Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21#include "xfs_ag.h"
22
23static struct kmem_cache *xfs_allocbt_cur_cache;
24
25STATIC struct xfs_btree_cur *
26xfs_allocbt_dup_cursor(
27 struct xfs_btree_cur *cur)
28{
29 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
30 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
31}
32
33STATIC void
34xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 const union xfs_btree_ptr *ptr,
37 int inc)
38{
39 struct xfs_buf *agbp = cur->bc_ag.agbp;
40 struct xfs_agf *agf = agbp->b_addr;
41 int btnum = cur->bc_btnum;
42
43 ASSERT(ptr->s != 0);
44
45 agf->agf_roots[btnum] = ptr->s;
46 be32_add_cpu(&agf->agf_levels[btnum], inc);
47 cur->bc_ag.pag->pagf_levels[btnum] += inc;
48
49 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
50}
51
52STATIC int
53xfs_allocbt_alloc_block(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *start,
56 union xfs_btree_ptr *new,
57 int *stat)
58{
59 int error;
60 xfs_agblock_t bno;
61
62 /* Allocate the new block from the freelist. If we can't, give up. */
63 error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
64 cur->bc_ag.agbp, &bno, 1);
65 if (error)
66 return error;
67
68 if (bno == NULLAGBLOCK) {
69 *stat = 0;
70 return 0;
71 }
72
73 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
74 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
75
76 new->s = cpu_to_be32(bno);
77
78 *stat = 1;
79 return 0;
80}
81
82STATIC int
83xfs_allocbt_free_block(
84 struct xfs_btree_cur *cur,
85 struct xfs_buf *bp)
86{
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 xfs_agblock_t bno;
89 int error;
90
91 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
92 error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
93 bno, 1);
94 if (error)
95 return error;
96
97 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
98 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
99 XFS_EXTENT_BUSY_SKIP_DISCARD);
100 return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108 struct xfs_btree_cur *cur,
109 const struct xfs_btree_block *block,
110 const union xfs_btree_rec *rec,
111 int ptr,
112 int reason)
113{
114 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
115 struct xfs_perag *pag;
116 __be32 len;
117 int numrecs;
118
119 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121 switch (reason) {
122 case LASTREC_UPDATE:
123 /*
124 * If this is the last leaf block and it's the last record,
125 * then update the size of the longest extent in the AG.
126 */
127 if (ptr != xfs_btree_get_numrecs(block))
128 return;
129 len = rec->alloc.ar_blockcount;
130 break;
131 case LASTREC_INSREC:
132 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133 be32_to_cpu(agf->agf_longest))
134 return;
135 len = rec->alloc.ar_blockcount;
136 break;
137 case LASTREC_DELREC:
138 numrecs = xfs_btree_get_numrecs(block);
139 if (ptr <= numrecs)
140 return;
141 ASSERT(ptr == numrecs + 1);
142
143 if (numrecs) {
144 xfs_alloc_rec_t *rrp;
145
146 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147 len = rrp->ar_blockcount;
148 } else {
149 len = 0;
150 }
151
152 break;
153 default:
154 ASSERT(0);
155 return;
156 }
157
158 agf->agf_longest = len;
159 pag = cur->bc_ag.agbp->b_pag;
160 pag->pagf_longest = be32_to_cpu(len);
161 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166 struct xfs_btree_cur *cur,
167 int level)
168{
169 return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174 struct xfs_btree_cur *cur,
175 int level)
176{
177 return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182 union xfs_btree_key *key,
183 const union xfs_btree_rec *rec)
184{
185 key->alloc.ar_startblock = rec->alloc.ar_startblock;
186 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191 union xfs_btree_key *key,
192 const union xfs_btree_rec *rec)
193{
194 __u32 x;
195
196 x = be32_to_cpu(rec->alloc.ar_startblock);
197 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198 key->alloc.ar_startblock = cpu_to_be32(x);
199 key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
206{
