Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * latencytop.c: Latency display infrastructure
  4 *
  5 * (C) Copyright 2008 Intel Corporation
  6 * Author: Arjan van de Ven <arjan@linux.intel.com>
  7 */
  8
  9/*
 10 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
 11 * used by the "latencytop" userspace tool. The latency that is tracked is not
 12 * the 'traditional' interrupt latency (which is primarily caused by something
 13 * else consuming CPU), but instead, it is the latency an application encounters
 14 * because the kernel sleeps on its behalf for various reasons.
 15 *
 16 * This code tracks 2 levels of statistics:
 17 * 1) System level latency
 18 * 2) Per process latency
 19 *
 20 * The latency is stored in fixed sized data structures in an accumulated form;
 21 * if the "same" latency cause is hit twice, this will be tracked as one entry
 22 * in the data structure. Both the count, total accumulated latency and maximum
 23 * latency are tracked in this data structure. When the fixed size structure is
 24 * full, no new causes are tracked until the buffer is flushed by writing to
 25 * the /proc file; the userspace tool does this on a regular basis.
 26 *
 27 * A latency cause is identified by a stringified backtrace at the point that
 28 * the scheduler gets invoked. The userland tool will use this string to
 29 * identify the cause of the latency in human readable form.
 30 *
 31 * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
 32 * These files look like this:
 33 *
 34 * Latency Top version : v0.1
 35 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
 36 * |    |    |    |
 37 * |    |    |    +----> the stringified backtrace
 38 * |    |    +---------> The maximum latency for this entry in microseconds
 39 * |    +--------------> The accumulated latency for this entry (microseconds)
 40 * +-------------------> The number of times this entry is hit
 41 *
 42 * (note: the average latency is the accumulated latency divided by the number
 43 * of times)
 44 */
 45
 46#include <linux/kallsyms.h>
 47#include <linux/seq_file.h>
 48#include <linux/notifier.h>
 49#include <linux/spinlock.h>
 50#include <linux/proc_fs.h>
 51#include <linux/latencytop.h>
 52#include <linux/export.h>
 53#include <linux/sched.h>
 54#include <linux/sched/debug.h>
 55#include <linux/sched/stat.h>
 56#include <linux/list.h>
 57#include <linux/stacktrace.h>
 58#include <linux/sysctl.h>
 59
 60static DEFINE_RAW_SPINLOCK(latency_lock);
 61
 62#define MAXLR 128
 63static struct latency_record latency_record[MAXLR];
 64
 65int latencytop_enabled;
 66
 67#ifdef CONFIG_SYSCTL
 68static int sysctl_latencytop(struct ctl_table *table, int write, void *buffer,
 69		size_t *lenp, loff_t *ppos)
 70{
 71	int err;
 72
 73	err = proc_dointvec(table, write, buffer, lenp, ppos);
 74	if (latencytop_enabled)
 75		force_schedstat_enabled();
 76
 77	return err;
 78}
 79
 80static struct ctl_table latencytop_sysctl[] = {
 81	{
 82		.procname   = "latencytop",
 83		.data       = &latencytop_enabled,
 84		.maxlen     = sizeof(int),
 85		.mode       = 0644,
 86		.proc_handler   = sysctl_latencytop,
 87	},
 88	{}
 89};
 90#endif
 91
 92void clear_tsk_latency_tracing(struct task_struct *p)
 93{
 94	unsigned long flags;
 95
 96	raw_spin_lock_irqsave(&latency_lock, flags);
 97	memset(&p->latency_record, 0, sizeof(p->latency_record));
 98	p->latency_record_count = 0;
 99	raw_spin_unlock_irqrestore(&latency_lock, flags);
100}
101
102static void clear_global_latency_tracing(void)
103{
104	unsigned long flags;
105
106	raw_spin_lock_irqsave(&latency_lock, flags);
107	memset(&latency_record, 0, sizeof(latency_record));
108	raw_spin_unlock_irqrestore(&latency_lock, flags);
109}
110
111static void __sched
112account_global_scheduler_latency(struct task_struct *tsk,
113				 struct latency_record *lat)
114{
115	int firstnonnull = MAXLR;
116	int i;
117
118	/* skip kernel threads for now */
119	if (!tsk->mm)
120		return;
121
122	for (i = 0; i < MAXLR; i++) {
123		int q, same = 1;
124
125		/* Nothing stored: */
126		if (!latency_record[i].backtrace[0]) {
127			if (firstnonnull > i)
128				firstnonnull = i;
129			continue;
130		}
131		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
132			unsigned long record = lat->backtrace[q];
133
134			if (latency_record[i].backtrace[q] != record) {
135				same = 0;
136				break;
137			}
138
139			/* 0 entry marks end of backtrace: */
140			if (!record)
141				break;
142		}
143		if (same) {
144			latency_record[i].count++;
145			latency_record[i].time += lat->time;
146			if (lat->time > latency_record[i].max)
147				latency_record[i].max = lat->time;
148			return;
149		}
150	}
151
152	i = firstnonnull;
153	if (i >= MAXLR)
154		return;
155
156	/* Allocted a new one: */
157	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
158}
159
160/**
161 * __account_scheduler_latency - record an occurred latency
162 * @tsk - the task struct of the task hitting the latency
163 * @usecs - the duration of the latency in microseconds
164 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
165 *
166 * This function is the main entry point for recording latency entries
167 * as called by the scheduler.
