump.boot_mem_regs_cnt++;
 354
 355	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 356		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 357		return 0;
 358	}
 359
 360	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 361		 i, rstart, (rstart + rsize));
 362	fw_dump.boot_mem_addr[i] = rstart;
 363	fw_dump.boot_mem_sz[i] = rsize;
 364	return 1;
 365}
 366
 367/*
 368 * Firmware usually has a hard limit on the data it can copy per region.
 369 * Honour that by splitting a memory range into multiple regions.
 370 */
 371static int __init add_boot_mem_regions(unsigned long mstart,
 372				       unsigned long msize)
 373{
 374	unsigned long rstart, rsize, max_size;
 375	int ret = 1;
 376
 377	rstart = mstart;
 378	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 379	while (msize) {
 380		if (msize > max_size)
 381			rsize = max_size;
 382		else
 383			rsize = msize;
 384
 385		ret = add_boot_mem_region(rstart, rsize);
 386		if (!ret)
 387			break;
 388
 389		msize -= rsize;
 390		rstart += rsize;
 391	}
 392
 393	return ret;
 394}
 395
 396static int __init fadump_get_boot_mem_regions(void)
 397{
 398	unsigned long base, size, cur_size, hole_size, last_end;
 399	unsigned long mem_size = fw_dump.boot_memory_size;
 400	struct memblock_region *reg;
 401	int ret = 1;
 
 402
 403	fw_dump.boot_mem_regs_cnt = 0;
 404
 405	last_end = 0;
 406	hole_size = 0;
 407	cur_size = 0;
 408	for_each_memblock(memory, reg) {
 409		base = reg->base;
 410		size = reg->size;
 411		hole_size += (base - last_end);
 412
 413		if ((cur_size + size) >= mem_size) {
 414			size = (mem_size - cur_size);
 415			ret = add_boot_mem_regions(base, size);
 416			break;
 417		}
 418
 419		mem_size -= size;
 420		cur_size += size;
 421		ret = add_boot_mem_regions(base, size);
 422		if (!ret)
 423			break;
 424
 425		last_end = base + size;
 426	}
 427	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 428
 429	return ret;
 430}
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432int __init fadump_reserve_mem(void)
 433{
 434	u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE;
 435	bool is_memblock_bottom_up = memblock_bottom_up();
 436	int ret = 1;
 437
 438	if (!fw_dump.fadump_enabled)
 439		return 0;
 440
 441	if (!fw_dump.fadump_supported) {
 442		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 443		goto error_out;
 444	}
 445
 446	/*
 447	 * Initialize boot memory size
 448	 * If dump is active then we have already calculated the size during
 449	 * first kernel.
 450	 */
 451	if (!fw_dump.dump_active) {
 452		fw_dump.boot_memory_size =
 453			PAGE_ALIGN(fadump_calculate_reserve_size());
 454#ifdef CONFIG_CMA
 455		if (!fw_dump.nocma) {
 456			align = FADUMP_CMA_ALIGNMENT;
 457			fw_dump.boot_memory_size =
 458				ALIGN(fw_dump.boot_memory_size, align);
 
