Loading...
1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
41#include "tls.h"
42#include "trace.h"
43
44/* device_offload_lock is used to synchronize tls_dev_add
45 * against NETDEV_DOWN notifications.
46 */
47static DECLARE_RWSEM(device_offload_lock);
48
49static struct workqueue_struct *destruct_wq __read_mostly;
50
51static LIST_HEAD(tls_device_list);
52static LIST_HEAD(tls_device_down_list);
53static DEFINE_SPINLOCK(tls_device_lock);
54
55static void tls_device_free_ctx(struct tls_context *ctx)
56{
57 if (ctx->tx_conf == TLS_HW) {
58 kfree(tls_offload_ctx_tx(ctx));
59 kfree(ctx->tx.rec_seq);
60 kfree(ctx->tx.iv);
61 }
62
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
65
66 tls_ctx_free(NULL, ctx);
67}
68
69static void tls_device_tx_del_task(struct work_struct *work)
70{
71 struct tls_offload_context_tx *offload_ctx =
72 container_of(work, struct tls_offload_context_tx, destruct_work);
73 struct tls_context *ctx = offload_ctx->ctx;
74 struct net_device *netdev;
75
76 /* Safe, because this is the destroy flow, refcount is 0, so
77 * tls_device_down can't store this field in parallel.
78 */
79 netdev = rcu_dereference_protected(ctx->netdev,
80 !refcount_read(&ctx->refcount));
81
82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 tls_device_free_ctx(ctx);
86}
87
88static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89{
90 struct net_device *netdev;
91 unsigned long flags;
92 bool async_cleanup;
93
94 spin_lock_irqsave(&tls_device_lock, flags);
95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 spin_unlock_irqrestore(&tls_device_lock, flags);
97 return;
98 }
99
100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101
102 /* Safe, because this is the destroy flow, refcount is 0, so
103 * tls_device_down can't store this field in parallel.
104 */
105 netdev = rcu_dereference_protected(ctx->netdev,
106 !refcount_read(&ctx->refcount));
107
108 async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109 if (async_cleanup) {
110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111
112 /* queue_work inside the spinlock
113 * to make sure tls_device_down waits for that work.
114 */
115 queue_work(destruct_wq, &offload_ctx->destruct_work);
116 }
117 spin_unlock_irqrestore(&tls_device_lock, flags);
118
119 if (!async_cleanup)
120 tls_device_free_ctx(ctx);
121}
122
123/* We assume that the socket is already connected */
124static struct net_device *get_netdev_for_sock(struct sock *sk)
125{
126 struct dst_entry *dst = sk_dst_get(sk);
127 struct net_device *netdev = NULL;
128
129 if (likely(dst)) {
130 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
131 dev_hold(netdev);
132 }
133
134 dst_release(dst);
135
136 return netdev;
137}
138
139static void destroy_record(struct tls_record_info *record)
140{
141 int i;
142
143 for (i = 0; i < record->num_frags; i++)
144 __skb_frag_unref(&record->frags[i], false);
145 kfree(record);
146}
147
148static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
149{
150 struct tls_record_info *info, *temp;
151
152 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153 list_del(&info->list);
154 destroy_record(info);
155 }
156
157 offload_ctx->retransmit_hint = NULL;
158}
159
160static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161{
162 struct tls_context *tls_ctx = tls_get_ctx(sk);
163 struct tls_record_info *info, *temp;
164 struct tls_offload_context_tx *ctx;
165 u64 deleted_records = 0;
166 unsigned long flags;
167
168 if (!tls_ctx)
169 return;
170
171 ctx = tls_offload_ctx_tx(tls_ctx);
172
173 spin_lock_irqsave(&ctx->lock, flags);
174 info = ctx->retransmit_hint;
175 if (info && !before(acked_seq, info->end_seq))
176 ctx->retransmit_hint = NULL;
177
178 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
179 if (before(acked_seq, info->end_seq))
180 break;
181 list_del(&info->list);
182
183 destroy_record(info);
184 deleted_records++;
185 }
186
187 ctx->unacked_record_sn += deleted_records;
188 spin_unlock_irqrestore(&ctx->lock, flags);
189}
190
191/* At this point, there should be no references on this
192 * socket and no in-flight SKBs associated with this
193 * socket, so it is safe to free all the resources.
194 */
195void tls_device_sk_destruct(struct sock *sk)
196{
197 struct tls_context *tls_ctx = tls_get_ctx(sk);
198 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
199
200 tls_ctx->sk_destruct(sk);
201
202 if (tls_ctx->tx_conf == TLS_HW) {
203 if (ctx->open_record)
204 destroy_record(ctx->open_record);
205 delete_all_records(ctx);
206 crypto_free_aead(ctx->aead_send);
207 clean_acked_data_disable(inet_csk(sk));
208 }
209
210 tls_device_queue_ctx_destruction(tls_ctx);
211}
212EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
213
214void tls_device_free_resources_tx(struct sock *sk)
215{
216 struct tls_context *tls_ctx = tls_get_ctx(sk);
217
218 tls_free_partial_record(sk, tls_ctx);
219}
220
221void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
222{
223 struct tls_context *tls_ctx = tls_get_ctx(sk);
224
225 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
226 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
227}
228EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
229
230static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
231 u32 seq)
232{
233 struct net_device *netdev;
234 struct sk_buff *skb;
235 int err = 0;
236 u8 *rcd_sn;
237
238 skb = tcp_write_queue_tail(sk);
239 if (skb)
240 TCP_SKB_CB(skb)->eor = 1;
241
242 rcd_sn = tls_ctx->tx.rec_seq;
243
244 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
245 down_read(&device_offload_lock);
246 netdev = rcu_dereference_protected(tls_ctx->netdev,
247 lockdep_is_held(&device_offload_lock));
248 if (netdev)
249 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
250 rcd_sn,
251 TLS_OFFLOAD_CTX_DIR_TX);
252 up_read(&device_offload_lock);
253 if (err)
254 return;
255
256 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
257}
258
259static void tls_append_frag(struct tls_record_info *record,
260 struct page_frag *pfrag,
261 int size)
262{
263 skb_frag_t *frag;
264
265 frag = &record->frags[record->num_frags - 1];
266 if (skb_frag_page(frag) == pfrag->page &&
267 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
268 skb_frag_size_add(frag, size);
269 } else {
270 ++frag;
271 __skb_frag_set_page(frag, pfrag->page);
272 skb_frag_off_set(frag, pfrag->offset);
273 skb_frag_size_set(frag, size);
274 ++record->num_frags;
275 get_page(pfrag->page);
276 }
277
278 pfrag->offset += size;
279 record->len += size;
280}
281
282static int tls_push_record(struct sock *sk,
283 struct tls_context *ctx,
284 struct tls_offload_context_tx *offload_ctx,
285 struct tls_record_info *record,
286 int flags)
287{
288 struct tls_prot_info *prot = &ctx->prot_info;
289 struct tcp_sock *tp = tcp_sk(sk);
290 skb_frag_t *frag;
291 int i;
292
293 record->end_seq = tp->write_seq + record->len;
294 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
295 offload_ctx->open_record = NULL;
296
297 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
298 tls_device_resync_tx(sk, ctx, tp->write_seq);
299
300 tls_advance_record_sn(sk, prot, &ctx->tx);
301
302 for (i = 0; i < record->num_frags; i++) {
303 frag = &record->frags[i];
304 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
305 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
306 skb_frag_size(frag), skb_frag_off(frag));
307 sk_mem_charge(sk, skb_frag_size(frag));
308 get_page(skb_frag_page(frag));
309 }
310 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
311
312 /* all ready, send */
313 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
314}
315
316static int tls_device_record_close(struct sock *sk,
317 struct tls_context *ctx,
318 struct tls_record_info *record,
319 struct page_frag *pfrag,
320 unsigned char record_type)
321{
322 struct tls_prot_info *prot = &ctx->prot_info;
323 int ret;
324
325 /* append tag
326 * device will fill in the tag, we just need to append a placeholder
327 * use socket memory to improve coalescing (re-using a single buffer
328 * increases frag count)
329 * if we can't allocate memory now, steal some back from data
330 */
331 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
332 sk->sk_allocation))) {
333 ret = 0;
334 tls_append_frag(record, pfrag, prot->tag_size);
335 } else {
336 ret = prot->tag_size;
337 if (record->len <= prot->overhead_size)
338 return -ENOMEM;
339 }
340
341 /* fill prepend */
342 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
343 record->len - prot->overhead_size,
344 record_type);
345 return ret;
346}
347
348static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
349 struct page_frag *pfrag,
350 size_t prepend_size)
351{
352 struct tls_record_info *record;
353 skb_frag_t *frag;
354
355 record = kmalloc(sizeof(*record), GFP_KERNEL);
356 if (!record)
357 return -ENOMEM;
358
359 frag = &record->frags[0];
360 __skb_frag_set_page(frag, pfrag->page);
361 skb_frag_off_set(frag, pfrag->offset);
362 skb_frag_size_set(frag, prepend_size);
363
364 get_page(pfrag->page);
365 pfrag->offset += prepend_size;
366
367 record->num_frags = 1;
368 record->len = prepend_size;
369 offload_ctx->open_record = record;
370 return 0;
371}
372
373static int tls_do_allocation(struct sock *sk,
374 struct tls_offload_context_tx *offload_ctx,
375 struct page_frag *pfrag,
376 size_t prepend_size)
377{
378 int ret;
379
380 if (!offload_ctx->open_record) {
381 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
382 sk->sk_allocation))) {
383 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
384 sk_stream_moderate_sndbuf(sk);
385 return -ENOMEM;
386 }
387
388 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
389 if (ret)
390 return ret;
391
392 if (pfrag->size > pfrag->offset)
393 return 0;
394 }
395
396 if (!sk_page_frag_refill(sk, pfrag))
397 return -ENOMEM;
398
399 return 0;
400}
401
402static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
403{
404 size_t pre_copy, nocache;
405
406 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
407 if (pre_copy) {
408 pre_copy = min(pre_copy, bytes);
409 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
410 return -EFAULT;
411 bytes -= pre_copy;
412 addr += pre_copy;
413 }
414
415 nocache = round_down(bytes, SMP_CACHE_BYTES);
416 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
417 return -EFAULT;
418 bytes -= nocache;
419 addr += nocache;
420
421 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
422 return -EFAULT;
423
424 return 0;
425}
426
427union tls_iter_offset {
428 struct iov_iter *msg_iter;
429 int offset;
430};
431
432static int tls_push_data(struct sock *sk,
433 union tls_iter_offset iter_offset,
434 size_t size, int flags,
435 unsigned char record_type,
436 struct page *zc_page)
437{
438 struct tls_context *tls_ctx = tls_get_ctx(sk);
439 struct tls_prot_info *prot = &tls_ctx->prot_info;
440 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
441 struct tls_record_info *record;
442 int tls_push_record_flags;
443 struct page_frag *pfrag;
444 size_t orig_size = size;
445 u32 max_open_record_len;
446 bool more = false;
447 bool done = false;
448 int copy, rc = 0;
449 long timeo;
450
451 if (flags &
452 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
453 return -EOPNOTSUPP;
454
455 if (unlikely(sk->sk_err))
456 return -sk->sk_err;
457
458 flags |= MSG_SENDPAGE_DECRYPTED;
459 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
460
461 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
462 if (tls_is_partially_sent_record(tls_ctx)) {
463 rc = tls_push_partial_record(sk, tls_ctx, flags);
464 if (rc < 0)
465 return rc;
466 }
467
468 pfrag = sk_page_frag(sk);
469
470 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
471 * we need to leave room for an authentication tag.
