Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_powerclamp.c - package c-state idle injection
4 *
5 * Copyright (c) 2012, Intel Corporation.
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 *
11 * TODO:
12 * 1. better handle wakeup from external interrupts, currently a fixed
13 * compensation is added to clamping duration when excessive amount
14 * of wakeups are observed during idle time. the reason is that in
15 * case of external interrupts without need for ack, clamping down
16 * cpu in non-irq context does not reduce irq. for majority of the
17 * cases, clamping down cpu does help reduce irq as well, we should
18 * be able to differentiate the two cases and give a quantitative
19 * solution for the irqs that we can control. perhaps based on
20 * get_cpu_iowait_time_us()
21 *
22 * 2. synchronization with other hw blocks
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/module.h>
28#include <linux/kernel.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/cpu.h>
32#include <linux/thermal.h>
33#include <linux/slab.h>
34#include <linux/tick.h>
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#include <linux/sched/rt.h>
38#include <uapi/linux/sched/types.h>
39
40#include <asm/nmi.h>
41#include <asm/msr.h>
42#include <asm/mwait.h>
43#include <asm/cpu_device_id.h>
44#include <asm/hardirq.h>
45
46#define MAX_TARGET_RATIO (50U)
47/* For each undisturbed clamping period (no extra wake ups during idle time),
48 * we increment the confidence counter for the given target ratio.
49 * CONFIDENCE_OK defines the level where runtime calibration results are
50 * valid.
51 */
52#define CONFIDENCE_OK (3)
53/* Default idle injection duration, driver adjust sleep time to meet target
54 * idle ratio. Similar to frequency modulation.
55 */
56#define DEFAULT_DURATION_JIFFIES (6)
57
58static unsigned int target_mwait;
59static struct dentry *debug_dir;
60
61/* user selected target */
62static unsigned int set_target_ratio;
63static unsigned int current_ratio;
64static bool should_skip;
65
66static unsigned int control_cpu; /* The cpu assigned to collect stat and update
67 * control parameters. default to BSP but BSP
68 * can be offlined.
69 */
70static bool clamping;
71
72struct powerclamp_worker_data {
73 struct kthread_worker *worker;
74 struct kthread_work balancing_work;
75 struct kthread_delayed_work idle_injection_work;
76 unsigned int cpu;
77 unsigned int count;
78 unsigned int guard;
79 unsigned int window_size_now;
80 unsigned int target_ratio;
81 unsigned int duration_jiffies;
82 bool clamping;
83};
84
85static struct powerclamp_worker_data __percpu *worker_data;
86static struct thermal_cooling_device *cooling_dev;
87static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
88 * clamping kthread worker
89 */
90
91static unsigned int duration;
92static unsigned int pkg_cstate_ratio_cur;
93static unsigned int window_size;
94
95static int duration_set(const char *arg, const struct kernel_param *kp)
96{
97 int ret = 0;
98 unsigned long new_duration;
99
100 ret = kstrtoul(arg, 10, &new_duration);
101 if (ret)
102 goto exit;
103 if (new_duration > 25 || new_duration < 6) {
104 pr_err("Out of recommended range %lu, between 6-25ms\n",
105 new_duration);
106 ret = -EINVAL;
107 }
108
109 duration = clamp(new_duration, 6ul, 25ul);
110 smp_mb();
111
112exit:
113
114 return ret;
115}
116
117static const struct kernel_param_ops duration_ops = {
118 .set = duration_set,
119 .get = param_get_int,
120};
121
122
123module_param_cb(duration, &duration_ops, &duration, 0644);
124MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
125
126struct powerclamp_calibration_data {
127 unsigned long confidence; /* used for calibration, basically a counter
128 * gets incremented each time a clamping
129 * period is completed without extra wakeups
130 * once that counter is reached given level,
131 * compensation is deemed usable.
132 */
133 unsigned long steady_comp; /* steady state compensation used when
134 * no extra wakeups occurred.
135 */
136 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
137 * mostly from external interrupts.
