Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* AFS Volume Location Service client
3 *
4 * Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/gfp.h>
9#include <linux/init.h>
10#include <linux/sched.h>
11#include "afs_fs.h"
12#include "internal.h"
13
14/*
15 * Deliver reply data to a VL.GetEntryByNameU call.
16 */
17static int afs_deliver_vl_get_entry_by_name_u(struct afs_call *call)
18{
19 struct afs_uvldbentry__xdr *uvldb;
20 struct afs_vldb_entry *entry;
21 bool new_only = false;
22 u32 tmp, nr_servers, vlflags;
23 int i, ret;
24
25 _enter("");
26
27 ret = afs_transfer_reply(call);
28 if (ret < 0)
29 return ret;
30
31 /* unmarshall the reply once we've received all of it */
32 uvldb = call->buffer;
33 entry = call->ret_vldb;
34
35 nr_servers = ntohl(uvldb->nServers);
36 if (nr_servers > AFS_NMAXNSERVERS)
37 nr_servers = AFS_NMAXNSERVERS;
38
39 for (i = 0; i < ARRAY_SIZE(uvldb->name) - 1; i++)
40 entry->name[i] = (u8)ntohl(uvldb->name[i]);
41 entry->name[i] = 0;
42 entry->name_len = strlen(entry->name);
43
44 /* If there is a new replication site that we can use, ignore all the
45 * sites that aren't marked as new.
46 */
47 for (i = 0; i < nr_servers; i++) {
48 tmp = ntohl(uvldb->serverFlags[i]);
49 if (!(tmp & AFS_VLSF_DONTUSE) &&
50 (tmp & AFS_VLSF_NEWREPSITE))
51 new_only = true;
52 }
53
54 vlflags = ntohl(uvldb->flags);
55 for (i = 0; i < nr_servers; i++) {
56 struct afs_uuid__xdr *xdr;
57 struct afs_uuid *uuid;
58 int j;
59 int n = entry->nr_servers;
60
61 tmp = ntohl(uvldb->serverFlags[i]);
62 if (tmp & AFS_VLSF_DONTUSE ||
63 (new_only && !(tmp & AFS_VLSF_NEWREPSITE)))
64 continue;
65 if (tmp & AFS_VLSF_RWVOL) {
66 entry->fs_mask[n] |= AFS_VOL_VTM_RW;
67 if (vlflags & AFS_VLF_BACKEXISTS)
68 entry->fs_mask[n] |= AFS_VOL_VTM_BAK;
69 }
70 if (tmp & AFS_VLSF_ROVOL)
71 entry->fs_mask[n] |= AFS_VOL_VTM_RO;
72 if (!entry->fs_mask[n])
73 continue;
74
75 xdr = &uvldb->serverNumber[i];
76 uuid = (struct afs_uuid *)&entry->fs_server[n];
77 uuid->time_low = xdr->time_low;
78 uuid->time_mid = htons(ntohl(xdr->time_mid));
79 uuid->time_hi_and_version = htons(ntohl(xdr->time_hi_and_version));
80 uuid->clock_seq_hi_and_reserved = (u8)ntohl(xdr->clock_seq_hi_and_reserved);
81 uuid->clock_seq_low = (u8)ntohl(xdr->clock_seq_low);
82 for (j = 0; j < 6; j++)
83 uuid->node[j] = (u8)ntohl(xdr->node[j]);
84
85 entry->addr_version[n] = ntohl(uvldb->serverUnique[i]);
86 entry->nr_servers++;
87 }
88
89 for (i = 0; i < AFS_MAXTYPES; i++)
90 entry->vid[i] = ntohl(uvldb->volumeId[i]);
91
92 if (vlflags & AFS_VLF_RWEXISTS)
93 __set_bit(AFS_VLDB_HAS_RW, &entry->flags);
94 if (vlflags & AFS_VLF_ROEXISTS)
95 __set_bit(AFS_VLDB_HAS_RO, &entry->flags);
96 if (vlflags & AFS_VLF_BACKEXISTS)
97 __set_bit(AFS_VLDB_HAS_BAK, &entry->flags);
98
99 if (!(vlflags & (AFS_VLF_RWEXISTS | AFS_VLF_ROEXISTS | AFS_VLF_BACKEXISTS))) {
100 entry->error = -ENOMEDIUM;
101 __set_bit(AFS_VLDB_QUERY_ERROR, &entry->flags);
102 }
103
104 __set_bit(AFS_VLDB_QUERY_VALID, &entry->flags);
105 _leave(" = 0 [done]");
106 return 0;
107}
108
109static void afs_destroy_vl_get_entry_by_name_u(struct afs_call *call)
110{
111 kfree(call->ret_vldb);
112 afs_flat_call_destructor(call);
113}
114
115/*
116 * VL.GetEntryByNameU operation type.
117 */
118static const struct afs_call_type afs_RXVLGetEntryByNameU = {
119 .name = "VL.GetEntryByNameU",
120 .op = afs_VL_GetEntryByNameU,
121 .deliver = afs_deliver_vl_get_entry_by_name_u,
122 .destructor = afs_destroy_vl_get_entry_by_name_u,
123};
124
125/*
126 * Dispatch a get volume entry by name or ID operation (uuid variant). If the
127 * volname is a decimal number then it's a volume ID not a volume name.
128 */
129struct afs_vldb_entry *afs_vl_get_entry_by_name_u(struct afs_vl_cursor *vc,
130 const char *volname,
131 int volnamesz)
132{
133 struct afs_vldb_entry *entry;
134 struct afs_call *call;
135 struct afs_net *net = vc->cell->net;
136 size_t reqsz, padsz;
137 __be32 *bp;
138
139 _enter("");
140
141 padsz = (4 - (volnamesz & 3)) & 3;
142 reqsz = 8 + volnamesz + padsz;
143
144 entry = kzalloc(sizeof(struct afs_vldb_entry), GFP_KERNEL);
145 if (!entry)
146 return ERR_PTR(-ENOMEM);
147
148 call = afs_alloc_flat_call(net, &afs_RXVLGetEntryByNameU, reqsz,
149 sizeof(struct afs_uvldbentry__xdr));
150 if (!call) {
151 kfree(entry);
152 return ERR_PTR(-ENOMEM);
153 }
154
155 call->key = vc->key;
156 call->ret_vldb = entry;
157 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
158
159 /* Marshall the parameters */
160 bp = call->request;
161 *bp++ = htonl(VLGETENTRYBYNAMEU);
162 *bp++ = htonl(volnamesz);
163 memcpy(bp, volname, volnamesz);
164 if (padsz > 0)
165 memset((void *)bp + volnamesz, 0, padsz);
166
167 trace_afs_make_vl_call(call);
168 afs_make_call(&vc->ac, call, GFP_KERNEL);
169 return (struct afs_vldb_entry *)afs_wait_for_call_to_complete(call, &vc->ac);
170}
171
172/*
173 * Deliver reply data to a VL.GetAddrsU call.