472 */
473 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
474 prot->prepend_size;
475 do {
476 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
477 if (unlikely(rc)) {
478 rc = sk_stream_wait_memory(sk, &timeo);
479 if (!rc)
480 continue;
481
482 record = ctx->open_record;
483 if (!record)
484 break;
485handle_error:
486 if (record_type != TLS_RECORD_TYPE_DATA) {
487 /* avoid sending partial
488 * record with type !=
489 * application_data
490 */
491 size = orig_size;
492 destroy_record(record);
493 ctx->open_record = NULL;
494 } else if (record->len > prot->prepend_size) {
495 goto last_record;
496 }
497
498 break;
499 }
500
501 record = ctx->open_record;
502
503 copy = min_t(size_t, size, max_open_record_len - record->len);
504 if (copy && zc_page) {
505 struct page_frag zc_pfrag;
506
507 zc_pfrag.page = zc_page;
508 zc_pfrag.offset = iter_offset.offset;
509 zc_pfrag.size = copy;
510 tls_append_frag(record, &zc_pfrag, copy);
511 } else if (copy) {
512 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
513
514 rc = tls_device_copy_data(page_address(pfrag->page) +
515 pfrag->offset, copy,
516 iter_offset.msg_iter);
517 if (rc)
518 goto handle_error;
519 tls_append_frag(record, pfrag, copy);
520 }
521
522 size -= copy;
523 if (!size) {
524last_record:
525 tls_push_record_flags = flags;
526 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
527 more = true;
528 break;
529 }
530
531 done = true;
532 }
533
534 if (done || record->len >= max_open_record_len ||
535 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
536 rc = tls_device_record_close(sk, tls_ctx, record,
537 pfrag, record_type);
538 if (rc) {
539 if (rc > 0) {
540 size += rc;
541 } else {
542 size = orig_size;
543 destroy_record(record);
544 ctx->open_record = NULL;
545 break;
546 }
547 }
548
549 rc = tls_push_record(sk,
550 tls_ctx,
551 ctx,
552 record,
553 tls_push_record_flags);
554 if (rc < 0)
555 break;
556 }
557 } while (!done);
558
559 tls_ctx->pending_open_record_frags = more;
560
561 if (orig_size - size > 0)
562 rc = orig_size - size;
563
564 return rc;
565}
566
567int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
568{
569 unsigned char record_type = TLS_RECORD_TYPE_DATA;
570 struct tls_context *tls_ctx = tls_get_ctx(sk);
571 union tls_iter_offset iter;
572 int rc;
573
574 mutex_lock(&tls_ctx->tx_lock);
575 lock_sock(sk);
576
577 if (unlikely(msg->msg_controllen)) {
578 rc = tls_process_cmsg(sk, msg, &record_type);
579 if (rc)
580 goto out;
581 }
582
583 iter.msg_iter = &msg->msg_iter;
584 rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
585
586out:
587 release_sock(sk);
588 mutex_unlock(&tls_ctx->tx_lock);
589 return rc;
590}
591
592int tls_device_sendpage(struct sock *sk, struct page *page,
593 int offset, size_t size, int flags)
594{
595 struct tls_context *tls_ctx = tls_get_ctx(sk);
596 union tls_iter_offset iter_offset;
597 struct iov_iter msg_iter;
598 char *kaddr;
599 struct kvec iov;
600 int rc;
601
602 if (flags & MSG_SENDPAGE_NOTLAST)
603 flags |= MSG_MORE;
604
605 mutex_lock(&tls_ctx->tx_lock);
606 lock_sock(sk);
607
608 if (flags & MSG_OOB) {
609 rc = -EOPNOTSUPP;
610 goto out;
611 }
612
613 if (tls_ctx->zerocopy_sendfile) {
614 iter_offset.offset = offset;
615 rc = tls_push_data(sk, iter_offset, size,
616 flags, TLS_RECORD_TYPE_DATA, page);
617 goto out;
618 }
619
620 kaddr = kmap(page);
621 iov.iov_base = kaddr + offset;
622 iov.iov_len = size;
623 iov_iter_kvec(&msg_iter, ITER_SOURCE, &iov, 1, size);
624 iter_offset.msg_iter = &msg_iter;
625 rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
626 NULL);
627 kunmap(page);
628
629out:
630 release_sock(sk);
631 mutex_unlock(&tls_ctx->tx_lock);
632 return rc;
633}
634
635struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
636 u32 seq, u64 *p_record_sn)
637{
638 u64 record_sn = context->hint_record_sn;
639 struct tls_record_info *info, *last;
640
641 info = context->retransmit_hint;
642 if (!info ||
643 before(seq, info->end_seq - info->len)) {
644 /* if retransmit_hint is irrelevant start
645 * from the beginning of the list
646 */
647 info = list_first_entry_or_null(&context->records_list,
648 struct tls_record_info, list);
649 if (!info)
650 return NULL;
651 /* send the start_marker record if seq number is before the
652 * tls offload start marker sequence number. This record is
653 * required to handle TCP packets which are before TLS offload
654 * started.
655 * And if it's not start marker, look if this seq number
656 * belongs to the list.
657 */
658 if (likely(!tls_record_is_start_marker(info))) {
659 /* we have the first record, get the last record to see
660 * if this seq number belongs to the list.