138 */
139};
140
141static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
142
143static int window_size_set(const char *arg, const struct kernel_param *kp)
144{
145 int ret = 0;
146 unsigned long new_window_size;
147
148 ret = kstrtoul(arg, 10, &new_window_size);
149 if (ret)
150 goto exit_win;
151 if (new_window_size > 10 || new_window_size < 2) {
152 pr_err("Out of recommended window size %lu, between 2-10\n",
153 new_window_size);
154 ret = -EINVAL;
155 }
156
157 window_size = clamp(new_window_size, 2ul, 10ul);
158 smp_mb();
159
160exit_win:
161
162 return ret;
163}
164
165static const struct kernel_param_ops window_size_ops = {
166 .set = window_size_set,
167 .get = param_get_int,
168};
169
170module_param_cb(window_size, &window_size_ops, &window_size, 0644);
171MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
172 "\tpowerclamp controls idle ratio within this window. larger\n"
173 "\twindow size results in slower response time but more smooth\n"
174 "\tclamping results. default to 2.");
175
176static void find_target_mwait(void)
177{
178 unsigned int eax, ebx, ecx, edx;
179 unsigned int highest_cstate = 0;
180 unsigned int highest_subcstate = 0;
181 int i;
182
183 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
184 return;
185
186 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
187
188 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
189 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
190 return;
191
192 edx >>= MWAIT_SUBSTATE_SIZE;
193 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
194 if (edx & MWAIT_SUBSTATE_MASK) {
195 highest_cstate = i;
196 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
197 }
198 }
199 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
200 (highest_subcstate - 1);
201
202}
203
204struct pkg_cstate_info {
205 bool skip;
206 int msr_index;
207 int cstate_id;
208};
209
210#define PKG_CSTATE_INIT(id) { \
211 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
212 .cstate_id = id \
213 }
214
215static struct pkg_cstate_info pkg_cstates[] = {
216 PKG_CSTATE_INIT(2),
217 PKG_CSTATE_INIT(3),
218 PKG_CSTATE_INIT(6),
219 PKG_CSTATE_INIT(7),
220 PKG_CSTATE_INIT(8),
221 PKG_CSTATE_INIT(9),
222 PKG_CSTATE_INIT(10),
223 {NULL},
224};
225
226static bool has_pkg_state_counter(void)
227{
228 u64 val;
229 struct pkg_cstate_info *info = pkg_cstates;
230
231 /* check if any one of the counter msrs exists */
232 while (info->msr_index) {
233 if (!rdmsrl_safe(info->msr_index, &val))
234 return true;
235 info++;
236 }
237
238 return false;
239}
240
241static u64 pkg_state_counter(void)
242{
243 u64 val;
244 u64 count = 0;
245 struct pkg_cstate_info *info = pkg_cstates;
246
247 while (info->msr_index) {
248 if (!info->skip) {
249 if (!rdmsrl_safe(info->msr_index, &val))
250 count += val;
251 else
252 info->skip = true;
253 }
254 info++;
255 }
256
257 return count;
258}
259
260static unsigned int get_compensation(int ratio)
261{
262 unsigned int comp = 0;
263
264 /* we only use compensation if all adjacent ones are good */
265 if (ratio == 1 &&
266 cal_data[ratio].confidence >= CONFIDENCE_OK &&
267 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
268 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
269 comp = (cal_data[ratio].steady_comp +
270 cal_data[ratio + 1].steady_comp +
271 cal_data[ratio + 2].steady_comp) / 3;
272 } else if (ratio == MAX_TARGET_RATIO - 1 &&
273 cal_data[ratio].confidence >= CONFIDENCE_OK &&
274 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
275 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
276 comp = (cal_data[ratio].steady_comp +
277 cal_data[ratio - 1].steady_comp +
278 cal_data[ratio - 2].steady_comp) / 3;
279 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
280 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
281 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
282 comp = (cal_data[ratio].steady_comp +
283 cal_data[ratio - 1].steady_comp +
284 cal_data[ratio + 1].steady_comp) / 3;
285 }
286
287 /* do not exceed limit */
288 if (comp + ratio >= MAX_TARGET_RATIO)
289 comp = MAX_TARGET_RATIO - ratio - 1;
290
291 return comp;
292}
293
294static void adjust_compensation(int target_ratio, unsigned int win)
295{
296 int delta;
297 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
298
299 /*
300 * adjust compensations if confidence level has not been reached.
301 */
302 if (d->confidence >= CONFIDENCE_OK)
303 return;
304
305 delta = set_target_ratio - current_ratio;
306 /* filter out bad data */
307 if (delta >= 0 && delta <= (1+target_ratio/10)) {
308 if (d->steady_comp)
309 d->steady_comp =
310 roundup(delta+d->steady_comp, 2)/2;
311 else
312 d->steady_comp = delta;
313 d->confidence++;
314 }
315}
316
317static bool powerclamp_adjust_controls(unsigned int target_ratio,
318 unsigned int guard, unsigned int win)
319{
320 static u64 msr_last, tsc_last;
321 u64 msr_now, tsc_now;
322 u64 val64;
323
324 /* check result for the last window */
325 msr_now = pkg_state_counter();
326 tsc_now = rdtsc();
327
328 /* calculate pkg cstate vs tsc ratio */
329 if (!msr_last || !tsc_last)
330 current_ratio = 1;
331 else if (tsc_now-tsc_last) {
332 val64 = 100*(msr_now-msr_last);
333 do_div(val64, (tsc_now-tsc_last));
334 current_ratio = val64;
335 }
336
337 /* update record */
338 msr_last = msr_now;
339 tsc_last = tsc_now;
340
341 adjust_compensation(target_ratio, win);
342
343 /* if we are above target+guard, skip */
344 return set_target_ratio + guard <= current_ratio;
345}
346
347static void clamp_balancing_func(struct kthread_work *work)
348{
349 struct powerclamp_worker_data *w_data;
350 int sleeptime;
351 unsigned long target_jiffies;
352 unsigned int compensated_ratio;
353 int interval; /* jiffies to sleep for each attempt */
354
355 w_data = container_of(work, struct powerclamp_worker_data,
356 balancing_work);
357
358 /*
359 * make sure user selected ratio does not take effect until
360 * the next round. adjust target_ratio if user has changed
361 * target such that we can converge quickly.
362 */
363 w_data->target_ratio = READ_ONCE(set_target_ratio);
364 w_data->guard = 1 + w_data->target_ratio / 20;
365 w_data->window_size_now = window_size;
366 w_data->duration_jiffies = msecs_to_jiffies(duration);
367 w_data->count++;
368
369 /*
370 * systems may have different ability to enter package level
371 * c-states, thus we need to compensate the injected idle ratio
372 * to achieve the actual target reported by the HW.
