Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
 20
 21/* L: Logical segment # in volume, R: Relative segment # in main area */
 22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 24
 25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
 27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
 28
 29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
 30						unsigned short seg_type)
 31{
 32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
 33}
 34
 35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 38
 39#define IS_CURSEG(sbi, seg)						\
 40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
 46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
 47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
 48
 49#define IS_CURSEC(sbi, secno)						\
 50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 51	  (sbi)->segs_per_sec) ||	\
 52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 53	  (sbi)->segs_per_sec) ||	\
 54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 55	  (sbi)->segs_per_sec) ||	\
 56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 57	  (sbi)->segs_per_sec) ||	\
 58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 59	  (sbi)->segs_per_sec) ||	\
 60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 61	  (sbi)->segs_per_sec) ||	\
 62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
 63	  (sbi)->segs_per_sec) ||	\
 64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
 65	  (sbi)->segs_per_sec))
 66
 67#define MAIN_BLKADDR(sbi)						\
 68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 70#define SEG0_BLKADDR(sbi)						\
 71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 73
 74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 75#define MAIN_SECS(sbi)	((sbi)->total_sections)
 76
 77#define TOTAL_SEGS(sbi)							\
 78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 80#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 81
 82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 84					(sbi)->log_blocks_per_seg))
 85
 86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 87	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 88
 89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 91
 92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 97
 98#define GET_SEGNO(sbi, blk_addr)					\
 99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define BLKS_PER_SEC(sbi)					\
103	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104#define CAP_BLKS_PER_SEC(sbi)					\
105	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106	 (sbi)->unusable_blocks_per_sec)
107#define GET_SEC_FROM_SEG(sbi, segno)				\
108	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109#define GET_SEG_FROM_SEC(sbi, secno)				\
110	((secno) * (sbi)->segs_per_sec)
111#define GET_ZONE_FROM_SEC(sbi, secno)				\
112	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113#define GET_ZONE_FROM_SEG(sbi, segno)				\
114	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116#define GET_SUM_BLOCK(sbi, segno)				\
117	((sbi)->sm_info->ssa_blkaddr + (segno))
118
119#define GET_SUM_TYPE(footer) ((footer)->entry_type)
120#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122#define SIT_ENTRY_OFFSET(sit_i, segno)					\
123	((segno) % (sit_i)->sents_per_block)
124#define SIT_BLOCK_OFFSET(segno)					\
125	((segno) / SIT_ENTRY_PER_BLOCK)
126#define	START_SEGNO(segno)		\
127	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128#define SIT_BLK_CNT(sbi)			\
129	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130#define f2fs_bitmap_size(nr)			\
131	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133#define SECTOR_FROM_BLOCK(blk_addr)					\
134	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135#define SECTOR_TO_BLOCK(sectors)					\
136	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138/*
139 * indicate a block allocation direction: RIGHT and LEFT.
140 * RIGHT means allocating new sections towards the end of volume.
141 * LEFT means the opposite direction.
142 */
143enum {
144	ALLOC_RIGHT = 0,
145	ALLOC_LEFT
146};
147
148/*
149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150 * LFS writes data sequentially with cleaning operations.
151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153 * fragmented segment which has similar aging degree.
154 */
155enum {
156	LFS = 0,
157	SSR,
158	AT_SSR,
159};
160
161/*
162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163 * GC_CB is based on cost-benefit algorithm.
164 * GC_GREEDY is based on greedy algorithm.
165 * GC_AT is based on age-threshold algorithm.
166 */
167enum {
168	GC_CB = 0,
169	GC_GREEDY,
170	GC_AT,
171	ALLOC_NEXT,
172	FLUSH_DEVICE,
173	MAX_GC_POLICY,
174};
175
176/*
177 * BG_GC means the background cleaning job.
178 * FG_GC means the on-demand cleaning job.
 
179 */
180enum {
181	BG_GC = 0,
182	FG_GC,
 
183};
184
185/* for a function parameter to select a victim segment */
186struct victim_sel_policy {
187	int alloc_mode;			/* LFS or SSR */
188	int gc_mode;			/* GC_CB or GC_GREEDY */
189	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
190	unsigned int max_search;	/*
191					 * maximum # of segments/sections
192					 * to search
193					 */
194	unsigned int offset;		/* last scanned bitmap offset */
195	unsigned int ofs_unit;		/* bitmap search unit */
196	unsigned int min_cost;		/* minimum cost */
197	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
198	unsigned int min_segno;		/* segment # having min. cost */
199	unsigned long long age;		/* mtime of GCed section*/
200	unsigned long long age_threshold;/* age threshold */
201};
202
203struct seg_entry {
204	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
205	unsigned int valid_blocks:10;	/* # of valid blocks */
206	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
207	unsigned int padding:6;		/* padding */
208	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
209#ifdef CONFIG_F2FS_CHECK_FS
210	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
211#endif
212	/*
213	 * # of valid blocks and the validity bitmap stored in the last
214	 * checkpoint pack. This information is used by the SSR mode.
215	 */
216	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
217	unsigned char *discard_map;
218	unsigned long long mtime;	/* modification time of the segment */
219};
220
221struct sec_entry {
222	unsigned int valid_blocks;	/* # of valid blocks in a section */
223};
224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225#define MAX_SKIP_GC_COUNT			16
226
227struct revoke_entry {
228	struct list_head list;
 
229	block_t old_addr;		/* for revoking when fail to commit */
230	pgoff_t index;
231};
232
233struct sit_info {
 
