Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38#include <linux/bug.h>
39#include <linux/sched/signal.h>
40#include <linux/module.h>
41#include <linux/splice.h>
42#include <crypto/aead.h>
43
44#include <net/strparser.h>
45#include <net/tls.h>
46
47#include "tls.h"
48
49struct tls_decrypt_arg {
50 struct_group(inargs,
51 bool zc;
52 bool async;
53 u8 tail;
54 );
55
56 struct sk_buff *skb;
57};
58
59struct tls_decrypt_ctx {
60 u8 iv[MAX_IV_SIZE];
61 u8 aad[TLS_MAX_AAD_SIZE];
62 u8 tail;
63 struct scatterlist sg[];
64};
65
66noinline void tls_err_abort(struct sock *sk, int err)
67{
68 WARN_ON_ONCE(err >= 0);
69 /* sk->sk_err should contain a positive error code. */
70 sk->sk_err = -err;
71 sk_error_report(sk);
72}
73
74static int __skb_nsg(struct sk_buff *skb, int offset, int len,
75 unsigned int recursion_level)
76{
77 int start = skb_headlen(skb);
78 int i, chunk = start - offset;
79 struct sk_buff *frag_iter;
80 int elt = 0;
81
82 if (unlikely(recursion_level >= 24))
83 return -EMSGSIZE;
84
85 if (chunk > 0) {
86 if (chunk > len)
87 chunk = len;
88 elt++;
89 len -= chunk;
90 if (len == 0)
91 return elt;
92 offset += chunk;
93 }
94
95 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
96 int end;
97
98 WARN_ON(start > offset + len);
99
100 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
101 chunk = end - offset;
102 if (chunk > 0) {
103 if (chunk > len)
104 chunk = len;
105 elt++;
106 len -= chunk;
107 if (len == 0)
108 return elt;
109 offset += chunk;
110 }
111 start = end;
112 }
113
114 if (unlikely(skb_has_frag_list(skb))) {
115 skb_walk_frags(skb, frag_iter) {
116 int end, ret;
117
118 WARN_ON(start > offset + len);
119
120 end = start + frag_iter->len;
121 chunk = end - offset;
122 if (chunk > 0) {
123 if (chunk > len)
124 chunk = len;
125 ret = __skb_nsg(frag_iter, offset - start, chunk,
126 recursion_level + 1);
127 if (unlikely(ret < 0))
128 return ret;
129 elt += ret;
130 len -= chunk;
131 if (len == 0)
132 return elt;
133 offset += chunk;
134 }
135 start = end;
136 }
137 }
138 BUG_ON(len);
139 return elt;
140}
141
142/* Return the number of scatterlist elements required to completely map the
143 * skb, or -EMSGSIZE if the recursion depth is exceeded.
144 */
145static int skb_nsg(struct sk_buff *skb, int offset, int len)
146{
147 return __skb_nsg(skb, offset, len, 0);
148}
149
150static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
151 struct tls_decrypt_arg *darg)
152{
153 struct strp_msg *rxm = strp_msg(skb);
154 struct tls_msg *tlm = tls_msg(skb);
155 int sub = 0;
156
157 /* Determine zero-padding length */
158 if (prot->version == TLS_1_3_VERSION) {
159 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
160 char content_type = darg->zc ? darg->tail : 0;
161 int err;
162
163 while (content_type == 0) {
164 if (offset < prot->prepend_size)
165 return -EBADMSG;
166 err = skb_copy_bits(skb, rxm->offset + offset,
167 &content_type, 1);
168 if (err)
169 return err;
170 if (content_type)
171 break;
172 sub++;
173 offset--;
174 }
175 tlm->control = content_type;
176 }
177 return sub;
178}
179
180static void tls_decrypt_done(struct crypto_async_request *req, int err)
181{
182 struct aead_request *aead_req = (struct aead_request *)req;
183 struct scatterlist *sgout = aead_req->dst;
184 struct scatterlist *sgin = aead_req->src;
185 struct tls_sw_context_rx *ctx;
186 struct tls_context *tls_ctx;
187 struct scatterlist *sg;
188 unsigned int pages;
189 struct sock *sk;
190
191 sk = (struct sock *)req->data;
192 tls_ctx = tls_get_ctx(sk);
193 ctx = tls_sw_ctx_rx(tls_ctx);
194
195 /* Propagate if there was an err */
196 if (err) {
197 if (err == -EBADMSG)
198 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
199 ctx->async_wait.err = err;
200 tls_err_abort(sk, err);
201 }
202
203 /* Free the destination pages if skb was not decrypted inplace */
204 if (sgout != sgin) {
205 /* Skip the first S/G entry as it points to AAD */
206 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
207 if (!sg)
208 break;
209 put_page(sg_page(sg));
210 }
211 }
212
213 kfree(aead_req);
214
215 spin_lock_bh(&ctx->decrypt_compl_lock);
216 if (!atomic_dec_return(&ctx->decrypt_pending))
217 complete(&ctx->async_wait.completion);
218 spin_unlock_bh(&ctx->decrypt_compl_lock);
219}
220
221static int tls_do_decryption(struct sock *sk,
222 struct scatterlist *sgin,
223 struct scatterlist *sgout,
224 char *iv_recv,
225 size_t data_len,
226 struct aead_request *aead_req,
227 struct tls_decrypt_arg *darg)
228{
229 struct tls_context *tls_ctx = tls_get_ctx(sk);
230 struct tls_prot_info *prot = &tls_ctx->prot_info;
231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
232 int ret;
233
234 aead_request_set_tfm(aead_req, ctx->aead_recv);
235 aead_request_set_ad(aead_req, prot->aad_size);
236 aead_request_set_crypt(aead_req, sgin, sgout,
237 data_len + prot->tag_size,
238 (u8 *)iv_recv);
239
240 if (darg->async) {
241 aead_request_set_callback(aead_req,
242 CRYPTO_TFM_REQ_MAY_BACKLOG,
243 tls_decrypt_done, sk);
244 atomic_inc(&ctx->decrypt_pending);
245 } else {
246 aead_request_set_callback(aead_req,
247 CRYPTO_TFM_REQ_MAY_BACKLOG,
248 crypto_req_done, &ctx->async_wait);
249 }
250
251 ret = crypto_aead_decrypt(aead_req);
252 if (ret == -EINPROGRESS) {
253 if (darg->async)
254 return 0;
255
256 ret = crypto_wait_req(ret, &ctx->async_wait);
257 }
258 darg->async = false;
259
260 return ret;
261}
262
263static void tls_trim_both_msgs(struct sock *sk, int target_size)
264{
265 struct tls_context *tls_ctx = tls_get_ctx(sk);
266 struct tls_prot_info *prot = &tls_ctx->prot_info;
267 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
268 struct tls_rec *rec = ctx->open_rec;
269
270 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
271 if (target_size > 0)
272 target_size += prot->overhead_size;
273 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
274}
275
276static int tls_alloc_encrypted_msg(struct sock *sk, int len)
277{
278 struct tls_context *tls_ctx = tls_get_ctx(sk);
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
281 struct sk_msg *msg_en = &rec->msg_encrypted;
282
283 return sk_msg_alloc(sk, msg_en, len, 0);
284}
285
286static int tls_clone_plaintext_msg(struct sock *sk, int required)
287{
288 struct tls_context *tls_ctx = tls_get_ctx(sk);
289 struct tls_prot_info *prot = &tls_ctx->prot_info;
290 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
291 struct tls_rec *rec = ctx->open_rec;
292 struct sk_msg *msg_pl = &rec->msg_plaintext;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
294 int skip, len;
295
296 /* We add page references worth len bytes from encrypted sg
297 * at the end of plaintext sg. It is guaranteed that msg_en
298 * has enough required room (ensured by caller).
299 */
300 len = required - msg_pl->sg.size;
301
302 /* Skip initial bytes in msg_en's data to be able to use
303 * same offset of both plain and encrypted data.
304 */
305 skip = prot->prepend_size + msg_pl->sg.size;
306
307 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
308}
309
310static struct tls_rec *tls_get_rec(struct sock *sk)
311{
312 struct tls_context *tls_ctx = tls_get_ctx(sk);
313 struct tls_prot_info *prot = &tls_ctx->prot_info;
314 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
315 struct sk_msg *msg_pl, *msg_en;
316 struct tls_rec *rec;
317 int mem_size;
318
319 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
320
321 rec = kzalloc(mem_size, sk->sk_allocation);
322 if (!rec)
323 return NULL;
324
325 msg_pl = &rec->msg_plaintext;
326 msg_en = &rec->msg_encrypted;
327
328 sk_msg_init(msg_pl);
329 sk_msg_init(msg_en);
330
331 sg_init_table(rec->sg_aead_in, 2);
332 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
333 sg_unmark_end(&rec->sg_aead_in[1]);
334
335 sg_init_table(rec->sg_aead_out, 2);
336 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
337 sg_unmark_end(&rec->sg_aead_out[1]);
338
339 return rec;
340}
341
342static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
343{
344 sk_msg_free(sk, &rec->msg_encrypted);
345 sk_msg_free(sk, &rec->msg_plaintext);
346 kfree(rec);
347}
348
349static void tls_free_open_rec(struct sock *sk)
350{
351 struct tls_context *tls_ctx = tls_get_ctx(sk);
352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353 struct tls_rec *rec = ctx->open_rec;
354
355 if (rec) {
356 tls_free_rec(sk, rec);
357 ctx->open_rec = NULL;
358 }
359}
360
361int tls_tx_records(struct sock *sk, int flags)
362{
363 struct tls_context *tls_ctx = tls_get_ctx(sk);
364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365 struct tls_rec *rec, *tmp;
366 struct sk_msg *msg_en;
367 int tx_flags, rc = 0;
368
369 if (tls_is_partially_sent_record(tls_ctx)) {
370 rec = list_first_entry(&ctx->tx_list,
371 struct tls_rec, list);
372
373 if (flags == -1)
374 tx_flags = rec->tx_flags;
375 else
376 tx_flags = flags;
377
378 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
379 if (rc)
380 goto tx_err;
381
382 /* Full record has been transmitted.
383 * Remove the head of tx_list
384 */
385 list_del(&rec->list);
386 sk_msg_free(sk, &rec->msg_plaintext);
387 kfree(rec);
388 }
389
390 /* Tx all ready records */
391 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
392 if (READ_ONCE(rec->tx_ready)) {
393 if (flags == -1)
394 tx_flags = rec->tx_flags;
395 else
396 tx_flags = flags;
397
398 msg_en = &rec->msg_encrypted;
399 rc = tls_push_sg(sk, tls_ctx,
400 &msg_en->sg.data[msg_en->sg.curr],
401 0, tx_flags);
402 if (rc)
403 goto tx_err;
404
405 list_del(&rec->list);
406 sk_msg_free(sk, &rec->msg_plaintext);
407 kfree(rec);
408 } else {
409 break;
410 }
411 }
412
413tx_err:
414 if (rc < 0 && rc != -EAGAIN)
415 tls_err_abort(sk, -EBADMSG);
416
417 return rc;
418}
419
420static void tls_encrypt_done(struct crypto_async_request *req, int err)
421{
422 struct aead_request *aead_req = (struct aead_request *)req;
423 struct sock *sk = req->data;
424 struct tls_context *tls_ctx = tls_get_ctx(sk);
425 struct tls_prot_info *prot = &tls_ctx->prot_info;
426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
427 struct scatterlist *sge;
428 struct sk_msg *msg_en;
429 struct tls_rec *rec;
430 bool ready = false;
431 int pending;
432
433 rec = container_of(aead_req, struct tls_rec, aead_req);
434 msg_en = &rec->msg_encrypted;
435
436 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
437 sge->offset -= prot->prepend_size;
438 sge->length += prot->prepend_size;
439
440 /* Check if error is previously set on socket */
441 if (err || sk->sk_err) {
442 rec = NULL;
443
444 /* If err is already set on socket, return the same code */
445 if (sk->sk_err) {
446 ctx->async_wait.err = -sk->sk_err;
447 } else {
448 ctx->async_wait.err = err;
449 tls_err_abort(sk, err);
450 }
451 }
452
453 if (rec) {
454 struct tls_rec *first_rec;
455
456 /* Mark the record as ready for transmission */
457 smp_store_mb(rec->tx_ready, true);
458
459 /* If received record is at head of tx_list, schedule tx */
460 first_rec = list_first_entry(&ctx->tx_list,
461 struct tls_rec, list);
462 if (rec == first_rec)
463 ready = true;
464 }
465
466 spin_lock_bh(&ctx->encrypt_compl_lock);
467 pending = atomic_dec_return(&ctx->encrypt_pending);
468
469 if (!pending && ctx->async_notify)
470 complete(&ctx->async_wait.completion);
471 spin_unlock_bh(&ctx->encrypt_compl_lock);
472
473 if (!ready)
474 return;
475
476 /* Schedule the transmission */
477 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
478 schedule_delayed_work(&ctx->tx_work.work, 1);
479}
480
481static int tls_do_encryption(struct sock *sk,
482 struct tls_context *tls_ctx,
483 struct tls_sw_context_tx *ctx,
484 struct aead_request *aead_req,
485 size_t data_len, u32 start)
486{
487 struct tls_prot_info *prot = &tls_ctx->prot_info;
488 struct tls_rec *rec = ctx->open_rec;
489 struct sk_msg *msg_en = &rec->msg_encrypted;
490 struct scatterlist *sge = sk_msg_elem(msg_en, start);
491 int rc, iv_offset = 0;
492
493 /* For CCM based ciphers, first byte of IV is a constant */
494 switch (prot->cipher_type) {
495 case TLS_CIPHER_AES_CCM_128:
496 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
497 iv_offset = 1;
498 break;
499 case TLS_CIPHER_SM4_CCM:
500 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
501 iv_offset = 1;
502 break;
503 }
504
505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 prot->iv_size + prot->salt_size);
507
508 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
509 tls_ctx->tx.rec_seq);
510
511 sge->offset += prot->prepend_size;
512 sge->length -= prot->prepend_size;
513
514 msg_en->sg.curr = start;
515
516 aead_request_set_tfm(aead_req, ctx->aead_send);
517 aead_request_set_ad(aead_req, prot->aad_size);
518 aead_request_set_crypt(aead_req, rec->sg_aead_in,
519 rec->sg_aead_out,
520 data_len, rec->iv_data);
521
522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523 tls_encrypt_done, sk);
524
525 /* Add the record in tx_list */
526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527 atomic_inc(&ctx->encrypt_pending);
528
529 rc = crypto_aead_encrypt(aead_req);
530 if (!rc || rc != -EINPROGRESS) {
531 atomic_dec(&ctx->encrypt_pending);
532 sge->offset -= prot->prepend_size;
533 sge->length += prot->prepend_size;
534 }
535
536 if (!rc) {
537 WRITE_ONCE(rec->tx_ready, true);
538 } else if (rc != -EINPROGRESS) {
539 list_del(&rec->list);
540 return rc;
541 }
542
543 /* Unhook the record from context if encryption is not failure */
544 ctx->open_rec = NULL;
545 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546 return rc;
547}
548
549static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550 struct tls_rec **to, struct sk_msg *msg_opl,
551 struct sk_msg *msg_oen, u32 split_point,
552 u32 tx_overhead_size, u32 *orig_end)
553{
554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555 struct scatterlist *sge, *osge, *nsge;
556 u32 orig_size = msg_opl->sg.size;
557 struct scatterlist tmp = { };
558 struct sk_msg *msg_npl;
559 struct tls_rec *new;
560 int ret;
561
562 new = tls_get_rec(sk);
563 if (!new)
564 return -ENOMEM;
565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566 tx_overhead_size, 0);
567 if (ret < 0) {
568 tls_free_rec(sk, new);
569 return ret;
570 }
571
572 *orig_end = msg_opl->sg.end;
573 i = msg_opl->sg.start;
574 sge = sk_msg_elem(msg_opl, i);
575 while (apply && sge->length) {
576 if (sge->length > apply) {
577 u32 len = sge->length - apply;
578
579 get_page(sg_page(sge));
580 sg_set_page(&tmp, sg_page(sge), len,
581 sge->offset + apply);
582 sge->length = apply;
583 bytes += apply;
584 apply = 0;
585 } else {
586 apply -= sge->length;
587 bytes += sge->length;
588 }
589
590 sk_msg_iter_var_next(i);
591 if (i == msg_opl->sg.end)
592 break;
593 sge = sk_msg_elem(msg_opl, i);
594 }
595
596 msg_opl->sg.end = i;
597 msg_opl->sg.curr = i;
598 msg_opl->sg.copybreak = 0;
599 msg_opl->apply_bytes = 0;
600 msg_opl->sg.size = bytes;
601
602 msg_npl = &new->msg_plaintext;
603 msg_npl->apply_bytes = apply;
604 msg_npl->sg.size = orig_size - bytes;
605
606 j = msg_npl->sg.start;
607 nsge = sk_msg_elem(msg_npl, j);
608 if (tmp.length) {
609 memcpy(nsge, &tmp, sizeof(*nsge));
610 sk_msg_iter_var_next(j);
611 nsge = sk_msg_elem(msg_npl, j);
612 }
613
614 osge = sk_msg_elem(msg_opl, i);
615 while (osge->length) {
616 memcpy(nsge, osge, sizeof(*nsge));
617 sg_unmark_end(nsge);
618 sk_msg_iter_var_next(i);
619 sk_msg_iter_var_next(j);
620 if (i == *orig_end)
621 break;
622 osge = sk_msg_elem(msg_opl, i);
623 nsge = sk_msg_elem(msg_npl, j);
624 }
625
626 msg_npl->sg.end = j;
627 msg_npl->sg.curr = j;
628 msg_npl->sg.copybreak = 0;
629
630 *to = new;
631 return 0;
632}
633
634static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635 struct tls_rec *from, u32 orig_end)
636{
637 struct sk_msg *msg_npl = &from->msg_plaintext;
638 struct sk_msg *msg_opl = &to->msg_plaintext;
639 struct scatterlist *osge, *nsge;
640 u32 i, j;
641
642 i = msg_opl->sg.end;
643 sk_msg_iter_var_prev(i);
644 j = msg_npl->sg.start;
645
646 osge = sk_msg_elem(msg_opl, i);
647 nsge = sk_msg_elem(msg_npl, j);
648
649 if (sg_page(osge) == sg_page(nsge) &&
650 osge->offset + osge->length == nsge->offset) {
651 osge->length += nsge->length;
652 put_page(sg_page(nsge));
653 }
654
655 msg_opl->sg.end = orig_end;
656 msg_opl->sg.curr = orig_end;
657 msg_opl->sg.copybreak = 0;
658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659 msg_opl->sg.size += msg_npl->sg.size;
660
661 sk_msg_free(sk, &to->msg_encrypted);
662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663
664 kfree(from);
665}
666
667static int tls_push_record(struct sock *sk, int flags,
668 unsigned char record_type)
669{
670 struct tls_context *tls_ctx = tls_get_ctx(sk);
671 struct tls_prot_info *prot = &tls_ctx->prot_info;
672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674 u32 i, split_point, orig_end;
675 struct sk_msg *msg_pl, *msg_en;
676 struct aead_request *req;
677 bool split;
678 int rc;
679
680 if (!rec)
681 return 0;
682
683 msg_pl = &rec->msg_plaintext;
684 msg_en = &rec->msg_encrypted;
685
686 split_point = msg_pl->apply_bytes;
687 split = split_point && split_point < msg_pl->sg.size;
688 if (unlikely((!split &&
689 msg_pl->sg.size +
690 prot->overhead_size > msg_en->sg.size) ||
691 (split &&
692 split_point +
693 prot->overhead_size > msg_en->sg.size))) {
694 split = true;
695 split_point = msg_en->sg.size;
696 }
697 if (split) {
698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699 split_point, prot->overhead_size,
700 &orig_end);
701 if (rc < 0)
702 return rc;
703 /* This can happen if above tls_split_open_record allocates
704 * a single large encryption buffer instead of two smaller
705 * ones. In this case adjust pointers and continue without
706 * split.