207 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208 key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_rec *rec)
215{
216 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222 struct xfs_btree_cur *cur,
223 union xfs_btree_ptr *ptr)
224{
225 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
226
227 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229 ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234 struct xfs_btree_cur *cur,
235 const union xfs_btree_key *key)
236{
237 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
238 const struct xfs_alloc_rec *kp = &key->alloc;
239
240 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245 struct xfs_btree_cur *cur,
246 const union xfs_btree_key *key)
247{
248 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
249 const struct xfs_alloc_rec *kp = &key->alloc;
250 int64_t diff;
251
252 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253 if (diff)
254 return diff;
255
256 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261 struct xfs_btree_cur *cur,
262 const union xfs_btree_key *k1,
263 const union xfs_btree_key *k2)
264{
265 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
266 be32_to_cpu(k2->alloc.ar_startblock);
267}
268
269STATIC int64_t
270xfs_cntbt_diff_two_keys(
271 struct xfs_btree_cur *cur,
272 const union xfs_btree_key *k1,
273 const union xfs_btree_key *k2)
274{
275 int64_t diff;
276
277 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
278 be32_to_cpu(k2->alloc.ar_blockcount);
279 if (diff)
280 return diff;
281
282 return be32_to_cpu(k1->alloc.ar_startblock) -
283 be32_to_cpu(k2->alloc.ar_startblock);
284}
285
286static xfs_failaddr_t
287xfs_allocbt_verify(
288 struct xfs_buf *bp)
289{
290 struct xfs_mount *mp = bp->b_mount;
291 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
292 struct xfs_perag *pag = bp->b_pag;
293 xfs_failaddr_t fa;
294 unsigned int level;
295 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
296
297 if (!xfs_verify_magic(bp, block->bb_magic))
298 return __this_address;
299
300 if (xfs_has_crc(mp)) {
301 fa = xfs_btree_sblock_v5hdr_verify(bp);
302 if (fa)
303 return fa;
304 }
305
306 /*
307 * The perag may not be attached during grow operations or fully
308 * initialized from the AGF during log recovery. Therefore we can only
309 * check against maximum tree depth from those contexts.
310 *
311 * Otherwise check against the per-tree limit. Peek at one of the
312 * verifier magic values to determine the type of tree we're verifying
313 * against.
314 */
315 level = be16_to_cpu(block->bb_level);
316 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
317 btnum = XFS_BTNUM_CNTi;
318 if (pag && pag->pagf_init) {
319 if (level >= pag->pagf_levels[btnum])
320 return __this_address;
321 } else if (level >= mp->m_alloc_maxlevels)
322 return __this_address;
323
324 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
325}
326
327static void
328xfs_allocbt_read_verify(
329 struct xfs_buf *bp)
330{
331 xfs_failaddr_t fa;
332
333 if (!xfs_btree_sblock_verify_crc(bp))
334 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335 else {
336 fa = xfs_allocbt_verify(bp);
337 if (fa)
338 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339 }
340
341 if (bp->b_error)
342 trace_xfs_btree_corrupt(bp, _RET_IP_);
343}
344
345static void
346xfs_allocbt_write_verify(
347 struct xfs_buf *bp)
348{
349 xfs_failaddr_t fa;
350
351 fa = xfs_allocbt_verify(bp);
352 if (fa) {
353 trace_xfs_btree_corrupt(bp, _RET_IP_);
354 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355 return;
356 }
357 xfs_btree_sblock_calc_crc(bp);
358
359}
360
361const struct xfs_buf_ops xfs_bnobt_buf_ops = {
362 .name = "xfs_bnobt",
363 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
364 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
365 .verify_read = xfs_allocbt_read_verify,
366 .verify_write = xfs_allocbt_write_verify,
367 .verify_struct = xfs_allocbt_verify,
368};
369
370const struct xfs_buf_ops xfs_cntbt_buf_ops = {
371 .name = "xfs_cntbt",
372 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