174 *
175 * GetAddrsU(IN ListAddrByAttributes *inaddr,
176 * OUT afsUUID *uuidp1,
177 * OUT uint32_t *uniquifier,
178 * OUT uint32_t *nentries,
179 * OUT bulkaddrs *blkaddrs);
180 */
181static int afs_deliver_vl_get_addrs_u(struct afs_call *call)
182{
183 struct afs_addr_list *alist;
184 __be32 *bp;
185 u32 uniquifier, nentries, count;
186 int i, ret;
187
188 _enter("{%u,%zu/%u}",
189 call->unmarshall, iov_iter_count(call->iter), call->count);
190
191 switch (call->unmarshall) {
192 case 0:
193 afs_extract_to_buf(call,
194 sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
195 call->unmarshall++;
196
197 /* Extract the returned uuid, uniquifier, nentries and
198 * blkaddrs size */
199 fallthrough;
200 case 1:
201 ret = afs_extract_data(call, true);
202 if (ret < 0)
203 return ret;
204
205 bp = call->buffer + sizeof(struct afs_uuid__xdr);
206 uniquifier = ntohl(*bp++);
207 nentries = ntohl(*bp++);
208 count = ntohl(*bp);
209
210 nentries = min(nentries, count);
211 alist = afs_alloc_addrlist(nentries, FS_SERVICE, AFS_FS_PORT);
212 if (!alist)
213 return -ENOMEM;
214 alist->version = uniquifier;
215 call->ret_alist = alist;
216 call->count = count;
217 call->count2 = nentries;
218 call->unmarshall++;
219
220 more_entries:
221 count = min(call->count, 4U);
222 afs_extract_to_buf(call, count * sizeof(__be32));
223
224 fallthrough; /* and extract entries */
225 case 2:
226 ret = afs_extract_data(call, call->count > 4);
227 if (ret < 0)
228 return ret;
229
230 alist = call->ret_alist;
231 bp = call->buffer;
232 count = min(call->count, 4U);
233 for (i = 0; i < count; i++)
234 if (alist->nr_addrs < call->count2)
235 afs_merge_fs_addr4(alist, *bp++, AFS_FS_PORT);
236
237 call->count -= count;
238 if (call->count > 0)
239 goto more_entries;
240 call->unmarshall++;
241 break;
242 }
243
244 _leave(" = 0 [done]");
245 return 0;
246}
247
248static void afs_vl_get_addrs_u_destructor(struct afs_call *call)
249{
250 afs_put_addrlist(call->ret_alist);
251 return afs_flat_call_destructor(call);
252}
253
254/*
255 * VL.GetAddrsU operation type.
256 */
257static const struct afs_call_type afs_RXVLGetAddrsU = {
258 .name = "VL.GetAddrsU",
259 .op = afs_VL_GetAddrsU,
260 .deliver = afs_deliver_vl_get_addrs_u,
261 .destructor = afs_vl_get_addrs_u_destructor,
262};
263
264/*
265 * Dispatch an operation to get the addresses for a server, where the server is
266 * nominated by UUID.
267 */
268struct afs_addr_list *afs_vl_get_addrs_u(struct afs_vl_cursor *vc,
269 const uuid_t *uuid)
270{
271 struct afs_ListAddrByAttributes__xdr *r;
272 const struct afs_uuid *u = (const struct afs_uuid *)uuid;
273 struct afs_call *call;
274 struct afs_net *net = vc->cell->net;
275 __be32 *bp;
276 int i;
277
278 _enter("");
279
280 call = afs_alloc_flat_call(net, &afs_RXVLGetAddrsU,
281 sizeof(__be32) + sizeof(struct afs_ListAddrByAttributes__xdr),
282 sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
283 if (!call)
284 return ERR_PTR(-ENOMEM);
285
286 call->key = vc->key;
287 call->ret_alist = NULL;
288 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
289
290 /* Marshall the parameters */
291 bp = call->request;
292 *bp++ = htonl(VLGETADDRSU);
293 r = (struct afs_ListAddrByAttributes__xdr *)bp;
294 r->Mask = htonl(AFS_VLADDR_UUID);
295 r->ipaddr = 0;
296 r->index = 0;
297 r->spare = 0;
298 r->uuid.time_low = u->time_low;
299 r->uuid.time_mid = htonl(ntohs(u->time_mid));
300 r->uuid.time_hi_and_version = htonl(ntohs(u->time_hi_and_version));
301 r->uuid.clock_seq_hi_and_reserved = htonl(u->clock_seq_hi_and_reserved);
302 r->uuid.clock_seq_low = htonl(u->clock_seq_low);
303 for (i = 0; i < 6; i++)
304 r->uuid.node[i] = htonl(u->node[i]);
305
306 trace_afs_make_vl_call(call);
307 afs_make_call(&vc->ac, call, GFP_KERNEL);
308 return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
309}
310
311/*
312 * Deliver reply data to an VL.GetCapabilities operation.
