Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
   2/*
   3 * Copyright (C) 2005-2014 Intel Corporation
   4 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5/*
   6 * Please use this file (commands.h) only for uCode API definitions.
   7 * Please use iwl-xxxx-hw.h for hardware-related definitions.
   8 * Please use dev.h for driver implementation definitions.
   9 */
  10
  11#ifndef __iwl_commands_h__
  12#define __iwl_commands_h__
  13
  14#include <linux/ieee80211.h>
  15#include <linux/types.h>
  16
  17
  18enum {
  19	REPLY_ALIVE = 0x1,
  20	REPLY_ERROR = 0x2,
  21	REPLY_ECHO = 0x3,		/* test command */
  22
  23	/* RXON and QOS commands */
  24	REPLY_RXON = 0x10,
  25	REPLY_RXON_ASSOC = 0x11,
  26	REPLY_QOS_PARAM = 0x13,
  27	REPLY_RXON_TIMING = 0x14,
  28
  29	/* Multi-Station support */
  30	REPLY_ADD_STA = 0x18,
  31	REPLY_REMOVE_STA = 0x19,
  32	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
  33	REPLY_TXFIFO_FLUSH = 0x1e,
  34
  35	/* Security */
  36	REPLY_WEPKEY = 0x20,
  37
  38	/* RX, TX, LEDs */
  39	REPLY_TX = 0x1c,
  40	REPLY_LEDS_CMD = 0x48,
  41	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
  42
  43	/* WiMAX coexistence */
  44	COEX_PRIORITY_TABLE_CMD = 0x5a,
  45	COEX_MEDIUM_NOTIFICATION = 0x5b,
  46	COEX_EVENT_CMD = 0x5c,
  47
  48	/* Calibration */
  49	TEMPERATURE_NOTIFICATION = 0x62,
  50	CALIBRATION_CFG_CMD = 0x65,
  51	CALIBRATION_RES_NOTIFICATION = 0x66,
  52	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
  53
  54	/* 802.11h related */
  55	REPLY_QUIET_CMD = 0x71,		/* not used */
  56	REPLY_CHANNEL_SWITCH = 0x72,
  57	CHANNEL_SWITCH_NOTIFICATION = 0x73,
  58	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
  59	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
  60
  61	/* Power Management */
  62	POWER_TABLE_CMD = 0x77,
  63	PM_SLEEP_NOTIFICATION = 0x7A,
  64	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
  65
  66	/* Scan commands and notifications */
  67	REPLY_SCAN_CMD = 0x80,
  68	REPLY_SCAN_ABORT_CMD = 0x81,
  69	SCAN_START_NOTIFICATION = 0x82,
  70	SCAN_RESULTS_NOTIFICATION = 0x83,
  71	SCAN_COMPLETE_NOTIFICATION = 0x84,
  72
  73	/* IBSS/AP commands */
  74	BEACON_NOTIFICATION = 0x90,
  75	REPLY_TX_BEACON = 0x91,
  76	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
  77
  78	/* Miscellaneous commands */
  79	REPLY_TX_POWER_DBM_CMD = 0x95,
  80	QUIET_NOTIFICATION = 0x96,		/* not used */
  81	REPLY_TX_PWR_TABLE_CMD = 0x97,
  82	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
  83	TX_ANT_CONFIGURATION_CMD = 0x98,
  84	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
  85
  86	/* Bluetooth device coexistence config command */
  87	REPLY_BT_CONFIG = 0x9b,
  88
  89	/* Statistics */
  90	REPLY_STATISTICS_CMD = 0x9c,
  91	STATISTICS_NOTIFICATION = 0x9d,
  92
  93	/* RF-KILL commands and notifications */
  94	REPLY_CARD_STATE_CMD = 0xa0,
  95	CARD_STATE_NOTIFICATION = 0xa1,
  96
  97	/* Missed beacons notification */
  98	MISSED_BEACONS_NOTIFICATION = 0xa2,
  99
 100	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
 101	SENSITIVITY_CMD = 0xa8,
 102	REPLY_PHY_CALIBRATION_CMD = 0xb0,
 103	REPLY_RX_PHY_CMD = 0xc0,
 104	REPLY_RX_MPDU_CMD = 0xc1,
 105	REPLY_RX = 0xc3,
 106	REPLY_COMPRESSED_BA = 0xc5,
 107
 108	/* BT Coex */
 109	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
 110	REPLY_BT_COEX_PROT_ENV = 0xcd,
 111	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
 112
 113	/* PAN commands */
 114	REPLY_WIPAN_PARAMS = 0xb2,
 115	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
 116	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
 117	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
 118	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
 119	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
 120	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
 121	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
 122	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
 123
 124	REPLY_WOWLAN_PATTERNS = 0xe0,
 125	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
 126	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
 127	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
 128	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
 129	REPLY_WOWLAN_GET_STATUS = 0xe5,
 130	REPLY_D3_CONFIG = 0xd3,
 131
 132	REPLY_MAX = 0xff
 133};
 134
 135/*
 136 * Minimum number of queues. MAX_NUM is defined in hw specific files.
 137 * Set the minimum to accommodate
 138 *  - 4 standard TX queues
 139 *  - the command queue
 140 *  - 4 PAN TX queues
 141 *  - the PAN multicast queue, and
 142 *  - the AUX (TX during scan dwell) queue.
 143 */
 144#define IWL_MIN_NUM_QUEUES	11
 145
 146/*
 147 * Command queue depends on iPAN support.
 148 */
 149#define IWL_DEFAULT_CMD_QUEUE_NUM	4
 150#define IWL_IPAN_CMD_QUEUE_NUM		9
 151
 152#define IWL_TX_FIFO_BK		0	/* shared */
 153#define IWL_TX_FIFO_BE		1
 154#define IWL_TX_FIFO_VI		2	/* shared */
 155#define IWL_TX_FIFO_VO		3
 156#define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
 157#define IWL_TX_FIFO_BE_IPAN	4
 158#define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
 159#define IWL_TX_FIFO_VO_IPAN	5
 160/* re-uses the VO FIFO, uCode will properly flush/schedule */
 161#define IWL_TX_FIFO_AUX		5
 162#define IWL_TX_FIFO_UNUSED	255
 163
 164#define IWLAGN_CMD_FIFO_NUM	7
 165
 166/*
 167 * This queue number is required for proper operation
 168 * because the ucode will stop/start the scheduler as
 169 * required.
 170 */
 171#define IWL_IPAN_MCAST_QUEUE	8
 172
 173/******************************************************************************
 174 * (0)
 175 * Commonly used structures and definitions:
 176 * Command header, rate_n_flags, txpower
 177 *
 178 *****************************************************************************/
 179
 180/**
 181 * iwlagn rate_n_flags bit fields
 182 *
 183 * rate_n_flags format is used in following iwlagn commands:
 184 *  REPLY_RX (response only)
 185 *  REPLY_RX_MPDU (response only)
 186 *  REPLY_TX (both command and response)
 187 *  REPLY_TX_LINK_QUALITY_CMD
 188 *
 189 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 190 *  2-0:  0)   6 Mbps
 191 *        1)  12 Mbps
 192 *        2)  18 Mbps
 193 *        3)  24 Mbps
 194 *        4)  36 Mbps
 195 *        5)  48 Mbps
 196 *        6)  54 Mbps
 197 *        7)  60 Mbps
 198 *
 199 *  4-3:  0)  Single stream (SISO)
 200 *        1)  Dual stream (MIMO)
 201 *        2)  Triple stream (MIMO)
 202 *
 203 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 204 *
 205 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 206 *  3-0:  0xD)   6 Mbps
 207 *        0xF)   9 Mbps
 208 *        0x5)  12 Mbps
 209 *        0x7)  18 Mbps
 210 *        0x9)  24 Mbps
 211 *        0xB)  36 Mbps
 212 *        0x1)  48 Mbps
 213 *        0x3)  54 Mbps
 214 *
 215 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 216 *  6-0:   10)  1 Mbps
 217 *         20)  2 Mbps
 218 *         55)  5.5 Mbps
 219 *        110)  11 Mbps
 220 */
 221#define RATE_MCS_CODE_MSK 0x7
 222#define RATE_MCS_SPATIAL_POS 3
 223#define RATE_MCS_SPATIAL_MSK 0x18
 224#define RATE_MCS_HT_DUP_POS 5
 225#define RATE_MCS_HT_DUP_MSK 0x20
 226/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
 227#define RATE_MCS_RATE_MSK 0xff
 228
 229/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
 230#define RATE_MCS_FLAGS_POS 8
 231#define RATE_MCS_HT_POS 8
 232#define RATE_MCS_HT_MSK 0x100
 233
 234/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
 235#define RATE_MCS_CCK_POS 9
 236#define RATE_MCS_CCK_MSK 0x200
 237
 238/* Bit 10: (1) Use Green Field preamble */
 239#define RATE_MCS_GF_POS 10
 240#define RATE_MCS_GF_MSK 0x400
 241
 242/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
 243#define RATE_MCS_HT40_POS 11
 244#define RATE_MCS_HT40_MSK 0x800
 245
 246/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
 247#define RATE_MCS_DUP_POS 12
 248#define RATE_MCS_DUP_MSK 0x1000
 249
 250/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
 251#define RATE_MCS_SGI_POS 13
 252#define RATE_MCS_SGI_MSK 0x2000
 253
 254/**
 255 * rate_n_flags Tx antenna masks
 256 * bit14:16
 257 */
 258#define RATE_MCS_ANT_POS	14
 259#define RATE_MCS_ANT_A_MSK	0x04000
 260#define RATE_MCS_ANT_B_MSK	0x08000
 261#define RATE_MCS_ANT_C_MSK	0x10000
 262#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
 263#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
 264#define RATE_ANT_NUM 3
 265
 266#define POWER_TABLE_NUM_ENTRIES			33
 267#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
 268#define POWER_TABLE_CCK_ENTRY			32
 269
 270#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
 271#define IWL_PWR_CCK_ENTRIES			2
 272
 273/**
 274 * struct tx_power_dual_stream
 275 *
 276 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 277 *
 278 * Same format as iwl_tx_power_dual_stream, but __le32
 279 */
 280struct tx_power_dual_stream {
 281	__le32 dw;
 282} __packed;
 283
 284/**
 285 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 286 * struct iwlagn_tx_power_dbm_cmd
 287 */
 288#define IWLAGN_TX_POWER_AUTO 0x7f
 289#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
 290
 291struct iwlagn_tx_power_dbm_cmd {
 292	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 293	u8 flags;
 294	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 295	u8 reserved;
 296} __packed;
 297
 298/**
 299 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 300 * This command is used to configure valid Tx antenna.
 301 * By default uCode concludes the valid antenna according to the radio flavor.
 302 * This command enables the driver to override/modify this conclusion.
 303 */
 304struct iwl_tx_ant_config_cmd {
 305	__le32 valid;
 306} __packed;
 307
 308/******************************************************************************
 309 * (0a)
 310 * Alive and Error Commands & Responses:
 311 *
 312 *****************************************************************************/
 313
 314#define UCODE_VALID_OK	cpu_to_le32(0x1)
 315
 316/**
 317 * REPLY_ALIVE = 0x1 (response only, not a command)
 318 *
 319 * uCode issues this "alive" notification once the runtime image is ready
 320 * to receive commands from the driver.  This is the *second* "alive"
 321 * notification that the driver will receive after rebooting uCode;
 322 * this "alive" is indicated by subtype field != 9.
 323 *
 324 * See comments documenting "BSM" (bootstrap state machine).
 325 *
 326 * This response includes two pointers to structures within the device's
 327 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 328 *
 329 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 330 *     a 256-entry history of uCode execution within a circular buffer.
 331 *     Its header format is:
 332 *
 333 *	__le32 log_size;     log capacity (in number of entries)
 334 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 335 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 336 *      __le32 write_index;  next circular buffer entry that uCode would fill
 337 *
 338 *     The header is followed by the circular buffer of log entries.  Entries
 339 *     with timestamps have the following format:
 340 *
 341 *	__le32 event_id;     range 0 - 1500
 342 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 343 *	__le32 data;         event_id-specific data value
 344 *
 345 *     Entries without timestamps contain only event_id and data.
 346 *
 347 *
 348 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 349 *     information about any uCode error that occurs.  For agn, the format
 350 *     of the error log is defined by struct iwl_error_event_table.
 351 *
 352 * The Linux driver can print both logs to the system log when a uCode error
 353 * occurs.
 354 */
 355
 356/*
 357 * Note: This structure is read from the device with IO accesses,
 358 * and the reading already does the endian conversion. As it is
 359 * read with u32-sized accesses, any members with a different size
 360 * need to be ordered correctly though!
 361 */
 362struct iwl_error_event_table {
 363	u32 valid;		/* (nonzero) valid, (0) log is empty */
 364	u32 error_id;		/* type of error */
 365	u32 pc;			/* program counter */
 366	u32 blink1;		/* branch link */
 367	u32 blink2;		/* branch link */
 368	u32 ilink1;		/* interrupt link */
 369	u32 ilink2;		/* interrupt link */
 370	u32 data1;		/* error-specific data */
 371	u32 data2;		/* error-specific data */
 372	u32 line;		/* source code line of error */
 373	u32 bcon_time;		/* beacon timer */
 374	u32 tsf_low;		/* network timestamp function timer */
 375	u32 tsf_hi;		/* network timestamp function timer */
 376	u32 gp1;		/* GP1 timer register */
 377	u32 gp2;		/* GP2 timer register */
 378	u32 gp3;		/* GP3 timer register */
 379	u32 ucode_ver;		/* uCode version */
 380	u32 hw_ver;		/* HW Silicon version */
 381	u32 brd_ver;		/* HW board version */
 382	u32 log_pc;		/* log program counter */
 383	u32 frame_ptr;		/* frame pointer */
 384	u32 stack_ptr;		/* stack pointer */
 385	u32 hcmd;		/* last host command header */
 386	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
 387				 * rxtx_flag */
 388	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
 389				 * host_flag */
 390	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
 391				 * enc_flag */
 392	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
 393				 * time_flag */
 394	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
 395				 * wico interrupt */
 396	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
 397	u32 wait_event;		/* wait event() caller address */
 398	u32 l2p_control;	/* L2pControlField */
 399	u32 l2p_duration;	/* L2pDurationField */
 400	u32 l2p_mhvalid;	/* L2pMhValidBits */
 401	u32 l2p_addr_match;	/* L2pAddrMatchStat */
 402	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
 403				 * (LMPM_PMG_SEL) */
 404	u32 u_timestamp;	/* indicate when the date and time of the
 405				 * compilation */
 406	u32 flow_handler;	/* FH read/write pointers, RX credit */
 407} __packed;
 408
 409struct iwl_alive_resp {
 410	u8 ucode_minor;
 411	u8 ucode_major;
 412	__le16 reserved1;
 413	u8 sw_rev[8];
 414	u8 ver_type;
 415	u8 ver_subtype;			/* not "9" for runtime alive */
 416	__le16 reserved2;
 417	__le32 log_event_table_ptr;	/* SRAM address for event log */
 418	__le32 error_event_table_ptr;	/* SRAM address for error log */
 419	__le32 timestamp;
 420	__le32 is_valid;
 421} __packed;
 422
 423/*
 424 * REPLY_ERROR = 0x2 (response only, not a command)
 425 */
 426struct iwl_error_resp {
 427	__le32 error_type;
 428	u8 cmd_id;
 429	u8 reserved1;
 430	__le16 bad_cmd_seq_num;
 431	__le32 error_info;
 432	__le64 timestamp;
 433} __packed;
 434
 435/******************************************************************************
 436 * (1)
 437 * RXON Commands & Responses:
 438 *
 439 *****************************************************************************/
 440
 441/*
 442 * Rx config defines & structure
 443 */
 444/* rx_config device types  */
 445enum {
 446	RXON_DEV_TYPE_AP = 1,
 447	RXON_DEV_TYPE_ESS = 3,
 448	RXON_DEV_TYPE_IBSS = 4,
 449	RXON_DEV_TYPE_SNIFFER = 6,
 450	RXON_DEV_TYPE_CP = 7,
 451	RXON_DEV_TYPE_2STA = 8,
 452	RXON_DEV_TYPE_P2P = 9,
 453};
 454
 455
 456#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
 457#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
 458#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
 459#define RXON_RX_CHAIN_VALID_POS			(1)
 460#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
 461#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
 462#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
 463#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
 464#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
 465#define RXON_RX_CHAIN_CNT_POS			(10)
 466#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
 467#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
 468#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
 469#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
 470
 471/* rx_config flags */
 472/* band & modulation selection */
 473#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
 474#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
 475/* auto detection enable */
 476#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
 477/* TGg protection when tx */
 478#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
 479/* cck short slot & preamble */
 480#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
 481#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
 482/* antenna selection */
 483#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
 484#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
 485#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
 486#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
 487/* radar detection enable */
 488#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
 489#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
 490/* rx response to host with 8-byte TSF
 491* (according to ON_AIR deassertion) */
 492#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
 493
 494
 495/* HT flags */
 496#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
 497#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
 498
 499#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
 500
 501#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
 502#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
 503
 504#define RXON_FLG_CHANNEL_MODE_POS		(25)
 505#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
 506
 507/* channel mode */
 508enum {
 509	CHANNEL_MODE_LEGACY = 0,
 510	CHANNEL_MODE_PURE_40 = 1,
 511	CHANNEL_MODE_MIXED = 2,
 512	CHANNEL_MODE_RESERVED = 3,
 513};
 514#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
 515#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
 516#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
 517
 518/* CTS to self (if spec allows) flag */
 519#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
 520
 521/* rx_config filter flags */
 522/* accept all data frames */
 523#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
 524/* pass control & management to host */
 525#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
 526/* accept multi-cast */
 527#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
 528/* don't decrypt uni-cast frames */
 529#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
 530/* don't decrypt multi-cast frames */
 531#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
 532/* STA is associated */
 533#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
 534/* transfer to host non bssid beacons in associated state */
 535#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
 536
 537/**
 538 * REPLY_RXON = 0x10 (command, has simple generic response)
 539 *
 540 * RXON tunes the radio tuner to a service channel, and sets up a number
 541 * of parameters that are used primarily for Rx, but also for Tx operations.
 542 *
 543 * NOTE:  When tuning to a new channel, driver must set the
 544 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 545 *        info within the device, including the station tables, tx retry
 546 *        rate tables, and txpower tables.  Driver must build a new station
 547 *        table and txpower table before transmitting anything on the RXON
 548 *        channel.
 549 *
 550 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 551 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 552 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 553 */
 554
 555struct iwl_rxon_cmd {
 556	u8 node_addr[6];
 557	__le16 reserved1;
 558	u8 bssid_addr[6];
 559	__le16 reserved2;
 560	u8 wlap_bssid_addr[6];
 561	__le16 reserved3;
 562	u8 dev_type;
 563	u8 air_propagation;
 564	__le16 rx_chain;
 565	u8 ofdm_basic_rates;
 566	u8 cck_basic_rates;
 567	__le16 assoc_id;
 568	__le32 flags;
 569	__le32 filter_flags;
 570	__le16 channel;
 571	u8 ofdm_ht_single_stream_basic_rates;
 572	u8 ofdm_ht_dual_stream_basic_rates;
 573	u8 ofdm_ht_triple_stream_basic_rates;
 574	u8 reserved5;
 575	__le16 acquisition_data;
 576	__le16 reserved6;
 577} __packed;
 578
 579/*
 580 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 581 */
 582struct iwl_rxon_assoc_cmd {
 583	__le32 flags;
 584	__le32 filter_flags;
 585	u8 ofdm_basic_rates;
 586	u8 cck_basic_rates;
 587	__le16 reserved1;
 588	u8 ofdm_ht_single_stream_basic_rates;
 589	u8 ofdm_ht_dual_stream_basic_rates;
 590	u8 ofdm_ht_triple_stream_basic_rates;
 591	u8 reserved2;
 592	__le16 rx_chain_select_flags;
 593	__le16 acquisition_data;
 594	__le32 reserved3;
 595} __packed;
 596
 597#define IWL_CONN_MAX_LISTEN_INTERVAL	10
 598#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
 599
 600/*
 601 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 602 */
 603struct iwl_rxon_time_cmd {
 604	__le64 timestamp;
 605	__le16 beacon_interval;
 606	__le16 atim_window;
 607	__le32 beacon_init_val;
 608	__le16 listen_interval;
 609	u8 dtim_period;
 610	u8 delta_cp_bss_tbtts;
 611} __packed;
 612
 613/*
 614 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 615 */
 616/**
 617 * struct iwl5000_channel_switch_cmd
 618 * @band: 0- 5.2GHz, 1- 2.4GHz
 619 * @expect_beacon: 0- resume transmits after channel switch
 620 *		   1- wait for beacon to resume transmits
 621 * @channel: new channel number
 622 * @rxon_flags: Rx on flags
 623 * @rxon_filter_flags: filtering parameters
 624 * @switch_time: switch time in extended beacon format
 625 * @reserved: reserved bytes
 626 */
 627struct iwl5000_channel_switch_cmd {
 628	u8 band;
 629	u8 expect_beacon;
 630	__le16 channel;
 631	__le32 rxon_flags;
 632	__le32 rxon_filter_flags;
 633	__le32 switch_time;
 634	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 635} __packed;
 636
 637/**
 638 * struct iwl6000_channel_switch_cmd
 639 * @band: 0- 5.2GHz, 1- 2.4GHz
 640 * @expect_beacon: 0- resume transmits after channel switch
 641 *		   1- wait for beacon to resume transmits
 642 * @channel: new channel number
 643 * @rxon_flags: Rx on flags
 644 * @rxon_filter_flags: filtering parameters
 645 * @switch_time: switch time in extended beacon format
 646 * @reserved: reserved bytes
 647 */
 648struct iwl6000_channel_switch_cmd {
 649	u8 band;
 650	u8 expect_beacon;
 651	__le16 channel;
 652	__le32 rxon_flags;
 653	__le32 rxon_filter_flags;
 654	__le32 switch_time;
 655	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 656} __packed;
 657
 658/*
 659 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 660 */
 661struct iwl_csa_notification {
 662	__le16 band;
 663	__le16 channel;
 664	__le32 status;		/* 0 - OK, 1 - fail */
 665} __packed;
 666
 667/******************************************************************************
 668 * (2)
 669 * Quality-of-Service (QOS) Commands & Responses:
 670 *
 671 *****************************************************************************/
 672
 673/**
 674 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 675 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 676 *
 677 * @cw_min: Contention window, start value in numbers of slots.
 678 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 679 * @cw_max: Contention window, max value in numbers of slots.
 680 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 681 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 682 *          performing random backoff timing prior to Tx).  Device default 1.
 683 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 684 *
 685 * Device will automatically increase contention window by (2*CW) + 1 for each
 686 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 687 * value, to cap the CW value.
 688 */
 689struct iwl_ac_qos {
 690	__le16 cw_min;
 691	__le16 cw_max;
 692	u8 aifsn;
 693	u8 reserved1;
 694	__le16 edca_txop;
 695} __packed;
 696
 697/* QoS flags defines */
 698#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
 699#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
 700#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
 701
 702/* Number of Access Categories (AC) (EDCA), queues 0..3 */
 703#define AC_NUM                4
 704
 705/*
 706 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 707 *
 708 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 709 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 710 */
 711struct iwl_qosparam_cmd {
 712	__le32 qos_flags;
 713	struct iwl_ac_qos ac[AC_NUM];
 714} __packed;
 715
 716/******************************************************************************
 717 * (3)
 718 * Add/Modify Stations Commands & Responses:
 719 *
 720 *****************************************************************************/
 721/*
 722 * Multi station support
 723 */
 724
 725/* Special, dedicated locations within device's station table */
 726#define	IWL_AP_ID		0
 727#define	IWL_AP_ID_PAN		1
 728#define	IWL_STA_ID		2
 729#define IWLAGN_PAN_BCAST_ID	14
 730#define IWLAGN_BROADCAST_ID	15
 731#define	IWLAGN_STATION_COUNT	16
 732
 733#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
 734
 735#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
 736#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
 737#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
 738#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
 739#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
 740#define STA_FLG_MAX_AGG_SIZE_POS	(19)
 741#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
 742#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
 743#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
 744#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
 745#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
 746
 747/* Use in mode field.  1: modify existing entry, 0: add new station entry */
 748#define STA_CONTROL_MODIFY_MSK		0x01
 749
 750/* key flags __le16*/
 751#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
 752#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
 753#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
 754#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
 755#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
 756
 757#define STA_KEY_FLG_KEYID_POS	8
 758#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
 759/* wep key is either from global key (0) or from station info array (1) */
 760#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
 761
 762/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
 763#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
 764#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
 765#define STA_KEY_MAX_NUM		8
 766#define STA_KEY_MAX_NUM_PAN	16
 767/* must not match WEP_INVALID_OFFSET */
 768#define IWLAGN_HW_KEY_DEFAULT	0xfe
 769
 770/* Flags indicate whether to modify vs. don't change various station params */
 771#define	STA_MODIFY_KEY_MASK		0x01
 772#define	STA_MODIFY_TID_DISABLE_TX	0x02
 773#define	STA_MODIFY_TX_RATE_MSK		0x04
 774#define STA_MODIFY_ADDBA_TID_MSK	0x08
 775#define STA_MODIFY_DELBA_TID_MSK	0x10
 776#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
 777
 778/* agn */
 779struct iwl_keyinfo {
 780	__le16 key_flags;
 781	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
 782	u8 reserved1;
 783	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
 784	u8 key_offset;
 785	u8 reserved2;
 786	u8 key[16];		/* 16-byte unicast decryption key */
 787	__le64 tx_secur_seq_cnt;
 788	__le64 hw_tkip_mic_rx_key;
 789	__le64 hw_tkip_mic_tx_key;
 790} __packed;
 791
 792/**
 793 * struct sta_id_modify
 794 * @addr[ETH_ALEN]: station's MAC address
 795 * @sta_id: index of station in uCode's station table
 796 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 797 *
 798 * Driver selects unused table index when adding new station,
 799 * or the index to a pre-existing station entry when modifying that station.
 800 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 801 *
 802 * modify_mask flags select which parameters to modify vs. leave alone.
 803 */
 804struct sta_id_modify {
 805	u8 addr[ETH_ALEN];
 806	__le16 reserved1;
 807	u8 sta_id;
 808	u8 modify_mask;
 809	__le16 reserved2;
 810} __packed;
 811
 812/*
 813 * REPLY_ADD_STA = 0x18 (command)
 814 *
 815 * The device contains an internal table of per-station information,
 816 * with info on security keys, aggregation parameters, and Tx rates for
 817 * initial Tx attempt and any retries (agn devices uses
 818 * REPLY_TX_LINK_QUALITY_CMD,
 819 *
 820 * REPLY_ADD_STA sets up the table entry for one station, either creating
 821 * a new entry, or modifying a pre-existing one.
 822 *
 823 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 824 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 825 *        new station table before transmitting anything on the RXON channel
 826 *        (except active scans or active measurements; those commands carry
 827 *        their own txpower/rate setup data).
 828 *
 829 *        When getting started on a new channel, driver must set up the
 830 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 831 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 832 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 833 *        are all that are needed for a BSS client station.  If the device is
 834 *        used as AP, or in an IBSS network, driver must set up station table
 835 *        entries for all STAs in network, starting with index IWL_STA_ID.
 836 */
 837
 838struct iwl_addsta_cmd {
 839	u8 mode;		/* 1: modify existing, 0: add new station */
 840	u8 reserved[3];
 841	struct sta_id_modify sta;
 842	struct iwl_keyinfo key;
 843	__le32 station_flags;		/* STA_FLG_* */
 844	__le32 station_flags_msk;	/* STA_FLG_* */
 845
 846	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
 847	 * corresponding to bit (e.g. bit 5 controls TID 5).
 848	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
 849	__le16 tid_disable_tx;
 850	__le16 legacy_reserved;
 851
 852	/* TID for which to add block-ack support.
 853	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 854	u8 add_immediate_ba_tid;
 855
 856	/* TID for which to remove block-ack support.
 857	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
 858	u8 remove_immediate_ba_tid;
 859
 860	/* Starting Sequence Number for added block-ack support.
 861	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 862	__le16 add_immediate_ba_ssn;
 863
 864	/*
 865	 * Number of packets OK to transmit to station even though
 866	 * it is asleep -- used to synchronise PS-poll and u-APSD
 867	 * responses while ucode keeps track of STA sleep state.
