Linux Audio

Check our new training course

Loading...
v6.2
    1// SPDX-License-Identifier: GPL-2.0
    2/* Copyright(c) 2007 - 2018 Intel Corporation. */
    3
    4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    5
    6#include <linux/module.h>
    7#include <linux/types.h>
    8#include <linux/init.h>
    9#include <linux/bitops.h>
   10#include <linux/vmalloc.h>
   11#include <linux/pagemap.h>
   12#include <linux/netdevice.h>
   13#include <linux/ipv6.h>
   14#include <linux/slab.h>
   15#include <net/checksum.h>
   16#include <net/ip6_checksum.h>
   17#include <net/pkt_sched.h>
   18#include <net/pkt_cls.h>
   19#include <linux/net_tstamp.h>
   20#include <linux/mii.h>
   21#include <linux/ethtool.h>
   22#include <linux/if.h>
   23#include <linux/if_vlan.h>
   24#include <linux/pci.h>
   25#include <linux/delay.h>
   26#include <linux/interrupt.h>
   27#include <linux/ip.h>
   28#include <linux/tcp.h>
   29#include <linux/sctp.h>
   30#include <linux/if_ether.h>
   31#include <linux/aer.h>
   32#include <linux/prefetch.h>
   33#include <linux/bpf.h>
   34#include <linux/bpf_trace.h>
   35#include <linux/pm_runtime.h>
   36#include <linux/etherdevice.h>
   37#ifdef CONFIG_IGB_DCA
   38#include <linux/dca.h>
   39#endif
   40#include <linux/i2c.h>
   41#include "igb.h"
   42
 
 
 
 
 
 
   43enum queue_mode {
   44	QUEUE_MODE_STRICT_PRIORITY,
   45	QUEUE_MODE_STREAM_RESERVATION,
   46};
   47
   48enum tx_queue_prio {
   49	TX_QUEUE_PRIO_HIGH,
   50	TX_QUEUE_PRIO_LOW,
   51};
   52
   53char igb_driver_name[] = "igb";
 
   54static const char igb_driver_string[] =
   55				"Intel(R) Gigabit Ethernet Network Driver";
   56static const char igb_copyright[] =
   57				"Copyright (c) 2007-2014 Intel Corporation.";
   58
   59static const struct e1000_info *igb_info_tbl[] = {
   60	[board_82575] = &e1000_82575_info,
   61};
   62
   63static const struct pci_device_id igb_pci_tbl[] = {
   64	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
   65	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
   66	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
   67	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
   68	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
   69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
   70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
   71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
   72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
   73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
   74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
   75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
   76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
   77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
   78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
   79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
   80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
   81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
   82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
   83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
   84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
   85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
   86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
   87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
   88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
   89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
   90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
   91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
   92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
   93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
   94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
   95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
   96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
   97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
   98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
   99	/* required last entry */
  100	{0, }
  101};