 459		}
 460#endif
 461
 462		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 463		if (fw_dump.boot_memory_size < bootmem_min) {
 464			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 465			       fw_dump.boot_memory_size, bootmem_min);
 466			goto error_out;
 467		}
 468
 469		if (!fadump_get_boot_mem_regions()) {
 470			pr_err("Too many holes in boot memory area to enable fadump\n");
 471			goto error_out;
 472		}
 473	}
 474
 475	/*
 476	 * Calculate the memory boundary.
 477	 * If memory_limit is less than actual memory boundary then reserve
 478	 * the memory for fadump beyond the memory_limit and adjust the
 479	 * memory_limit accordingly, so that the running kernel can run with
 480	 * specified memory_limit.
 481	 */
 482	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 483		size = get_fadump_area_size();
 484		if ((memory_limit + size) < memblock_end_of_DRAM())
 485			memory_limit += size;
 486		else
 487			memory_limit = memblock_end_of_DRAM();
 488		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 489				" dump, now %#016llx\n", memory_limit);
 490	}
 491	if (memory_limit)
 492		mem_boundary = memory_limit;
 493	else
 494		mem_boundary = memblock_end_of_DRAM();
 495
 496	base = fw_dump.boot_mem_top;
 497	size = get_fadump_area_size();
 498	fw_dump.reserve_dump_area_size = size;
 499	if (fw_dump.dump_active) {
 500		pr_info("Firmware-assisted dump is active.\n");
 501
 502#ifdef CONFIG_HUGETLB_PAGE
 503		/*
 504		 * FADump capture kernel doesn't care much about hugepages.
 505		 * In fact, handling hugepages in capture kernel is asking for
 506		 * trouble. So, disable HugeTLB support when fadump is active.
 507		 */
 508		hugetlb_disabled = true;
 509#endif
 510		/*
 511		 * If last boot has crashed then reserve all the memory
 512		 * above boot memory size so that we don't touch it until
 513		 * dump is written to disk by userspace tool. This memory
 514		 * can be released for general use by invalidating fadump.
 515		 */
 516		fadump_reserve_crash_area(base);
 517
 518		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 519		pr_debug("Reserve dump area start address: 0x%lx\n",
 520			 fw_dump.reserve_dump_area_start);
 521	} else {
 522		/*
 523		 * Reserve memory at an offset closer to bottom of the RAM to
 524		 * minimize the impact of memory hot-remove operation.
 525		 */
 526		memblock_set_bottom_up(true);
 527		base = memblock_find_in_range(base, mem_boundary, size, align);
 528
 529		/* Restore the previous allocation mode */
 530		memblock_set_bottom_up(is_memblock_bottom_up);
 531
 532		if (!base) {
 533			pr_err("Failed to find memory chunk for reservation!\n");
 534			goto error_out;
 535		}
 536		fw_dump.reserve_dump_area_start = base;
 537
 538		/*
 539		 * Calculate the kernel metadata address and register it with
 540		 * f/w if the platform supports.
 541		 */
 542		if (fw_dump.ops->fadump_setup_metadata &&
 543		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 544			goto error_out;
 545
 546		if (memblock_reserve(base, size)) {
 547			pr_err("Failed to reserve memory!\n");
 548			goto error_out;
 549		}
 550
 551		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 552			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 553
 554		ret = fadump_cma_init();
 555	}
 556
 557	return ret;
 558error_out:
 559	fw_dump.fadump_enabled = 0;
 560	return 0;
 561}
 562
 563/* Look for fadump= cmdline option. */
 564static int __init early_fadump_param(char *p)
 565{
 566	if (!p)
 567		return 1;
 568
 569	if (strncmp(p, "on", 2) == 0)
 570		fw_dump.fadump_enabled = 1;
 571	else if (strncmp(p, "off", 3) == 0)
 572		fw_dump.fadump_enabled = 0;
 573	else if (strncmp(p, "nocma", 5) == 0) {
 574		fw_dump.fadump_enabled = 1;
 575		fw_dump.nocma = 1;
 576	}
 577
 578	return 0;
 579}
 580early_param("fadump", early_fadump_param);
 581
 582/*
 583 * Look for fadump_reserve_mem= cmdline option
 584 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 585 *       the sooner 'crashkernel=' parameter is accustomed to.
 586 */
 587static int __init early_fadump_reserve_mem(char *p)
 588{
 589	if (p)
 590		fw_dump.reserve_bootvar = memparse(p, &p);
 591	return 0;
 592}
 593early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 594
 595void crash_fadump(struct pt_regs *regs, const char *str)
 596{
 
 597	struct fadump_crash_info_header *fdh = NULL;
 598	int old_cpu, this_cpu;
 
 
 599
 600	if (!should_fadump_crash())
 601		return;
 602
 603	/*
 604	 * old_cpu == -1 means this is the first CPU which has come here,
 605	 * go ahead and trigger fadump.
 606	 *
 607	 * old_cpu != -1 means some other CPU has already on it's way
 608	 * to trigger fadump, just keep looping here.
 609	 */
 610	this_cpu = smp_processor_id();
 611	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 612
 613	if (old_cpu != -1) {
 
 
 614		/*
 615		 * We can't loop here indefinitely. Wait as long as fadump
 616		 * is in force. If we race with fadump un-registration this
 617		 * loop will break and then we go down to normal panic path
 618		 * and reboot. If fadump is in force the first crashing
 619		 * cpu will definitely trigger fadump.
 620		 */
 621		while (fw_dump.dump_registered)
 622			cpu_relax();
 623		return;
 624	}
 625
 626	fdh = __va(fw_dump.fadumphdr_addr);
 627	fdh->crashing_cpu = crashing_cpu;
 628	crash_save_vmcoreinfo();
 629
 630	if (regs)
 631		fdh->regs = *regs;
 632	else
 633		ppc_save_regs(&fdh->regs);
 634
 635	fdh->online_mask = *cpu_online_mask;
 
 
 
 
 
 
 
 
 