 868	 */
 869	__le16 sleep_tx_count;
 870
 871	__le16 reserved2;
 872} __packed;
 873
 874
 875#define ADD_STA_SUCCESS_MSK		0x1
 876#define ADD_STA_NO_ROOM_IN_TABLE	0x2
 877#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
 878#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
 879/*
 880 * REPLY_ADD_STA = 0x18 (response)
 881 */
 882struct iwl_add_sta_resp {
 883	u8 status;	/* ADD_STA_* */
 884} __packed;
 885
 886#define REM_STA_SUCCESS_MSK              0x1
 887/*
 888 *  REPLY_REM_STA = 0x19 (response)
 889 */
 890struct iwl_rem_sta_resp {
 891	u8 status;
 892} __packed;
 893
 894/*
 895 *  REPLY_REM_STA = 0x19 (command)
 896 */
 897struct iwl_rem_sta_cmd {
 898	u8 num_sta;     /* number of removed stations */
 899	u8 reserved[3];
 900	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
 901	u8 reserved2[2];
 902} __packed;
 903
 904
 905/* WiFi queues mask */
 906#define IWL_SCD_BK_MSK			BIT(0)
 907#define IWL_SCD_BE_MSK			BIT(1)
 908#define IWL_SCD_VI_MSK			BIT(2)
 909#define IWL_SCD_VO_MSK			BIT(3)
 910#define IWL_SCD_MGMT_MSK		BIT(3)
 911
 912/* PAN queues mask */
 913#define IWL_PAN_SCD_BK_MSK		BIT(4)
 914#define IWL_PAN_SCD_BE_MSK		BIT(5)
 915#define IWL_PAN_SCD_VI_MSK		BIT(6)
 916#define IWL_PAN_SCD_VO_MSK		BIT(7)
 917#define IWL_PAN_SCD_MGMT_MSK		BIT(7)
 918#define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
 919
 920#define IWL_AGG_TX_QUEUE_MSK		0xffc00
 921
 922#define IWL_DROP_ALL			BIT(1)
 923
 924/*
 925 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
 926 *
 927 * When using full FIFO flush this command checks the scheduler HW block WR/RD
 928 * pointers to check if all the frames were transferred by DMA into the
 929 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
 930 * empty the command can finish.
 931 * This command is used to flush the TXFIFO from transmit commands, it may
 932 * operate on single or multiple queues, the command queue can't be flushed by
 933 * this command. The command response is returned when all the queue flush
 934 * operations are done. Each TX command flushed return response with the FLUSH
 935 * status set in the TX response status. When FIFO flush operation is used,
 936 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
 937 * are set.
 938 *
 939 * @queue_control: bit mask for which queues to flush
 940 * @flush_control: flush controls
 941 *	0: Dump single MSDU
 942 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
 943 *	2: Dump all FIFO
 944 */
 945struct iwl_txfifo_flush_cmd_v3 {
 946	__le32 queue_control;
 947	__le16 flush_control;
 948	__le16 reserved;
 949} __packed;
 950
 951struct iwl_txfifo_flush_cmd_v2 {
 952	__le16 queue_control;
 953	__le16 flush_control;
 954} __packed;
 955
 956/*
 957 * REPLY_WEP_KEY = 0x20
 958 */
 959struct iwl_wep_key {
 960	u8 key_index;
 961	u8 key_offset;
 962	u8 reserved1[2];
 963	u8 key_size;
 964	u8 reserved2[3];
 965	u8 key[16];
 966} __packed;
 967
 968struct iwl_wep_cmd {
 969	u8 num_keys;
 970	u8 global_key_type;
 971	u8 flags;
 972	u8 reserved;
 973	struct iwl_wep_key key[];
 974} __packed;
 975
 976#define WEP_KEY_WEP_TYPE 1
 977#define WEP_KEYS_MAX 4
 978#define WEP_INVALID_OFFSET 0xff
 979#define WEP_KEY_LEN_64 5
 980#define WEP_KEY_LEN_128 13
 981
 982/******************************************************************************
 983 * (4)
 984 * Rx Responses:
 985 *
 986 *****************************************************************************/
 987
 988#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
 989#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
 990
 991#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
 992#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
 993#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
 994#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
 995#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
 996#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
 997#define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
 998
 999#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1000#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1001#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1002#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1003#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1004#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1005
1006#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1007#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1008
1009#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1010#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1011#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1012#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1013#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1014
1015#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1016#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1017#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1018#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1019
1020
1021#define IWLAGN_RX_RES_PHY_CNT 8
1022#define IWLAGN_RX_RES_AGC_IDX     1
1023#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1024#define IWLAGN_RX_RES_RSSI_C_IDX  3
1025#define IWLAGN_OFDM_AGC_MSK 0xfe00
1026#define IWLAGN_OFDM_AGC_BIT_POS 9
1027#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1028#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1029#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1030#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1031#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1032#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1033#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1034#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1035#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1036
1037struct iwlagn_non_cfg_phy {
1038	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1039} __packed;
1040
1041
1042/*
1043 * REPLY_RX = 0xc3 (response only, not a command)
1044 * Used only for legacy (non 11n) frames.
1045 */
1046struct iwl_rx_phy_res {
1047	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1048	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1049	u8 stat_id;		/* configurable DSP phy data set ID */
1050	u8 reserved1;
1051	__le64 timestamp;	/* TSF at on air rise */
1052	__le32 beacon_time_stamp; /* beacon at on-air rise */
1053	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1054	__le16 channel;		/* channel number */
1055	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1056	__le32 rate_n_flags;	/* RATE_MCS_* */
1057	__le16 byte_count;	/* frame's byte-count */
1058	__le16 frame_time;	/* frame's time on the air */
1059} __packed;
1060
1061struct iwl_rx_mpdu_res_start {
1062	__le16 byte_count;
1063	__le16 reserved;
1064} __packed;
1065
1066
1067/******************************************************************************
1068 * (5)
1069 * Tx Commands & Responses:
1070 *
1071 * Driver must place each REPLY_TX command into one of the prioritized Tx
1072 * queues in host DRAM, shared between driver and device (see comments for
1073 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1074 * are preparing to transmit, the device pulls the Tx command over the PCI
1075 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1076 * from which data will be transmitted.
1077 *
1078 * uCode handles all timing and protocol related to control frames
1079 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1080 * handle reception of block-acks; uCode updates the host driver via
1081 * REPLY_COMPRESSED_BA.
1082 *
1083 * uCode handles retrying Tx when an ACK is expected but not received.
1084 * This includes trying lower data rates than the one requested in the Tx
1085 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1086 *
1087 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1088 * This command must be executed after every RXON command, before Tx can occur.
1089 *****************************************************************************/
1090
1091/* REPLY_TX Tx flags field */
1092
1093/*
1094 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1095 * before this frame. if CTS-to-self required check
1096 * RXON_FLG_SELF_CTS_EN status.
1097 */
1098#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1099
1100/* 1: Expect ACK from receiving station
1101 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1102 * Set this for unicast frames, but not broadcast/multicast. */
1103#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1104
1105/* For agn devices:
1106 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1107 *    Tx command's initial_rate_index indicates first rate to try;
1108 *    uCode walks through table for additional Tx attempts.
1109 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1110 *    This rate will be used for all Tx attempts; it will not be scaled. */
1111#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1112
1113/* 1: Expect immediate block-ack.
1114 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1115#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1116
1117/* Tx antenna selection field; reserved (0) for agn devices. */
1118#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1119
1120/* 1: Ignore Bluetooth priority for this frame.
1121 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1122#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1123
1124/* 1: uCode overrides sequence control field in MAC header.
1125 * 0: Driver provides sequence control field in MAC header.
1126 * Set this for management frames, non-QOS data frames, non-unicast frames,
1127 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1128#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1129
1130/* 1: This frame is non-last MPDU; more fragments are coming.
1131 * 0: Last fragment, or not using fragmentation. */
1132#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1133
1134/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1135 * 0: No TSF required in outgoing frame.
1136 * Set this for transmitting beacons and probe responses. */
1137#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1138
1139/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1140 *    alignment of frame's payload data field.
1141 * 0: No pad
1142 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1143 * field (but not both).  Driver must align frame data (i.e. data following
1144 * MAC header) to DWORD boundary. */
1145#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1146
1147/* accelerate aggregation support
1148 * 0 - no CCMP encryption; 1 - CCMP encryption */
1149#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1150
1151/* HCCA-AP - disable duration overwriting. */
1152#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1153
1154
1155/*
1156 * TX command security control
1157 */
1158#define TX_CMD_SEC_WEP  	0x01
1159#define TX_CMD_SEC_CCM  	0x02
1160#define TX_CMD_SEC_TKIP		0x03
1161#define TX_CMD_SEC_MSK		0x03
1162#define TX_CMD_SEC_SHIFT	6
1163#define TX_CMD_SEC_KEY128	0x08
1164
1165/*
1166 * REPLY_TX = 0x1c (command)
1167 */
1168
1169/*
1170 * Used for managing Tx retries when expecting block-acks.
1171 * Driver should set these fields to 0.
1172 */
1173struct iwl_dram_scratch {
1174	u8 try_cnt;		/* Tx attempts */
1175	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1176	__le16 reserved;
1177} __packed;
1178
1179struct iwl_tx_cmd {
1180	/*
1181	 * MPDU byte count:
1182	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1183	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1184	 * + Data payload
1185	 * + 8-byte MIC (not used for CCM/WEP)
1186	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1187	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1188	 * Range: 14-2342 bytes.
1189	 */
1190	__le16 len;
1191
1192	/*
1193	 * MPDU or MSDU byte count for next frame.
1194	 * Used for fragmentation and bursting, but not 11n aggregation.
1195	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1196	 */
1197	__le16 next_frame_len;
1198
1199	__le32 tx_flags;	/* TX_CMD_FLG_* */
1200
1201	/* uCode may modify this field of the Tx command (in host DRAM!).
1202	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1203	struct iwl_dram_scratch scratch;
1204
1205	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1206	__le32 rate_n_flags;	/* RATE_MCS_* */
1207
1208	/* Index of destination station in uCode's station table */
1209	u8 sta_id;
1210
1211	/* Type of security encryption:  CCM or TKIP */
1212	u8 sec_ctl;		/* TX_CMD_SEC_* */
1213
1214	/*
1215	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1216	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1217	 * data frames, this field may be used to selectively reduce initial
1218	 * rate (via non-0 value) for special frames (e.g. management), while
1219	 * still supporting rate scaling for all frames.
1220	 */
1221	u8 initial_rate_index;
1222	u8 reserved;
1223	u8 key[16];
1224	__le16 next_frame_flags;
1225	__le16 reserved2;
1226	union {
1227		__le32 life_time;
1228		__le32 attempt;
1229	} stop_time;
1230
1231	/* Host DRAM physical address pointer to "scratch" in this command.
1232	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1233	__le32 dram_lsb_ptr;
1234	u8 dram_msb_ptr;
1235
1236	u8 rts_retry_limit;	/*byte 50 */
1237	u8 data_retry_limit;	/*byte 51 */
1238	u8 tid_tspec;
1239	union {
1240		__le16 pm_frame_timeout;
1241		__le16 attempt_duration;
1242	} timeout;
1243
1244	/*
1245	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1246	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1247	 */
1248	__le16 driver_txop;
1249
1250	/*
1251	 * MAC header goes here, followed by 2 bytes padding if MAC header
1252	 * length is 26 or 30 bytes, followed by payload data
1253	 */
1254	union {
1255		DECLARE_FLEX_ARRAY(u8, payload);
1256		DECLARE_FLEX_ARRAY(struct ieee80211_hdr, hdr);
1257	};
1258} __packed;
1259
1260/*
1261 * TX command response is sent after *agn* transmission attempts.
1262 *
1263 * both postpone and abort status are expected behavior from uCode. there is
1264 * no special operation required from driver; except for RFKILL_FLUSH,
1265 * which required tx flush host command to flush all the tx frames in queues
1266 */
1267enum {
1268	TX_STATUS_SUCCESS = 0x01,
1269	TX_STATUS_DIRECT_DONE = 0x02,
1270	/* postpone TX */
1271	TX_STATUS_POSTPONE_DELAY = 0x40,
1272	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1273	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1274	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1275	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1276	/* abort TX */
1277	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1278	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1279	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1280	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1281	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1282	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1283	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1284	TX_STATUS_FAIL_DEST_PS = 0x88,
1285	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1286	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1287	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1288	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1289	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1290	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1291	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1292	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1293	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1294};
1295
1296#define	TX_PACKET_MODE_REGULAR		0x0000
1297#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1298#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1299
1300enum {
1301	TX_POWER_PA_NOT_ACTIVE = 0x0,
1302};
1303
1304enum {
1305	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1306	TX_STATUS_DELAY_MSK = 0x00000040,
1307	TX_STATUS_ABORT_MSK = 0x00000080,
1308	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1309	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1310	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1311	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1312	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1313};
1314
1315/* *******************************
1316 * TX aggregation status
1317 ******************************* */
1318
1319enum {
1320	AGG_TX_STATE_TRANSMITTED = 0x00,
1321	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1322	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1323	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1324	AGG_TX_STATE_ABORT_MSK = 0x08,
1325	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1326	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1327	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1328	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1329	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1330	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1331	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1332	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1333};
1334
1335#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1336#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1337#define AGG_TX_TRY_POS		12
1338
1339#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1340				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1341				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1342
1343/* # tx attempts for first frame in aggregation */
1344#define AGG_TX_STATE_TRY_CNT_POS 12
1345#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1346
1347/* Command ID and sequence number of Tx command for this frame */
1348#define AGG_TX_STATE_SEQ_NUM_POS 16
1349#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1350
1351/*
1352 * REPLY_TX = 0x1c (response)
1353 *
1354 * This response may be in one of two slightly different formats, indicated
1355 * by the frame_count field:
1356 *
1357 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1358 *     a single frame.  Multiple attempts, at various bit rates, may have
1359 *     been made for this frame.
1360 *
1361 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1362 *     2 or more frames that used block-acknowledge.  All frames were
1363 *     transmitted at same rate.  Rate scaling may have been used if first
1364 *     frame in this new agg block failed in previous agg block(s).
1365 *
1366 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1367 *     block-ack has not been received by the time the agn device records
1368 *     this status.
1369 *     This status relates to reasons the tx might have been blocked or aborted
1370 *     within the sending station (this agn device), rather than whether it was
1371 *     received successfully by the destination station.
1372 */
1373struct agg_tx_status {
1374	__le16 status;
1375	__le16 sequence;
1376} __packed;
1377
1378/* refer to ra_tid */
1379#define IWLAGN_TX_RES_TID_POS	0
1380#define IWLAGN_TX_RES_TID_MSK	0x0f
1381#define IWLAGN_TX_RES_RA_POS	4
1382#define IWLAGN_TX_RES_RA_MSK	0xf0
1383
1384struct iwlagn_tx_resp {
1385	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1386	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1387	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1388	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1389
1390	/* For non-agg:  Rate at which frame was successful.
1391	 * For agg:  Rate at which all frames were transmitted. */
1392	__le32 rate_n_flags;	/* RATE_MCS_*  */
1393
1394	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1395	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1396	__le16 wireless_media_time;	/* uSecs */
1397
1398	u8 pa_status;		/* RF power amplifier measurement (not used) */
1399	u8 pa_integ_res_a[3];
1400	u8 pa_integ_res_b[3];
1401	u8 pa_integ_res_C[3];
1402
1403	__le32 tfd_info;
1404	__le16 seq_ctl;
1405	__le16 byte_cnt;
1406	u8 tlc_info;
1407	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1408	__le16 frame_ctrl;
1409	/*
1410	 * For non-agg:  frame status TX_STATUS_*
1411	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1412	 *           fields follow this one, up to frame_count.
1413	 *           Bit fields:
1414	 *           11- 0:  AGG_TX_STATE_* status code
1415	 *           15-12:  Retry count for 1st frame in aggregation (retries
1416	 *                   occur if tx failed for this frame when it was a
1417	 *                   member of a previous aggregation block).  If rate
1418	 *                   scaling is used, retry count indicates the rate
1419	 *                   table entry used for all frames in the new agg.
1420	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1421	 */
1422	struct agg_tx_status status;	/* TX status (in aggregation -
1423					 * status of 1st frame) */
1424} __packed;
1425/*
1426 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1427 *
1428 * Reports Block-Acknowledge from recipient station
1429 */
1430struct iwl_compressed_ba_resp {
1431	__le32 sta_addr_lo32;
1432	__le16 sta_addr_hi16;
1433	__le16 reserved;
1434
1435	/* Index of recipient (BA-sending) station in uCode's station table */
1436	u8 sta_id;
1437	u8 tid;
1438	__le16 seq_ctl;
1439	__le64 bitmap;
1440	__le16 scd_flow;
1441	__le16 scd_ssn;
1442	u8 txed;	/* number of frames sent */
1443	u8 txed_2_done; /* number of frames acked */
1444	__le16 reserved1;
1445} __packed;
1446
1447/*
1448 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1449 *
1450 */
1451
1452/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1453#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1454
1455/* # of EDCA prioritized tx fifos */
1456#define  LINK_QUAL_AC_NUM AC_NUM
1457
1458/* # entries in rate scale table to support Tx retries */
1459#define  LINK_QUAL_MAX_RETRY_NUM 16
1460
1461/* Tx antenna selection values */
1462#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1463#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1464#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1465
1466
1467/**
1468 * struct iwl_link_qual_general_params
1469 *
1470 * Used in REPLY_TX_LINK_QUALITY_CMD
1471 */
1472struct iwl_link_qual_general_params {
1473	u8 flags;
1474
1475	/* No entries at or above this (driver chosen) index contain MIMO */
1476	u8 mimo_delimiter;
1477
1478	/* Best single antenna to use for single stream (legacy, SISO). */
1479	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1480
1481	/* Best antennas to use for MIMO */
1482	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1483
1484	/*
1485	 * If driver needs to use different initial rates for different
1486	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1487	 * this table will set that up, by indicating the indexes in the
1488	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1489	 * Otherwise, driver should set all entries to 0.
1490	 *
1491	 * Entry usage:
1492	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1493	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1494	 */
1495	u8 start_rate_index[LINK_QUAL_AC_NUM];
1496} __packed;
1497
1498#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1499#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1500#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1501
1502#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1503#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1504#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1505
1506#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1507#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1508#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1509
1510/**
1511 * struct iwl_link_qual_agg_params
1512 *
1513 * Used in REPLY_TX_LINK_QUALITY_CMD
1514 */
1515struct iwl_link_qual_agg_params {
1516
1517	/*
1518	 *Maximum number of uSec in aggregation.
1519	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1520	 */
1521	__le16 agg_time_limit;
1522
1523	/*
1524	 * Number of Tx retries allowed for a frame, before that frame will
1525	 * no longer be considered for the start of an aggregation sequence
1526	 * (scheduler will then try to tx it as single frame).
1527	 * Driver should set this to 3.
1528	 */
1529	u8 agg_dis_start_th;
1530
1531	/*
1532	 * Maximum number of frames in aggregation.
1533	 * 0 = no limit (default).  1 = no aggregation.
1534	 * Other values = max # frames in aggregation.
1535	 */
1536	u8 agg_frame_cnt_limit;
1537
1538	__le32 reserved;
1539} __packed;
1540
1541/*
1542 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1543 *
1544 * For agn devices
1545 *
1546 * Each station in the agn device's internal station table has its own table
1547 * of 16
1548 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1549 * an ACK is not received.  This command replaces the entire table for
1550 * one station.
1551 *
1552 * NOTE:  Station must already be in agn device's station table.
1553 *	  Use REPLY_ADD_STA.
1554 *
1555 * The rate scaling procedures described below work well.  Of course, other
1556 * procedures are possible, and may work better for particular environments.
1557 *
1558 *
1559 * FILLING THE RATE TABLE
1560 *
1561 * Given a particular initial rate and mode, as determined by the rate
1562 * scaling algorithm described below, the Linux driver uses the following
1563 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1564 * Link Quality command:
1565 *
1566 *
1567 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1568 *     a) Use this same initial rate for first 3 entries.
1569 *     b) Find next lower available rate using same mode (SISO or MIMO),
1570 *        use for next 3 entries.  If no lower rate available, switch to
1571 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1572 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1573 *        using MIMO (3 or 6).
1574 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1575 *        no MIMO, no short guard interval), at the next lower bit rate
1576 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1577 *        legacy procedure for remaining table entries.
1578 *
1579 * 2)  If using legacy initial rate:
1580 *     a) Use the initial rate for only one entry.
1581 *     b) For each following entry, reduce the rate to next lower available
1582 *        rate, until reaching the lowest available rate.
1583 *     c) When reducing rate, also switch antenna selection.
1584 *     d) Once lowest available rate is reached, repeat this rate until
1585 *        rate table is filled (16 entries), switching antenna each entry.
1586 *
1587 *
1588 * ACCUMULATING HISTORY
1589 *
1590 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1591 * uses two sets of frame Tx success history:  One for the current/active
1592 * modulation mode, and one for a speculative/search mode that is being
1593 * attempted. If the speculative mode turns out to be more effective (i.e.
1594 * actual transfer rate is better), then the driver continues to use the
1595 * speculative mode as the new current active mode.
1596 *
1597 * Each history set contains, separately for each possible rate, data for a
1598 * sliding window of the 62 most recent tx attempts at that rate.  The data
1599 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1600 * and attempted frames, from which the driver can additionally calculate a
1601 * success ratio (success / attempted) and number of failures
1602 * (attempted - success), and control the size of the window (attempted).
1603 * The driver uses the bit map to remove successes from the success sum, as
1604 * the oldest tx attempts fall out of the window.
1605 *
1606 * When the agn device makes multiple tx attempts for a given frame, each
1607 * attempt might be at a different rate, and have different modulation
1608 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1609 * up in the rate scaling table in the Link Quality command.  The driver must
1610 * determine which rate table entry was used for each tx attempt, to determine
1611 * which rate-specific history to update, and record only those attempts that
1612 * match the modulation characteristics of the history set.
1613 *
1614 * When using block-ack (aggregation), all frames are transmitted at the same
1615 * rate, since there is no per-attempt acknowledgment from the destination
1616 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1617 * rate_n_flags field.  After receiving a block-ack, the driver can update
1618 * history for the entire block all at once.
1619 *
1620 *
1621 * FINDING BEST STARTING RATE:
1622 *
1623 * When working with a selected initial modulation mode (see below), the
1624 * driver attempts to find a best initial rate.  The initial rate is the
1625 * first entry in the Link Quality command's rate table.
1626 *
1627 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1628 *     table below) for current initial rate.  Do this only if enough frames
1629 *     have been attempted to make the value meaningful:  at least 6 failed
1630 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1631 *     scaling yet.
1632 *
1633 * 2)  Find available rates adjacent to current initial rate.  Available means:
1634 *     a)  supported by hardware &&
1635 *     b)  supported by association &&
1636 *     c)  within any constraints selected by user
1637 *
1638 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1639 *     enough history to calculate a throughput.  That's okay, we might try
1640 *     using one of them anyway!
1641 *
1642 * 4)  Try decreasing rate if, for current rate:
1643 *     a)  success ratio is < 15% ||
1644 *     b)  lower adjacent rate has better measured throughput ||
1645 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1646 *
1647 *     As a sanity check, if decrease was determined above, leave rate
1648 *     unchanged if:
1649 *     a)  lower rate unavailable
1650 *     b)  success ratio at current rate > 85% (very good)
1651 *     c)  current measured throughput is better than expected throughput
1652 *         of lower rate (under perfect 100% tx conditions, see table below)
1653 *
1654 * 5)  Try increasing rate if, for current rate:
1655 *     a)  success ratio is < 15% ||
1656 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1657 *     b)  higher adjacent rate has better measured throughput ||
1658 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1659 *
1660 *     As a sanity check, if increase was determined above, leave rate
1661 *     unchanged if:
1662 *     a)  success ratio at current rate < 70%.  This is not particularly
1663 *         good performance; higher rate is sure to have poorer success.
1664 *
1665 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1666 *     acknowledge, history and statistics may be calculated for the entire
1667 *     block (including prior history that fits within the history windows),
1668 *     before re-evaluation.
1669 *
1670 * FINDING BEST STARTING MODULATION MODE:
1671 *
1672 * After working with a modulation mode for a "while" (and doing rate scaling),
1673 * the driver searches for a new initial mode in an attempt to improve
1674 * throughput.  The "while" is measured by numbers of attempted frames:
1675 *
1676 * For legacy mode, search for new mode after:
1677 *   480 successful frames, or 160 failed frames
1678 * For high-throughput modes (SISO or MIMO), search for new mode after:
1679 *   4500 successful frames, or 400 failed frames
1680 *
1681 * Mode switch possibilities are (3 for each mode):
1682 *
1683 * For legacy:
1684 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1685 * For SISO:
1686 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1687 * For MIMO:
1688 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1689 *
1690 * When trying a new mode, use the same bit rate as the old/current mode when
1691 * trying antenna switches and shortened guard interval.  When switching to
1692 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1693 * for which the expected throughput (under perfect conditions) is about the
1694 * same or slightly better than the actual measured throughput delivered by
1695 * the old/current mode.
1696 *
1697 * Actual throughput can be estimated by multiplying the expected throughput
1698 * by the success ratio (successful / attempted tx frames).  Frame size is
1699 * not considered in this calculation; it assumes that frame size will average
1700 * out to be fairly consistent over several samples.  The following are
1701 * metric values for expected throughput assuming 100% success ratio.
1702 * Only G band has support for CCK rates:
1703 *
1704 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1705 *
1706 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1707 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1708 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1709 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1710 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1711 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1712 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1713 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1714 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1715 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1716 *
1717 * After the new mode has been tried for a short while (minimum of 6 failed
1718 * frames or 8 successful frames), compare success ratio and actual throughput
1719 * estimate of the new mode with the old.  If either is better with the new
1720 * mode, continue to use the new mode.
1721 *
1722 * Continue comparing modes until all 3 possibilities have been tried.
1723 * If moving from legacy to HT, try all 3 possibilities from the new HT
1724 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1725 * for the longer "while" described above (e.g. 480 successful frames for
1726 * legacy), and then repeat the search process.
1727 *
1728 */
1729struct iwl_link_quality_cmd {
1730
1731	/* Index of destination/recipient station in uCode's station table */
1732	u8 sta_id;
1733	u8 reserved1;
1734	__le16 control;		/* not used */
1735	struct iwl_link_qual_general_params general_params;
1736	struct iwl_link_qual_agg_params agg_params;
1737
1738	/*
1739	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1740	 * specifies 1st Tx rate attempted, via index into this table.
1741	 * agn devices works its way through table when retrying Tx.
1742	 */
1743	struct {
1744		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1745	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1746	__le32 reserved2;
1747} __packed;
1748
1749/*
1750 * BT configuration enable flags:
1751 *   bit 0 - 1: BT channel announcement enabled
1752 *           0: disable
1753 *   bit 1 - 1: priority of BT device enabled
1754 *           0: disable
1755 *   bit 2 - 1: BT 2 wire support enabled
1756 *           0: disable
1757 */
1758#define BT_COEX_DISABLE (0x0)
1759#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1760#define BT_ENABLE_PRIORITY	   BIT(1)
1761#define BT_ENABLE_2_WIRE	   BIT(2)
1762
1763#define BT_COEX_DISABLE (0x0)
1764#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1765
1766#define BT_LEAD_TIME_MIN (0x0)
1767#define BT_LEAD_TIME_DEF (0x1E)
1768#define BT_LEAD_TIME_MAX (0xFF)
1769
1770#define BT_MAX_KILL_MIN (0x1)
1771#define BT_MAX_KILL_DEF (0x5)
1772#define BT_MAX_KILL_MAX (0xFF)
1773
1774#define BT_DURATION_LIMIT_DEF	625
1775#define BT_DURATION_LIMIT_MAX	1250
1776#define BT_DURATION_LIMIT_MIN	625
1777
1778#define BT_ON_THRESHOLD_DEF	4
1779#define BT_ON_THRESHOLD_MAX	1000
1780#define BT_ON_THRESHOLD_MIN	1
1781
1782#define BT_FRAG_THRESHOLD_DEF	0
1783#define BT_FRAG_THRESHOLD_MAX	0
1784#define BT_FRAG_THRESHOLD_MIN	0
1785
1786#define BT_AGG_THRESHOLD_DEF	1200
1787#define BT_AGG_THRESHOLD_MAX	8000
1788#define BT_AGG_THRESHOLD_MIN	400
1789
1790/*
1791 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1792 *
1793 * agn devices support hardware handshake with Bluetooth device on
1794 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1795 * wireless device can delay or kill its own Tx to accommodate.