373 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
374 .verify_read = xfs_allocbt_read_verify,
375 .verify_write = xfs_allocbt_write_verify,
376 .verify_struct = xfs_allocbt_verify,
377};
378
379STATIC int
380xfs_bnobt_keys_inorder(
381 struct xfs_btree_cur *cur,
382 const union xfs_btree_key *k1,
383 const union xfs_btree_key *k2)
384{
385 return be32_to_cpu(k1->alloc.ar_startblock) <
386 be32_to_cpu(k2->alloc.ar_startblock);
387}
388
389STATIC int
390xfs_bnobt_recs_inorder(
391 struct xfs_btree_cur *cur,
392 const union xfs_btree_rec *r1,
393 const union xfs_btree_rec *r2)
394{
395 return be32_to_cpu(r1->alloc.ar_startblock) +
396 be32_to_cpu(r1->alloc.ar_blockcount) <=
397 be32_to_cpu(r2->alloc.ar_startblock);
398}
399
400STATIC int
401xfs_cntbt_keys_inorder(
402 struct xfs_btree_cur *cur,
403 const union xfs_btree_key *k1,
404 const union xfs_btree_key *k2)
405{
406 return be32_to_cpu(k1->alloc.ar_blockcount) <
407 be32_to_cpu(k2->alloc.ar_blockcount) ||
408 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
409 be32_to_cpu(k1->alloc.ar_startblock) <
410 be32_to_cpu(k2->alloc.ar_startblock));
411}
412
413STATIC int
414xfs_cntbt_recs_inorder(
415 struct xfs_btree_cur *cur,
416 const union xfs_btree_rec *r1,
417 const union xfs_btree_rec *r2)
418{
419 return be32_to_cpu(r1->alloc.ar_blockcount) <
420 be32_to_cpu(r2->alloc.ar_blockcount) ||
421 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
422 be32_to_cpu(r1->alloc.ar_startblock) <
423 be32_to_cpu(r2->alloc.ar_startblock));
424}
425
426static const struct xfs_btree_ops xfs_bnobt_ops = {
427 .rec_len = sizeof(xfs_alloc_rec_t),
428 .key_len = sizeof(xfs_alloc_key_t),
429
430 .dup_cursor = xfs_allocbt_dup_cursor,
431 .set_root = xfs_allocbt_set_root,
432 .alloc_block = xfs_allocbt_alloc_block,
433 .free_block = xfs_allocbt_free_block,
434 .update_lastrec = xfs_allocbt_update_lastrec,
435 .get_minrecs = xfs_allocbt_get_minrecs,
436 .get_maxrecs = xfs_allocbt_get_maxrecs,
437 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
438 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
439 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
440 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
441 .key_diff = xfs_bnobt_key_diff,
442 .buf_ops = &xfs_bnobt_buf_ops,
443 .diff_two_keys = xfs_bnobt_diff_two_keys,
444 .keys_inorder = xfs_bnobt_keys_inorder,
445 .recs_inorder = xfs_bnobt_recs_inorder,
446};
447
448static const struct xfs_btree_ops xfs_cntbt_ops = {
449 .rec_len = sizeof(xfs_alloc_rec_t),
450 .key_len = sizeof(xfs_alloc_key_t),
451
452 .dup_cursor = xfs_allocbt_dup_cursor,
453 .set_root = xfs_allocbt_set_root,
454 .alloc_block = xfs_allocbt_alloc_block,
455 .free_block = xfs_allocbt_free_block,
456 .update_lastrec = xfs_allocbt_update_lastrec,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .key_diff = xfs_cntbt_key_diff,
464 .buf_ops = &xfs_cntbt_buf_ops,
465 .diff_two_keys = xfs_cntbt_diff_two_keys,
466 .keys_inorder = xfs_cntbt_keys_inorder,
467 .recs_inorder = xfs_cntbt_recs_inorder,
468};
469
470/* Allocate most of a new allocation btree cursor. */
471STATIC struct xfs_btree_cur *
472xfs_allocbt_init_common(
473 struct xfs_mount *mp,
474 struct xfs_trans *tp,
475 struct xfs_perag *pag,
476 xfs_btnum_t btnum)
477{
478 struct xfs_btree_cur *cur;
479
480 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
481
482 cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
483 xfs_allocbt_cur_cache);
484 cur->bc_ag.abt.active = false;
485
486 if (btnum == XFS_BTNUM_CNT) {
487 cur->bc_ops = &xfs_cntbt_ops;
488 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
489 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
490 } else {
491 cur->bc_ops = &xfs_bnobt_ops;
492 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
493 }
494
495 /* take a reference for the cursor */
496 atomic_inc(&pag->pag_ref);
497 cur->bc_ag.pag = pag;
498
499 if (xfs_has_crc(mp))
500 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
501
502 return cur;
503}
504
505/*
506 * Allocate a new allocation btree cursor.