707 */
708 if (!msg_pl->sg.size) {
709 tls_merge_open_record(sk, rec, tmp, orig_end);
710 msg_pl = &rec->msg_plaintext;
711 msg_en = &rec->msg_encrypted;
712 split = false;
713 }
714 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715 prot->overhead_size);
716 }
717
718 rec->tx_flags = flags;
719 req = &rec->aead_req;
720
721 i = msg_pl->sg.end;
722 sk_msg_iter_var_prev(i);
723
724 rec->content_type = record_type;
725 if (prot->version == TLS_1_3_VERSION) {
726 /* Add content type to end of message. No padding added */
727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728 sg_mark_end(&rec->sg_content_type);
729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730 &rec->sg_content_type);
731 } else {
732 sg_mark_end(sk_msg_elem(msg_pl, i));
733 }
734
735 if (msg_pl->sg.end < msg_pl->sg.start) {
736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738 msg_pl->sg.data);
739 }
740
741 i = msg_pl->sg.start;
742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743
744 i = msg_en->sg.end;
745 sk_msg_iter_var_prev(i);
746 sg_mark_end(sk_msg_elem(msg_en, i));
747
748 i = msg_en->sg.start;
749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750
751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752 tls_ctx->tx.rec_seq, record_type, prot);
753
754 tls_fill_prepend(tls_ctx,
755 page_address(sg_page(&msg_en->sg.data[i])) +
756 msg_en->sg.data[i].offset,
757 msg_pl->sg.size + prot->tail_size,
758 record_type);
759
760 tls_ctx->pending_open_record_frags = false;
761
762 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 msg_pl->sg.size + prot->tail_size, i);
764 if (rc < 0) {
765 if (rc != -EINPROGRESS) {
766 tls_err_abort(sk, -EBADMSG);
767 if (split) {
768 tls_ctx->pending_open_record_frags = true;
769 tls_merge_open_record(sk, rec, tmp, orig_end);
770 }
771 }
772 ctx->async_capable = 1;
773 return rc;
774 } else if (split) {
775 msg_pl = &tmp->msg_plaintext;
776 msg_en = &tmp->msg_encrypted;
777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 tls_ctx->pending_open_record_frags = true;
779 ctx->open_rec = tmp;
780 }
781
782 return tls_tx_records(sk, flags);
783}
784
785static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 bool full_record, u8 record_type,
787 ssize_t *copied, int flags)
788{
789 struct tls_context *tls_ctx = tls_get_ctx(sk);
790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 struct sk_msg msg_redir = { };
792 struct sk_psock *psock;
793 struct sock *sk_redir;
794 struct tls_rec *rec;
795 bool enospc, policy, redir_ingress;
796 int err = 0, send;
797 u32 delta = 0;
798
799 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 psock = sk_psock_get(sk);
801 if (!psock || !policy) {
802 err = tls_push_record(sk, flags, record_type);
803 if (err && sk->sk_err == EBADMSG) {
804 *copied -= sk_msg_free(sk, msg);
805 tls_free_open_rec(sk);
806 err = -sk->sk_err;
807 }
808 if (psock)
809 sk_psock_put(sk, psock);
810 return err;
811 }
812more_data:
813 enospc = sk_msg_full(msg);
814 if (psock->eval == __SK_NONE) {
815 delta = msg->sg.size;
816 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 delta -= msg->sg.size;
818 }
819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 !enospc && !full_record) {
821 err = -ENOSPC;
822 goto out_err;
823 }
824 msg->cork_bytes = 0;
825 send = msg->sg.size;
826 if (msg->apply_bytes && msg->apply_bytes < send)
827 send = msg->apply_bytes;
828
829 switch (psock->eval) {
830 case __SK_PASS:
831 err = tls_push_record(sk, flags, record_type);
832 if (err && sk->sk_err == EBADMSG) {
833 *copied -= sk_msg_free(sk, msg);
834 tls_free_open_rec(sk);
835 err = -sk->sk_err;
836 goto out_err;
837 }
838 break;
839 case __SK_REDIRECT:
840 redir_ingress = psock->redir_ingress;
841 sk_redir = psock->sk_redir;
842 memcpy(&msg_redir, msg, sizeof(*msg));
843 if (msg->apply_bytes < send)
844 msg->apply_bytes = 0;
845 else
846 msg->apply_bytes -= send;
847 sk_msg_return_zero(sk, msg, send);
848 msg->sg.size -= send;
849 release_sock(sk);
850 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
851 &msg_redir, send, flags);
852 lock_sock(sk);
853 if (err < 0) {
854 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
855 msg->sg.size = 0;
856 }
857 if (msg->sg.size == 0)
858 tls_free_open_rec(sk);
859 break;
860 case __SK_DROP:
861 default:
862 sk_msg_free_partial(sk, msg, send);
863 if (msg->apply_bytes < send)
864 msg->apply_bytes = 0;
865 else
866 msg->apply_bytes -= send;
867 if (msg->sg.size == 0)
868 tls_free_open_rec(sk);
869 *copied -= (send + delta);
870 err = -EACCES;
871 }
872
873 if (likely(!err)) {
874 bool reset_eval = !ctx->open_rec;
875
876 rec = ctx->open_rec;
877 if (rec) {
878 msg = &rec->msg_plaintext;
879 if (!msg->apply_bytes)
880 reset_eval = true;
881 }
882 if (reset_eval) {
883 psock->eval = __SK_NONE;
884 if (psock->sk_redir) {
885 sock_put(psock->sk_redir);
886 psock->sk_redir = NULL;
887 }
888 }
889 if (rec)
890 goto more_data;
891 }
892 out_err:
893 sk_psock_put(sk, psock);
894 return err;
895}
896
897static int tls_sw_push_pending_record(struct sock *sk, int flags)
898{
899 struct tls_context *tls_ctx = tls_get_ctx(sk);
900 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
901 struct tls_rec *rec = ctx->open_rec;
902 struct sk_msg *msg_pl;
903 size_t copied;
904
905 if (!rec)
906 return 0;
907
908 msg_pl = &rec->msg_plaintext;
909 copied = msg_pl->sg.size;
910 if (!copied)
911 return 0;
912
913 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
914 &copied, flags);
915}
916
917int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
918{
919 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
920 struct tls_context *tls_ctx = tls_get_ctx(sk);
921 struct tls_prot_info *prot = &tls_ctx->prot_info;
922 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
923 bool async_capable = ctx->async_capable;
924 unsigned char record_type = TLS_RECORD_TYPE_DATA;
925 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
926 bool eor = !(msg->msg_flags & MSG_MORE);
927 size_t try_to_copy;
928 ssize_t copied = 0;
929 struct sk_msg *msg_pl, *msg_en;
930 struct tls_rec *rec;
931 int required_size;
932 int num_async = 0;
933 bool full_record;
934 int record_room;
935 int num_zc = 0;
936 int orig_size;
937 int ret = 0;
938 int pending;
939
940 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
941 MSG_CMSG_COMPAT))
942 return -EOPNOTSUPP;
943
944 mutex_lock(&tls_ctx->tx_lock);
945 lock_sock(sk);
946
947 if (unlikely(msg->msg_controllen)) {
948 ret = tls_process_cmsg(sk, msg, &record_type);
949 if (ret) {
950 if (ret == -EINPROGRESS)
951 num_async++;
952 else if (ret != -EAGAIN)
953 goto send_end;
954 }
955 }
956
957 while (msg_data_left(msg)) {
958 if (sk->sk_err) {
959 ret = -sk->sk_err;
960 goto send_end;
961 }
962
963 if (ctx->open_rec)
964 rec = ctx->open_rec;
965 else
966 rec = ctx->open_rec = tls_get_rec(sk);
967 if (!rec) {
968 ret = -ENOMEM;
969 goto send_end;
970 }
971
972 msg_pl = &rec->msg_plaintext;
973 msg_en = &rec->msg_encrypted;
974
975 orig_size = msg_pl->sg.size;
976 full_record = false;
977 try_to_copy = msg_data_left(msg);
978 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
979 if (try_to_copy >= record_room) {
980 try_to_copy = record_room;
981 full_record = true;
982 }
983
984 required_size = msg_pl->sg.size + try_to_copy +
985 prot->overhead_size;
986
987 if (!sk_stream_memory_free(sk))
988 goto wait_for_sndbuf;
989
990alloc_encrypted:
991 ret = tls_alloc_encrypted_msg(sk, required_size);
992 if (ret) {
993 if (ret != -ENOSPC)
994 goto wait_for_memory;
995
996 /* Adjust try_to_copy according to the amount that was
997 * actually allocated. The difference is due
998 * to max sg elements limit
999 */
1000 try_to_copy -= required_size - msg_en->sg.size;
1001 full_record = true;
1002 }
1003
1004 if (!is_kvec && (full_record || eor) && !async_capable) {
1005 u32 first = msg_pl->sg.end;
1006
1007 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1008 msg_pl, try_to_copy);
1009 if (ret)
1010 goto fallback_to_reg_send;
1011
1012 num_zc++;
1013 copied += try_to_copy;
1014
1015 sk_msg_sg_copy_set(msg_pl, first);
1016 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1017 record_type, &copied,
1018 msg->msg_flags);
1019 if (ret) {
1020 if (ret == -EINPROGRESS)
1021 num_async++;
1022 else if (ret == -ENOMEM)
1023 goto wait_for_memory;
1024 else if (ctx->open_rec && ret == -ENOSPC)
1025 goto rollback_iter;
1026 else if (ret != -EAGAIN)
1027 goto send_end;
1028 }
1029 continue;
1030rollback_iter:
1031 copied -= try_to_copy;
1032 sk_msg_sg_copy_clear(msg_pl, first);
1033 iov_iter_revert(&msg->msg_iter,
1034 msg_pl->sg.size - orig_size);
1035fallback_to_reg_send:
1036 sk_msg_trim(sk, msg_pl, orig_size);
1037 }
1038
1039 required_size = msg_pl->sg.size + try_to_copy;
1040
1041 ret = tls_clone_plaintext_msg(sk, required_size);
1042 if (ret) {
1043 if (ret != -ENOSPC)
1044 goto send_end;
1045
1046 /* Adjust try_to_copy according to the amount that was
1047 * actually allocated. The difference is due
1048 * to max sg elements limit
1049 */
1050 try_to_copy -= required_size - msg_pl->sg.size;
1051 full_record = true;
1052 sk_msg_trim(sk, msg_en,
1053 msg_pl->sg.size + prot->overhead_size);
1054 }
1055
1056 if (try_to_copy) {
1057 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1058 msg_pl, try_to_copy);
1059 if (ret < 0)
1060 goto trim_sgl;
1061 }
1062
1063 /* Open records defined only if successfully copied, otherwise
1064 * we would trim the sg but not reset the open record frags.
1065 */
1066 tls_ctx->pending_open_record_frags = true;
1067 copied += try_to_copy;
1068 if (full_record || eor) {
1069 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1070 record_type, &copied,
1071 msg->msg_flags);
1072 if (ret) {
1073 if (ret == -EINPROGRESS)
1074 num_async++;
1075 else if (ret == -ENOMEM)
1076 goto wait_for_memory;
1077 else if (ret != -EAGAIN) {
1078 if (ret == -ENOSPC)
1079 ret = 0;
1080 goto send_end;
1081 }
1082 }
1083 }
1084
1085 continue;
1086
1087wait_for_sndbuf:
1088 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1089wait_for_memory:
1090 ret = sk_stream_wait_memory(sk, &timeo);
1091 if (ret) {
1092trim_sgl:
1093 if (ctx->open_rec)
1094 tls_trim_both_msgs(sk, orig_size);
1095 goto send_end;
1096 }
1097
1098 if (ctx->open_rec && msg_en->sg.size < required_size)
1099 goto alloc_encrypted;
1100 }
1101
1102 if (!num_async) {
1103 goto send_end;
1104 } else if (num_zc) {
1105 /* Wait for pending encryptions to get completed */
1106 spin_lock_bh(&ctx->encrypt_compl_lock);
1107 ctx->async_notify = true;
1108
1109 pending = atomic_read(&ctx->encrypt_pending);
1110 spin_unlock_bh(&ctx->encrypt_compl_lock);
1111 if (pending)
1112 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1113 else
1114 reinit_completion(&ctx->async_wait.completion);
1115
1116 /* There can be no concurrent accesses, since we have no
1117 * pending encrypt operations
1118 */
1119 WRITE_ONCE(ctx->async_notify, false);
1120
1121 if (ctx->async_wait.err) {
1122 ret = ctx->async_wait.err;
1123 copied = 0;
1124 }
1125 }
1126
1127 /* Transmit if any encryptions have completed */
1128 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1129 cancel_delayed_work(&ctx->tx_work.work);
1130 tls_tx_records(sk, msg->msg_flags);
1131 }
1132
1133send_end:
1134 ret = sk_stream_error(sk, msg->msg_flags, ret);
1135
1136 release_sock(sk);
1137 mutex_unlock(&tls_ctx->tx_lock);
1138 return copied > 0 ? copied : ret;
1139}
1140
1141static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1142 int offset, size_t size, int flags)
1143{
1144 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1145 struct tls_context *tls_ctx = tls_get_ctx(sk);
1146 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1147 struct tls_prot_info *prot = &tls_ctx->prot_info;
1148 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1149 struct sk_msg *msg_pl;
1150 struct tls_rec *rec;
1151 int num_async = 0;
1152 ssize_t copied = 0;
1153 bool full_record;
1154 int record_room;
1155 int ret = 0;
1156 bool eor;
1157
1158 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1159 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1160
1161 /* Call the sk_stream functions to manage the sndbuf mem. */
1162 while (size > 0) {
1163 size_t copy, required_size;
1164
1165 if (sk->sk_err) {
1166 ret = -sk->sk_err;
1167 goto sendpage_end;
1168 }
1169
1170 if (ctx->open_rec)
1171 rec = ctx->open_rec;
1172 else
1173 rec = ctx->open_rec = tls_get_rec(sk);
1174 if (!rec) {
1175 ret = -ENOMEM;
1176 goto sendpage_end;
1177 }
1178
1179 msg_pl = &rec->msg_plaintext;
1180
1181 full_record = false;
1182 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1183 copy = size;
1184 if (copy >= record_room) {
1185 copy = record_room;
1186 full_record = true;
1187 }
1188
1189 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1190
1191 if (!sk_stream_memory_free(sk))
1192 goto wait_for_sndbuf;
1193alloc_payload:
1194 ret = tls_alloc_encrypted_msg(sk, required_size);
1195 if (ret) {
1196 if (ret != -ENOSPC)
1197 goto wait_for_memory;
1198
1199 /* Adjust copy according to the amount that was
1200 * actually allocated. The difference is due
1201 * to max sg elements limit
1202 */
1203 copy -= required_size - msg_pl->sg.size;
1204 full_record = true;
1205 }
1206
1207 sk_msg_page_add(msg_pl, page, copy, offset);
1208 sk_mem_charge(sk, copy);
1209
1210 offset += copy;
1211 size -= copy;
1212 copied += copy;
1213
1214 tls_ctx->pending_open_record_frags = true;
1215 if (full_record || eor || sk_msg_full(msg_pl)) {
1216 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1217 record_type, &copied, flags);
1218 if (ret) {
1219 if (ret == -EINPROGRESS)
1220 num_async++;
1221 else if (ret == -ENOMEM)
1222 goto wait_for_memory;
1223 else if (ret != -EAGAIN) {
1224 if (ret == -ENOSPC)
1225 ret = 0;
1226 goto sendpage_end;
1227 }
1228 }
1229 }
1230 continue;
1231wait_for_sndbuf:
1232 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1233wait_for_memory:
1234 ret = sk_stream_wait_memory(sk, &timeo);
1235 if (ret) {
1236 if (ctx->open_rec)
1237 tls_trim_both_msgs(sk, msg_pl->sg.size);
1238 goto sendpage_end;
1239 }
1240
1241 if (ctx->open_rec)
1242 goto alloc_payload;
1243 }
1244
1245 if (num_async) {
1246 /* Transmit if any encryptions have completed */
1247 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1248 cancel_delayed_work(&ctx->tx_work.work);
1249 tls_tx_records(sk, flags);
1250 }
1251 }
1252sendpage_end:
1253 ret = sk_stream_error(sk, flags, ret);
1254 return copied > 0 ? copied : ret;
1255}
1256
1257int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1258 int offset, size_t size, int flags)
1259{
1260 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1261 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1262 MSG_NO_SHARED_FRAGS))
1263 return -EOPNOTSUPP;
1264
1265 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1266}
1267
1268int tls_sw_sendpage(struct sock *sk, struct page *page,
1269 int offset, size_t size, int flags)
1270{
1271 struct tls_context *tls_ctx = tls_get_ctx(sk);
1272 int ret;
1273
1274 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1275 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1276 return -EOPNOTSUPP;
1277
1278 mutex_lock(&tls_ctx->tx_lock);
1279 lock_sock(sk);
1280 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1281 release_sock(sk);
1282 mutex_unlock(&tls_ctx->tx_lock);
1283 return ret;
1284}
1285
1286static int
1287tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1288 bool released)
1289{
1290 struct tls_context *tls_ctx = tls_get_ctx(sk);
1291 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1292 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1293 long timeo;
1294
1295 timeo = sock_rcvtimeo(sk, nonblock);
1296
1297 while (!tls_strp_msg_ready(ctx)) {
1298 if (!sk_psock_queue_empty(psock))
1299 return 0;
1300
1301 if (sk->sk_err)
1302 return sock_error(sk);
1303
1304 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1305 tls_strp_check_rcv(&ctx->strp);
1306 if (tls_strp_msg_ready(ctx))
1307 break;
1308 }
1309
1310 if (sk->sk_shutdown & RCV_SHUTDOWN)
1311 return 0;
1312
1313 if (sock_flag(sk, SOCK_DONE))
1314 return 0;
1315
1316 if (!timeo)
1317 return -EAGAIN;
1318
1319 released = true;
1320 add_wait_queue(sk_sleep(sk), &wait);
1321 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322 sk_wait_event(sk, &timeo,
1323 tls_strp_msg_ready(ctx) ||
1324 !sk_psock_queue_empty(psock),
1325 &wait);
1326 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1327 remove_wait_queue(sk_sleep(sk), &wait);
1328
1329 /* Handle signals */
1330 if (signal_pending(current))
1331 return sock_intr_errno(timeo);
1332 }
1333
1334 tls_strp_msg_load(&ctx->strp, released);
1335
1336 return 1;
1337}
1338
1339static int tls_setup_from_iter(struct iov_iter *from,
1340 int length, int *pages_used,
1341 struct scatterlist *to,
1342 int to_max_pages)
1343{
1344 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1345 struct page *pages[MAX_SKB_FRAGS];
1346 unsigned int size = 0;
1347 ssize_t copied, use;
1348 size_t offset;
1349
1350 while (length > 0) {
1351 i = 0;
1352 maxpages = to_max_pages - num_elem;
1353 if (maxpages == 0) {
1354 rc = -EFAULT;
1355 goto out;
1356 }
1357 copied = iov_iter_get_pages2(from, pages,
1358 length,
1359 maxpages, &offset);
1360 if (copied <= 0) {
1361 rc = -EFAULT;
1362 goto out;
1363 }
1364
1365 length -= copied;
1366 size += copied;
1367 while (copied) {
1368 use = min_t(int, copied, PAGE_SIZE - offset);
1369
1370 sg_set_page(&to[num_elem],
1371 pages[i], use, offset);
1372 sg_unmark_end(&to[num_elem]);
1373 /* We do not uncharge memory from this API */
1374
1375 offset = 0;
1376 copied -= use;
1377
1378 i++;
1379 num_elem++;
1380 }
1381 }
1382 /* Mark the end in the last sg entry if newly added */
1383 if (num_elem > *pages_used)
1384 sg_mark_end(&to[num_elem - 1]);
1385out:
1386 if (rc)
1387 iov_iter_revert(from, size);
1388 *pages_used = num_elem;
1389
1390 return rc;
1391}
1392
1393static struct sk_buff *
1394tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1395 unsigned int full_len)
1396{
1397 struct strp_msg *clr_rxm;
1398 struct sk_buff *clr_skb;
1399 int err;
1400
1401 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1402 &err, sk->sk_allocation);
1403 if (!clr_skb)
1404 return NULL;
1405
1406 skb_copy_header(clr_skb, skb);
1407 clr_skb->len = full_len;
1408 clr_skb->data_len = full_len;
1409
1410 clr_rxm = strp_msg(clr_skb);
1411 clr_rxm->offset = 0;
1412
1413 return clr_skb;
1414}
1415
1416/* Decrypt handlers
1417 *
1418 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1419 * They must transform the darg in/out argument are as follows:
1420 * | Input | Output
1421 * -------------------------------------------------------------------
1422 * zc | Zero-copy decrypt allowed | Zero-copy performed
1423 * async | Async decrypt allowed | Async crypto used / in progress
1424 * skb | * | Output skb
1425 *
1426 * If ZC decryption was performed darg.skb will point to the input skb.