373 */
374 compensated_ratio = w_data->target_ratio +
375 get_compensation(w_data->target_ratio);
376 if (compensated_ratio <= 0)
377 compensated_ratio = 1;
378 interval = w_data->duration_jiffies * 100 / compensated_ratio;
379
380 /* align idle time */
381 target_jiffies = roundup(jiffies, interval);
382 sleeptime = target_jiffies - jiffies;
383 if (sleeptime <= 0)
384 sleeptime = 1;
385
386 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
387 kthread_queue_delayed_work(w_data->worker,
388 &w_data->idle_injection_work,
389 sleeptime);
390}
391
392static void clamp_idle_injection_func(struct kthread_work *work)
393{
394 struct powerclamp_worker_data *w_data;
395
396 w_data = container_of(work, struct powerclamp_worker_data,
397 idle_injection_work.work);
398
399 /*
400 * only elected controlling cpu can collect stats and update
401 * control parameters.
402 */
403 if (w_data->cpu == control_cpu &&
404 !(w_data->count % w_data->window_size_now)) {
405 should_skip =
406 powerclamp_adjust_controls(w_data->target_ratio,
407 w_data->guard,
408 w_data->window_size_now);
409 smp_mb();
410 }
411
412 if (should_skip)
413 goto balance;
414
415 play_idle(jiffies_to_usecs(w_data->duration_jiffies));
416
417balance:
418 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
419 kthread_queue_work(w_data->worker, &w_data->balancing_work);
420}
421
422/*
423 * 1 HZ polling while clamping is active, useful for userspace
424 * to monitor actual idle ratio.
425 */
426static void poll_pkg_cstate(struct work_struct *dummy);
427static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
428static void poll_pkg_cstate(struct work_struct *dummy)
429{
430 static u64 msr_last;
431 static u64 tsc_last;
432
433 u64 msr_now;
434 u64 tsc_now;
435 u64 val64;
436
437 msr_now = pkg_state_counter();
438 tsc_now = rdtsc();
439
440 /* calculate pkg cstate vs tsc ratio */
441 if (!msr_last || !tsc_last)
442 pkg_cstate_ratio_cur = 1;
443 else {
444 if (tsc_now - tsc_last) {
445 val64 = 100 * (msr_now - msr_last);
446 do_div(val64, (tsc_now - tsc_last));
447 pkg_cstate_ratio_cur = val64;
448 }
449 }
450
451 /* update record */
452 msr_last = msr_now;
453 tsc_last = tsc_now;
454
455 if (true == clamping)
456 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
457}
458
459static void start_power_clamp_worker(unsigned long cpu)
460{
461 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
462 struct kthread_worker *worker;
463
464 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu);
465 if (IS_ERR(worker))
466 return;
467
468 w_data->worker = worker;
469 w_data->count = 0;
470 w_data->cpu = cpu;
471 w_data->clamping = true;
472 set_bit(cpu, cpu_clamping_mask);
473 sched_set_fifo(worker->task);
474 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
475 kthread_init_delayed_work(&w_data->idle_injection_work,
476 clamp_idle_injection_func);
477 kthread_queue_work(w_data->worker, &w_data->balancing_work);
478}
479
480static void stop_power_clamp_worker(unsigned long cpu)
481{
482 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
483
484 if (!w_data->worker)
485 return;
486
487 w_data->clamping = false;
488 /*
489 * Make sure that all works that get queued after this point see
490 * the clamping disabled. The counter part is not needed because
491 * there is an implicit memory barrier when the queued work
492 * is proceed.
493 */
494 smp_wmb();
495 kthread_cancel_work_sync(&w_data->balancing_work);
496 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
497 /*
498 * The balancing work still might be queued here because
499 * the handling of the "clapming" variable, cancel, and queue
500 * operations are not synchronized via a lock. But it is not
501 * a big deal. The balancing work is fast and destroy kthread
502 * will wait for it.
503 */
504 clear_bit(w_data->cpu, cpu_clamping_mask);
505 kthread_destroy_worker(w_data->worker);
506
507 w_data->worker = NULL;
508}
509
510static int start_power_clamp(void)
511{
512 unsigned long cpu;
513
514 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
515 /* prevent cpu hotplug */
516 cpus_read_lock();
517
518 /* prefer BSP */
519 control_cpu = cpumask_first(cpu_online_mask);
520
521 clamping = true;
522 schedule_delayed_work(&poll_pkg_cstate_work, 0);
523
524 /* start one kthread worker per online cpu */
525 for_each_online_cpu(cpu) {
526 start_power_clamp_worker(cpu);
527 }
528 cpus_read_unlock();
529
530 return 0;
531}
532
533static void end_power_clamp(void)
534{
535 int i;
536
537 /*
538 * Block requeuing in all the kthread workers. They will flush and
539 * stop faster.