  102
  103MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  104
  105static int igb_setup_all_tx_resources(struct igb_adapter *);
  106static int igb_setup_all_rx_resources(struct igb_adapter *);
  107static void igb_free_all_tx_resources(struct igb_adapter *);
  108static void igb_free_all_rx_resources(struct igb_adapter *);
  109static void igb_setup_mrqc(struct igb_adapter *);
  110static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  111static void igb_remove(struct pci_dev *pdev);
  112static int igb_sw_init(struct igb_adapter *);
  113int igb_open(struct net_device *);
  114int igb_close(struct net_device *);
  115static void igb_configure(struct igb_adapter *);
  116static void igb_configure_tx(struct igb_adapter *);
  117static void igb_configure_rx(struct igb_adapter *);
  118static void igb_clean_all_tx_rings(struct igb_adapter *);
  119static void igb_clean_all_rx_rings(struct igb_adapter *);
  120static void igb_clean_tx_ring(struct igb_ring *);
  121static void igb_clean_rx_ring(struct igb_ring *);
  122static void igb_set_rx_mode(struct net_device *);
  123static void igb_update_phy_info(struct timer_list *);
  124static void igb_watchdog(struct timer_list *);
  125static void igb_watchdog_task(struct work_struct *);
  126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  127static void igb_get_stats64(struct net_device *dev,
  128			    struct rtnl_link_stats64 *stats);
  129static int igb_change_mtu(struct net_device *, int);
  130static int igb_set_mac(struct net_device *, void *);
  131static void igb_set_uta(struct igb_adapter *adapter, bool set);
  132static irqreturn_t igb_intr(int irq, void *);
  133static irqreturn_t igb_intr_msi(int irq, void *);
  134static irqreturn_t igb_msix_other(int irq, void *);
  135static irqreturn_t igb_msix_ring(int irq, void *);
  136#ifdef CONFIG_IGB_DCA
  137static void igb_update_dca(struct igb_q_vector *);
  138static void igb_setup_dca(struct igb_adapter *);
  139#endif /* CONFIG_IGB_DCA */
  140static int igb_poll(struct napi_struct *, int);
  141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
  142static int igb_clean_rx_irq(struct igb_q_vector *, int);
  143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
  145static void igb_reset_task(struct work_struct *);
  146static void igb_vlan_mode(struct net_device *netdev,
  147			  netdev_features_t features);
  148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  150static void igb_restore_vlan(struct igb_adapter *);
  151static void igb_rar_set_index(struct igb_adapter *, u32);
  152static void igb_ping_all_vfs(struct igb_adapter *);
  153static void igb_msg_task(struct igb_adapter *);
  154static void igb_vmm_control(struct igb_adapter *);
  155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  156static void igb_flush_mac_table(struct igb_adapter *);
  157static int igb_available_rars(struct igb_adapter *, u8);
  158static void igb_set_default_mac_filter(struct igb_adapter *);
  159static int igb_uc_sync(struct net_device *, const unsigned char *);
  160static int igb_uc_unsync(struct net_device *, const unsigned char *);
  161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  164			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
  165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  167				   bool setting);
  168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
  169				bool setting);
  170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  171				 struct ifla_vf_info *ivi);
  172static void igb_check_vf_rate_limit(struct igb_adapter *);
  173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
  174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
  175
  176#ifdef CONFIG_PCI_IOV
  177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  178static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
  179static int igb_disable_sriov(struct pci_dev *dev);
  180static int igb_pci_disable_sriov(struct pci_dev *dev);
  181#endif
  182
  183static int igb_suspend(struct device *);