 
 636
 637	fw_dump.ops->fadump_trigger(fdh, str);
 638}
 639
 640u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 641{
 642	struct elf_prstatus prstatus;
 643
 644	memset(&prstatus, 0, sizeof(prstatus));
 645	/*
 646	 * FIXME: How do i get PID? Do I really need it?
 647	 * prstatus.pr_pid = ????
 648	 */
 649	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 650	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 651			      &prstatus, sizeof(prstatus));
 652	return buf;
 653}
 654
 655void fadump_update_elfcore_header(char *bufp)
 656{
 657	struct elfhdr *elf;
 658	struct elf_phdr *phdr;
 659
 660	elf = (struct elfhdr *)bufp;
 661	bufp += sizeof(struct elfhdr);
 662
 663	/* First note is a place holder for cpu notes info. */
 664	phdr = (struct elf_phdr *)bufp;
 665
 666	if (phdr->p_type == PT_NOTE) {
 667		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 668		phdr->p_offset	= phdr->p_paddr;
 669		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 670		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 671	}
 672	return;
 673}
 674
 675static void *fadump_alloc_buffer(unsigned long size)
 676{
 677	unsigned long count, i;
 678	struct page *page;
 679	void *vaddr;
 680
 681	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 682	if (!vaddr)
 683		return NULL;
 684
 685	count = PAGE_ALIGN(size) / PAGE_SIZE;
 686	page = virt_to_page(vaddr);
 687	for (i = 0; i < count; i++)
 688		mark_page_reserved(page + i);
 689	return vaddr;
 690}
 691
 692static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 693{
 694	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 695}
 696
 697s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
 698{
 699	/* Allocate buffer to hold cpu crash notes. */
 700	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 701	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 702	fw_dump.cpu_notes_buf_vaddr =
 703		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 704	if (!fw_dump.cpu_notes_buf_vaddr) {
 705		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 706		       fw_dump.cpu_notes_buf_size);
 707		return -ENOMEM;
 708	}
 709
 710	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 711		 fw_dump.cpu_notes_buf_size,
 712		 fw_dump.cpu_notes_buf_vaddr);
 713	return 0;
 714}
 715
 716void fadump_free_cpu_notes_buf(void)
 717{
 718	if (!fw_dump.cpu_notes_buf_vaddr)
 719		return;
 720
 721	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 722			   fw_dump.cpu_notes_buf_size);
 723	fw_dump.cpu_notes_buf_vaddr = 0;
 724	fw_dump.cpu_notes_buf_size = 0;
 725}
 726
 727static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 728{
 
 
 
 
 
 729	kfree(mrange_info->mem_ranges);
 730	mrange_info->mem_ranges = NULL;
 731	mrange_info->mem_ranges_sz = 0;
 732	mrange_info->max_mem_ranges = 0;
 733}
 734
 735/*
 736 * Allocate or reallocate mem_ranges array in incremental units
 737 * of PAGE_SIZE.
 738 */
 739static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 740{
 741	struct fadump_memory_range *new_array;
 742	u64 new_size;
 743
 744	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 745	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 746		 new_size, mrange_info->name);
 747
 748	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 749	if (new_array == NULL) {
 750		pr_err("Insufficient memory for setting up %s memory ranges\n",
 751		       mrange_info->name);
 752		fadump_free_mem_ranges(mrange_info);
 753		return -ENOMEM;
 754	}
 755
 756	mrange_info->mem_ranges = new_array;
 757	mrange_info->mem_ranges_sz = new_size;
 758	mrange_info->max_mem_ranges = (new_size /
 759				       sizeof(struct fadump_memory_range));
 760	return 0;
 761}
 762
 763static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 764				       u64 base, u64 end)
 765{
 766	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 767	bool is_adjacent = false;
 768	u64 start, size;
 769
 770	if (base == end)
 771		return 0;
 772
 773	/*
 774	 * Fold adjacent memory ranges to bring down the memory ranges/
 775	 * PT_LOAD segments count.
 776	 */
 777	if (mrange_info->mem_range_cnt) {
 778		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 779		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 780
 781		if ((start + size) == base)
 
 
 
 
 
 782			is_adjacent = true;
 783	}
 784	if (!is_adjacent) {
 785		/* resize the array on reaching the limit */
 786		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 787			int ret;
 788
 
 
 
 
 