661 */
662 last = list_last_entry(&context->records_list,
663 struct tls_record_info, list);
664
665 if (!between(seq, tls_record_start_seq(info),
666 last->end_seq))
667 return NULL;
668 }
669 record_sn = context->unacked_record_sn;
670 }
671
672 /* We just need the _rcu for the READ_ONCE() */
673 rcu_read_lock();
674 list_for_each_entry_from_rcu(info, &context->records_list, list) {
675 if (before(seq, info->end_seq)) {
676 if (!context->retransmit_hint ||
677 after(info->end_seq,
678 context->retransmit_hint->end_seq)) {
679 context->hint_record_sn = record_sn;
680 context->retransmit_hint = info;
681 }
682 *p_record_sn = record_sn;
683 goto exit_rcu_unlock;
684 }
685 record_sn++;
686 }
687 info = NULL;
688
689exit_rcu_unlock:
690 rcu_read_unlock();
691 return info;
692}
693EXPORT_SYMBOL(tls_get_record);
694
695static int tls_device_push_pending_record(struct sock *sk, int flags)
696{
697 union tls_iter_offset iter;
698 struct iov_iter msg_iter;
699
700 iov_iter_kvec(&msg_iter, ITER_SOURCE, NULL, 0, 0);
701 iter.msg_iter = &msg_iter;
702 return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
703}
704
705void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
706{
707 if (tls_is_partially_sent_record(ctx)) {
708 gfp_t sk_allocation = sk->sk_allocation;
709
710 WARN_ON_ONCE(sk->sk_write_pending);
711
712 sk->sk_allocation = GFP_ATOMIC;
713 tls_push_partial_record(sk, ctx,
714 MSG_DONTWAIT | MSG_NOSIGNAL |
715 MSG_SENDPAGE_DECRYPTED);
716 sk->sk_allocation = sk_allocation;
717 }
718}
719
720static void tls_device_resync_rx(struct tls_context *tls_ctx,
721 struct sock *sk, u32 seq, u8 *rcd_sn)
722{
723 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
724 struct net_device *netdev;
725
726 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
727 rcu_read_lock();
728 netdev = rcu_dereference(tls_ctx->netdev);
729 if (netdev)
730 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
731 TLS_OFFLOAD_CTX_DIR_RX);
732 rcu_read_unlock();
733 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
734}
735
736static bool
737tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
738 s64 resync_req, u32 *seq, u16 *rcd_delta)
739{
740 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
741 u32 req_seq = resync_req >> 32;
742 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
743 u16 i;
744
745 *rcd_delta = 0;
746
747 if (is_async) {
748 /* shouldn't get to wraparound:
749 * too long in async stage, something bad happened
750 */
751 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
752 return false;
753
754 /* asynchronous stage: log all headers seq such that
755 * req_seq <= seq <= end_seq, and wait for real resync request
756 */
757 if (before(*seq, req_seq))
758 return false;
759 if (!after(*seq, req_end) &&
760 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
761 resync_async->log[resync_async->loglen++] = *seq;
762
763 resync_async->rcd_delta++;
764
765 return false;
766 }
767
768 /* synchronous stage: check against the logged entries and
769 * proceed to check the next entries if no match was found
770 */
771 for (i = 0; i < resync_async->loglen; i++)
772 if (req_seq == resync_async->log[i] &&
773 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
774 *rcd_delta = resync_async->rcd_delta - i;
775 *seq = req_seq;
776 resync_async->loglen = 0;
777 resync_async->rcd_delta = 0;
778 return true;
779 }
780
781 resync_async->loglen = 0;
782 resync_async->rcd_delta = 0;
783
784 if (req_seq == *seq &&
785 atomic64_try_cmpxchg(&resync_async->req,
786 &resync_req, 0))
787 return true;
788
789 return false;
790}
791
792void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
793{
794 struct tls_context *tls_ctx = tls_get_ctx(sk);
795 struct tls_offload_context_rx *rx_ctx;
796 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
797 u32 sock_data, is_req_pending;
798 struct tls_prot_info *prot;
799 s64 resync_req;
800 u16 rcd_delta;
801 u32 req_seq;
802
803 if (tls_ctx->rx_conf != TLS_HW)
804 return;
805 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
806 return;
807
808 prot = &tls_ctx->prot_info;
809 rx_ctx = tls_offload_ctx_rx(tls_ctx);
810 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
811
812 switch (rx_ctx->resync_type) {
813 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
814 resync_req = atomic64_read(&rx_ctx->resync_req);
815 req_seq = resync_req >> 32;
816 seq += TLS_HEADER_SIZE - 1;
817 is_req_pending = resync_req;
818
819 if (likely(!is_req_pending) || req_seq != seq ||
820 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
821 return;
822 break;
823 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
824 if (likely(!rx_ctx->resync_nh_do_now))
825 return;
826
827 /* head of next rec is already in, note that the sock_inq will
828 * include the currently parsed message when called from parser
829 */
830 sock_data = tcp_inq(sk);
831 if (sock_data > rcd_len) {
832 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
833 rcd_len);
834 return;
835 }
836
837 rx_ctx->resync_nh_do_now = 0;
838 seq += rcd_len;
839 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
840 break;
841 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
842 resync_req = atomic64_read(&rx_ctx->resync_async->req);
843 is_req_pending = resync_req;
844 if (likely(!is_req_pending))
845 return;
846
847 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
848 resync_req, &seq, &rcd_delta))
849 return;
850 tls_bigint_subtract(rcd_sn, rcd_delta);
851 break;
852 }
853
854 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
855}
856
857static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
858 struct tls_offload_context_rx *ctx,
859 struct sock *sk, struct sk_buff *skb)
860{
861 struct strp_msg *rxm;
862
863 /* device will request resyncs by itself based on stream scan */
864 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
865 return;
866 /* already scheduled */
867 if (ctx->resync_nh_do_now)
868 return;
869 /* seen decrypted fragments since last fully-failed record */
870 if (ctx->resync_nh_reset) {
871 ctx->resync_nh_reset = 0;
872 ctx->resync_nh.decrypted_failed = 1;
873 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
874 return;
875 }
876
877 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
878 return;
879
880 /* doing resync, bump the next target in case it fails */
881 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
882 ctx->resync_nh.decrypted_tgt *= 2;
883 else
884 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
885
886 rxm = strp_msg(skb);
887
888 /* head of next rec is already in, parser will sync for us */
889 if (tcp_inq(sk) > rxm->full_len) {
890 trace_tls_device_rx_resync_nh_schedule(sk);
891 ctx->resync_nh_do_now = 1;
892 } else {
893 struct tls_prot_info *prot = &tls_ctx->prot_info;
894 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
895
896 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
897 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
898
899 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
900 rcd_sn);
901 }
902}
903
904static int
905tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
906{
907 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
908 const struct tls_cipher_size_desc *cipher_sz;
909 int err, offset, copy, data_len, pos;
910 struct sk_buff *skb, *skb_iter;
911 struct scatterlist sg[1];
912 struct strp_msg *rxm;
913 char *orig_buf, *buf;
914
915 switch (tls_ctx->crypto_recv.info.cipher_type) {
916 case TLS_CIPHER_AES_GCM_128:
917 case TLS_CIPHER_AES_GCM_256:
918 break;
919 default:
920 return -EINVAL;
921 }
922 cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type];
923
924 rxm = strp_msg(tls_strp_msg(sw_ctx));
925 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv,
926 sk->sk_allocation);
927 if (!orig_buf)
928 return -ENOMEM;
929 buf = orig_buf;
930
931 err = tls_strp_msg_cow(sw_ctx);
932 if (unlikely(err))
933 goto free_buf;
934
935 skb = tls_strp_msg(sw_ctx);
936 rxm = strp_msg(skb);
937 offset = rxm->offset;
938
939 sg_init_table(sg, 1);
940 sg_set_buf(&sg[0], buf,
941 rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv);
942 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv);
943 if (err)
944 goto free_buf;
945
946 /* We are interested only in the decrypted data not the auth */
947 err = decrypt_skb(sk, sg);
948 if (err != -EBADMSG)
949 goto free_buf;
950 else
951 err = 0;
952
953 data_len = rxm->full_len - cipher_sz->tag;
954
955 if (skb_pagelen(skb) > offset) {
956 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
957
958 if (skb->decrypted) {
959 err = skb_store_bits(skb, offset, buf, copy);
960 if (err)
961 goto free_buf;
962 }
963
964 offset += copy;
965 buf += copy;
966 }
967
968 pos = skb_pagelen(skb);
969 skb_walk_frags(skb, skb_iter) {
970 int frag_pos;
971
972 /* Practically all frags must belong to msg if reencrypt
973 * is needed with current strparser and coalescing logic,
974 * but strparser may "get optimized", so let's be safe.
975 */
976 if (pos + skb_iter->len <= offset)
977 goto done_with_frag;
978 if (pos >= data_len + rxm->offset)
979 break;
980
981 frag_pos = offset - pos;
982 copy = min_t(int, skb_iter->len - frag_pos,
983 data_len + rxm->offset - offset);
984
985 if (skb_iter->decrypted) {
986 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
987 if (err)
988 goto free_buf;
989 }
990
991 offset += copy;
992 buf += copy;
993done_with_frag:
994 pos += skb_iter->len;
995 }
996
997free_buf:
998 kfree(orig_buf);
999 return err;
1000}
1001
1002int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
1003{
1004 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
1005 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
1006 struct sk_buff *skb = tls_strp_msg(sw_ctx);
1007 struct strp_msg *rxm = strp_msg(skb);
1008 int is_decrypted = skb->decrypted;
1009 int is_encrypted = !is_decrypted;
1010 struct sk_buff *skb_iter;
1011 int left;
1012
1013 left = rxm->full_len - skb->len;
1014 /* Check if all the data is decrypted already */
1015 skb_iter = skb_shinfo(skb)->frag_list;
1016 while (skb_iter && left > 0) {
1017 is_decrypted &= skb_iter->decrypted;
1018 is_encrypted &= !skb_iter->decrypted;
1019
1020 left -= skb_iter->len;
1021 skb_iter = skb_iter->next;
1022 }
1023
1024 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
1025 tls_ctx->rx.rec_seq, rxm->full_len,
1026 is_encrypted, is_decrypted);
1027
1028 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1029 if (likely(is_encrypted || is_decrypted))
1030 return is_decrypted;
1031
1032 /* After tls_device_down disables the offload, the next SKB will
1033 * likely have initial fragments decrypted, and final ones not
1034 * decrypted. We need to reencrypt that single SKB.
1035 */
1036 return tls_device_reencrypt(sk, tls_ctx);
1037 }
1038
1039 /* Return immediately if the record is either entirely plaintext or
1040 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1041 * record.