540 */
541 clamping = false;
542 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
543 pr_debug("clamping worker for cpu %d alive, destroy\n", i);
544 stop_power_clamp_worker(i);
545 }
546}
547
548static int powerclamp_cpu_online(unsigned int cpu)
549{
550 if (clamping == false)
551 return 0;
552 start_power_clamp_worker(cpu);
553 /* prefer BSP as controlling CPU */
554 if (cpu == 0) {
555 control_cpu = 0;
556 smp_mb();
557 }
558 return 0;
559}
560
561static int powerclamp_cpu_predown(unsigned int cpu)
562{
563 if (clamping == false)
564 return 0;
565
566 stop_power_clamp_worker(cpu);
567 if (cpu != control_cpu)
568 return 0;
569
570 control_cpu = cpumask_first(cpu_online_mask);
571 if (control_cpu == cpu)
572 control_cpu = cpumask_next(cpu, cpu_online_mask);
573 smp_mb();
574 return 0;
575}
576
577static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
578 unsigned long *state)
579{
580 *state = MAX_TARGET_RATIO;
581
582 return 0;
583}
584
585static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
586 unsigned long *state)
587{
588 if (true == clamping)
589 *state = pkg_cstate_ratio_cur;
590 else
591 /* to save power, do not poll idle ratio while not clamping */
592 *state = -1; /* indicates invalid state */
593
594 return 0;
595}
596
597static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
598 unsigned long new_target_ratio)
599{
600 int ret = 0;
601
602 new_target_ratio = clamp(new_target_ratio, 0UL,
603 (unsigned long) (MAX_TARGET_RATIO-1));
604 if (set_target_ratio == 0 && new_target_ratio > 0) {
605 pr_info("Start idle injection to reduce power\n");
606 set_target_ratio = new_target_ratio;
607 ret = start_power_clamp();
608 goto exit_set;
609 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
610 pr_info("Stop forced idle injection\n");
611 end_power_clamp();
612 set_target_ratio = 0;
613 } else /* adjust currently running */ {
614 set_target_ratio = new_target_ratio;
615 /* make new set_target_ratio visible to other cpus */
616 smp_mb();
617 }
618
619exit_set:
620 return ret;
621}
622
623/* bind to generic thermal layer as cooling device*/
624static const struct thermal_cooling_device_ops powerclamp_cooling_ops = {
625 .get_max_state = powerclamp_get_max_state,
626 .get_cur_state = powerclamp_get_cur_state,
627 .set_cur_state = powerclamp_set_cur_state,
628};
629
630static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
631 X86_MATCH_VENDOR_FEATURE(INTEL, X86_FEATURE_MWAIT, NULL),
632 {}
633};
634MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
635
636static int __init powerclamp_probe(void)
637{
638
639 if (!x86_match_cpu(intel_powerclamp_ids)) {
640 pr_err("CPU does not support MWAIT\n");
641 return -ENODEV;
642 }
643
644 /* The goal for idle time alignment is to achieve package cstate. */
645 if (!has_pkg_state_counter()) {
646 pr_info("No package C-state available\n");
647 return -ENODEV;
648 }
649
650 /* find the deepest mwait value */
651 find_target_mwait();
652
653 return 0;
654}
655
656static int powerclamp_debug_show(struct seq_file *m, void *unused)
657{
658 int i = 0;
659
660 seq_printf(m, "controlling cpu: %d\n", control_cpu);
661 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
662 for (i = 0; i < MAX_TARGET_RATIO; i++) {
663 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
664 i,
665 cal_data[i].confidence,
666 cal_data[i].steady_comp,
667 cal_data[i].dynamic_comp);
668 }
669
670 return 0;
671}
672
673DEFINE_SHOW_ATTRIBUTE(powerclamp_debug);
674
675static inline void powerclamp_create_debug_files(void)
676{
677 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
678
679 debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, cal_data,
680 &powerclamp_debug_fops);
681}
682
683static enum cpuhp_state hp_state;
684
685static int __init powerclamp_init(void)
686{
687 int retval;
688
689 cpu_clamping_mask = bitmap_zalloc(num_possible_cpus(), GFP_KERNEL);
690 if (!cpu_clamping_mask)
691 return -ENOMEM;
692
693 /* probe cpu features and ids here */
694 retval = powerclamp_probe();
695 if (retval)
696 goto exit_free;
697
698 /* set default limit, maybe adjusted during runtime based on feedback */
699 window_size = 2;
700 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
701 "thermal/intel_powerclamp:online",
702 powerclamp_cpu_online,
703 powerclamp_cpu_predown);
704 if (retval < 0)
705 goto exit_free;
706
707 hp_state = retval;
708
709 worker_data = alloc_percpu(struct powerclamp_worker_data);
710 if (!worker_data) {
711 retval = -ENOMEM;
712 goto exit_unregister;
713 }
714
715 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
716 &powerclamp_cooling_ops);
717 if (IS_ERR(cooling_dev)) {
718 retval = -ENODEV;
719 goto exit_free_thread;
720 }
721
722 if (!duration)
723 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
724
725 powerclamp_create_debug_files();
726
727 return 0;
728
729exit_free_thread:
730 free_percpu(worker_data);
731exit_unregister:
732 cpuhp_remove_state_nocalls(hp_state);
733exit_free:
734 bitmap_free(cpu_clamping_mask);
735 return retval;
736}
737module_init(powerclamp_init);
738
739static void __exit powerclamp_exit(void)
740{
741 end_power_clamp();
742 cpuhp_remove_state_nocalls(hp_state);
743 free_percpu(worker_data);
744 thermal_cooling_device_unregister(cooling_dev);
745 bitmap_free(cpu_clamping_mask);
746
747 cancel_delayed_work_sync(&poll_pkg_cstate_work);
748 debugfs_remove_recursive(debug_dir);
749}
750module_exit(powerclamp_exit);
751
752MODULE_LICENSE("GPL");
753MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
754MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
755MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_powerclamp.c - package c-state idle injection
4 *
5 * Copyright (c) 2012, Intel Corporation.