313 */
314static int afs_deliver_vl_get_capabilities(struct afs_call *call)
315{
316 u32 count;
317 int ret;
318
319 _enter("{%u,%zu/%u}",
320 call->unmarshall, iov_iter_count(call->iter), call->count);
321
322 switch (call->unmarshall) {
323 case 0:
324 afs_extract_to_tmp(call);
325 call->unmarshall++;
326
327 fallthrough; /* and extract the capabilities word count */
328 case 1:
329 ret = afs_extract_data(call, true);
330 if (ret < 0)
331 return ret;
332
333 count = ntohl(call->tmp);
334 call->count = count;
335 call->count2 = count;
336
337 call->unmarshall++;
338 afs_extract_discard(call, count * sizeof(__be32));
339
340 fallthrough; /* and extract capabilities words */
341 case 2:
342 ret = afs_extract_data(call, false);
343 if (ret < 0)
344 return ret;
345
346 /* TODO: Examine capabilities */
347
348 call->unmarshall++;
349 break;
350 }
351
352 _leave(" = 0 [done]");
353 return 0;
354}
355
356static void afs_destroy_vl_get_capabilities(struct afs_call *call)
357{
358 afs_put_vlserver(call->net, call->vlserver);
359 afs_flat_call_destructor(call);
360}
361
362/*
363 * VL.GetCapabilities operation type
364 */
365static const struct afs_call_type afs_RXVLGetCapabilities = {
366 .name = "VL.GetCapabilities",
367 .op = afs_VL_GetCapabilities,
368 .deliver = afs_deliver_vl_get_capabilities,
369 .done = afs_vlserver_probe_result,
370 .destructor = afs_destroy_vl_get_capabilities,
371};
372
373/*
374 * Probe a volume server for the capabilities that it supports. This can
375 * return up to 196 words.
376 *
377 * We use this to probe for service upgrade to determine what the server at the
378 * other end supports.
379 */
380struct afs_call *afs_vl_get_capabilities(struct afs_net *net,
381 struct afs_addr_cursor *ac,
382 struct key *key,
383 struct afs_vlserver *server,
384 unsigned int server_index)
385{
386 struct afs_call *call;
387 __be32 *bp;
388
389 _enter("");
390
391 call = afs_alloc_flat_call(net, &afs_RXVLGetCapabilities, 1 * 4, 16 * 4);
392 if (!call)
393 return ERR_PTR(-ENOMEM);
394
395 call->key = key;
396 call->vlserver = afs_get_vlserver(server);
397 call->server_index = server_index;
398 call->upgrade = true;
399 call->async = true;
400 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
401
402 /* marshall the parameters */
403 bp = call->request;
404 *bp++ = htonl(VLGETCAPABILITIES);
405
406 /* Can't take a ref on server */
407 trace_afs_make_vl_call(call);
408 afs_make_call(ac, call, GFP_KERNEL);
409 return call;
410}
411
412/*
413 * Deliver reply data to a YFSVL.GetEndpoints call.
414 *
415 * GetEndpoints(IN yfsServerAttributes *attr,
416 * OUT opr_uuid *uuid,
417 * OUT afs_int32 *uniquifier,
418 * OUT endpoints *fsEndpoints,
419 * OUT endpoints *volEndpoints)
420 */
421static int afs_deliver_yfsvl_get_endpoints(struct afs_call *call)
422{
423 struct afs_addr_list *alist;
424 __be32 *bp;
425 u32 uniquifier, size;
426 int ret;
427
428 _enter("{%u,%zu,%u}",
429 call->unmarshall, iov_iter_count(call->iter), call->count2);
430
431 switch (call->unmarshall) {
432 case 0:
433 afs_extract_to_buf(call, sizeof(uuid_t) + 3 * sizeof(__be32));
434 call->unmarshall = 1;
435
436 /* Extract the returned uuid, uniquifier, fsEndpoints count and
437 * either the first fsEndpoint type or the volEndpoints
438 * count if there are no fsEndpoints. */
439 fallthrough;
440 case 1:
441 ret = afs_extract_data(call, true);
442 if (ret < 0)
443 return ret;
444
445 bp = call->buffer + sizeof(uuid_t);
446 uniquifier = ntohl(*bp++);
447 call->count = ntohl(*bp++);
448 call->count2 = ntohl(*bp); /* Type or next count */
449
450 if (call->count > YFS_MAXENDPOINTS)
451 return afs_protocol_error(call, afs_eproto_yvl_fsendpt_num);
452
453 alist = afs_alloc_addrlist(call->count, FS_SERVICE, AFS_FS_PORT);
454 if (!alist)
455 return -ENOMEM;
456 alist->version = uniquifier;
457 call->ret_alist = alist;
458
459 if (call->count == 0)
460 goto extract_volendpoints;
461
462 next_fsendpoint:
463 switch (call->count2) {
464 case YFS_ENDPOINT_IPV4:
465 size = sizeof(__be32) * (1 + 1 + 1);
466 break;
467 case YFS_ENDPOINT_IPV6:
468 size = sizeof(__be32) * (1 + 4 + 1);
469 break;
470 default:
471 return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
472 }
473
474 size += sizeof(__be32);
475 afs_extract_to_buf(call, size);
476 call->unmarshall = 2;
477
478 fallthrough; /* and extract fsEndpoints[] entries */
479 case 2:
480 ret = afs_extract_data(call, true);
481 if (ret < 0)
482 return ret;
483
484 alist = call->ret_alist;
485 bp = call->buffer;
486 switch (call->count2) {
487 case YFS_ENDPOINT_IPV4:
488 if (ntohl(bp[0]) != sizeof(__be32) * 2)
489 return afs_protocol_error(
490 call, afs_eproto_yvl_fsendpt4_len);
491 afs_merge_fs_addr4(alist, bp[1], ntohl(bp[2]));
492 bp += 3;
493 break;
494 case YFS_ENDPOINT_IPV6:
495 if (ntohl(bp[0]) != sizeof(__be32) * 5)
496 return afs_protocol_error(
497 call, afs_eproto_yvl_fsendpt6_len);
498 afs_merge_fs_addr6(alist, bp + 1, ntohl(bp[5]));
499 bp += 6;
500 break;
501 default:
502 return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
503 }
504
505 /* Got either the type of the next entry or the count of
506 * volEndpoints if no more fsEndpoints.