168 *
169 * This function has a few special cases to deal with normal 'non-latency'
170 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
171 * since this usually is caused by waiting for events via select() and co.
172 *
173 * Negative latencies (caused by time going backwards) are also explicitly
174 * skipped.
175 */
176void __sched
177__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
178{
179	unsigned long flags;
180	int i, q;
181	struct latency_record lat;
182
183	/* Long interruptible waits are generally user requested... */
184	if (inter && usecs > 5000)
185		return;
186
187	/* Negative sleeps are time going backwards */
188	/* Zero-time sleeps are non-interesting */
189	if (usecs <= 0)
190		return;
191
192	memset(&lat, 0, sizeof(lat));
193	lat.count = 1;
194	lat.time = usecs;
195	lat.max = usecs;
196
197	stack_trace_save_tsk(tsk, lat.backtrace, LT_BACKTRACEDEPTH, 0);
198
199	raw_spin_lock_irqsave(&latency_lock, flags);
200
201	account_global_scheduler_latency(tsk, &lat);
202
203	for (i = 0; i < tsk->latency_record_count; i++) {
204		struct latency_record *mylat;
205		int same = 1;
206
207		mylat = &tsk->latency_record[i];
208		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
209			unsigned long record = lat.backtrace[q];
210
211			if (mylat->backtrace[q] != record) {
212				same = 0;
213				break;
214			}
215
216			/* 0 entry is end of backtrace */
217			if (!record)
218				break;
219		}
220		if (same) {
221			mylat->count++;
222			mylat->time += lat.time;
223			if (lat.time > mylat->max)
224				mylat->max = lat.time;
225			goto out_unlock;
226		}
227	}
228
229	/*
230	 * short term hack; if we're > 32 we stop; future we recycle:
231	 */
232	if (tsk->latency_record_count >= LT_SAVECOUNT)
233		goto out_unlock;
234
235	/* Allocated a new one: */
236	i = tsk->latency_record_count++;
237	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
238
239out_unlock:
240	raw_spin_unlock_irqrestore(&latency_lock, flags);
241}
242
243static int lstats_show(struct seq_file *m, void *v)
244{
245	int i;
246
247	seq_puts(m, "Latency Top version : v0.1\n");
248
249	for (i = 0; i < MAXLR; i++) {
250		struct latency_record *lr = &latency_record[i];
251
252		if (lr->backtrace[0]) {
253			int q;
254			seq_printf(m, "%i %lu %lu",
255				   lr->count, lr->time, lr->max);
256			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
257				unsigned long bt = lr->backtrace[q];
258
259				if (!bt)
260					break;
261
262				seq_printf(m, " %ps", (void *)bt);
263			}
264			seq_puts(m, "\n");
265		}
266	}
267	return 0;
268}
269
270static ssize_t
271lstats_write(struct file *file, const char __user *buf, size_t count,
272	     loff_t *offs)
273{
274	clear_global_latency_tracing();
275
276	return count;
277}
278
279static int lstats_open(struct inode *inode, struct file *filp)
280{
281	return single_open(filp, lstats_show, NULL);
282}
283
284static const struct proc_ops lstats_proc_ops = {
285	.proc_open	= lstats_open,
286	.proc_read	= seq_read,
287	.proc_write	= lstats_write,
288	.proc_lseek	= seq_lseek,
289	.proc_release	= single_release,
290};
291
292static int __init init_lstats_procfs(void)
293{
294	proc_create("latency_stats", 0644, NULL, &lstats_proc_ops);
295#ifdef CONFIG_SYSCTL
296	register_sysctl_init("kernel", latencytop_sysctl);
297#endif
298	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
299}
300device_initcall(init_lstats_procfs);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * latencytop.c: Latency display infrastructure
  4 *
  5 * (C) Copyright 2008 Intel Corporation
  6 * Author: Arjan van de Ven <arjan@linux.intel.com>
  7 */
  8
  9/*
 10 * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is
 11 * used by the "latencytop" userspace tool. The latency that is tracked is not
 12 * the 'traditional' interrupt latency (which is primarily caused by something
 13 * else consuming CPU), but instead, it is the latency an application encounters
 14 * because the kernel sleeps on its behalf for various reasons.