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 *
11 * TODO:
12 * 1. better handle wakeup from external interrupts, currently a fixed
13 * compensation is added to clamping duration when excessive amount
14 * of wakeups are observed during idle time. the reason is that in
15 * case of external interrupts without need for ack, clamping down
16 * cpu in non-irq context does not reduce irq. for majority of the
17 * cases, clamping down cpu does help reduce irq as well, we should
18 * be able to differentiate the two cases and give a quantitative
19 * solution for the irqs that we can control. perhaps based on
20 * get_cpu_iowait_time_us()
21 *
22 * 2. synchronization with other hw blocks
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/module.h>
28#include <linux/kernel.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/cpu.h>
32#include <linux/thermal.h>
33#include <linux/slab.h>
34#include <linux/tick.h>
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#include <linux/sched/rt.h>
38#include <uapi/linux/sched/types.h>
39
40#include <asm/nmi.h>
41#include <asm/msr.h>
42#include <asm/mwait.h>
43#include <asm/cpu_device_id.h>
44#include <asm/hardirq.h>
45
46#define MAX_TARGET_RATIO (50U)
47/* For each undisturbed clamping period (no extra wake ups during idle time),
48 * we increment the confidence counter for the given target ratio.
49 * CONFIDENCE_OK defines the level where runtime calibration results are
50 * valid.
51 */
52#define CONFIDENCE_OK (3)
53/* Default idle injection duration, driver adjust sleep time to meet target
54 * idle ratio. Similar to frequency modulation.
55 */
56#define DEFAULT_DURATION_JIFFIES (6)
57
58static unsigned int target_mwait;
59static struct dentry *debug_dir;
60
61/* user selected target */
62static unsigned int set_target_ratio;
63static unsigned int current_ratio;
64static bool should_skip;
65static bool reduce_irq;
66static atomic_t idle_wakeup_counter;
67static unsigned int control_cpu; /* The cpu assigned to collect stat and update
68 * control parameters. default to BSP but BSP
69 * can be offlined.
70 */
71static bool clamping;
72
73static const struct sched_param sparam = {
74 .sched_priority = MAX_USER_RT_PRIO / 2,
75};
76struct powerclamp_worker_data {
77 struct kthread_worker *worker;
78 struct kthread_work balancing_work;
79 struct kthread_delayed_work idle_injection_work;
80 unsigned int cpu;
81 unsigned int count;
82 unsigned int guard;
83 unsigned int window_size_now;
84 unsigned int target_ratio;
85 unsigned int duration_jiffies;
86 bool clamping;
87};
88
89static struct powerclamp_worker_data __percpu *worker_data;
90static struct thermal_cooling_device *cooling_dev;
91static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
92 * clamping kthread worker
93 */
94
95static unsigned int duration;
96static unsigned int pkg_cstate_ratio_cur;
97static unsigned int window_size;
98
99static int duration_set(const char *arg, const struct kernel_param *kp)
100{
101 int ret = 0;
102 unsigned long new_duration;
103
104 ret = kstrtoul(arg, 10, &new_duration);
105 if (ret)
106 goto exit;
107 if (new_duration > 25 || new_duration < 6) {
108 pr_err("Out of recommended range %lu, between 6-25ms\n",
109 new_duration);
110 ret = -EINVAL;
111 }
112
113 duration = clamp(new_duration, 6ul, 25ul);
114 smp_mb();
115
116exit:
117
118 return ret;
119}
120
121static const struct kernel_param_ops duration_ops = {
122 .set = duration_set,
123 .get = param_get_int,
124};
125
126
127module_param_cb(duration, &duration_ops, &duration, 0644);
128MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
129
130struct powerclamp_calibration_data {
131 unsigned long confidence; /* used for calibration, basically a counter
132 * gets incremented each time a clamping
133 * period is completed without extra wakeups
134 * once that counter is reached given level,
135 * compensation is deemed usable.
136 */
137 unsigned long steady_comp; /* steady state compensation used when
138 * no extra wakeups occurred.
139 */
140 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
141 * mostly from external interrupts.