 
234	block_t sit_base_addr;		/* start block address of SIT area */
235	block_t sit_blocks;		/* # of blocks used by SIT area */
236	block_t written_valid_blocks;	/* # of valid blocks in main area */
237	char *bitmap;			/* all bitmaps pointer */
238	char *sit_bitmap;		/* SIT bitmap pointer */
239#ifdef CONFIG_F2FS_CHECK_FS
240	char *sit_bitmap_mir;		/* SIT bitmap mirror */
241
242	/* bitmap of segments to be ignored by GC in case of errors */
243	unsigned long *invalid_segmap;
244#endif
245	unsigned int bitmap_size;	/* SIT bitmap size */
246
247	unsigned long *tmp_map;			/* bitmap for temporal use */
248	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
249	unsigned int dirty_sentries;		/* # of dirty sentries */
250	unsigned int sents_per_block;		/* # of SIT entries per block */
251	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
252	struct seg_entry *sentries;		/* SIT segment-level cache */
253	struct sec_entry *sec_entries;		/* SIT section-level cache */
254
255	/* for cost-benefit algorithm in cleaning procedure */
256	unsigned long long elapsed_time;	/* elapsed time after mount */
257	unsigned long long mounted_time;	/* mount time */
258	unsigned long long min_mtime;		/* min. modification time */
259	unsigned long long max_mtime;		/* max. modification time */
260	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
261	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
262
263	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
264};
265
266struct free_segmap_info {
267	unsigned int start_segno;	/* start segment number logically */
268	unsigned int free_segments;	/* # of free segments */
269	unsigned int free_sections;	/* # of free sections */
270	spinlock_t segmap_lock;		/* free segmap lock */
271	unsigned long *free_segmap;	/* free segment bitmap */
272	unsigned long *free_secmap;	/* free section bitmap */
273};
274
275/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
276enum dirty_type {
277	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
278	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
279	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
280	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
281	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
282	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
283	DIRTY,			/* to count # of dirty segments */
284	PRE,			/* to count # of entirely obsolete segments */
285	NR_DIRTY_TYPE
286};
287
288struct dirty_seglist_info {
289	const struct victim_selection *v_ops;	/* victim selction operation */
290	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291	unsigned long *dirty_secmap;
292	struct mutex seglist_lock;		/* lock for segment bitmaps */
293	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
294	unsigned long *victim_secmap;		/* background GC victims */
295	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
296	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
297	bool enable_pin_section;		/* enable pinning section */
298};
299
300/* victim selection function for cleaning and SSR */
301struct victim_selection {
302	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
303					int, int, char, unsigned long long);
304};
305
306/* for active log information */
307struct curseg_info {
308	struct mutex curseg_mutex;		/* lock for consistency */
309	struct f2fs_summary_block *sum_blk;	/* cached summary block */
310	struct rw_semaphore journal_rwsem;	/* protect journal area */
311	struct f2fs_journal *journal;		/* cached journal info */
312	unsigned char alloc_type;		/* current allocation type */
313	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
314	unsigned int segno;			/* current segment number */
315	unsigned short next_blkoff;		/* next block offset to write */
316	unsigned int zone;			/* current zone number */
317	unsigned int next_segno;		/* preallocated segment */
318	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
319	bool inited;				/* indicate inmem log is inited */
320};
321
322struct sit_entry_set {
323	struct list_head set_list;	/* link with all sit sets */
324	unsigned int start_segno;	/* start segno of sits in set */
325	unsigned int entry_cnt;		/* the # of sit entries in set */
326};
327
328/*
329 * inline functions
330 */
331static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332{
333	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334}
335
336static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337						unsigned int segno)
338{
339	struct sit_info *sit_i = SIT_I(sbi);
340	return &sit_i->sentries[segno];
341}
342
343static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344						unsigned int segno)
345{
346	struct sit_info *sit_i = SIT_I(sbi);
347	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348}
349
350static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351				unsigned int segno, bool use_section)
352{
353	/*
354	 * In order to get # of valid blocks in a section instantly from many
355	 * segments, f2fs manages two counting structures separately.
356	 */
357	if (use_section && __is_large_section(sbi))
358		return get_sec_entry(sbi, segno)->valid_blocks;
359	else
360		return get_seg_entry(sbi, segno)->valid_blocks;
361}
362
363static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364				unsigned int segno, bool use_section)
365{
366	if (use_section && __is_large_section(sbi)) {
367		unsigned int start_segno = START_SEGNO(segno);
368		unsigned int blocks = 0;
369		int i;
370
371		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
372			struct seg_entry *se = get_seg_entry(sbi, start_segno);
373
374			blocks += se->ckpt_valid_blocks;
375		}
376		return blocks;
377	}
378	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
379}
380
381static inline void seg_info_from_raw_sit(struct seg_entry *se,
382					struct f2fs_sit_entry *rs)
383{
384	se->valid_blocks = GET_SIT_VBLOCKS(rs);
385	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