1796 */
1797struct iwl_bt_cmd {
1798	u8 flags;
1799	u8 lead_time;
1800	u8 max_kill;
1801	u8 reserved;
1802	__le32 kill_ack_mask;
1803	__le32 kill_cts_mask;
1804} __packed;
1805
1806#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1807
1808#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1809#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1810#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1811#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1812#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1813#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1814
1815#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1816/* Disable Sync PSPoll on SCO/eSCO */
1817#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1818
1819#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1820#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1821
1822#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1823#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1824#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1825#define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1826
1827#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1828
1829#define IWLAGN_BT3_T7_DEFAULT		1
1830
1831enum iwl_bt_kill_idx {
1832	IWL_BT_KILL_DEFAULT = 0,
1833	IWL_BT_KILL_OVERRIDE = 1,
1834	IWL_BT_KILL_REDUCE = 2,
1835};
1836
1837#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1838#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1839#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1840#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1841
1842#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1843
1844#define IWLAGN_BT3_T2_DEFAULT		0xc
1845
1846#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1847#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1848#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1849#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1850#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1851#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1852#define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1853#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1854
1855#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1856					IWLAGN_BT_VALID_BOOST | \
1857					IWLAGN_BT_VALID_MAX_KILL | \
1858					IWLAGN_BT_VALID_3W_TIMERS | \
1859					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1860					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1861					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1862					IWLAGN_BT_VALID_3W_LUT)
1863
1864#define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1865
1866#define IWLAGN_BT_DECISION_LUT_SIZE	12
1867
1868struct iwl_basic_bt_cmd {
1869	u8 flags;
1870	u8 ledtime; /* unused */
1871	u8 max_kill;
1872	u8 bt3_timer_t7_value;
1873	__le32 kill_ack_mask;
1874	__le32 kill_cts_mask;
1875	u8 bt3_prio_sample_time;
1876	u8 bt3_timer_t2_value;
1877	__le16 bt4_reaction_time; /* unused */
1878	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1879	/*
1880	 * bit 0: use reduced tx power for control frame
1881	 * bit 1 - 7: reserved
1882	 */
1883	u8 reduce_txpower;
1884	u8 reserved;
1885	__le16 valid;
1886};
1887
1888struct iwl_bt_cmd_v1 {
1889	struct iwl_basic_bt_cmd basic;
1890	u8 prio_boost;
1891	/*
1892	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1893	 * if configure the following patterns
1894	 */
1895	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1896	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1897};
1898
1899struct iwl_bt_cmd_v2 {
1900	struct iwl_basic_bt_cmd basic;
1901	__le32 prio_boost;
1902	/*
1903	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1904	 * if configure the following patterns
1905	 */
1906	u8 reserved;
1907	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1908	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1909};
1910
1911#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1912
1913struct iwlagn_bt_sco_cmd {
1914	__le32 flags;
1915};
1916
1917/******************************************************************************
1918 * (6)
1919 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1920 *
1921 *****************************************************************************/
1922
1923/*
1924 * Spectrum Management
1925 */
1926#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1927				 RXON_FILTER_CTL2HOST_MSK        | \
1928				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1929				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1930				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1931				 RXON_FILTER_ASSOC_MSK           | \
1932				 RXON_FILTER_BCON_AWARE_MSK)
1933
1934struct iwl_measure_channel {
1935	__le32 duration;	/* measurement duration in extended beacon
1936				 * format */
1937	u8 channel;		/* channel to measure */
1938	u8 type;		/* see enum iwl_measure_type */
1939	__le16 reserved;
1940} __packed;
1941
1942/*
1943 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1944 */
1945struct iwl_spectrum_cmd {
1946	__le16 len;		/* number of bytes starting from token */
1947	u8 token;		/* token id */
1948	u8 id;			/* measurement id -- 0 or 1 */
1949	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
1950	u8 periodic;		/* 1 = periodic */
1951	__le16 path_loss_timeout;
1952	__le32 start_time;	/* start time in extended beacon format */
1953	__le32 reserved2;
1954	__le32 flags;		/* rxon flags */
1955	__le32 filter_flags;	/* rxon filter flags */
1956	__le16 channel_count;	/* minimum 1, maximum 10 */
1957	__le16 reserved3;
1958	struct iwl_measure_channel channels[10];
1959} __packed;
1960
1961/*
1962 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1963 */
1964struct iwl_spectrum_resp {
1965	u8 token;
1966	u8 id;			/* id of the prior command replaced, or 0xff */
1967	__le16 status;		/* 0 - command will be handled
1968				 * 1 - cannot handle (conflicts with another
1969				 *     measurement) */
1970} __packed;
1971
1972enum iwl_measurement_state {
1973	IWL_MEASUREMENT_START = 0,
1974	IWL_MEASUREMENT_STOP = 1,
1975};
1976
1977enum iwl_measurement_status {
1978	IWL_MEASUREMENT_OK = 0,
1979	IWL_MEASUREMENT_CONCURRENT = 1,
1980	IWL_MEASUREMENT_CSA_CONFLICT = 2,
1981	IWL_MEASUREMENT_TGH_CONFLICT = 3,
1982	/* 4-5 reserved */
1983	IWL_MEASUREMENT_STOPPED = 6,
1984	IWL_MEASUREMENT_TIMEOUT = 7,
1985	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
1986};
1987
1988#define NUM_ELEMENTS_IN_HISTOGRAM 8
1989
1990struct iwl_measurement_histogram {
1991	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
1992	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
1993} __packed;
1994
1995/* clear channel availability counters */
1996struct iwl_measurement_cca_counters {
1997	__le32 ofdm;
1998	__le32 cck;
1999} __packed;
2000
2001enum iwl_measure_type {
2002	IWL_MEASURE_BASIC = (1 << 0),
2003	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2004	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2005	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2006	IWL_MEASURE_FRAME = (1 << 4),
2007	/* bits 5:6 are reserved */
2008	IWL_MEASURE_IDLE = (1 << 7),
2009};
2010
2011/*
2012 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2013 */
2014struct iwl_spectrum_notification {
2015	u8 id;			/* measurement id -- 0 or 1 */
2016	u8 token;
2017	u8 channel_index;	/* index in measurement channel list */
2018	u8 state;		/* 0 - start, 1 - stop */
2019	__le32 start_time;	/* lower 32-bits of TSF */
2020	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2021	u8 channel;
2022	u8 type;		/* see enum iwl_measurement_type */
2023	u8 reserved1;
2024	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2025	 * valid if applicable for measurement type requested. */
2026	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2027	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2028	__le32 cca_time;	/* channel load time in usecs */
2029	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2030				 * unidentified */
2031	u8 reserved2[3];
2032	struct iwl_measurement_histogram histogram;
2033	__le32 stop_time;	/* lower 32-bits of TSF */
2034	__le32 status;		/* see iwl_measurement_status */
2035} __packed;
2036
2037/******************************************************************************
2038 * (7)
2039 * Power Management Commands, Responses, Notifications:
2040 *
2041 *****************************************************************************/
2042
2043/**
2044 * struct iwl_powertable_cmd - Power Table Command
2045 * @flags: See below:
2046 *
2047 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2048 *
2049 * PM allow:
2050 *   bit 0 - '0' Driver not allow power management
2051 *           '1' Driver allow PM (use rest of parameters)
2052 *
2053 * uCode send sleep notifications:
2054 *   bit 1 - '0' Don't send sleep notification
2055 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2056 *
2057 * Sleep over DTIM
2058 *   bit 2 - '0' PM have to walk up every DTIM
2059 *           '1' PM could sleep over DTIM till listen Interval.
2060 *
2061 * PCI power managed
2062 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2063 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2064 *
2065 * Fast PD
2066 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2067 *
2068 * Force sleep Modes
2069 *   bit 31/30- '00' use both mac/xtal sleeps
2070 *              '01' force Mac sleep
2071 *              '10' force xtal sleep
2072 *              '11' Illegal set
2073 *
2074 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2075 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2076 * for every DTIM.
2077 */
2078#define IWL_POWER_VEC_SIZE 5
2079
2080#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2081#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2082#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2083#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2084#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2085#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2086#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2087#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2088#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2089#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2090#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2091
2092struct iwl_powertable_cmd {
2093	__le16 flags;
2094	u8 keep_alive_seconds;
2095	u8 debug_flags;
2096	__le32 rx_data_timeout;
2097	__le32 tx_data_timeout;
2098	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2099	__le32 keep_alive_beacons;
2100} __packed;
2101
2102/*
2103 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2104 * all devices identical.
2105 */
2106struct iwl_sleep_notification {
2107	u8 pm_sleep_mode;
2108	u8 pm_wakeup_src;
2109	__le16 reserved;
2110	__le32 sleep_time;
2111	__le32 tsf_low;
2112	__le32 bcon_timer;
2113} __packed;
2114
2115/* Sleep states.  all devices identical. */
2116enum {
2117	IWL_PM_NO_SLEEP = 0,
2118	IWL_PM_SLP_MAC = 1,
2119	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2120	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2121	IWL_PM_SLP_PHY = 4,
2122	IWL_PM_SLP_REPENT = 5,
2123	IWL_PM_WAKEUP_BY_TIMER = 6,
2124	IWL_PM_WAKEUP_BY_DRIVER = 7,
2125	IWL_PM_WAKEUP_BY_RFKILL = 8,
2126	/* 3 reserved */
2127	IWL_PM_NUM_OF_MODES = 12,
2128};
2129
2130/*
2131 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2132 */
2133#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2134#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2135#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2136struct iwl_card_state_cmd {
2137	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2138} __packed;
2139
2140/*
2141 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2142 */
2143struct iwl_card_state_notif {
2144	__le32 flags;
2145} __packed;
2146
2147#define HW_CARD_DISABLED   0x01
2148#define SW_CARD_DISABLED   0x02
2149#define CT_CARD_DISABLED   0x04
2150#define RXON_CARD_DISABLED 0x10
2151
2152struct iwl_ct_kill_config {
2153	__le32   reserved;
2154	__le32   critical_temperature_M;
2155	__le32   critical_temperature_R;
2156}  __packed;
2157
2158/* 1000, and 6x00 */
2159struct iwl_ct_kill_throttling_config {
2160	__le32   critical_temperature_exit;
2161	__le32   reserved;
2162	__le32   critical_temperature_enter;
2163}  __packed;
2164
2165/******************************************************************************
2166 * (8)
2167 * Scan Commands, Responses, Notifications:
2168 *
2169 *****************************************************************************/
2170
2171#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2172#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2173
2174/**
2175 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2176 *
2177 * One for each channel in the scan list.
2178 * Each channel can independently select:
2179 * 1)  SSID for directed active scans
2180 * 2)  Txpower setting (for rate specified within Tx command)
2181 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2182 *     quiet_plcp_th, good_CRC_th)
2183 *
2184 * To avoid uCode errors, make sure the following are true (see comments
2185 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2186 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2187 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2188 * 2)  quiet_time <= active_dwell
2189 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2190 *     passive_dwell < max_out_time
2191 *     active_dwell < max_out_time
2192 */
2193
2194struct iwl_scan_channel {
2195	/*
2196	 * type is defined as:
2197	 * 0:0 1 = active, 0 = passive
2198	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2199	 *     SSID IE is transmitted in probe request.
2200	 * 21:31 reserved
2201	 */
2202	__le32 type;
2203	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2204	u8 tx_gain;		/* gain for analog radio */
2205	u8 dsp_atten;		/* gain for DSP */
2206	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2207	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2208} __packed;
2209
2210/* set number of direct probes __le32 type */
2211#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2212
2213/**
2214 * struct iwl_ssid_ie - directed scan network information element
2215 *
2216 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2217 * selected by "type" bit field in struct iwl_scan_channel;
2218 * each channel may select different ssids from among the 20 entries.
2219 * SSID IEs get transmitted in reverse order of entry.
2220 */
2221struct iwl_ssid_ie {
2222	u8 id;
2223	u8 len;
2224	u8 ssid[32];
2225} __packed;
2226
2227#define PROBE_OPTION_MAX		20
2228#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2229#define IWL_GOOD_CRC_TH_DISABLED	0
2230#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2231#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2232#define IWL_MAX_CMD_SIZE 4096
2233
2234/*
2235 * REPLY_SCAN_CMD = 0x80 (command)
2236 *
2237 * The hardware scan command is very powerful; the driver can set it up to
2238 * maintain (relatively) normal network traffic while doing a scan in the
2239 * background.  The max_out_time and suspend_time control the ratio of how
2240 * long the device stays on an associated network channel ("service channel")
2241 * vs. how long it's away from the service channel, i.e. tuned to other channels
2242 * for scanning.
2243 *
2244 * max_out_time is the max time off-channel (in usec), and suspend_time
2245 * is how long (in "extended beacon" format) that the scan is "suspended"
2246 * after returning to the service channel.  That is, suspend_time is the
2247 * time that we stay on the service channel, doing normal work, between
2248 * scan segments.  The driver may set these parameters differently to support
2249 * scanning when associated vs. not associated, and light vs. heavy traffic
2250 * loads when associated.
2251 *
2252 * After receiving this command, the device's scan engine does the following;
2253 *
2254 * 1)  Sends SCAN_START notification to driver
2255 * 2)  Checks to see if it has time to do scan for one channel
2256 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2257 *     to tell AP that we're going off-channel
2258 * 4)  Tunes to first channel in scan list, does active or passive scan
2259 * 5)  Sends SCAN_RESULT notification to driver
2260 * 6)  Checks to see if it has time to do scan on *next* channel in list
2261 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2262 *     before max_out_time expires
2263 * 8)  Returns to service channel
2264 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2265 * 10) Stays on service channel until suspend_time expires
2266 * 11) Repeats entire process 2-10 until list is complete
2267 * 12) Sends SCAN_COMPLETE notification
2268 *
2269 * For fast, efficient scans, the scan command also has support for staying on
2270 * a channel for just a short time, if doing active scanning and getting no
2271 * responses to the transmitted probe request.  This time is controlled by
2272 * quiet_time, and the number of received packets below which a channel is
2273 * considered "quiet" is controlled by quiet_plcp_threshold.
2274 *
2275 * For active scanning on channels that have regulatory restrictions against
2276 * blindly transmitting, the scan can listen before transmitting, to make sure
2277 * that there is already legitimate activity on the channel.  If enough
2278 * packets are cleanly received on the channel (controlled by good_CRC_th,
2279 * typical value 1), the scan engine starts transmitting probe requests.
2280 *
2281 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2282 *
2283 * To avoid uCode errors, see timing restrictions described under
2284 * struct iwl_scan_channel.
2285 */
2286
2287enum iwl_scan_flags {
2288	/* BIT(0) currently unused */
2289	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2290	/* bits 2-7 reserved */
2291};
2292
2293struct iwl_scan_cmd {
2294	__le16 len;
2295	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2296	u8 channel_count;	/* # channels in channel list */
2297	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2298				 * (only for active scan) */
2299	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2300	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2301	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2302	__le32 max_out_time;	/* max usec to be away from associated (service)
2303				 * channel */
2304	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2305				 * format") when returning to service chnl:
2306				 */
2307	__le32 flags;		/* RXON_FLG_* */
2308	__le32 filter_flags;	/* RXON_FILTER_* */
2309
2310	/* For active scans (set to all-0s for passive scans).
2311	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2312	struct iwl_tx_cmd tx_cmd;
2313
2314	/* For directed active scans (set to all-0s otherwise) */
2315	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2316
2317	/*
2318	 * Probe request frame, followed by channel list.
2319	 *
2320	 * Size of probe request frame is specified by byte count in tx_cmd.
2321	 * Channel list follows immediately after probe request frame.
2322	 * Number of channels in list is specified by channel_count.
2323	 * Each channel in list is of type:
2324	 *
2325	 * struct iwl_scan_channel channels[0];
2326	 *
2327	 * NOTE:  Only one band of channels can be scanned per pass.  You
2328	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2329	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2330	 * before requesting another scan.
2331	 */
2332	u8 data[];
2333} __packed;
2334
2335/* Can abort will notify by complete notification with abort status. */
2336#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2337/* complete notification statuses */
2338#define ABORT_STATUS            0x2
2339
2340/*
2341 * REPLY_SCAN_CMD = 0x80 (response)
2342 */
2343struct iwl_scanreq_notification {
2344	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2345} __packed;
2346
2347/*
2348 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2349 */
2350struct iwl_scanstart_notification {
2351	__le32 tsf_low;
2352	__le32 tsf_high;
2353	__le32 beacon_timer;
2354	u8 channel;
2355	u8 band;
2356	u8 reserved[2];
2357	__le32 status;
2358} __packed;
2359
2360#define  SCAN_OWNER_STATUS 0x1
2361#define  MEASURE_OWNER_STATUS 0x2
2362
2363#define IWL_PROBE_STATUS_OK		0
2364#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2365/* error statuses combined with TX_FAILED */
2366#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2367#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2368
2369#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2370/*
2371 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2372 */
2373struct iwl_scanresults_notification {
2374	u8 channel;
2375	u8 band;
2376	u8 probe_status;
2377	u8 num_probe_not_sent; /* not enough time to send */
2378	__le32 tsf_low;
2379	__le32 tsf_high;
2380	__le32 statistics[NUMBER_OF_STATISTICS];
2381} __packed;
2382
2383/*
2384 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2385 */
2386struct iwl_scancomplete_notification {
2387	u8 scanned_channels;
2388	u8 status;
2389	u8 bt_status;	/* BT On/Off status */
2390	u8 last_channel;
2391	__le32 tsf_low;
2392	__le32 tsf_high;
2393} __packed;
2394
2395
2396/******************************************************************************
2397 * (9)
2398 * IBSS/AP Commands and Notifications:
2399 *
2400 *****************************************************************************/
2401
2402enum iwl_ibss_manager {
2403	IWL_NOT_IBSS_MANAGER = 0,
2404	IWL_IBSS_MANAGER = 1,
2405};
2406
2407/*
2408 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2409 */
2410
2411struct iwlagn_beacon_notif {
2412	struct iwlagn_tx_resp beacon_notify_hdr;
2413	__le32 low_tsf;
2414	__le32 high_tsf;
2415	__le32 ibss_mgr_status;
2416} __packed;
2417
2418/*
2419 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2420 */
2421
2422struct iwl_tx_beacon_cmd {
2423	struct iwl_tx_cmd tx;
2424	__le16 tim_idx;
2425	u8 tim_size;
2426	u8 reserved1;
2427	struct ieee80211_hdr frame[];	/* beacon frame */
2428} __packed;
2429
2430/******************************************************************************
2431 * (10)
2432 * Statistics Commands and Notifications:
2433 *
2434 *****************************************************************************/
2435
2436#define IWL_TEMP_CONVERT 260
2437
2438#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2439#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2440#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2441
2442/* Used for passing to driver number of successes and failures per rate */
2443struct rate_histogram {
2444	union {
2445		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2446		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2447		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2448	} success;
2449	union {
2450		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2451		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2452		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2453	} failed;
2454} __packed;
2455
2456/* statistics command response */
2457
2458struct statistics_dbg {
2459	__le32 burst_check;
2460	__le32 burst_count;
2461	__le32 wait_for_silence_timeout_cnt;
2462	__le32 reserved[3];
2463} __packed;
2464
2465struct statistics_rx_phy {
2466	__le32 ina_cnt;
2467	__le32 fina_cnt;
2468	__le32 plcp_err;
2469	__le32 crc32_err;
2470	__le32 overrun_err;
2471	__le32 early_overrun_err;
2472	__le32 crc32_good;
2473	__le32 false_alarm_cnt;
2474	__le32 fina_sync_err_cnt;
2475	__le32 sfd_timeout;
2476	__le32 fina_timeout;
2477	__le32 unresponded_rts;
2478	__le32 rxe_frame_limit_overrun;
2479	__le32 sent_ack_cnt;
2480	__le32 sent_cts_cnt;
2481	__le32 sent_ba_rsp_cnt;
2482	__le32 dsp_self_kill;
2483	__le32 mh_format_err;
2484	__le32 re_acq_main_rssi_sum;
2485	__le32 reserved3;
2486} __packed;
2487
2488struct statistics_rx_ht_phy {
2489	__le32 plcp_err;
2490	__le32 overrun_err;
2491	__le32 early_overrun_err;
2492	__le32 crc32_good;
2493	__le32 crc32_err;
2494	__le32 mh_format_err;
2495	__le32 agg_crc32_good;
2496	__le32 agg_mpdu_cnt;
2497	__le32 agg_cnt;
2498	__le32 unsupport_mcs;
2499} __packed;
2500
2501#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2502
2503struct statistics_rx_non_phy {
2504	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2505	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2506	__le32 non_bssid_frames;	/* number of frames with BSSID that
2507					 * doesn't belong to the STA BSSID */
2508	__le32 filtered_frames;	/* count frames that were dumped in the
2509				 * filtering process */
2510	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2511					 * our serving channel */
2512	__le32 channel_beacons;	/* beacons with our bss id and in our
2513				 * serving channel */
2514	__le32 num_missed_bcon;	/* number of missed beacons */
2515	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2516					 * ADC was in saturation */
2517	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2518					  * for INA */
2519	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2520	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2521	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2522	__le32 interference_data_flag;	/* flag for interference data
2523					 * availability. 1 when data is
2524					 * available. */
2525	__le32 channel_load;		/* counts RX Enable time in uSec */
2526	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2527					 * and CCK) counter */
2528	__le32 beacon_rssi_a;
2529	__le32 beacon_rssi_b;
2530	__le32 beacon_rssi_c;
2531	__le32 beacon_energy_a;
2532	__le32 beacon_energy_b;
2533	__le32 beacon_energy_c;
2534} __packed;
2535
2536struct statistics_rx_non_phy_bt {
2537	struct statistics_rx_non_phy common;
2538	/* additional stats for bt */
2539	__le32 num_bt_kills;
2540	__le32 reserved[2];
2541} __packed;
2542
2543struct statistics_rx {
2544	struct statistics_rx_phy ofdm;
2545	struct statistics_rx_phy cck;
2546	struct statistics_rx_non_phy general;
2547	struct statistics_rx_ht_phy ofdm_ht;
2548} __packed;
2549
2550struct statistics_rx_bt {
2551	struct statistics_rx_phy ofdm;
2552	struct statistics_rx_phy cck;
2553	struct statistics_rx_non_phy_bt general;
2554	struct statistics_rx_ht_phy ofdm_ht;
2555} __packed;
2556
2557/**
2558 * struct statistics_tx_power - current tx power
2559 *
2560 * @ant_a: current tx power on chain a in 1/2 dB step
2561 * @ant_b: current tx power on chain b in 1/2 dB step
2562 * @ant_c: current tx power on chain c in 1/2 dB step
2563 */
2564struct statistics_tx_power {
2565	u8 ant_a;
2566	u8 ant_b;
2567	u8 ant_c;
2568	u8 reserved;
2569} __packed;
2570
2571struct statistics_tx_non_phy_agg {
2572	__le32 ba_timeout;
2573	__le32 ba_reschedule_frames;
2574	__le32 scd_query_agg_frame_cnt;
2575	__le32 scd_query_no_agg;
2576	__le32 scd_query_agg;
2577	__le32 scd_query_mismatch;
2578	__le32 frame_not_ready;
2579	__le32 underrun;
2580	__le32 bt_prio_kill;
2581	__le32 rx_ba_rsp_cnt;
2582} __packed;
2583
2584struct statistics_tx {
2585	__le32 preamble_cnt;
2586	__le32 rx_detected_cnt;
2587	__le32 bt_prio_defer_cnt;
2588	__le32 bt_prio_kill_cnt;
2589	__le32 few_bytes_cnt;
2590	__le32 cts_timeout;
2591	__le32 ack_timeout;
2592	__le32 expected_ack_cnt;
2593	__le32 actual_ack_cnt;
2594	__le32 dump_msdu_cnt;
2595	__le32 burst_abort_next_frame_mismatch_cnt;
2596	__le32 burst_abort_missing_next_frame_cnt;
2597	__le32 cts_timeout_collision;
2598	__le32 ack_or_ba_timeout_collision;
2599	struct statistics_tx_non_phy_agg agg;
2600	/*
2601	 * "tx_power" are optional parameters provided by uCode,
2602	 * 6000 series is the only device provide the information,
2603	 * Those are reserved fields for all the other devices
2604	 */
2605	struct statistics_tx_power tx_power;
2606	__le32 reserved1;
2607} __packed;
2608
2609
2610struct statistics_div {
2611	__le32 tx_on_a;
2612	__le32 tx_on_b;
2613	__le32 exec_time;
2614	__le32 probe_time;
2615	__le32 reserved1;
2616	__le32 reserved2;
2617} __packed;
2618
2619struct statistics_general_common {
2620	__le32 temperature;   /* radio temperature */
2621	__le32 temperature_m; /* radio voltage */
2622	struct statistics_dbg dbg;
2623	__le32 sleep_time;
2624	__le32 slots_out;
2625	__le32 slots_idle;
2626	__le32 ttl_timestamp;
2627	struct statistics_div div;
2628	__le32 rx_enable_counter;
2629	/*
2630	 * num_of_sos_states:
2631	 *  count the number of times we have to re-tune
2632	 *  in order to get out of bad PHY status
2633	 */
2634	__le32 num_of_sos_states;
2635} __packed;
2636
2637struct statistics_bt_activity {
2638	/* Tx statistics */
2639	__le32 hi_priority_tx_req_cnt;
2640	__le32 hi_priority_tx_denied_cnt;
2641	__le32 lo_priority_tx_req_cnt;
2642	__le32 lo_priority_tx_denied_cnt;
2643	/* Rx statistics */
2644	__le32 hi_priority_rx_req_cnt;
2645	__le32 hi_priority_rx_denied_cnt;
2646	__le32 lo_priority_rx_req_cnt;
2647	__le32 lo_priority_rx_denied_cnt;
2648} __packed;
2649
2650struct statistics_general {
2651	struct statistics_general_common common;
2652	__le32 reserved2;
2653	__le32 reserved3;
2654} __packed;
2655
2656struct statistics_general_bt {
2657	struct statistics_general_common common;
2658	struct statistics_bt_activity activity;
2659	__le32 reserved2;
2660	__le32 reserved3;
2661} __packed;
2662
2663#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2664#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2665#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2666
2667/*
2668 * REPLY_STATISTICS_CMD = 0x9c,
2669 * all devices identical.
2670 *
2671 * This command triggers an immediate response containing uCode statistics.
2672 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2673 *
2674 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2675 * internal copy of the statistics (counters) after issuing the response.
2676 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2677 *
2678 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2679 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2680 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2681 */
2682#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2683#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2684struct iwl_statistics_cmd {
2685	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2686} __packed;
2687
2688/*
2689 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2690 *
2691 * By default, uCode issues this notification after receiving a beacon
2692 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2693 * REPLY_STATISTICS_CMD 0x9c, above.
2694 *
2695 * Statistics counters continue to increment beacon after beacon, but are
2696 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2697 * 0x9c with CLEAR_STATS bit set (see above).
2698 *
2699 * uCode also issues this notification during scans.  uCode clears statistics
2700 * appropriately so that each notification contains statistics for only the
2701 * one channel that has just been scanned.
2702 */
2703#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2704#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2705
2706struct iwl_notif_statistics {
2707	__le32 flag;
2708	struct statistics_rx rx;
2709	struct statistics_tx tx;
2710	struct statistics_general general;
2711} __packed;
2712
2713struct iwl_bt_notif_statistics {
2714	__le32 flag;
2715	struct statistics_rx_bt rx;
2716	struct statistics_tx tx;
2717	struct statistics_general_bt general;
2718} __packed;
2719
2720/*
2721 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2722 *
2723 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2724 * in regardless of how many missed beacons, which mean when driver receive the
2725 * notification, inside the command, it can find all the beacons information
2726 * which include number of total missed beacons, number of consecutive missed
2727 * beacons, number of beacons received and number of beacons expected to
2728 * receive.
2729 *
2730 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2731 * in order to bring the radio/PHY back to working state; which has no relation
2732 * to when driver will perform sensitivity calibration.
2733 *
2734 * Driver should set it own missed_beacon_threshold to decide when to perform
2735 * sensitivity calibration based on number of consecutive missed beacons in
2736 * order to improve overall performance, especially in noisy environment.
2737 *
2738 */
2739
2740#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2741#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2742#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2743
2744struct iwl_missed_beacon_notif {
2745	__le32 consecutive_missed_beacons;
2746	__le32 total_missed_becons;
2747	__le32 num_expected_beacons;
2748	__le32 num_recvd_beacons;
2749} __packed;
2750
2751
2752/******************************************************************************
2753 * (11)
2754 * Rx Calibration Commands:
2755 *
2756 * With the uCode used for open source drivers, most Tx calibration (except
2757 * for Tx Power) and most Rx calibration is done by uCode during the
2758 * "initialize" phase of uCode boot.  Driver must calibrate only:
2759 *
2760 * 1)  Tx power (depends on temperature), described elsewhere
2761 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2762 * 3)  Receiver sensitivity (to optimize signal detection)
2763 *
2764 *****************************************************************************/
2765
2766/**
2767 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2768 *
2769 * This command sets up the Rx signal detector for a sensitivity level that
2770 * is high enough to lock onto all signals within the associated network,
2771 * but low enough to ignore signals that are below a certain threshold, so as
2772 * not to have too many "false alarms".  False alarms are signals that the
2773 * Rx DSP tries to lock onto, but then discards after determining that they
2774 * are noise.
2775 *
2776 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2777 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2778 * time listening, not transmitting).  Driver must adjust sensitivity so that
2779 * the ratio of actual false alarms to actual Rx time falls within this range.
2780 *
2781 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2782 * received beacon.  These provide information to the driver to analyze the
2783 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2784 * other non-associated-network source.  Pertinent statistics include:
2785 *
2786 * From "general" statistics (struct statistics_rx_non_phy):
2787 *
2788 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2789 *   Measure of energy of desired signal.  Used for establishing a level
2790 *   below which the device does not detect signals.