507 */
508struct xfs_btree_cur * /* new alloc btree cursor */
509xfs_allocbt_init_cursor(
510 struct xfs_mount *mp, /* file system mount point */
511 struct xfs_trans *tp, /* transaction pointer */
512 struct xfs_buf *agbp, /* buffer for agf structure */
513 struct xfs_perag *pag,
514 xfs_btnum_t btnum) /* btree identifier */
515{
516 struct xfs_agf *agf = agbp->b_addr;
517 struct xfs_btree_cur *cur;
518
519 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
520 if (btnum == XFS_BTNUM_CNT)
521 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
522 else
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524
525 cur->bc_ag.agbp = agbp;
526
527 return cur;
528}
529
530/* Create a free space btree cursor with a fake root for staging. */
531struct xfs_btree_cur *
532xfs_allocbt_stage_cursor(
533 struct xfs_mount *mp,
534 struct xbtree_afakeroot *afake,
535 struct xfs_perag *pag,
536 xfs_btnum_t btnum)
537{
538 struct xfs_btree_cur *cur;
539
540 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
541 xfs_btree_stage_afakeroot(cur, afake);
542 return cur;
543}
544
545/*
546 * Install a new free space btree root. Caller is responsible for invalidating
547 * and freeing the old btree blocks.
548 */
549void
550xfs_allocbt_commit_staged_btree(
551 struct xfs_btree_cur *cur,
552 struct xfs_trans *tp,
553 struct xfs_buf *agbp)
554{
555 struct xfs_agf *agf = agbp->b_addr;
556 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
557
558 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
559
560 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
561 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
562 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
563
564 if (cur->bc_btnum == XFS_BTNUM_BNO) {
565 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
566 } else {
567 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
568 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
569 }
570}
571
572/* Calculate number of records in an alloc btree block. */
573static inline unsigned int
574xfs_allocbt_block_maxrecs(
575 unsigned int blocklen,
576 bool leaf)
577{
578 if (leaf)
579 return blocklen / sizeof(xfs_alloc_rec_t);
580 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
581}
582
583/*
584 * Calculate number of records in an alloc btree block.