386	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388#ifdef CONFIG_F2FS_CHECK_FS
389	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
390#endif
391	se->type = GET_SIT_TYPE(rs);
392	se->mtime = le64_to_cpu(rs->mtime);
393}
394
395static inline void __seg_info_to_raw_sit(struct seg_entry *se,
396					struct f2fs_sit_entry *rs)
397{
398	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
399					se->valid_blocks;
400	rs->vblocks = cpu_to_le16(raw_vblocks);
401	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
402	rs->mtime = cpu_to_le64(se->mtime);
403}
404
405static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
406				struct page *page, unsigned int start)
407{
408	struct f2fs_sit_block *raw_sit;
409	struct seg_entry *se;
410	struct f2fs_sit_entry *rs;
411	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
412					(unsigned long)MAIN_SEGS(sbi));
413	int i;
414
415	raw_sit = (struct f2fs_sit_block *)page_address(page);
416	memset(raw_sit, 0, PAGE_SIZE);
417	for (i = 0; i < end - start; i++) {
418		rs = &raw_sit->entries[i];
419		se = get_seg_entry(sbi, start + i);
420		__seg_info_to_raw_sit(se, rs);
421	}
422}
423
424static inline void seg_info_to_raw_sit(struct seg_entry *se,
425					struct f2fs_sit_entry *rs)
426{
427	__seg_info_to_raw_sit(se, rs);
428
429	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
430	se->ckpt_valid_blocks = se->valid_blocks;
431}
432
433static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
434		unsigned int max, unsigned int segno)
435{
436	unsigned int ret;
437	spin_lock(&free_i->segmap_lock);
438	ret = find_next_bit(free_i->free_segmap, max, segno);
439	spin_unlock(&free_i->segmap_lock);
440	return ret;
441}
442
443static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
444{
445	struct free_segmap_info *free_i = FREE_I(sbi);
446	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448	unsigned int next;
449	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
450
451	spin_lock(&free_i->segmap_lock);
452	clear_bit(segno, free_i->free_segmap);
453	free_i->free_segments++;
454
455	next = find_next_bit(free_i->free_segmap,
456			start_segno + sbi->segs_per_sec, start_segno);
457	if (next >= start_segno + usable_segs) {
458		clear_bit(secno, free_i->free_secmap);
459		free_i->free_sections++;
460	}
461	spin_unlock(&free_i->segmap_lock);
462}
463
464static inline void __set_inuse(struct f2fs_sb_info *sbi,
465		unsigned int segno)
466{
467	struct free_segmap_info *free_i = FREE_I(sbi);
468	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469
470	set_bit(segno, free_i->free_segmap);
471	free_i->free_segments--;
472	if (!test_and_set_bit(secno, free_i->free_secmap))
473		free_i->free_sections--;
474}
475
476static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
477		unsigned int segno, bool inmem)
478{
479	struct free_segmap_info *free_i = FREE_I(sbi);
480	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
481	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
482	unsigned int next;
483	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
484
485	spin_lock(&free_i->segmap_lock);
486	if (test_and_clear_bit(segno, free_i->free_segmap)) {
487		free_i->free_segments++;
488
489		if (!inmem && IS_CURSEC(sbi, secno))
490			goto skip_free;
491		next = find_next_bit(free_i->free_segmap,
492				start_segno + sbi->segs_per_sec, start_segno);
493		if (next >= start_segno + usable_segs) {
494			if (test_and_clear_bit(secno, free_i->free_secmap))
495				free_i->free_sections++;
496		}
497	}
498skip_free:
499	spin_unlock(&free_i->segmap_lock);
500}
501
502static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
503		unsigned int segno)
504{
505	struct free_segmap_info *free_i = FREE_I(sbi);
506	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
507
508	spin_lock(&free_i->segmap_lock);
509	if (!test_and_set_bit(segno, free_i->free_segmap)) {
510		free_i->free_segments--;
511		if (!test_and_set_bit(secno, free_i->free_secmap))
512			free_i->free_sections--;
513	}
514	spin_unlock(&free_i->segmap_lock);
515}
516
517static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
518		void *dst_addr)
519{
520	struct sit_info *sit_i = SIT_I(sbi);
521
522#ifdef CONFIG_F2FS_CHECK_FS
523	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
524						sit_i->bitmap_size))
525		f2fs_bug_on(sbi, 1);
526#endif
527	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
528}
529
530static inline block_t written_block_count(struct f2fs_sb_info *sbi)
531{
532	return SIT_I(sbi)->written_valid_blocks;
533}
534
535static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
536{
537	return FREE_I(sbi)->free_segments;
538}
539
540static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
541{
542	return SM_I(sbi)->reserved_segments +
543			SM_I(sbi)->additional_reserved_segments;
544}
545
546static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
547{
548	return FREE_I(sbi)->free_sections;
549}
550
551static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
552{
553	return DIRTY_I(sbi)->nr_dirty[PRE];
554}
555
556static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
557{
558	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
559		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
560		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
561		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
562		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
563		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
564}
565
566static inline int overprovision_segments(struct f2fs_sb_info *sbi)
567{
568	return SM_I(sbi)->ovp_segments;
569}
570
571static inline int reserved_sections(struct f2fs_sb_info *sbi)
572{
573	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
574}
575
576static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
577			unsigned int node_blocks, unsigned int dent_blocks)
578{
579
 