1042 */
1043 if (is_decrypted) {
1044 ctx->resync_nh_reset = 1;
1045 return is_decrypted;
1046 }
1047 if (is_encrypted) {
1048 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1049 return 0;
1050 }
1051
1052 ctx->resync_nh_reset = 1;
1053 return tls_device_reencrypt(sk, tls_ctx);
1054}
1055
1056static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1057 struct net_device *netdev)
1058{
1059 if (sk->sk_destruct != tls_device_sk_destruct) {
1060 refcount_set(&ctx->refcount, 1);
1061 dev_hold(netdev);
1062 RCU_INIT_POINTER(ctx->netdev, netdev);
1063 spin_lock_irq(&tls_device_lock);
1064 list_add_tail(&ctx->list, &tls_device_list);
1065 spin_unlock_irq(&tls_device_lock);
1066
1067 ctx->sk_destruct = sk->sk_destruct;
1068 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1069 }
1070}
1071
1072int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1073{
1074 struct tls_context *tls_ctx = tls_get_ctx(sk);
1075 struct tls_prot_info *prot = &tls_ctx->prot_info;
1076 const struct tls_cipher_size_desc *cipher_sz;
1077 struct tls_record_info *start_marker_record;
1078 struct tls_offload_context_tx *offload_ctx;
1079 struct tls_crypto_info *crypto_info;
1080 struct net_device *netdev;
1081 char *iv, *rec_seq;
1082 struct sk_buff *skb;
1083 __be64 rcd_sn;
1084 int rc;
1085
1086 if (!ctx)
1087 return -EINVAL;
1088
1089 if (ctx->priv_ctx_tx)
1090 return -EEXIST;
1091
1092 netdev = get_netdev_for_sock(sk);
1093 if (!netdev) {
1094 pr_err_ratelimited("%s: netdev not found\n", __func__);
1095 return -EINVAL;
1096 }
1097
1098 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1099 rc = -EOPNOTSUPP;
1100 goto release_netdev;
1101 }
1102
1103 crypto_info = &ctx->crypto_send.info;
1104 if (crypto_info->version != TLS_1_2_VERSION) {
1105 rc = -EOPNOTSUPP;
1106 goto release_netdev;
1107 }
1108
1109 switch (crypto_info->cipher_type) {
1110 case TLS_CIPHER_AES_GCM_128:
1111 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1112 rec_seq =
1113 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1114 break;
1115 case TLS_CIPHER_AES_GCM_256:
1116 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
1117 rec_seq =
1118 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
1119 break;
1120 default:
1121 rc = -EINVAL;
1122 goto release_netdev;
1123 }
1124 cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type];
1125
1126 /* Sanity-check the rec_seq_size for stack allocations */
1127 if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) {
1128 rc = -EINVAL;
1129 goto release_netdev;
1130 }
1131
1132 prot->version = crypto_info->version;
1133 prot->cipher_type = crypto_info->cipher_type;
1134 prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv;
1135 prot->tag_size = cipher_sz->tag;
1136 prot->overhead_size = prot->prepend_size + prot->tag_size;
1137 prot->iv_size = cipher_sz->iv;
1138 prot->salt_size = cipher_sz->salt;
1139 ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL);
1140 if (!ctx->tx.iv) {
1141 rc = -ENOMEM;
1142 goto release_netdev;
1143 }
1144
1145 memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv);
1146
1147 prot->rec_seq_size = cipher_sz->rec_seq;
1148 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL);
1149 if (!ctx->tx.rec_seq) {
1150 rc = -ENOMEM;
1151 goto free_iv;
1152 }
1153
1154 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1155 if (!start_marker_record) {
1156 rc = -ENOMEM;
1157 goto free_rec_seq;
1158 }
1159
1160 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1161 if (!offload_ctx) {
1162 rc = -ENOMEM;
1163 goto free_marker_record;
1164 }
1165
1166 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1167 if (rc)
1168 goto free_offload_ctx;
1169
1170 /* start at rec_seq - 1 to account for the start marker record */
1171 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1172 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1173
1174 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1175 start_marker_record->len = 0;
1176 start_marker_record->num_frags = 0;
1177
1178 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1179 offload_ctx->ctx = ctx;
1180
1181 INIT_LIST_HEAD(&offload_ctx->records_list);
1182 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1183 spin_lock_init(&offload_ctx->lock);
1184 sg_init_table(offload_ctx->sg_tx_data,
1185 ARRAY_SIZE(offload_ctx->sg_tx_data));
1186
1187 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1188 ctx->push_pending_record = tls_device_push_pending_record;
1189
1190 /* TLS offload is greatly simplified if we don't send
1191 * SKBs where only part of the payload needs to be encrypted.
1192 * So mark the last skb in the write queue as end of record.
1193 */
1194 skb = tcp_write_queue_tail(sk);
1195 if (skb)
1196 TCP_SKB_CB(skb)->eor = 1;
1197
1198 /* Avoid offloading if the device is down
1199 * We don't want to offload new flows after
1200 * the NETDEV_DOWN event
1201 *
1202 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1203 * handler thus protecting from the device going down before
1204 * ctx was added to tls_device_list.
1205 */
1206 down_read(&device_offload_lock);
1207 if (!(netdev->flags & IFF_UP)) {
1208 rc = -EINVAL;
1209 goto release_lock;
1210 }
1211
1212 ctx->priv_ctx_tx = offload_ctx;
1213 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1214 &ctx->crypto_send.info,
1215 tcp_sk(sk)->write_seq);
1216 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1217 tcp_sk(sk)->write_seq, rec_seq, rc);
1218 if (rc)
1219 goto release_lock;
1220
1221 tls_device_attach(ctx, sk, netdev);
1222 up_read(&device_offload_lock);
1223
1224 /* following this assignment tls_is_sk_tx_device_offloaded
1225 * will return true and the context might be accessed
1226 * by the netdev's xmit function.
1227 */
1228 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1229 dev_put(netdev);
1230
1231 return 0;
1232
1233release_lock:
1234 up_read(&device_offload_lock);
1235 clean_acked_data_disable(inet_csk(sk));
1236 crypto_free_aead(offload_ctx->aead_send);
1237free_offload_ctx:
1238 kfree(offload_ctx);
1239 ctx->priv_ctx_tx = NULL;
1240free_marker_record:
1241 kfree(start_marker_record);
1242free_rec_seq:
1243 kfree(ctx->tx.rec_seq);
1244free_iv:
1245 kfree(ctx->tx.iv);
1246release_netdev:
1247 dev_put(netdev);
1248 return rc;
1249}
1250
1251int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1252{
1253 struct tls12_crypto_info_aes_gcm_128 *info;
1254 struct tls_offload_context_rx *context;
1255 struct net_device *netdev;
1256 int rc = 0;
1257
1258 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1259 return -EOPNOTSUPP;
1260
1261 netdev = get_netdev_for_sock(sk);
1262 if (!netdev) {
1263 pr_err_ratelimited("%s: netdev not found\n", __func__);
1264 return -EINVAL;
1265 }
1266
1267 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1268 rc = -EOPNOTSUPP;
1269 goto release_netdev;
1270 }
1271
1272 /* Avoid offloading if the device is down
1273 * We don't want to offload new flows after
1274 * the NETDEV_DOWN event
1275 *
1276 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1277 * handler thus protecting from the device going down before
1278 * ctx was added to tls_device_list.
1279 */
1280 down_read(&device_offload_lock);
1281 if (!(netdev->flags & IFF_UP)) {
1282 rc = -EINVAL;
1283 goto release_lock;
1284 }
1285
1286 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1287 if (!context) {
1288 rc = -ENOMEM;
1289 goto release_lock;
1290 }
1291 context->resync_nh_reset = 1;
1292
1293 ctx->priv_ctx_rx = context;
1294 rc = tls_set_sw_offload(sk, ctx, 0);
1295 if (rc)
1296 goto release_ctx;
1297
1298 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1299 &ctx->crypto_recv.info,
1300 tcp_sk(sk)->copied_seq);
1301 info = (void *)&ctx->crypto_recv.info;
1302 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1303 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1304 if (rc)
1305 goto free_sw_resources;
1306
1307 tls_device_attach(ctx, sk, netdev);
1308 up_read(&device_offload_lock);
1309
1310 dev_put(netdev);
1311
1312 return 0;
1313
1314free_sw_resources:
1315 up_read(&device_offload_lock);
1316 tls_sw_free_resources_rx(sk);
1317 down_read(&device_offload_lock);
1318release_ctx:
1319 ctx->priv_ctx_rx = NULL;
1320release_lock:
1321 up_read(&device_offload_lock);
1322release_netdev:
1323 dev_put(netdev);
1324 return rc;
1325}
1326
1327void tls_device_offload_cleanup_rx(struct sock *sk)
1328{
1329 struct tls_context *tls_ctx = tls_get_ctx(sk);
1330 struct net_device *netdev;
1331
1332 down_read(&device_offload_lock);
1333 netdev = rcu_dereference_protected(tls_ctx->netdev,
1334 lockdep_is_held(&device_offload_lock));
1335 if (!netdev)
1336 goto out;
1337
1338 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1339 TLS_OFFLOAD_CTX_DIR_RX);
1340
1341 if (tls_ctx->tx_conf != TLS_HW) {
1342 dev_put(netdev);
1343 rcu_assign_pointer(tls_ctx->netdev, NULL);
1344 } else {
1345 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1346 }
1347out:
1348 up_read(&device_offload_lock);
1349 tls_sw_release_resources_rx(sk);
1350}
1351
1352static int tls_device_down(struct net_device *netdev)
1353{
1354 struct tls_context *ctx, *tmp;
1355 unsigned long flags;
1356 LIST_HEAD(list);
1357
1358 /* Request a write lock to block new offload attempts */
1359 down_write(&device_offload_lock);
1360
1361 spin_lock_irqsave(&tls_device_lock, flags);
1362 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1363 struct net_device *ctx_netdev =
1364 rcu_dereference_protected(ctx->netdev,
1365 lockdep_is_held(&device_offload_lock));
1366
1367 if (ctx_netdev != netdev ||
1368 !refcount_inc_not_zero(&ctx->refcount))
1369 continue;
1370
1371 list_move(&ctx->list, &list);
1372 }
1373 spin_unlock_irqrestore(&tls_device_lock, flags);
1374
1375 list_for_each_entry_safe(ctx, tmp, &list, list) {
1376 /* Stop offloaded TX and switch to the fallback.