1427 */
1428
1429/* This function decrypts the input skb into either out_iov or in out_sg
1430 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1431 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1432 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1433 * NULL, then the decryption happens inside skb buffers itself, i.e.
1434 * zero-copy gets disabled and 'darg->zc' is updated.
1435 */
1436static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1437 struct scatterlist *out_sg,
1438 struct tls_decrypt_arg *darg)
1439{
1440 struct tls_context *tls_ctx = tls_get_ctx(sk);
1441 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1442 struct tls_prot_info *prot = &tls_ctx->prot_info;
1443 int n_sgin, n_sgout, aead_size, err, pages = 0;
1444 struct sk_buff *skb = tls_strp_msg(ctx);
1445 const struct strp_msg *rxm = strp_msg(skb);
1446 const struct tls_msg *tlm = tls_msg(skb);
1447 struct aead_request *aead_req;
1448 struct scatterlist *sgin = NULL;
1449 struct scatterlist *sgout = NULL;
1450 const int data_len = rxm->full_len - prot->overhead_size;
1451 int tail_pages = !!prot->tail_size;
1452 struct tls_decrypt_ctx *dctx;
1453 struct sk_buff *clear_skb;
1454 int iv_offset = 0;
1455 u8 *mem;
1456
1457 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1458 rxm->full_len - prot->prepend_size);
1459 if (n_sgin < 1)
1460 return n_sgin ?: -EBADMSG;
1461
1462 if (darg->zc && (out_iov || out_sg)) {
1463 clear_skb = NULL;
1464
1465 if (out_iov)
1466 n_sgout = 1 + tail_pages +
1467 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1468 else
1469 n_sgout = sg_nents(out_sg);
1470 } else {
1471 darg->zc = false;
1472
1473 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1474 if (!clear_skb)
1475 return -ENOMEM;
1476
1477 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1478 }
1479
1480 /* Increment to accommodate AAD */
1481 n_sgin = n_sgin + 1;
1482
1483 /* Allocate a single block of memory which contains
1484 * aead_req || tls_decrypt_ctx.
1485 * Both structs are variable length.
1486 */
1487 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1488 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1489 sk->sk_allocation);
1490 if (!mem) {
1491 err = -ENOMEM;
1492 goto exit_free_skb;
1493 }
1494
1495 /* Segment the allocated memory */
1496 aead_req = (struct aead_request *)mem;
1497 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1498 sgin = &dctx->sg[0];
1499 sgout = &dctx->sg[n_sgin];
1500
1501 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1502 switch (prot->cipher_type) {
1503 case TLS_CIPHER_AES_CCM_128:
1504 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1505 iv_offset = 1;
1506 break;
1507 case TLS_CIPHER_SM4_CCM:
1508 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1509 iv_offset = 1;
1510 break;
1511 }
1512
1513 /* Prepare IV */
1514 if (prot->version == TLS_1_3_VERSION ||
1515 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1516 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1517 prot->iv_size + prot->salt_size);
1518 } else {
1519 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1520 &dctx->iv[iv_offset] + prot->salt_size,
1521 prot->iv_size);
1522 if (err < 0)
1523 goto exit_free;
1524 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1525 }
1526 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1527
1528 /* Prepare AAD */
1529 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1530 prot->tail_size,
1531 tls_ctx->rx.rec_seq, tlm->control, prot);
1532
1533 /* Prepare sgin */
1534 sg_init_table(sgin, n_sgin);
1535 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1536 err = skb_to_sgvec(skb, &sgin[1],
1537 rxm->offset + prot->prepend_size,
1538 rxm->full_len - prot->prepend_size);
1539 if (err < 0)
1540 goto exit_free;
1541
1542 if (clear_skb) {
1543 sg_init_table(sgout, n_sgout);
1544 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1545
1546 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1547 data_len + prot->tail_size);
1548 if (err < 0)
1549 goto exit_free;
1550 } else if (out_iov) {
1551 sg_init_table(sgout, n_sgout);
1552 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1553
1554 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1555 (n_sgout - 1 - tail_pages));
1556 if (err < 0)
1557 goto exit_free_pages;
1558
1559 if (prot->tail_size) {
1560 sg_unmark_end(&sgout[pages]);
1561 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1562 prot->tail_size);
1563 sg_mark_end(&sgout[pages + 1]);
1564 }
1565 } else if (out_sg) {
1566 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1567 }
1568
1569 /* Prepare and submit AEAD request */
1570 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1571 data_len + prot->tail_size, aead_req, darg);
1572 if (err)
1573 goto exit_free_pages;
1574
1575 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1576 clear_skb = NULL;
1577
1578 if (unlikely(darg->async)) {
1579 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1580 if (err)
1581 __skb_queue_tail(&ctx->async_hold, darg->skb);
1582 return err;
1583 }
1584
1585 if (prot->tail_size)
1586 darg->tail = dctx->tail;
1587
1588exit_free_pages:
1589 /* Release the pages in case iov was mapped to pages */
1590 for (; pages > 0; pages--)
1591 put_page(sg_page(&sgout[pages]));
1592exit_free:
1593 kfree(mem);
1594exit_free_skb:
1595 consume_skb(clear_skb);
1596 return err;
1597}
1598
1599static int
1600tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1601 struct msghdr *msg, struct tls_decrypt_arg *darg)
1602{
1603 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1604 struct tls_prot_info *prot = &tls_ctx->prot_info;
1605 struct strp_msg *rxm;
1606 int pad, err;
1607
1608 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1609 if (err < 0) {
1610 if (err == -EBADMSG)
1611 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1612 return err;
1613 }
1614 /* keep going even for ->async, the code below is TLS 1.3 */
1615
1616 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1617 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1618 darg->tail != TLS_RECORD_TYPE_DATA)) {
1619 darg->zc = false;
1620 if (!darg->tail)
1621 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1622 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1623 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1624 }
1625
1626 pad = tls_padding_length(prot, darg->skb, darg);
1627 if (pad < 0) {
1628 if (darg->skb != tls_strp_msg(ctx))
1629 consume_skb(darg->skb);
1630 return pad;
1631 }
1632
1633 rxm = strp_msg(darg->skb);
1634 rxm->full_len -= pad;
1635
1636 return 0;
1637}
1638
1639static int
1640tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1641 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1642{
1643 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1644 struct tls_prot_info *prot = &tls_ctx->prot_info;
1645 struct strp_msg *rxm;
1646 int pad, err;
1647
1648 if (tls_ctx->rx_conf != TLS_HW)
1649 return 0;
1650
1651 err = tls_device_decrypted(sk, tls_ctx);
1652 if (err <= 0)
1653 return err;
1654
1655 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1656 if (pad < 0)
1657 return pad;
1658
1659 darg->async = false;
1660 darg->skb = tls_strp_msg(ctx);
1661 /* ->zc downgrade check, in case TLS 1.3 gets here */
1662 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1663 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1664
1665 rxm = strp_msg(darg->skb);
1666 rxm->full_len -= pad;
1667
1668 if (!darg->zc) {
1669 /* Non-ZC case needs a real skb */
1670 darg->skb = tls_strp_msg_detach(ctx);
1671 if (!darg->skb)
1672 return -ENOMEM;
1673 } else {
1674 unsigned int off, len;
1675
1676 /* In ZC case nobody cares about the output skb.
1677 * Just copy the data here. Note the skb is not fully trimmed.
1678 */
1679 off = rxm->offset + prot->prepend_size;
1680 len = rxm->full_len - prot->overhead_size;
1681
1682 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1683 if (err)
1684 return err;
1685 }
1686 return 1;
1687}
1688
1689static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1690 struct tls_decrypt_arg *darg)
1691{
1692 struct tls_context *tls_ctx = tls_get_ctx(sk);
1693 struct tls_prot_info *prot = &tls_ctx->prot_info;
1694 struct strp_msg *rxm;
1695 int err;
1696
1697 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1698 if (!err)
1699 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1700 if (err < 0)
1701 return err;
1702
1703 rxm = strp_msg(darg->skb);
1704 rxm->offset += prot->prepend_size;
1705 rxm->full_len -= prot->overhead_size;
1706 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1707
1708 return 0;
1709}
1710
1711int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1712{
1713 struct tls_decrypt_arg darg = { .zc = true, };
1714
1715 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1716}
1717
1718static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1719 u8 *control)
1720{
1721 int err;
1722
1723 if (!*control) {
1724 *control = tlm->control;
1725 if (!*control)
1726 return -EBADMSG;
1727
1728 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1729 sizeof(*control), control);
1730 if (*control != TLS_RECORD_TYPE_DATA) {
1731 if (err || msg->msg_flags & MSG_CTRUNC)
1732 return -EIO;
1733 }
1734 } else if (*control != tlm->control) {
1735 return 0;
1736 }
1737
1738 return 1;
1739}
1740
1741static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1742{
1743 tls_strp_msg_done(&ctx->strp);
1744}
1745
1746/* This function traverses the rx_list in tls receive context to copies the
1747 * decrypted records into the buffer provided by caller zero copy is not
1748 * true. Further, the records are removed from the rx_list if it is not a peek
1749 * case and the record has been consumed completely.
1750 */
1751static int process_rx_list(struct tls_sw_context_rx *ctx,
1752 struct msghdr *msg,
1753 u8 *control,
1754 size_t skip,
1755 size_t len,
1756 bool is_peek)
1757{
1758 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1759 struct tls_msg *tlm;
1760 ssize_t copied = 0;
1761 int err;
1762
1763 while (skip && skb) {
1764 struct strp_msg *rxm = strp_msg(skb);
1765 tlm = tls_msg(skb);
1766
1767 err = tls_record_content_type(msg, tlm, control);
1768 if (err <= 0)
1769 goto out;
1770
1771 if (skip < rxm->full_len)
1772 break;
1773
1774 skip = skip - rxm->full_len;
1775 skb = skb_peek_next(skb, &ctx->rx_list);
1776 }
1777
1778 while (len && skb) {
1779 struct sk_buff *next_skb;
1780 struct strp_msg *rxm = strp_msg(skb);
1781 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1782
1783 tlm = tls_msg(skb);
1784
1785 err = tls_record_content_type(msg, tlm, control);
1786 if (err <= 0)
1787 goto out;
1788
1789 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1790 msg, chunk);
1791 if (err < 0)
1792 goto out;
1793
1794 len = len - chunk;
1795 copied = copied + chunk;
1796
1797 /* Consume the data from record if it is non-peek case*/
1798 if (!is_peek) {
1799 rxm->offset = rxm->offset + chunk;
1800 rxm->full_len = rxm->full_len - chunk;
1801
1802 /* Return if there is unconsumed data in the record */
1803 if (rxm->full_len - skip)
1804 break;
1805 }
1806
1807 /* The remaining skip-bytes must lie in 1st record in rx_list.
1808 * So from the 2nd record, 'skip' should be 0.
1809 */
1810 skip = 0;
1811
1812 if (msg)
1813 msg->msg_flags |= MSG_EOR;
1814
1815 next_skb = skb_peek_next(skb, &ctx->rx_list);
1816
1817 if (!is_peek) {
1818 __skb_unlink(skb, &ctx->rx_list);
1819 consume_skb(skb);
1820 }
1821
1822 skb = next_skb;
1823 }
1824 err = 0;
1825
1826out:
1827 return copied ? : err;
1828}
1829
1830static bool
1831tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1832 size_t len_left, size_t decrypted, ssize_t done,
1833 size_t *flushed_at)
1834{
1835 size_t max_rec;
1836
1837 if (len_left <= decrypted)
1838 return false;
1839
1840 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1841 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1842 return false;
1843
1844 *flushed_at = done;
1845 return sk_flush_backlog(sk);
1846}
1847
1848static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1849 bool nonblock)
1850{
1851 long timeo;
1852 int err;
1853
1854 lock_sock(sk);
1855
1856 timeo = sock_rcvtimeo(sk, nonblock);
1857
1858 while (unlikely(ctx->reader_present)) {
1859 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1860
1861 ctx->reader_contended = 1;
1862
1863 add_wait_queue(&ctx->wq, &wait);
1864 sk_wait_event(sk, &timeo,
1865 !READ_ONCE(ctx->reader_present), &wait);
1866 remove_wait_queue(&ctx->wq, &wait);
1867
1868 if (timeo <= 0) {
1869 err = -EAGAIN;
1870 goto err_unlock;
1871 }
1872 if (signal_pending(current)) {
1873 err = sock_intr_errno(timeo);
1874 goto err_unlock;
1875 }
1876 }
1877
1878 WRITE_ONCE(ctx->reader_present, 1);
1879
1880 return 0;
1881
1882err_unlock:
1883 release_sock(sk);
1884 return err;
1885}
1886
1887static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1888{
1889 if (unlikely(ctx->reader_contended)) {
1890 if (wq_has_sleeper(&ctx->wq))
1891 wake_up(&ctx->wq);
1892 else
1893 ctx->reader_contended = 0;
1894
1895 WARN_ON_ONCE(!ctx->reader_present);
1896 }
1897
1898 WRITE_ONCE(ctx->reader_present, 0);
1899 release_sock(sk);
1900}
1901
1902int tls_sw_recvmsg(struct sock *sk,
1903 struct msghdr *msg,
1904 size_t len,
1905 int flags,
1906 int *addr_len)
1907{
1908 struct tls_context *tls_ctx = tls_get_ctx(sk);
1909 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1910 struct tls_prot_info *prot = &tls_ctx->prot_info;
1911 ssize_t decrypted = 0, async_copy_bytes = 0;
1912 struct sk_psock *psock;
1913 unsigned char control = 0;
1914 size_t flushed_at = 0;
1915 struct strp_msg *rxm;
1916 struct tls_msg *tlm;
1917 ssize_t copied = 0;
1918 bool async = false;
1919 int target, err;
1920 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1921 bool is_peek = flags & MSG_PEEK;
1922 bool released = true;
1923 bool bpf_strp_enabled;
1924 bool zc_capable;
1925
1926 if (unlikely(flags & MSG_ERRQUEUE))
1927 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1928
1929 psock = sk_psock_get(sk);
1930 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1931 if (err < 0)
1932 return err;
1933 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1934
1935 /* If crypto failed the connection is broken */
1936 err = ctx->async_wait.err;
1937 if (err)
1938 goto end;
1939
1940 /* Process pending decrypted records. It must be non-zero-copy */
1941 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1942 if (err < 0)
1943 goto end;
1944
1945 copied = err;
1946 if (len <= copied)
1947 goto end;
1948
1949 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1950 len = len - copied;
1951
1952 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1953 ctx->zc_capable;
1954 decrypted = 0;
1955 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1956 struct tls_decrypt_arg darg;
1957 int to_decrypt, chunk;
1958
1959 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1960 released);
1961 if (err <= 0) {
1962 if (psock) {
1963 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1964 flags);
1965 if (chunk > 0) {
1966 decrypted += chunk;
1967 len -= chunk;
1968 continue;
1969 }
1970 }
1971 goto recv_end;
1972 }
1973
1974 memset(&darg.inargs, 0, sizeof(darg.inargs));
1975
1976 rxm = strp_msg(tls_strp_msg(ctx));
1977 tlm = tls_msg(tls_strp_msg(ctx));
1978
1979 to_decrypt = rxm->full_len - prot->overhead_size;
1980
1981 if (zc_capable && to_decrypt <= len &&
1982 tlm->control == TLS_RECORD_TYPE_DATA)
1983 darg.zc = true;
1984
1985 /* Do not use async mode if record is non-data */
1986 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1987 darg.async = ctx->async_capable;
1988 else
1989 darg.async = false;
1990
1991 err = tls_rx_one_record(sk, msg, &darg);
1992 if (err < 0) {
1993 tls_err_abort(sk, -EBADMSG);
1994 goto recv_end;
1995 }
1996
1997 async |= darg.async;
1998
1999 /* If the type of records being processed is not known yet,
2000 * set it to record type just dequeued. If it is already known,
2001 * but does not match the record type just dequeued, go to end.