142 */
143};
144
145static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
146
147static int window_size_set(const char *arg, const struct kernel_param *kp)
148{
149 int ret = 0;
150 unsigned long new_window_size;
151
152 ret = kstrtoul(arg, 10, &new_window_size);
153 if (ret)
154 goto exit_win;
155 if (new_window_size > 10 || new_window_size < 2) {
156 pr_err("Out of recommended window size %lu, between 2-10\n",
157 new_window_size);
158 ret = -EINVAL;
159 }
160
161 window_size = clamp(new_window_size, 2ul, 10ul);
162 smp_mb();
163
164exit_win:
165
166 return ret;
167}
168
169static const struct kernel_param_ops window_size_ops = {
170 .set = window_size_set,
171 .get = param_get_int,
172};
173
174module_param_cb(window_size, &window_size_ops, &window_size, 0644);
175MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
176 "\tpowerclamp controls idle ratio within this window. larger\n"
177 "\twindow size results in slower response time but more smooth\n"
178 "\tclamping results. default to 2.");
179
180static void find_target_mwait(void)
181{
182 unsigned int eax, ebx, ecx, edx;
183 unsigned int highest_cstate = 0;
184 unsigned int highest_subcstate = 0;
185 int i;
186
187 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
188 return;
189
190 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
191
192 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
193 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
194 return;
195
196 edx >>= MWAIT_SUBSTATE_SIZE;
197 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
198 if (edx & MWAIT_SUBSTATE_MASK) {
199 highest_cstate = i;
200 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
201 }
202 }
203 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
204 (highest_subcstate - 1);
205
206}
207
208struct pkg_cstate_info {
209 bool skip;
210 int msr_index;
211 int cstate_id;
212};
213
214#define PKG_CSTATE_INIT(id) { \
215 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
216 .cstate_id = id \
217 }
218
219static struct pkg_cstate_info pkg_cstates[] = {
220 PKG_CSTATE_INIT(2),
221 PKG_CSTATE_INIT(3),
222 PKG_CSTATE_INIT(6),
223 PKG_CSTATE_INIT(7),
224 PKG_CSTATE_INIT(8),
225 PKG_CSTATE_INIT(9),
226 PKG_CSTATE_INIT(10),
227 {NULL},
228};
229
230static bool has_pkg_state_counter(void)
231{
232 u64 val;
233 struct pkg_cstate_info *info = pkg_cstates;
234
235 /* check if any one of the counter msrs exists */
236 while (info->msr_index) {
237 if (!rdmsrl_safe(info->msr_index, &val))
238 return true;
239 info++;
240 }
241
242 return false;
243}
244
245static u64 pkg_state_counter(void)
246{
247 u64 val;
248 u64 count = 0;
249 struct pkg_cstate_info *info = pkg_cstates;
250
251 while (info->msr_index) {
252 if (!info->skip) {
253 if (!rdmsrl_safe(info->msr_index, &val))
254 count += val;
255 else
256 info->skip = true;
257 }
258 info++;
259 }
260
261 return count;
262}
263
264static unsigned int get_compensation(int ratio)
265{
266 unsigned int comp = 0;
267
268 /* we only use compensation if all adjacent ones are good */
269 if (ratio == 1 &&
270 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273 comp = (cal_data[ratio].steady_comp +
274 cal_data[ratio + 1].steady_comp +
275 cal_data[ratio + 2].steady_comp) / 3;
276 } else if (ratio == MAX_TARGET_RATIO - 1 &&
277 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280 comp = (cal_data[ratio].steady_comp +
281 cal_data[ratio - 1].steady_comp +
282 cal_data[ratio - 2].steady_comp) / 3;
283 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio + 1].steady_comp) / 3;
289 }
290
291 /* REVISIT: simple penalty of double idle injection */
292 if (reduce_irq)
293 comp = ratio;
294 /* do not exceed limit */
295 if (comp + ratio >= MAX_TARGET_RATIO)
296 comp = MAX_TARGET_RATIO - ratio - 1;
297
298 return comp;
299}
300
301static void adjust_compensation(int target_ratio, unsigned int win)
302{
303 int delta;
304 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
305
306 /*
307 * adjust compensations if confidence level has not been reached or
308 * there are too many wakeups during the last idle injection period, we
309 * cannot trust the data for compensation.
310 */
311 if (d->confidence >= CONFIDENCE_OK ||
312 atomic_read(&idle_wakeup_counter) >
313 win * num_online_cpus())
314 return;
315
316 delta = set_target_ratio - current_ratio;
317 /* filter out bad data */
318 if (delta >= 0 && delta <= (1+target_ratio/10)) {
319 if (d->steady_comp)
320 d->steady_comp =
321 roundup(delta+d->steady_comp, 2)/2;
322 else
323 d->steady_comp = delta;
324 d->confidence++;
325 }
326}
327
328static bool powerclamp_adjust_controls(unsigned int target_ratio,
329 unsigned int guard, unsigned int win)
330{
331 static u64 msr_last, tsc_last;
332 u64 msr_now, tsc_now;
333 u64 val64;
334
335 /* check result for the last window */
336 msr_now = pkg_state_counter();
337 tsc_now = rdtsc();
338
339 /* calculate pkg cstate vs tsc ratio */
340 if (!msr_last || !tsc_last)
341 current_ratio = 1;
342 else if (tsc_now-tsc_last) {
343 val64 = 100*(msr_now-msr_last);
344 do_div(val64, (tsc_now-tsc_last));
345 current_ratio = val64;
346 }
347
348 /* update record */
349 msr_last = msr_now;
350 tsc_last = tsc_now;
351
352 adjust_compensation(target_ratio, win);
353 /*
354 * too many external interrupts, set flag such
355 * that we can take measure later.
356 */
357 reduce_irq = atomic_read(&idle_wakeup_counter) >=
358 2 * win * num_online_cpus();
359
360 atomic_set(&idle_wakeup_counter, 0);
361 /* if we are above target+guard, skip */
362 return set_target_ratio + guard <= current_ratio;
363}
364
365static void clamp_balancing_func(struct kthread_work *work)
366{
367 struct powerclamp_worker_data *w_data;
368 int sleeptime;
369 unsigned long target_jiffies;
370 unsigned int compensated_ratio;
371 int interval; /* jiffies to sleep for each attempt */
372
373 w_data = container_of(work, struct powerclamp_worker_data,
374 balancing_work);
375
376 /*
377 * make sure user selected ratio does not take effect until
378 * the next round. adjust target_ratio if user has changed
379 * target such that we can converge quickly.
380 */
381 w_data->target_ratio = READ_ONCE(set_target_ratio);
382 w_data->guard = 1 + w_data->target_ratio / 20;
383 w_data->window_size_now = window_size;
384 w_data->duration_jiffies = msecs_to_jiffies(duration);
385 w_data->count++;
386
387 /*
388 * systems may have different ability to enter package level
389 * c-states, thus we need to compensate the injected idle ratio
390 * to achieve the actual target reported by the HW.