 
580	unsigned int segno, left_blocks;
581	int i;
582
583	/* check current node segment */
584	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585		segno = CURSEG_I(sbi, i)->segno;
586		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588
589		if (node_blocks > left_blocks)
590			return false;
591	}
592
593	/* check current data segment */
594	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597	if (dent_blocks > left_blocks)
598		return false;
599	return true;
600}
601
602static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603					int freed, int needed)
604{
605	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606					get_pages(sbi, F2FS_DIRTY_DENTS) +
607					get_pages(sbi, F2FS_DIRTY_IMETA);
608	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613	unsigned int free, need_lower, need_upper;
614
615	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
616		return false;
617
618	free = free_sections(sbi) + freed;
619	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
620	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
621
622	if (free > need_upper)
623		return false;
624	else if (free <= need_lower)
625		return true;
626	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
627}
628
629static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
630{
631	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
632		return true;
633	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
634		return true;
635	return false;
636}
637
638static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
639{
640	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
641}
642
643static inline int utilization(struct f2fs_sb_info *sbi)
644{
645	return div_u64((u64)valid_user_blocks(sbi) * 100,
646					sbi->user_block_count);
647}
648
649/*
650 * Sometimes f2fs may be better to drop out-of-place update policy.
651 * And, users can control the policy through sysfs entries.
652 * There are five policies with triggering conditions as follows.
653 * F2FS_IPU_FORCE - all the time,
654 * F2FS_IPU_SSR - if SSR mode is activated,
655 * F2FS_IPU_UTIL - if FS utilization is over threashold,
656 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
657 *                     threashold,
658 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
659 *                     storages. IPU will be triggered only if the # of dirty
660 *                     pages over min_fsync_blocks. (=default option)
661 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
662 * F2FS_IPU_NOCACHE - disable IPU bio cache.
663 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
664 *                            FI_OPU_WRITE flag.
665 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
666 */
667#define DEF_MIN_IPU_UTIL	70
668#define DEF_MIN_FSYNC_BLOCKS	8
669#define DEF_MIN_HOT_BLOCKS	16
670
671#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
672
673enum {
674	F2FS_IPU_FORCE,
675	F2FS_IPU_SSR,
676	F2FS_IPU_UTIL,
677	F2FS_IPU_SSR_UTIL,
678	F2FS_IPU_FSYNC,
679	F2FS_IPU_ASYNC,
680	F2FS_IPU_NOCACHE,
681	F2FS_IPU_HONOR_OPU_WRITE,
682};
683
684static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
685		int type)
686{
687	struct curseg_info *curseg = CURSEG_I(sbi, type);
688	return curseg->segno;
689}
690
691static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
692		int type)
693{
694	struct curseg_info *curseg = CURSEG_I(sbi, type);
695	return curseg->alloc_type;
696}
697
698static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
699{
700	struct curseg_info *curseg = CURSEG_I(sbi, type);
701	return curseg->next_blkoff;
702}
703
704static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
705{
706	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
707}
708
709static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
710{
711	struct f2fs_sb_info *sbi = fio->sbi;
712
713	if (__is_valid_data_blkaddr(fio->old_blkaddr))
714		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
715					META_GENERIC : DATA_GENERIC);
716	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
717					META_GENERIC : DATA_GENERIC_ENHANCE);
718}
719
720/*
721 * Summary block is always treated as an invalid block
722 */
723static inline int check_block_count(struct f2fs_sb_info *sbi,
724		int segno, struct f2fs_sit_entry *raw_sit)
725{
726	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
727	int valid_blocks = 0;
728	int cur_pos = 0, next_pos;
729	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
730
731	/* check bitmap with valid block count */
732	do {
733		if (is_valid) {
734			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
735					usable_blks_per_seg,
736					cur_pos);
737			valid_blocks += next_pos - cur_pos;
738		} else
739			next_pos = find_next_bit_le(&raw_sit->valid_map,
740					usable_blks_per_seg,
741					cur_pos);
742		cur_pos = next_pos;
743		is_valid = !is_valid;
744	} while (cur_pos < usable_blks_per_seg);
745
746	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
747		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
748			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
749		set_sbi_flag(sbi, SBI_NEED_FSCK);
750		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
751		return -EFSCORRUPTED;
752	}
753
754	if (usable_blks_per_seg < sbi->blocks_per_seg)
755		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
756				sbi->blocks_per_seg,
757				usable_blks_per_seg) != sbi->blocks_per_seg);
758
759	/* check segment usage, and check boundary of a given segment number */
760	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
761					|| segno > TOTAL_SEGS(sbi) - 1)) {
762		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
763			 GET_SIT_VBLOCKS(raw_sit), segno);
764		set_sbi_flag(sbi, SBI_NEED_FSCK);
765		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
766		return -EFSCORRUPTED;
767	}
768	return 0;
769}
770
771static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
772						unsigned int start)
773{
774	struct sit_info *sit_i = SIT_I(sbi);
775	unsigned int offset = SIT_BLOCK_OFFSET(start);
776	block_t blk_addr = sit_i->sit_base_addr + offset;
777
778	check_seg_range(sbi, start);
779
780#ifdef CONFIG_F2FS_CHECK_FS
781	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
782			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
783		f2fs_bug_on(sbi, 1);
784#endif
785
786	/* calculate sit block address */
787	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
788		blk_addr += sit_i->sit_blocks;
789
790	return blk_addr;
791}
792
793static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
794						pgoff_t block_addr)
795{
796	struct sit_info *sit_i = SIT_I(sbi);
797	block_addr -= sit_i->sit_base_addr;
798	if (block_addr < sit_i->sit_blocks)
799		block_addr += sit_i->sit_blocks;
800	else
801		block_addr -= sit_i->sit_blocks;
802
803	return block_addr + sit_i->sit_base_addr;
804}
805
806static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
807{
808	unsigned int block_off = SIT_BLOCK_OFFSET(start);
809
810	f2fs_change_bit(block_off, sit_i->sit_bitmap);
811#ifdef CONFIG_F2FS_CHECK_FS
812	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
813#endif
814}
815
816static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
817						bool base_time)
818{
819	struct sit_info *sit_i = SIT_I(sbi);
820	time64_t diff, now = ktime_get_boottime_seconds();
821
822	if (now >= sit_i->mounted_time)
823		return sit_i->elapsed_time + now - sit_i->mounted_time;
824
825	/* system time is set to the past */
826	if (!base_time) {
827		diff = sit_i->mounted_time - now;
828		if (sit_i->elapsed_time >= diff)
829			return sit_i->elapsed_time - diff;
830		return 0;
831	}
832	return sit_i->elapsed_time;
833}
834
835static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
836			unsigned int ofs_in_node, unsigned char version)
837{
838	sum->nid = cpu_to_le32(nid);
839	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
840	sum->version = version;
841}
842
843static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
844{
845	return __start_cp_addr(sbi) +
846		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
847}
848
849static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
850{
851	return __start_cp_addr(sbi) +
852		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
853				- (base + 1) + type;
854}
855
856static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
857{
858	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
859		return true;
860	return false;
861}
862
863/*
864 * It is very important to gather dirty pages and write at once, so that we can
865 * submit a big bio without interfering other data writes.
866 * By default, 512 pages for directory data,
867 * 512 pages (2MB) * 8 for nodes, and
868 * 256 pages * 8 for meta are set.
869 */
870static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
871{
872	if (sbi->sb->s_bdi->wb.dirty_exceeded)
873		return 0;
874
875	if (type == DATA)
876		return sbi->blocks_per_seg;
877	else if (type == NODE)
878		return 8 * sbi->blocks_per_seg;
879	else if (type == META)
880		return 8 * BIO_MAX_VECS;
881	else
882		return 0;
883}
884
885/*
886 * When writing pages, it'd better align nr_to_write for segment size.
887 */
888static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
889					struct writeback_control *wbc)
890{
891	long nr_to_write, desired;
892
893	if (wbc->sync_mode != WB_SYNC_NONE)
894		return 0;
895
896	nr_to_write = wbc->nr_to_write;
897	desired = BIO_MAX_VECS;
898	if (type == NODE)
899		desired <<= 1;
900
901	wbc->nr_to_write = desired;
902	return desired - nr_to_write;
903}
904
905static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
906{
907	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
908	bool wakeup = false;
909	int i;
910
911	if (force)
912		goto wake_up;
913
914	mutex_lock(&dcc->cmd_lock);
915	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
916		if (i + 1 < dcc->discard_granularity)
917			break;
918		if (!list_empty(&dcc->pend_list[i])) {
919			wakeup = true;
920			break;
921		}
922	}
923	mutex_unlock(&dcc->cmd_lock);
924	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
925		return;
926wake_up:
927	dcc->discard_wake = 1;
928	wake_up_interruptible_all(&dcc->discard_wait_queue);
929}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 
 19
 20/* L: Logical segment # in volume, R: Relative segment # in main area */
 21#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 22#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 23
 24#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 25#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 
 