2002 * We always get record type here since for tls1.2, record type
2003 * is known just after record is dequeued from stream parser.
2004 * For tls1.3, we disable async.
2005 */
2006 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2007 if (err <= 0) {
2008 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2009 tls_rx_rec_done(ctx);
2010put_on_rx_list_err:
2011 __skb_queue_tail(&ctx->rx_list, darg.skb);
2012 goto recv_end;
2013 }
2014
2015 /* periodically flush backlog, and feed strparser */
2016 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2017 decrypted + copied,
2018 &flushed_at);
2019
2020 /* TLS 1.3 may have updated the length by more than overhead */
2021 rxm = strp_msg(darg.skb);
2022 chunk = rxm->full_len;
2023 tls_rx_rec_done(ctx);
2024
2025 if (!darg.zc) {
2026 bool partially_consumed = chunk > len;
2027 struct sk_buff *skb = darg.skb;
2028
2029 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2030
2031 if (async) {
2032 /* TLS 1.2-only, to_decrypt must be text len */
2033 chunk = min_t(int, to_decrypt, len);
2034 async_copy_bytes += chunk;
2035put_on_rx_list:
2036 decrypted += chunk;
2037 len -= chunk;
2038 __skb_queue_tail(&ctx->rx_list, skb);
2039 continue;
2040 }
2041
2042 if (bpf_strp_enabled) {
2043 released = true;
2044 err = sk_psock_tls_strp_read(psock, skb);
2045 if (err != __SK_PASS) {
2046 rxm->offset = rxm->offset + rxm->full_len;
2047 rxm->full_len = 0;
2048 if (err == __SK_DROP)
2049 consume_skb(skb);
2050 continue;
2051 }
2052 }
2053
2054 if (partially_consumed)
2055 chunk = len;
2056
2057 err = skb_copy_datagram_msg(skb, rxm->offset,
2058 msg, chunk);
2059 if (err < 0)
2060 goto put_on_rx_list_err;
2061
2062 if (is_peek)
2063 goto put_on_rx_list;
2064
2065 if (partially_consumed) {
2066 rxm->offset += chunk;
2067 rxm->full_len -= chunk;
2068 goto put_on_rx_list;
2069 }
2070
2071 consume_skb(skb);
2072 }
2073
2074 decrypted += chunk;
2075 len -= chunk;
2076
2077 /* Return full control message to userspace before trying
2078 * to parse another message type
2079 */
2080 msg->msg_flags |= MSG_EOR;
2081 if (control != TLS_RECORD_TYPE_DATA)
2082 break;
2083 }
2084
2085recv_end:
2086 if (async) {
2087 int ret, pending;
2088
2089 /* Wait for all previously submitted records to be decrypted */
2090 spin_lock_bh(&ctx->decrypt_compl_lock);
2091 reinit_completion(&ctx->async_wait.completion);
2092 pending = atomic_read(&ctx->decrypt_pending);
2093 spin_unlock_bh(&ctx->decrypt_compl_lock);
2094 ret = 0;
2095 if (pending)
2096 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2097 __skb_queue_purge(&ctx->async_hold);
2098
2099 if (ret) {
2100 if (err >= 0 || err == -EINPROGRESS)
2101 err = ret;
2102 decrypted = 0;
2103 goto end;
2104 }
2105
2106 /* Drain records from the rx_list & copy if required */
2107 if (is_peek || is_kvec)
2108 err = process_rx_list(ctx, msg, &control, copied,
2109 decrypted, is_peek);
2110 else
2111 err = process_rx_list(ctx, msg, &control, 0,
2112 async_copy_bytes, is_peek);
2113 decrypted = max(err, 0);
2114 }
2115
2116 copied += decrypted;
2117
2118end:
2119 tls_rx_reader_unlock(sk, ctx);
2120 if (psock)
2121 sk_psock_put(sk, psock);
2122 return copied ? : err;
2123}
2124
2125ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2126 struct pipe_inode_info *pipe,
2127 size_t len, unsigned int flags)
2128{
2129 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131 struct strp_msg *rxm = NULL;
2132 struct sock *sk = sock->sk;
2133 struct tls_msg *tlm;
2134 struct sk_buff *skb;
2135 ssize_t copied = 0;
2136 int chunk;
2137 int err;
2138
2139 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2140 if (err < 0)
2141 return err;
2142
2143 if (!skb_queue_empty(&ctx->rx_list)) {
2144 skb = __skb_dequeue(&ctx->rx_list);
2145 } else {
2146 struct tls_decrypt_arg darg;
2147
2148 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2149 true);
2150 if (err <= 0)
2151 goto splice_read_end;
2152
2153 memset(&darg.inargs, 0, sizeof(darg.inargs));
2154
2155 err = tls_rx_one_record(sk, NULL, &darg);
2156 if (err < 0) {
2157 tls_err_abort(sk, -EBADMSG);
2158 goto splice_read_end;
2159 }
2160
2161 tls_rx_rec_done(ctx);
2162 skb = darg.skb;
2163 }
2164
2165 rxm = strp_msg(skb);
2166 tlm = tls_msg(skb);
2167
2168 /* splice does not support reading control messages */
2169 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2170 err = -EINVAL;
2171 goto splice_requeue;
2172 }
2173
2174 chunk = min_t(unsigned int, rxm->full_len, len);
2175 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2176 if (copied < 0)
2177 goto splice_requeue;
2178
2179 if (chunk < rxm->full_len) {
2180 rxm->offset += len;
2181 rxm->full_len -= len;
2182 goto splice_requeue;
2183 }
2184
2185 consume_skb(skb);
2186
2187splice_read_end:
2188 tls_rx_reader_unlock(sk, ctx);
2189 return copied ? : err;
2190
2191splice_requeue:
2192 __skb_queue_head(&ctx->rx_list, skb);
2193 goto splice_read_end;
2194}
2195
2196bool tls_sw_sock_is_readable(struct sock *sk)
2197{
2198 struct tls_context *tls_ctx = tls_get_ctx(sk);
2199 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2200 bool ingress_empty = true;
2201 struct sk_psock *psock;
2202
2203 rcu_read_lock();
2204 psock = sk_psock(sk);
2205 if (psock)
2206 ingress_empty = list_empty(&psock->ingress_msg);
2207 rcu_read_unlock();
2208
2209 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2210 !skb_queue_empty(&ctx->rx_list);
2211}
2212
2213int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2214{
2215 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2216 struct tls_prot_info *prot = &tls_ctx->prot_info;
2217 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2218 size_t cipher_overhead;
2219 size_t data_len = 0;
2220 int ret;
2221
2222 /* Verify that we have a full TLS header, or wait for more data */
2223 if (strp->stm.offset + prot->prepend_size > skb->len)
2224 return 0;
2225
2226 /* Sanity-check size of on-stack buffer. */
2227 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2228 ret = -EINVAL;
2229 goto read_failure;
2230 }
2231
2232 /* Linearize header to local buffer */
2233 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2234 if (ret < 0)
2235 goto read_failure;
2236
2237 strp->mark = header[0];
2238
2239 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2240
2241 cipher_overhead = prot->tag_size;
2242 if (prot->version != TLS_1_3_VERSION &&
2243 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2244 cipher_overhead += prot->iv_size;
2245
2246 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2247 prot->tail_size) {
2248 ret = -EMSGSIZE;
2249 goto read_failure;
2250 }
2251 if (data_len < cipher_overhead) {
2252 ret = -EBADMSG;
2253 goto read_failure;
2254 }
2255
2256 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2257 if (header[1] != TLS_1_2_VERSION_MINOR ||
2258 header[2] != TLS_1_2_VERSION_MAJOR) {
2259 ret = -EINVAL;
2260 goto read_failure;
2261 }
2262
2263 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2264 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2265 return data_len + TLS_HEADER_SIZE;
2266
2267read_failure:
2268 tls_err_abort(strp->sk, ret);
2269
2270 return ret;
2271}
2272
2273void tls_rx_msg_ready(struct tls_strparser *strp)
2274{
2275 struct tls_sw_context_rx *ctx;
2276
2277 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2278 ctx->saved_data_ready(strp->sk);
2279}
2280
2281static void tls_data_ready(struct sock *sk)
2282{
2283 struct tls_context *tls_ctx = tls_get_ctx(sk);
2284 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2285 struct sk_psock *psock;
2286
2287 tls_strp_data_ready(&ctx->strp);
2288
2289 psock = sk_psock_get(sk);
2290 if (psock) {
2291 if (!list_empty(&psock->ingress_msg))
2292 ctx->saved_data_ready(sk);
2293 sk_psock_put(sk, psock);
2294 }
2295}
2296
2297void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2298{
2299 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2300
2301 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2302 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2303 cancel_delayed_work_sync(&ctx->tx_work.work);
2304}
2305
2306void tls_sw_release_resources_tx(struct sock *sk)
2307{
2308 struct tls_context *tls_ctx = tls_get_ctx(sk);
2309 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2310 struct tls_rec *rec, *tmp;
2311 int pending;
2312
2313 /* Wait for any pending async encryptions to complete */
2314 spin_lock_bh(&ctx->encrypt_compl_lock);
2315 ctx->async_notify = true;
2316 pending = atomic_read(&ctx->encrypt_pending);
2317 spin_unlock_bh(&ctx->encrypt_compl_lock);
2318
2319 if (pending)
2320 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2321
2322 tls_tx_records(sk, -1);
2323
2324 /* Free up un-sent records in tx_list. First, free
2325 * the partially sent record if any at head of tx_list.
2326 */
2327 if (tls_ctx->partially_sent_record) {
2328 tls_free_partial_record(sk, tls_ctx);
2329 rec = list_first_entry(&ctx->tx_list,
2330 struct tls_rec, list);
2331 list_del(&rec->list);
2332 sk_msg_free(sk, &rec->msg_plaintext);
2333 kfree(rec);
2334 }
2335
2336 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2337 list_del(&rec->list);
2338 sk_msg_free(sk, &rec->msg_encrypted);
2339 sk_msg_free(sk, &rec->msg_plaintext);
2340 kfree(rec);
2341 }
2342
2343 crypto_free_aead(ctx->aead_send);
2344 tls_free_open_rec(sk);
2345}
2346
2347void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2348{
2349 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2350
2351 kfree(ctx);
2352}
2353
2354void tls_sw_release_resources_rx(struct sock *sk)
2355{
2356 struct tls_context *tls_ctx = tls_get_ctx(sk);
2357 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2358
2359 kfree(tls_ctx->rx.rec_seq);
2360 kfree(tls_ctx->rx.iv);
2361
2362 if (ctx->aead_recv) {
2363 __skb_queue_purge(&ctx->rx_list);
2364 crypto_free_aead(ctx->aead_recv);
2365 tls_strp_stop(&ctx->strp);
2366 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2367 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2368 * never swapped.
2369 */
2370 if (ctx->saved_data_ready) {
2371 write_lock_bh(&sk->sk_callback_lock);
2372 sk->sk_data_ready = ctx->saved_data_ready;
2373 write_unlock_bh(&sk->sk_callback_lock);
2374 }
2375 }
2376}
2377
2378void tls_sw_strparser_done(struct tls_context *tls_ctx)
2379{
2380 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2381
2382 tls_strp_done(&ctx->strp);
2383}
2384
2385void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2386{
2387 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2388
2389 kfree(ctx);
2390}
2391
2392void tls_sw_free_resources_rx(struct sock *sk)
2393{
2394 struct tls_context *tls_ctx = tls_get_ctx(sk);
2395
2396 tls_sw_release_resources_rx(sk);
2397 tls_sw_free_ctx_rx(tls_ctx);
2398}
2399
2400/* The work handler to transmitt the encrypted records in tx_list */
2401static void tx_work_handler(struct work_struct *work)
2402{
2403 struct delayed_work *delayed_work = to_delayed_work(work);
2404 struct tx_work *tx_work = container_of(delayed_work,
2405 struct tx_work, work);
2406 struct sock *sk = tx_work->sk;
2407 struct tls_context *tls_ctx = tls_get_ctx(sk);
2408 struct tls_sw_context_tx *ctx;
2409
2410 if (unlikely(!tls_ctx))
2411 return;
2412
2413 ctx = tls_sw_ctx_tx(tls_ctx);
2414 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2415 return;
2416
2417 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2418 return;
2419 mutex_lock(&tls_ctx->tx_lock);
2420 lock_sock(sk);
2421 tls_tx_records(sk, -1);
2422 release_sock(sk);
2423 mutex_unlock(&tls_ctx->tx_lock);
2424}
2425
2426static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2427{
2428 struct tls_rec *rec;
2429
2430 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2431 if (!rec)
2432 return false;
2433
2434 return READ_ONCE(rec->tx_ready);
2435}
2436
2437void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2438{
2439 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2440
2441 /* Schedule the transmission if tx list is ready */
2442 if (tls_is_tx_ready(tx_ctx) &&
2443 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2444 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2445}
2446
2447void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2448{
2449 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2450
2451 write_lock_bh(&sk->sk_callback_lock);
2452 rx_ctx->saved_data_ready = sk->sk_data_ready;
2453 sk->sk_data_ready = tls_data_ready;
2454 write_unlock_bh(&sk->sk_callback_lock);
2455}
2456
2457void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2458{
2459 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2460
2461 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2462 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2463}
2464
2465int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2466{
2467 struct tls_context *tls_ctx = tls_get_ctx(sk);
2468 struct tls_prot_info *prot = &tls_ctx->prot_info;
2469 struct tls_crypto_info *crypto_info;
2470 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2471 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2472 struct cipher_context *cctx;
2473 struct crypto_aead **aead;
2474 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2475 struct crypto_tfm *tfm;
2476 char *iv, *rec_seq, *key, *salt, *cipher_name;
2477 size_t keysize;
2478 int rc = 0;
2479
2480 if (!ctx) {
2481 rc = -EINVAL;
2482 goto out;
2483 }
2484
2485 if (tx) {
2486 if (!ctx->priv_ctx_tx) {
2487 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2488 if (!sw_ctx_tx) {
2489 rc = -ENOMEM;
2490 goto out;
2491 }
2492 ctx->priv_ctx_tx = sw_ctx_tx;
2493 } else {
2494 sw_ctx_tx =
2495 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2496 }
2497 } else {
2498 if (!ctx->priv_ctx_rx) {
2499 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2500 if (!sw_ctx_rx) {
2501 rc = -ENOMEM;
2502 goto out;
2503 }
2504 ctx->priv_ctx_rx = sw_ctx_rx;
2505 } else {
2506 sw_ctx_rx =
2507 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2508 }
2509 }
2510
2511 if (tx) {
2512 crypto_init_wait(&sw_ctx_tx->async_wait);
2513 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2514 crypto_info = &ctx->crypto_send.info;
2515 cctx = &ctx->tx;
2516 aead = &sw_ctx_tx->aead_send;
2517 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2518 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2519 sw_ctx_tx->tx_work.sk = sk;
2520 } else {
2521 crypto_init_wait(&sw_ctx_rx->async_wait);
2522 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2523 init_waitqueue_head(&sw_ctx_rx->wq);
2524 crypto_info = &ctx->crypto_recv.info;
2525 cctx = &ctx->rx;
2526 skb_queue_head_init(&sw_ctx_rx->rx_list);
2527 skb_queue_head_init(&sw_ctx_rx->async_hold);
2528 aead = &sw_ctx_rx->aead_recv;
2529 }
2530
2531 switch (crypto_info->cipher_type) {
2532 case TLS_CIPHER_AES_GCM_128: {
2533 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2534
2535 gcm_128_info = (void *)crypto_info;
2536 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2537 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2538 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2539 iv = gcm_128_info->iv;
2540 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2541 rec_seq = gcm_128_info->rec_seq;
2542 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2543 key = gcm_128_info->key;
2544 salt = gcm_128_info->salt;
2545 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2546 cipher_name = "gcm(aes)";
2547 break;
2548 }
2549 case TLS_CIPHER_AES_GCM_256: {
2550 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2551