391 */
392 compensated_ratio = w_data->target_ratio +
393 get_compensation(w_data->target_ratio);
394 if (compensated_ratio <= 0)
395 compensated_ratio = 1;
396 interval = w_data->duration_jiffies * 100 / compensated_ratio;
397
398 /* align idle time */
399 target_jiffies = roundup(jiffies, interval);
400 sleeptime = target_jiffies - jiffies;
401 if (sleeptime <= 0)
402 sleeptime = 1;
403
404 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
405 kthread_queue_delayed_work(w_data->worker,
406 &w_data->idle_injection_work,
407 sleeptime);
408}
409
410static void clamp_idle_injection_func(struct kthread_work *work)
411{
412 struct powerclamp_worker_data *w_data;
413
414 w_data = container_of(work, struct powerclamp_worker_data,
415 idle_injection_work.work);
416
417 /*
418 * only elected controlling cpu can collect stats and update
419 * control parameters.
420 */
421 if (w_data->cpu == control_cpu &&
422 !(w_data->count % w_data->window_size_now)) {
423 should_skip =
424 powerclamp_adjust_controls(w_data->target_ratio,
425 w_data->guard,
426 w_data->window_size_now);
427 smp_mb();
428 }
429
430 if (should_skip)
431 goto balance;
432
433 play_idle(jiffies_to_usecs(w_data->duration_jiffies));
434
435balance:
436 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
437 kthread_queue_work(w_data->worker, &w_data->balancing_work);
438}
439
440/*
441 * 1 HZ polling while clamping is active, useful for userspace
442 * to monitor actual idle ratio.
443 */
444static void poll_pkg_cstate(struct work_struct *dummy);
445static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
446static void poll_pkg_cstate(struct work_struct *dummy)
447{
448 static u64 msr_last;
449 static u64 tsc_last;
450
451 u64 msr_now;
452 u64 tsc_now;
453 u64 val64;
454
455 msr_now = pkg_state_counter();
456 tsc_now = rdtsc();
457
458 /* calculate pkg cstate vs tsc ratio */
459 if (!msr_last || !tsc_last)
460 pkg_cstate_ratio_cur = 1;
461 else {
462 if (tsc_now - tsc_last) {
463 val64 = 100 * (msr_now - msr_last);
464 do_div(val64, (tsc_now - tsc_last));
465 pkg_cstate_ratio_cur = val64;
466 }
467 }
468
469 /* update record */
470 msr_last = msr_now;
471 tsc_last = tsc_now;
472
473 if (true == clamping)
474 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
475}
476
477static void start_power_clamp_worker(unsigned long cpu)
478{
479 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
480 struct kthread_worker *worker;
481
482 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu);
483 if (IS_ERR(worker))
484 return;
485
486 w_data->worker = worker;
487 w_data->count = 0;
488 w_data->cpu = cpu;
489 w_data->clamping = true;
490 set_bit(cpu, cpu_clamping_mask);
491 sched_setscheduler(worker->task, SCHED_FIFO, &sparam);
492 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
493 kthread_init_delayed_work(&w_data->idle_injection_work,
494 clamp_idle_injection_func);
495 kthread_queue_work(w_data->worker, &w_data->balancing_work);
496}
497
498static void stop_power_clamp_worker(unsigned long cpu)
499{
500 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
501
502 if (!w_data->worker)
503 return;
504
505 w_data->clamping = false;
506 /*
507 * Make sure that all works that get queued after this point see
508 * the clamping disabled. The counter part is not needed because
509 * there is an implicit memory barrier when the queued work
510 * is proceed.
511 */
512 smp_wmb();
513 kthread_cancel_work_sync(&w_data->balancing_work);
514 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
515 /*
516 * The balancing work still might be queued here because
517 * the handling of the "clapming" variable, cancel, and queue
518 * operations are not synchronized via a lock. But it is not
519 * a big deal. The balancing work is fast and destroy kthread
520 * will wait for it.
521 */
522 clear_bit(w_data->cpu, cpu_clamping_mask);
523 kthread_destroy_worker(w_data->worker);
524
525 w_data->worker = NULL;
526}
527
528static int start_power_clamp(void)
529{
530 unsigned long cpu;
531
532 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
533 /* prevent cpu hotplug */
534 get_online_cpus();
535
536 /* prefer BSP */
537 control_cpu = 0;
538 if (!cpu_online(control_cpu))
539 control_cpu = smp_processor_id();
540
541 clamping = true;
542 schedule_delayed_work(&poll_pkg_cstate_work, 0);
543
544 /* start one kthread worker per online cpu */
545 for_each_online_cpu(cpu) {
546 start_power_clamp_worker(cpu);
547 }
548 put_online_cpus();
549
550 return 0;
551}
552
553static void end_power_clamp(void)
554{
555 int i;
556
557 /*
558 * Block requeuing in all the kthread workers. They will flush and
559 * stop faster.