507 */
508 call->count2 = ntohl(*bp++);
509
510 call->count--;
511 if (call->count > 0)
512 goto next_fsendpoint;
513
514 extract_volendpoints:
515 /* Extract the list of volEndpoints. */
516 call->count = call->count2;
517 if (!call->count)
518 goto end;
519 if (call->count > YFS_MAXENDPOINTS)
520 return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
521
522 afs_extract_to_buf(call, 1 * sizeof(__be32));
523 call->unmarshall = 3;
524
525 /* Extract the type of volEndpoints[0]. Normally we would
526 * extract the type of the next endpoint when we extract the
527 * data of the current one, but this is the first...
528 */
529 fallthrough;
530 case 3:
531 ret = afs_extract_data(call, true);
532 if (ret < 0)
533 return ret;
534
535 bp = call->buffer;
536
537 next_volendpoint:
538 call->count2 = ntohl(*bp++);
539 switch (call->count2) {
540 case YFS_ENDPOINT_IPV4:
541 size = sizeof(__be32) * (1 + 1 + 1);
542 break;
543 case YFS_ENDPOINT_IPV6:
544 size = sizeof(__be32) * (1 + 4 + 1);
545 break;
546 default:
547 return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
548 }
549
550 if (call->count > 1)
551 size += sizeof(__be32); /* Get next type too */
552 afs_extract_to_buf(call, size);
553 call->unmarshall = 4;
554
555 fallthrough; /* and extract volEndpoints[] entries */
556 case 4:
557 ret = afs_extract_data(call, true);
558 if (ret < 0)
559 return ret;
560
561 bp = call->buffer;
562 switch (call->count2) {
563 case YFS_ENDPOINT_IPV4:
564 if (ntohl(bp[0]) != sizeof(__be32) * 2)
565 return afs_protocol_error(
566 call, afs_eproto_yvl_vlendpt4_len);
567 bp += 3;
568 break;
569 case YFS_ENDPOINT_IPV6:
570 if (ntohl(bp[0]) != sizeof(__be32) * 5)
571 return afs_protocol_error(
572 call, afs_eproto_yvl_vlendpt6_len);
573 bp += 6;
574 break;
575 default:
576 return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
577 }
578
579 /* Got either the type of the next entry or the count of
580 * volEndpoints if no more fsEndpoints.
581 */
582 call->count--;
583 if (call->count > 0)
584 goto next_volendpoint;
585
586 end:
587 afs_extract_discard(call, 0);
588 call->unmarshall = 5;
589
590 fallthrough; /* Done */
591 case 5:
592 ret = afs_extract_data(call, false);
593 if (ret < 0)
594 return ret;
595 call->unmarshall = 6;
596 fallthrough;
597
598 case 6:
599 break;
600 }
601
602 _leave(" = 0 [done]");
603 return 0;
604}
605
606/*
607 * YFSVL.GetEndpoints operation type.
608 */
609static const struct afs_call_type afs_YFSVLGetEndpoints = {
610 .name = "YFSVL.GetEndpoints",
611 .op = afs_YFSVL_GetEndpoints,
612 .deliver = afs_deliver_yfsvl_get_endpoints,
613 .destructor = afs_vl_get_addrs_u_destructor,
614};
615
616/*
617 * Dispatch an operation to get the addresses for a server, where the server is
618 * nominated by UUID.
619 */
620struct afs_addr_list *afs_yfsvl_get_endpoints(struct afs_vl_cursor *vc,
621 const uuid_t *uuid)
622{
623 struct afs_call *call;
624 struct afs_net *net = vc->cell->net;
625 __be32 *bp;
626
627 _enter("");
628
629 call = afs_alloc_flat_call(net, &afs_YFSVLGetEndpoints,
630 sizeof(__be32) * 2 + sizeof(*uuid),
631 sizeof(struct in6_addr) + sizeof(__be32) * 3);
632 if (!call)
633 return ERR_PTR(-ENOMEM);
634
635 call->key = vc->key;
636 call->ret_alist = NULL;
637 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
638
639 /* Marshall the parameters */
640 bp = call->request;
641 *bp++ = htonl(YVLGETENDPOINTS);
642 *bp++ = htonl(YFS_SERVER_UUID);
643 memcpy(bp, uuid, sizeof(*uuid)); /* Type opr_uuid */
644
645 trace_afs_make_vl_call(call);
646 afs_make_call(&vc->ac, call, GFP_KERNEL);
647 return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
648}
649
650/*
651 * Deliver reply data to a YFSVL.GetCellName operation.
652 */
653static int afs_deliver_yfsvl_get_cell_name(struct afs_call *call)
654{
655 char *cell_name;
656 u32 namesz, paddedsz;
657 int ret;
658
659 _enter("{%u,%zu/%u}",
660 call->unmarshall, iov_iter_count(call->iter), call->count);
661
662 switch (call->unmarshall) {
663 case 0:
664 afs_extract_to_tmp(call);
665 call->unmarshall++;
666
667 fallthrough; /* and extract the cell name length */
668 case 1:
669 ret = afs_extract_data(call, true);
670 if (ret < 0)
671 return ret;
672
673 namesz = ntohl(call->tmp);
674 if (namesz > AFS_MAXCELLNAME)
675 return afs_protocol_error(call, afs_eproto_cellname_len);
676 paddedsz = (namesz + 3) & ~3;
677 call->count = namesz;
678 call->count2 = paddedsz - namesz;
679
680 cell_name = kmalloc(namesz + 1, GFP_KERNEL);
681 if (!cell_name)
682 return -ENOMEM;
683 cell_name[namesz] = 0;
684 call->ret_str = cell_name;
685
686 afs_extract_begin(call, cell_name, namesz);
687 call->unmarshall++;
688
689 fallthrough; /* and extract cell name */
690 case 2:
691 ret = afs_extract_data(call, true);
692 if (ret < 0)
693 return ret;
694
695 afs_extract_discard(call, call->count2);
696 call->unmarshall++;
697
698 fallthrough; /* and extract padding */
699 case 3:
700 ret = afs_extract_data(call, false);
701 if (ret < 0)
702 return ret;
703
704 call->unmarshall++;
705 break;
706 }
707
708 _leave(" = 0 [done]");
709 return 0;
710}
711
712static void afs_destroy_yfsvl_get_cell_name(struct afs_call *call)
713{
714 kfree(call->ret_str);
715 afs_flat_call_destructor(call);
716}
717
718/*
719 * VL.GetCapabilities operation type
720 */
721static const struct afs_call_type afs_YFSVLGetCellName = {
722 .name = "YFSVL.GetCellName",
723 .op = afs_YFSVL_GetCellName,
724 .deliver = afs_deliver_yfsvl_get_cell_name,
725 .destructor = afs_destroy_yfsvl_get_cell_name,
726};
727
728/*
729 * Probe a volume server for the capabilities that it supports. This can
730 * return up to 196 words.