1377 * tls_is_sk_tx_device_offloaded will return false.
1378 */
1379 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1380
1381 /* Stop the RX and TX resync.
1382 * tls_dev_resync must not be called after tls_dev_del.
1383 */
1384 rcu_assign_pointer(ctx->netdev, NULL);
1385
1386 /* Start skipping the RX resync logic completely. */
1387 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1388
1389 /* Sync with inflight packets. After this point:
1390 * TX: no non-encrypted packets will be passed to the driver.
1391 * RX: resync requests from the driver will be ignored.
1392 */
1393 synchronize_net();
1394
1395 /* Release the offload context on the driver side. */
1396 if (ctx->tx_conf == TLS_HW)
1397 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1398 TLS_OFFLOAD_CTX_DIR_TX);
1399 if (ctx->rx_conf == TLS_HW &&
1400 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1401 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1402 TLS_OFFLOAD_CTX_DIR_RX);
1403
1404 dev_put(netdev);
1405
1406 /* Move the context to a separate list for two reasons:
1407 * 1. When the context is deallocated, list_del is called.
1408 * 2. It's no longer an offloaded context, so we don't want to
1409 * run offload-specific code on this context.
1410 */
1411 spin_lock_irqsave(&tls_device_lock, flags);
1412 list_move_tail(&ctx->list, &tls_device_down_list);
1413 spin_unlock_irqrestore(&tls_device_lock, flags);
1414
1415 /* Device contexts for RX and TX will be freed in on sk_destruct
1416 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1417 * Now release the ref taken above.
1418 */
1419 if (refcount_dec_and_test(&ctx->refcount)) {
1420 /* sk_destruct ran after tls_device_down took a ref, and
1421 * it returned early. Complete the destruction here.
1422 */
1423 list_del(&ctx->list);
1424 tls_device_free_ctx(ctx);
1425 }
1426 }
1427
1428 up_write(&device_offload_lock);
1429
1430 flush_workqueue(destruct_wq);
1431
1432 return NOTIFY_DONE;
1433}
1434
1435static int tls_dev_event(struct notifier_block *this, unsigned long event,
1436 void *ptr)
1437{
1438 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1439
1440 if (!dev->tlsdev_ops &&
1441 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1442 return NOTIFY_DONE;
1443
1444 switch (event) {
1445 case NETDEV_REGISTER:
1446 case NETDEV_FEAT_CHANGE:
1447 if (netif_is_bond_master(dev))
1448 return NOTIFY_DONE;
1449 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1450 !dev->tlsdev_ops->tls_dev_resync)
1451 return NOTIFY_BAD;
1452
1453 if (dev->tlsdev_ops &&
1454 dev->tlsdev_ops->tls_dev_add &&
1455 dev->tlsdev_ops->tls_dev_del)
1456 return NOTIFY_DONE;
1457 else
1458 return NOTIFY_BAD;
1459 case NETDEV_DOWN:
1460 return tls_device_down(dev);
1461 }
1462 return NOTIFY_DONE;
1463}
1464
1465static struct notifier_block tls_dev_notifier = {
1466 .notifier_call = tls_dev_event,
1467};
1468
1469int __init tls_device_init(void)
1470{
1471 int err;
1472
1473 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1474 if (!destruct_wq)
1475 return -ENOMEM;
1476
1477 err = register_netdevice_notifier(&tls_dev_notifier);
1478 if (err)
1479 destroy_workqueue(destruct_wq);
1480
1481 return err;
1482}
1483
1484void __exit tls_device_cleanup(void)
1485{
1486 unregister_netdevice_notifier(&tls_dev_notifier);
1487 destroy_workqueue(destruct_wq);
1488 clean_acked_data_flush();
1489}
1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
41/* device_offload_lock is used to synchronize tls_dev_add
42 * against NETDEV_DOWN notifications.
43 */
44static DECLARE_RWSEM(device_offload_lock);
45
46static void tls_device_gc_task(struct work_struct *work);
47
48static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49static LIST_HEAD(tls_device_gc_list);
50static LIST_HEAD(tls_device_list);
51static DEFINE_SPINLOCK(tls_device_lock);
52
53static void tls_device_free_ctx(struct tls_context *ctx)
54{
55 if (ctx->tx_conf == TLS_HW) {
56 kfree(tls_offload_ctx_tx(ctx));
57 kfree(ctx->tx.rec_seq);
58 kfree(ctx->tx.iv);
59 }
60
61 if (ctx->rx_conf == TLS_HW)
62 kfree(tls_offload_ctx_rx(ctx));
63
64 tls_ctx_free(NULL, ctx);
65}
66
67static void tls_device_gc_task(struct work_struct *work)
68{
69 struct tls_context *ctx, *tmp;
70 unsigned long flags;
71 LIST_HEAD(gc_list);
72
73 spin_lock_irqsave(&tls_device_lock, flags);
74 list_splice_init(&tls_device_gc_list, &gc_list);
75 spin_unlock_irqrestore(&tls_device_lock, flags);
76
77 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78 struct net_device *netdev = ctx->netdev;
79
80 if (netdev && ctx->tx_conf == TLS_HW) {
81 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82 TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 }
86
87 list_del(&ctx->list);
88 tls_device_free_ctx(ctx);
89 }
90}
91
92static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93{
94 unsigned long flags;
95
96 spin_lock_irqsave(&tls_device_lock, flags);
97 list_move_tail(&ctx->list, &tls_device_gc_list);
98
99 /* schedule_work inside the spinlock
100 * to make sure tls_device_down waits for that work.
101 */
102 schedule_work(&tls_device_gc_work);
103
104 spin_unlock_irqrestore(&tls_device_lock, flags);
105}
106
107/* We assume that the socket is already connected */
108static struct net_device *get_netdev_for_sock(struct sock *sk)
109{
110 struct dst_entry *dst = sk_dst_get(sk);
111 struct net_device *netdev = NULL;
112
113 if (likely(dst)) {
114 netdev = dst->dev;
115 dev_hold(netdev);
116 }
117
118 dst_release(dst);
119
120 return netdev;
121}
122
123static void destroy_record(struct tls_record_info *record)
124{
125 int i;
126
127 for (i = 0; i < record->num_frags; i++)
128 __skb_frag_unref(&record->frags[i]);
129 kfree(record);
130}
131
132static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
133{
134 struct tls_record_info *info, *temp;
135
136 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
137 list_del(&info->list);
138 destroy_record(info);
139 }
140
141 offload_ctx->retransmit_hint = NULL;
142}
143
144static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
145{
146 struct tls_context *tls_ctx = tls_get_ctx(sk);
147 struct tls_record_info *info, *temp;
148 struct tls_offload_context_tx *ctx;
149 u64 deleted_records = 0;
150 unsigned long flags;
151
152 if (!tls_ctx)
153 return;
154
155 ctx = tls_offload_ctx_tx(tls_ctx);
156
157 spin_lock_irqsave(&ctx->lock, flags);
158 info = ctx->retransmit_hint;
159 if (info && !before(acked_seq, info->end_seq))
160 ctx->retransmit_hint = NULL;
161
162 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
163 if (before(acked_seq, info->end_seq))
164 break;
165 list_del(&info->list);
166
167 destroy_record(info);
168 deleted_records++;
169 }
170
171 ctx->unacked_record_sn += deleted_records;
172 spin_unlock_irqrestore(&ctx->lock, flags);
173}
174
175/* At this point, there should be no references on this
176 * socket and no in-flight SKBs associated with this
177 * socket, so it is safe to free all the resources.