  184static int igb_resume(struct device *);
  185static int igb_runtime_suspend(struct device *dev);
  186static int igb_runtime_resume(struct device *dev);
  187static int igb_runtime_idle(struct device *dev);
  188static const struct dev_pm_ops igb_pm_ops = {
  189	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  190	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  191			igb_runtime_idle)
  192};
  193static void igb_shutdown(struct pci_dev *);
  194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  195#ifdef CONFIG_IGB_DCA
  196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  197static struct notifier_block dca_notifier = {
  198	.notifier_call	= igb_notify_dca,
  199	.next		= NULL,
  200	.priority	= 0
  201};
  202#endif
  203#ifdef CONFIG_PCI_IOV
  204static unsigned int max_vfs;
  205module_param(max_vfs, uint, 0);
  206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  207#endif /* CONFIG_PCI_IOV */
  208
  209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  210		     pci_channel_state_t);
  211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  212static void igb_io_resume(struct pci_dev *);
  213
  214static const struct pci_error_handlers igb_err_handler = {
  215	.error_detected = igb_io_error_detected,
  216	.slot_reset = igb_io_slot_reset,
  217	.resume = igb_io_resume,
  218};
  219
  220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  221
  222static struct pci_driver igb_driver = {
  223	.name     = igb_driver_name,
  224	.id_table = igb_pci_tbl,
  225	.probe    = igb_probe,
  226	.remove   = igb_remove,
  227#ifdef CONFIG_PM
  228	.driver.pm = &igb_pm_ops,
  229#endif
  230	.shutdown = igb_shutdown,
  231	.sriov_configure = igb_pci_sriov_configure,
  232	.err_handler = &igb_err_handler
  233};
  234
  235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  237MODULE_LICENSE("GPL v2");
 
  238
  239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  240static int debug = -1;
  241module_param(debug, int, 0);
  242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  243
  244struct igb_reg_info {
  245	u32 ofs;
  246	char *name;
  247};
  248
  249static const struct igb_reg_info igb_reg_info_tbl[] = {
  250
  251	/* General Registers */
  252	{E1000_CTRL, "CTRL"},
  253	{E1000_STATUS, "STATUS"},
  254	{E1000_CTRL_EXT, "CTRL_EXT"},
  255
  256	/* Interrupt Registers */
  257	{E1000_ICR, "ICR"},
  258
  259	/* RX Registers */
  260	{E1000_RCTL, "RCTL"},
  261	{E1000_RDLEN(0), "RDLEN"},
  262	{E1000_RDH(0), "RDH"},
  263	{E1000_RDT(0), "RDT"},
  264	{E1000_RXDCTL(0), "RXDCTL"},
  265	{E1000_RDBAL(0), "RDBAL"},
  266	{E1000_RDBAH(0), "RDBAH"},
  267
  268	/* TX Registers */
  269	{E1000_TCTL, "TCTL"},
  270	{E1000_TDBAL(0), "TDBAL"},
  271	{E1000_TDBAH(0), "TDBAH"},
  272	{E1000_TDLEN(0), "TDLEN"},
  273	{E1000_TDH(0), "TDH"},
  274	{E1000_TDT(0), "TDT"},
  275	{E1000_TXDCTL(0), "TXDCTL"},
  276	{E1000_TDFH, "TDFH"},
  277	{E1000_TDFT, "TDFT"},
  278	{E1000_TDFHS, "TDFHS"},
  279	{E1000_TDFPC, "TDFPC"},
  280
  281	/* List Terminator */
  282	{}
  283};
  284
  285/* igb_regdump - register printout routine */
  286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  287{
  288	int n = 0;
  289	char rname[16];
  290	u32 regs[8];
  291
  292	switch (reginfo->ofs) {
  293	case E1000_RDLEN(0):
  294		for (n = 0; n < 4; n++)
  295			regs[n] = rd32(E1000_RDLEN(n));
  296		break;
  297	case E1000_RDH(0):
  298		for (n = 0; n < 4; n++)
  299			regs[n] = rd32(E1000_RDH(n));
  300		break;
  301	case E1000_RDT(0):
  302		for (n = 0; n < 4; n++)
  303			regs[n] = rd32(E1000_RDT(n));
  304		break;
  305	case E1000_RXDCTL(0):
  306		for (n = 0; n < 4; n++)
  307			regs[n] = rd32(E1000_RXDCTL(n));
  308		break;
  309	case E1000_RDBAL(0):
  310		for (n = 0; n < 4; n++)
  311			regs[n] = rd32(E1000_RDBAL(n));
  312		break;
  313	case E1000_RDBAH(0):
  314		for (n = 0; n < 4; n++)
  315			regs[n] = rd32(E1000_RDBAH(n));
  316		break;
  317	case E1000_TDBAL(0):
  318		for (n = 0; n < 4; n++)
  319			regs[n] = rd32(E1000_TDBAL(n));
  320		break;