731 *
732 * We use this to probe for service upgrade to determine what the server at the
733 * other end supports.
734 */
735char *afs_yfsvl_get_cell_name(struct afs_vl_cursor *vc)
736{
737 struct afs_call *call;
738 struct afs_net *net = vc->cell->net;
739 __be32 *bp;
740
741 _enter("");
742
743 call = afs_alloc_flat_call(net, &afs_YFSVLGetCellName, 1 * 4, 0);
744 if (!call)
745 return ERR_PTR(-ENOMEM);
746
747 call->key = vc->key;
748 call->ret_str = NULL;
749 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
750
751 /* marshall the parameters */
752 bp = call->request;
753 *bp++ = htonl(YVLGETCELLNAME);
754
755 /* Can't take a ref on server */
756 trace_afs_make_vl_call(call);
757 afs_make_call(&vc->ac, call, GFP_KERNEL);
758 return (char *)afs_wait_for_call_to_complete(call, &vc->ac);
759}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* AFS Volume Location Service client
3 *
4 * Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/gfp.h>
9#include <linux/init.h>
10#include <linux/sched.h>
11#include "afs_fs.h"
12#include "internal.h"
13
14/*
15 * Deliver reply data to a VL.GetEntryByNameU call.
16 */
17static int afs_deliver_vl_get_entry_by_name_u(struct afs_call *call)
18{
19 struct afs_uvldbentry__xdr *uvldb;
20 struct afs_vldb_entry *entry;
21 bool new_only = false;
22 u32 tmp, nr_servers, vlflags;
23 int i, ret;
24
25 _enter("");
26
27 ret = afs_transfer_reply(call);
28 if (ret < 0)
29 return ret;
30
31 /* unmarshall the reply once we've received all of it */
32 uvldb = call->buffer;
33 entry = call->ret_vldb;
34
35 nr_servers = ntohl(uvldb->nServers);
36 if (nr_servers > AFS_NMAXNSERVERS)
37 nr_servers = AFS_NMAXNSERVERS;
38
39 for (i = 0; i < ARRAY_SIZE(uvldb->name) - 1; i++)
40 entry->name[i] = (u8)ntohl(uvldb->name[i]);
41 entry->name[i] = 0;
42 entry->name_len = strlen(entry->name);
43
44 /* If there is a new replication site that we can use, ignore all the
45 * sites that aren't marked as new.
46 */
47 for (i = 0; i < nr_servers; i++) {
48 tmp = ntohl(uvldb->serverFlags[i]);
49 if (!(tmp & AFS_VLSF_DONTUSE) &&
50 (tmp & AFS_VLSF_NEWREPSITE))
51 new_only = true;
52 }
53
54 vlflags = ntohl(uvldb->flags);
55 for (i = 0; i < nr_servers; i++) {
56 struct afs_uuid__xdr *xdr;
57 struct afs_uuid *uuid;
58 int j;
59 int n = entry->nr_servers;
60
61 tmp = ntohl(uvldb->serverFlags[i]);
62 if (tmp & AFS_VLSF_DONTUSE ||
63 (new_only && !(tmp & AFS_VLSF_NEWREPSITE)))
64 continue;
65 if (tmp & AFS_VLSF_RWVOL) {
66 entry->fs_mask[n] |= AFS_VOL_VTM_RW;
67 if (vlflags & AFS_VLF_BACKEXISTS)
68 entry->fs_mask[n] |= AFS_VOL_VTM_BAK;
69 }
70 if (tmp & AFS_VLSF_ROVOL)
71 entry->fs_mask[n] |= AFS_VOL_VTM_RO;
72 if (!entry->fs_mask[n])
73 continue;
74
75 xdr = &uvldb->serverNumber[i];
76 uuid = (struct afs_uuid *)&entry->fs_server[n];
77 uuid->time_low = xdr->time_low;
78 uuid->time_mid = htons(ntohl(xdr->time_mid));
79 uuid->time_hi_and_version = htons(ntohl(xdr->time_hi_and_version));
80 uuid->clock_seq_hi_and_reserved = (u8)ntohl(xdr->clock_seq_hi_and_reserved);
81 uuid->clock_seq_low = (u8)ntohl(xdr->clock_seq_low);
82 for (j = 0; j < 6; j++)
83 uuid->node[j] = (u8)ntohl(xdr->node[j]);
84
85 entry->nr_servers++;
86 }
87
88 for (i = 0; i < AFS_MAXTYPES; i++)
89 entry->vid[i] = ntohl(uvldb->volumeId[i]);
90
91 if (vlflags & AFS_VLF_RWEXISTS)
92 __set_bit(AFS_VLDB_HAS_RW, &entry->flags);
93 if (vlflags & AFS_VLF_ROEXISTS)
94 __set_bit(AFS_VLDB_HAS_RO, &entry->flags);
95 if (vlflags & AFS_VLF_BACKEXISTS)
96 __set_bit(AFS_VLDB_HAS_BAK, &entry->flags);
97
98 if (!(vlflags & (AFS_VLF_RWEXISTS | AFS_VLF_ROEXISTS | AFS_VLF_BACKEXISTS))) {
99 entry->error = -ENOMEDIUM;
100 __set_bit(AFS_VLDB_QUERY_ERROR, &entry->flags);
101 }
102
103 __set_bit(AFS_VLDB_QUERY_VALID, &entry->flags);
104 _leave(" = 0 [done]");
105 return 0;
106}
107
108static void afs_destroy_vl_get_entry_by_name_u(struct afs_call *call)
109{
110 kfree(call->ret_vldb);
111 afs_flat_call_destructor(call);
112}
113
114/*
115 * VL.GetEntryByNameU operation type.