 15 *
 16 * This code tracks 2 levels of statistics:
 17 * 1) System level latency
 18 * 2) Per process latency
 19 *
 20 * The latency is stored in fixed sized data structures in an accumulated form;
 21 * if the "same" latency cause is hit twice, this will be tracked as one entry
 22 * in the data structure. Both the count, total accumulated latency and maximum
 23 * latency are tracked in this data structure. When the fixed size structure is
 24 * full, no new causes are tracked until the buffer is flushed by writing to
 25 * the /proc file; the userspace tool does this on a regular basis.
 26 *
 27 * A latency cause is identified by a stringified backtrace at the point that
 28 * the scheduler gets invoked. The userland tool will use this string to
 29 * identify the cause of the latency in human readable form.
 30 *
 31 * The information is exported via /proc/latency_stats and /proc/<pid>/latency.
 32 * These files look like this:
 33 *
 34 * Latency Top version : v0.1
 35 * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl
 36 * |    |    |    |
 37 * |    |    |    +----> the stringified backtrace
 38 * |    |    +---------> The maximum latency for this entry in microseconds
 39 * |    +--------------> The accumulated latency for this entry (microseconds)
 40 * +-------------------> The number of times this entry is hit
 41 *
 42 * (note: the average latency is the accumulated latency divided by the number
 43 * of times)
 44 */
 45
 46#include <linux/kallsyms.h>
 47#include <linux/seq_file.h>
 48#include <linux/notifier.h>
 49#include <linux/spinlock.h>
 50#include <linux/proc_fs.h>
 51#include <linux/latencytop.h>
 52#include <linux/export.h>
 53#include <linux/sched.h>
 54#include <linux/sched/debug.h>
 55#include <linux/sched/stat.h>
 56#include <linux/list.h>
 57#include <linux/stacktrace.h>
 
 58
 59static DEFINE_RAW_SPINLOCK(latency_lock);
 60
 61#define MAXLR 128
 62static struct latency_record latency_record[MAXLR];
 63
 64int latencytop_enabled;
 65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66void clear_tsk_latency_tracing(struct task_struct *p)
 67{
 68	unsigned long flags;
 69
 70	raw_spin_lock_irqsave(&latency_lock, flags);
 71	memset(&p->latency_record, 0, sizeof(p->latency_record));
 72	p->latency_record_count = 0;
 73	raw_spin_unlock_irqrestore(&latency_lock, flags);
 74}
 75
 76static void clear_global_latency_tracing(void)
 77{
 78	unsigned long flags;
 79
 80	raw_spin_lock_irqsave(&latency_lock, flags);
 81	memset(&latency_record, 0, sizeof(latency_record));
 82	raw_spin_unlock_irqrestore(&latency_lock, flags);
 83}
 84
 85static void __sched
 86account_global_scheduler_latency(struct task_struct *tsk,
 87				 struct latency_record *lat)
 88{
 89	int firstnonnull = MAXLR + 1;
 90	int i;
 91
 92	/* skip kernel threads for now */
 93	if (!tsk->mm)
 94		return;
 95
 96	for (i = 0; i < MAXLR; i++) {
 97		int q, same = 1;
 98
 99		/* Nothing stored: */
100		if (!latency_record[i].backtrace[0]) {
101			if (firstnonnull > i)
102				firstnonnull = i;
103			continue;
104		}
105		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
106			unsigned long record = lat->backtrace[q];
107
108			if (latency_record[i].backtrace[q] != record) {
109				same = 0;
110				break;
111			}
112
113			/* 0 entry marks end of backtrace: */
114			if (!record)
115				break;
116		}
117		if (same) {
118			latency_record[i].count++;
119			latency_record[i].time += lat->time;
120			if (lat->time > latency_record[i].max)
121				latency_record[i].max = lat->time;
122			return;
123		}
124	}
125
126	i = firstnonnull;
127	if (i >= MAXLR - 1)
128		return;
129
130	/* Allocted a new one: */
131	memcpy(&latency_record[i], lat, sizeof(struct latency_record));
132}
133
134/**
135 * __account_scheduler_latency - record an occurred latency
136 * @tsk - the task struct of the task hitting the latency
137 * @usecs - the duration of the latency in microseconds
138 * @inter - 1 if the sleep was interruptible, 0 if uninterruptible
139 *
140 * This function is the main entry point for recording latency entries
141 * as called by the scheduler.