 
 
 
 
 
 26
 27#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 28#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 29#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 30
 31#define IS_CURSEG(sbi, seg)						\
 32	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 33	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 34	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 35	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 36	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 37	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 
 
 38
 39#define IS_CURSEC(sbi, secno)						\
 40	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 41	  (sbi)->segs_per_sec) ||	\
 42	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 43	  (sbi)->segs_per_sec) ||	\
 44	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 45	  (sbi)->segs_per_sec) ||	\
 46	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 47	  (sbi)->segs_per_sec) ||	\
 48	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 49	  (sbi)->segs_per_sec) ||	\
 50	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 51	  (sbi)->segs_per_sec))	\
 
 
 
 
 52
 53#define MAIN_BLKADDR(sbi)						\
 54	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 55		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 56#define SEG0_BLKADDR(sbi)						\
 57	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 58		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 59
 60#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 61#define MAIN_SECS(sbi)	((sbi)->total_sections)
 62
 63#define TOTAL_SEGS(sbi)							\
 64	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 65		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 66#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 67
 68#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 69#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 70					(sbi)->log_blocks_per_seg))
 71
 72#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 73	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 74
 75#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 76	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 77
 78#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 79#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 80	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 81#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 82	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 83
 84#define GET_SEGNO(sbi, blk_addr)					\
 85	((!__is_valid_data_blkaddr(blk_addr)) ?			\
 86	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 87		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 88#define BLKS_PER_SEC(sbi)					\
 89	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 
 
 
 90#define GET_SEC_FROM_SEG(sbi, segno)				\
 91	((segno) / (sbi)->segs_per_sec)
 92#define GET_SEG_FROM_SEC(sbi, secno)				\
 93	((secno) * (sbi)->segs_per_sec)
 94#define GET_ZONE_FROM_SEC(sbi, secno)				\
 95	((secno) / (sbi)->secs_per_zone)
 96#define GET_ZONE_FROM_SEG(sbi, segno)				\
 97	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 98
 99#define GET_SUM_BLOCK(sbi, segno)				\
100	((sbi)->sm_info->ssa_blkaddr + (segno))
101
102#define GET_SUM_TYPE(footer) ((footer)->entry_type)
103#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104
105#define SIT_ENTRY_OFFSET(sit_i, segno)					\
106	((segno) % (sit_i)->sents_per_block)
107#define SIT_BLOCK_OFFSET(segno)					\
108	((segno) / SIT_ENTRY_PER_BLOCK)
109#define	START_SEGNO(segno)		\
110	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111#define SIT_BLK_CNT(sbi)			\
112	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113#define f2fs_bitmap_size(nr)			\
114	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115
116#define SECTOR_FROM_BLOCK(blk_addr)					\
117	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118#define SECTOR_TO_BLOCK(sectors)					\
119	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120
121/*
122 * indicate a block allocation direction: RIGHT and LEFT.
123 * RIGHT means allocating new sections towards the end of volume.
124 * LEFT means the opposite direction.
125 */
126enum {
127	ALLOC_RIGHT = 0,
128	ALLOC_LEFT
129};
130
131/*
132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133 * LFS writes data sequentially with cleaning operations.
134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 
 
135 */
136enum {
137	LFS = 0,
138	SSR
 
139};
140
141/*
142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143 * GC_CB is based on cost-benefit algorithm.
144 * GC_GREEDY is based on greedy algorithm.
 
145 */
146enum {
147	GC_CB = 0,
148	GC_GREEDY,
 
149	ALLOC_NEXT,
150	FLUSH_DEVICE,
151	MAX_GC_POLICY,
152};
153
154/*
155 * BG_GC means the background cleaning job.
156 * FG_GC means the on-demand cleaning job.
157 * FORCE_FG_GC means on-demand cleaning job in background.
158 */
159enum {
160	BG_GC = 0,
161	FG_GC,
162	FORCE_FG_GC,
163};
164
165/* for a function parameter to select a victim segment */
166struct victim_sel_policy {
167	int alloc_mode;			/* LFS or SSR */
168	int gc_mode;			/* GC_CB or GC_GREEDY */
169	unsigned long *dirty_segmap;	/* dirty segment bitmap */
170	unsigned int max_search;	/* maximum # of segments to search */
 
 
 
171	unsigned int offset;		/* last scanned bitmap offset */
172	unsigned int ofs_unit;		/* bitmap search unit */
173	unsigned int min_cost;		/* minimum cost */
 
174	unsigned int min_segno;		/* segment # having min. cost */
 
 
175};
176
177struct seg_entry {
178	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
179	unsigned int valid_blocks:10;	/* # of valid blocks */
180	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
181	unsigned int padding:6;		/* padding */
182	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
183#ifdef CONFIG_F2FS_CHECK_FS
184	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
185#endif
186	/*
187	 * # of valid blocks and the validity bitmap stored in the the last
188	 * checkpoint pack. This information is used by the SSR mode.
189	 */
190	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
191	unsigned char *discard_map;
192	unsigned long long mtime;	/* modification time of the segment */
193};
194
195struct sec_entry {
196	unsigned int valid_blocks;	/* # of valid blocks in a section */
197};
198
199struct segment_allocation {
200	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201};
202
203/*
204 * this value is set in page as a private data which indicate that
205 * the page is atomically written, and it is in inmem_pages list.
206 */
207#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
208#define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
209
210#define IS_ATOMIC_WRITTEN_PAGE(page)			\
211		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212#define IS_DUMMY_WRITTEN_PAGE(page)			\
213		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
214
215#define MAX_SKIP_GC_COUNT			16
216
217struct inmem_pages {
218	struct list_head list;
219	struct page *page;
220	block_t old_addr;		/* for revoking when fail to commit */
 