116 */
117static const struct afs_call_type afs_RXVLGetEntryByNameU = {
118 .name = "VL.GetEntryByNameU",
119 .op = afs_VL_GetEntryByNameU,
120 .deliver = afs_deliver_vl_get_entry_by_name_u,
121 .destructor = afs_destroy_vl_get_entry_by_name_u,
122};
123
124/*
125 * Dispatch a get volume entry by name or ID operation (uuid variant). If the
126 * volname is a decimal number then it's a volume ID not a volume name.
127 */
128struct afs_vldb_entry *afs_vl_get_entry_by_name_u(struct afs_vl_cursor *vc,
129 const char *volname,
130 int volnamesz)
131{
132 struct afs_vldb_entry *entry;
133 struct afs_call *call;
134 struct afs_net *net = vc->cell->net;
135 size_t reqsz, padsz;
136 __be32 *bp;
137
138 _enter("");
139
140 padsz = (4 - (volnamesz & 3)) & 3;
141 reqsz = 8 + volnamesz + padsz;
142
143 entry = kzalloc(sizeof(struct afs_vldb_entry), GFP_KERNEL);
144 if (!entry)
145 return ERR_PTR(-ENOMEM);
146
147 call = afs_alloc_flat_call(net, &afs_RXVLGetEntryByNameU, reqsz,
148 sizeof(struct afs_uvldbentry__xdr));
149 if (!call) {
150 kfree(entry);
151 return ERR_PTR(-ENOMEM);
152 }
153
154 call->key = vc->key;
155 call->ret_vldb = entry;
156 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
157
158 /* Marshall the parameters */
159 bp = call->request;
160 *bp++ = htonl(VLGETENTRYBYNAMEU);
161 *bp++ = htonl(volnamesz);
162 memcpy(bp, volname, volnamesz);
163 if (padsz > 0)
164 memset((void *)bp + volnamesz, 0, padsz);
165
166 trace_afs_make_vl_call(call);
167 afs_make_call(&vc->ac, call, GFP_KERNEL);
168 return (struct afs_vldb_entry *)afs_wait_for_call_to_complete(call, &vc->ac);
169}
170
171/*
172 * Deliver reply data to a VL.GetAddrsU call.
173 *
174 * GetAddrsU(IN ListAddrByAttributes *inaddr,
175 * OUT afsUUID *uuidp1,
176 * OUT uint32_t *uniquifier,
177 * OUT uint32_t *nentries,
178 * OUT bulkaddrs *blkaddrs);
179 */
180static int afs_deliver_vl_get_addrs_u(struct afs_call *call)
181{
182 struct afs_addr_list *alist;
183 __be32 *bp;
184 u32 uniquifier, nentries, count;
185 int i, ret;
186
187 _enter("{%u,%zu/%u}",
188 call->unmarshall, iov_iter_count(call->_iter), call->count);
189
190 switch (call->unmarshall) {
191 case 0:
192 afs_extract_to_buf(call,
193 sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
194 call->unmarshall++;
195
196 /* Extract the returned uuid, uniquifier, nentries and
197 * blkaddrs size */
198 /* Fall through */
199 case 1:
200 ret = afs_extract_data(call, true);
201 if (ret < 0)
202 return ret;
203
204 bp = call->buffer + sizeof(struct afs_uuid__xdr);
205 uniquifier = ntohl(*bp++);
206 nentries = ntohl(*bp++);
207 count = ntohl(*bp);
208
209 nentries = min(nentries, count);
210 alist = afs_alloc_addrlist(nentries, FS_SERVICE, AFS_FS_PORT);
211 if (!alist)
212 return -ENOMEM;
213 alist->version = uniquifier;
214 call->ret_alist = alist;
215 call->count = count;
216 call->count2 = nentries;
217 call->unmarshall++;
218
219 more_entries:
220 count = min(call->count, 4U);
221 afs_extract_to_buf(call, count * sizeof(__be32));
222
223 /* Fall through - and extract entries */
224 case 2:
225 ret = afs_extract_data(call, call->count > 4);
226 if (ret < 0)
227 return ret;
228
229 alist = call->ret_alist;
230 bp = call->buffer;
231 count = min(call->count, 4U);
232 for (i = 0; i < count; i++)
233 if (alist->nr_addrs < call->count2)
234 afs_merge_fs_addr4(alist, *bp++, AFS_FS_PORT);
235
236 call->count -= count;
237 if (call->count > 0)
238 goto more_entries;
239 call->unmarshall++;
240 break;
241 }
242
243 _leave(" = 0 [done]");
244 return 0;
245}
246
247static void afs_vl_get_addrs_u_destructor(struct afs_call *call)
248{
249 afs_put_addrlist(call->ret_alist);
250 return afs_flat_call_destructor(call);
251}
252
253/*
254 * VL.GetAddrsU operation type.
255 */
256static const struct afs_call_type afs_RXVLGetAddrsU = {
257 .name = "VL.GetAddrsU",
258 .op = afs_VL_GetAddrsU,
259 .deliver = afs_deliver_vl_get_addrs_u,
260 .destructor = afs_vl_get_addrs_u_destructor,
261};
262
263/*
264 * Dispatch an operation to get the addresses for a server, where the server is
265 * nominated by UUID.
266 */
267struct afs_addr_list *afs_vl_get_addrs_u(struct afs_vl_cursor *vc,
268 const uuid_t *uuid)
269{
270 struct afs_ListAddrByAttributes__xdr *r;
271 const struct afs_uuid *u = (const struct afs_uuid *)uuid;
272 struct afs_call *call;
273 struct afs_net *net = vc->cell->net;
274 __be32 *bp;
275 int i;
276
277 _enter("");
278
279 call = afs_alloc_flat_call(net, &afs_RXVLGetAddrsU,
280 sizeof(__be32) + sizeof(struct afs_ListAddrByAttributes__xdr),
281 sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
282 if (!call)
283 return ERR_PTR(-ENOMEM);
284
285 call->key = vc->key;
286 call->ret_alist = NULL;
287 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
288
289 /* Marshall the parameters */
290 bp = call->request;
291 *bp++ = htonl(VLGETADDRSU);
292 r = (struct afs_ListAddrByAttributes__xdr *)bp;
293 r->Mask = htonl(AFS_VLADDR_UUID);
294 r->ipaddr = 0;
295 r->index = 0;
296 r->spare = 0;
297 r->uuid.time_low = u->time_low;
298 r->uuid.time_mid = htonl(ntohs(u->time_mid));
299 r->uuid.time_hi_and_version = htonl(ntohs(u->time_hi_and_version));
300 r->uuid.clock_seq_hi_and_reserved = htonl(u->clock_seq_hi_and_reserved);
301 r->uuid.clock_seq_low = htonl(u->clock_seq_low);
302 for (i = 0; i < 6; i++)
303 r->uuid.node[i] = htonl(u->node[i]);
304
305 trace_afs_make_vl_call(call);
306 afs_make_call(&vc->ac, call, GFP_KERNEL);
307 return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
308}
309
310/*
311 * Deliver reply data to an VL.GetCapabilities operation.