142 *
143 * This function has a few special cases to deal with normal 'non-latency'
144 * sleeps: specifically, interruptible sleep longer than 5 msec is skipped
145 * since this usually is caused by waiting for events via select() and co.
146 *
147 * Negative latencies (caused by time going backwards) are also explicitly
148 * skipped.
149 */
150void __sched
151__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter)
152{
153	unsigned long flags;
154	int i, q;
155	struct latency_record lat;
156
157	/* Long interruptible waits are generally user requested... */
158	if (inter && usecs > 5000)
159		return;
160
161	/* Negative sleeps are time going backwards */
162	/* Zero-time sleeps are non-interesting */
163	if (usecs <= 0)
164		return;
165
166	memset(&lat, 0, sizeof(lat));
167	lat.count = 1;
168	lat.time = usecs;
169	lat.max = usecs;
170
171	stack_trace_save_tsk(tsk, lat.backtrace, LT_BACKTRACEDEPTH, 0);
172
173	raw_spin_lock_irqsave(&latency_lock, flags);
174
175	account_global_scheduler_latency(tsk, &lat);
176
177	for (i = 0; i < tsk->latency_record_count; i++) {
178		struct latency_record *mylat;
179		int same = 1;
180
181		mylat = &tsk->latency_record[i];
182		for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
183			unsigned long record = lat.backtrace[q];
184
185			if (mylat->backtrace[q] != record) {
186				same = 0;
187				break;
188			}
189
190			/* 0 entry is end of backtrace */
191			if (!record)
192				break;
193		}
194		if (same) {
195			mylat->count++;
196			mylat->time += lat.time;
197			if (lat.time > mylat->max)
198				mylat->max = lat.time;
199			goto out_unlock;
200		}
201	}
202
203	/*
204	 * short term hack; if we're > 32 we stop; future we recycle:
205	 */
206	if (tsk->latency_record_count >= LT_SAVECOUNT)
207		goto out_unlock;
208
209	/* Allocated a new one: */
210	i = tsk->latency_record_count++;
211	memcpy(&tsk->latency_record[i], &lat, sizeof(struct latency_record));
212
213out_unlock:
214	raw_spin_unlock_irqrestore(&latency_lock, flags);
215}
216
217static int lstats_show(struct seq_file *m, void *v)
218{
219	int i;
220
221	seq_puts(m, "Latency Top version : v0.1\n");
222
223	for (i = 0; i < MAXLR; i++) {
224		struct latency_record *lr = &latency_record[i];
225
226		if (lr->backtrace[0]) {
227			int q;
228			seq_printf(m, "%i %lu %lu",
229				   lr->count, lr->time, lr->max);
230			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
231				unsigned long bt = lr->backtrace[q];
232
233				if (!bt)
234					break;
235
236				seq_printf(m, " %ps", (void *)bt);
237			}
238			seq_puts(m, "\n");
239		}
240	}
241	return 0;
242}
243
244static ssize_t
245lstats_write(struct file *file, const char __user *buf, size_t count,
246	     loff_t *offs)
247{
248	clear_global_latency_tracing();
249
250	return count;
251}
252
253static int lstats_open(struct inode *inode, struct file *filp)
254{
255	return single_open(filp, lstats_show, NULL);
256}
257
258static const struct file_operations lstats_fops = {
259	.open		= lstats_open,
260	.read		= seq_read,
261	.write		= lstats_write,
262	.llseek		= seq_lseek,
263	.release	= single_release,
264};
265
266static int __init init_lstats_procfs(void)
267{
268	proc_create("latency_stats", 0644, NULL, &lstats_fops);
 
 
 
269	return 0;
270}
271
272int sysctl_latencytop(struct ctl_table *table, int write,
273			void __user *buffer, size_t *lenp, loff_t *ppos)
274{
275	int err;
276
277	err = proc_dointvec(table, write, buffer, lenp, ppos);
278	if (latencytop_enabled)
279		force_schedstat_enabled();
280
281	return err;
282}
283device_initcall(init_lstats_procfs);