 
 789			ret = fadump_alloc_mem_ranges(mrange_info);
 790			if (ret)
 791				return ret;
 792
 793			/* Update to the new resized array */
 794			mem_ranges = mrange_info->mem_ranges;
 795		}
 796
 797		start = base;
 798		mem_ranges[mrange_info->mem_range_cnt].base = start;
 799		mrange_info->mem_range_cnt++;
 800	}
 801
 802	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 803	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 804		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 805		 start, end - 1, (end - start));
 806	return 0;
 807}
 808
 809static int fadump_exclude_reserved_area(u64 start, u64 end)
 810{
 811	u64 ra_start, ra_end;
 812	int ret = 0;
 813
 814	ra_start = fw_dump.reserve_dump_area_start;
 815	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 816
 817	if ((ra_start < end) && (ra_end > start)) {
 818		if ((start < ra_start) && (end > ra_end)) {
 819			ret = fadump_add_mem_range(&crash_mrange_info,
 820						   start, ra_start);
 821			if (ret)
 822				return ret;
 823
 824			ret = fadump_add_mem_range(&crash_mrange_info,
 825						   ra_end, end);
 826		} else if (start < ra_start) {
 827			ret = fadump_add_mem_range(&crash_mrange_info,
 828						   start, ra_start);
 829		} else if (ra_end < end) {
 830			ret = fadump_add_mem_range(&crash_mrange_info,
 831						   ra_end, end);
 832		}
 833	} else
 834		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 835
 836	return ret;
 837}
 838
 839static int fadump_init_elfcore_header(char *bufp)
 840{
 841	struct elfhdr *elf;
 842
 843	elf = (struct elfhdr *) bufp;
 844	bufp += sizeof(struct elfhdr);
 845	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 846	elf->e_ident[EI_CLASS] = ELF_CLASS;
 847	elf->e_ident[EI_DATA] = ELF_DATA;
 848	elf->e_ident[EI_VERSION] = EV_CURRENT;
 849	elf->e_ident[EI_OSABI] = ELF_OSABI;
 850	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 851	elf->e_type = ET_CORE;
 852	elf->e_machine = ELF_ARCH;
 853	elf->e_version = EV_CURRENT;
 854	elf->e_entry = 0;
 855	elf->e_phoff = sizeof(struct elfhdr);
 856	elf->e_shoff = 0;
 857#if defined(_CALL_ELF)
 858	elf->e_flags = _CALL_ELF;
 859#else
 860	elf->e_flags = 0;
 861#endif
 
 
 