560 */
561 clamping = false;
562 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
563 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
564 pr_debug("clamping worker for cpu %d alive, destroy\n",
565 i);
566 stop_power_clamp_worker(i);
567 }
568 }
569}
570
571static int powerclamp_cpu_online(unsigned int cpu)
572{
573 if (clamping == false)
574 return 0;
575 start_power_clamp_worker(cpu);
576 /* prefer BSP as controlling CPU */
577 if (cpu == 0) {
578 control_cpu = 0;
579 smp_mb();
580 }
581 return 0;
582}
583
584static int powerclamp_cpu_predown(unsigned int cpu)
585{
586 if (clamping == false)
587 return 0;
588
589 stop_power_clamp_worker(cpu);
590 if (cpu != control_cpu)
591 return 0;
592
593 control_cpu = cpumask_first(cpu_online_mask);
594 if (control_cpu == cpu)
595 control_cpu = cpumask_next(cpu, cpu_online_mask);
596 smp_mb();
597 return 0;
598}
599
600static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
601 unsigned long *state)
602{
603 *state = MAX_TARGET_RATIO;
604
605 return 0;
606}
607
608static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
609 unsigned long *state)
610{
611 if (true == clamping)
612 *state = pkg_cstate_ratio_cur;
613 else
614 /* to save power, do not poll idle ratio while not clamping */
615 *state = -1; /* indicates invalid state */
616
617 return 0;
618}
619
620static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
621 unsigned long new_target_ratio)
622{
623 int ret = 0;
624
625 new_target_ratio = clamp(new_target_ratio, 0UL,
626 (unsigned long) (MAX_TARGET_RATIO-1));
627 if (set_target_ratio == 0 && new_target_ratio > 0) {
628 pr_info("Start idle injection to reduce power\n");
629 set_target_ratio = new_target_ratio;
630 ret = start_power_clamp();
631 goto exit_set;
632 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
633 pr_info("Stop forced idle injection\n");
634 end_power_clamp();
635 set_target_ratio = 0;
636 } else /* adjust currently running */ {
637 set_target_ratio = new_target_ratio;
638 /* make new set_target_ratio visible to other cpus */
639 smp_mb();
640 }
641
642exit_set:
643 return ret;
644}
645
646/* bind to generic thermal layer as cooling device*/
647static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
648 .get_max_state = powerclamp_get_max_state,
649 .get_cur_state = powerclamp_get_cur_state,
650 .set_cur_state = powerclamp_set_cur_state,
651};
652
653static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
654 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
655 {}
656};
657MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
658
659static int __init powerclamp_probe(void)
660{
661
662 if (!x86_match_cpu(intel_powerclamp_ids)) {
663 pr_err("CPU does not support MWAIT\n");
664 return -ENODEV;
665 }
666
667 /* The goal for idle time alignment is to achieve package cstate. */
668 if (!has_pkg_state_counter()) {
669 pr_info("No package C-state available\n");
670 return -ENODEV;
671 }
672
673 /* find the deepest mwait value */
674 find_target_mwait();
675
676 return 0;
677}
678
679static int powerclamp_debug_show(struct seq_file *m, void *unused)
680{
681 int i = 0;
682
683 seq_printf(m, "controlling cpu: %d\n", control_cpu);
684 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
685 for (i = 0; i < MAX_TARGET_RATIO; i++) {
686 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
687 i,
688 cal_data[i].confidence,
689 cal_data[i].steady_comp,
690 cal_data[i].dynamic_comp);
691 }
692
693 return 0;
694}
695
696DEFINE_SHOW_ATTRIBUTE(powerclamp_debug);
697
698static inline void powerclamp_create_debug_files(void)
699{
700 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
701
702 debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, cal_data,
703 &powerclamp_debug_fops);
704}
705
706static enum cpuhp_state hp_state;
707
708static int __init powerclamp_init(void)
709{
710 int retval;
711 int bitmap_size;
712
713 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
714 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
715 if (!cpu_clamping_mask)
716 return -ENOMEM;
717
718 /* probe cpu features and ids here */
719 retval = powerclamp_probe();
720 if (retval)
721 goto exit_free;
722
723 /* set default limit, maybe adjusted during runtime based on feedback */
724 window_size = 2;
725 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
726 "thermal/intel_powerclamp:online",
727 powerclamp_cpu_online,
728 powerclamp_cpu_predown);
729 if (retval < 0)
730 goto exit_free;
731
732 hp_state = retval;
733
734 worker_data = alloc_percpu(struct powerclamp_worker_data);
735 if (!worker_data) {
736 retval = -ENOMEM;
737 goto exit_unregister;
738 }
739
740 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
741 &powerclamp_cooling_ops);
742 if (IS_ERR(cooling_dev)) {
743 retval = -ENODEV;
744 goto exit_free_thread;
745 }
746
747 if (!duration)
748 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
749
750 powerclamp_create_debug_files();
751
752 return 0;
753
754exit_free_thread:
755 free_percpu(worker_data);
756exit_unregister:
757 cpuhp_remove_state_nocalls(hp_state);
758exit_free:
759 kfree(cpu_clamping_mask);
760 return retval;
761}
762module_init(powerclamp_init);
763
764static void __exit powerclamp_exit(void)
765{
766 end_power_clamp();
767 cpuhp_remove_state_nocalls(hp_state);
768 free_percpu(worker_data);
769 thermal_cooling_device_unregister(cooling_dev);
770 kfree(cpu_clamping_mask);
771
772 cancel_delayed_work_sync(&poll_pkg_cstate_work);
773 debugfs_remove_recursive(debug_dir);
774}
775module_exit(powerclamp_exit);
776
777MODULE_LICENSE("GPL");
778MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
779MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
780MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");