2791 *
2792 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2793 *   Measure of background noise in silent period after beacon.
2794 *
2795 * channel_load
2796 *   uSecs of actual Rx time during beacon period (varies according to
2797 *   how much time was spent transmitting).
2798 *
2799 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2800 *
2801 * false_alarm_cnt
2802 *   Signal locks abandoned early (before phy-level header).
2803 *
2804 * plcp_err
2805 *   Signal locks abandoned late (during phy-level header).
2806 *
2807 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2808 *        beacon to beacon, i.e. each value is an accumulation of all errors
2809 *        before and including the latest beacon.  Values will wrap around to 0
2810 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2811 *        previous beacon's values to determine # false alarms in the current
2812 *        beacon period.
2813 *
2814 * Total number of false alarms = false_alarms + plcp_errs
2815 *
2816 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2817 * (notice that the start points for OFDM are at or close to settings for
2818 * maximum sensitivity):
2819 *
2820 *                                             START  /  MIN  /  MAX
2821 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2822 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2823 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2824 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2825 *
2826 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2827 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2828 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2829 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2830 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2831 *   increase sensitivity.
2832 *
2833 * For CCK sensitivity, keep track of the following:
2834 *
2835 *   1).  20-beacon history of maximum background noise, indicated by
2836 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2837 *        3 receivers.  For any given beacon, the "silence reference" is
2838 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2839 *
2840 *   2).  10-beacon history of strongest signal level, as indicated
2841 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2842 *        i.e. the strength of the signal through the best receiver at the
2843 *        moment.  These measurements are "upside down", with lower values
2844 *        for stronger signals, so max energy will be *minimum* value.
2845 *
2846 *        Then for any given beacon, the driver must determine the *weakest*
2847 *        of the strongest signals; this is the minimum level that needs to be
2848 *        successfully detected, when using the best receiver at the moment.
2849 *        "Max cck energy" is the maximum (higher value means lower energy!)
2850 *        of the last 10 minima.  Once this is determined, driver must add
2851 *        a little margin by adding "6" to it.
2852 *
2853 *   3).  Number of consecutive beacon periods with too few false alarms.
2854 *        Reset this to 0 at the first beacon period that falls within the
2855 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2856 *
2857 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2858 * (notice that the start points for CCK are at maximum sensitivity):
2859 *
2860 *                                             START  /  MIN  /  MAX
2861 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2862 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2863 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2864 *
2865 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2866 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2867 *   sensitivity is:
2868 *
2869 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2870 *       up to max 400.
2871 *
2872 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2873 *       sensitivity has been reduced a significant amount; bring it up to
2874 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2875 *
2876 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2877 *       sensitivity has been reduced only a moderate or small amount;
2878 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2879 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2880 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2881 *
2882 *       b)  Save a snapshot of the "silence reference".
2883 *
2884 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2885 *   (less than 5 for each 204.8 msecs listening), method for increasing
2886 *   sensitivity is used only if:
2887 *
2888 *   1a)  Previous beacon did not have too many false alarms
2889 *   1b)  AND difference between previous "silence reference" and current
2890 *        "silence reference" (prev - current) is 2 or more,
2891 *   OR 2)  100 or more consecutive beacon periods have had rate of
2892 *          less than 5 false alarms per 204.8 milliseconds rx time.
2893 *
2894 *   Method for increasing sensitivity:
2895 *
2896 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2897 *       down to min 125.
2898 *
2899 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2900 *       down to min 200.
2901 *
2902 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2903 *
2904 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2905 *   (between 5 and 50 for each 204.8 msecs listening):
2906 *
2907 *   1)  Save a snapshot of the silence reference.
2908 *
2909 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2910 *       give some extra margin to energy threshold by *subtracting* 8
2911 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2912 *
2913 *   For all cases (too few, too many, good range), make sure that the CCK
2914 *   detection threshold (energy) is below the energy level for robust
2915 *   detection over the past 10 beacon periods, the "Max cck energy".
2916 *   Lower values mean higher energy; this means making sure that the value
2917 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2918 *
2919 */
2920
2921/*
2922 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2923 */
2924#define HD_TABLE_SIZE  (11)	/* number of entries */
2925#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2926#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2927#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2928#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2929#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2930#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2931#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2932#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2933#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2934#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2935#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2936
2937/*
2938 * Additional table entries in enhance SENSITIVITY_CMD
2939 */
2940#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2941#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2942#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2943#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2944#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2945#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2946#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2947#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2948#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
2949#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
2950#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
2951#define HD_RESERVED					(22)
2952
2953/* number of entries for enhanced tbl */
2954#define ENHANCE_HD_TABLE_SIZE  (23)
2955
2956/* number of additional entries for enhanced tbl */
2957#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
2958
2959#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
2960#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
2961#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
2962#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
2963#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2964#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
2965#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
2966#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
2967#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2968#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
2969#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
2970
2971#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
2972#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
2973#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
2974#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
2975#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
2976#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
2977#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
2978#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
2979#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
2980#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
2981#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
2982
2983
2984/* Control field in struct iwl_sensitivity_cmd */
2985#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
2986#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
2987
2988/**
2989 * struct iwl_sensitivity_cmd
2990 * @control:  (1) updates working table, (0) updates default table
2991 * @table:  energy threshold values, use HD_* as index into table
2992 *
2993 * Always use "1" in "control" to update uCode's working table and DSP.
2994 */
2995struct iwl_sensitivity_cmd {
2996	__le16 control;			/* always use "1" */
2997	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
2998} __packed;
2999
3000/*
3001 *
3002 */
3003struct iwl_enhance_sensitivity_cmd {
3004	__le16 control;			/* always use "1" */
3005	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3006} __packed;
3007
3008
3009/**
3010 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3011 *
3012 * This command sets the relative gains of agn device's 3 radio receiver chains.
3013 *
3014 * After the first association, driver should accumulate signal and noise
3015 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3016 * beacons from the associated network (don't collect statistics that come
3017 * in from scanning, or any other non-network source).
3018 *
3019 * DISCONNECTED ANTENNA:
3020 *
3021 * Driver should determine which antennas are actually connected, by comparing
3022 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3023 * following values over 20 beacons, one accumulator for each of the chains
3024 * a/b/c, from struct statistics_rx_non_phy:
3025 *
3026 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3027 *
3028 * Find the strongest signal from among a/b/c.  Compare the other two to the
3029 * strongest.  If any signal is more than 15 dB (times 20, unless you
3030 * divide the accumulated values by 20) below the strongest, the driver
3031 * considers that antenna to be disconnected, and should not try to use that
3032 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3033 * driver should declare the stronger one as connected, and attempt to use it
3034 * (A and B are the only 2 Tx chains!).
3035 *
3036 *
3037 * RX BALANCE:
3038 *
3039 * Driver should balance the 3 receivers (but just the ones that are connected
3040 * to antennas, see above) for gain, by comparing the average signal levels
3041 * detected during the silence after each beacon (background noise).
3042 * Accumulate (add) the following values over 20 beacons, one accumulator for
3043 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3044 *
3045 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3046 *
3047 * Find the weakest background noise level from among a/b/c.  This Rx chain
3048 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3049 * finding noise difference:
3050 *
3051 * (accum_noise[i] - accum_noise[reference]) / 30
3052 *
3053 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3054 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3055 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3056 * and set bit 2 to indicate "reduce gain".  The value for the reference
3057 * (weakest) chain should be "0".
3058 *
3059 * diff_gain_[abc] bit fields:
3060 *   2: (1) reduce gain, (0) increase gain
3061 * 1-0: amount of gain, units of 1.5 dB
3062 */
3063
3064/* Phy calibration command for series */
3065enum {
3066	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3067	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3068	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3069	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3070	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3071	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3072	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3073};
3074
3075/* This enum defines the bitmap of various calibrations to enable in both
3076 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3077 */
3078enum iwl_ucode_calib_cfg {
3079	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3080	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3081	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3082	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3083	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3084	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3085	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3086	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3087	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3088	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3089	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3090};
3091
3092#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3093					IWL_CALIB_CFG_DC_IDX |		\
3094					IWL_CALIB_CFG_LO_IDX |		\
3095					IWL_CALIB_CFG_TX_IQ_IDX |	\
3096					IWL_CALIB_CFG_RX_IQ_IDX |	\
3097					IWL_CALIB_CFG_CRYSTAL_IDX)
3098
3099#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3100					IWL_CALIB_CFG_DC_IDX |		\
3101					IWL_CALIB_CFG_LO_IDX |		\
3102					IWL_CALIB_CFG_TX_IQ_IDX |	\
3103					IWL_CALIB_CFG_RX_IQ_IDX |	\
3104					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3105					IWL_CALIB_CFG_PAPD_IDX |	\
3106					IWL_CALIB_CFG_TX_PWR_IDX |	\
3107					IWL_CALIB_CFG_CRYSTAL_IDX)
3108
3109#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3110
3111struct iwl_calib_cfg_elmnt_s {
3112	__le32 is_enable;
3113	__le32 start;
3114	__le32 send_res;
3115	__le32 apply_res;
3116	__le32 reserved;
3117} __packed;
3118
3119struct iwl_calib_cfg_status_s {
3120	struct iwl_calib_cfg_elmnt_s once;
3121	struct iwl_calib_cfg_elmnt_s perd;
3122	__le32 flags;
3123} __packed;
3124
3125struct iwl_calib_cfg_cmd {
3126	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3127	struct iwl_calib_cfg_status_s drv_calib_cfg;
3128	__le32 reserved1;
3129} __packed;
3130
3131struct iwl_calib_hdr {
3132	u8 op_code;
3133	u8 first_group;
3134	u8 groups_num;
3135	u8 data_valid;
3136} __packed;
3137
3138struct iwl_calib_cmd {
3139	struct iwl_calib_hdr hdr;
3140	u8 data[];
3141} __packed;
3142
3143struct iwl_calib_xtal_freq_cmd {
3144	struct iwl_calib_hdr hdr;
3145	u8 cap_pin1;
3146	u8 cap_pin2;
3147	u8 pad[2];
3148} __packed;
3149
3150#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3151struct iwl_calib_temperature_offset_cmd {
3152	struct iwl_calib_hdr hdr;
3153	__le16 radio_sensor_offset;
3154	__le16 reserved;
3155} __packed;
3156
3157struct iwl_calib_temperature_offset_v2_cmd {
3158	struct iwl_calib_hdr hdr;
3159	__le16 radio_sensor_offset_high;
3160	__le16 radio_sensor_offset_low;
3161	__le16 burntVoltageRef;
3162	__le16 reserved;
3163} __packed;
3164
3165/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3166struct iwl_calib_chain_noise_reset_cmd {
3167	struct iwl_calib_hdr hdr;
3168	u8 data[];
3169};
3170
3171/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3172struct iwl_calib_chain_noise_gain_cmd {
3173	struct iwl_calib_hdr hdr;
3174	u8 delta_gain_1;
3175	u8 delta_gain_2;
3176	u8 pad[2];
3177} __packed;
3178
3179/******************************************************************************
3180 * (12)
3181 * Miscellaneous Commands:
3182 *
3183 *****************************************************************************/
3184
3185/*
3186 * LEDs Command & Response
3187 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3188 *
3189 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3190 * this command turns it on or off, or sets up a periodic blinking cycle.
3191 */
3192struct iwl_led_cmd {
3193	__le32 interval;	/* "interval" in uSec */
3194	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3195	u8 off;			/* # intervals off while blinking;
3196				 * "0", with >0 "on" value, turns LED on */
3197	u8 on;			/* # intervals on while blinking;
3198				 * "0", regardless of "off", turns LED off */
3199	u8 reserved;
3200} __packed;
3201
3202/*
3203 * station priority table entries
3204 * also used as potential "events" value for both
3205 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3206 */
3207
3208/*
3209 * COEX events entry flag masks
3210 * RP - Requested Priority
3211 * WP - Win Medium Priority: priority assigned when the contention has been won
3212 */
3213#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3214#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3215#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3216
3217#define COEX_CU_UNASSOC_IDLE_RP               4
3218#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3219#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3220#define COEX_CU_CALIBRATION_RP                4
3221#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3222#define COEX_CU_CONNECTION_ESTAB_RP           4
3223#define COEX_CU_ASSOCIATED_IDLE_RP            4
3224#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3225#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3226#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3227#define COEX_CU_RF_ON_RP                      6
3228#define COEX_CU_RF_OFF_RP                     4
3229#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3230#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3231#define COEX_CU_RSRVD1_RP                     4
3232#define COEX_CU_RSRVD2_RP                     4
3233
3234#define COEX_CU_UNASSOC_IDLE_WP               3
3235#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3236#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3237#define COEX_CU_CALIBRATION_WP                3
3238#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3239#define COEX_CU_CONNECTION_ESTAB_WP           3
3240#define COEX_CU_ASSOCIATED_IDLE_WP            3
3241#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3242#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3243#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3244#define COEX_CU_RF_ON_WP                      3
3245#define COEX_CU_RF_OFF_WP                     3
3246#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3247#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3248#define COEX_CU_RSRVD1_WP                     3
3249#define COEX_CU_RSRVD2_WP                     3
3250
3251#define COEX_UNASSOC_IDLE_FLAGS                     0
3252#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3253	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3254	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3255#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3256	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3257	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3258#define COEX_CALIBRATION_FLAGS			\
3259	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3260	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3261#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3262/*
3263 * COEX_CONNECTION_ESTAB:
3264 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3265 */
3266#define COEX_CONNECTION_ESTAB_FLAGS		\
3267	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3268	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3269	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3270#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3271#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3272	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3273	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3274#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3275	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3276	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3277#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3278#define COEX_RF_ON_FLAGS                            0
3279#define COEX_RF_OFF_FLAGS                           0
3280#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3281	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3282	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3283#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3284	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3285	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3286	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3287#define COEX_RSRVD1_FLAGS                           0
3288#define COEX_RSRVD2_FLAGS                           0
3289/*
3290 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3291 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3292 */
3293#define COEX_CU_RF_ON_FLAGS			\
3294	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3295	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3296	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3297
3298
3299enum {
3300	/* un-association part */
3301	COEX_UNASSOC_IDLE		= 0,
3302	COEX_UNASSOC_MANUAL_SCAN	= 1,
3303	COEX_UNASSOC_AUTO_SCAN		= 2,
3304	/* calibration */
3305	COEX_CALIBRATION		= 3,
3306	COEX_PERIODIC_CALIBRATION	= 4,
3307	/* connection */
3308	COEX_CONNECTION_ESTAB		= 5,
3309	/* association part */
3310	COEX_ASSOCIATED_IDLE		= 6,
3311	COEX_ASSOC_MANUAL_SCAN		= 7,
3312	COEX_ASSOC_AUTO_SCAN		= 8,
3313	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3314	/* RF ON/OFF */
3315	COEX_RF_ON			= 10,
3316	COEX_RF_OFF			= 11,
3317	COEX_STAND_ALONE_DEBUG		= 12,
3318	/* IPAN */
3319	COEX_IPAN_ASSOC_LEVEL		= 13,
3320	/* reserved */
3321	COEX_RSRVD1			= 14,
3322	COEX_RSRVD2			= 15,
3323	COEX_NUM_OF_EVENTS		= 16
3324};
3325
3326/*
3327 * Coexistence WIFI/WIMAX  Command
3328 * COEX_PRIORITY_TABLE_CMD = 0x5a
3329 *
3330 */
3331struct iwl_wimax_coex_event_entry {
3332	u8 request_prio;
3333	u8 win_medium_prio;
3334	u8 reserved;
3335	u8 flags;
3336} __packed;
3337
3338/* COEX flag masks */
3339
3340/* Station table is valid */
3341#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3342/* UnMask wake up src at unassociated sleep */
3343#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3344/* UnMask wake up src at associated sleep */
3345#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3346/* Enable CoEx feature. */
3347#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3348
3349struct iwl_wimax_coex_cmd {
3350	u8 flags;
3351	u8 reserved[3];
3352	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3353} __packed;
3354
3355/*
3356 * Coexistence MEDIUM NOTIFICATION
3357 * COEX_MEDIUM_NOTIFICATION = 0x5b
3358 *
3359 * notification from uCode to host to indicate medium changes
3360 *
3361 */
3362/*
3363 * status field
3364 * bit 0 - 2: medium status
3365 * bit 3: medium change indication
3366 * bit 4 - 31: reserved
3367 */
3368/* status option values, (0 - 2 bits) */
3369#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3370#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3371#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3372#define COEX_MEDIUM_MSK		(0x7)
3373
3374/* send notification status (1 bit) */
3375#define COEX_MEDIUM_CHANGED	(0x8)
3376#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3377#define COEX_MEDIUM_SHIFT	(3)
3378
3379struct iwl_coex_medium_notification {
3380	__le32 status;
3381	__le32 events;
3382} __packed;
3383
3384/*
3385 * Coexistence EVENT  Command
3386 * COEX_EVENT_CMD = 0x5c
3387 *
3388 * send from host to uCode for coex event request.
3389 */
3390/* flags options */
3391#define COEX_EVENT_REQUEST_MSK	(0x1)
3392
3393struct iwl_coex_event_cmd {
3394	u8 flags;
3395	u8 event;
3396	__le16 reserved;
3397} __packed;
3398
3399struct iwl_coex_event_resp {
3400	__le32 status;
3401} __packed;
3402
3403
3404/******************************************************************************
3405 * Bluetooth Coexistence commands
3406 *
3407 *****************************************************************************/
3408
3409/*
3410 * BT Status notification
3411 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3412 */
3413enum iwl_bt_coex_profile_traffic_load {
3414	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3415	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3416	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3417	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3418/*
3419 * There are no more even though below is a u8, the
3420 * indication from the BT device only has two bits.
3421 */
3422};
3423
3424#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3425#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3426
3427/* BT UART message - Share Part (BT -> WiFi) */
3428#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3429#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3430		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3431#define BT_UART_MSG_FRAME1SSN_POS		(3)
3432#define BT_UART_MSG_FRAME1SSN_MSK		\
3433		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3434#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3435#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3436		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3437#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3438#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3439		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3440
3441#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3442#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3443		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3444#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3445#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3446		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3447#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3448#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3449		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3450#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3451#define BT_UART_MSG_FRAME2INBAND_MSK		\
3452		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3453#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3454#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3455		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3456
3457#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3458#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3459		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3460#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3461#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3462		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3463#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3464#define BT_UART_MSG_FRAME3A2DP_MSK		\
3465		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3466#define BT_UART_MSG_FRAME3ACL_POS		(3)
3467#define BT_UART_MSG_FRAME3ACL_MSK		\
3468		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3469#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3470#define BT_UART_MSG_FRAME3MASTER_MSK		\
3471		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3472#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3473#define BT_UART_MSG_FRAME3OBEX_MSK		\
3474		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3475#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3476#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3477		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3478
3479#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3480#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3481		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3482#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3483#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3484		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3485
3486#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3487#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3488		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3489#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3490#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3491		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3492#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3493#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3494		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3495#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3496#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3497		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3498
3499#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3500#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3501		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3502#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3503#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3504		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3505#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3506#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3507		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3508
3509#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3510#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3511		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3512#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3513#define BT_UART_MSG_FRAME7PAGE_MSK		\
3514		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3515#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3516#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3517		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3518#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3519#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3520		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3521#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3522#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3523		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3524
3525/* BT Session Activity 2 UART message (BT -> WiFi) */
3526#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3527#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3528		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3529#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3530#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3531		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3532
3533#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3534#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3535		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3536#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3537#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3538		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3539
3540#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3541#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3542		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3543#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3544#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3545		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3546#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3547#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3548		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3549#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3550#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3551		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3552
3553#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3554#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3555		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3556#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3557#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3558		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3559#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3560#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3561		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3562
3563#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3564#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3565		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3566#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3567#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3568		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3569#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3570#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3571		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3572#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3573#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3574		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3575
3576#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3577#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3578		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3579#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3580#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3581		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3582#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3583#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3584		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3585
3586#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3587#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3588		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3589#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3590#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3591		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3592#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3593#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3594		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3595#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3596#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3597		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3598#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3599#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3600		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3601
3602
3603#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3604#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3605
3606struct iwl_bt_uart_msg {
3607	u8 header;
3608	u8 frame1;
3609	u8 frame2;
3610	u8 frame3;
3611	u8 frame4;
3612	u8 frame5;
3613	u8 frame6;
3614	u8 frame7;
3615} __packed;
3616
3617struct iwl_bt_coex_profile_notif {
3618	struct iwl_bt_uart_msg last_bt_uart_msg;
3619	u8 bt_status; /* 0 - off, 1 - on */
3620	u8 bt_traffic_load; /* 0 .. 3? */
3621	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3622	u8 reserved;
3623} __packed;
3624
3625#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3626#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3627#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3628#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3629#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3630#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3631#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3632
3633/*
3634 * BT Coexistence Priority table
3635 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3636 */
3637enum bt_coex_prio_table_events {
3638	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3639	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3640	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3641	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3642	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3643	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3644	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3645	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3646	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3647	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3648	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3649	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3650	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3651	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3652	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3653	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3654	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3655	BT_COEX_PRIO_TBL_EVT_MAX,
3656};
3657
3658enum bt_coex_prio_table_priorities {
3659	BT_COEX_PRIO_TBL_DISABLED = 0,
3660	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3661	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3662	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3663	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3664	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3665	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3666	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3667	BT_COEX_PRIO_TBL_MAX,
3668};
3669
3670struct iwl_bt_coex_prio_table_cmd {
3671	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3672} __packed;
3673
3674#define IWL_BT_COEX_ENV_CLOSE	0
3675#define IWL_BT_COEX_ENV_OPEN	1
3676/*
3677 * BT Protection Envelope
3678 * REPLY_BT_COEX_PROT_ENV = 0xcd
3679 */
3680struct iwl_bt_coex_prot_env_cmd {
3681	u8 action; /* 0 = closed, 1 = open */
3682	u8 type; /* 0 .. 15 */
3683	u8 reserved[2];
3684} __packed;
3685
3686/*
3687 * REPLY_D3_CONFIG
3688 */
3689enum iwlagn_d3_wakeup_filters {
3690	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3691	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3692};
3693
3694struct iwlagn_d3_config_cmd {
3695	__le32 min_sleep_time;
3696	__le32 wakeup_flags;
3697} __packed;
3698
3699/*
3700 * REPLY_WOWLAN_PATTERNS
3701 */
3702#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3703#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3704
3705struct iwlagn_wowlan_pattern {
3706	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3707	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3708	u8 mask_size;
3709	u8 pattern_size;
3710	__le16 reserved;
3711} __packed;
3712
3713#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3714
3715struct iwlagn_wowlan_patterns_cmd {
3716	__le32 n_patterns;
3717	struct iwlagn_wowlan_pattern patterns[];
3718} __packed;
3719
3720/*
3721 * REPLY_WOWLAN_WAKEUP_FILTER
3722 */
3723enum iwlagn_wowlan_wakeup_filters {
3724	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3725	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3726	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3727	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3728	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3729	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3730	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3731	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3732	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3733};
3734
3735struct iwlagn_wowlan_wakeup_filter_cmd {
3736	__le32 enabled;
3737	__le16 non_qos_seq;
3738	__le16 reserved;
3739	__le16 qos_seq[8];
3740};
3741
3742/*
3743 * REPLY_WOWLAN_TSC_RSC_PARAMS
3744 */
3745#define IWLAGN_NUM_RSC	16
3746
3747struct tkip_sc {
3748	__le16 iv16;
3749	__le16 pad;
3750	__le32 iv32;
3751} __packed;
3752
3753struct iwlagn_tkip_rsc_tsc {
3754	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3755	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3756	struct tkip_sc tsc;
3757} __packed;
3758
3759struct aes_sc {
3760	__le64 pn;
3761} __packed;
3762
3763struct iwlagn_aes_rsc_tsc {
3764	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3765	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3766	struct aes_sc tsc;
3767} __packed;
3768
3769union iwlagn_all_tsc_rsc {
3770	struct iwlagn_tkip_rsc_tsc tkip;
3771	struct iwlagn_aes_rsc_tsc aes;
3772};
3773
3774struct iwlagn_wowlan_rsc_tsc_params_cmd {
3775	union iwlagn_all_tsc_rsc all_tsc_rsc;
3776} __packed;
3777
3778/*
3779 * REPLY_WOWLAN_TKIP_PARAMS
3780 */
3781#define IWLAGN_MIC_KEY_SIZE	8
3782#define IWLAGN_P1K_SIZE		5
3783struct iwlagn_mic_keys {
3784	u8 tx[IWLAGN_MIC_KEY_SIZE];
3785	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3786	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3787} __packed;
3788
3789struct iwlagn_p1k_cache {
3790	__le16 p1k[IWLAGN_P1K_SIZE];
3791} __packed;
3792
3793#define IWLAGN_NUM_RX_P1K_CACHE	2
3794
3795struct iwlagn_wowlan_tkip_params_cmd {
3796	struct iwlagn_mic_keys mic_keys;
3797	struct iwlagn_p1k_cache tx;
3798	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3799	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3800} __packed;
3801
3802/*
3803 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3804 */
3805
3806#define IWLAGN_KCK_MAX_SIZE	32
3807#define IWLAGN_KEK_MAX_SIZE	32
3808
3809struct iwlagn_wowlan_kek_kck_material_cmd {
3810	u8	kck[IWLAGN_KCK_MAX_SIZE];
3811	u8	kek[IWLAGN_KEK_MAX_SIZE];
3812	__le16	kck_len;
3813	__le16	kek_len;
3814	__le64	replay_ctr;
3815} __packed;
3816
3817#define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3818
3819/*
3820 * REPLY_WOWLAN_GET_STATUS = 0xe5
3821 */
3822struct iwlagn_wowlan_status {
3823	__le64 replay_ctr;
3824	__le32 rekey_status;
3825	__le32 wakeup_reason;
3826	u8 pattern_number;
3827	u8 reserved1;
3828	__le16 qos_seq_ctr[8];
3829	__le16 non_qos_seq_ctr;
3830	__le16 reserved2;
3831	union iwlagn_all_tsc_rsc tsc_rsc;
3832	__le16 reserved3;
3833} __packed;
3834
3835/*
3836 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3837 */
3838
3839/*
3840 * Minimum slot time in TU
3841 */
3842#define IWL_MIN_SLOT_TIME	20
3843
3844/**
3845 * struct iwl_wipan_slot
3846 * @width: Time in TU
3847 * @type:
3848 *   0 - BSS
3849 *   1 - PAN
3850 */
3851struct iwl_wipan_slot {
3852	__le16 width;
3853	u8 type;
3854	u8 reserved;
3855} __packed;
3856
3857#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3858#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3859#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3860#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3861#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3862
3863/**
3864 * struct iwl_wipan_params_cmd
3865 * @flags:
3866 *   bit0: reserved
3867 *   bit1: CP leave channel with CTS
3868 *   bit2: CP leave channel qith Quiet
3869 *   bit3: slotted mode
3870 *     1 - work in slotted mode
3871 *     0 - work in non slotted mode
3872 *   bit4: filter beacon notification
3873 *   bit5: full tx slotted mode. if this flag is set,
3874 *         uCode will perform leaving channel methods in context switch
3875 *         also when working in same channel mode
3876 * @num_slots: 1 - 10
3877 */
3878struct iwl_wipan_params_cmd {
3879	__le16 flags;
3880	u8 reserved;
3881	u8 num_slots;
3882	struct iwl_wipan_slot slots[10];
3883} __packed;
3884
3885/*
3886 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3887 *
3888 * TODO: Figure out what this is used for,
3889 *	 it can only switch between 2.4 GHz
3890 *	 channels!!
3891 */
3892
3893struct iwl_wipan_p2p_channel_switch_cmd {
3894	__le16 channel;
3895	__le16 reserved;
3896};
3897
3898/*
3899 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3900 *
3901 * This is used by the device to notify us of the
3902 * NoA schedule it determined so we can forward it
3903 * to userspace for inclusion in probe responses.
3904 *
3905 * In beacons, the NoA schedule is simply appended
3906 * to the frame we give the device.
3907 */
3908
3909struct iwl_wipan_noa_descriptor {
3910	u8 count;
3911	__le32 duration;
3912	__le32 interval;
3913	__le32 starttime;
3914} __packed;
3915
3916struct iwl_wipan_noa_attribute {
3917	u8 id;
3918	__le16 length;
3919	u8 index;
3920	u8 ct_window;
3921	struct iwl_wipan_noa_descriptor descr0, descr1;
3922	u8 reserved;
3923} __packed;
3924
3925struct iwl_wipan_noa_notification {
3926	u32 noa_active;
3927	struct iwl_wipan_noa_attribute noa_attribute;
3928} __packed;
3929
3930#endif				/* __iwl_commands_h__ */
v5.4
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * The full GNU General Public License is included in this distribution
  20 * in the file called COPYING.
  21 *
  22 * Contact Information:
  23 *  Intel Linux Wireless <linuxwifi@intel.com>
  24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25 *
  26 * BSD LICENSE
  27 *
  28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  29 * All rights reserved.