2552 gcm_256_info = (void *)crypto_info;
2553 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2554 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2555 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2556 iv = gcm_256_info->iv;
2557 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2558 rec_seq = gcm_256_info->rec_seq;
2559 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2560 key = gcm_256_info->key;
2561 salt = gcm_256_info->salt;
2562 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2563 cipher_name = "gcm(aes)";
2564 break;
2565 }
2566 case TLS_CIPHER_AES_CCM_128: {
2567 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2568
2569 ccm_128_info = (void *)crypto_info;
2570 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2571 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2572 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2573 iv = ccm_128_info->iv;
2574 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2575 rec_seq = ccm_128_info->rec_seq;
2576 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2577 key = ccm_128_info->key;
2578 salt = ccm_128_info->salt;
2579 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2580 cipher_name = "ccm(aes)";
2581 break;
2582 }
2583 case TLS_CIPHER_CHACHA20_POLY1305: {
2584 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2585
2586 chacha20_poly1305_info = (void *)crypto_info;
2587 nonce_size = 0;
2588 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2589 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2590 iv = chacha20_poly1305_info->iv;
2591 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2592 rec_seq = chacha20_poly1305_info->rec_seq;
2593 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2594 key = chacha20_poly1305_info->key;
2595 salt = chacha20_poly1305_info->salt;
2596 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2597 cipher_name = "rfc7539(chacha20,poly1305)";
2598 break;
2599 }
2600 case TLS_CIPHER_SM4_GCM: {
2601 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2602
2603 sm4_gcm_info = (void *)crypto_info;
2604 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2605 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2606 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2607 iv = sm4_gcm_info->iv;
2608 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2609 rec_seq = sm4_gcm_info->rec_seq;
2610 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2611 key = sm4_gcm_info->key;
2612 salt = sm4_gcm_info->salt;
2613 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2614 cipher_name = "gcm(sm4)";
2615 break;
2616 }
2617 case TLS_CIPHER_SM4_CCM: {
2618 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2619
2620 sm4_ccm_info = (void *)crypto_info;
2621 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2622 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2623 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2624 iv = sm4_ccm_info->iv;
2625 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2626 rec_seq = sm4_ccm_info->rec_seq;
2627 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2628 key = sm4_ccm_info->key;
2629 salt = sm4_ccm_info->salt;
2630 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2631 cipher_name = "ccm(sm4)";
2632 break;
2633 }
2634 case TLS_CIPHER_ARIA_GCM_128: {
2635 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2636
2637 aria_gcm_128_info = (void *)crypto_info;
2638 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2639 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2640 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2641 iv = aria_gcm_128_info->iv;
2642 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2643 rec_seq = aria_gcm_128_info->rec_seq;
2644 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2645 key = aria_gcm_128_info->key;
2646 salt = aria_gcm_128_info->salt;
2647 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2648 cipher_name = "gcm(aria)";
2649 break;
2650 }
2651 case TLS_CIPHER_ARIA_GCM_256: {
2652 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2653
2654 gcm_256_info = (void *)crypto_info;
2655 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2656 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2657 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2658 iv = gcm_256_info->iv;
2659 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2660 rec_seq = gcm_256_info->rec_seq;
2661 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2662 key = gcm_256_info->key;
2663 salt = gcm_256_info->salt;
2664 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2665 cipher_name = "gcm(aria)";
2666 break;
2667 }
2668 default:
2669 rc = -EINVAL;
2670 goto free_priv;
2671 }
2672
2673 if (crypto_info->version == TLS_1_3_VERSION) {
2674 nonce_size = 0;
2675 prot->aad_size = TLS_HEADER_SIZE;
2676 prot->tail_size = 1;
2677 } else {
2678 prot->aad_size = TLS_AAD_SPACE_SIZE;
2679 prot->tail_size = 0;
2680 }
2681
2682 /* Sanity-check the sizes for stack allocations. */
2683 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2684 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2685 prot->aad_size > TLS_MAX_AAD_SIZE) {
2686 rc = -EINVAL;
2687 goto free_priv;
2688 }
2689
2690 prot->version = crypto_info->version;
2691 prot->cipher_type = crypto_info->cipher_type;
2692 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2693 prot->tag_size = tag_size;
2694 prot->overhead_size = prot->prepend_size +
2695 prot->tag_size + prot->tail_size;
2696 prot->iv_size = iv_size;
2697 prot->salt_size = salt_size;
2698 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2699 if (!cctx->iv) {
2700 rc = -ENOMEM;
2701 goto free_priv;
2702 }
2703 /* Note: 128 & 256 bit salt are the same size */
2704 prot->rec_seq_size = rec_seq_size;
2705 memcpy(cctx->iv, salt, salt_size);
2706 memcpy(cctx->iv + salt_size, iv, iv_size);
2707 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2708 if (!cctx->rec_seq) {
2709 rc = -ENOMEM;
2710 goto free_iv;
2711 }
2712
2713 if (!*aead) {
2714 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2715 if (IS_ERR(*aead)) {
2716 rc = PTR_ERR(*aead);
2717 *aead = NULL;
2718 goto free_rec_seq;
2719 }
2720 }
2721
2722 ctx->push_pending_record = tls_sw_push_pending_record;
2723
2724 rc = crypto_aead_setkey(*aead, key, keysize);
2725
2726 if (rc)
2727 goto free_aead;
2728
2729 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2730 if (rc)
2731 goto free_aead;
2732
2733 if (sw_ctx_rx) {
2734 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2735
2736 tls_update_rx_zc_capable(ctx);
2737 sw_ctx_rx->async_capable =
2738 crypto_info->version != TLS_1_3_VERSION &&
2739 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2740
2741 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2742 if (rc)
2743 goto free_aead;
2744 }
2745
2746 goto out;
2747
2748free_aead:
2749 crypto_free_aead(*aead);
2750 *aead = NULL;
2751free_rec_seq:
2752 kfree(cctx->rec_seq);
2753 cctx->rec_seq = NULL;
2754free_iv:
2755 kfree(cctx->iv);
2756 cctx->iv = NULL;
2757free_priv:
2758 if (tx) {
2759 kfree(ctx->priv_ctx_tx);
2760 ctx->priv_ctx_tx = NULL;
2761 } else {
2762 kfree(ctx->priv_ctx_rx);
2763 ctx->priv_ctx_rx = NULL;
2764 }
2765out:
2766 return rc;
2767}
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38#include <linux/sched/signal.h>
39#include <linux/module.h>
40#include <crypto/aead.h>
41
42#include <net/strparser.h>
43#include <net/tls.h>
44
45static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
47{
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
51 int elt = 0;
52
53 if (unlikely(recursion_level >= 24))
54 return -EMSGSIZE;
55
56 if (chunk > 0) {
57 if (chunk > len)
58 chunk = len;
59 elt++;
60 len -= chunk;
61 if (len == 0)
62 return elt;
63 offset += chunk;
64 }
65
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67 int end;
68
69 WARN_ON(start > offset + len);
70
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72 chunk = end - offset;
73 if (chunk > 0) {
74 if (chunk > len)
75 chunk = len;
76 elt++;
77 len -= chunk;
78 if (len == 0)
79 return elt;
80 offset += chunk;
81 }
82 start = end;
83 }
84
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
87 int end, ret;
88
89 WARN_ON(start > offset + len);
90
91 end = start + frag_iter->len;
92 chunk = end - offset;
93 if (chunk > 0) {
94 if (chunk > len)
95 chunk = len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
97 recursion_level + 1);
98 if (unlikely(ret < 0))
99 return ret;
100 elt += ret;
101 len -= chunk;
102 if (len == 0)
103 return elt;
104 offset += chunk;
105 }
106 start = end;
107 }
108 }
109 BUG_ON(len);
110 return elt;
111}
112
113/* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
115 */
116static int skb_nsg(struct sk_buff *skb, int offset, int len)
117{
118 return __skb_nsg(skb, offset, len, 0);
119}
120
121static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
123{
124 struct strp_msg *rxm = strp_msg(skb);
125 int sub = 0;
126
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
130 int err;
131 int back = 17;
132
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
135 return -EBADMSG;
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
138 &content_type, 1);
139 if (err)
140 return err;
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149}
150
151static void tls_decrypt_done(struct crypto_async_request *req, int err)
152{
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
160 struct sk_buff *skb;
161 unsigned int pages;
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
168
169 /* Propagate if there was an err */
170 if (err) {
171 ctx->async_wait.err = err;
172 tls_err_abort(skb->sk, err);
173 } else {
174 struct strp_msg *rxm = strp_msg(skb);
175 int pad;
176
177 pad = padding_length(ctx, prot, skb);
178 if (pad < 0) {
179 ctx->async_wait.err = pad;
180 tls_err_abort(skb->sk, pad);
181 } else {
182 rxm->full_len -= pad;
183 rxm->offset += prot->prepend_size;
184 rxm->full_len -= prot->overhead_size;
185 }
186 }
187
188 /* After using skb->sk to propagate sk through crypto async callback
189 * we need to NULL it again.
190 */
191 skb->sk = NULL;
192
193
194 /* Free the destination pages if skb was not decrypted inplace */
195 if (sgout != sgin) {
196 /* Skip the first S/G entry as it points to AAD */
197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198 if (!sg)
199 break;
200 put_page(sg_page(sg));
201 }
202 }
203
204 kfree(aead_req);
205
206 pending = atomic_dec_return(&ctx->decrypt_pending);
207
208 if (!pending && READ_ONCE(ctx->async_notify))
209 complete(&ctx->async_wait.completion);
210}
211
212static int tls_do_decryption(struct sock *sk,
213 struct sk_buff *skb,
214 struct scatterlist *sgin,
215 struct scatterlist *sgout,
216 char *iv_recv,
217 size_t data_len,
218 struct aead_request *aead_req,
219 bool async)
220{
221 struct tls_context *tls_ctx = tls_get_ctx(sk);
222 struct tls_prot_info *prot = &tls_ctx->prot_info;
223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
224 int ret;
225
226 aead_request_set_tfm(aead_req, ctx->aead_recv);
227 aead_request_set_ad(aead_req, prot->aad_size);
228 aead_request_set_crypt(aead_req, sgin, sgout,
229 data_len + prot->tag_size,
230 (u8 *)iv_recv);
231
232 if (async) {
233 /* Using skb->sk to push sk through to crypto async callback
234 * handler. This allows propagating errors up to the socket
235 * if needed. It _must_ be cleared in the async handler
236 * before consume_skb is called. We _know_ skb->sk is NULL
237 * because it is a clone from strparser.
238 */
239 skb->sk = sk;
240 aead_request_set_callback(aead_req,
241 CRYPTO_TFM_REQ_MAY_BACKLOG,
242 tls_decrypt_done, skb);
243 atomic_inc(&ctx->decrypt_pending);
244 } else {
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 crypto_req_done, &ctx->async_wait);
248 }
249
250 ret = crypto_aead_decrypt(aead_req);
251 if (ret == -EINPROGRESS) {
252 if (async)
253 return ret;
254
255 ret = crypto_wait_req(ret, &ctx->async_wait);
256 }
257
258 if (async)
259 atomic_dec(&ctx->decrypt_pending);
260
261 return ret;
262}
263
264static void tls_trim_both_msgs(struct sock *sk, int target_size)
265{
266 struct tls_context *tls_ctx = tls_get_ctx(sk);
267 struct tls_prot_info *prot = &tls_ctx->prot_info;
268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269 struct tls_rec *rec = ctx->open_rec;
270
271 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272 if (target_size > 0)
273 target_size += prot->overhead_size;
274 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
275}
276
277static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278{
279 struct tls_context *tls_ctx = tls_get_ctx(sk);
280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281 struct tls_rec *rec = ctx->open_rec;
282 struct sk_msg *msg_en = &rec->msg_encrypted;
283
284 return sk_msg_alloc(sk, msg_en, len, 0);
285}
286
287static int tls_clone_plaintext_msg(struct sock *sk, int required)
288{
289 struct tls_context *tls_ctx = tls_get_ctx(sk);
290 struct tls_prot_info *prot = &tls_ctx->prot_info;
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_pl = &rec->msg_plaintext;
294 struct sk_msg *msg_en = &rec->msg_encrypted;
295 int skip, len;
296
297 /* We add page references worth len bytes from encrypted sg
298 * at the end of plaintext sg. It is guaranteed that msg_en
299 * has enough required room (ensured by caller).
300 */
301 len = required - msg_pl->sg.size;
302
303 /* Skip initial bytes in msg_en's data to be able to use
304 * same offset of both plain and encrypted data.
305 */
306 skip = prot->prepend_size + msg_pl->sg.size;
307
308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309}
310
311static struct tls_rec *tls_get_rec(struct sock *sk)
312{
313 struct tls_context *tls_ctx = tls_get_ctx(sk);
314 struct tls_prot_info *prot = &tls_ctx->prot_info;
315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316 struct sk_msg *msg_pl, *msg_en;
317 struct tls_rec *rec;
318 int mem_size;
319
320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322 rec = kzalloc(mem_size, sk->sk_allocation);
323 if (!rec)
324 return NULL;
325
326 msg_pl = &rec->msg_plaintext;
327 msg_en = &rec->msg_encrypted;
328
329 sk_msg_init(msg_pl);
330 sk_msg_init(msg_en);
331
332 sg_init_table(rec->sg_aead_in, 2);
333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334 sg_unmark_end(&rec->sg_aead_in[1]);
335
336 sg_init_table(rec->sg_aead_out, 2);
337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338 sg_unmark_end(&rec->sg_aead_out[1]);
339
340 return rec;
341}
342
343static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344{
345 sk_msg_free(sk, &rec->msg_encrypted);
346 sk_msg_free(sk, &rec->msg_plaintext);
347 kfree(rec);
348}
349
350static void tls_free_open_rec(struct sock *sk)
351{
352 struct tls_context *tls_ctx = tls_get_ctx(sk);
353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354 struct tls_rec *rec = ctx->open_rec;
355
356 if (rec) {
357 tls_free_rec(sk, rec);
358 ctx->open_rec = NULL;
359 }
360}
361
362int tls_tx_records(struct sock *sk, int flags)
363{
364 struct tls_context *tls_ctx = tls_get_ctx(sk);
365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366 struct tls_rec *rec, *tmp;
367 struct sk_msg *msg_en;
368 int tx_flags, rc = 0;
369
370 if (tls_is_partially_sent_record(tls_ctx)) {
371 rec = list_first_entry(&ctx->tx_list,
372 struct tls_rec, list);
373
374 if (flags == -1)
375 tx_flags = rec->tx_flags;
376 else
377 tx_flags = flags;
378
379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380 if (rc)
381 goto tx_err;
382
383 /* Full record has been transmitted.