178 */
179static void tls_device_sk_destruct(struct sock *sk)
180{
181 struct tls_context *tls_ctx = tls_get_ctx(sk);
182 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
183
184 tls_ctx->sk_destruct(sk);
185
186 if (tls_ctx->tx_conf == TLS_HW) {
187 if (ctx->open_record)
188 destroy_record(ctx->open_record);
189 delete_all_records(ctx);
190 crypto_free_aead(ctx->aead_send);
191 clean_acked_data_disable(inet_csk(sk));
192 }
193
194 if (refcount_dec_and_test(&tls_ctx->refcount))
195 tls_device_queue_ctx_destruction(tls_ctx);
196}
197
198void tls_device_free_resources_tx(struct sock *sk)
199{
200 struct tls_context *tls_ctx = tls_get_ctx(sk);
201
202 tls_free_partial_record(sk, tls_ctx);
203}
204
205static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
206 u32 seq)
207{
208 struct net_device *netdev;
209 struct sk_buff *skb;
210 int err = 0;
211 u8 *rcd_sn;
212
213 skb = tcp_write_queue_tail(sk);
214 if (skb)
215 TCP_SKB_CB(skb)->eor = 1;
216
217 rcd_sn = tls_ctx->tx.rec_seq;
218
219 down_read(&device_offload_lock);
220 netdev = tls_ctx->netdev;
221 if (netdev)
222 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
223 rcd_sn,
224 TLS_OFFLOAD_CTX_DIR_TX);
225 up_read(&device_offload_lock);
226 if (err)
227 return;
228
229 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
230}
231
232static void tls_append_frag(struct tls_record_info *record,
233 struct page_frag *pfrag,
234 int size)
235{
236 skb_frag_t *frag;
237
238 frag = &record->frags[record->num_frags - 1];
239 if (skb_frag_page(frag) == pfrag->page &&
240 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
241 skb_frag_size_add(frag, size);
242 } else {
243 ++frag;
244 __skb_frag_set_page(frag, pfrag->page);
245 skb_frag_off_set(frag, pfrag->offset);
246 skb_frag_size_set(frag, size);
247 ++record->num_frags;
248 get_page(pfrag->page);
249 }
250
251 pfrag->offset += size;
252 record->len += size;
253}
254
255static int tls_push_record(struct sock *sk,
256 struct tls_context *ctx,
257 struct tls_offload_context_tx *offload_ctx,
258 struct tls_record_info *record,
259 int flags)
260{
261 struct tls_prot_info *prot = &ctx->prot_info;
262 struct tcp_sock *tp = tcp_sk(sk);
263 skb_frag_t *frag;
264 int i;
265
266 record->end_seq = tp->write_seq + record->len;
267 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
268 offload_ctx->open_record = NULL;
269
270 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
271 tls_device_resync_tx(sk, ctx, tp->write_seq);
272
273 tls_advance_record_sn(sk, prot, &ctx->tx);
274
275 for (i = 0; i < record->num_frags; i++) {
276 frag = &record->frags[i];
277 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
278 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
279 skb_frag_size(frag), skb_frag_off(frag));
280 sk_mem_charge(sk, skb_frag_size(frag));
281 get_page(skb_frag_page(frag));
282 }
283 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
284
285 /* all ready, send */
286 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
287}
288
289static int tls_device_record_close(struct sock *sk,
290 struct tls_context *ctx,
291 struct tls_record_info *record,
292 struct page_frag *pfrag,
293 unsigned char record_type)
294{
295 struct tls_prot_info *prot = &ctx->prot_info;
296 int ret;
297
298 /* append tag
299 * device will fill in the tag, we just need to append a placeholder
300 * use socket memory to improve coalescing (re-using a single buffer
301 * increases frag count)
302 * if we can't allocate memory now, steal some back from data
303 */
304 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
305 sk->sk_allocation))) {
306 ret = 0;
307 tls_append_frag(record, pfrag, prot->tag_size);
308 } else {
309 ret = prot->tag_size;
310 if (record->len <= prot->overhead_size)
311 return -ENOMEM;
312 }
313
314 /* fill prepend */
315 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
316 record->len - prot->overhead_size,
317 record_type, prot->version);
318 return ret;
319}
320
321static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
322 struct page_frag *pfrag,
323 size_t prepend_size)
324{
325 struct tls_record_info *record;
326 skb_frag_t *frag;
327
328 record = kmalloc(sizeof(*record), GFP_KERNEL);
329 if (!record)
330 return -ENOMEM;
331
332 frag = &record->frags[0];
333 __skb_frag_set_page(frag, pfrag->page);
334 skb_frag_off_set(frag, pfrag->offset);
335 skb_frag_size_set(frag, prepend_size);
336
337 get_page(pfrag->page);
338 pfrag->offset += prepend_size;
339
340 record->num_frags = 1;
341 record->len = prepend_size;
342 offload_ctx->open_record = record;
343 return 0;
344}
345
346static int tls_do_allocation(struct sock *sk,
347 struct tls_offload_context_tx *offload_ctx,
348 struct page_frag *pfrag,
349 size_t prepend_size)
350{
351 int ret;
352
353 if (!offload_ctx->open_record) {
354 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
355 sk->sk_allocation))) {
356 sk->sk_prot->enter_memory_pressure(sk);
357 sk_stream_moderate_sndbuf(sk);
358 return -ENOMEM;
359 }
360
361 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
362 if (ret)
363 return ret;
364
365 if (pfrag->size > pfrag->offset)
366 return 0;
367 }
368
369 if (!sk_page_frag_refill(sk, pfrag))
370 return -ENOMEM;
371
372 return 0;
373}
374
375static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
376{
377 size_t pre_copy, nocache;
378
379 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
380 if (pre_copy) {
381 pre_copy = min(pre_copy, bytes);
382 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
383 return -EFAULT;
384 bytes -= pre_copy;
385 addr += pre_copy;
386 }
387
388 nocache = round_down(bytes, SMP_CACHE_BYTES);
389 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
390 return -EFAULT;
391 bytes -= nocache;
392 addr += nocache;
393
394 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
395 return -EFAULT;
396
397 return 0;
398}
399
400static int tls_push_data(struct sock *sk,
401 struct iov_iter *msg_iter,
402 size_t size, int flags,
403 unsigned char record_type)
404{
405 struct tls_context *tls_ctx = tls_get_ctx(sk);
406 struct tls_prot_info *prot = &tls_ctx->prot_info;
407 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
408 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
409 struct tls_record_info *record = ctx->open_record;
410 int tls_push_record_flags;
411 struct page_frag *pfrag;
412 size_t orig_size = size;
413 u32 max_open_record_len;
414 int copy, rc = 0;
415 bool done = false;
416 long timeo;
417
418 if (flags &
419 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
420 return -ENOTSUPP;
421
422 if (sk->sk_err)
423 return -sk->sk_err;
424
425 flags |= MSG_SENDPAGE_DECRYPTED;
426 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
427
428 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
429 if (tls_is_partially_sent_record(tls_ctx)) {
430 rc = tls_push_partial_record(sk, tls_ctx, flags);
431 if (rc < 0)
432 return rc;
433 }
434
435 pfrag = sk_page_frag(sk);
436
437 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
438 * we need to leave room for an authentication tag.
439 */
440 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
441 prot->prepend_size;
442 do {
443 rc = tls_do_allocation(sk, ctx, pfrag,
444 prot->prepend_size);
445 if (rc) {
446 rc = sk_stream_wait_memory(sk, &timeo);
447 if (!rc)
448 continue;
449
450 record = ctx->open_record;
451 if (!record)
452 break;
453handle_error:
454 if (record_type != TLS_RECORD_TYPE_DATA) {
455 /* avoid sending partial
456 * record with type !=
457 * application_data
458 */
459 size = orig_size;
460 destroy_record(record);
461 ctx->open_record = NULL;
462 } else if (record->len > prot->prepend_size) {
463 goto last_record;
464 }
465
466 break;
467 }
468
469 record = ctx->open_record;
470 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
471 copy = min_t(size_t, copy, (max_open_record_len - record->len));
472
473 rc = tls_device_copy_data(page_address(pfrag->page) +
474 pfrag->offset, copy, msg_iter);
475 if (rc)
476 goto handle_error;
477 tls_append_frag(record, pfrag, copy);
478
479 size -= copy;
480 if (!size) {
481last_record:
482 tls_push_record_flags = flags;
483 if (more) {
484 tls_ctx->pending_open_record_frags =
485 !!record->num_frags;
486 break;
487 }
488
489 done = true;
490 }
491
492 if (done || record->len >= max_open_record_len ||
493 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
494 rc = tls_device_record_close(sk, tls_ctx, record,
495 pfrag, record_type);
496 if (rc) {
497 if (rc > 0) {
498 size += rc;
499 } else {
500 size = orig_size;
501 destroy_record(record);
502 ctx->open_record = NULL;
503 break;
504 }
505 }
506
507 rc = tls_push_record(sk,
508 tls_ctx,
509 ctx,
510 record,
511 tls_push_record_flags);
512 if (rc < 0)
513 break;
514 }
515 } while (!done);
516
517 if (orig_size - size > 0)
518 rc = orig_size - size;
519
520 return rc;
521}
522
523int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
524{
525 unsigned char record_type = TLS_RECORD_TYPE_DATA;
526 struct tls_context *tls_ctx = tls_get_ctx(sk);
527 int rc;
528
529 mutex_lock(&tls_ctx->tx_lock);
530 lock_sock(sk);
531
532 if (unlikely(msg->msg_controllen)) {
533 rc = tls_proccess_cmsg(sk, msg, &record_type);
534 if (rc)
535 goto out;
536 }
537
538 rc = tls_push_data(sk, &msg->msg_iter, size,
539 msg->msg_flags, record_type);
540
541out:
542 release_sock(sk);
543 mutex_unlock(&tls_ctx->tx_lock);
544 return rc;
545}
546
547int tls_device_sendpage(struct sock *sk, struct page *page,
548 int offset, size_t size, int flags)
549{
550 struct tls_context *tls_ctx = tls_get_ctx(sk);
551 struct iov_iter msg_iter;
552 char *kaddr = kmap(page);
553 struct kvec iov;
554 int rc;
555
556 if (flags & MSG_SENDPAGE_NOTLAST)
557 flags |= MSG_MORE;
558
559 mutex_lock(&tls_ctx->tx_lock);
560 lock_sock(sk);
561
562 if (flags & MSG_OOB) {
563 rc = -ENOTSUPP;
564 goto out;
565 }
566
567 iov.iov_base = kaddr + offset;
568 iov.iov_len = size;
569 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
570 rc = tls_push_data(sk, &msg_iter, size,
571 flags, TLS_RECORD_TYPE_DATA);
572 kunmap(page);
573
574out:
575 release_sock(sk);
576 mutex_unlock(&tls_ctx->tx_lock);
577 return rc;
578}
579
580struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
581 u32 seq, u64 *p_record_sn)
582{
583 u64 record_sn = context->hint_record_sn;
584 struct tls_record_info *info;
585
586 info = context->retransmit_hint;
587 if (!info ||
588 before(seq, info->end_seq - info->len)) {
589 /* if retransmit_hint is irrelevant start
590 * from the beggining of the list
591 */
592 info = list_first_entry_or_null(&context->records_list,
593 struct tls_record_info, list);
594 if (!info)
595 return NULL;
596 record_sn = context->unacked_record_sn;
597 }
598
599 /* We just need the _rcu for the READ_ONCE() */
600 rcu_read_lock();
601 list_for_each_entry_from_rcu(info, &context->records_list, list) {
602 if (before(seq, info->end_seq)) {
603 if (!context->retransmit_hint ||
604 after(info->end_seq,