585 */
586int
587xfs_allocbt_maxrecs(
588 struct xfs_mount *mp,
589 int blocklen,
590 int leaf)
591{
592 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
593 return xfs_allocbt_block_maxrecs(blocklen, leaf);
594}
595
596/* Free space btrees are at their largest when every other block is free. */
597#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
598
599/* Compute the max possible height for free space btrees. */
600unsigned int
601xfs_allocbt_maxlevels_ondisk(void)
602{
603 unsigned int minrecs[2];
604 unsigned int blocklen;
605
606 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
607 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
608
609 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
610 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
611
612 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
613}
614
615/* Calculate the freespace btree size for some records. */
616xfs_extlen_t
617xfs_allocbt_calc_size(
618 struct xfs_mount *mp,
619 unsigned long long len)
620{
621 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
622}
623
624int __init
625xfs_allocbt_init_cur_cache(void)
626{
627 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
628 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
629 0, 0, NULL);
630
631 if (!xfs_allocbt_cur_cache)
632 return -ENOMEM;
633 return 0;
634}
635
636void
637xfs_allocbt_destroy_cur_cache(void)
638{
639 kmem_cache_destroy(xfs_allocbt_cur_cache);
640 xfs_allocbt_cur_cache = NULL;
641}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21
22
23STATIC struct xfs_btree_cur *
24xfs_allocbt_dup_cursor(
25 struct xfs_btree_cur *cur)
26{
27 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
28 cur->bc_private.a.agbp, cur->bc_private.a.agno,
29 cur->bc_btnum);
30}
31
32STATIC void
33xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 union xfs_btree_ptr *ptr,
36 int inc)
37{
38 struct xfs_buf *agbp = cur->bc_private.a.agbp;
39 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
40 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
41 int btnum = cur->bc_btnum;
42 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
43
44 ASSERT(ptr->s != 0);
45
46 agf->agf_roots[btnum] = ptr->s;
47 be32_add_cpu(&agf->agf_levels[btnum], inc);
48 pag->pagf_levels[btnum] += inc;
49 xfs_perag_put(pag);
50
51 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
52}
53
54STATIC int
55xfs_allocbt_alloc_block(
56 struct xfs_btree_cur *cur,
57 union xfs_btree_ptr *start,
58 union xfs_btree_ptr *new,
59 int *stat)
60{
61 int error;
62 xfs_agblock_t bno;
63
64 /* Allocate the new block from the freelist. If we can't, give up. */
65 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
66 &bno, 1);
67 if (error)
68 return error;
69
70 if (bno == NULLAGBLOCK) {
71 *stat = 0;
72 return 0;
73 }
74
75 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
76
77 xfs_trans_agbtree_delta(cur->bc_tp, 1);
78 new->s = cpu_to_be32(bno);
79
80 *stat = 1;
81 return 0;
82}
83
84STATIC int
85xfs_allocbt_free_block(
86 struct xfs_btree_cur *cur,
87 struct xfs_buf *bp)
88{
89 struct xfs_buf *agbp = cur->bc_private.a.agbp;
90 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
91 xfs_agblock_t bno;
92 int error;
93
94 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
95 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
96 if (error)
97 return error;
98
99 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
100 XFS_EXTENT_BUSY_SKIP_DISCARD);
101 xfs_trans_agbtree_delta(cur->bc_tp, -1);
102 return 0;
103}
104
105/*
106 * Update the longest extent in the AGF
107 */
108STATIC void
109xfs_allocbt_update_lastrec(
110 struct xfs_btree_cur *cur,
111 struct xfs_btree_block *block,
112 union xfs_btree_rec *rec,
113 int ptr,
114 int reason)
115{
116 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
117 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
118 struct xfs_perag *pag;
119 __be32 len;
120 int numrecs;
121
122 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
123
124 switch (reason) {
125 case LASTREC_UPDATE:
126 /*
127 * If this is the last leaf block and it's the last record,
128 * then update the size of the longest extent in the AG.