 862	elf->e_ehsize = sizeof(struct elfhdr);
 863	elf->e_phentsize = sizeof(struct elf_phdr);
 864	elf->e_phnum = 0;
 865	elf->e_shentsize = 0;
 866	elf->e_shnum = 0;
 867	elf->e_shstrndx = 0;
 868
 869	return 0;
 870}
 871
 872/*
 873 * Traverse through memblock structure and setup crash memory ranges. These
 874 * ranges will be used create PT_LOAD program headers in elfcore header.
 875 */
 876static int fadump_setup_crash_memory_ranges(void)
 877{
 878	struct memblock_region *reg;
 879	u64 start, end;
 880	int i, ret;
 881
 882	pr_debug("Setup crash memory ranges.\n");
 883	crash_mrange_info.mem_range_cnt = 0;
 884
 885	/*
 886	 * Boot memory region(s) registered with firmware are moved to
 887	 * different location at the time of crash. Create separate program
 888	 * header(s) for this memory chunk(s) with the correct offset.
 889	 */
 890	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 891		start = fw_dump.boot_mem_addr[i];
 892		end = start + fw_dump.boot_mem_sz[i];
 893		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 894		if (ret)
 895			return ret;
 896	}
 897
 898	for_each_memblock(memory, reg) {
 899		start = (u64)reg->base;
 900		end = start + (u64)reg->size;
 901
 902		/*
 903		 * skip the memory chunk that is already added
 904		 * (0 through boot_memory_top).
 905		 */
 906		if (start < fw_dump.boot_mem_top) {
 907			if (end > fw_dump.boot_mem_top)
 908				start = fw_dump.boot_mem_top;
 909			else
 910				continue;
 911		}
 912
 913		/* add this range excluding the reserved dump area. */
 914		ret = fadump_exclude_reserved_area(start, end);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	return 0;
 920}
 921
 922/*
 923 * If the given physical address falls within the boot memory region then
 924 * return the relocated address that points to the dump region reserved
 925 * for saving initial boot memory contents.
 926 */
 927static inline unsigned long fadump_relocate(unsigned long paddr)
 928{
 929	unsigned long raddr, rstart, rend, rlast, hole_size;
 930	int i;
 931
 932	hole_size = 0;
 933	rlast = 0;
 934	raddr = paddr;
 935	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 936		rstart = fw_dump.boot_mem_addr[i];
 937		rend = rstart + fw_dump.boot_mem_sz[i];
 938		hole_size += (rstart - rlast);
 939
 940		if (paddr >= rstart && paddr < rend) {
 941			raddr += fw_dump.boot_mem_dest_addr - hole_size;
 942			break;
 943		}
 944
 945		rlast = rend;
 946	}
 947
 948	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
 949	return raddr;
 950}
 951
 952static int fadump_create_elfcore_headers(char *bufp)
 953{
 954	unsigned long long raddr, offset;
 955	struct elf_phdr *phdr;
 956	struct elfhdr *elf;
 957	int i, j;
 958
 959	fadump_init_elfcore_header(bufp);
 960	elf = (struct elfhdr *)bufp;
 961	bufp += sizeof(struct elfhdr);
 962
 963	/*
 964	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 965	 * will be populated during second kernel boot after crash. Hence
 966	 * this PT_NOTE will always be the first elf note.
 967	 *
 968	 * NOTE: Any new ELF note addition should be placed after this note.
 969	 */
 970	phdr = (struct elf_phdr *)bufp;
 971	bufp += sizeof(struct elf_phdr);
 972	phdr->p_type = PT_NOTE;
 973	phdr->p_flags = 0;
 974	phdr->p_vaddr = 0;
 975	phdr->p_align = 0;
 976
 977	phdr->p_offset = 0;
 978	phdr->p_paddr = 0;
 979	phdr->p_filesz = 0;
 980	phdr->p_memsz = 0;
 981
 982	(elf->e_phnum)++;
 983
 984	/* setup ELF PT_NOTE for vmcoreinfo */
 985	phdr = (struct elf_phdr *)bufp;
 986	bufp += sizeof(struct elf_phdr);
 987	phdr->p_type	= PT_NOTE;
 988	phdr->p_flags	= 0;
 989	phdr->p_vaddr	= 0;
 990	phdr->p_align	= 0;
 991
 992	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
 993	phdr->p_offset	= phdr->p_paddr;
 994	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
 995
 996	/* Increment number of program headers. */
 997	(elf->e_phnum)++;
 998
 999	/* setup PT_LOAD sections. */
1000	j = 0;
1001	offset = 0;
1002	raddr = fw_dump.boot_mem_addr[0];
1003	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1004		u64 mbase, msize;
1005
1006		mbase = crash_mrange_info.mem_ranges[i].base;
1007		msize = crash_mrange_info.mem_ranges[i].size;
1008		if (!msize)
1009			continue;
1010
1011		phdr = (struct elf_phdr *)bufp;
1012		bufp += sizeof(struct elf_phdr);
1013		phdr->p_type	= PT_LOAD;
1014		phdr->p_flags	= PF_R|PF_W|PF_X;
1015		phdr->p_offset	= mbase;
1016
1017		if (mbase == raddr) {
1018			/*
1019			 * The entire real memory region will be moved by
1020			 * firmware to the specified destination_address.
1021			 * Hence set the correct offset.
1022			 */
1023			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1024			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1025				offset += fw_dump.boot_mem_sz[j];
1026				raddr = fw_dump.boot_mem_addr[++j];
1027			}
1028		}
1029
1030		phdr->p_paddr = mbase;
1031		phdr->p_vaddr = (unsigned long)__va(mbase);
1032		phdr->p_filesz = msize;
1033		phdr->p_memsz = msize;
1034		phdr->p_align = 0;
1035
1036		/* Increment number of program headers. */
1037		(elf->e_phnum)++;
1038	}
1039	return 0;
1040}
1041
1042static unsigned long init_fadump_header(unsigned long addr)
1043{
1044	struct fadump_crash_info_header *fdh;
1045
1046	if (!addr)
1047		return 0;
1048
1049	fdh = __va(addr);
1050	addr += sizeof(struct fadump_crash_info_header);
1051
1052	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1053	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1054	fdh->elfcorehdr_addr = addr;
1055	/* We will set the crashing cpu id in crash_fadump() during crash. */
1056	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
 
 
 
 
 
1057
1058	return addr;
1059}
1060
1061static int register_fadump(void)
1062{
1063	unsigned long addr;
1064	void *vaddr;
1065	int ret;
1066
1067	/*
1068	 * If no memory is reserved then we can not register for firmware-
1069	 * assisted dump.
1070	 */
1071	if (!fw_dump.reserve_dump_area_size)
1072		return -ENODEV;
1073
1074	ret = fadump_setup_crash_memory_ranges();
1075	if (ret)
1076		return ret;
1077
1078	addr = fw_dump.fadumphdr_addr;
1079
1080	/* Initialize fadump crash info header. */
1081	addr = init_fadump_header(addr);
1082	vaddr = __va(addr);
1083
1084	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1085	fadump_create_elfcore_headers(vaddr);
1086
1087	/* register the future kernel dump with firmware. */
1088	pr_debug("Registering for firmware-assisted kernel dump...\n");
1089	return fw_dump.ops->fadump_register(&fw_dump);
1090}
1091
1092void fadump_cleanup(void)
1093{
1094	if (!fw_dump.fadump_supported)
1095		return;
1096
1097	/* Invalidate the registration only if dump is active. */
1098	if (fw_dump.dump_active) {
1099		pr_debug("Invalidating firmware-assisted dump registration\n");
1100		fw_dump.ops->fadump_invalidate(&fw_dump);
1101	} else if (fw_dump.dump_registered) {
1102		/* Un-register Firmware-assisted dump if it was registered. */
1103		fw_dump.ops->fadump_unregister(&fw_dump);
1104		fadump_free_mem_ranges(&crash_mrange_info);
1105	}
1106
1107	if (fw_dump.ops->fadump_cleanup)
1108		fw_dump.ops->fadump_cleanup(&fw_dump);
1109}
1110
1111static void fadump_free_reserved_memory(unsigned long start_pfn,
1112					unsigned long end_pfn)
1113{
1114	unsigned long pfn;
1115	unsigned long time_limit = jiffies + HZ;
1116
1117	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1118		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1119
1120	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1121		free_reserved_page(pfn_to_page(pfn));
1122
1123		if (time_after(jiffies, time_limit)) {
1124			cond_resched();
1125			time_limit = jiffies + HZ;
1126		}
1127	}
1128}
1129
1130/*
1131 * Skip memory holes and free memory that was actually reserved.
1132 */
1133static void fadump_release_reserved_area(u64 start, u64 end)
1134{
 