221};
222
223struct sit_info {
224	const struct segment_allocation *s_ops;
225
226	block_t sit_base_addr;		/* start block address of SIT area */
227	block_t sit_blocks;		/* # of blocks used by SIT area */
228	block_t written_valid_blocks;	/* # of valid blocks in main area */
229	char *bitmap;			/* all bitmaps pointer */
230	char *sit_bitmap;		/* SIT bitmap pointer */
231#ifdef CONFIG_F2FS_CHECK_FS
232	char *sit_bitmap_mir;		/* SIT bitmap mirror */
233
234	/* bitmap of segments to be ignored by GC in case of errors */
235	unsigned long *invalid_segmap;
236#endif
237	unsigned int bitmap_size;	/* SIT bitmap size */
238
239	unsigned long *tmp_map;			/* bitmap for temporal use */
240	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
241	unsigned int dirty_sentries;		/* # of dirty sentries */
242	unsigned int sents_per_block;		/* # of SIT entries per block */
243	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
244	struct seg_entry *sentries;		/* SIT segment-level cache */
245	struct sec_entry *sec_entries;		/* SIT section-level cache */
246
247	/* for cost-benefit algorithm in cleaning procedure */
248	unsigned long long elapsed_time;	/* elapsed time after mount */
249	unsigned long long mounted_time;	/* mount time */
250	unsigned long long min_mtime;		/* min. modification time */
251	unsigned long long max_mtime;		/* max. modification time */
 
 
252
253	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254};
255
256struct free_segmap_info {
257	unsigned int start_segno;	/* start segment number logically */
258	unsigned int free_segments;	/* # of free segments */
259	unsigned int free_sections;	/* # of free sections */
260	spinlock_t segmap_lock;		/* free segmap lock */
261	unsigned long *free_segmap;	/* free segment bitmap */
262	unsigned long *free_secmap;	/* free section bitmap */
263};
264
265/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266enum dirty_type {
267	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
268	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
269	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
270	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
271	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
272	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
273	DIRTY,			/* to count # of dirty segments */
274	PRE,			/* to count # of entirely obsolete segments */
275	NR_DIRTY_TYPE
276};
277
278struct dirty_seglist_info {
279	const struct victim_selection *v_ops;	/* victim selction operation */
280	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 
281	struct mutex seglist_lock;		/* lock for segment bitmaps */
282	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
283	unsigned long *victim_secmap;		/* background GC victims */
 
 
 
284};
285
286/* victim selection function for cleaning and SSR */
287struct victim_selection {
288	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
289							int, int, char);
290};
291
292/* for active log information */
293struct curseg_info {
294	struct mutex curseg_mutex;		/* lock for consistency */
295	struct f2fs_summary_block *sum_blk;	/* cached summary block */
296	struct rw_semaphore journal_rwsem;	/* protect journal area */
297	struct f2fs_journal *journal;		/* cached journal info */
298	unsigned char alloc_type;		/* current allocation type */
 
299	unsigned int segno;			/* current segment number */
300	unsigned short next_blkoff;		/* next block offset to write */
301	unsigned int zone;			/* current zone number */
302	unsigned int next_segno;		/* preallocated segment */
 
 
303};
304
305struct sit_entry_set {
306	struct list_head set_list;	/* link with all sit sets */
307	unsigned int start_segno;	/* start segno of sits in set */
308	unsigned int entry_cnt;		/* the # of sit entries in set */
309};
310
311/*
312 * inline functions
313 */
314static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315{
316	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
317}
318
319static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
320						unsigned int segno)
321{
322	struct sit_info *sit_i = SIT_I(sbi);
323	return &sit_i->sentries[segno];
324}
325
326static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
327						unsigned int segno)
328{
329	struct sit_info *sit_i = SIT_I(sbi);
330	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
331}
332
333static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
334				unsigned int segno, bool use_section)
335{
336	/*
337	 * In order to get # of valid blocks in a section instantly from many
338	 * segments, f2fs manages two counting structures separately.
339	 */
340	if (use_section && __is_large_section(sbi))
341		return get_sec_entry(sbi, segno)->valid_blocks;
342	else
343		return get_seg_entry(sbi, segno)->valid_blocks;
344}
345
346static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
347				unsigned int segno)
348{
 
 
 
 
 
 
 
 
 
 
 
 
349	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
350}
351
352static inline void seg_info_from_raw_sit(struct seg_entry *se,
353					struct f2fs_sit_entry *rs)
354{
355	se->valid_blocks = GET_SIT_VBLOCKS(rs);
356	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
357	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
358	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
359#ifdef CONFIG_F2FS_CHECK_FS
360	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
361#endif
362	se->type = GET_SIT_TYPE(rs);
363	se->mtime = le64_to_cpu(rs->mtime);
364}
365
366static inline void __seg_info_to_raw_sit(struct seg_entry *se,
367					struct f2fs_sit_entry *rs)
368{
369	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
370					se->valid_blocks;
371	rs->vblocks = cpu_to_le16(raw_vblocks);
372	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
373	rs->mtime = cpu_to_le64(se->mtime);
374}
375
376static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
377				struct page *page, unsigned int start)
378{
379	struct f2fs_sit_block *raw_sit;
380	struct seg_entry *se;
381	struct f2fs_sit_entry *rs;
382	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
383					(unsigned long)MAIN_SEGS(sbi));
384	int i;
385
386	raw_sit = (struct f2fs_sit_block *)page_address(page);
387	memset(raw_sit, 0, PAGE_SIZE);
388	for (i = 0; i < end - start; i++) {
389		rs = &raw_sit->entries[i];
390		se = get_seg_entry(sbi, start + i);
391		__seg_info_to_raw_sit(se, rs);
392	}
393}
394
395static inline void seg_info_to_raw_sit(struct seg_entry *se,
396					struct f2fs_sit_entry *rs)
397{
398	__seg_info_to_raw_sit(se, rs);
399
400	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
401	se->ckpt_valid_blocks = se->valid_blocks;
402}
403
404static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
405		unsigned int max, unsigned int segno)
406{
407	unsigned int ret;
408	spin_lock(&free_i->segmap_lock);
409	ret = find_next_bit(free_i->free_segmap, max, segno);
410	spin_unlock(&free_i->segmap_lock);
411	return ret;
412}
413
414static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
415{
416	struct free_segmap_info *free_i = FREE_I(sbi);
417	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
418	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
419	unsigned int next;
 