129 */
130 if (ptr != xfs_btree_get_numrecs(block))
131 return;
132 len = rec->alloc.ar_blockcount;
133 break;
134 case LASTREC_INSREC:
135 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
136 be32_to_cpu(agf->agf_longest))
137 return;
138 len = rec->alloc.ar_blockcount;
139 break;
140 case LASTREC_DELREC:
141 numrecs = xfs_btree_get_numrecs(block);
142 if (ptr <= numrecs)
143 return;
144 ASSERT(ptr == numrecs + 1);
145
146 if (numrecs) {
147 xfs_alloc_rec_t *rrp;
148
149 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
150 len = rrp->ar_blockcount;
151 } else {
152 len = 0;
153 }
154
155 break;
156 default:
157 ASSERT(0);
158 return;
159 }
160
161 agf->agf_longest = len;
162 pag = xfs_perag_get(cur->bc_mp, seqno);
163 pag->pagf_longest = be32_to_cpu(len);
164 xfs_perag_put(pag);
165 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
166}
167
168STATIC int
169xfs_allocbt_get_minrecs(
170 struct xfs_btree_cur *cur,
171 int level)
172{
173 return cur->bc_mp->m_alloc_mnr[level != 0];
174}
175
176STATIC int
177xfs_allocbt_get_maxrecs(
178 struct xfs_btree_cur *cur,
179 int level)
180{
181 return cur->bc_mp->m_alloc_mxr[level != 0];
182}
183
184STATIC void
185xfs_allocbt_init_key_from_rec(
186 union xfs_btree_key *key,
187 union xfs_btree_rec *rec)
188{
189 key->alloc.ar_startblock = rec->alloc.ar_startblock;
190 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
191}
192
193STATIC void
194xfs_bnobt_init_high_key_from_rec(
195 union xfs_btree_key *key,
196 union xfs_btree_rec *rec)
197{
198 __u32 x;
199
200 x = be32_to_cpu(rec->alloc.ar_startblock);
201 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
202 key->alloc.ar_startblock = cpu_to_be32(x);
203 key->alloc.ar_blockcount = 0;
204}
205
206STATIC void
207xfs_cntbt_init_high_key_from_rec(
208 union xfs_btree_key *key,
209 union xfs_btree_rec *rec)
210{
211 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
212 key->alloc.ar_startblock = 0;
213}
214
215STATIC void
216xfs_allocbt_init_rec_from_cur(
217 struct xfs_btree_cur *cur,
218 union xfs_btree_rec *rec)
219{
220 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
221 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
222}
223
224STATIC void
225xfs_allocbt_init_ptr_from_cur(
226 struct xfs_btree_cur *cur,
227 union xfs_btree_ptr *ptr)
228{
229 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
230
231 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
232
233 ptr->s = agf->agf_roots[cur->bc_btnum];
234}
235
236STATIC int64_t
237xfs_bnobt_key_diff(
238 struct xfs_btree_cur *cur,
239 union xfs_btree_key *key)
240{
241 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
242 xfs_alloc_key_t *kp = &key->alloc;
243
244 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
245}
246
247STATIC int64_t
248xfs_cntbt_key_diff(
249 struct xfs_btree_cur *cur,
250 union xfs_btree_key *key)
251{
252 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
253 xfs_alloc_key_t *kp = &key->alloc;
254 int64_t diff;
255
256 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
257 if (diff)
258 return diff;
259
260 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
261}
262
263STATIC int64_t
264xfs_bnobt_diff_two_keys(
265 struct xfs_btree_cur *cur,
266 union xfs_btree_key *k1,
267 union xfs_btree_key *k2)
268{
269 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
270 be32_to_cpu(k2->alloc.ar_startblock);
271}
272
273STATIC int64_t
274xfs_cntbt_diff_two_keys(
275 struct xfs_btree_cur *cur,
276 union xfs_btree_key *k1,
277 union xfs_btree_key *k2)
278{
279 int64_t diff;
280
281 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
282 be32_to_cpu(k2->alloc.ar_blockcount);
283 if (diff)
284 return diff;
285
286 return be32_to_cpu(k1->alloc.ar_startblock) -
287 be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290static xfs_failaddr_t
291xfs_allocbt_verify(
292 struct xfs_buf *bp)
293{
294 struct xfs_mount *mp = bp->b_mount;
295 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
296 struct xfs_perag *pag = bp->b_pag;
297 xfs_failaddr_t fa;
298 unsigned int level;
299 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
300
301 if (!xfs_verify_magic(bp, block->bb_magic))
302 return __this_address;
303
304 if (xfs_sb_version_hascrc(&mp->m_sb)) {
305 fa = xfs_btree_sblock_v5hdr_verify(bp);
306 if (fa)
307 return fa;
308 }
309
310 /*
311 * The perag may not be attached during grow operations or fully
312 * initialized from the AGF during log recovery. Therefore we can only
313 * check against maximum tree depth from those contexts.