  30 *
  31 * Redistribution and use in source and binary forms, with or without
  32 * modification, are permitted provided that the following conditions
  33 * are met:
  34 *
  35 *  * Redistributions of source code must retain the above copyright
  36 *    notice, this list of conditions and the following disclaimer.
  37 *  * Redistributions in binary form must reproduce the above copyright
  38 *    notice, this list of conditions and the following disclaimer in
  39 *    the documentation and/or other materials provided with the
  40 *    distribution.
  41 *  * Neither the name Intel Corporation nor the names of its
  42 *    contributors may be used to endorse or promote products derived
  43 *    from this software without specific prior written permission.
  44 *
  45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  56 *
  57 *****************************************************************************/
  58/*
  59 * Please use this file (commands.h) only for uCode API definitions.
  60 * Please use iwl-xxxx-hw.h for hardware-related definitions.
  61 * Please use dev.h for driver implementation definitions.
  62 */
  63
  64#ifndef __iwl_commands_h__
  65#define __iwl_commands_h__
  66
  67#include <linux/ieee80211.h>
  68#include <linux/types.h>
  69
  70
  71enum {
  72	REPLY_ALIVE = 0x1,
  73	REPLY_ERROR = 0x2,
  74	REPLY_ECHO = 0x3,		/* test command */
  75
  76	/* RXON and QOS commands */
  77	REPLY_RXON = 0x10,
  78	REPLY_RXON_ASSOC = 0x11,
  79	REPLY_QOS_PARAM = 0x13,
  80	REPLY_RXON_TIMING = 0x14,
  81
  82	/* Multi-Station support */
  83	REPLY_ADD_STA = 0x18,
  84	REPLY_REMOVE_STA = 0x19,
  85	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
  86	REPLY_TXFIFO_FLUSH = 0x1e,
  87
  88	/* Security */
  89	REPLY_WEPKEY = 0x20,
  90
  91	/* RX, TX, LEDs */
  92	REPLY_TX = 0x1c,
  93	REPLY_LEDS_CMD = 0x48,
  94	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
  95
  96	/* WiMAX coexistence */
  97	COEX_PRIORITY_TABLE_CMD = 0x5a,
  98	COEX_MEDIUM_NOTIFICATION = 0x5b,
  99	COEX_EVENT_CMD = 0x5c,
 100
 101	/* Calibration */
 102	TEMPERATURE_NOTIFICATION = 0x62,
 103	CALIBRATION_CFG_CMD = 0x65,
 104	CALIBRATION_RES_NOTIFICATION = 0x66,
 105	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
 106
 107	/* 802.11h related */
 108	REPLY_QUIET_CMD = 0x71,		/* not used */
 109	REPLY_CHANNEL_SWITCH = 0x72,
 110	CHANNEL_SWITCH_NOTIFICATION = 0x73,
 111	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
 112	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
 113
 114	/* Power Management */
 115	POWER_TABLE_CMD = 0x77,
 116	PM_SLEEP_NOTIFICATION = 0x7A,
 117	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
 118
 119	/* Scan commands and notifications */
 120	REPLY_SCAN_CMD = 0x80,
 121	REPLY_SCAN_ABORT_CMD = 0x81,
 122	SCAN_START_NOTIFICATION = 0x82,
 123	SCAN_RESULTS_NOTIFICATION = 0x83,
 124	SCAN_COMPLETE_NOTIFICATION = 0x84,
 125
 126	/* IBSS/AP commands */
 127	BEACON_NOTIFICATION = 0x90,
 128	REPLY_TX_BEACON = 0x91,
 129	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
 130
 131	/* Miscellaneous commands */
 132	REPLY_TX_POWER_DBM_CMD = 0x95,
 133	QUIET_NOTIFICATION = 0x96,		/* not used */
 134	REPLY_TX_PWR_TABLE_CMD = 0x97,
 135	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
 136	TX_ANT_CONFIGURATION_CMD = 0x98,
 137	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
 138
 139	/* Bluetooth device coexistence config command */
 140	REPLY_BT_CONFIG = 0x9b,
 141
 142	/* Statistics */
 143	REPLY_STATISTICS_CMD = 0x9c,
 144	STATISTICS_NOTIFICATION = 0x9d,
 145
 146	/* RF-KILL commands and notifications */
 147	REPLY_CARD_STATE_CMD = 0xa0,
 148	CARD_STATE_NOTIFICATION = 0xa1,
 149
 150	/* Missed beacons notification */
 151	MISSED_BEACONS_NOTIFICATION = 0xa2,
 152
 153	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
 154	SENSITIVITY_CMD = 0xa8,
 155	REPLY_PHY_CALIBRATION_CMD = 0xb0,
 156	REPLY_RX_PHY_CMD = 0xc0,
 157	REPLY_RX_MPDU_CMD = 0xc1,
 158	REPLY_RX = 0xc3,
 159	REPLY_COMPRESSED_BA = 0xc5,
 160
 161	/* BT Coex */
 162	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
 163	REPLY_BT_COEX_PROT_ENV = 0xcd,
 164	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
 165
 166	/* PAN commands */
 167	REPLY_WIPAN_PARAMS = 0xb2,
 168	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
 169	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
 170	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
 171	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
 172	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
 173	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
 174	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
 175	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
 176
 177	REPLY_WOWLAN_PATTERNS = 0xe0,
 178	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
 179	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
 180	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
 181	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
 182	REPLY_WOWLAN_GET_STATUS = 0xe5,
 183	REPLY_D3_CONFIG = 0xd3,
 184
 185	REPLY_MAX = 0xff
 186};
 187
 188/*
 189 * Minimum number of queues. MAX_NUM is defined in hw specific files.
 190 * Set the minimum to accommodate
 191 *  - 4 standard TX queues
 192 *  - the command queue
 193 *  - 4 PAN TX queues
 194 *  - the PAN multicast queue, and
 195 *  - the AUX (TX during scan dwell) queue.
 196 */
 197#define IWL_MIN_NUM_QUEUES	11
 198
 199/*
 200 * Command queue depends on iPAN support.
 201 */
 202#define IWL_DEFAULT_CMD_QUEUE_NUM	4
 203#define IWL_IPAN_CMD_QUEUE_NUM		9
 204
 205#define IWL_TX_FIFO_BK		0	/* shared */
 206#define IWL_TX_FIFO_BE		1
 207#define IWL_TX_FIFO_VI		2	/* shared */
 208#define IWL_TX_FIFO_VO		3
 209#define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
 210#define IWL_TX_FIFO_BE_IPAN	4
 211#define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
 212#define IWL_TX_FIFO_VO_IPAN	5
 213/* re-uses the VO FIFO, uCode will properly flush/schedule */
 214#define IWL_TX_FIFO_AUX		5
 215#define IWL_TX_FIFO_UNUSED	255
 216
 217#define IWLAGN_CMD_FIFO_NUM	7
 218
 219/*
 220 * This queue number is required for proper operation
 221 * because the ucode will stop/start the scheduler as
 222 * required.
 223 */
 224#define IWL_IPAN_MCAST_QUEUE	8
 225
 226/******************************************************************************
 227 * (0)
 228 * Commonly used structures and definitions:
 229 * Command header, rate_n_flags, txpower
 230 *
 231 *****************************************************************************/
 232
 233/**
 234 * iwlagn rate_n_flags bit fields
 235 *
 236 * rate_n_flags format is used in following iwlagn commands:
 237 *  REPLY_RX (response only)
 238 *  REPLY_RX_MPDU (response only)
 239 *  REPLY_TX (both command and response)
 240 *  REPLY_TX_LINK_QUALITY_CMD
 241 *
 242 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 243 *  2-0:  0)   6 Mbps
 244 *        1)  12 Mbps
 245 *        2)  18 Mbps
 246 *        3)  24 Mbps
 247 *        4)  36 Mbps
 248 *        5)  48 Mbps
 249 *        6)  54 Mbps
 250 *        7)  60 Mbps
 251 *
 252 *  4-3:  0)  Single stream (SISO)
 253 *        1)  Dual stream (MIMO)
 254 *        2)  Triple stream (MIMO)
 255 *
 256 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 257 *
 258 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 259 *  3-0:  0xD)   6 Mbps
 260 *        0xF)   9 Mbps
 261 *        0x5)  12 Mbps
 262 *        0x7)  18 Mbps
 263 *        0x9)  24 Mbps
 264 *        0xB)  36 Mbps
 265 *        0x1)  48 Mbps
 266 *        0x3)  54 Mbps
 267 *
 268 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 269 *  6-0:   10)  1 Mbps
 270 *         20)  2 Mbps
 271 *         55)  5.5 Mbps
 272 *        110)  11 Mbps
 273 */
 274#define RATE_MCS_CODE_MSK 0x7
 275#define RATE_MCS_SPATIAL_POS 3
 276#define RATE_MCS_SPATIAL_MSK 0x18
 277#define RATE_MCS_HT_DUP_POS 5
 278#define RATE_MCS_HT_DUP_MSK 0x20
 279/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
 280#define RATE_MCS_RATE_MSK 0xff
 281
 282/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
 283#define RATE_MCS_FLAGS_POS 8
 284#define RATE_MCS_HT_POS 8
 285#define RATE_MCS_HT_MSK 0x100
 286
 287/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
 288#define RATE_MCS_CCK_POS 9
 289#define RATE_MCS_CCK_MSK 0x200
 290
 291/* Bit 10: (1) Use Green Field preamble */
 292#define RATE_MCS_GF_POS 10
 293#define RATE_MCS_GF_MSK 0x400
 294
 295/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
 296#define RATE_MCS_HT40_POS 11
 297#define RATE_MCS_HT40_MSK 0x800
 298
 299/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
 300#define RATE_MCS_DUP_POS 12
 301#define RATE_MCS_DUP_MSK 0x1000
 302
 303/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
 304#define RATE_MCS_SGI_POS 13
 305#define RATE_MCS_SGI_MSK 0x2000
 306
 307/**
 308 * rate_n_flags Tx antenna masks
 309 * bit14:16
 310 */
 311#define RATE_MCS_ANT_POS	14
 312#define RATE_MCS_ANT_A_MSK	0x04000
 313#define RATE_MCS_ANT_B_MSK	0x08000
 314#define RATE_MCS_ANT_C_MSK	0x10000
 315#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
 316#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
 317#define RATE_ANT_NUM 3
 318
 319#define POWER_TABLE_NUM_ENTRIES			33
 320#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
 321#define POWER_TABLE_CCK_ENTRY			32
 322
 323#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
 324#define IWL_PWR_CCK_ENTRIES			2
 325
 326/**
 327 * struct tx_power_dual_stream
 328 *
 329 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 330 *
 331 * Same format as iwl_tx_power_dual_stream, but __le32
 332 */
 333struct tx_power_dual_stream {
 334	__le32 dw;
 335} __packed;
 336
 337/**
 338 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 339 * struct iwlagn_tx_power_dbm_cmd
 340 */
 341#define IWLAGN_TX_POWER_AUTO 0x7f
 342#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
 343
 344struct iwlagn_tx_power_dbm_cmd {
 345	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 346	u8 flags;
 347	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 348	u8 reserved;
 349} __packed;
 350
 351/**
 352 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 353 * This command is used to configure valid Tx antenna.
 354 * By default uCode concludes the valid antenna according to the radio flavor.
 355 * This command enables the driver to override/modify this conclusion.
 356 */
 357struct iwl_tx_ant_config_cmd {
 358	__le32 valid;
 359} __packed;
 360
 361/******************************************************************************
 362 * (0a)
 363 * Alive and Error Commands & Responses:
 364 *
 365 *****************************************************************************/
 366
 367#define UCODE_VALID_OK	cpu_to_le32(0x1)
 368
 369/**
 370 * REPLY_ALIVE = 0x1 (response only, not a command)
 371 *
 372 * uCode issues this "alive" notification once the runtime image is ready
 373 * to receive commands from the driver.  This is the *second* "alive"
 374 * notification that the driver will receive after rebooting uCode;
 375 * this "alive" is indicated by subtype field != 9.
 376 *
 377 * See comments documenting "BSM" (bootstrap state machine).
 378 *
 379 * This response includes two pointers to structures within the device's
 380 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 381 *
 382 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 383 *     a 256-entry history of uCode execution within a circular buffer.
 384 *     Its header format is:
 385 *
 386 *	__le32 log_size;     log capacity (in number of entries)
 387 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 388 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 389 *      __le32 write_index;  next circular buffer entry that uCode would fill
 390 *
 391 *     The header is followed by the circular buffer of log entries.  Entries
 392 *     with timestamps have the following format:
 393 *
 394 *	__le32 event_id;     range 0 - 1500
 395 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 396 *	__le32 data;         event_id-specific data value
 397 *
 398 *     Entries without timestamps contain only event_id and data.
 399 *
 400 *
 401 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 402 *     information about any uCode error that occurs.  For agn, the format
 403 *     of the error log is defined by struct iwl_error_event_table.
 404 *
 405 * The Linux driver can print both logs to the system log when a uCode error
 406 * occurs.
 407 */
 408
 409/*
 410 * Note: This structure is read from the device with IO accesses,
 411 * and the reading already does the endian conversion. As it is
 412 * read with u32-sized accesses, any members with a different size
 413 * need to be ordered correctly though!
 414 */
 415struct iwl_error_event_table {
 416	u32 valid;		/* (nonzero) valid, (0) log is empty */
 417	u32 error_id;		/* type of error */
 418	u32 pc;			/* program counter */
 419	u32 blink1;		/* branch link */
 420	u32 blink2;		/* branch link */
 421	u32 ilink1;		/* interrupt link */
 422	u32 ilink2;		/* interrupt link */
 423	u32 data1;		/* error-specific data */
 424	u32 data2;		/* error-specific data */
 425	u32 line;		/* source code line of error */
 426	u32 bcon_time;		/* beacon timer */
 427	u32 tsf_low;		/* network timestamp function timer */
 428	u32 tsf_hi;		/* network timestamp function timer */
 429	u32 gp1;		/* GP1 timer register */
 430	u32 gp2;		/* GP2 timer register */
 431	u32 gp3;		/* GP3 timer register */
 432	u32 ucode_ver;		/* uCode version */
 433	u32 hw_ver;		/* HW Silicon version */
 434	u32 brd_ver;		/* HW board version */
 435	u32 log_pc;		/* log program counter */
 436	u32 frame_ptr;		/* frame pointer */
 437	u32 stack_ptr;		/* stack pointer */
 438	u32 hcmd;		/* last host command header */
 439	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
 440				 * rxtx_flag */
 441	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
 442				 * host_flag */
 443	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
 444				 * enc_flag */
 445	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
 446				 * time_flag */
 447	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
 448				 * wico interrupt */
 449	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
 450	u32 wait_event;		/* wait event() caller address */
 451	u32 l2p_control;	/* L2pControlField */
 452	u32 l2p_duration;	/* L2pDurationField */
 453	u32 l2p_mhvalid;	/* L2pMhValidBits */
 454	u32 l2p_addr_match;	/* L2pAddrMatchStat */
 455	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
 456				 * (LMPM_PMG_SEL) */
 457	u32 u_timestamp;	/* indicate when the date and time of the
 458				 * compilation */
 459	u32 flow_handler;	/* FH read/write pointers, RX credit */
 460} __packed;
 461
 462struct iwl_alive_resp {
 463	u8 ucode_minor;
 464	u8 ucode_major;
 465	__le16 reserved1;
 466	u8 sw_rev[8];
 467	u8 ver_type;
 468	u8 ver_subtype;			/* not "9" for runtime alive */
 469	__le16 reserved2;
 470	__le32 log_event_table_ptr;	/* SRAM address for event log */
 471	__le32 error_event_table_ptr;	/* SRAM address for error log */
 472	__le32 timestamp;
 473	__le32 is_valid;
 474} __packed;
 475
 476/*
 477 * REPLY_ERROR = 0x2 (response only, not a command)
 478 */
 479struct iwl_error_resp {
 480	__le32 error_type;
 481	u8 cmd_id;
 482	u8 reserved1;
 483	__le16 bad_cmd_seq_num;
 484	__le32 error_info;
 485	__le64 timestamp;
 486} __packed;
 487
 488/******************************************************************************
 489 * (1)
 490 * RXON Commands & Responses:
 491 *
 492 *****************************************************************************/
 493
 494/*
 495 * Rx config defines & structure
 496 */
 497/* rx_config device types  */
 498enum {
 499	RXON_DEV_TYPE_AP = 1,
 500	RXON_DEV_TYPE_ESS = 3,
 501	RXON_DEV_TYPE_IBSS = 4,
 502	RXON_DEV_TYPE_SNIFFER = 6,
 503	RXON_DEV_TYPE_CP = 7,
 504	RXON_DEV_TYPE_2STA = 8,
 505	RXON_DEV_TYPE_P2P = 9,
 506};
 507
 508
 509#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
 510#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
 511#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
 512#define RXON_RX_CHAIN_VALID_POS			(1)
 513#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
 514#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
 515#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
 516#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
 517#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
 518#define RXON_RX_CHAIN_CNT_POS			(10)
 519#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
 520#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
 521#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
 522#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
 523
 524/* rx_config flags */
 525/* band & modulation selection */
 526#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
 527#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
 528/* auto detection enable */
 529#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
 530/* TGg protection when tx */
 531#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
 532/* cck short slot & preamble */
 533#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
 534#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
 535/* antenna selection */
 536#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
 537#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
 538#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
 539#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
 540/* radar detection enable */
 541#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
 542#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
 543/* rx response to host with 8-byte TSF
 544* (according to ON_AIR deassertion) */
 545#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
 546
 547
 548/* HT flags */
 549#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
 550#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
 551
 552#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
 553
 554#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
 555#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
 556
 557#define RXON_FLG_CHANNEL_MODE_POS		(25)
 558#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
 559
 560/* channel mode */
 561enum {
 562	CHANNEL_MODE_LEGACY = 0,
 563	CHANNEL_MODE_PURE_40 = 1,
 564	CHANNEL_MODE_MIXED = 2,
 565	CHANNEL_MODE_RESERVED = 3,
 566};
 567#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
 568#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
 569#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
 570
 571/* CTS to self (if spec allows) flag */
 572#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
 573
 574/* rx_config filter flags */
 575/* accept all data frames */
 576#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
 577/* pass control & management to host */
 578#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
 579/* accept multi-cast */
 580#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
 581/* don't decrypt uni-cast frames */
 582#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
 583/* don't decrypt multi-cast frames */
 584#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
 585/* STA is associated */
 586#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
 587/* transfer to host non bssid beacons in associated state */
 588#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
 589
 590/**
 591 * REPLY_RXON = 0x10 (command, has simple generic response)
 592 *
 593 * RXON tunes the radio tuner to a service channel, and sets up a number
 594 * of parameters that are used primarily for Rx, but also for Tx operations.
 595 *
 596 * NOTE:  When tuning to a new channel, driver must set the
 597 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 598 *        info within the device, including the station tables, tx retry
 599 *        rate tables, and txpower tables.  Driver must build a new station
 600 *        table and txpower table before transmitting anything on the RXON
 601 *        channel.
 602 *
 603 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 604 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 605 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 606 */
 607
 608struct iwl_rxon_cmd {
 609	u8 node_addr[6];
 610	__le16 reserved1;
 611	u8 bssid_addr[6];
 612	__le16 reserved2;
 613	u8 wlap_bssid_addr[6];
 614	__le16 reserved3;
 615	u8 dev_type;
 616	u8 air_propagation;
 617	__le16 rx_chain;
 618	u8 ofdm_basic_rates;
 619	u8 cck_basic_rates;
 620	__le16 assoc_id;
 621	__le32 flags;
 622	__le32 filter_flags;
 623	__le16 channel;
 624	u8 ofdm_ht_single_stream_basic_rates;
 625	u8 ofdm_ht_dual_stream_basic_rates;
 626	u8 ofdm_ht_triple_stream_basic_rates;
 627	u8 reserved5;
 628	__le16 acquisition_data;
 629	__le16 reserved6;
 630} __packed;
 631
 632/*
 633 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 634 */
 635struct iwl_rxon_assoc_cmd {
 636	__le32 flags;
 637	__le32 filter_flags;
 638	u8 ofdm_basic_rates;
 639	u8 cck_basic_rates;
 640	__le16 reserved1;
 641	u8 ofdm_ht_single_stream_basic_rates;
 642	u8 ofdm_ht_dual_stream_basic_rates;
 643	u8 ofdm_ht_triple_stream_basic_rates;
 644	u8 reserved2;
 645	__le16 rx_chain_select_flags;
 646	__le16 acquisition_data;
 647	__le32 reserved3;
 648} __packed;
 649
 650#define IWL_CONN_MAX_LISTEN_INTERVAL	10
 651#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
 652
 653/*
 654 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 655 */
 656struct iwl_rxon_time_cmd {
 657	__le64 timestamp;
 658	__le16 beacon_interval;
 659	__le16 atim_window;
 660	__le32 beacon_init_val;
 661	__le16 listen_interval;
 662	u8 dtim_period;
 663	u8 delta_cp_bss_tbtts;
 664} __packed;
 665
 666/*
 667 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 668 */
 669/**
 670 * struct iwl5000_channel_switch_cmd
 671 * @band: 0- 5.2GHz, 1- 2.4GHz
 672 * @expect_beacon: 0- resume transmits after channel switch
 673 *		   1- wait for beacon to resume transmits
 674 * @channel: new channel number
 675 * @rxon_flags: Rx on flags
 676 * @rxon_filter_flags: filtering parameters
 677 * @switch_time: switch time in extended beacon format
 678 * @reserved: reserved bytes
 679 */
 680struct iwl5000_channel_switch_cmd {
 681	u8 band;
 682	u8 expect_beacon;
 683	__le16 channel;
 684	__le32 rxon_flags;
 685	__le32 rxon_filter_flags;
 686	__le32 switch_time;
 687	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 688} __packed;
 689
 690/**
 691 * struct iwl6000_channel_switch_cmd
 692 * @band: 0- 5.2GHz, 1- 2.4GHz
 693 * @expect_beacon: 0- resume transmits after channel switch
 694 *		   1- wait for beacon to resume transmits
 695 * @channel: new channel number
 696 * @rxon_flags: Rx on flags
 697 * @rxon_filter_flags: filtering parameters
 698 * @switch_time: switch time in extended beacon format
 699 * @reserved: reserved bytes
 700 */
 701struct iwl6000_channel_switch_cmd {
 702	u8 band;
 703	u8 expect_beacon;
 704	__le16 channel;
 705	__le32 rxon_flags;
 706	__le32 rxon_filter_flags;
 707	__le32 switch_time;
 708	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 709} __packed;
 710
 711/*
 712 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 713 */
 714struct iwl_csa_notification {
 715	__le16 band;
 716	__le16 channel;
 717	__le32 status;		/* 0 - OK, 1 - fail */
 718} __packed;
 719
 720/******************************************************************************
 721 * (2)
 722 * Quality-of-Service (QOS) Commands & Responses:
 723 *
 724 *****************************************************************************/
 725
 726/**
 727 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 728 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 729 *
 730 * @cw_min: Contention window, start value in numbers of slots.
 731 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 732 * @cw_max: Contention window, max value in numbers of slots.
 733 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 734 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 735 *          performing random backoff timing prior to Tx).  Device default 1.
 736 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 737 *
 738 * Device will automatically increase contention window by (2*CW) + 1 for each
 739 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 740 * value, to cap the CW value.
 741 */
 742struct iwl_ac_qos {
 743	__le16 cw_min;
 744	__le16 cw_max;
 745	u8 aifsn;
 746	u8 reserved1;
 747	__le16 edca_txop;
 748} __packed;
 749
 750/* QoS flags defines */
 751#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
 752#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
 753#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
 754
 755/* Number of Access Categories (AC) (EDCA), queues 0..3 */
 756#define AC_NUM                4
 757
 758/*
 759 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 760 *
 761 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 762 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 763 */
 764struct iwl_qosparam_cmd {
 765	__le32 qos_flags;
 766	struct iwl_ac_qos ac[AC_NUM];
 767} __packed;
 768
 769/******************************************************************************
 770 * (3)
 771 * Add/Modify Stations Commands & Responses:
 772 *
 773 *****************************************************************************/
 774/*
 775 * Multi station support
 776 */
 777
 778/* Special, dedicated locations within device's station table */
 779#define	IWL_AP_ID		0
 780#define	IWL_AP_ID_PAN		1
 781#define	IWL_STA_ID		2
 782#define IWLAGN_PAN_BCAST_ID	14
 783#define IWLAGN_BROADCAST_ID	15
 784#define	IWLAGN_STATION_COUNT	16
 785
 786#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
 787
 788#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
 789#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
 790#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
 791#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
 792#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
 793#define STA_FLG_MAX_AGG_SIZE_POS	(19)
 794#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
 795#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
 796#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
 797#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
 798#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
 799
 800/* Use in mode field.  1: modify existing entry, 0: add new station entry */
 801#define STA_CONTROL_MODIFY_MSK		0x01
 802
 803/* key flags __le16*/
 804#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
 805#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
 806#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
 807#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
 808#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
 809
 810#define STA_KEY_FLG_KEYID_POS	8
 811#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
 812/* wep key is either from global key (0) or from station info array (1) */
 813#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
 814
 815/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
 816#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
 817#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
 818#define STA_KEY_MAX_NUM		8
 819#define STA_KEY_MAX_NUM_PAN	16
 820/* must not match WEP_INVALID_OFFSET */
 821#define IWLAGN_HW_KEY_DEFAULT	0xfe
 822
 823/* Flags indicate whether to modify vs. don't change various station params */
 824#define	STA_MODIFY_KEY_MASK		0x01
 825#define	STA_MODIFY_TID_DISABLE_TX	0x02
 826#define	STA_MODIFY_TX_RATE_MSK		0x04
 827#define STA_MODIFY_ADDBA_TID_MSK	0x08
 828#define STA_MODIFY_DELBA_TID_MSK	0x10
 829#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
 830
 831/* agn */
 832struct iwl_keyinfo {
 833	__le16 key_flags;
 834	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
 835	u8 reserved1;
 836	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
 837	u8 key_offset;
 838	u8 reserved2;
 839	u8 key[16];		/* 16-byte unicast decryption key */
 840	__le64 tx_secur_seq_cnt;
 841	__le64 hw_tkip_mic_rx_key;
 842	__le64 hw_tkip_mic_tx_key;
 843} __packed;
 844
 845/**
 846 * struct sta_id_modify
 847 * @addr[ETH_ALEN]: station's MAC address
 848 * @sta_id: index of station in uCode's station table
 849 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 850 *
 851 * Driver selects unused table index when adding new station,
 852 * or the index to a pre-existing station entry when modifying that station.
 853 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 854 *
 855 * modify_mask flags select which parameters to modify vs. leave alone.
 856 */
 857struct sta_id_modify {
 858	u8 addr[ETH_ALEN];
 859	__le16 reserved1;
 860	u8 sta_id;
 861	u8 modify_mask;
 862	__le16 reserved2;
 863} __packed;
 864
 865/*
 866 * REPLY_ADD_STA = 0x18 (command)
 867 *
 868 * The device contains an internal table of per-station information,
 869 * with info on security keys, aggregation parameters, and Tx rates for
 870 * initial Tx attempt and any retries (agn devices uses
 871 * REPLY_TX_LINK_QUALITY_CMD,
 872 *
 873 * REPLY_ADD_STA sets up the table entry for one station, either creating
 874 * a new entry, or modifying a pre-existing one.
 875 *
 876 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 877 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 878 *        new station table before transmitting anything on the RXON channel
 879 *        (except active scans or active measurements; those commands carry
 880 *        their own txpower/rate setup data).
 881 *
 882 *        When getting started on a new channel, driver must set up the
 883 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 884 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 885 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 886 *        are all that are needed for a BSS client station.  If the device is
 887 *        used as AP, or in an IBSS network, driver must set up station table
 888 *        entries for all STAs in network, starting with index IWL_STA_ID.
 889 */
 890
 891struct iwl_addsta_cmd {
 892	u8 mode;		/* 1: modify existing, 0: add new station */
 893	u8 reserved[3];
 894	struct sta_id_modify sta;
 895	struct iwl_keyinfo key;
 896	__le32 station_flags;		/* STA_FLG_* */
 897	__le32 station_flags_msk;	/* STA_FLG_* */
 898
 899	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
 900	 * corresponding to bit (e.g. bit 5 controls TID 5).
 901	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
 902	__le16 tid_disable_tx;
 903	__le16 legacy_reserved;
 904
 905	/* TID for which to add block-ack support.
 906	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 907	u8 add_immediate_ba_tid;
 908
 909	/* TID for which to remove block-ack support.
 910	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
 911	u8 remove_immediate_ba_tid;
 912
 913	/* Starting Sequence Number for added block-ack support.
 914	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 915	__le16 add_immediate_ba_ssn;
 916
 917	/*
 918	 * Number of packets OK to transmit to station even though
 919	 * it is asleep -- used to synchronise PS-poll and u-APSD
 920	 * responses while ucode keeps track of STA sleep state.