  321	case E1000_TDBAH(0):
  322		for (n = 0; n < 4; n++)
  323			regs[n] = rd32(E1000_TDBAH(n));
  324		break;
  325	case E1000_TDLEN(0):
  326		for (n = 0; n < 4; n++)
  327			regs[n] = rd32(E1000_TDLEN(n));
  328		break;
  329	case E1000_TDH(0):
  330		for (n = 0; n < 4; n++)
  331			regs[n] = rd32(E1000_TDH(n));
  332		break;
  333	case E1000_TDT(0):
  334		for (n = 0; n < 4; n++)
  335			regs[n] = rd32(E1000_TDT(n));
  336		break;
  337	case E1000_TXDCTL(0):
  338		for (n = 0; n < 4; n++)
  339			regs[n] = rd32(E1000_TXDCTL(n));
  340		break;
  341	default:
  342		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  343		return;
  344	}
  345
  346	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  347	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  348		regs[2], regs[3]);
  349}
  350
  351/* igb_dump - Print registers, Tx-rings and Rx-rings */
  352static void igb_dump(struct igb_adapter *adapter)
  353{
  354	struct net_device *netdev = adapter->netdev;
  355	struct e1000_hw *hw = &adapter->hw;
  356	struct igb_reg_info *reginfo;
  357	struct igb_ring *tx_ring;
  358	union e1000_adv_tx_desc *tx_desc;
  359	struct my_u0 { __le64 a; __le64 b; } *u0;
  360	struct igb_ring *rx_ring;
  361	union e1000_adv_rx_desc *rx_desc;
  362	u32 staterr;
  363	u16 i, n;
  364
  365	if (!netif_msg_hw(adapter))
  366		return;
  367
  368	/* Print netdevice Info */
  369	if (netdev) {
  370		dev_info(&adapter->pdev->dev, "Net device Info\n");
  371		pr_info("Device Name     state            trans_start\n");
  372		pr_info("%-15s %016lX %016lX\n", netdev->name,
  373			netdev->state, dev_trans_start(netdev));
  374	}
  375
  376	/* Print Registers */
  377	dev_info(&adapter->pdev->dev, "Register Dump\n");
  378	pr_info(" Register Name   Value\n");
  379	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  380	     reginfo->name; reginfo++) {
  381		igb_regdump(hw, reginfo);
  382	}
  383
  384	/* Print TX Ring Summary */
  385	if (!netdev || !netif_running(netdev))
  386		goto exit;
  387
  388	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  389	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
  390	for (n = 0; n < adapter->num_tx_queues; n++) {
  391		struct igb_tx_buffer *buffer_info;
  392		tx_ring = adapter->tx_ring[n];
  393		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  394		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  395			n, tx_ring->next_to_use, tx_ring->next_to_clean,
  396			(u64)dma_unmap_addr(buffer_info, dma),
  397			dma_unmap_len(buffer_info, len),
  398			buffer_info->next_to_watch,
  399			(u64)buffer_info->time_stamp);
  400	}
  401
  402	/* Print TX Rings */
  403	if (!netif_msg_tx_done(adapter))
  404		goto rx_ring_summary;
  405
  406	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  407
  408	/* Transmit Descriptor Formats
  409	 *
  410	 * Advanced Transmit Descriptor
  411	 *   +--------------------------------------------------------------+
  412	 * 0 |         Buffer Address [63:0]                                |
  413	 *   +--------------------------------------------------------------+
  414	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
  415	 *   +--------------------------------------------------------------+
  416	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
  417	 */
  418
  419	for (n = 0; n < adapter->num_tx_queues; n++) {
  420		tx_ring = adapter->tx_ring[n];
  421		pr_info("------------------------------------\n");
  422		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  423		pr_info("------------------------------------\n");
  424		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
  425
  426		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  427			const char *next_desc;
  428			struct igb_tx_buffer *buffer_info;
  429			tx_desc = IGB_TX_DESC(tx_ring, i);
  430			buffer_info = &tx_ring->tx_buffer_info[i];
  431			u0 = (struct my_u0 *)tx_desc;
  432			if (i == tx_ring->next_to_use &&
  433			    i == tx_ring->next_to_clean)
  434				next_desc = " NTC/U";