420
421	spin_lock(&free_i->segmap_lock);
422	clear_bit(segno, free_i->free_segmap);
423	free_i->free_segments++;
424
425	next = find_next_bit(free_i->free_segmap,
426			start_segno + sbi->segs_per_sec, start_segno);
427	if (next >= start_segno + sbi->segs_per_sec) {
428		clear_bit(secno, free_i->free_secmap);
429		free_i->free_sections++;
430	}
431	spin_unlock(&free_i->segmap_lock);
432}
433
434static inline void __set_inuse(struct f2fs_sb_info *sbi,
435		unsigned int segno)
436{
437	struct free_segmap_info *free_i = FREE_I(sbi);
438	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
439
440	set_bit(segno, free_i->free_segmap);
441	free_i->free_segments--;
442	if (!test_and_set_bit(secno, free_i->free_secmap))
443		free_i->free_sections--;
444}
445
446static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
447		unsigned int segno)
448{
449	struct free_segmap_info *free_i = FREE_I(sbi);
450	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
451	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
452	unsigned int next;
 
453
454	spin_lock(&free_i->segmap_lock);
455	if (test_and_clear_bit(segno, free_i->free_segmap)) {
456		free_i->free_segments++;
457
458		if (IS_CURSEC(sbi, secno))
459			goto skip_free;
460		next = find_next_bit(free_i->free_segmap,
461				start_segno + sbi->segs_per_sec, start_segno);
462		if (next >= start_segno + sbi->segs_per_sec) {
463			if (test_and_clear_bit(secno, free_i->free_secmap))
464				free_i->free_sections++;
465		}
466	}
467skip_free:
468	spin_unlock(&free_i->segmap_lock);
469}
470
471static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
472		unsigned int segno)
473{
474	struct free_segmap_info *free_i = FREE_I(sbi);
475	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
476
477	spin_lock(&free_i->segmap_lock);
478	if (!test_and_set_bit(segno, free_i->free_segmap)) {
479		free_i->free_segments--;
480		if (!test_and_set_bit(secno, free_i->free_secmap))
481			free_i->free_sections--;
482	}
483	spin_unlock(&free_i->segmap_lock);
484}
485
486static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
487		void *dst_addr)
488{
489	struct sit_info *sit_i = SIT_I(sbi);
490
491#ifdef CONFIG_F2FS_CHECK_FS
492	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
493						sit_i->bitmap_size))
494		f2fs_bug_on(sbi, 1);
495#endif
496	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
497}
498
499static inline block_t written_block_count(struct f2fs_sb_info *sbi)
500{
501	return SIT_I(sbi)->written_valid_blocks;
502}
503
504static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
505{
506	return FREE_I(sbi)->free_segments;
507}
508
509static inline int reserved_segments(struct f2fs_sb_info *sbi)
510{
511	return SM_I(sbi)->reserved_segments;
 
512}
513
514static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
515{
516	return FREE_I(sbi)->free_sections;
517}
518
519static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
520{
521	return DIRTY_I(sbi)->nr_dirty[PRE];
522}
523
524static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
525{
526	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
527		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
528		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
529		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
530		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
531		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
532}
533
534static inline int overprovision_segments(struct f2fs_sb_info *sbi)
535{
536	return SM_I(sbi)->ovp_segments;
537}
538
539static inline int reserved_sections(struct f2fs_sb_info *sbi)
540{
541	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
542}
543
544static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
 
545{
546	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
547					get_pages(sbi, F2FS_DIRTY_DENTS);
548	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
549	unsigned int segno, left_blocks;
550	int i;
551
552	/* check current node segment */
553	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
554		segno = CURSEG_I(sbi, i)->segno;
555		left_blocks = sbi->blocks_per_seg -
556			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
557
558		if (node_blocks > left_blocks)
559			return false;
560	}
561
562	/* check current data segment */
563	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
564	left_blocks = sbi->blocks_per_seg -
565			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
566	if (dent_blocks > left_blocks)
567		return false;
568	return true;
569}
570
571static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
572					int freed, int needed)
573{
574	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
575	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
576	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 
 
 
 
 
 
577
578	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
579		return false;
580
581	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
582			has_curseg_enough_space(sbi))
 
 
 
583		return false;
584	return (free_sections(sbi) + freed) <=
585		(node_secs + 2 * dent_secs + imeta_secs +
586		reserved_sections(sbi) + needed);
587}
588
589static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
590{
591	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
592		return true;
593	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
594		return true;
595	return false;
596}
597
598static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
599{
600	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
601}
602
603static inline int utilization(struct f2fs_sb_info *sbi)
604{
605	return div_u64((u64)valid_user_blocks(sbi) * 100,
606					sbi->user_block_count);
607}
608
609/*
610 * Sometimes f2fs may be better to drop out-of-place update policy.
611 * And, users can control the policy through sysfs entries.
612 * There are five policies with triggering conditions as follows.
613 * F2FS_IPU_FORCE - all the time,
614 * F2FS_IPU_SSR - if SSR mode is activated,
615 * F2FS_IPU_UTIL - if FS utilization is over threashold,
616 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
617 *                     threashold,
618 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
619 *                     storages. IPU will be triggered only if the # of dirty
620 *                     pages over min_fsync_blocks.
621 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 
 
 
 
622 */
623#define DEF_MIN_IPU_UTIL	70
624#define DEF_MIN_FSYNC_BLOCKS	8
625#define DEF_MIN_HOT_BLOCKS	16
626
627#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
628
629enum {
630	F2FS_IPU_FORCE,
631	F2FS_IPU_SSR,
632	F2FS_IPU_UTIL,
633	F2FS_IPU_SSR_UTIL,
634	F2FS_IPU_FSYNC,
635	F2FS_IPU_ASYNC,
 