 921	 */
 922	__le16 sleep_tx_count;
 923
 924	__le16 reserved2;
 925} __packed;
 926
 927
 928#define ADD_STA_SUCCESS_MSK		0x1
 929#define ADD_STA_NO_ROOM_IN_TABLE	0x2
 930#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
 931#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
 932/*
 933 * REPLY_ADD_STA = 0x18 (response)
 934 */
 935struct iwl_add_sta_resp {
 936	u8 status;	/* ADD_STA_* */
 937} __packed;
 938
 939#define REM_STA_SUCCESS_MSK              0x1
 940/*
 941 *  REPLY_REM_STA = 0x19 (response)
 942 */
 943struct iwl_rem_sta_resp {
 944	u8 status;
 945} __packed;
 946
 947/*
 948 *  REPLY_REM_STA = 0x19 (command)
 949 */
 950struct iwl_rem_sta_cmd {
 951	u8 num_sta;     /* number of removed stations */
 952	u8 reserved[3];
 953	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
 954	u8 reserved2[2];
 955} __packed;
 956
 957
 958/* WiFi queues mask */
 959#define IWL_SCD_BK_MSK			BIT(0)
 960#define IWL_SCD_BE_MSK			BIT(1)
 961#define IWL_SCD_VI_MSK			BIT(2)
 962#define IWL_SCD_VO_MSK			BIT(3)
 963#define IWL_SCD_MGMT_MSK		BIT(3)
 964
 965/* PAN queues mask */
 966#define IWL_PAN_SCD_BK_MSK		BIT(4)
 967#define IWL_PAN_SCD_BE_MSK		BIT(5)
 968#define IWL_PAN_SCD_VI_MSK		BIT(6)
 969#define IWL_PAN_SCD_VO_MSK		BIT(7)
 970#define IWL_PAN_SCD_MGMT_MSK		BIT(7)
 971#define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
 972
 973#define IWL_AGG_TX_QUEUE_MSK		0xffc00
 974
 975#define IWL_DROP_ALL			BIT(1)
 976
 977/*
 978 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
 979 *
 980 * When using full FIFO flush this command checks the scheduler HW block WR/RD
 981 * pointers to check if all the frames were transferred by DMA into the
 982 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
 983 * empty the command can finish.
 984 * This command is used to flush the TXFIFO from transmit commands, it may
 985 * operate on single or multiple queues, the command queue can't be flushed by
 986 * this command. The command response is returned when all the queue flush
 987 * operations are done. Each TX command flushed return response with the FLUSH
 988 * status set in the TX response status. When FIFO flush operation is used,
 989 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
 990 * are set.
 991 *
 992 * @queue_control: bit mask for which queues to flush
 993 * @flush_control: flush controls
 994 *	0: Dump single MSDU
 995 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
 996 *	2: Dump all FIFO
 997 */
 998struct iwl_txfifo_flush_cmd_v3 {
 999	__le32 queue_control;
1000	__le16 flush_control;
1001	__le16 reserved;
1002} __packed;
1003
1004struct iwl_txfifo_flush_cmd_v2 {
1005	__le16 queue_control;
1006	__le16 flush_control;
1007} __packed;
1008
1009/*
1010 * REPLY_WEP_KEY = 0x20
1011 */
1012struct iwl_wep_key {
1013	u8 key_index;
1014	u8 key_offset;
1015	u8 reserved1[2];
1016	u8 key_size;
1017	u8 reserved2[3];
1018	u8 key[16];
1019} __packed;
1020
1021struct iwl_wep_cmd {
1022	u8 num_keys;
1023	u8 global_key_type;
1024	u8 flags;
1025	u8 reserved;
1026	struct iwl_wep_key key[0];
1027} __packed;
1028
1029#define WEP_KEY_WEP_TYPE 1
1030#define WEP_KEYS_MAX 4
1031#define WEP_INVALID_OFFSET 0xff
1032#define WEP_KEY_LEN_64 5
1033#define WEP_KEY_LEN_128 13
1034
1035/******************************************************************************
1036 * (4)
1037 * Rx Responses:
1038 *
1039 *****************************************************************************/
1040
1041#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1042#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1043
1044#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1045#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1046#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1047#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1048#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
1049#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1050#define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
1051
1052#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1053#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1054#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1055#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1056#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1057#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1058
1059#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1060#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1061
1062#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1063#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1064#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1065#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1066#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1067
1068#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1069#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1070#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1071#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1072
1073
1074#define IWLAGN_RX_RES_PHY_CNT 8
1075#define IWLAGN_RX_RES_AGC_IDX     1
1076#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1077#define IWLAGN_RX_RES_RSSI_C_IDX  3
1078#define IWLAGN_OFDM_AGC_MSK 0xfe00
1079#define IWLAGN_OFDM_AGC_BIT_POS 9
1080#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1081#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1082#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1083#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1084#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1085#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1086#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1087#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1088#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1089
1090struct iwlagn_non_cfg_phy {
1091	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1092} __packed;
1093
1094
1095/*
1096 * REPLY_RX = 0xc3 (response only, not a command)
1097 * Used only for legacy (non 11n) frames.
1098 */
1099struct iwl_rx_phy_res {
1100	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1101	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1102	u8 stat_id;		/* configurable DSP phy data set ID */
1103	u8 reserved1;
1104	__le64 timestamp;	/* TSF at on air rise */
1105	__le32 beacon_time_stamp; /* beacon at on-air rise */
1106	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1107	__le16 channel;		/* channel number */
1108	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1109	__le32 rate_n_flags;	/* RATE_MCS_* */
1110	__le16 byte_count;	/* frame's byte-count */
1111	__le16 frame_time;	/* frame's time on the air */
1112} __packed;
1113
1114struct iwl_rx_mpdu_res_start {
1115	__le16 byte_count;
1116	__le16 reserved;
1117} __packed;
1118
1119
1120/******************************************************************************
1121 * (5)
1122 * Tx Commands & Responses:
1123 *
1124 * Driver must place each REPLY_TX command into one of the prioritized Tx
1125 * queues in host DRAM, shared between driver and device (see comments for
1126 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1127 * are preparing to transmit, the device pulls the Tx command over the PCI
1128 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1129 * from which data will be transmitted.
1130 *
1131 * uCode handles all timing and protocol related to control frames
1132 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1133 * handle reception of block-acks; uCode updates the host driver via
1134 * REPLY_COMPRESSED_BA.
1135 *
1136 * uCode handles retrying Tx when an ACK is expected but not received.
1137 * This includes trying lower data rates than the one requested in the Tx
1138 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1139 *
1140 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1141 * This command must be executed after every RXON command, before Tx can occur.
1142 *****************************************************************************/
1143
1144/* REPLY_TX Tx flags field */
1145
1146/*
1147 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1148 * before this frame. if CTS-to-self required check
1149 * RXON_FLG_SELF_CTS_EN status.
1150 */
1151#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1152
1153/* 1: Expect ACK from receiving station
1154 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1155 * Set this for unicast frames, but not broadcast/multicast. */
1156#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1157
1158/* For agn devices:
1159 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1160 *    Tx command's initial_rate_index indicates first rate to try;
1161 *    uCode walks through table for additional Tx attempts.
1162 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1163 *    This rate will be used for all Tx attempts; it will not be scaled. */
1164#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1165
1166/* 1: Expect immediate block-ack.
1167 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1168#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1169
1170/* Tx antenna selection field; reserved (0) for agn devices. */
1171#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1172
1173/* 1: Ignore Bluetooth priority for this frame.
1174 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1175#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1176
1177/* 1: uCode overrides sequence control field in MAC header.
1178 * 0: Driver provides sequence control field in MAC header.
1179 * Set this for management frames, non-QOS data frames, non-unicast frames,
1180 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1181#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1182
1183/* 1: This frame is non-last MPDU; more fragments are coming.
1184 * 0: Last fragment, or not using fragmentation. */
1185#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1186
1187/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1188 * 0: No TSF required in outgoing frame.
1189 * Set this for transmitting beacons and probe responses. */
1190#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1191
1192/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1193 *    alignment of frame's payload data field.
1194 * 0: No pad
1195 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1196 * field (but not both).  Driver must align frame data (i.e. data following
1197 * MAC header) to DWORD boundary. */
1198#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1199
1200/* accelerate aggregation support
1201 * 0 - no CCMP encryption; 1 - CCMP encryption */
1202#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1203
1204/* HCCA-AP - disable duration overwriting. */
1205#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1206
1207
1208/*
1209 * TX command security control
1210 */
1211#define TX_CMD_SEC_WEP  	0x01
1212#define TX_CMD_SEC_CCM  	0x02
1213#define TX_CMD_SEC_TKIP		0x03
1214#define TX_CMD_SEC_MSK		0x03
1215#define TX_CMD_SEC_SHIFT	6
1216#define TX_CMD_SEC_KEY128	0x08
1217
1218/*
1219 * REPLY_TX = 0x1c (command)
1220 */
1221
1222/*
1223 * Used for managing Tx retries when expecting block-acks.
1224 * Driver should set these fields to 0.
1225 */
1226struct iwl_dram_scratch {
1227	u8 try_cnt;		/* Tx attempts */
1228	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1229	__le16 reserved;
1230} __packed;
1231
1232struct iwl_tx_cmd {
1233	/*
1234	 * MPDU byte count:
1235	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1236	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1237	 * + Data payload
1238	 * + 8-byte MIC (not used for CCM/WEP)
1239	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1240	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1241	 * Range: 14-2342 bytes.
1242	 */
1243	__le16 len;
1244
1245	/*
1246	 * MPDU or MSDU byte count for next frame.
1247	 * Used for fragmentation and bursting, but not 11n aggregation.
1248	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1249	 */
1250	__le16 next_frame_len;
1251
1252	__le32 tx_flags;	/* TX_CMD_FLG_* */
1253
1254	/* uCode may modify this field of the Tx command (in host DRAM!).
1255	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1256	struct iwl_dram_scratch scratch;
1257
1258	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1259	__le32 rate_n_flags;	/* RATE_MCS_* */
1260
1261	/* Index of destination station in uCode's station table */
1262	u8 sta_id;
1263
1264	/* Type of security encryption:  CCM or TKIP */
1265	u8 sec_ctl;		/* TX_CMD_SEC_* */
1266
1267	/*
1268	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1269	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1270	 * data frames, this field may be used to selectively reduce initial
1271	 * rate (via non-0 value) for special frames (e.g. management), while
1272	 * still supporting rate scaling for all frames.
1273	 */
1274	u8 initial_rate_index;
1275	u8 reserved;
1276	u8 key[16];
1277	__le16 next_frame_flags;
1278	__le16 reserved2;
1279	union {
1280		__le32 life_time;
1281		__le32 attempt;
1282	} stop_time;
1283
1284	/* Host DRAM physical address pointer to "scratch" in this command.
1285	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1286	__le32 dram_lsb_ptr;
1287	u8 dram_msb_ptr;
1288
1289	u8 rts_retry_limit;	/*byte 50 */
1290	u8 data_retry_limit;	/*byte 51 */
1291	u8 tid_tspec;
1292	union {
1293		__le16 pm_frame_timeout;
1294		__le16 attempt_duration;
1295	} timeout;
1296
1297	/*
1298	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1299	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1300	 */
1301	__le16 driver_txop;
1302
1303	/*
1304	 * MAC header goes here, followed by 2 bytes padding if MAC header
1305	 * length is 26 or 30 bytes, followed by payload data
1306	 */
1307	u8 payload[0];
1308	struct ieee80211_hdr hdr[0];
 
 
1309} __packed;
1310
1311/*
1312 * TX command response is sent after *agn* transmission attempts.
1313 *
1314 * both postpone and abort status are expected behavior from uCode. there is
1315 * no special operation required from driver; except for RFKILL_FLUSH,
1316 * which required tx flush host command to flush all the tx frames in queues
1317 */
1318enum {
1319	TX_STATUS_SUCCESS = 0x01,
1320	TX_STATUS_DIRECT_DONE = 0x02,
1321	/* postpone TX */
1322	TX_STATUS_POSTPONE_DELAY = 0x40,
1323	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1324	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1325	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1326	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1327	/* abort TX */
1328	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1329	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1330	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1331	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1332	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1333	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1334	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1335	TX_STATUS_FAIL_DEST_PS = 0x88,
1336	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1337	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1338	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1339	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1340	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1341	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1342	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1343	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1344	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1345};
1346
1347#define	TX_PACKET_MODE_REGULAR		0x0000
1348#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1349#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1350
1351enum {
1352	TX_POWER_PA_NOT_ACTIVE = 0x0,
1353};
1354
1355enum {
1356	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1357	TX_STATUS_DELAY_MSK = 0x00000040,
1358	TX_STATUS_ABORT_MSK = 0x00000080,
1359	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1360	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1361	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1362	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1363	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1364};
1365
1366/* *******************************
1367 * TX aggregation status
1368 ******************************* */
1369
1370enum {
1371	AGG_TX_STATE_TRANSMITTED = 0x00,
1372	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1373	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1374	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1375	AGG_TX_STATE_ABORT_MSK = 0x08,
1376	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1377	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1378	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1379	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1380	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1381	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1382	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1383	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1384};
1385
1386#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1387#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1388#define AGG_TX_TRY_POS		12
1389
1390#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1391				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1392				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1393
1394/* # tx attempts for first frame in aggregation */
1395#define AGG_TX_STATE_TRY_CNT_POS 12
1396#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1397
1398/* Command ID and sequence number of Tx command for this frame */
1399#define AGG_TX_STATE_SEQ_NUM_POS 16
1400#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1401
1402/*
1403 * REPLY_TX = 0x1c (response)
1404 *
1405 * This response may be in one of two slightly different formats, indicated
1406 * by the frame_count field:
1407 *
1408 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1409 *     a single frame.  Multiple attempts, at various bit rates, may have
1410 *     been made for this frame.
1411 *
1412 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1413 *     2 or more frames that used block-acknowledge.  All frames were
1414 *     transmitted at same rate.  Rate scaling may have been used if first
1415 *     frame in this new agg block failed in previous agg block(s).
1416 *
1417 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1418 *     block-ack has not been received by the time the agn device records
1419 *     this status.
1420 *     This status relates to reasons the tx might have been blocked or aborted
1421 *     within the sending station (this agn device), rather than whether it was
1422 *     received successfully by the destination station.
1423 */
1424struct agg_tx_status {
1425	__le16 status;
1426	__le16 sequence;
1427} __packed;
1428
1429/* refer to ra_tid */
1430#define IWLAGN_TX_RES_TID_POS	0
1431#define IWLAGN_TX_RES_TID_MSK	0x0f
1432#define IWLAGN_TX_RES_RA_POS	4
1433#define IWLAGN_TX_RES_RA_MSK	0xf0
1434
1435struct iwlagn_tx_resp {
1436	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1437	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1438	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1439	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1440
1441	/* For non-agg:  Rate at which frame was successful.
1442	 * For agg:  Rate at which all frames were transmitted. */
1443	__le32 rate_n_flags;	/* RATE_MCS_*  */
1444
1445	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1446	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1447	__le16 wireless_media_time;	/* uSecs */
1448
1449	u8 pa_status;		/* RF power amplifier measurement (not used) */
1450	u8 pa_integ_res_a[3];
1451	u8 pa_integ_res_b[3];
1452	u8 pa_integ_res_C[3];
1453
1454	__le32 tfd_info;
1455	__le16 seq_ctl;
1456	__le16 byte_cnt;
1457	u8 tlc_info;
1458	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1459	__le16 frame_ctrl;
1460	/*
1461	 * For non-agg:  frame status TX_STATUS_*
1462	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1463	 *           fields follow this one, up to frame_count.
1464	 *           Bit fields:
1465	 *           11- 0:  AGG_TX_STATE_* status code
1466	 *           15-12:  Retry count for 1st frame in aggregation (retries
1467	 *                   occur if tx failed for this frame when it was a
1468	 *                   member of a previous aggregation block).  If rate
1469	 *                   scaling is used, retry count indicates the rate
1470	 *                   table entry used for all frames in the new agg.
1471	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1472	 */
1473	struct agg_tx_status status;	/* TX status (in aggregation -
1474					 * status of 1st frame) */
1475} __packed;
1476/*
1477 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1478 *
1479 * Reports Block-Acknowledge from recipient station
1480 */
1481struct iwl_compressed_ba_resp {
1482	__le32 sta_addr_lo32;
1483	__le16 sta_addr_hi16;
1484	__le16 reserved;
1485
1486	/* Index of recipient (BA-sending) station in uCode's station table */
1487	u8 sta_id;
1488	u8 tid;
1489	__le16 seq_ctl;
1490	__le64 bitmap;
1491	__le16 scd_flow;
1492	__le16 scd_ssn;
1493	u8 txed;	/* number of frames sent */
1494	u8 txed_2_done; /* number of frames acked */
1495	__le16 reserved1;
1496} __packed;
1497
1498/*
1499 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1500 *
1501 */
1502
1503/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1504#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1505
1506/* # of EDCA prioritized tx fifos */
1507#define  LINK_QUAL_AC_NUM AC_NUM
1508
1509/* # entries in rate scale table to support Tx retries */
1510#define  LINK_QUAL_MAX_RETRY_NUM 16
1511
1512/* Tx antenna selection values */
1513#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1514#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1515#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1516
1517
1518/**
1519 * struct iwl_link_qual_general_params
1520 *
1521 * Used in REPLY_TX_LINK_QUALITY_CMD
1522 */
1523struct iwl_link_qual_general_params {
1524	u8 flags;
1525
1526	/* No entries at or above this (driver chosen) index contain MIMO */
1527	u8 mimo_delimiter;
1528
1529	/* Best single antenna to use for single stream (legacy, SISO). */
1530	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1531
1532	/* Best antennas to use for MIMO */
1533	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1534
1535	/*
1536	 * If driver needs to use different initial rates for different
1537	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1538	 * this table will set that up, by indicating the indexes in the
1539	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1540	 * Otherwise, driver should set all entries to 0.
1541	 *
1542	 * Entry usage:
1543	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1544	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1545	 */
1546	u8 start_rate_index[LINK_QUAL_AC_NUM];
1547} __packed;
1548
1549#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1550#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1551#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1552
1553#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1554#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1555#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1556
1557#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1558#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1559#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1560
1561/**
1562 * struct iwl_link_qual_agg_params
1563 *
1564 * Used in REPLY_TX_LINK_QUALITY_CMD
1565 */
1566struct iwl_link_qual_agg_params {
1567
1568	/*
1569	 *Maximum number of uSec in aggregation.
1570	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1571	 */
1572	__le16 agg_time_limit;
1573
1574	/*
1575	 * Number of Tx retries allowed for a frame, before that frame will
1576	 * no longer be considered for the start of an aggregation sequence
1577	 * (scheduler will then try to tx it as single frame).
1578	 * Driver should set this to 3.
1579	 */
1580	u8 agg_dis_start_th;
1581
1582	/*
1583	 * Maximum number of frames in aggregation.
1584	 * 0 = no limit (default).  1 = no aggregation.
1585	 * Other values = max # frames in aggregation.
1586	 */
1587	u8 agg_frame_cnt_limit;
1588
1589	__le32 reserved;
1590} __packed;
1591
1592/*
1593 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1594 *
1595 * For agn devices
1596 *
1597 * Each station in the agn device's internal station table has its own table
1598 * of 16
1599 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1600 * an ACK is not received.  This command replaces the entire table for
1601 * one station.
1602 *
1603 * NOTE:  Station must already be in agn device's station table.
1604 *	  Use REPLY_ADD_STA.
1605 *
1606 * The rate scaling procedures described below work well.  Of course, other
1607 * procedures are possible, and may work better for particular environments.
1608 *
1609 *
1610 * FILLING THE RATE TABLE
1611 *
1612 * Given a particular initial rate and mode, as determined by the rate
1613 * scaling algorithm described below, the Linux driver uses the following
1614 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1615 * Link Quality command:
1616 *
1617 *
1618 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1619 *     a) Use this same initial rate for first 3 entries.
1620 *     b) Find next lower available rate using same mode (SISO or MIMO),
1621 *        use for next 3 entries.  If no lower rate available, switch to
1622 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1623 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1624 *        using MIMO (3 or 6).
1625 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1626 *        no MIMO, no short guard interval), at the next lower bit rate
1627 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1628 *        legacy procedure for remaining table entries.
1629 *
1630 * 2)  If using legacy initial rate:
1631 *     a) Use the initial rate for only one entry.
1632 *     b) For each following entry, reduce the rate to next lower available
1633 *        rate, until reaching the lowest available rate.
1634 *     c) When reducing rate, also switch antenna selection.
1635 *     d) Once lowest available rate is reached, repeat this rate until
1636 *        rate table is filled (16 entries), switching antenna each entry.
1637 *
1638 *
1639 * ACCUMULATING HISTORY
1640 *
1641 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1642 * uses two sets of frame Tx success history:  One for the current/active
1643 * modulation mode, and one for a speculative/search mode that is being
1644 * attempted. If the speculative mode turns out to be more effective (i.e.
1645 * actual transfer rate is better), then the driver continues to use the
1646 * speculative mode as the new current active mode.
1647 *
1648 * Each history set contains, separately for each possible rate, data for a
1649 * sliding window of the 62 most recent tx attempts at that rate.  The data
1650 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1651 * and attempted frames, from which the driver can additionally calculate a
1652 * success ratio (success / attempted) and number of failures
1653 * (attempted - success), and control the size of the window (attempted).
1654 * The driver uses the bit map to remove successes from the success sum, as
1655 * the oldest tx attempts fall out of the window.
1656 *
1657 * When the agn device makes multiple tx attempts for a given frame, each
1658 * attempt might be at a different rate, and have different modulation
1659 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1660 * up in the rate scaling table in the Link Quality command.  The driver must
1661 * determine which rate table entry was used for each tx attempt, to determine
1662 * which rate-specific history to update, and record only those attempts that
1663 * match the modulation characteristics of the history set.
1664 *
1665 * When using block-ack (aggregation), all frames are transmitted at the same
1666 * rate, since there is no per-attempt acknowledgment from the destination
1667 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1668 * rate_n_flags field.  After receiving a block-ack, the driver can update
1669 * history for the entire block all at once.
1670 *
1671 *
1672 * FINDING BEST STARTING RATE:
1673 *
1674 * When working with a selected initial modulation mode (see below), the
1675 * driver attempts to find a best initial rate.  The initial rate is the
1676 * first entry in the Link Quality command's rate table.
1677 *
1678 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1679 *     table below) for current initial rate.  Do this only if enough frames
1680 *     have been attempted to make the value meaningful:  at least 6 failed
1681 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1682 *     scaling yet.
1683 *
1684 * 2)  Find available rates adjacent to current initial rate.  Available means:
1685 *     a)  supported by hardware &&
1686 *     b)  supported by association &&
1687 *     c)  within any constraints selected by user
1688 *
1689 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1690 *     enough history to calculate a throughput.  That's okay, we might try
1691 *     using one of them anyway!
1692 *
1693 * 4)  Try decreasing rate if, for current rate:
1694 *     a)  success ratio is < 15% ||
1695 *     b)  lower adjacent rate has better measured throughput ||
1696 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1697 *
1698 *     As a sanity check, if decrease was determined above, leave rate
1699 *     unchanged if:
1700 *     a)  lower rate unavailable
1701 *     b)  success ratio at current rate > 85% (very good)
1702 *     c)  current measured throughput is better than expected throughput
1703 *         of lower rate (under perfect 100% tx conditions, see table below)
1704 *
1705 * 5)  Try increasing rate if, for current rate:
1706 *     a)  success ratio is < 15% ||
1707 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1708 *     b)  higher adjacent rate has better measured throughput ||
1709 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1710 *
1711 *     As a sanity check, if increase was determined above, leave rate
1712 *     unchanged if:
1713 *     a)  success ratio at current rate < 70%.  This is not particularly
1714 *         good performance; higher rate is sure to have poorer success.
1715 *
1716 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1717 *     acknowledge, history and statistics may be calculated for the entire
1718 *     block (including prior history that fits within the history windows),
1719 *     before re-evaluation.
1720 *
1721 * FINDING BEST STARTING MODULATION MODE:
1722 *
1723 * After working with a modulation mode for a "while" (and doing rate scaling),
1724 * the driver searches for a new initial mode in an attempt to improve
1725 * throughput.  The "while" is measured by numbers of attempted frames:
1726 *
1727 * For legacy mode, search for new mode after:
1728 *   480 successful frames, or 160 failed frames
1729 * For high-throughput modes (SISO or MIMO), search for new mode after:
1730 *   4500 successful frames, or 400 failed frames
1731 *
1732 * Mode switch possibilities are (3 for each mode):
1733 *
1734 * For legacy:
1735 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1736 * For SISO:
1737 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1738 * For MIMO:
1739 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1740 *
1741 * When trying a new mode, use the same bit rate as the old/current mode when
1742 * trying antenna switches and shortened guard interval.  When switching to
1743 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1744 * for which the expected throughput (under perfect conditions) is about the
1745 * same or slightly better than the actual measured throughput delivered by
1746 * the old/current mode.
1747 *
1748 * Actual throughput can be estimated by multiplying the expected throughput
1749 * by the success ratio (successful / attempted tx frames).  Frame size is
1750 * not considered in this calculation; it assumes that frame size will average
1751 * out to be fairly consistent over several samples.  The following are
1752 * metric values for expected throughput assuming 100% success ratio.
1753 * Only G band has support for CCK rates:
1754 *
1755 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1756 *
1757 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1758 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1759 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1760 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1761 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1762 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1763 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1764 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1765 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1766 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1767 *
1768 * After the new mode has been tried for a short while (minimum of 6 failed
1769 * frames or 8 successful frames), compare success ratio and actual throughput
1770 * estimate of the new mode with the old.  If either is better with the new
1771 * mode, continue to use the new mode.
1772 *
1773 * Continue comparing modes until all 3 possibilities have been tried.
1774 * If moving from legacy to HT, try all 3 possibilities from the new HT
1775 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1776 * for the longer "while" described above (e.g. 480 successful frames for
1777 * legacy), and then repeat the search process.
1778 *
1779 */
1780struct iwl_link_quality_cmd {
1781
1782	/* Index of destination/recipient station in uCode's station table */
1783	u8 sta_id;
1784	u8 reserved1;
1785	__le16 control;		/* not used */
1786	struct iwl_link_qual_general_params general_params;
1787	struct iwl_link_qual_agg_params agg_params;
1788
1789	/*
1790	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1791	 * specifies 1st Tx rate attempted, via index into this table.
1792	 * agn devices works its way through table when retrying Tx.
1793	 */
1794	struct {
1795		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1796	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1797	__le32 reserved2;
1798} __packed;
1799
1800/*
1801 * BT configuration enable flags:
1802 *   bit 0 - 1: BT channel announcement enabled
1803 *           0: disable
1804 *   bit 1 - 1: priority of BT device enabled
1805 *           0: disable
1806 *   bit 2 - 1: BT 2 wire support enabled
1807 *           0: disable
1808 */
1809#define BT_COEX_DISABLE (0x0)
1810#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1811#define BT_ENABLE_PRIORITY	   BIT(1)
1812#define BT_ENABLE_2_WIRE	   BIT(2)
1813
1814#define BT_COEX_DISABLE (0x0)
1815#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1816
1817#define BT_LEAD_TIME_MIN (0x0)
1818#define BT_LEAD_TIME_DEF (0x1E)
1819#define BT_LEAD_TIME_MAX (0xFF)
1820
1821#define BT_MAX_KILL_MIN (0x1)
1822#define BT_MAX_KILL_DEF (0x5)
1823#define BT_MAX_KILL_MAX (0xFF)
1824
1825#define BT_DURATION_LIMIT_DEF	625
1826#define BT_DURATION_LIMIT_MAX	1250
1827#define BT_DURATION_LIMIT_MIN	625
1828
1829#define BT_ON_THRESHOLD_DEF	4
1830#define BT_ON_THRESHOLD_MAX	1000
1831#define BT_ON_THRESHOLD_MIN	1
1832
1833#define BT_FRAG_THRESHOLD_DEF	0
1834#define BT_FRAG_THRESHOLD_MAX	0
1835#define BT_FRAG_THRESHOLD_MIN	0
1836
1837#define BT_AGG_THRESHOLD_DEF	1200
1838#define BT_AGG_THRESHOLD_MAX	8000
1839#define BT_AGG_THRESHOLD_MIN	400
1840
1841/*
1842 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1843 *
1844 * agn devices support hardware handshake with Bluetooth device on
1845 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1846 * wireless device can delay or kill its own Tx to accommodate.