605 context->retransmit_hint->end_seq)) {
606 context->hint_record_sn = record_sn;
607 context->retransmit_hint = info;
608 }
609 *p_record_sn = record_sn;
610 goto exit_rcu_unlock;
611 }
612 record_sn++;
613 }
614 info = NULL;
615
616exit_rcu_unlock:
617 rcu_read_unlock();
618 return info;
619}
620EXPORT_SYMBOL(tls_get_record);
621
622static int tls_device_push_pending_record(struct sock *sk, int flags)
623{
624 struct iov_iter msg_iter;
625
626 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
627 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
628}
629
630void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
631{
632 if (tls_is_partially_sent_record(ctx)) {
633 gfp_t sk_allocation = sk->sk_allocation;
634
635 WARN_ON_ONCE(sk->sk_write_pending);
636
637 sk->sk_allocation = GFP_ATOMIC;
638 tls_push_partial_record(sk, ctx,
639 MSG_DONTWAIT | MSG_NOSIGNAL |
640 MSG_SENDPAGE_DECRYPTED);
641 sk->sk_allocation = sk_allocation;
642 }
643}
644
645static void tls_device_resync_rx(struct tls_context *tls_ctx,
646 struct sock *sk, u32 seq, u8 *rcd_sn)
647{
648 struct net_device *netdev;
649
650 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
651 return;
652 netdev = READ_ONCE(tls_ctx->netdev);
653 if (netdev)
654 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
655 TLS_OFFLOAD_CTX_DIR_RX);
656 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
657}
658
659void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
660{
661 struct tls_context *tls_ctx = tls_get_ctx(sk);
662 struct tls_offload_context_rx *rx_ctx;
663 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
664 struct tls_prot_info *prot;
665 u32 is_req_pending;
666 s64 resync_req;
667 u32 req_seq;
668
669 if (tls_ctx->rx_conf != TLS_HW)
670 return;
671
672 prot = &tls_ctx->prot_info;
673 rx_ctx = tls_offload_ctx_rx(tls_ctx);
674 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
675
676 switch (rx_ctx->resync_type) {
677 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
678 resync_req = atomic64_read(&rx_ctx->resync_req);
679 req_seq = resync_req >> 32;
680 seq += TLS_HEADER_SIZE - 1;
681 is_req_pending = resync_req;
682
683 if (likely(!is_req_pending) || req_seq != seq ||
684 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
685 return;
686 break;
687 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
688 if (likely(!rx_ctx->resync_nh_do_now))
689 return;
690
691 /* head of next rec is already in, note that the sock_inq will
692 * include the currently parsed message when called from parser
693 */
694 if (tcp_inq(sk) > rcd_len)
695 return;
696
697 rx_ctx->resync_nh_do_now = 0;
698 seq += rcd_len;
699 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
700 break;
701 }
702
703 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
704}
705
706static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
707 struct tls_offload_context_rx *ctx,
708 struct sock *sk, struct sk_buff *skb)
709{
710 struct strp_msg *rxm;
711
712 /* device will request resyncs by itself based on stream scan */
713 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
714 return;
715 /* already scheduled */
716 if (ctx->resync_nh_do_now)
717 return;
718 /* seen decrypted fragments since last fully-failed record */
719 if (ctx->resync_nh_reset) {
720 ctx->resync_nh_reset = 0;
721 ctx->resync_nh.decrypted_failed = 1;
722 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
723 return;
724 }
725
726 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
727 return;
728
729 /* doing resync, bump the next target in case it fails */
730 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
731 ctx->resync_nh.decrypted_tgt *= 2;
732 else
733 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
734
735 rxm = strp_msg(skb);
736
737 /* head of next rec is already in, parser will sync for us */
738 if (tcp_inq(sk) > rxm->full_len) {
739 ctx->resync_nh_do_now = 1;
740 } else {
741 struct tls_prot_info *prot = &tls_ctx->prot_info;
742 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
743
744 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
745 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
746
747 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
748 rcd_sn);
749 }
750}
751
752static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
753{
754 struct strp_msg *rxm = strp_msg(skb);
755 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
756 struct sk_buff *skb_iter, *unused;
757 struct scatterlist sg[1];
758 char *orig_buf, *buf;
759
760 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
761 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
762 if (!orig_buf)
763 return -ENOMEM;
764 buf = orig_buf;
765
766 nsg = skb_cow_data(skb, 0, &unused);
767 if (unlikely(nsg < 0)) {
768 err = nsg;
769 goto free_buf;
770 }
771
772 sg_init_table(sg, 1);
773 sg_set_buf(&sg[0], buf,
774 rxm->full_len + TLS_HEADER_SIZE +
775 TLS_CIPHER_AES_GCM_128_IV_SIZE);
776 err = skb_copy_bits(skb, offset, buf,
777 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
778 if (err)
779 goto free_buf;
780
781 /* We are interested only in the decrypted data not the auth */
782 err = decrypt_skb(sk, skb, sg);
783 if (err != -EBADMSG)
784 goto free_buf;
785 else
786 err = 0;
787
788 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
789
790 if (skb_pagelen(skb) > offset) {
791 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
792
793 if (skb->decrypted) {
794 err = skb_store_bits(skb, offset, buf, copy);
795 if (err)
796 goto free_buf;
797 }
798
799 offset += copy;
800 buf += copy;
801 }
802
803 pos = skb_pagelen(skb);
804 skb_walk_frags(skb, skb_iter) {
805 int frag_pos;
806
807 /* Practically all frags must belong to msg if reencrypt
808 * is needed with current strparser and coalescing logic,
809 * but strparser may "get optimized", so let's be safe.
810 */
811 if (pos + skb_iter->len <= offset)
812 goto done_with_frag;
813 if (pos >= data_len + rxm->offset)
814 break;
815
816 frag_pos = offset - pos;
817 copy = min_t(int, skb_iter->len - frag_pos,
818 data_len + rxm->offset - offset);
819
820 if (skb_iter->decrypted) {
821 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
822 if (err)
823 goto free_buf;
824 }
825
826 offset += copy;
827 buf += copy;
828done_with_frag:
829 pos += skb_iter->len;
830 }
831
832free_buf:
833 kfree(orig_buf);
834 return err;
835}
836
837int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
838{
839 struct tls_context *tls_ctx = tls_get_ctx(sk);
840 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
841 int is_decrypted = skb->decrypted;
842 int is_encrypted = !is_decrypted;
843 struct sk_buff *skb_iter;
844
845 /* Check if all the data is decrypted already */
846 skb_walk_frags(skb, skb_iter) {
847 is_decrypted &= skb_iter->decrypted;
848 is_encrypted &= !skb_iter->decrypted;
849 }
850
851 ctx->sw.decrypted |= is_decrypted;
852
853 /* Return immediately if the record is either entirely plaintext or
854 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
855 * record.
856 */
857 if (is_decrypted) {
858 ctx->resync_nh_reset = 1;
859 return 0;
860 }
861 if (is_encrypted) {
862 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
863 return 0;
864 }
865
866 ctx->resync_nh_reset = 1;
867 return tls_device_reencrypt(sk, skb);
868}
869
870static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
871 struct net_device *netdev)
872{
873 if (sk->sk_destruct != tls_device_sk_destruct) {
874 refcount_set(&ctx->refcount, 1);
875 dev_hold(netdev);
876 ctx->netdev = netdev;
877 spin_lock_irq(&tls_device_lock);
878 list_add_tail(&ctx->list, &tls_device_list);
879 spin_unlock_irq(&tls_device_lock);
880
881 ctx->sk_destruct = sk->sk_destruct;
882 sk->sk_destruct = tls_device_sk_destruct;
883 }
884}
885
886int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
887{
888 u16 nonce_size, tag_size, iv_size, rec_seq_size;
889 struct tls_context *tls_ctx = tls_get_ctx(sk);
890 struct tls_prot_info *prot = &tls_ctx->prot_info;
891 struct tls_record_info *start_marker_record;
892 struct tls_offload_context_tx *offload_ctx;
893 struct tls_crypto_info *crypto_info;
894 struct net_device *netdev;
895 char *iv, *rec_seq;
896 struct sk_buff *skb;
897 __be64 rcd_sn;
898 int rc;
899
900 if (!ctx)
901 return -EINVAL;
902
903 if (ctx->priv_ctx_tx)
904 return -EEXIST;
905
906 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
907 if (!start_marker_record)
908 return -ENOMEM;
909
910 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
911 if (!offload_ctx) {
912 rc = -ENOMEM;
913 goto free_marker_record;
914 }
915
916 crypto_info = &ctx->crypto_send.info;
917 if (crypto_info->version != TLS_1_2_VERSION) {
918 rc = -EOPNOTSUPP;
919 goto free_offload_ctx;
920 }
921
922 switch (crypto_info->cipher_type) {
923 case TLS_CIPHER_AES_GCM_128:
924 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
925 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
926 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
927 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
928 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
929 rec_seq =
930 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
931 break;
932 default:
933 rc = -EINVAL;
934 goto free_offload_ctx;
935 }
936
937 /* Sanity-check the rec_seq_size for stack allocations */
938 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
939 rc = -EINVAL;
940 goto free_offload_ctx;
941 }
942
943 prot->version = crypto_info->version;
944 prot->cipher_type = crypto_info->cipher_type;
945 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
946 prot->tag_size = tag_size;
947 prot->overhead_size = prot->prepend_size + prot->tag_size;
948 prot->iv_size = iv_size;
949 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
950 GFP_KERNEL);
951 if (!ctx->tx.iv) {
952 rc = -ENOMEM;
953 goto free_offload_ctx;
954 }
955
956 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
957
958 prot->rec_seq_size = rec_seq_size;
959 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
960 if (!ctx->tx.rec_seq) {
961 rc = -ENOMEM;
962 goto free_iv;
963 }
964
965 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
966 if (rc)
967 goto free_rec_seq;
968
969 /* start at rec_seq - 1 to account for the start marker record */
970 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
971 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
972
973 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
974 start_marker_record->len = 0;
975 start_marker_record->num_frags = 0;
976
977 INIT_LIST_HEAD(&offload_ctx->records_list);
978 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
979 spin_lock_init(&offload_ctx->lock);
980 sg_init_table(offload_ctx->sg_tx_data,
981 ARRAY_SIZE(offload_ctx->sg_tx_data));
982
983 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
984 ctx->push_pending_record = tls_device_push_pending_record;
985
986 /* TLS offload is greatly simplified if we don't send
987 * SKBs where only part of the payload needs to be encrypted.