384 * Remove the head of tx_list
385 */
386 list_del(&rec->list);
387 sk_msg_free(sk, &rec->msg_plaintext);
388 kfree(rec);
389 }
390
391 /* Tx all ready records */
392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393 if (READ_ONCE(rec->tx_ready)) {
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
399 msg_en = &rec->msg_encrypted;
400 rc = tls_push_sg(sk, tls_ctx,
401 &msg_en->sg.data[msg_en->sg.curr],
402 0, tx_flags);
403 if (rc)
404 goto tx_err;
405
406 list_del(&rec->list);
407 sk_msg_free(sk, &rec->msg_plaintext);
408 kfree(rec);
409 } else {
410 break;
411 }
412 }
413
414tx_err:
415 if (rc < 0 && rc != -EAGAIN)
416 tls_err_abort(sk, EBADMSG);
417
418 return rc;
419}
420
421static void tls_encrypt_done(struct crypto_async_request *req, int err)
422{
423 struct aead_request *aead_req = (struct aead_request *)req;
424 struct sock *sk = req->data;
425 struct tls_context *tls_ctx = tls_get_ctx(sk);
426 struct tls_prot_info *prot = &tls_ctx->prot_info;
427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428 struct scatterlist *sge;
429 struct sk_msg *msg_en;
430 struct tls_rec *rec;
431 bool ready = false;
432 int pending;
433
434 rec = container_of(aead_req, struct tls_rec, aead_req);
435 msg_en = &rec->msg_encrypted;
436
437 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438 sge->offset -= prot->prepend_size;
439 sge->length += prot->prepend_size;
440
441 /* Check if error is previously set on socket */
442 if (err || sk->sk_err) {
443 rec = NULL;
444
445 /* If err is already set on socket, return the same code */
446 if (sk->sk_err) {
447 ctx->async_wait.err = sk->sk_err;
448 } else {
449 ctx->async_wait.err = err;
450 tls_err_abort(sk, err);
451 }
452 }
453
454 if (rec) {
455 struct tls_rec *first_rec;
456
457 /* Mark the record as ready for transmission */
458 smp_store_mb(rec->tx_ready, true);
459
460 /* If received record is at head of tx_list, schedule tx */
461 first_rec = list_first_entry(&ctx->tx_list,
462 struct tls_rec, list);
463 if (rec == first_rec)
464 ready = true;
465 }
466
467 pending = atomic_dec_return(&ctx->encrypt_pending);
468
469 if (!pending && READ_ONCE(ctx->async_notify))
470 complete(&ctx->async_wait.completion);
471
472 if (!ready)
473 return;
474
475 /* Schedule the transmission */
476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477 schedule_delayed_work(&ctx->tx_work.work, 1);
478}
479
480static int tls_do_encryption(struct sock *sk,
481 struct tls_context *tls_ctx,
482 struct tls_sw_context_tx *ctx,
483 struct aead_request *aead_req,
484 size_t data_len, u32 start)
485{
486 struct tls_prot_info *prot = &tls_ctx->prot_info;
487 struct tls_rec *rec = ctx->open_rec;
488 struct sk_msg *msg_en = &rec->msg_encrypted;
489 struct scatterlist *sge = sk_msg_elem(msg_en, start);
490 int rc, iv_offset = 0;
491
492 /* For CCM based ciphers, first byte of IV is a constant */
493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495 iv_offset = 1;
496 }
497
498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499 prot->iv_size + prot->salt_size);
500
501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
502
503 sge->offset += prot->prepend_size;
504 sge->length -= prot->prepend_size;
505
506 msg_en->sg.curr = start;
507
508 aead_request_set_tfm(aead_req, ctx->aead_send);
509 aead_request_set_ad(aead_req, prot->aad_size);
510 aead_request_set_crypt(aead_req, rec->sg_aead_in,
511 rec->sg_aead_out,
512 data_len, rec->iv_data);
513
514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
515 tls_encrypt_done, sk);
516
517 /* Add the record in tx_list */
518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519 atomic_inc(&ctx->encrypt_pending);
520
521 rc = crypto_aead_encrypt(aead_req);
522 if (!rc || rc != -EINPROGRESS) {
523 atomic_dec(&ctx->encrypt_pending);
524 sge->offset -= prot->prepend_size;
525 sge->length += prot->prepend_size;
526 }
527
528 if (!rc) {
529 WRITE_ONCE(rec->tx_ready, true);
530 } else if (rc != -EINPROGRESS) {
531 list_del(&rec->list);
532 return rc;
533 }
534
535 /* Unhook the record from context if encryption is not failure */
536 ctx->open_rec = NULL;
537 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
538 return rc;
539}
540
541static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542 struct tls_rec **to, struct sk_msg *msg_opl,
543 struct sk_msg *msg_oen, u32 split_point,
544 u32 tx_overhead_size, u32 *orig_end)
545{
546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547 struct scatterlist *sge, *osge, *nsge;
548 u32 orig_size = msg_opl->sg.size;
549 struct scatterlist tmp = { };
550 struct sk_msg *msg_npl;
551 struct tls_rec *new;
552 int ret;
553
554 new = tls_get_rec(sk);
555 if (!new)
556 return -ENOMEM;
557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558 tx_overhead_size, 0);
559 if (ret < 0) {
560 tls_free_rec(sk, new);
561 return ret;
562 }
563
564 *orig_end = msg_opl->sg.end;
565 i = msg_opl->sg.start;
566 sge = sk_msg_elem(msg_opl, i);
567 while (apply && sge->length) {
568 if (sge->length > apply) {
569 u32 len = sge->length - apply;
570
571 get_page(sg_page(sge));
572 sg_set_page(&tmp, sg_page(sge), len,
573 sge->offset + apply);
574 sge->length = apply;
575 bytes += apply;
576 apply = 0;
577 } else {
578 apply -= sge->length;
579 bytes += sge->length;
580 }
581
582 sk_msg_iter_var_next(i);
583 if (i == msg_opl->sg.end)
584 break;
585 sge = sk_msg_elem(msg_opl, i);
586 }
587
588 msg_opl->sg.end = i;
589 msg_opl->sg.curr = i;
590 msg_opl->sg.copybreak = 0;
591 msg_opl->apply_bytes = 0;
592 msg_opl->sg.size = bytes;
593
594 msg_npl = &new->msg_plaintext;
595 msg_npl->apply_bytes = apply;
596 msg_npl->sg.size = orig_size - bytes;
597
598 j = msg_npl->sg.start;
599 nsge = sk_msg_elem(msg_npl, j);
600 if (tmp.length) {
601 memcpy(nsge, &tmp, sizeof(*nsge));
602 sk_msg_iter_var_next(j);
603 nsge = sk_msg_elem(msg_npl, j);
604 }
605
606 osge = sk_msg_elem(msg_opl, i);
607 while (osge->length) {
608 memcpy(nsge, osge, sizeof(*nsge));
609 sg_unmark_end(nsge);
610 sk_msg_iter_var_next(i);
611 sk_msg_iter_var_next(j);
612 if (i == *orig_end)
613 break;
614 osge = sk_msg_elem(msg_opl, i);
615 nsge = sk_msg_elem(msg_npl, j);
616 }
617
618 msg_npl->sg.end = j;
619 msg_npl->sg.curr = j;
620 msg_npl->sg.copybreak = 0;
621
622 *to = new;
623 return 0;
624}
625
626static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627 struct tls_rec *from, u32 orig_end)
628{
629 struct sk_msg *msg_npl = &from->msg_plaintext;
630 struct sk_msg *msg_opl = &to->msg_plaintext;
631 struct scatterlist *osge, *nsge;
632 u32 i, j;
633
634 i = msg_opl->sg.end;
635 sk_msg_iter_var_prev(i);
636 j = msg_npl->sg.start;
637
638 osge = sk_msg_elem(msg_opl, i);
639 nsge = sk_msg_elem(msg_npl, j);
640
641 if (sg_page(osge) == sg_page(nsge) &&
642 osge->offset + osge->length == nsge->offset) {
643 osge->length += nsge->length;
644 put_page(sg_page(nsge));
645 }
646
647 msg_opl->sg.end = orig_end;
648 msg_opl->sg.curr = orig_end;
649 msg_opl->sg.copybreak = 0;
650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651 msg_opl->sg.size += msg_npl->sg.size;
652
653 sk_msg_free(sk, &to->msg_encrypted);
654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655
656 kfree(from);
657}
658
659static int tls_push_record(struct sock *sk, int flags,
660 unsigned char record_type)
661{
662 struct tls_context *tls_ctx = tls_get_ctx(sk);
663 struct tls_prot_info *prot = &tls_ctx->prot_info;
664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666 u32 i, split_point, uninitialized_var(orig_end);
667 struct sk_msg *msg_pl, *msg_en;
668 struct aead_request *req;
669 bool split;
670 int rc;
671
672 if (!rec)
673 return 0;
674
675 msg_pl = &rec->msg_plaintext;
676 msg_en = &rec->msg_encrypted;
677
678 split_point = msg_pl->apply_bytes;
679 split = split_point && split_point < msg_pl->sg.size;
680 if (split) {
681 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
682 split_point, prot->overhead_size,
683 &orig_end);
684 if (rc < 0)
685 return rc;
686 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
687 prot->overhead_size);
688 }
689
690 rec->tx_flags = flags;
691 req = &rec->aead_req;
692
693 i = msg_pl->sg.end;
694 sk_msg_iter_var_prev(i);
695
696 rec->content_type = record_type;
697 if (prot->version == TLS_1_3_VERSION) {
698 /* Add content type to end of message. No padding added */
699 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
700 sg_mark_end(&rec->sg_content_type);
701 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
702 &rec->sg_content_type);
703 } else {
704 sg_mark_end(sk_msg_elem(msg_pl, i));
705 }
706
707 i = msg_pl->sg.start;
708 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
709 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
710
711 i = msg_en->sg.end;
712 sk_msg_iter_var_prev(i);
713 sg_mark_end(sk_msg_elem(msg_en, i));
714
715 i = msg_en->sg.start;
716 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
717
718 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
719 tls_ctx->tx.rec_seq, prot->rec_seq_size,
720 record_type, prot->version);
721
722 tls_fill_prepend(tls_ctx,
723 page_address(sg_page(&msg_en->sg.data[i])) +
724 msg_en->sg.data[i].offset,
725 msg_pl->sg.size + prot->tail_size,
726 record_type, prot->version);
727
728 tls_ctx->pending_open_record_frags = false;
729
730 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
731 msg_pl->sg.size + prot->tail_size, i);
732 if (rc < 0) {
733 if (rc != -EINPROGRESS) {
734 tls_err_abort(sk, EBADMSG);
735 if (split) {
736 tls_ctx->pending_open_record_frags = true;
737 tls_merge_open_record(sk, rec, tmp, orig_end);
738 }
739 }
740 ctx->async_capable = 1;
741 return rc;
742 } else if (split) {
743 msg_pl = &tmp->msg_plaintext;
744 msg_en = &tmp->msg_encrypted;
745 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
746 tls_ctx->pending_open_record_frags = true;
747 ctx->open_rec = tmp;
748 }
749
750 return tls_tx_records(sk, flags);
751}
752
753static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
754 bool full_record, u8 record_type,
755 size_t *copied, int flags)
756{
757 struct tls_context *tls_ctx = tls_get_ctx(sk);
758 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
759 struct sk_msg msg_redir = { };
760 struct sk_psock *psock;
761 struct sock *sk_redir;
762 struct tls_rec *rec;
763 bool enospc, policy;
764 int err = 0, send;
765 u32 delta = 0;
766
767 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
768 psock = sk_psock_get(sk);
769 if (!psock || !policy)
770 return tls_push_record(sk, flags, record_type);
771more_data:
772 enospc = sk_msg_full(msg);
773 if (psock->eval == __SK_NONE) {
774 delta = msg->sg.size;
775 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
776 if (delta < msg->sg.size)
777 delta -= msg->sg.size;
778 else
779 delta = 0;
780 }
781 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
782 !enospc && !full_record) {
783 err = -ENOSPC;
784 goto out_err;
785 }
786 msg->cork_bytes = 0;
787 send = msg->sg.size;
788 if (msg->apply_bytes && msg->apply_bytes < send)
789 send = msg->apply_bytes;
790
791 switch (psock->eval) {
792 case __SK_PASS:
793 err = tls_push_record(sk, flags, record_type);
794 if (err < 0) {
795 *copied -= sk_msg_free(sk, msg);
796 tls_free_open_rec(sk);
797 goto out_err;
798 }
799 break;
800 case __SK_REDIRECT:
801 sk_redir = psock->sk_redir;
802 memcpy(&msg_redir, msg, sizeof(*msg));
803 if (msg->apply_bytes < send)
804 msg->apply_bytes = 0;
805 else
806 msg->apply_bytes -= send;
807 sk_msg_return_zero(sk, msg, send);
808 msg->sg.size -= send;
809 release_sock(sk);
810 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
811 lock_sock(sk);
812 if (err < 0) {
813 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
814 msg->sg.size = 0;
815 }
816 if (msg->sg.size == 0)
817 tls_free_open_rec(sk);
818 break;
819 case __SK_DROP:
820 default:
821 sk_msg_free_partial(sk, msg, send);
822 if (msg->apply_bytes < send)
823 msg->apply_bytes = 0;
824 else
825 msg->apply_bytes -= send;
826 if (msg->sg.size == 0)
827 tls_free_open_rec(sk);
828 *copied -= (send + delta);
829 err = -EACCES;
830 }
831
832 if (likely(!err)) {
833 bool reset_eval = !ctx->open_rec;
834
835 rec = ctx->open_rec;
836 if (rec) {
837 msg = &rec->msg_plaintext;
838 if (!msg->apply_bytes)
839 reset_eval = true;
840 }
841 if (reset_eval) {
842 psock->eval = __SK_NONE;
843 if (psock->sk_redir) {
844 sock_put(psock->sk_redir);
845 psock->sk_redir = NULL;
846 }
847 }
848 if (rec)
849 goto more_data;
850 }
851 out_err:
852 sk_psock_put(sk, psock);
853 return err;
854}
855
856static int tls_sw_push_pending_record(struct sock *sk, int flags)
857{
858 struct tls_context *tls_ctx = tls_get_ctx(sk);
859 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
860 struct tls_rec *rec = ctx->open_rec;
861 struct sk_msg *msg_pl;
862 size_t copied;
863
864 if (!rec)
865 return 0;
866
867 msg_pl = &rec->msg_plaintext;
868 copied = msg_pl->sg.size;
869 if (!copied)
870 return 0;
871
872 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
873 &copied, flags);
874}
875
876int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
877{
878 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
879 struct tls_context *tls_ctx = tls_get_ctx(sk);
880 struct tls_prot_info *prot = &tls_ctx->prot_info;
881 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
882 bool async_capable = ctx->async_capable;
883 unsigned char record_type = TLS_RECORD_TYPE_DATA;
884 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
885 bool eor = !(msg->msg_flags & MSG_MORE);
886 size_t try_to_copy, copied = 0;
887 struct sk_msg *msg_pl, *msg_en;
888 struct tls_rec *rec;
889 int required_size;
890 int num_async = 0;
891 bool full_record;
892 int record_room;
893 int num_zc = 0;
894 int orig_size;
895 int ret = 0;
896
897 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
898 return -ENOTSUPP;
899
900 mutex_lock(&tls_ctx->tx_lock);
901 lock_sock(sk);
902
903 if (unlikely(msg->msg_controllen)) {
904 ret = tls_proccess_cmsg(sk, msg, &record_type);
905 if (ret) {
906 if (ret == -EINPROGRESS)
907 num_async++;
908 else if (ret != -EAGAIN)
909 goto send_end;
910 }
911 }
912
913 while (msg_data_left(msg)) {
914 if (sk->sk_err) {
915 ret = -sk->sk_err;
916 goto send_end;
917 }
918
919 if (ctx->open_rec)
920 rec = ctx->open_rec;
921 else
922 rec = ctx->open_rec = tls_get_rec(sk);
923 if (!rec) {
924 ret = -ENOMEM;
925 goto send_end;
926 }
927
928 msg_pl = &rec->msg_plaintext;
929 msg_en = &rec->msg_encrypted;
930
931 orig_size = msg_pl->sg.size;
932 full_record = false;
933 try_to_copy = msg_data_left(msg);
934 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
935 if (try_to_copy >= record_room) {
936 try_to_copy = record_room;
937 full_record = true;
938 }
939
940 required_size = msg_pl->sg.size + try_to_copy +
941 prot->overhead_size;
942
943 if (!sk_stream_memory_free(sk))
944 goto wait_for_sndbuf;
945
946alloc_encrypted:
947 ret = tls_alloc_encrypted_msg(sk, required_size);
948 if (ret) {
949 if (ret != -ENOSPC)
950 goto wait_for_memory;
951
952 /* Adjust try_to_copy according to the amount that was
953 * actually allocated. The difference is due
954 * to max sg elements limit
955 */
956 try_to_copy -= required_size - msg_en->sg.size;
957 full_record = true;
958 }
959
960 if (!is_kvec && (full_record || eor) && !async_capable) {
961 u32 first = msg_pl->sg.end;
962
963 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
964 msg_pl, try_to_copy);
965 if (ret)
966 goto fallback_to_reg_send;
967
968 rec->inplace_crypto = 0;
969
970 num_zc++;
971 copied += try_to_copy;
972
973 sk_msg_sg_copy_set(msg_pl, first);
974 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
975 record_type, &copied,
976 msg->msg_flags);
977 if (ret) {
978 if (ret == -EINPROGRESS)
979 num_async++;
980 else if (ret == -ENOMEM)
981 goto wait_for_memory;
982 else if (ret == -ENOSPC)
983 goto rollback_iter;
984 else if (ret != -EAGAIN)
985 goto send_end;
986 }
987 continue;
988rollback_iter:
989 copied -= try_to_copy;
990 sk_msg_sg_copy_clear(msg_pl, first);
991 iov_iter_revert(&msg->msg_iter,
992 msg_pl->sg.size - orig_size);
993fallback_to_reg_send:
994 sk_msg_trim(sk, msg_pl, orig_size);
995 }
996
997 required_size = msg_pl->sg.size + try_to_copy;
998
999 ret = tls_clone_plaintext_msg(sk, required_size);
1000 if (ret) {
1001 if (ret != -ENOSPC)
1002 goto send_end;
1003
1004 /* Adjust try_to_copy according to the amount that was
1005 * actually allocated. The difference is due
1006 * to max sg elements limit
1007 */
1008 try_to_copy -= required_size - msg_pl->sg.size;
1009 full_record = true;
1010 sk_msg_trim(sk, msg_en,
1011 msg_pl->sg.size + prot->overhead_size);
1012 }
1013
1014 if (try_to_copy) {
1015 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1016 msg_pl, try_to_copy);
1017 if (ret < 0)
1018 goto trim_sgl;
1019 }
1020
1021 /* Open records defined only if successfully copied, otherwise
1022 * we would trim the sg but not reset the open record frags.