1847 */
1848struct iwl_bt_cmd {
1849	u8 flags;
1850	u8 lead_time;
1851	u8 max_kill;
1852	u8 reserved;
1853	__le32 kill_ack_mask;
1854	__le32 kill_cts_mask;
1855} __packed;
1856
1857#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1858
1859#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1860#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1861#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1862#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1863#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1864#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1865
1866#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1867/* Disable Sync PSPoll on SCO/eSCO */
1868#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1869
1870#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1871#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1872
1873#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1874#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1875#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1876#define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1877
1878#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1879
1880#define IWLAGN_BT3_T7_DEFAULT		1
1881
1882enum iwl_bt_kill_idx {
1883	IWL_BT_KILL_DEFAULT = 0,
1884	IWL_BT_KILL_OVERRIDE = 1,
1885	IWL_BT_KILL_REDUCE = 2,
1886};
1887
1888#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1889#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1890#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1891#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1892
1893#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1894
1895#define IWLAGN_BT3_T2_DEFAULT		0xc
1896
1897#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1898#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1899#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1900#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1901#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1902#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1903#define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1904#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1905
1906#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1907					IWLAGN_BT_VALID_BOOST | \
1908					IWLAGN_BT_VALID_MAX_KILL | \
1909					IWLAGN_BT_VALID_3W_TIMERS | \
1910					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1911					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1912					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1913					IWLAGN_BT_VALID_3W_LUT)
1914
1915#define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1916
1917#define IWLAGN_BT_DECISION_LUT_SIZE	12
1918
1919struct iwl_basic_bt_cmd {
1920	u8 flags;
1921	u8 ledtime; /* unused */
1922	u8 max_kill;
1923	u8 bt3_timer_t7_value;
1924	__le32 kill_ack_mask;
1925	__le32 kill_cts_mask;
1926	u8 bt3_prio_sample_time;
1927	u8 bt3_timer_t2_value;
1928	__le16 bt4_reaction_time; /* unused */
1929	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1930	/*
1931	 * bit 0: use reduced tx power for control frame
1932	 * bit 1 - 7: reserved
1933	 */
1934	u8 reduce_txpower;
1935	u8 reserved;
1936	__le16 valid;
1937};
1938
1939struct iwl_bt_cmd_v1 {
1940	struct iwl_basic_bt_cmd basic;
1941	u8 prio_boost;
1942	/*
1943	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1944	 * if configure the following patterns
1945	 */
1946	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1947	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1948};
1949
1950struct iwl_bt_cmd_v2 {
1951	struct iwl_basic_bt_cmd basic;
1952	__le32 prio_boost;
1953	/*
1954	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1955	 * if configure the following patterns
1956	 */
1957	u8 reserved;
1958	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1959	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1960};
1961
1962#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1963
1964struct iwlagn_bt_sco_cmd {
1965	__le32 flags;
1966};
1967
1968/******************************************************************************
1969 * (6)
1970 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1971 *
1972 *****************************************************************************/
1973
1974/*
1975 * Spectrum Management
1976 */
1977#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1978				 RXON_FILTER_CTL2HOST_MSK        | \
1979				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1980				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1981				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1982				 RXON_FILTER_ASSOC_MSK           | \
1983				 RXON_FILTER_BCON_AWARE_MSK)
1984
1985struct iwl_measure_channel {
1986	__le32 duration;	/* measurement duration in extended beacon
1987				 * format */
1988	u8 channel;		/* channel to measure */
1989	u8 type;		/* see enum iwl_measure_type */
1990	__le16 reserved;
1991} __packed;
1992
1993/*
1994 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1995 */
1996struct iwl_spectrum_cmd {
1997	__le16 len;		/* number of bytes starting from token */
1998	u8 token;		/* token id */
1999	u8 id;			/* measurement id -- 0 or 1 */
2000	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2001	u8 periodic;		/* 1 = periodic */
2002	__le16 path_loss_timeout;
2003	__le32 start_time;	/* start time in extended beacon format */
2004	__le32 reserved2;
2005	__le32 flags;		/* rxon flags */
2006	__le32 filter_flags;	/* rxon filter flags */
2007	__le16 channel_count;	/* minimum 1, maximum 10 */
2008	__le16 reserved3;
2009	struct iwl_measure_channel channels[10];
2010} __packed;
2011
2012/*
2013 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2014 */
2015struct iwl_spectrum_resp {
2016	u8 token;
2017	u8 id;			/* id of the prior command replaced, or 0xff */
2018	__le16 status;		/* 0 - command will be handled
2019				 * 1 - cannot handle (conflicts with another
2020				 *     measurement) */
2021} __packed;
2022
2023enum iwl_measurement_state {
2024	IWL_MEASUREMENT_START = 0,
2025	IWL_MEASUREMENT_STOP = 1,
2026};
2027
2028enum iwl_measurement_status {
2029	IWL_MEASUREMENT_OK = 0,
2030	IWL_MEASUREMENT_CONCURRENT = 1,
2031	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2032	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2033	/* 4-5 reserved */
2034	IWL_MEASUREMENT_STOPPED = 6,
2035	IWL_MEASUREMENT_TIMEOUT = 7,
2036	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2037};
2038
2039#define NUM_ELEMENTS_IN_HISTOGRAM 8
2040
2041struct iwl_measurement_histogram {
2042	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2043	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2044} __packed;
2045
2046/* clear channel availability counters */
2047struct iwl_measurement_cca_counters {
2048	__le32 ofdm;
2049	__le32 cck;
2050} __packed;
2051
2052enum iwl_measure_type {
2053	IWL_MEASURE_BASIC = (1 << 0),
2054	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2055	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2056	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2057	IWL_MEASURE_FRAME = (1 << 4),
2058	/* bits 5:6 are reserved */
2059	IWL_MEASURE_IDLE = (1 << 7),
2060};
2061
2062/*
2063 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2064 */
2065struct iwl_spectrum_notification {
2066	u8 id;			/* measurement id -- 0 or 1 */
2067	u8 token;
2068	u8 channel_index;	/* index in measurement channel list */
2069	u8 state;		/* 0 - start, 1 - stop */
2070	__le32 start_time;	/* lower 32-bits of TSF */
2071	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2072	u8 channel;
2073	u8 type;		/* see enum iwl_measurement_type */
2074	u8 reserved1;
2075	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2076	 * valid if applicable for measurement type requested. */
2077	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2078	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2079	__le32 cca_time;	/* channel load time in usecs */
2080	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2081				 * unidentified */
2082	u8 reserved2[3];
2083	struct iwl_measurement_histogram histogram;
2084	__le32 stop_time;	/* lower 32-bits of TSF */
2085	__le32 status;		/* see iwl_measurement_status */
2086} __packed;
2087
2088/******************************************************************************
2089 * (7)
2090 * Power Management Commands, Responses, Notifications:
2091 *
2092 *****************************************************************************/
2093
2094/**
2095 * struct iwl_powertable_cmd - Power Table Command
2096 * @flags: See below:
2097 *
2098 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2099 *
2100 * PM allow:
2101 *   bit 0 - '0' Driver not allow power management
2102 *           '1' Driver allow PM (use rest of parameters)
2103 *
2104 * uCode send sleep notifications:
2105 *   bit 1 - '0' Don't send sleep notification
2106 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2107 *
2108 * Sleep over DTIM
2109 *   bit 2 - '0' PM have to walk up every DTIM
2110 *           '1' PM could sleep over DTIM till listen Interval.
2111 *
2112 * PCI power managed
2113 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2114 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2115 *
2116 * Fast PD
2117 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2118 *
2119 * Force sleep Modes
2120 *   bit 31/30- '00' use both mac/xtal sleeps
2121 *              '01' force Mac sleep
2122 *              '10' force xtal sleep
2123 *              '11' Illegal set
2124 *
2125 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2126 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2127 * for every DTIM.
2128 */
2129#define IWL_POWER_VEC_SIZE 5
2130
2131#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2132#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2133#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2134#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2135#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2136#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2137#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2138#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2139#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2140#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2141#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2142
2143struct iwl_powertable_cmd {
2144	__le16 flags;
2145	u8 keep_alive_seconds;
2146	u8 debug_flags;
2147	__le32 rx_data_timeout;
2148	__le32 tx_data_timeout;
2149	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2150	__le32 keep_alive_beacons;
2151} __packed;
2152
2153/*
2154 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2155 * all devices identical.
2156 */
2157struct iwl_sleep_notification {
2158	u8 pm_sleep_mode;
2159	u8 pm_wakeup_src;
2160	__le16 reserved;
2161	__le32 sleep_time;
2162	__le32 tsf_low;
2163	__le32 bcon_timer;
2164} __packed;
2165
2166/* Sleep states.  all devices identical. */
2167enum {
2168	IWL_PM_NO_SLEEP = 0,
2169	IWL_PM_SLP_MAC = 1,
2170	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2171	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2172	IWL_PM_SLP_PHY = 4,
2173	IWL_PM_SLP_REPENT = 5,
2174	IWL_PM_WAKEUP_BY_TIMER = 6,
2175	IWL_PM_WAKEUP_BY_DRIVER = 7,
2176	IWL_PM_WAKEUP_BY_RFKILL = 8,
2177	/* 3 reserved */
2178	IWL_PM_NUM_OF_MODES = 12,
2179};
2180
2181/*
2182 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2183 */
2184#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2185#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2186#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2187struct iwl_card_state_cmd {
2188	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2189} __packed;
2190
2191/*
2192 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2193 */
2194struct iwl_card_state_notif {
2195	__le32 flags;
2196} __packed;
2197
2198#define HW_CARD_DISABLED   0x01
2199#define SW_CARD_DISABLED   0x02
2200#define CT_CARD_DISABLED   0x04
2201#define RXON_CARD_DISABLED 0x10
2202
2203struct iwl_ct_kill_config {
2204	__le32   reserved;
2205	__le32   critical_temperature_M;
2206	__le32   critical_temperature_R;
2207}  __packed;
2208
2209/* 1000, and 6x00 */
2210struct iwl_ct_kill_throttling_config {
2211	__le32   critical_temperature_exit;
2212	__le32   reserved;
2213	__le32   critical_temperature_enter;
2214}  __packed;
2215
2216/******************************************************************************
2217 * (8)
2218 * Scan Commands, Responses, Notifications:
2219 *
2220 *****************************************************************************/
2221
2222#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2223#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2224
2225/**
2226 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2227 *
2228 * One for each channel in the scan list.
2229 * Each channel can independently select:
2230 * 1)  SSID for directed active scans
2231 * 2)  Txpower setting (for rate specified within Tx command)
2232 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2233 *     quiet_plcp_th, good_CRC_th)
2234 *
2235 * To avoid uCode errors, make sure the following are true (see comments
2236 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2237 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2238 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2239 * 2)  quiet_time <= active_dwell
2240 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2241 *     passive_dwell < max_out_time
2242 *     active_dwell < max_out_time
2243 */
2244
2245struct iwl_scan_channel {
2246	/*
2247	 * type is defined as:
2248	 * 0:0 1 = active, 0 = passive
2249	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2250	 *     SSID IE is transmitted in probe request.
2251	 * 21:31 reserved
2252	 */
2253	__le32 type;
2254	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2255	u8 tx_gain;		/* gain for analog radio */
2256	u8 dsp_atten;		/* gain for DSP */
2257	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2258	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2259} __packed;
2260
2261/* set number of direct probes __le32 type */
2262#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2263
2264/**
2265 * struct iwl_ssid_ie - directed scan network information element
2266 *
2267 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2268 * selected by "type" bit field in struct iwl_scan_channel;
2269 * each channel may select different ssids from among the 20 entries.
2270 * SSID IEs get transmitted in reverse order of entry.
2271 */
2272struct iwl_ssid_ie {
2273	u8 id;
2274	u8 len;
2275	u8 ssid[32];
2276} __packed;
2277
2278#define PROBE_OPTION_MAX		20
2279#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2280#define IWL_GOOD_CRC_TH_DISABLED	0
2281#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2282#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2283#define IWL_MAX_CMD_SIZE 4096
2284
2285/*
2286 * REPLY_SCAN_CMD = 0x80 (command)
2287 *
2288 * The hardware scan command is very powerful; the driver can set it up to
2289 * maintain (relatively) normal network traffic while doing a scan in the
2290 * background.  The max_out_time and suspend_time control the ratio of how
2291 * long the device stays on an associated network channel ("service channel")
2292 * vs. how long it's away from the service channel, i.e. tuned to other channels
2293 * for scanning.
2294 *
2295 * max_out_time is the max time off-channel (in usec), and suspend_time
2296 * is how long (in "extended beacon" format) that the scan is "suspended"
2297 * after returning to the service channel.  That is, suspend_time is the
2298 * time that we stay on the service channel, doing normal work, between
2299 * scan segments.  The driver may set these parameters differently to support
2300 * scanning when associated vs. not associated, and light vs. heavy traffic
2301 * loads when associated.
2302 *
2303 * After receiving this command, the device's scan engine does the following;
2304 *
2305 * 1)  Sends SCAN_START notification to driver
2306 * 2)  Checks to see if it has time to do scan for one channel
2307 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2308 *     to tell AP that we're going off-channel
2309 * 4)  Tunes to first channel in scan list, does active or passive scan
2310 * 5)  Sends SCAN_RESULT notification to driver
2311 * 6)  Checks to see if it has time to do scan on *next* channel in list
2312 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2313 *     before max_out_time expires
2314 * 8)  Returns to service channel
2315 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2316 * 10) Stays on service channel until suspend_time expires
2317 * 11) Repeats entire process 2-10 until list is complete
2318 * 12) Sends SCAN_COMPLETE notification
2319 *
2320 * For fast, efficient scans, the scan command also has support for staying on
2321 * a channel for just a short time, if doing active scanning and getting no
2322 * responses to the transmitted probe request.  This time is controlled by
2323 * quiet_time, and the number of received packets below which a channel is
2324 * considered "quiet" is controlled by quiet_plcp_threshold.
2325 *
2326 * For active scanning on channels that have regulatory restrictions against
2327 * blindly transmitting, the scan can listen before transmitting, to make sure
2328 * that there is already legitimate activity on the channel.  If enough
2329 * packets are cleanly received on the channel (controlled by good_CRC_th,
2330 * typical value 1), the scan engine starts transmitting probe requests.
2331 *
2332 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2333 *
2334 * To avoid uCode errors, see timing restrictions described under
2335 * struct iwl_scan_channel.
2336 */
2337
2338enum iwl_scan_flags {
2339	/* BIT(0) currently unused */
2340	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2341	/* bits 2-7 reserved */
2342};
2343
2344struct iwl_scan_cmd {
2345	__le16 len;
2346	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2347	u8 channel_count;	/* # channels in channel list */
2348	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2349				 * (only for active scan) */
2350	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2351	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2352	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2353	__le32 max_out_time;	/* max usec to be away from associated (service)
2354				 * channel */
2355	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2356				 * format") when returning to service chnl:
2357				 */
2358	__le32 flags;		/* RXON_FLG_* */
2359	__le32 filter_flags;	/* RXON_FILTER_* */
2360
2361	/* For active scans (set to all-0s for passive scans).
2362	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2363	struct iwl_tx_cmd tx_cmd;
2364
2365	/* For directed active scans (set to all-0s otherwise) */
2366	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2367
2368	/*
2369	 * Probe request frame, followed by channel list.
2370	 *
2371	 * Size of probe request frame is specified by byte count in tx_cmd.
2372	 * Channel list follows immediately after probe request frame.
2373	 * Number of channels in list is specified by channel_count.
2374	 * Each channel in list is of type:
2375	 *
2376	 * struct iwl_scan_channel channels[0];
2377	 *
2378	 * NOTE:  Only one band of channels can be scanned per pass.  You
2379	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2380	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2381	 * before requesting another scan.
2382	 */
2383	u8 data[0];
2384} __packed;
2385
2386/* Can abort will notify by complete notification with abort status. */
2387#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2388/* complete notification statuses */
2389#define ABORT_STATUS            0x2
2390
2391/*
2392 * REPLY_SCAN_CMD = 0x80 (response)
2393 */
2394struct iwl_scanreq_notification {
2395	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2396} __packed;
2397
2398/*
2399 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2400 */
2401struct iwl_scanstart_notification {
2402	__le32 tsf_low;
2403	__le32 tsf_high;
2404	__le32 beacon_timer;
2405	u8 channel;
2406	u8 band;
2407	u8 reserved[2];
2408	__le32 status;
2409} __packed;
2410
2411#define  SCAN_OWNER_STATUS 0x1
2412#define  MEASURE_OWNER_STATUS 0x2
2413
2414#define IWL_PROBE_STATUS_OK		0
2415#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2416/* error statuses combined with TX_FAILED */
2417#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2418#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2419
2420#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2421/*
2422 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2423 */
2424struct iwl_scanresults_notification {
2425	u8 channel;
2426	u8 band;
2427	u8 probe_status;
2428	u8 num_probe_not_sent; /* not enough time to send */
2429	__le32 tsf_low;
2430	__le32 tsf_high;
2431	__le32 statistics[NUMBER_OF_STATISTICS];
2432} __packed;
2433
2434/*
2435 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2436 */
2437struct iwl_scancomplete_notification {
2438	u8 scanned_channels;
2439	u8 status;
2440	u8 bt_status;	/* BT On/Off status */
2441	u8 last_channel;
2442	__le32 tsf_low;
2443	__le32 tsf_high;
2444} __packed;
2445
2446
2447/******************************************************************************
2448 * (9)
2449 * IBSS/AP Commands and Notifications:
2450 *
2451 *****************************************************************************/
2452
2453enum iwl_ibss_manager {
2454	IWL_NOT_IBSS_MANAGER = 0,
2455	IWL_IBSS_MANAGER = 1,
2456};
2457
2458/*
2459 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2460 */
2461
2462struct iwlagn_beacon_notif {
2463	struct iwlagn_tx_resp beacon_notify_hdr;
2464	__le32 low_tsf;
2465	__le32 high_tsf;
2466	__le32 ibss_mgr_status;
2467} __packed;
2468
2469/*
2470 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2471 */
2472
2473struct iwl_tx_beacon_cmd {
2474	struct iwl_tx_cmd tx;
2475	__le16 tim_idx;
2476	u8 tim_size;
2477	u8 reserved1;
2478	struct ieee80211_hdr frame[0];	/* beacon frame */
2479} __packed;
2480
2481/******************************************************************************
2482 * (10)
2483 * Statistics Commands and Notifications:
2484 *
2485 *****************************************************************************/
2486
2487#define IWL_TEMP_CONVERT 260
2488
2489#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2490#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2491#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2492
2493/* Used for passing to driver number of successes and failures per rate */
2494struct rate_histogram {
2495	union {
2496		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2497		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2498		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2499	} success;
2500	union {
2501		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2502		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2503		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2504	} failed;
2505} __packed;
2506
2507/* statistics command response */
2508
2509struct statistics_dbg {
2510	__le32 burst_check;
2511	__le32 burst_count;
2512	__le32 wait_for_silence_timeout_cnt;
2513	__le32 reserved[3];
2514} __packed;
2515
2516struct statistics_rx_phy {
2517	__le32 ina_cnt;
2518	__le32 fina_cnt;
2519	__le32 plcp_err;
2520	__le32 crc32_err;
2521	__le32 overrun_err;
2522	__le32 early_overrun_err;
2523	__le32 crc32_good;
2524	__le32 false_alarm_cnt;
2525	__le32 fina_sync_err_cnt;
2526	__le32 sfd_timeout;
2527	__le32 fina_timeout;
2528	__le32 unresponded_rts;
2529	__le32 rxe_frame_limit_overrun;
2530	__le32 sent_ack_cnt;
2531	__le32 sent_cts_cnt;
2532	__le32 sent_ba_rsp_cnt;
2533	__le32 dsp_self_kill;
2534	__le32 mh_format_err;
2535	__le32 re_acq_main_rssi_sum;
2536	__le32 reserved3;
2537} __packed;
2538
2539struct statistics_rx_ht_phy {
2540	__le32 plcp_err;
2541	__le32 overrun_err;
2542	__le32 early_overrun_err;
2543	__le32 crc32_good;
2544	__le32 crc32_err;
2545	__le32 mh_format_err;
2546	__le32 agg_crc32_good;
2547	__le32 agg_mpdu_cnt;
2548	__le32 agg_cnt;
2549	__le32 unsupport_mcs;
2550} __packed;
2551
2552#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2553
2554struct statistics_rx_non_phy {
2555	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2556	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2557	__le32 non_bssid_frames;	/* number of frames with BSSID that
2558					 * doesn't belong to the STA BSSID */
2559	__le32 filtered_frames;	/* count frames that were dumped in the
2560				 * filtering process */
2561	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2562					 * our serving channel */
2563	__le32 channel_beacons;	/* beacons with our bss id and in our
2564				 * serving channel */
2565	__le32 num_missed_bcon;	/* number of missed beacons */
2566	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2567					 * ADC was in saturation */
2568	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2569					  * for INA */
2570	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2571	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2572	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2573	__le32 interference_data_flag;	/* flag for interference data
2574					 * availability. 1 when data is
2575					 * available. */
2576	__le32 channel_load;		/* counts RX Enable time in uSec */
2577	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2578					 * and CCK) counter */
2579	__le32 beacon_rssi_a;
2580	__le32 beacon_rssi_b;
2581	__le32 beacon_rssi_c;
2582	__le32 beacon_energy_a;
2583	__le32 beacon_energy_b;
2584	__le32 beacon_energy_c;
2585} __packed;
2586
2587struct statistics_rx_non_phy_bt {
2588	struct statistics_rx_non_phy common;
2589	/* additional stats for bt */
2590	__le32 num_bt_kills;
2591	__le32 reserved[2];
2592} __packed;
2593
2594struct statistics_rx {
2595	struct statistics_rx_phy ofdm;
2596	struct statistics_rx_phy cck;
2597	struct statistics_rx_non_phy general;
2598	struct statistics_rx_ht_phy ofdm_ht;
2599} __packed;
2600
2601struct statistics_rx_bt {
2602	struct statistics_rx_phy ofdm;
2603	struct statistics_rx_phy cck;
2604	struct statistics_rx_non_phy_bt general;
2605	struct statistics_rx_ht_phy ofdm_ht;
2606} __packed;
2607
2608/**
2609 * struct statistics_tx_power - current tx power
2610 *
2611 * @ant_a: current tx power on chain a in 1/2 dB step
2612 * @ant_b: current tx power on chain b in 1/2 dB step
2613 * @ant_c: current tx power on chain c in 1/2 dB step
2614 */
2615struct statistics_tx_power {
2616	u8 ant_a;
2617	u8 ant_b;
2618	u8 ant_c;
2619	u8 reserved;
2620} __packed;
2621
2622struct statistics_tx_non_phy_agg {
2623	__le32 ba_timeout;
2624	__le32 ba_reschedule_frames;
2625	__le32 scd_query_agg_frame_cnt;
2626	__le32 scd_query_no_agg;
2627	__le32 scd_query_agg;
2628	__le32 scd_query_mismatch;
2629	__le32 frame_not_ready;
2630	__le32 underrun;
2631	__le32 bt_prio_kill;
2632	__le32 rx_ba_rsp_cnt;
2633} __packed;
2634
2635struct statistics_tx {
2636	__le32 preamble_cnt;
2637	__le32 rx_detected_cnt;
2638	__le32 bt_prio_defer_cnt;
2639	__le32 bt_prio_kill_cnt;
2640	__le32 few_bytes_cnt;
2641	__le32 cts_timeout;
2642	__le32 ack_timeout;
2643	__le32 expected_ack_cnt;
2644	__le32 actual_ack_cnt;
2645	__le32 dump_msdu_cnt;
2646	__le32 burst_abort_next_frame_mismatch_cnt;
2647	__le32 burst_abort_missing_next_frame_cnt;
2648	__le32 cts_timeout_collision;
2649	__le32 ack_or_ba_timeout_collision;
2650	struct statistics_tx_non_phy_agg agg;
2651	/*
2652	 * "tx_power" are optional parameters provided by uCode,
2653	 * 6000 series is the only device provide the information,
2654	 * Those are reserved fields for all the other devices
2655	 */
2656	struct statistics_tx_power tx_power;
2657	__le32 reserved1;
2658} __packed;
2659
2660
2661struct statistics_div {
2662	__le32 tx_on_a;
2663	__le32 tx_on_b;
2664	__le32 exec_time;
2665	__le32 probe_time;
2666	__le32 reserved1;
2667	__le32 reserved2;
2668} __packed;
2669
2670struct statistics_general_common {
2671	__le32 temperature;   /* radio temperature */
2672	__le32 temperature_m; /* radio voltage */
2673	struct statistics_dbg dbg;
2674	__le32 sleep_time;
2675	__le32 slots_out;
2676	__le32 slots_idle;
2677	__le32 ttl_timestamp;
2678	struct statistics_div div;
2679	__le32 rx_enable_counter;
2680	/*
2681	 * num_of_sos_states:
2682	 *  count the number of times we have to re-tune
2683	 *  in order to get out of bad PHY status
2684	 */
2685	__le32 num_of_sos_states;
2686} __packed;
2687
2688struct statistics_bt_activity {
2689	/* Tx statistics */
2690	__le32 hi_priority_tx_req_cnt;
2691	__le32 hi_priority_tx_denied_cnt;
2692	__le32 lo_priority_tx_req_cnt;
2693	__le32 lo_priority_tx_denied_cnt;
2694	/* Rx statistics */
2695	__le32 hi_priority_rx_req_cnt;
2696	__le32 hi_priority_rx_denied_cnt;
2697	__le32 lo_priority_rx_req_cnt;
2698	__le32 lo_priority_rx_denied_cnt;
2699} __packed;
2700
2701struct statistics_general {
2702	struct statistics_general_common common;
2703	__le32 reserved2;
2704	__le32 reserved3;
2705} __packed;
2706
2707struct statistics_general_bt {
2708	struct statistics_general_common common;
2709	struct statistics_bt_activity activity;
2710	__le32 reserved2;
2711	__le32 reserved3;
2712} __packed;
2713
2714#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2715#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2716#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2717
2718/*
2719 * REPLY_STATISTICS_CMD = 0x9c,
2720 * all devices identical.
2721 *
2722 * This command triggers an immediate response containing uCode statistics.
2723 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2724 *
2725 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2726 * internal copy of the statistics (counters) after issuing the response.
2727 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2728 *
2729 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2730 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2731 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2732 */
2733#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2734#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2735struct iwl_statistics_cmd {
2736	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2737} __packed;
2738
2739/*
2740 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2741 *
2742 * By default, uCode issues this notification after receiving a beacon
2743 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2744 * REPLY_STATISTICS_CMD 0x9c, above.
2745 *
2746 * Statistics counters continue to increment beacon after beacon, but are
2747 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2748 * 0x9c with CLEAR_STATS bit set (see above).
2749 *
2750 * uCode also issues this notification during scans.  uCode clears statistics
2751 * appropriately so that each notification contains statistics for only the
2752 * one channel that has just been scanned.
2753 */
2754#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2755#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2756
2757struct iwl_notif_statistics {
2758	__le32 flag;
2759	struct statistics_rx rx;
2760	struct statistics_tx tx;
2761	struct statistics_general general;
2762} __packed;
2763
2764struct iwl_bt_notif_statistics {
2765	__le32 flag;
2766	struct statistics_rx_bt rx;
2767	struct statistics_tx tx;
2768	struct statistics_general_bt general;
2769} __packed;
2770
2771/*
2772 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2773 *
2774 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2775 * in regardless of how many missed beacons, which mean when driver receive the
2776 * notification, inside the command, it can find all the beacons information
2777 * which include number of total missed beacons, number of consecutive missed
2778 * beacons, number of beacons received and number of beacons expected to
2779 * receive.
2780 *
2781 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2782 * in order to bring the radio/PHY back to working state; which has no relation
2783 * to when driver will perform sensitivity calibration.
2784 *
2785 * Driver should set it own missed_beacon_threshold to decide when to perform
2786 * sensitivity calibration based on number of consecutive missed beacons in
2787 * order to improve overall performance, especially in noisy environment.
2788 *
2789 */
2790
2791#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2792#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2793#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2794
2795struct iwl_missed_beacon_notif {
2796	__le32 consecutive_missed_beacons;
2797	__le32 total_missed_becons;
2798	__le32 num_expected_beacons;
2799	__le32 num_recvd_beacons;
2800} __packed;
2801
2802
2803/******************************************************************************
2804 * (11)
2805 * Rx Calibration Commands:
2806 *
2807 * With the uCode used for open source drivers, most Tx calibration (except
2808 * for Tx Power) and most Rx calibration is done by uCode during the
2809 * "initialize" phase of uCode boot.  Driver must calibrate only:
2810 *
2811 * 1)  Tx power (depends on temperature), described elsewhere
2812 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2813 * 3)  Receiver sensitivity (to optimize signal detection)
2814 *
2815 *****************************************************************************/
2816
2817/**
2818 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2819 *
2820 * This command sets up the Rx signal detector for a sensitivity level that
2821 * is high enough to lock onto all signals within the associated network,
2822 * but low enough to ignore signals that are below a certain threshold, so as
2823 * not to have too many "false alarms".  False alarms are signals that the
2824 * Rx DSP tries to lock onto, but then discards after determining that they
2825 * are noise.
2826 *
2827 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2828 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2829 * time listening, not transmitting).  Driver must adjust sensitivity so that
2830 * the ratio of actual false alarms to actual Rx time falls within this range.