314 *
315 * Otherwise check against the per-tree limit. Peek at one of the
316 * verifier magic values to determine the type of tree we're verifying
317 * against.
318 */
319 level = be16_to_cpu(block->bb_level);
320 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
321 btnum = XFS_BTNUM_CNTi;
322 if (pag && pag->pagf_init) {
323 if (level >= pag->pagf_levels[btnum])
324 return __this_address;
325 } else if (level >= mp->m_ag_maxlevels)
326 return __this_address;
327
328 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
329}
330
331static void
332xfs_allocbt_read_verify(
333 struct xfs_buf *bp)
334{
335 xfs_failaddr_t fa;
336
337 if (!xfs_btree_sblock_verify_crc(bp))
338 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
339 else {
340 fa = xfs_allocbt_verify(bp);
341 if (fa)
342 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
343 }
344
345 if (bp->b_error)
346 trace_xfs_btree_corrupt(bp, _RET_IP_);
347}
348
349static void
350xfs_allocbt_write_verify(
351 struct xfs_buf *bp)
352{
353 xfs_failaddr_t fa;
354
355 fa = xfs_allocbt_verify(bp);
356 if (fa) {
357 trace_xfs_btree_corrupt(bp, _RET_IP_);
358 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
359 return;
360 }
361 xfs_btree_sblock_calc_crc(bp);
362
363}
364
365const struct xfs_buf_ops xfs_bnobt_buf_ops = {
366 .name = "xfs_bnobt",
367 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
368 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
369 .verify_read = xfs_allocbt_read_verify,
370 .verify_write = xfs_allocbt_write_verify,
371 .verify_struct = xfs_allocbt_verify,
372};
373
374const struct xfs_buf_ops xfs_cntbt_buf_ops = {
375 .name = "xfs_cntbt",
376 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
377 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
378 .verify_read = xfs_allocbt_read_verify,
379 .verify_write = xfs_allocbt_write_verify,
380 .verify_struct = xfs_allocbt_verify,
381};
382
383STATIC int
384xfs_bnobt_keys_inorder(
385 struct xfs_btree_cur *cur,
386 union xfs_btree_key *k1,
387 union xfs_btree_key *k2)
388{
389 return be32_to_cpu(k1->alloc.ar_startblock) <
390 be32_to_cpu(k2->alloc.ar_startblock);
391}
392
393STATIC int
394xfs_bnobt_recs_inorder(
395 struct xfs_btree_cur *cur,
396 union xfs_btree_rec *r1,
397 union xfs_btree_rec *r2)
398{
399 return be32_to_cpu(r1->alloc.ar_startblock) +
400 be32_to_cpu(r1->alloc.ar_blockcount) <=
401 be32_to_cpu(r2->alloc.ar_startblock);
402}
403
404STATIC int
405xfs_cntbt_keys_inorder(
406 struct xfs_btree_cur *cur,
407 union xfs_btree_key *k1,
408 union xfs_btree_key *k2)
409{
410 return be32_to_cpu(k1->alloc.ar_blockcount) <
411 be32_to_cpu(k2->alloc.ar_blockcount) ||
412 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
413 be32_to_cpu(k1->alloc.ar_startblock) <
414 be32_to_cpu(k2->alloc.ar_startblock));
415}
416
417STATIC int
418xfs_cntbt_recs_inorder(
419 struct xfs_btree_cur *cur,
420 union xfs_btree_rec *r1,
421 union xfs_btree_rec *r2)
422{
423 return be32_to_cpu(r1->alloc.ar_blockcount) <
424 be32_to_cpu(r2->alloc.ar_blockcount) ||
425 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
426 be32_to_cpu(r1->alloc.ar_startblock) <
427 be32_to_cpu(r2->alloc.ar_startblock));
428}
429
430static const struct xfs_btree_ops xfs_bnobt_ops = {
431 .rec_len = sizeof(xfs_alloc_rec_t),
432 .key_len = sizeof(xfs_alloc_key_t),
433
434 .dup_cursor = xfs_allocbt_dup_cursor,
435 .set_root = xfs_allocbt_set_root,
436 .alloc_block = xfs_allocbt_alloc_block,