1135	u64 tstart, tend, spfn, epfn;
1136	struct memblock_region *reg;
1137
1138	spfn = PHYS_PFN(start);
1139	epfn = PHYS_PFN(end);
1140	for_each_memblock(memory, reg) {
1141		tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
1142		tend   = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
 
 
1143		if (tstart < tend) {
1144			fadump_free_reserved_memory(tstart, tend);
1145
1146			if (tend == epfn)
1147				break;
1148
1149			spfn = tend;
1150		}
1151	}
1152}
1153
1154/*
1155 * Sort the mem ranges in-place and merge adjacent ranges
1156 * to minimize the memory ranges count.
1157 */
1158static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1159{
1160	struct fadump_memory_range *mem_ranges;
1161	struct fadump_memory_range tmp_range;
1162	u64 base, size;
1163	int i, j, idx;
1164
1165	if (!reserved_mrange_info.mem_range_cnt)
1166		return;
1167
1168	/* Sort the memory ranges */
1169	mem_ranges = mrange_info->mem_ranges;
1170	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1171		idx = i;
1172		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1173			if (mem_ranges[idx].base > mem_ranges[j].base)
1174				idx = j;
1175		}
1176		if (idx != i) {
1177			tmp_range = mem_ranges[idx];
1178			mem_ranges[idx] = mem_ranges[i];
1179			mem_ranges[i] = tmp_range;
1180		}
1181	}
1182
1183	/* Merge adjacent reserved ranges */
1184	idx = 0;
1185	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1186		base = mem_ranges[i-1].base;
1187		size = mem_ranges[i-1].size;
1188		if (mem_ranges[i].base == (base + size))
1189			mem_ranges[idx].size += mem_ranges[i].size;
1190		else {
1191			idx++;
1192			if (i == idx)
1193				continue;
1194
1195			mem_ranges[idx] = mem_ranges[i];
1196		}
1197	}
1198	mrange_info->mem_range_cnt = idx + 1;
1199}
1200
1201/*
1202 * Scan reserved-ranges to consider them while reserving/releasing
1203 * memory for FADump.
1204 */
1205static inline int fadump_scan_reserved_mem_ranges(void)
1206{
1207	struct device_node *root;
1208	const __be32 *prop;
1209	int len, ret = -1;
1210	unsigned long i;
1211
1212	root = of_find_node_by_path("/");
1213	if (!root)
1214		return ret;
1215
1216	prop = of_get_property(root, "reserved-ranges", &len);
1217	if (!prop)
1218		return ret;
1219
1220	/*
1221	 * Each reserved range is an (address,size) pair, 2 cells each,
1222	 * totalling 4 cells per range.
1223	 */
1224	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1225		u64 base, size;
1226
1227		base = of_read_number(prop + (i * 4) + 0, 2);
1228		size = of_read_number(prop + (i * 4) + 2, 2);
1229
1230		if (size) {
1231			ret = fadump_add_mem_range(&reserved_mrange_info,
1232						   base, base + size);
1233			if (ret < 0) {
1234				pr_warn("some reserved ranges are ignored!\n");
1235				break;
1236			}
1237		}
1238	}
1239
1240	return ret;
 
1241}
1242
1243/*
1244 * Release the memory that was reserved during early boot to preserve the
1245 * crash'ed kernel's memory contents except reserved dump area (permanent
1246 * reservation) and reserved ranges used by F/W. The released memory will
1247 * be available for general use.
1248 */
1249static void fadump_release_memory(u64 begin, u64 end)
1250{
1251	u64 ra_start, ra_end, tstart;
1252	int i, ret;
1253
1254	fadump_scan_reserved_mem_ranges();
1255
1256	ra_start = fw_dump.reserve_dump_area_start;
1257	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1258
1259	/*
1260	 * Add reserved dump area to reserved ranges list
1261	 * and exclude all these ranges while releasing memory.
 