2831 *
2832 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2833 * received beacon.  These provide information to the driver to analyze the
2834 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2835 * other non-associated-network source.  Pertinent statistics include:
2836 *
2837 * From "general" statistics (struct statistics_rx_non_phy):
2838 *
2839 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2840 *   Measure of energy of desired signal.  Used for establishing a level
2841 *   below which the device does not detect signals.
2842 *
2843 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2844 *   Measure of background noise in silent period after beacon.
2845 *
2846 * channel_load
2847 *   uSecs of actual Rx time during beacon period (varies according to
2848 *   how much time was spent transmitting).
2849 *
2850 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2851 *
2852 * false_alarm_cnt
2853 *   Signal locks abandoned early (before phy-level header).
2854 *
2855 * plcp_err
2856 *   Signal locks abandoned late (during phy-level header).
2857 *
2858 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2859 *        beacon to beacon, i.e. each value is an accumulation of all errors
2860 *        before and including the latest beacon.  Values will wrap around to 0
2861 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2862 *        previous beacon's values to determine # false alarms in the current
2863 *        beacon period.
2864 *
2865 * Total number of false alarms = false_alarms + plcp_errs
2866 *
2867 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2868 * (notice that the start points for OFDM are at or close to settings for
2869 * maximum sensitivity):
2870 *
2871 *                                             START  /  MIN  /  MAX
2872 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2873 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2874 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2875 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2876 *
2877 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2878 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2879 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2880 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2881 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2882 *   increase sensitivity.
2883 *
2884 * For CCK sensitivity, keep track of the following:
2885 *
2886 *   1).  20-beacon history of maximum background noise, indicated by
2887 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2888 *        3 receivers.  For any given beacon, the "silence reference" is
2889 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2890 *
2891 *   2).  10-beacon history of strongest signal level, as indicated
2892 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2893 *        i.e. the strength of the signal through the best receiver at the
2894 *        moment.  These measurements are "upside down", with lower values
2895 *        for stronger signals, so max energy will be *minimum* value.
2896 *
2897 *        Then for any given beacon, the driver must determine the *weakest*
2898 *        of the strongest signals; this is the minimum level that needs to be
2899 *        successfully detected, when using the best receiver at the moment.
2900 *        "Max cck energy" is the maximum (higher value means lower energy!)
2901 *        of the last 10 minima.  Once this is determined, driver must add
2902 *        a little margin by adding "6" to it.
2903 *
2904 *   3).  Number of consecutive beacon periods with too few false alarms.
2905 *        Reset this to 0 at the first beacon period that falls within the
2906 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2907 *
2908 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2909 * (notice that the start points for CCK are at maximum sensitivity):
2910 *
2911 *                                             START  /  MIN  /  MAX
2912 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2913 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2914 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2915 *
2916 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2917 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2918 *   sensitivity is:
2919 *
2920 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2921 *       up to max 400.
2922 *
2923 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2924 *       sensitivity has been reduced a significant amount; bring it up to
2925 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2926 *
2927 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2928 *       sensitivity has been reduced only a moderate or small amount;
2929 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2930 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2931 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2932 *
2933 *       b)  Save a snapshot of the "silence reference".
2934 *
2935 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2936 *   (less than 5 for each 204.8 msecs listening), method for increasing
2937 *   sensitivity is used only if:
2938 *
2939 *   1a)  Previous beacon did not have too many false alarms
2940 *   1b)  AND difference between previous "silence reference" and current
2941 *        "silence reference" (prev - current) is 2 or more,
2942 *   OR 2)  100 or more consecutive beacon periods have had rate of
2943 *          less than 5 false alarms per 204.8 milliseconds rx time.
2944 *
2945 *   Method for increasing sensitivity:
2946 *
2947 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2948 *       down to min 125.
2949 *
2950 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2951 *       down to min 200.
2952 *
2953 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2954 *
2955 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2956 *   (between 5 and 50 for each 204.8 msecs listening):
2957 *
2958 *   1)  Save a snapshot of the silence reference.
2959 *
2960 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2961 *       give some extra margin to energy threshold by *subtracting* 8
2962 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2963 *
2964 *   For all cases (too few, too many, good range), make sure that the CCK
2965 *   detection threshold (energy) is below the energy level for robust
2966 *   detection over the past 10 beacon periods, the "Max cck energy".
2967 *   Lower values mean higher energy; this means making sure that the value
2968 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2969 *
2970 */
2971
2972/*
2973 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2974 */
2975#define HD_TABLE_SIZE  (11)	/* number of entries */
2976#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2977#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2978#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2979#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2980#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2981#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2982#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2983#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2984#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2985#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2986#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2987
2988/*
2989 * Additional table entries in enhance SENSITIVITY_CMD
2990 */
2991#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2992#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2993#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2994#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2995#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2996#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2997#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2998#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2999#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3000#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3001#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3002#define HD_RESERVED					(22)
3003
3004/* number of entries for enhanced tbl */
3005#define ENHANCE_HD_TABLE_SIZE  (23)
3006
3007/* number of additional entries for enhanced tbl */
3008#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3009
3010#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3011#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3012#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3013#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3014#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3015#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3016#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3017#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3018#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3019#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3020#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3021
3022#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3023#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3024#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3025#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3026#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3027#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3028#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3029#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3030#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3031#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3032#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3033
3034
3035/* Control field in struct iwl_sensitivity_cmd */
3036#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3037#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3038
3039/**
3040 * struct iwl_sensitivity_cmd
3041 * @control:  (1) updates working table, (0) updates default table
3042 * @table:  energy threshold values, use HD_* as index into table
3043 *
3044 * Always use "1" in "control" to update uCode's working table and DSP.
3045 */
3046struct iwl_sensitivity_cmd {
3047	__le16 control;			/* always use "1" */
3048	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3049} __packed;
3050
3051/*
3052 *
3053 */
3054struct iwl_enhance_sensitivity_cmd {
3055	__le16 control;			/* always use "1" */
3056	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3057} __packed;
3058
3059
3060/**
3061 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3062 *
3063 * This command sets the relative gains of agn device's 3 radio receiver chains.
3064 *
3065 * After the first association, driver should accumulate signal and noise
3066 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3067 * beacons from the associated network (don't collect statistics that come
3068 * in from scanning, or any other non-network source).
3069 *
3070 * DISCONNECTED ANTENNA:
3071 *
3072 * Driver should determine which antennas are actually connected, by comparing
3073 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3074 * following values over 20 beacons, one accumulator for each of the chains
3075 * a/b/c, from struct statistics_rx_non_phy:
3076 *
3077 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3078 *
3079 * Find the strongest signal from among a/b/c.  Compare the other two to the
3080 * strongest.  If any signal is more than 15 dB (times 20, unless you
3081 * divide the accumulated values by 20) below the strongest, the driver
3082 * considers that antenna to be disconnected, and should not try to use that
3083 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3084 * driver should declare the stronger one as connected, and attempt to use it
3085 * (A and B are the only 2 Tx chains!).
3086 *
3087 *
3088 * RX BALANCE:
3089 *
3090 * Driver should balance the 3 receivers (but just the ones that are connected
3091 * to antennas, see above) for gain, by comparing the average signal levels
3092 * detected during the silence after each beacon (background noise).
3093 * Accumulate (add) the following values over 20 beacons, one accumulator for
3094 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3095 *
3096 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3097 *
3098 * Find the weakest background noise level from among a/b/c.  This Rx chain
3099 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3100 * finding noise difference:
3101 *
3102 * (accum_noise[i] - accum_noise[reference]) / 30
3103 *
3104 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3105 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3106 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3107 * and set bit 2 to indicate "reduce gain".  The value for the reference
3108 * (weakest) chain should be "0".
3109 *
3110 * diff_gain_[abc] bit fields:
3111 *   2: (1) reduce gain, (0) increase gain
3112 * 1-0: amount of gain, units of 1.5 dB
3113 */
3114
3115/* Phy calibration command for series */
3116enum {
3117	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3118	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3119	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3120	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3121	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3122	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3123	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3124};
3125
3126/* This enum defines the bitmap of various calibrations to enable in both
3127 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3128 */
3129enum iwl_ucode_calib_cfg {
3130	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3131	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3132	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3133	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3134	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3135	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3136	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3137	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3138	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3139	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3140	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3141};
3142
3143#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3144					IWL_CALIB_CFG_DC_IDX |		\
3145					IWL_CALIB_CFG_LO_IDX |		\
3146					IWL_CALIB_CFG_TX_IQ_IDX |	\
3147					IWL_CALIB_CFG_RX_IQ_IDX |	\
3148					IWL_CALIB_CFG_CRYSTAL_IDX)
3149
3150#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3151					IWL_CALIB_CFG_DC_IDX |		\
3152					IWL_CALIB_CFG_LO_IDX |		\
3153					IWL_CALIB_CFG_TX_IQ_IDX |	\
3154					IWL_CALIB_CFG_RX_IQ_IDX |	\
3155					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3156					IWL_CALIB_CFG_PAPD_IDX |	\
3157					IWL_CALIB_CFG_TX_PWR_IDX |	\
3158					IWL_CALIB_CFG_CRYSTAL_IDX)
3159
3160#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3161
3162struct iwl_calib_cfg_elmnt_s {
3163	__le32 is_enable;
3164	__le32 start;
3165	__le32 send_res;
3166	__le32 apply_res;
3167	__le32 reserved;
3168} __packed;
3169
3170struct iwl_calib_cfg_status_s {
3171	struct iwl_calib_cfg_elmnt_s once;
3172	struct iwl_calib_cfg_elmnt_s perd;
3173	__le32 flags;
3174} __packed;
3175
3176struct iwl_calib_cfg_cmd {
3177	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3178	struct iwl_calib_cfg_status_s drv_calib_cfg;
3179	__le32 reserved1;
3180} __packed;
3181
3182struct iwl_calib_hdr {
3183	u8 op_code;
3184	u8 first_group;
3185	u8 groups_num;
3186	u8 data_valid;
3187} __packed;
3188
3189struct iwl_calib_cmd {
3190	struct iwl_calib_hdr hdr;
3191	u8 data[0];
3192} __packed;
3193
3194struct iwl_calib_xtal_freq_cmd {
3195	struct iwl_calib_hdr hdr;
3196	u8 cap_pin1;
3197	u8 cap_pin2;
3198	u8 pad[2];
3199} __packed;
3200
3201#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3202struct iwl_calib_temperature_offset_cmd {
3203	struct iwl_calib_hdr hdr;
3204	__le16 radio_sensor_offset;
3205	__le16 reserved;
3206} __packed;
3207
3208struct iwl_calib_temperature_offset_v2_cmd {
3209	struct iwl_calib_hdr hdr;
3210	__le16 radio_sensor_offset_high;
3211	__le16 radio_sensor_offset_low;
3212	__le16 burntVoltageRef;
3213	__le16 reserved;
3214} __packed;
3215
3216/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3217struct iwl_calib_chain_noise_reset_cmd {
3218	struct iwl_calib_hdr hdr;
3219	u8 data[0];
3220};
3221
3222/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3223struct iwl_calib_chain_noise_gain_cmd {
3224	struct iwl_calib_hdr hdr;
3225	u8 delta_gain_1;
3226	u8 delta_gain_2;
3227	u8 pad[2];
3228} __packed;
3229
3230/******************************************************************************
3231 * (12)
3232 * Miscellaneous Commands:
3233 *
3234 *****************************************************************************/
3235
3236/*
3237 * LEDs Command & Response
3238 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3239 *
3240 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3241 * this command turns it on or off, or sets up a periodic blinking cycle.
3242 */
3243struct iwl_led_cmd {
3244	__le32 interval;	/* "interval" in uSec */
3245	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3246	u8 off;			/* # intervals off while blinking;
3247				 * "0", with >0 "on" value, turns LED on */
3248	u8 on;			/* # intervals on while blinking;
3249				 * "0", regardless of "off", turns LED off */
3250	u8 reserved;
3251} __packed;
3252
3253/*
3254 * station priority table entries
3255 * also used as potential "events" value for both
3256 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3257 */
3258
3259/*
3260 * COEX events entry flag masks
3261 * RP - Requested Priority
3262 * WP - Win Medium Priority: priority assigned when the contention has been won
3263 */
3264#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3265#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3266#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3267
3268#define COEX_CU_UNASSOC_IDLE_RP               4
3269#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3270#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3271#define COEX_CU_CALIBRATION_RP                4
3272#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3273#define COEX_CU_CONNECTION_ESTAB_RP           4
3274#define COEX_CU_ASSOCIATED_IDLE_RP            4
3275#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3276#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3277#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3278#define COEX_CU_RF_ON_RP                      6
3279#define COEX_CU_RF_OFF_RP                     4
3280#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3281#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3282#define COEX_CU_RSRVD1_RP                     4
3283#define COEX_CU_RSRVD2_RP                     4
3284
3285#define COEX_CU_UNASSOC_IDLE_WP               3
3286#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3287#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3288#define COEX_CU_CALIBRATION_WP                3
3289#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3290#define COEX_CU_CONNECTION_ESTAB_WP           3
3291#define COEX_CU_ASSOCIATED_IDLE_WP            3
3292#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3293#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3294#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3295#define COEX_CU_RF_ON_WP                      3
3296#define COEX_CU_RF_OFF_WP                     3
3297#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3298#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3299#define COEX_CU_RSRVD1_WP                     3
3300#define COEX_CU_RSRVD2_WP                     3
3301
3302#define COEX_UNASSOC_IDLE_FLAGS                     0
3303#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3304	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3305	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3306#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3307	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3308	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3309#define COEX_CALIBRATION_FLAGS			\
3310	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3311	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3312#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3313/*
3314 * COEX_CONNECTION_ESTAB:
3315 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3316 */
3317#define COEX_CONNECTION_ESTAB_FLAGS		\
3318	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3319	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3320	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3321#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3322#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3323	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3324	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3325#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3326	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3327	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3328#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3329#define COEX_RF_ON_FLAGS                            0
3330#define COEX_RF_OFF_FLAGS                           0
3331#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3332	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3333	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3334#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3335	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3336	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3337	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3338#define COEX_RSRVD1_FLAGS                           0
3339#define COEX_RSRVD2_FLAGS                           0
3340/*
3341 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3342 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3343 */
3344#define COEX_CU_RF_ON_FLAGS			\
3345	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3346	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3347	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3348
3349
3350enum {
3351	/* un-association part */
3352	COEX_UNASSOC_IDLE		= 0,
3353	COEX_UNASSOC_MANUAL_SCAN	= 1,
3354	COEX_UNASSOC_AUTO_SCAN		= 2,
3355	/* calibration */
3356	COEX_CALIBRATION		= 3,
3357	COEX_PERIODIC_CALIBRATION	= 4,
3358	/* connection */
3359	COEX_CONNECTION_ESTAB		= 5,
3360	/* association part */
3361	COEX_ASSOCIATED_IDLE		= 6,
3362	COEX_ASSOC_MANUAL_SCAN		= 7,
3363	COEX_ASSOC_AUTO_SCAN		= 8,
3364	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3365	/* RF ON/OFF */
3366	COEX_RF_ON			= 10,
3367	COEX_RF_OFF			= 11,
3368	COEX_STAND_ALONE_DEBUG		= 12,
3369	/* IPAN */
3370	COEX_IPAN_ASSOC_LEVEL		= 13,
3371	/* reserved */
3372	COEX_RSRVD1			= 14,
3373	COEX_RSRVD2			= 15,
3374	COEX_NUM_OF_EVENTS		= 16
3375};
3376
3377/*
3378 * Coexistence WIFI/WIMAX  Command
3379 * COEX_PRIORITY_TABLE_CMD = 0x5a
3380 *
3381 */
3382struct iwl_wimax_coex_event_entry {
3383	u8 request_prio;
3384	u8 win_medium_prio;
3385	u8 reserved;
3386	u8 flags;
3387} __packed;
3388
3389/* COEX flag masks */
3390
3391/* Station table is valid */
3392#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3393/* UnMask wake up src at unassociated sleep */
3394#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3395/* UnMask wake up src at associated sleep */
3396#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3397/* Enable CoEx feature. */
3398#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3399
3400struct iwl_wimax_coex_cmd {
3401	u8 flags;
3402	u8 reserved[3];
3403	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3404} __packed;
3405
3406/*
3407 * Coexistence MEDIUM NOTIFICATION
3408 * COEX_MEDIUM_NOTIFICATION = 0x5b
3409 *
3410 * notification from uCode to host to indicate medium changes
3411 *
3412 */
3413/*
3414 * status field
3415 * bit 0 - 2: medium status
3416 * bit 3: medium change indication
3417 * bit 4 - 31: reserved
3418 */
3419/* status option values, (0 - 2 bits) */
3420#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3421#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3422#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3423#define COEX_MEDIUM_MSK		(0x7)
3424
3425/* send notification status (1 bit) */
3426#define COEX_MEDIUM_CHANGED	(0x8)
3427#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3428#define COEX_MEDIUM_SHIFT	(3)
3429
3430struct iwl_coex_medium_notification {
3431	__le32 status;
3432	__le32 events;
3433} __packed;
3434
3435/*
3436 * Coexistence EVENT  Command
3437 * COEX_EVENT_CMD = 0x5c
3438 *
3439 * send from host to uCode for coex event request.
3440 */
3441/* flags options */
3442#define COEX_EVENT_REQUEST_MSK	(0x1)
3443
3444struct iwl_coex_event_cmd {
3445	u8 flags;
3446	u8 event;
3447	__le16 reserved;
3448} __packed;
3449
3450struct iwl_coex_event_resp {
3451	__le32 status;
3452} __packed;
3453
3454
3455/******************************************************************************
3456 * Bluetooth Coexistence commands
3457 *
3458 *****************************************************************************/
3459
3460/*
3461 * BT Status notification
3462 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3463 */
3464enum iwl_bt_coex_profile_traffic_load {
3465	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3466	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3467	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3468	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3469/*
3470 * There are no more even though below is a u8, the
3471 * indication from the BT device only has two bits.
3472 */
3473};
3474
3475#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3476#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3477
3478/* BT UART message - Share Part (BT -> WiFi) */
3479#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3480#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3481		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3482#define BT_UART_MSG_FRAME1SSN_POS		(3)
3483#define BT_UART_MSG_FRAME1SSN_MSK		\
3484		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3485#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3486#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3487		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3488#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3489#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3490		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3491
3492#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3493#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3494		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3495#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3496#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3497		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3498#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3499#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3500		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3501#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3502#define BT_UART_MSG_FRAME2INBAND_MSK		\
3503		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3504#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3505#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3506		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3507
3508#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3509#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3510		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3511#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3512#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3513		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3514#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3515#define BT_UART_MSG_FRAME3A2DP_MSK		\
3516		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3517#define BT_UART_MSG_FRAME3ACL_POS		(3)
3518#define BT_UART_MSG_FRAME3ACL_MSK		\
3519		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3520#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3521#define BT_UART_MSG_FRAME3MASTER_MSK		\
3522		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3523#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3524#define BT_UART_MSG_FRAME3OBEX_MSK		\
3525		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3526#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3527#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3528		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3529
3530#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3531#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3532		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3533#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3534#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3535		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3536
3537#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3538#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3539		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3540#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3541#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3542		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3543#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3544#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3545		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3546#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3547#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3548		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3549
3550#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3551#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3552		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3553#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3554#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3555		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3556#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3557#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3558		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3559
3560#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3561#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3562		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3563#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3564#define BT_UART_MSG_FRAME7PAGE_MSK		\
3565		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3566#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3567#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3568		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3569#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3570#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3571		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3572#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3573#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3574		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3575
3576/* BT Session Activity 2 UART message (BT -> WiFi) */
3577#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3578#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3579		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3580#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3581#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3582		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3583
3584#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3585#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3586		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3587#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3588#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3589		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3590
3591#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3592#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3593		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3594#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3595#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3596		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3597#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3598#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3599		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3600#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3601#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3602		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3603
3604#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3605#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3606		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3607#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3608#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3609		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3610#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3611#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3612		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3613
3614#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3615#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3616		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3617#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3618#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3619		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3620#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3621#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3622		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3623#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3624#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3625		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3626
3627#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3628#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3629		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3630#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3631#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3632		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3633#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3634#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3635		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3636
3637#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3638#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3639		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3640#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3641#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3642		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3643#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3644#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3645		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3646#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3647#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3648		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3649#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3650#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3651		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3652
3653
3654#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3655#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3656
3657struct iwl_bt_uart_msg {
3658	u8 header;
3659	u8 frame1;
3660	u8 frame2;
3661	u8 frame3;
3662	u8 frame4;
3663	u8 frame5;
3664	u8 frame6;
3665	u8 frame7;
3666} __packed;
3667
3668struct iwl_bt_coex_profile_notif {
3669	struct iwl_bt_uart_msg last_bt_uart_msg;
3670	u8 bt_status; /* 0 - off, 1 - on */
3671	u8 bt_traffic_load; /* 0 .. 3? */
3672	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3673	u8 reserved;
3674} __packed;
3675
3676#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3677#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3678#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3679#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3680#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3681#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3682#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3683
3684/*
3685 * BT Coexistence Priority table
3686 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3687 */
3688enum bt_coex_prio_table_events {
3689	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3690	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3691	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3692	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3693	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3694	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3695	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3696	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3697	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3698	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3699	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3700	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3701	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3702	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3703	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3704	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3705	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3706	BT_COEX_PRIO_TBL_EVT_MAX,
3707};
3708
3709enum bt_coex_prio_table_priorities {
3710	BT_COEX_PRIO_TBL_DISABLED = 0,
3711	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3712	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3713	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3714	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3715	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3716	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3717	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3718	BT_COEX_PRIO_TBL_MAX,
3719};
3720
3721struct iwl_bt_coex_prio_table_cmd {
3722	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3723} __packed;
3724
3725#define IWL_BT_COEX_ENV_CLOSE	0
3726#define IWL_BT_COEX_ENV_OPEN	1
3727/*
3728 * BT Protection Envelope
3729 * REPLY_BT_COEX_PROT_ENV = 0xcd
3730 */
3731struct iwl_bt_coex_prot_env_cmd {
3732	u8 action; /* 0 = closed, 1 = open */
3733	u8 type; /* 0 .. 15 */
3734	u8 reserved[2];
3735} __packed;
3736
3737/*
3738 * REPLY_D3_CONFIG
3739 */
3740enum iwlagn_d3_wakeup_filters {
3741	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3742	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3743};
3744
3745struct iwlagn_d3_config_cmd {
3746	__le32 min_sleep_time;
3747	__le32 wakeup_flags;
3748} __packed;
3749
3750/*
3751 * REPLY_WOWLAN_PATTERNS
3752 */
3753#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3754#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3755
3756struct iwlagn_wowlan_pattern {
3757	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3758	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3759	u8 mask_size;
3760	u8 pattern_size;
3761	__le16 reserved;
3762} __packed;
3763
3764#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3765
3766struct iwlagn_wowlan_patterns_cmd {
3767	__le32 n_patterns;
3768	struct iwlagn_wowlan_pattern patterns[];
3769} __packed;
3770
3771/*
3772 * REPLY_WOWLAN_WAKEUP_FILTER
3773 */
3774enum iwlagn_wowlan_wakeup_filters {
3775	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3776	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3777	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3778	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3779	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3780	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3781	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3782	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3783	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3784};
3785
3786struct iwlagn_wowlan_wakeup_filter_cmd {
3787	__le32 enabled;
3788	__le16 non_qos_seq;
3789	__le16 reserved;
3790	__le16 qos_seq[8];
3791};
3792
3793/*
3794 * REPLY_WOWLAN_TSC_RSC_PARAMS
3795 */
3796#define IWLAGN_NUM_RSC	16
3797
3798struct tkip_sc {
3799	__le16 iv16;
3800	__le16 pad;
3801	__le32 iv32;
3802} __packed;
3803
3804struct iwlagn_tkip_rsc_tsc {
3805	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3806	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3807	struct tkip_sc tsc;
3808} __packed;
3809
3810struct aes_sc {
3811	__le64 pn;
3812} __packed;
3813
3814struct iwlagn_aes_rsc_tsc {
3815	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3816	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3817	struct aes_sc tsc;
3818} __packed;
3819
3820union iwlagn_all_tsc_rsc {
3821	struct iwlagn_tkip_rsc_tsc tkip;
3822	struct iwlagn_aes_rsc_tsc aes;
3823};
3824
3825struct iwlagn_wowlan_rsc_tsc_params_cmd {
3826	union iwlagn_all_tsc_rsc all_tsc_rsc;
3827} __packed;
3828
3829/*
3830 * REPLY_WOWLAN_TKIP_PARAMS
3831 */
3832#define IWLAGN_MIC_KEY_SIZE	8
3833#define IWLAGN_P1K_SIZE		5
3834struct iwlagn_mic_keys {
3835	u8 tx[IWLAGN_MIC_KEY_SIZE];
3836	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3837	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3838} __packed;
3839
3840struct iwlagn_p1k_cache {
3841	__le16 p1k[IWLAGN_P1K_SIZE];
3842} __packed;
3843
3844#define IWLAGN_NUM_RX_P1K_CACHE	2
3845
3846struct iwlagn_wowlan_tkip_params_cmd {
3847	struct iwlagn_mic_keys mic_keys;
3848	struct iwlagn_p1k_cache tx;
3849	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3850	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3851} __packed;
3852
3853/*
3854 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3855 */
3856
3857#define IWLAGN_KCK_MAX_SIZE	32
3858#define IWLAGN_KEK_MAX_SIZE	32
3859
3860struct iwlagn_wowlan_kek_kck_material_cmd {
3861	u8	kck[IWLAGN_KCK_MAX_SIZE];
3862	u8	kek[IWLAGN_KEK_MAX_SIZE];
3863	__le16	kck_len;
3864	__le16	kek_len;
3865	__le64	replay_ctr;
3866} __packed;
3867
3868#define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3869
3870/*
3871 * REPLY_WOWLAN_GET_STATUS = 0xe5
3872 */
3873struct iwlagn_wowlan_status {
3874	__le64 replay_ctr;
3875	__le32 rekey_status;
3876	__le32 wakeup_reason;
3877	u8 pattern_number;
3878	u8 reserved1;
3879	__le16 qos_seq_ctr[8];
3880	__le16 non_qos_seq_ctr;
3881	__le16 reserved2;
3882	union iwlagn_all_tsc_rsc tsc_rsc;
3883	__le16 reserved3;
3884} __packed;
3885
3886/*
3887 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3888 */
3889
3890/*
3891 * Minimum slot time in TU
3892 */
3893#define IWL_MIN_SLOT_TIME	20
3894
3895/**
3896 * struct iwl_wipan_slot
3897 * @width: Time in TU
3898 * @type:
3899 *   0 - BSS
3900 *   1 - PAN
3901 */
3902struct iwl_wipan_slot {
3903	__le16 width;
3904	u8 type;
3905	u8 reserved;
3906} __packed;
3907
3908#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3909#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3910#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3911#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3912#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3913
3914/**
3915 * struct iwl_wipan_params_cmd
3916 * @flags:
3917 *   bit0: reserved
3918 *   bit1: CP leave channel with CTS
3919 *   bit2: CP leave channel qith Quiet
3920 *   bit3: slotted mode
3921 *     1 - work in slotted mode
3922 *     0 - work in non slotted mode
3923 *   bit4: filter beacon notification
3924 *   bit5: full tx slotted mode. if this flag is set,
3925 *         uCode will perform leaving channel methods in context switch
3926 *         also when working in same channel mode
3927 * @num_slots: 1 - 10
3928 */
3929struct iwl_wipan_params_cmd {
3930	__le16 flags;
3931	u8 reserved;
3932	u8 num_slots;
3933	struct iwl_wipan_slot slots[10];
3934} __packed;
3935
3936/*
3937 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3938 *
3939 * TODO: Figure out what this is used for,
3940 *	 it can only switch between 2.4 GHz
3941 *	 channels!!
3942 */
3943
3944struct iwl_wipan_p2p_channel_switch_cmd {
3945	__le16 channel;
3946	__le16 reserved;
3947};
3948
3949/*
3950 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3951 *
3952 * This is used by the device to notify us of the
3953 * NoA schedule it determined so we can forward it
3954 * to userspace for inclusion in probe responses.
3955 *
3956 * In beacons, the NoA schedule is simply appended
3957 * to the frame we give the device.
3958 */
3959
3960struct iwl_wipan_noa_descriptor {
3961	u8 count;
3962	__le32 duration;
3963	__le32 interval;
3964	__le32 starttime;
3965} __packed;
3966
3967struct iwl_wipan_noa_attribute {
3968	u8 id;
3969	__le16 length;
3970	u8 index;
3971	u8 ct_window;
3972	struct iwl_wipan_noa_descriptor descr0, descr1;
3973	u8 reserved;
3974} __packed;
3975
3976struct iwl_wipan_noa_notification {
3977	u32 noa_active;
3978	struct iwl_wipan_noa_attribute noa_attribute;
3979} __packed;
3980
3981#endif				/* __iwl_commands_h__ */