1023 */
1024 tls_ctx->pending_open_record_frags = true;
1025 copied += try_to_copy;
1026 if (full_record || eor) {
1027 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1028 record_type, &copied,
1029 msg->msg_flags);
1030 if (ret) {
1031 if (ret == -EINPROGRESS)
1032 num_async++;
1033 else if (ret == -ENOMEM)
1034 goto wait_for_memory;
1035 else if (ret != -EAGAIN) {
1036 if (ret == -ENOSPC)
1037 ret = 0;
1038 goto send_end;
1039 }
1040 }
1041 }
1042
1043 continue;
1044
1045wait_for_sndbuf:
1046 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1047wait_for_memory:
1048 ret = sk_stream_wait_memory(sk, &timeo);
1049 if (ret) {
1050trim_sgl:
1051 tls_trim_both_msgs(sk, orig_size);
1052 goto send_end;
1053 }
1054
1055 if (msg_en->sg.size < required_size)
1056 goto alloc_encrypted;
1057 }
1058
1059 if (!num_async) {
1060 goto send_end;
1061 } else if (num_zc) {
1062 /* Wait for pending encryptions to get completed */
1063 smp_store_mb(ctx->async_notify, true);
1064
1065 if (atomic_read(&ctx->encrypt_pending))
1066 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1067 else
1068 reinit_completion(&ctx->async_wait.completion);
1069
1070 WRITE_ONCE(ctx->async_notify, false);
1071
1072 if (ctx->async_wait.err) {
1073 ret = ctx->async_wait.err;
1074 copied = 0;
1075 }
1076 }
1077
1078 /* Transmit if any encryptions have completed */
1079 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1080 cancel_delayed_work(&ctx->tx_work.work);
1081 tls_tx_records(sk, msg->msg_flags);
1082 }
1083
1084send_end:
1085 ret = sk_stream_error(sk, msg->msg_flags, ret);
1086
1087 release_sock(sk);
1088 mutex_unlock(&tls_ctx->tx_lock);
1089 return copied ? copied : ret;
1090}
1091
1092static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1093 int offset, size_t size, int flags)
1094{
1095 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1096 struct tls_context *tls_ctx = tls_get_ctx(sk);
1097 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1098 struct tls_prot_info *prot = &tls_ctx->prot_info;
1099 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1100 struct sk_msg *msg_pl;
1101 struct tls_rec *rec;
1102 int num_async = 0;
1103 size_t copied = 0;
1104 bool full_record;
1105 int record_room;
1106 int ret = 0;
1107 bool eor;
1108
1109 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1110 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1111
1112 /* Call the sk_stream functions to manage the sndbuf mem. */
1113 while (size > 0) {
1114 size_t copy, required_size;
1115
1116 if (sk->sk_err) {
1117 ret = -sk->sk_err;
1118 goto sendpage_end;
1119 }
1120
1121 if (ctx->open_rec)
1122 rec = ctx->open_rec;
1123 else
1124 rec = ctx->open_rec = tls_get_rec(sk);
1125 if (!rec) {
1126 ret = -ENOMEM;
1127 goto sendpage_end;
1128 }
1129
1130 msg_pl = &rec->msg_plaintext;
1131
1132 full_record = false;
1133 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1134 copy = size;
1135 if (copy >= record_room) {
1136 copy = record_room;
1137 full_record = true;
1138 }
1139
1140 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1141
1142 if (!sk_stream_memory_free(sk))
1143 goto wait_for_sndbuf;
1144alloc_payload:
1145 ret = tls_alloc_encrypted_msg(sk, required_size);
1146 if (ret) {
1147 if (ret != -ENOSPC)
1148 goto wait_for_memory;
1149
1150 /* Adjust copy according to the amount that was
1151 * actually allocated. The difference is due
1152 * to max sg elements limit
1153 */
1154 copy -= required_size - msg_pl->sg.size;
1155 full_record = true;
1156 }
1157
1158 sk_msg_page_add(msg_pl, page, copy, offset);
1159 sk_mem_charge(sk, copy);
1160
1161 offset += copy;
1162 size -= copy;
1163 copied += copy;
1164
1165 tls_ctx->pending_open_record_frags = true;
1166 if (full_record || eor || sk_msg_full(msg_pl)) {
1167 rec->inplace_crypto = 0;
1168 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1169 record_type, &copied, flags);
1170 if (ret) {
1171 if (ret == -EINPROGRESS)
1172 num_async++;
1173 else if (ret == -ENOMEM)
1174 goto wait_for_memory;
1175 else if (ret != -EAGAIN) {
1176 if (ret == -ENOSPC)
1177 ret = 0;
1178 goto sendpage_end;
1179 }
1180 }
1181 }
1182 continue;
1183wait_for_sndbuf:
1184 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1185wait_for_memory:
1186 ret = sk_stream_wait_memory(sk, &timeo);
1187 if (ret) {
1188 tls_trim_both_msgs(sk, msg_pl->sg.size);
1189 goto sendpage_end;
1190 }
1191
1192 goto alloc_payload;
1193 }
1194
1195 if (num_async) {
1196 /* Transmit if any encryptions have completed */
1197 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1198 cancel_delayed_work(&ctx->tx_work.work);
1199 tls_tx_records(sk, flags);
1200 }
1201 }
1202sendpage_end:
1203 ret = sk_stream_error(sk, flags, ret);
1204 return copied ? copied : ret;
1205}
1206
1207int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1208 int offset, size_t size, int flags)
1209{
1210 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1211 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1212 MSG_NO_SHARED_FRAGS))
1213 return -ENOTSUPP;
1214
1215 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1216}
1217
1218int tls_sw_sendpage(struct sock *sk, struct page *page,
1219 int offset, size_t size, int flags)
1220{
1221 struct tls_context *tls_ctx = tls_get_ctx(sk);
1222 int ret;
1223
1224 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1225 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1226 return -ENOTSUPP;
1227
1228 mutex_lock(&tls_ctx->tx_lock);
1229 lock_sock(sk);
1230 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1231 release_sock(sk);
1232 mutex_unlock(&tls_ctx->tx_lock);
1233 return ret;
1234}
1235
1236static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1237 int flags, long timeo, int *err)
1238{
1239 struct tls_context *tls_ctx = tls_get_ctx(sk);
1240 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1241 struct sk_buff *skb;
1242 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1243
1244 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1245 if (sk->sk_err) {
1246 *err = sock_error(sk);
1247 return NULL;
1248 }
1249
1250 if (sk->sk_shutdown & RCV_SHUTDOWN)
1251 return NULL;
1252
1253 if (sock_flag(sk, SOCK_DONE))
1254 return NULL;
1255
1256 if ((flags & MSG_DONTWAIT) || !timeo) {
1257 *err = -EAGAIN;
1258 return NULL;
1259 }
1260
1261 add_wait_queue(sk_sleep(sk), &wait);
1262 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1263 sk_wait_event(sk, &timeo,
1264 ctx->recv_pkt != skb ||
1265 !sk_psock_queue_empty(psock),
1266 &wait);
1267 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1268 remove_wait_queue(sk_sleep(sk), &wait);
1269
1270 /* Handle signals */
1271 if (signal_pending(current)) {
1272 *err = sock_intr_errno(timeo);
1273 return NULL;
1274 }
1275 }
1276
1277 return skb;
1278}
1279
1280static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1281 int length, int *pages_used,
1282 unsigned int *size_used,
1283 struct scatterlist *to,
1284 int to_max_pages)
1285{
1286 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1287 struct page *pages[MAX_SKB_FRAGS];
1288 unsigned int size = *size_used;
1289 ssize_t copied, use;
1290 size_t offset;
1291
1292 while (length > 0) {
1293 i = 0;
1294 maxpages = to_max_pages - num_elem;
1295 if (maxpages == 0) {
1296 rc = -EFAULT;
1297 goto out;
1298 }
1299 copied = iov_iter_get_pages(from, pages,
1300 length,
1301 maxpages, &offset);
1302 if (copied <= 0) {
1303 rc = -EFAULT;
1304 goto out;
1305 }
1306
1307 iov_iter_advance(from, copied);
1308
1309 length -= copied;
1310 size += copied;
1311 while (copied) {
1312 use = min_t(int, copied, PAGE_SIZE - offset);
1313
1314 sg_set_page(&to[num_elem],
1315 pages[i], use, offset);
1316 sg_unmark_end(&to[num_elem]);
1317 /* We do not uncharge memory from this API */
1318
1319 offset = 0;
1320 copied -= use;
1321
1322 i++;
1323 num_elem++;
1324 }
1325 }
1326 /* Mark the end in the last sg entry if newly added */
1327 if (num_elem > *pages_used)
1328 sg_mark_end(&to[num_elem - 1]);
1329out:
1330 if (rc)
1331 iov_iter_revert(from, size - *size_used);
1332 *size_used = size;
1333 *pages_used = num_elem;
1334
1335 return rc;
1336}
1337
1338/* This function decrypts the input skb into either out_iov or in out_sg
1339 * or in skb buffers itself. The input parameter 'zc' indicates if
1340 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1341 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1342 * NULL, then the decryption happens inside skb buffers itself, i.e.
1343 * zero-copy gets disabled and 'zc' is updated.
1344 */
1345
1346static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1347 struct iov_iter *out_iov,
1348 struct scatterlist *out_sg,
1349 int *chunk, bool *zc, bool async)
1350{
1351 struct tls_context *tls_ctx = tls_get_ctx(sk);
1352 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1353 struct tls_prot_info *prot = &tls_ctx->prot_info;
1354 struct strp_msg *rxm = strp_msg(skb);
1355 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1356 struct aead_request *aead_req;
1357 struct sk_buff *unused;
1358 u8 *aad, *iv, *mem = NULL;
1359 struct scatterlist *sgin = NULL;
1360 struct scatterlist *sgout = NULL;
1361 const int data_len = rxm->full_len - prot->overhead_size +
1362 prot->tail_size;
1363 int iv_offset = 0;
1364
1365 if (*zc && (out_iov || out_sg)) {
1366 if (out_iov)
1367 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1368 else
1369 n_sgout = sg_nents(out_sg);
1370 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1371 rxm->full_len - prot->prepend_size);
1372 } else {
1373 n_sgout = 0;
1374 *zc = false;
1375 n_sgin = skb_cow_data(skb, 0, &unused);
1376 }
1377
1378 if (n_sgin < 1)
1379 return -EBADMSG;
1380
1381 /* Increment to accommodate AAD */
1382 n_sgin = n_sgin + 1;
1383
1384 nsg = n_sgin + n_sgout;
1385
1386 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1387 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1388 mem_size = mem_size + prot->aad_size;
1389 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1390
1391 /* Allocate a single block of memory which contains
1392 * aead_req || sgin[] || sgout[] || aad || iv.
1393 * This order achieves correct alignment for aead_req, sgin, sgout.
1394 */
1395 mem = kmalloc(mem_size, sk->sk_allocation);
1396 if (!mem)
1397 return -ENOMEM;
1398
1399 /* Segment the allocated memory */
1400 aead_req = (struct aead_request *)mem;
1401 sgin = (struct scatterlist *)(mem + aead_size);
1402 sgout = sgin + n_sgin;
1403 aad = (u8 *)(sgout + n_sgout);
1404 iv = aad + prot->aad_size;
1405
1406 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1407 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1408 iv[0] = 2;
1409 iv_offset = 1;
1410 }
1411
1412 /* Prepare IV */
1413 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1414 iv + iv_offset + prot->salt_size,
1415 prot->iv_size);
1416 if (err < 0) {
1417 kfree(mem);
1418 return err;
1419 }
1420 if (prot->version == TLS_1_3_VERSION)
1421 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1422 crypto_aead_ivsize(ctx->aead_recv));
1423 else
1424 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1425
1426 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1427
1428 /* Prepare AAD */
1429 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1430 prot->tail_size,
1431 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1432 ctx->control, prot->version);
1433
1434 /* Prepare sgin */
1435 sg_init_table(sgin, n_sgin);
1436 sg_set_buf(&sgin[0], aad, prot->aad_size);
1437 err = skb_to_sgvec(skb, &sgin[1],
1438 rxm->offset + prot->prepend_size,
1439 rxm->full_len - prot->prepend_size);
1440 if (err < 0) {
1441 kfree(mem);
1442 return err;
1443 }
1444
1445 if (n_sgout) {
1446 if (out_iov) {
1447 sg_init_table(sgout, n_sgout);
1448 sg_set_buf(&sgout[0], aad, prot->aad_size);
1449
1450 *chunk = 0;
1451 err = tls_setup_from_iter(sk, out_iov, data_len,
1452 &pages, chunk, &sgout[1],
1453 (n_sgout - 1));
1454 if (err < 0)
1455 goto fallback_to_reg_recv;
1456 } else if (out_sg) {
1457 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1458 } else {
1459 goto fallback_to_reg_recv;
1460 }
1461 } else {
1462fallback_to_reg_recv:
1463 sgout = sgin;
1464 pages = 0;
1465 *chunk = data_len;
1466 *zc = false;
1467 }
1468
1469 /* Prepare and submit AEAD request */
1470 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1471 data_len, aead_req, async);
1472 if (err == -EINPROGRESS)
1473 return err;
1474
1475 /* Release the pages in case iov was mapped to pages */
1476 for (; pages > 0; pages--)
1477 put_page(sg_page(&sgout[pages]));
1478
1479 kfree(mem);
1480 return err;
1481}
1482
1483static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1484 struct iov_iter *dest, int *chunk, bool *zc,
1485 bool async)
1486{
1487 struct tls_context *tls_ctx = tls_get_ctx(sk);
1488 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1489 struct tls_prot_info *prot = &tls_ctx->prot_info;
1490 struct strp_msg *rxm = strp_msg(skb);
1491 int pad, err = 0;
1492
1493 if (!ctx->decrypted) {
1494 if (tls_ctx->rx_conf == TLS_HW) {
1495 err = tls_device_decrypted(sk, skb);
1496 if (err < 0)
1497 return err;
1498 }
1499
1500 /* Still not decrypted after tls_device */
1501 if (!ctx->decrypted) {
1502 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1503 async);
1504 if (err < 0) {
1505 if (err == -EINPROGRESS)
1506 tls_advance_record_sn(sk, prot,
1507 &tls_ctx->rx);
1508
1509 return err;
1510 }
1511 } else {
1512 *zc = false;
1513 }
1514
1515 pad = padding_length(ctx, prot, skb);
1516 if (pad < 0)
1517 return pad;
1518
1519 rxm->full_len -= pad;
1520 rxm->offset += prot->prepend_size;
1521 rxm->full_len -= prot->overhead_size;
1522 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1523 ctx->decrypted = true;
1524 ctx->saved_data_ready(sk);
1525 } else {
1526 *zc = false;
1527 }
1528
1529 return err;
1530}
1531
1532int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1533 struct scatterlist *sgout)
1534{
1535 bool zc = true;
1536 int chunk;
1537
1538 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1539}
1540
1541static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1542 unsigned int len)
1543{
1544 struct tls_context *tls_ctx = tls_get_ctx(sk);
1545 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1546
1547 if (skb) {
1548 struct strp_msg *rxm = strp_msg(skb);
1549
1550 if (len < rxm->full_len) {
1551 rxm->offset += len;
1552 rxm->full_len -= len;
1553 return false;
1554 }
1555 consume_skb(skb);
1556 }
1557
1558 /* Finished with message */
1559 ctx->recv_pkt = NULL;
1560 __strp_unpause(&ctx->strp);
1561
1562 return true;
1563}
1564
1565/* This function traverses the rx_list in tls receive context to copies the
1566 * decrypted records into the buffer provided by caller zero copy is not
1567 * true. Further, the records are removed from the rx_list if it is not a peek
1568 * case and the record has been consumed completely.
1569 */
1570static int process_rx_list(struct tls_sw_context_rx *ctx,
1571 struct msghdr *msg,
1572 u8 *control,
1573 bool *cmsg,
1574 size_t skip,
1575 size_t len,
1576 bool zc,
1577 bool is_peek)
1578{
1579 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1580 u8 ctrl = *control;
1581 u8 msgc = *cmsg;
1582 struct tls_msg *tlm;
1583 ssize_t copied = 0;
1584
1585 /* Set the record type in 'control' if caller didn't pass it */
1586 if (!ctrl && skb) {
1587 tlm = tls_msg(skb);
1588 ctrl = tlm->control;
1589 }
1590
1591 while (skip && skb) {
1592 struct strp_msg *rxm = strp_msg(skb);
1593 tlm = tls_msg(skb);
1594
1595 /* Cannot process a record of different type */
1596 if (ctrl != tlm->control)
1597 return 0;
1598
1599 if (skip < rxm->full_len)
1600 break;
1601
1602 skip = skip - rxm->full_len;
1603 skb = skb_peek_next(skb, &ctx->rx_list);
1604 }
1605
1606 while (len && skb) {
1607 struct sk_buff *next_skb;
1608 struct strp_msg *rxm = strp_msg(skb);
1609 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1610
1611 tlm = tls_msg(skb);
1612
1613 /* Cannot process a record of different type */
1614 if (ctrl != tlm->control)
1615 return 0;
1616
1617 /* Set record type if not already done. For a non-data record,
1618 * do not proceed if record type could not be copied.
1619 */
1620 if (!msgc) {
1621 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1622 sizeof(ctrl), &ctrl);
1623 msgc = true;
1624 if (ctrl != TLS_RECORD_TYPE_DATA) {
1625 if (cerr || msg->msg_flags & MSG_CTRUNC)
1626 return -EIO;
1627
1628 *cmsg = msgc;
1629 }
1630 }
1631
1632 if (!zc || (rxm->full_len - skip) > len) {
1633 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1634 msg, chunk);
1635 if (err < 0)
1636 return err;
1637 }
1638
1639 len = len - chunk;
1640 copied = copied + chunk;
1641
1642 /* Consume the data from record if it is non-peek case*/
1643 if (!is_peek) {
1644 rxm->offset = rxm->offset + chunk;
1645 rxm->full_len = rxm->full_len - chunk;
1646
1647 /* Return if there is unconsumed data in the record */
1648 if (rxm->full_len - skip)
1649 break;
1650 }
1651
1652 /* The remaining skip-bytes must lie in 1st record in rx_list.
1653 * So from the 2nd record, 'skip' should be 0.
1654 */
1655 skip = 0;
1656
1657 if (msg)
1658 msg->msg_flags |= MSG_EOR;
1659
1660 next_skb = skb_peek_next(skb, &ctx->rx_list);
1661
1662 if (!is_peek) {
1663 skb_unlink(skb, &ctx->rx_list);
1664 consume_skb(skb);
1665 }
1666
1667 skb = next_skb;
1668 }
1669
1670 *control = ctrl;
1671 return copied;
1672}
1673
1674int tls_sw_recvmsg(struct sock *sk,
1675 struct msghdr *msg,
1676 size_t len,
1677 int nonblock,
1678 int flags,
1679 int *addr_len)
1680{
1681 struct tls_context *tls_ctx = tls_get_ctx(sk);
1682 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1683 struct tls_prot_info *prot = &tls_ctx->prot_info;
1684 struct sk_psock *psock;
1685 unsigned char control = 0;
1686 ssize_t decrypted = 0;
1687 struct strp_msg *rxm;
1688 struct tls_msg *tlm;
1689 struct sk_buff *skb;
1690 ssize_t copied = 0;
1691 bool cmsg = false;
1692 int target, err = 0;
1693 long timeo;
1694 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1695 bool is_peek = flags & MSG_PEEK;
1696 int num_async = 0;
1697
1698 flags |= nonblock;
1699
1700 if (unlikely(flags & MSG_ERRQUEUE))
1701 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1702
1703 psock = sk_psock_get(sk);
1704 lock_sock(sk);
1705
1706 /* Process pending decrypted records. It must be non-zero-copy */
1707 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1708 is_peek);
1709 if (err < 0) {
1710 tls_err_abort(sk, err);
1711 goto end;
1712 } else {
1713 copied = err;
1714 }
1715
1716 if (len <= copied)
1717 goto recv_end;
1718
1719 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1720 len = len - copied;
1721 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1722
1723 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1724 bool retain_skb = false;
1725 bool zc = false;
1726 int to_decrypt;
1727 int chunk = 0;
1728 bool async_capable;
1729 bool async = false;
1730
1731 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1732 if (!skb) {
1733 if (psock) {
1734 int ret = __tcp_bpf_recvmsg(sk, psock,
1735 msg, len, flags);
1736
1737 if (ret > 0) {
1738 decrypted += ret;
1739 len -= ret;
1740 continue;
1741 }
1742 }
1743 goto recv_end;
1744 } else {
1745 tlm = tls_msg(skb);
1746 if (prot->version == TLS_1_3_VERSION)
1747 tlm->control = 0;
1748 else
1749 tlm->control = ctx->control;
1750 }
1751
1752 rxm = strp_msg(skb);
1753
1754 to_decrypt = rxm->full_len - prot->overhead_size;
1755
1756 if (to_decrypt <= len && !is_kvec && !is_peek &&
1757 ctx->control == TLS_RECORD_TYPE_DATA &&
1758 prot->version != TLS_1_3_VERSION)
1759 zc = true;
1760
1761 /* Do not use async mode if record is non-data */
1762 if (ctx->control == TLS_RECORD_TYPE_DATA)
1763 async_capable = ctx->async_capable;
1764 else
1765 async_capable = false;
1766
1767 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1768 &chunk, &zc, async_capable);
1769 if (err < 0 && err != -EINPROGRESS) {
1770 tls_err_abort(sk, EBADMSG);
1771 goto recv_end;
1772 }
1773
1774 if (err == -EINPROGRESS) {
1775 async = true;
1776 num_async++;
1777 } else if (prot->version == TLS_1_3_VERSION) {
1778 tlm->control = ctx->control;
1779 }
1780
1781 /* If the type of records being processed is not known yet,
1782 * set it to record type just dequeued. If it is already known,
1783 * but does not match the record type just dequeued, go to end.