988 * So mark the last skb in the write queue as end of record.
989 */
990 skb = tcp_write_queue_tail(sk);
991 if (skb)
992 TCP_SKB_CB(skb)->eor = 1;
993
994 netdev = get_netdev_for_sock(sk);
995 if (!netdev) {
996 pr_err_ratelimited("%s: netdev not found\n", __func__);
997 rc = -EINVAL;
998 goto disable_cad;
999 }
1000
1001 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1002 rc = -ENOTSUPP;
1003 goto release_netdev;
1004 }
1005
1006 /* Avoid offloading if the device is down
1007 * We don't want to offload new flows after
1008 * the NETDEV_DOWN event
1009 *
1010 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1011 * handler thus protecting from the device going down before
1012 * ctx was added to tls_device_list.
1013 */
1014 down_read(&device_offload_lock);
1015 if (!(netdev->flags & IFF_UP)) {
1016 rc = -EINVAL;
1017 goto release_lock;
1018 }
1019
1020 ctx->priv_ctx_tx = offload_ctx;
1021 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1022 &ctx->crypto_send.info,
1023 tcp_sk(sk)->write_seq);
1024 if (rc)
1025 goto release_lock;
1026
1027 tls_device_attach(ctx, sk, netdev);
1028 up_read(&device_offload_lock);
1029
1030 /* following this assignment tls_is_sk_tx_device_offloaded
1031 * will return true and the context might be accessed
1032 * by the netdev's xmit function.
1033 */
1034 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1035 dev_put(netdev);
1036
1037 return 0;
1038
1039release_lock:
1040 up_read(&device_offload_lock);
1041release_netdev:
1042 dev_put(netdev);
1043disable_cad:
1044 clean_acked_data_disable(inet_csk(sk));
1045 crypto_free_aead(offload_ctx->aead_send);
1046free_rec_seq:
1047 kfree(ctx->tx.rec_seq);
1048free_iv:
1049 kfree(ctx->tx.iv);
1050free_offload_ctx:
1051 kfree(offload_ctx);
1052 ctx->priv_ctx_tx = NULL;
1053free_marker_record:
1054 kfree(start_marker_record);
1055 return rc;
1056}
1057
1058int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1059{
1060 struct tls_offload_context_rx *context;
1061 struct net_device *netdev;
1062 int rc = 0;
1063
1064 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1065 return -EOPNOTSUPP;
1066
1067 netdev = get_netdev_for_sock(sk);
1068 if (!netdev) {
1069 pr_err_ratelimited("%s: netdev not found\n", __func__);
1070 return -EINVAL;
1071 }
1072
1073 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1074 rc = -ENOTSUPP;
1075 goto release_netdev;
1076 }
1077
1078 /* Avoid offloading if the device is down
1079 * We don't want to offload new flows after
1080 * the NETDEV_DOWN event
1081 *
1082 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1083 * handler thus protecting from the device going down before
1084 * ctx was added to tls_device_list.
1085 */
1086 down_read(&device_offload_lock);
1087 if (!(netdev->flags & IFF_UP)) {
1088 rc = -EINVAL;
1089 goto release_lock;
1090 }
1091
1092 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1093 if (!context) {
1094 rc = -ENOMEM;
1095 goto release_lock;
1096 }
1097 context->resync_nh_reset = 1;
1098
1099 ctx->priv_ctx_rx = context;
1100 rc = tls_set_sw_offload(sk, ctx, 0);
1101 if (rc)
1102 goto release_ctx;
1103
1104 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1105 &ctx->crypto_recv.info,
1106 tcp_sk(sk)->copied_seq);
1107 if (rc)
1108 goto free_sw_resources;
1109
1110 tls_device_attach(ctx, sk, netdev);
1111 up_read(&device_offload_lock);
1112
1113 dev_put(netdev);
1114
1115 return 0;
1116
1117free_sw_resources:
1118 up_read(&device_offload_lock);
1119 tls_sw_free_resources_rx(sk);
1120 down_read(&device_offload_lock);
1121release_ctx:
1122 ctx->priv_ctx_rx = NULL;
1123release_lock:
1124 up_read(&device_offload_lock);
1125release_netdev:
1126 dev_put(netdev);
1127 return rc;
1128}
1129
1130void tls_device_offload_cleanup_rx(struct sock *sk)
1131{
1132 struct tls_context *tls_ctx = tls_get_ctx(sk);
1133 struct net_device *netdev;
1134
1135 down_read(&device_offload_lock);
1136 netdev = tls_ctx->netdev;
1137 if (!netdev)
1138 goto out;
1139
1140 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1141 TLS_OFFLOAD_CTX_DIR_RX);
1142
1143 if (tls_ctx->tx_conf != TLS_HW) {
1144 dev_put(netdev);
1145 tls_ctx->netdev = NULL;
1146 }
1147out:
1148 up_read(&device_offload_lock);
1149 tls_sw_release_resources_rx(sk);
1150}
1151
1152static int tls_device_down(struct net_device *netdev)
1153{
1154 struct tls_context *ctx, *tmp;
1155 unsigned long flags;
1156 LIST_HEAD(list);
1157
1158 /* Request a write lock to block new offload attempts */
1159 down_write(&device_offload_lock);
1160
1161 spin_lock_irqsave(&tls_device_lock, flags);
1162 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1163 if (ctx->netdev != netdev ||
1164 !refcount_inc_not_zero(&ctx->refcount))
1165 continue;
1166
1167 list_move(&ctx->list, &list);
1168 }
1169 spin_unlock_irqrestore(&tls_device_lock, flags);
1170
1171 list_for_each_entry_safe(ctx, tmp, &list, list) {
1172 if (ctx->tx_conf == TLS_HW)
1173 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1174 TLS_OFFLOAD_CTX_DIR_TX);
1175 if (ctx->rx_conf == TLS_HW)
1176 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1177 TLS_OFFLOAD_CTX_DIR_RX);
1178 WRITE_ONCE(ctx->netdev, NULL);
1179 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1180 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1181 usleep_range(10, 200);
1182 dev_put(netdev);
1183 list_del_init(&ctx->list);
1184
1185 if (refcount_dec_and_test(&ctx->refcount))
1186 tls_device_free_ctx(ctx);
1187 }
1188
1189 up_write(&device_offload_lock);
1190
1191 flush_work(&tls_device_gc_work);
1192
1193 return NOTIFY_DONE;
1194}
1195
1196static int tls_dev_event(struct notifier_block *this, unsigned long event,
1197 void *ptr)
1198{
1199 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1200
1201 if (!dev->tlsdev_ops &&
1202 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1203 return NOTIFY_DONE;
1204
1205 switch (event) {
1206 case NETDEV_REGISTER:
1207 case NETDEV_FEAT_CHANGE:
1208 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1209 !dev->tlsdev_ops->tls_dev_resync)
1210 return NOTIFY_BAD;
1211
1212 if (dev->tlsdev_ops &&
1213 dev->tlsdev_ops->tls_dev_add &&
1214 dev->tlsdev_ops->tls_dev_del)
1215 return NOTIFY_DONE;
1216 else
1217 return NOTIFY_BAD;
1218 case NETDEV_DOWN:
1219 return tls_device_down(dev);
1220 }
1221 return NOTIFY_DONE;
1222}
1223
1224static struct notifier_block tls_dev_notifier = {
1225 .notifier_call = tls_dev_event,
1226};
1227
1228void __init tls_device_init(void)
1229{
1230 register_netdevice_notifier(&tls_dev_notifier);
1231}
1232
1233void __exit tls_device_cleanup(void)
1234{
1235 unregister_netdevice_notifier(&tls_dev_notifier);
1236 flush_work(&tls_device_gc_work);
1237 clean_acked_data_flush();
1238}