1262	 */
 
 
 
 
1263	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1264	if (ret != 0) {
1265		/*
1266		 * Not enough memory to setup reserved ranges but the system is
1267		 * running shortage of memory. So, release all the memory except
1268		 * Reserved dump area (reused for next fadump registration).
1269		 */
1270		if (begin < ra_end && end > ra_start) {
1271			if (begin < ra_start)
1272				fadump_release_reserved_area(begin, ra_start);
1273			if (end > ra_end)
1274				fadump_release_reserved_area(ra_end, end);
1275		} else
1276			fadump_release_reserved_area(begin, end);
1277
1278		return;
1279	}
1280
1281	/* Get the reserved ranges list in order first. */
1282	sort_and_merge_mem_ranges(&reserved_mrange_info);
1283
1284	/* Exclude reserved ranges and release remaining memory */
1285	tstart = begin;
1286	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1287		ra_start = reserved_mrange_info.mem_ranges[i].base;
1288		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1289
1290		if (tstart >= ra_end)
1291			continue;
1292
1293		if (tstart < ra_start)
1294			fadump_release_reserved_area(tstart, ra_start);
1295		tstart = ra_end;
1296	}
1297
1298	if (tstart < end)
1299		fadump_release_reserved_area(tstart, end);
1300}
1301
1302static void fadump_invalidate_release_mem(void)
1303{
1304	mutex_lock(&fadump_mutex);
1305	if (!fw_dump.dump_active) {
1306		mutex_unlock(&fadump_mutex);
1307		return;
1308	}
1309
1310	fadump_cleanup();
1311	mutex_unlock(&fadump_mutex);
1312
1313	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1314	fadump_free_cpu_notes_buf();
1315
1316	/*
1317	 * Setup kernel metadata and initialize the kernel dump
1318	 * memory structure for FADump re-registration.
1319	 */
1320	if (fw_dump.ops->fadump_setup_metadata &&
1321	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1322		pr_warn("Failed to setup kernel metadata!\n");
1323	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1324}
1325
1326static ssize_t fadump_release_memory_store(struct kobject *kobj,
1327					struct kobj_attribute *attr,
1328					const char *buf, size_t count)
1329{
1330	int input = -1;
1331
1332	if (!fw_dump.dump_active)
1333		return -EPERM;
1334
1335	if (kstrtoint(buf, 0, &input))
1336		return -EINVAL;
1337
1338	if (input == 1) {
1339		/*
1340		 * Take away the '/proc/vmcore'. We are releasing the dump
1341		 * memory, hence it will not be valid anymore.
1342		 */
1343#ifdef CONFIG_PROC_VMCORE
1344		vmcore_cleanup();
1345#endif
1346		fadump_invalidate_release_mem();
1347
1348	} else
1349		return -EINVAL;
1350	return count;
1351}
1352
1353static ssize_t fadump_enabled_show(struct kobject *kobj,
1354					struct kobj_attribute *attr,
1355					char *buf)
 
 
 
 
 
 
 
 
 
 
1356{
1357	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1358}
1359
1360static ssize_t fadump_register_show(struct kobject *kobj,
1361					struct kobj_attribute *attr,
1362					char *buf)
 
 
 
 
 
 
 
1363{
1364	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1365}
1366
1367static ssize_t fadump_register_store(struct kobject *kobj,
1368					struct kobj_attribute *attr,
1369					const char *buf, size_t count)
1370{
1371	int ret = 0;
1372	int input = -1;
1373
1374	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1375		return -EPERM;
1376
1377	if (kstrtoint(buf, 0, &input))
1378		return -EINVAL;
1379
1380	mutex_lock(&fadump_mutex);
1381
1382	switch (input) {
1383	case 0:
1384		if (fw_dump.dump_registered == 0) {
1385			goto unlock_out;
1386		}
1387
1388		/* Un-register Firmware-assisted dump */
1389		pr_debug("Un-register firmware-assisted dump\n");
1390		fw_dump.ops->fadump_unregister(&fw_dump);
1391		break;
1392	case 1:
1393		if (fw_dump.dump_registered == 1) {
1394			/* Un-register Firmware-assisted dump */
1395			fw_dump.ops->fadump_unregister(&fw_dump);
1396		}
1397		/* Register Firmware-assisted dump */
1398		ret = register_fadump();
1399		break;
1400	default:
1401		ret = -EINVAL;
1402		break;
1403	}
1404
1405unlock_out:
1406	mutex_unlock(&fadump_mutex);
1407	return ret < 0 ? ret : count;
1408}
1409
1410static int fadump_region_show(struct seq_file *m, void *private)
1411{
1412	if (!fw_dump.fadump_enabled)
1413		return 0;
1414
1415	mutex_lock(&fadump_mutex);
1416	fw_dump.ops->fadump_region_show(&fw_dump, m);
1417	mutex_unlock(&fadump_mutex);
1418	return 0;
1419}
1420
1421static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1422						0200, NULL,
1423						fadump_release_memory_store);
1424static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1425						0444, fadump_enabled_show,
1426						NULL);
1427static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1428						0644, fadump_register_show,
1429						fadump_register_store);
 