 
636};
637
638static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
639		int type)
640{
641	struct curseg_info *curseg = CURSEG_I(sbi, type);
642	return curseg->segno;
643}
644
645static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
646		int type)
647{
648	struct curseg_info *curseg = CURSEG_I(sbi, type);
649	return curseg->alloc_type;
650}
651
652static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
653{
654	struct curseg_info *curseg = CURSEG_I(sbi, type);
655	return curseg->next_blkoff;
656}
657
658static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
659{
660	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
661}
662
663static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
664{
665	struct f2fs_sb_info *sbi = fio->sbi;
666
667	if (__is_valid_data_blkaddr(fio->old_blkaddr))
668		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
669					META_GENERIC : DATA_GENERIC);
670	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
671					META_GENERIC : DATA_GENERIC_ENHANCE);
672}
673
674/*
675 * Summary block is always treated as an invalid block
676 */
677static inline int check_block_count(struct f2fs_sb_info *sbi,
678		int segno, struct f2fs_sit_entry *raw_sit)
679{
680	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
681	int valid_blocks = 0;
682	int cur_pos = 0, next_pos;
 
683
684	/* check bitmap with valid block count */
685	do {
686		if (is_valid) {
687			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
688					sbi->blocks_per_seg,
689					cur_pos);
690			valid_blocks += next_pos - cur_pos;
691		} else
692			next_pos = find_next_bit_le(&raw_sit->valid_map,
693					sbi->blocks_per_seg,
694					cur_pos);
695		cur_pos = next_pos;
696		is_valid = !is_valid;
697	} while (cur_pos < sbi->blocks_per_seg);
698
699	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
700		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
701			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
702		set_sbi_flag(sbi, SBI_NEED_FSCK);
 
703		return -EFSCORRUPTED;
704	}
705
 
 
 
 
 
706	/* check segment usage, and check boundary of a given segment number */
707	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
708					|| segno > TOTAL_SEGS(sbi) - 1)) {
709		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
710			 GET_SIT_VBLOCKS(raw_sit), segno);
711		set_sbi_flag(sbi, SBI_NEED_FSCK);
 
712		return -EFSCORRUPTED;
713	}
714	return 0;
715}
716
717static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
718						unsigned int start)
719{
720	struct sit_info *sit_i = SIT_I(sbi);
721	unsigned int offset = SIT_BLOCK_OFFSET(start);
722	block_t blk_addr = sit_i->sit_base_addr + offset;
723
724	check_seg_range(sbi, start);
725
726#ifdef CONFIG_F2FS_CHECK_FS
727	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
728			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
729		f2fs_bug_on(sbi, 1);
730#endif
731
732	/* calculate sit block address */
733	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
734		blk_addr += sit_i->sit_blocks;
735
736	return blk_addr;
737}
738
739static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
740						pgoff_t block_addr)
741{
742	struct sit_info *sit_i = SIT_I(sbi);
743	block_addr -= sit_i->sit_base_addr;
744	if (block_addr < sit_i->sit_blocks)
745		block_addr += sit_i->sit_blocks;
746	else
747		block_addr -= sit_i->sit_blocks;
748
749	return block_addr + sit_i->sit_base_addr;
750}
751
752static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
753{
754	unsigned int block_off = SIT_BLOCK_OFFSET(start);
755
756	f2fs_change_bit(block_off, sit_i->sit_bitmap);
757#ifdef CONFIG_F2FS_CHECK_FS
758	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
759#endif
760}
761
762static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
763						bool base_time)
764{
765	struct sit_info *sit_i = SIT_I(sbi);
766	time64_t diff, now = ktime_get_real_seconds();
767
768	if (now >= sit_i->mounted_time)
769		return sit_i->elapsed_time + now - sit_i->mounted_time;
770
771	/* system time is set to the past */
772	if (!base_time) {
773		diff = sit_i->mounted_time - now;
774		if (sit_i->elapsed_time >= diff)
775			return sit_i->elapsed_time - diff;
776		return 0;
777	}
778	return sit_i->elapsed_time;
779}
780
781static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
782			unsigned int ofs_in_node, unsigned char version)
783{
784	sum->nid = cpu_to_le32(nid);
785	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
786	sum->version = version;
787}
788
789static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
790{
791	return __start_cp_addr(sbi) +
792		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
793}
794
795static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
796{
797	return __start_cp_addr(sbi) +
798		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
799				- (base + 1) + type;
800}
801
802static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
803{
804	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
805		return true;
806	return false;
807}
808
809/*
810 * It is very important to gather dirty pages and write at once, so that we can
811 * submit a big bio without interfering other data writes.
812 * By default, 512 pages for directory data,
813 * 512 pages (2MB) * 8 for nodes, and
814 * 256 pages * 8 for meta are set.
815 */
816static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
817{
818	if (sbi->sb->s_bdi->wb.dirty_exceeded)
819		return 0;
820
821	if (type == DATA)
822		return sbi->blocks_per_seg;
823	else if (type == NODE)
824		return 8 * sbi->blocks_per_seg;
825	else if (type == META)
826		return 8 * BIO_MAX_PAGES;
827	else
828		return 0;
829}
830
831/*
832 * When writing pages, it'd better align nr_to_write for segment size.
833 */
834static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
835					struct writeback_control *wbc)
836{
837	long nr_to_write, desired;
838
839	if (wbc->sync_mode != WB_SYNC_NONE)
840		return 0;
841
842	nr_to_write = wbc->nr_to_write;
843	desired = BIO_MAX_PAGES;
844	if (type == NODE)
845		desired <<= 1;
846
847	wbc->nr_to_write = desired;
848	return desired - nr_to_write;
849}
850
851static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
852{
853	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
854	bool wakeup = false;
855	int i;
856
857	if (force)
858		goto wake_up;
859
860	mutex_lock(&dcc->cmd_lock);
861	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
862		if (i + 1 < dcc->discard_granularity)
863			break;
864		if (!list_empty(&dcc->pend_list[i])) {
865			wakeup = true;
866			break;
867		}
868	}
869	mutex_unlock(&dcc->cmd_lock);
870	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
871		return;
872wake_up:
873	dcc->discard_wake = 1;
874	wake_up_interruptible_all(&dcc->discard_wait_queue);
875}