1784 * We always get record type here since for tls1.2, record type
1785 * is known just after record is dequeued from stream parser.
1786 * For tls1.3, we disable async.
1787 */
1788
1789 if (!control)
1790 control = tlm->control;
1791 else if (control != tlm->control)
1792 goto recv_end;
1793
1794 if (!cmsg) {
1795 int cerr;
1796
1797 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1798 sizeof(control), &control);
1799 cmsg = true;
1800 if (control != TLS_RECORD_TYPE_DATA) {
1801 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1802 err = -EIO;
1803 goto recv_end;
1804 }
1805 }
1806 }
1807
1808 if (async)
1809 goto pick_next_record;
1810
1811 if (!zc) {
1812 if (rxm->full_len > len) {
1813 retain_skb = true;
1814 chunk = len;
1815 } else {
1816 chunk = rxm->full_len;
1817 }
1818
1819 err = skb_copy_datagram_msg(skb, rxm->offset,
1820 msg, chunk);
1821 if (err < 0)
1822 goto recv_end;
1823
1824 if (!is_peek) {
1825 rxm->offset = rxm->offset + chunk;
1826 rxm->full_len = rxm->full_len - chunk;
1827 }
1828 }
1829
1830pick_next_record:
1831 if (chunk > len)
1832 chunk = len;
1833
1834 decrypted += chunk;
1835 len -= chunk;
1836
1837 /* For async or peek case, queue the current skb */
1838 if (async || is_peek || retain_skb) {
1839 skb_queue_tail(&ctx->rx_list, skb);
1840 skb = NULL;
1841 }
1842
1843 if (tls_sw_advance_skb(sk, skb, chunk)) {
1844 /* Return full control message to
1845 * userspace before trying to parse
1846 * another message type
1847 */
1848 msg->msg_flags |= MSG_EOR;
1849 if (ctx->control != TLS_RECORD_TYPE_DATA)
1850 goto recv_end;
1851 } else {
1852 break;
1853 }
1854 }
1855
1856recv_end:
1857 if (num_async) {
1858 /* Wait for all previously submitted records to be decrypted */
1859 smp_store_mb(ctx->async_notify, true);
1860 if (atomic_read(&ctx->decrypt_pending)) {
1861 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1862 if (err) {
1863 /* one of async decrypt failed */
1864 tls_err_abort(sk, err);
1865 copied = 0;
1866 decrypted = 0;
1867 goto end;
1868 }
1869 } else {
1870 reinit_completion(&ctx->async_wait.completion);
1871 }
1872 WRITE_ONCE(ctx->async_notify, false);
1873
1874 /* Drain records from the rx_list & copy if required */
1875 if (is_peek || is_kvec)
1876 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1877 decrypted, false, is_peek);
1878 else
1879 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1880 decrypted, true, is_peek);
1881 if (err < 0) {
1882 tls_err_abort(sk, err);
1883 copied = 0;
1884 goto end;
1885 }
1886 }
1887
1888 copied += decrypted;
1889
1890end:
1891 release_sock(sk);
1892 if (psock)
1893 sk_psock_put(sk, psock);
1894 return copied ? : err;
1895}
1896
1897ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1898 struct pipe_inode_info *pipe,
1899 size_t len, unsigned int flags)
1900{
1901 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1902 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1903 struct strp_msg *rxm = NULL;
1904 struct sock *sk = sock->sk;
1905 struct sk_buff *skb;
1906 ssize_t copied = 0;
1907 int err = 0;
1908 long timeo;
1909 int chunk;
1910 bool zc = false;
1911
1912 lock_sock(sk);
1913
1914 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1915
1916 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1917 if (!skb)
1918 goto splice_read_end;
1919
1920 if (!ctx->decrypted) {
1921 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1922
1923 /* splice does not support reading control messages */
1924 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1925 err = -ENOTSUPP;
1926 goto splice_read_end;
1927 }
1928
1929 if (err < 0) {
1930 tls_err_abort(sk, EBADMSG);
1931 goto splice_read_end;
1932 }
1933 ctx->decrypted = true;
1934 }
1935 rxm = strp_msg(skb);
1936
1937 chunk = min_t(unsigned int, rxm->full_len, len);
1938 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1939 if (copied < 0)
1940 goto splice_read_end;
1941
1942 if (likely(!(flags & MSG_PEEK)))
1943 tls_sw_advance_skb(sk, skb, copied);
1944
1945splice_read_end:
1946 release_sock(sk);
1947 return copied ? : err;
1948}
1949
1950bool tls_sw_stream_read(const struct sock *sk)
1951{
1952 struct tls_context *tls_ctx = tls_get_ctx(sk);
1953 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1954 bool ingress_empty = true;
1955 struct sk_psock *psock;
1956
1957 rcu_read_lock();
1958 psock = sk_psock(sk);
1959 if (psock)
1960 ingress_empty = list_empty(&psock->ingress_msg);
1961 rcu_read_unlock();
1962
1963 return !ingress_empty || ctx->recv_pkt ||
1964 !skb_queue_empty(&ctx->rx_list);
1965}
1966
1967static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1968{
1969 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1970 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1971 struct tls_prot_info *prot = &tls_ctx->prot_info;
1972 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1973 struct strp_msg *rxm = strp_msg(skb);
1974 size_t cipher_overhead;
1975 size_t data_len = 0;
1976 int ret;
1977
1978 /* Verify that we have a full TLS header, or wait for more data */
1979 if (rxm->offset + prot->prepend_size > skb->len)
1980 return 0;
1981
1982 /* Sanity-check size of on-stack buffer. */
1983 if (WARN_ON(prot->prepend_size > sizeof(header))) {
1984 ret = -EINVAL;
1985 goto read_failure;
1986 }
1987
1988 /* Linearize header to local buffer */
1989 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1990
1991 if (ret < 0)
1992 goto read_failure;
1993
1994 ctx->control = header[0];
1995
1996 data_len = ((header[4] & 0xFF) | (header[3] << 8));
1997
1998 cipher_overhead = prot->tag_size;
1999 if (prot->version != TLS_1_3_VERSION)
2000 cipher_overhead += prot->iv_size;
2001
2002 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2003 prot->tail_size) {
2004 ret = -EMSGSIZE;
2005 goto read_failure;
2006 }
2007 if (data_len < cipher_overhead) {
2008 ret = -EBADMSG;
2009 goto read_failure;
2010 }
2011
2012 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2013 if (header[1] != TLS_1_2_VERSION_MINOR ||
2014 header[2] != TLS_1_2_VERSION_MAJOR) {
2015 ret = -EINVAL;
2016 goto read_failure;
2017 }
2018
2019 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2020 TCP_SKB_CB(skb)->seq + rxm->offset);
2021 return data_len + TLS_HEADER_SIZE;
2022
2023read_failure:
2024 tls_err_abort(strp->sk, ret);
2025
2026 return ret;
2027}
2028
2029static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2030{
2031 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2032 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2033
2034 ctx->decrypted = false;
2035
2036 ctx->recv_pkt = skb;
2037 strp_pause(strp);
2038
2039 ctx->saved_data_ready(strp->sk);
2040}
2041
2042static void tls_data_ready(struct sock *sk)
2043{
2044 struct tls_context *tls_ctx = tls_get_ctx(sk);
2045 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2046 struct sk_psock *psock;
2047
2048 strp_data_ready(&ctx->strp);
2049
2050 psock = sk_psock_get(sk);
2051 if (psock && !list_empty(&psock->ingress_msg)) {
2052 ctx->saved_data_ready(sk);
2053 sk_psock_put(sk, psock);
2054 }
2055}
2056
2057void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2058{
2059 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2060
2061 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2062 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2063 cancel_delayed_work_sync(&ctx->tx_work.work);
2064}
2065
2066void tls_sw_release_resources_tx(struct sock *sk)
2067{
2068 struct tls_context *tls_ctx = tls_get_ctx(sk);
2069 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2070 struct tls_rec *rec, *tmp;
2071
2072 /* Wait for any pending async encryptions to complete */
2073 smp_store_mb(ctx->async_notify, true);
2074 if (atomic_read(&ctx->encrypt_pending))
2075 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2076
2077 tls_tx_records(sk, -1);
2078
2079 /* Free up un-sent records in tx_list. First, free
2080 * the partially sent record if any at head of tx_list.
2081 */
2082 if (tls_free_partial_record(sk, tls_ctx)) {
2083 rec = list_first_entry(&ctx->tx_list,
2084 struct tls_rec, list);
2085 list_del(&rec->list);
2086 sk_msg_free(sk, &rec->msg_plaintext);
2087 kfree(rec);
2088 }
2089
2090 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2091 list_del(&rec->list);
2092 sk_msg_free(sk, &rec->msg_encrypted);
2093 sk_msg_free(sk, &rec->msg_plaintext);
2094 kfree(rec);
2095 }
2096
2097 crypto_free_aead(ctx->aead_send);
2098 tls_free_open_rec(sk);
2099}
2100
2101void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2102{
2103 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2104
2105 kfree(ctx);
2106}
2107
2108void tls_sw_release_resources_rx(struct sock *sk)
2109{
2110 struct tls_context *tls_ctx = tls_get_ctx(sk);
2111 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2112
2113 kfree(tls_ctx->rx.rec_seq);
2114 kfree(tls_ctx->rx.iv);
2115
2116 if (ctx->aead_recv) {
2117 kfree_skb(ctx->recv_pkt);
2118 ctx->recv_pkt = NULL;
2119 skb_queue_purge(&ctx->rx_list);
2120 crypto_free_aead(ctx->aead_recv);
2121 strp_stop(&ctx->strp);
2122 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2123 * we still want to strp_stop(), but sk->sk_data_ready was
2124 * never swapped.
2125 */
2126 if (ctx->saved_data_ready) {
2127 write_lock_bh(&sk->sk_callback_lock);
2128 sk->sk_data_ready = ctx->saved_data_ready;
2129 write_unlock_bh(&sk->sk_callback_lock);
2130 }
2131 }
2132}
2133
2134void tls_sw_strparser_done(struct tls_context *tls_ctx)
2135{
2136 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2137
2138 strp_done(&ctx->strp);
2139}
2140
2141void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2142{
2143 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2144
2145 kfree(ctx);
2146}
2147
2148void tls_sw_free_resources_rx(struct sock *sk)
2149{
2150 struct tls_context *tls_ctx = tls_get_ctx(sk);
2151
2152 tls_sw_release_resources_rx(sk);
2153 tls_sw_free_ctx_rx(tls_ctx);
2154}
2155
2156/* The work handler to transmitt the encrypted records in tx_list */
2157static void tx_work_handler(struct work_struct *work)
2158{
2159 struct delayed_work *delayed_work = to_delayed_work(work);
2160 struct tx_work *tx_work = container_of(delayed_work,
2161 struct tx_work, work);
2162 struct sock *sk = tx_work->sk;
2163 struct tls_context *tls_ctx = tls_get_ctx(sk);
2164 struct tls_sw_context_tx *ctx;
2165
2166 if (unlikely(!tls_ctx))
2167 return;
2168
2169 ctx = tls_sw_ctx_tx(tls_ctx);
2170 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2171 return;
2172
2173 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2174 return;
2175 mutex_lock(&tls_ctx->tx_lock);
2176 lock_sock(sk);
2177 tls_tx_records(sk, -1);
2178 release_sock(sk);
2179 mutex_unlock(&tls_ctx->tx_lock);
2180}
2181
2182void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2183{
2184 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2185
2186 /* Schedule the transmission if tx list is ready */
2187 if (is_tx_ready(tx_ctx) &&
2188 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2189 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2190}
2191
2192void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2193{
2194 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2195
2196 write_lock_bh(&sk->sk_callback_lock);
2197 rx_ctx->saved_data_ready = sk->sk_data_ready;
2198 sk->sk_data_ready = tls_data_ready;
2199 write_unlock_bh(&sk->sk_callback_lock);
2200
2201 strp_check_rcv(&rx_ctx->strp);
2202}
2203
2204int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2205{
2206 struct tls_context *tls_ctx = tls_get_ctx(sk);
2207 struct tls_prot_info *prot = &tls_ctx->prot_info;
2208 struct tls_crypto_info *crypto_info;
2209 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2210 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2211 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2212 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2213 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2214 struct cipher_context *cctx;
2215 struct crypto_aead **aead;
2216 struct strp_callbacks cb;
2217 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2218 struct crypto_tfm *tfm;
2219 char *iv, *rec_seq, *key, *salt, *cipher_name;
2220 size_t keysize;
2221 int rc = 0;
2222
2223 if (!ctx) {
2224 rc = -EINVAL;
2225 goto out;
2226 }
2227
2228 if (tx) {
2229 if (!ctx->priv_ctx_tx) {
2230 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2231 if (!sw_ctx_tx) {
2232 rc = -ENOMEM;
2233 goto out;
2234 }
2235 ctx->priv_ctx_tx = sw_ctx_tx;
2236 } else {
2237 sw_ctx_tx =
2238 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2239 }
2240 } else {
2241 if (!ctx->priv_ctx_rx) {
2242 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2243 if (!sw_ctx_rx) {
2244 rc = -ENOMEM;
2245 goto out;
2246 }
2247 ctx->priv_ctx_rx = sw_ctx_rx;
2248 } else {
2249 sw_ctx_rx =
2250 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2251 }
2252 }
2253
2254 if (tx) {
2255 crypto_init_wait(&sw_ctx_tx->async_wait);
2256 crypto_info = &ctx->crypto_send.info;
2257 cctx = &ctx->tx;
2258 aead = &sw_ctx_tx->aead_send;
2259 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2260 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2261 sw_ctx_tx->tx_work.sk = sk;
2262 } else {
2263 crypto_init_wait(&sw_ctx_rx->async_wait);
2264 crypto_info = &ctx->crypto_recv.info;
2265 cctx = &ctx->rx;
2266 skb_queue_head_init(&sw_ctx_rx->rx_list);
2267 aead = &sw_ctx_rx->aead_recv;
2268 }
2269
2270 switch (crypto_info->cipher_type) {
2271 case TLS_CIPHER_AES_GCM_128: {
2272 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2273 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2274 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2275 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2276 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2277 rec_seq =
2278 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2279 gcm_128_info =
2280 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2281 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2282 key = gcm_128_info->key;
2283 salt = gcm_128_info->salt;
2284 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2285 cipher_name = "gcm(aes)";
2286 break;
2287 }
2288 case TLS_CIPHER_AES_GCM_256: {
2289 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2290 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2291 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2292 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2293 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2294 rec_seq =
2295 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2296 gcm_256_info =
2297 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2298 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2299 key = gcm_256_info->key;
2300 salt = gcm_256_info->salt;
2301 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2302 cipher_name = "gcm(aes)";
2303 break;
2304 }
2305 case TLS_CIPHER_AES_CCM_128: {
2306 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2307 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2308 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2309 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2310 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2311 rec_seq =
2312 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2313 ccm_128_info =
2314 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2315 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2316 key = ccm_128_info->key;
2317 salt = ccm_128_info->salt;
2318 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2319 cipher_name = "ccm(aes)";
2320 break;
2321 }
2322 default:
2323 rc = -EINVAL;
2324 goto free_priv;
2325 }
2326
2327 /* Sanity-check the sizes for stack allocations. */
2328 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2329 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2330 rc = -EINVAL;
2331 goto free_priv;
2332 }
2333
2334 if (crypto_info->version == TLS_1_3_VERSION) {
2335 nonce_size = 0;
2336 prot->aad_size = TLS_HEADER_SIZE;
2337 prot->tail_size = 1;
2338 } else {
2339 prot->aad_size = TLS_AAD_SPACE_SIZE;
2340 prot->tail_size = 0;
2341 }
2342
2343 prot->version = crypto_info->version;
2344 prot->cipher_type = crypto_info->cipher_type;
2345 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2346 prot->tag_size = tag_size;
2347 prot->overhead_size = prot->prepend_size +
2348 prot->tag_size + prot->tail_size;
2349 prot->iv_size = iv_size;
2350 prot->salt_size = salt_size;
2351 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2352 if (!cctx->iv) {
2353 rc = -ENOMEM;
2354 goto free_priv;
2355 }
2356 /* Note: 128 & 256 bit salt are the same size */
2357 prot->rec_seq_size = rec_seq_size;
2358 memcpy(cctx->iv, salt, salt_size);
2359 memcpy(cctx->iv + salt_size, iv, iv_size);
2360 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2361 if (!cctx->rec_seq) {
2362 rc = -ENOMEM;
2363 goto free_iv;
2364 }
2365
2366 if (!*aead) {
2367 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2368 if (IS_ERR(*aead)) {
2369 rc = PTR_ERR(*aead);
2370 *aead = NULL;
2371 goto free_rec_seq;
2372 }
2373 }
2374
2375 ctx->push_pending_record = tls_sw_push_pending_record;
2376
2377 rc = crypto_aead_setkey(*aead, key, keysize);
2378
2379 if (rc)
2380 goto free_aead;
2381
2382 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2383 if (rc)
2384 goto free_aead;
2385
2386 if (sw_ctx_rx) {
2387 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2388
2389 if (crypto_info->version == TLS_1_3_VERSION)
2390 sw_ctx_rx->async_capable = false;
2391 else
2392 sw_ctx_rx->async_capable =
2393 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2394
2395 /* Set up strparser */
2396 memset(&cb, 0, sizeof(cb));
2397 cb.rcv_msg = tls_queue;
2398 cb.parse_msg = tls_read_size;
2399
2400 strp_init(&sw_ctx_rx->strp, sk, &cb);
2401 }
2402
2403 goto out;
2404
2405free_aead:
2406 crypto_free_aead(*aead);
2407 *aead = NULL;
2408free_rec_seq:
2409 kfree(cctx->rec_seq);
2410 cctx->rec_seq = NULL;
2411free_iv:
2412 kfree(cctx->iv);
2413 cctx->iv = NULL;
2414free_priv:
2415 if (tx) {
2416 kfree(ctx->priv_ctx_tx);
2417 ctx->priv_ctx_tx = NULL;
2418 } else {
2419 kfree(ctx->priv_ctx_rx);
2420 ctx->priv_ctx_rx = NULL;
2421 }
2422out:
2423 return rc;
2424}