 
 
 
1430
1431DEFINE_SHOW_ATTRIBUTE(fadump_region);
1432
1433static void fadump_init_files(void)
1434{
1435	struct dentry *debugfs_file;
1436	int rc = 0;
1437
1438	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1439	if (rc)
1440		printk(KERN_ERR "fadump: unable to create sysfs file"
1441			" fadump_enabled (%d)\n", rc);
1442
1443	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1444	if (rc)
1445		printk(KERN_ERR "fadump: unable to create sysfs file"
1446			" fadump_registered (%d)\n", rc);
1447
1448	debugfs_file = debugfs_create_file("fadump_region", 0444,
1449					powerpc_debugfs_root, NULL,
1450					&fadump_region_fops);
1451	if (!debugfs_file)
1452		printk(KERN_ERR "fadump: unable to create debugfs file"
1453				" fadump_region\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454
1455	if (fw_dump.dump_active) {
1456		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
 
 
 
1457		if (rc)
1458			printk(KERN_ERR "fadump: unable to create sysfs file"
1459				" fadump_release_mem (%d)\n", rc);
1460	}
1461	return;
1462}
1463
1464/*
1465 * Prepare for firmware-assisted dump.
1466 */
1467int __init setup_fadump(void)
1468{
1469	if (!fw_dump.fadump_enabled)
1470		return 0;
1471
1472	if (!fw_dump.fadump_supported) {
1473		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1474			" this hardware\n");
1475		return 0;
1476	}
1477
1478	fadump_show_config();
1479	/*
1480	 * If dump data is available then see if it is valid and prepare for
1481	 * saving it to the disk.
1482	 */
1483	if (fw_dump.dump_active) {
1484		/*
1485		 * if dump process fails then invalidate the registration
1486		 * and release memory before proceeding for re-registration.
1487		 */
1488		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1489			fadump_invalidate_release_mem();
1490	}
1491	/* Initialize the kernel dump memory structure for FAD registration. */
1492	else if (fw_dump.reserve_dump_area_size)
1493		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
 
 
1494
1495	fadump_init_files();
 
 
 
 
 
 
1496
1497	return 1;
1498}
1499subsys_initcall(setup_fadump);
 
 
 
 
 
1500#else /* !CONFIG_PRESERVE_FA_DUMP */
1501
1502/* Scan the Firmware Assisted dump configuration details. */
1503int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1504				      int depth, void *data)
1505{
1506	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1507		return 0;
1508
1509	opal_fadump_dt_scan(&fw_dump, node);
1510	return 1;
1511}
1512
1513/*
1514 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1515 * preserve crash data. The subsequent memory preserving kernel boot
1516 * is likely to process this crash data.
1517 */
1518int __init fadump_reserve_mem(void)
1519{
1520	if (fw_dump.dump_active) {
1521		/*
1522		 * If last boot has crashed then reserve all the memory
1523		 * above boot memory to preserve crash data.
1524		 */
1525		pr_info("Preserving crash data for processing in next boot.\n");
1526		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1527	} else
1528		pr_debug("FADump-aware kernel..\n");
1529
1530	return 1;
1531}
1532#endif /* CONFIG_PRESERVE_FA_DUMP */
1533
1534/* Preserve everything above the base address */
1535static void __init fadump_reserve_crash_area(u64 base)
1536{
1537	struct memblock_region *reg;
1538	u64 mstart, msize;
1539
1540	for_each_memblock(memory, reg) {
1541		mstart = reg->base;
1542		msize  = reg->size;
1543
1544		if ((mstart + msize) < base)
1545			continue;
1546
1547		if (mstart < base) {
1548			msize -= (base - mstart);
1549			mstart = base;
1550		}
1551
1552		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1553			(msize >> 20), mstart);
1554		memblock_reserve(mstart, msize);
1555	}
1556}
1557
1558unsigned long __init arch_reserved_kernel_pages(void)
1559{
1560	return memblock_reserved_size() / PAGE_SIZE;
1561}