312 */
313static int afs_deliver_vl_get_capabilities(struct afs_call *call)
314{
315 u32 count;
316 int ret;
317
318 _enter("{%u,%zu/%u}",
319 call->unmarshall, iov_iter_count(call->_iter), call->count);
320
321 switch (call->unmarshall) {
322 case 0:
323 afs_extract_to_tmp(call);
324 call->unmarshall++;
325
326 /* Fall through - and extract the capabilities word count */
327 case 1:
328 ret = afs_extract_data(call, true);
329 if (ret < 0)
330 return ret;
331
332 count = ntohl(call->tmp);
333 call->count = count;
334 call->count2 = count;
335
336 call->unmarshall++;
337 afs_extract_discard(call, count * sizeof(__be32));
338
339 /* Fall through - and extract capabilities words */
340 case 2:
341 ret = afs_extract_data(call, false);
342 if (ret < 0)
343 return ret;
344
345 /* TODO: Examine capabilities */
346
347 call->unmarshall++;
348 break;
349 }
350
351 _leave(" = 0 [done]");
352 return 0;
353}
354
355static void afs_destroy_vl_get_capabilities(struct afs_call *call)
356{
357 afs_put_vlserver(call->net, call->vlserver);
358 afs_flat_call_destructor(call);
359}
360
361/*
362 * VL.GetCapabilities operation type
363 */
364static const struct afs_call_type afs_RXVLGetCapabilities = {
365 .name = "VL.GetCapabilities",
366 .op = afs_VL_GetCapabilities,
367 .deliver = afs_deliver_vl_get_capabilities,
368 .done = afs_vlserver_probe_result,
369 .destructor = afs_destroy_vl_get_capabilities,
370};
371
372/*
373 * Probe a volume server for the capabilities that it supports. This can
374 * return up to 196 words.
375 *
376 * We use this to probe for service upgrade to determine what the server at the
377 * other end supports.
378 */
379struct afs_call *afs_vl_get_capabilities(struct afs_net *net,
380 struct afs_addr_cursor *ac,
381 struct key *key,
382 struct afs_vlserver *server,
383 unsigned int server_index)
384{
385 struct afs_call *call;
386 __be32 *bp;
387
388 _enter("");
389
390 call = afs_alloc_flat_call(net, &afs_RXVLGetCapabilities, 1 * 4, 16 * 4);
391 if (!call)
392 return ERR_PTR(-ENOMEM);
393
394 call->key = key;
395 call->vlserver = afs_get_vlserver(server);
396 call->server_index = server_index;
397 call->upgrade = true;
398 call->async = true;
399 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
400
401 /* marshall the parameters */
402 bp = call->request;
403 *bp++ = htonl(VLGETCAPABILITIES);
404
405 /* Can't take a ref on server */
406 trace_afs_make_vl_call(call);
407 afs_make_call(ac, call, GFP_KERNEL);
408 return call;
409}
410
411/*
412 * Deliver reply data to a YFSVL.GetEndpoints call.
413 *
414 * GetEndpoints(IN yfsServerAttributes *attr,
415 * OUT opr_uuid *uuid,
416 * OUT afs_int32 *uniquifier,
417 * OUT endpoints *fsEndpoints,
418 * OUT endpoints *volEndpoints)
419 */
420static int afs_deliver_yfsvl_get_endpoints(struct afs_call *call)
421{
422 struct afs_addr_list *alist;
423 __be32 *bp;
424 u32 uniquifier, size;
425 int ret;
426
427 _enter("{%u,%zu,%u}",
428 call->unmarshall, iov_iter_count(call->_iter), call->count2);
429
430 switch (call->unmarshall) {
431 case 0:
432 afs_extract_to_buf(call, sizeof(uuid_t) + 3 * sizeof(__be32));
433 call->unmarshall = 1;
434
435 /* Extract the returned uuid, uniquifier, fsEndpoints count and
436 * either the first fsEndpoint type or the volEndpoints
437 * count if there are no fsEndpoints. */
438 /* Fall through */
439 case 1:
440 ret = afs_extract_data(call, true);
441 if (ret < 0)
442 return ret;
443
444 bp = call->buffer + sizeof(uuid_t);
445 uniquifier = ntohl(*bp++);
446 call->count = ntohl(*bp++);
447 call->count2 = ntohl(*bp); /* Type or next count */
448
449 if (call->count > YFS_MAXENDPOINTS)
450 return afs_protocol_error(call, -EBADMSG,
451 afs_eproto_yvl_fsendpt_num);
452
453 alist = afs_alloc_addrlist(call->count, FS_SERVICE, AFS_FS_PORT);
454 if (!alist)
455 return -ENOMEM;
456 alist->version = uniquifier;
457 call->ret_alist = alist;
458
459 if (call->count == 0)
460 goto extract_volendpoints;
461
462 next_fsendpoint:
463 switch (call->count2) {
464 case YFS_ENDPOINT_IPV4:
465 size = sizeof(__be32) * (1 + 1 + 1);
466 break;
467 case YFS_ENDPOINT_IPV6:
468 size = sizeof(__be32) * (1 + 4 + 1);
469 break;
470 default:
471 return afs_protocol_error(call, -EBADMSG,
472 afs_eproto_yvl_fsendpt_type);
473 }
474
475 size += sizeof(__be32);
476 afs_extract_to_buf(call, size);
477 call->unmarshall = 2;
478
479 /* Fall through - and extract fsEndpoints[] entries */
480 case 2:
481 ret = afs_extract_data(call, true);
482 if (ret < 0)
483 return ret;
484
485 alist = call->ret_alist;
486 bp = call->buffer;
487 switch (call->count2) {
488 case YFS_ENDPOINT_IPV4:
489 if (ntohl(bp[0]) != sizeof(__be32) * 2)
490 return afs_protocol_error(call, -EBADMSG,
491 afs_eproto_yvl_fsendpt4_len);
492 afs_merge_fs_addr4(alist, bp[1], ntohl(bp[2]));
493 bp += 3;
494 break;
495 case YFS_ENDPOINT_IPV6:
496 if (ntohl(bp[0]) != sizeof(__be32) * 5)
497 return afs_protocol_error(call, -EBADMSG,
498 afs_eproto_yvl_fsendpt6_len);
499 afs_merge_fs_addr6(alist, bp + 1, ntohl(bp[5]));
500 bp += 6;
501 break;
502 default:
503 return afs_protocol_error(call, -EBADMSG,
504 afs_eproto_yvl_fsendpt_type);
505 }
506
507 /* Got either the type of the next entry or the count of
508 * volEndpoints if no more fsEndpoints.