437 .free_block = xfs_allocbt_free_block,
438 .update_lastrec = xfs_allocbt_update_lastrec,
439 .get_minrecs = xfs_allocbt_get_minrecs,
440 .get_maxrecs = xfs_allocbt_get_maxrecs,
441 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
442 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
443 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
444 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
445 .key_diff = xfs_bnobt_key_diff,
446 .buf_ops = &xfs_bnobt_buf_ops,
447 .diff_two_keys = xfs_bnobt_diff_two_keys,
448 .keys_inorder = xfs_bnobt_keys_inorder,
449 .recs_inorder = xfs_bnobt_recs_inorder,
450};
451
452static const struct xfs_btree_ops xfs_cntbt_ops = {
453 .rec_len = sizeof(xfs_alloc_rec_t),
454 .key_len = sizeof(xfs_alloc_key_t),
455
456 .dup_cursor = xfs_allocbt_dup_cursor,
457 .set_root = xfs_allocbt_set_root,
458 .alloc_block = xfs_allocbt_alloc_block,
459 .free_block = xfs_allocbt_free_block,
460 .update_lastrec = xfs_allocbt_update_lastrec,
461 .get_minrecs = xfs_allocbt_get_minrecs,
462 .get_maxrecs = xfs_allocbt_get_maxrecs,
463 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
464 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
465 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
466 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
467 .key_diff = xfs_cntbt_key_diff,
468 .buf_ops = &xfs_cntbt_buf_ops,
469 .diff_two_keys = xfs_cntbt_diff_two_keys,
470 .keys_inorder = xfs_cntbt_keys_inorder,
471 .recs_inorder = xfs_cntbt_recs_inorder,
472};
473
474/*
475 * Allocate a new allocation btree cursor.
476 */
477struct xfs_btree_cur * /* new alloc btree cursor */
478xfs_allocbt_init_cursor(
479 struct xfs_mount *mp, /* file system mount point */
480 struct xfs_trans *tp, /* transaction pointer */
481 struct xfs_buf *agbp, /* buffer for agf structure */
482 xfs_agnumber_t agno, /* allocation group number */
483 xfs_btnum_t btnum) /* btree identifier */
484{
485 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
486 struct xfs_btree_cur *cur;
487
488 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
489
490 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
491
492 cur->bc_tp = tp;
493 cur->bc_mp = mp;
494 cur->bc_btnum = btnum;
495 cur->bc_blocklog = mp->m_sb.sb_blocklog;
496
497 if (btnum == XFS_BTNUM_CNT) {
498 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
499 cur->bc_ops = &xfs_cntbt_ops;
500 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
501 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
502 } else {
503 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
504 cur->bc_ops = &xfs_bnobt_ops;
505 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
506 }
507
508 cur->bc_private.a.agbp = agbp;
509 cur->bc_private.a.agno = agno;
510
511 if (xfs_sb_version_hascrc(&mp->m_sb))
512 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
513
514 return cur;
515}
516
517/*
518 * Calculate number of records in an alloc btree block.
519 */
520int
521xfs_allocbt_maxrecs(
522 struct xfs_mount *mp,
523 int blocklen,
524 int leaf)
525{
526 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
527
528 if (leaf)
529 return blocklen / sizeof(xfs_alloc_rec_t);
530 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
531}
532
533/* Calculate the freespace btree size for some records. */
534xfs_extlen_t
535xfs_allocbt_calc_size(
536 struct xfs_mount *mp,
537 unsigned long long len)
538{
539 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
540}