509 */
510 call->count2 = ntohl(*bp++);
511
512 call->count--;
513 if (call->count > 0)
514 goto next_fsendpoint;
515
516 extract_volendpoints:
517 /* Extract the list of volEndpoints. */
518 call->count = call->count2;
519 if (!call->count)
520 goto end;
521 if (call->count > YFS_MAXENDPOINTS)
522 return afs_protocol_error(call, -EBADMSG,
523 afs_eproto_yvl_vlendpt_type);
524
525 afs_extract_to_buf(call, 1 * sizeof(__be32));
526 call->unmarshall = 3;
527
528 /* Extract the type of volEndpoints[0]. Normally we would
529 * extract the type of the next endpoint when we extract the
530 * data of the current one, but this is the first...
531 */
532 /* Fall through */
533 case 3:
534 ret = afs_extract_data(call, true);
535 if (ret < 0)
536 return ret;
537
538 bp = call->buffer;
539
540 next_volendpoint:
541 call->count2 = ntohl(*bp++);
542 switch (call->count2) {
543 case YFS_ENDPOINT_IPV4:
544 size = sizeof(__be32) * (1 + 1 + 1);
545 break;
546 case YFS_ENDPOINT_IPV6:
547 size = sizeof(__be32) * (1 + 4 + 1);
548 break;
549 default:
550 return afs_protocol_error(call, -EBADMSG,
551 afs_eproto_yvl_vlendpt_type);
552 }
553
554 if (call->count > 1)
555 size += sizeof(__be32); /* Get next type too */
556 afs_extract_to_buf(call, size);
557 call->unmarshall = 4;
558
559 /* Fall through - and extract volEndpoints[] entries */
560 case 4:
561 ret = afs_extract_data(call, true);
562 if (ret < 0)
563 return ret;
564
565 bp = call->buffer;
566 switch (call->count2) {
567 case YFS_ENDPOINT_IPV4:
568 if (ntohl(bp[0]) != sizeof(__be32) * 2)
569 return afs_protocol_error(call, -EBADMSG,
570 afs_eproto_yvl_vlendpt4_len);
571 bp += 3;
572 break;
573 case YFS_ENDPOINT_IPV6:
574 if (ntohl(bp[0]) != sizeof(__be32) * 5)
575 return afs_protocol_error(call, -EBADMSG,
576 afs_eproto_yvl_vlendpt6_len);
577 bp += 6;
578 break;
579 default:
580 return afs_protocol_error(call, -EBADMSG,
581 afs_eproto_yvl_vlendpt_type);
582 }
583
584 /* Got either the type of the next entry or the count of
585 * volEndpoints if no more fsEndpoints.
586 */
587 call->count--;
588 if (call->count > 0)
589 goto next_volendpoint;
590
591 end:
592 afs_extract_discard(call, 0);
593 call->unmarshall = 5;
594
595 /* Fall through - Done */
596 case 5:
597 ret = afs_extract_data(call, false);
598 if (ret < 0)
599 return ret;
600 call->unmarshall = 6;
601
602 case 6:
603 break;
604 }
605
606 _leave(" = 0 [done]");
607 return 0;
608}
609
610/*
611 * YFSVL.GetEndpoints operation type.
612 */
613static const struct afs_call_type afs_YFSVLGetEndpoints = {
614 .name = "YFSVL.GetEndpoints",
615 .op = afs_YFSVL_GetEndpoints,
616 .deliver = afs_deliver_yfsvl_get_endpoints,
617 .destructor = afs_vl_get_addrs_u_destructor,
618};
619
620/*
621 * Dispatch an operation to get the addresses for a server, where the server is
622 * nominated by UUID.
623 */
624struct afs_addr_list *afs_yfsvl_get_endpoints(struct afs_vl_cursor *vc,
625 const uuid_t *uuid)
626{
627 struct afs_call *call;
628 struct afs_net *net = vc->cell->net;
629 __be32 *bp;
630
631 _enter("");
632
633 call = afs_alloc_flat_call(net, &afs_YFSVLGetEndpoints,
634 sizeof(__be32) * 2 + sizeof(*uuid),
635 sizeof(struct in6_addr) + sizeof(__be32) * 3);
636 if (!call)
637 return ERR_PTR(-ENOMEM);
638
639 call->key = vc->key;
640 call->ret_alist = NULL;
641 call->max_lifespan = AFS_VL_MAX_LIFESPAN;
642
643 /* Marshall the parameters */
644 bp = call->request;
645 *bp++ = htonl(YVLGETENDPOINTS);
646 *bp++ = htonl(YFS_SERVER_UUID);
647 memcpy(bp, uuid, sizeof(*uuid)); /* Type opr_uuid */
648
649 trace_afs_make_vl_call(call);
650 afs_make_call(&vc->ac, call, GFP_KERNEL);
651 return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
652}