  435			else if (i == tx_ring->next_to_use)
  436				next_desc = " NTU";
  437			else if (i == tx_ring->next_to_clean)
  438				next_desc = " NTC";
  439			else
  440				next_desc = "";
  441
  442			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
  443				i, le64_to_cpu(u0->a),
  444				le64_to_cpu(u0->b),
  445				(u64)dma_unmap_addr(buffer_info, dma),
  446				dma_unmap_len(buffer_info, len),
  447				buffer_info->next_to_watch,
  448				(u64)buffer_info->time_stamp,
  449				buffer_info->skb, next_desc);
  450
  451			if (netif_msg_pktdata(adapter) && buffer_info->skb)
  452				print_hex_dump(KERN_INFO, "",
  453					DUMP_PREFIX_ADDRESS,
  454					16, 1, buffer_info->skb->data,
  455					dma_unmap_len(buffer_info, len),
  456					true);
  457		}
  458	}
  459
  460	/* Print RX Rings Summary */
  461rx_ring_summary:
  462	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  463	pr_info("Queue [NTU] [NTC]\n");
  464	for (n = 0; n < adapter->num_rx_queues; n++) {
  465		rx_ring = adapter->rx_ring[n];
  466		pr_info(" %5d %5X %5X\n",
  467			n, rx_ring->next_to_use, rx_ring->next_to_clean);
  468	}
  469
  470	/* Print RX Rings */
  471	if (!netif_msg_rx_status(adapter))
  472		goto exit;
  473
  474	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  475
  476	/* Advanced Receive Descriptor (Read) Format
  477	 *    63                                           1        0
  478	 *    +-----------------------------------------------------+
  479	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
  480	 *    +----------------------------------------------+------+
  481	 *  8 |       Header Buffer Address [63:1]           |  DD  |
  482	 *    +-----------------------------------------------------+
  483	 *
  484	 *
  485	 * Advanced Receive Descriptor (Write-Back) Format
  486	 *
  487	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
  488	 *   +------------------------------------------------------+
  489	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
  490	 *   | Checksum   Ident  |   |           |    | Type | Type |
  491	 *   +------------------------------------------------------+
  492	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  493	 *   +------------------------------------------------------+
  494	 *   63       48 47    32 31            20 19               0
  495	 */
  496
  497	for (n = 0; n < adapter->num_rx_queues; n++) {
  498		rx_ring = adapter->rx_ring[n];
  499		pr_info("------------------------------------\n");
  500		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  501		pr_info("------------------------------------\n");
  502		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
  503		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  504
  505		for (i = 0; i < rx_ring->count; i++) {
  506			const char *next_desc;
  507			struct igb_rx_buffer *buffer_info;
  508			buffer_info = &rx_ring->rx_buffer_info[i];
  509			rx_desc = IGB_RX_DESC(rx_ring, i);
  510			u0 = (struct my_u0 *)rx_desc;
  511			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  512
  513			if (i == rx_ring->next_to_use)
  514				next_desc = " NTU";
  515			else if (i == rx_ring->next_to_clean)
  516				next_desc = " NTC";
  517			else
  518				next_desc = "";
  519
  520			if (staterr & E1000_RXD_STAT_DD) {
  521				/* Descriptor Done */
  522				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
  523					"RWB", i,
  524					le64_to_cpu(u0->a),
  525					le64_to_cpu(u0->b),
  526					next_desc);
  527			} else {
  528				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
  529					"R  ", i,
  530					le64_to_cpu(u0->a),
  531					le64_to_cpu(u0->b),
  532					(u64)buffer_info->dma,
  533					next_desc);
  534
  535				if (netif_msg_pktdata(adapter) &&
  536				    buffer_info->dma && buffer_info->page) {
  537					print_hex_dump(KERN_INFO, "",
  538					  DUMP_PREFIX_ADDRESS,
  539					  16, 1,
  540					  page_address(buffer_info->page) +
  541						      buffer_info->page_offset,
  542					  igb_rx_bufsz(rx_ring), true);
  543				}
  544			}
  545		}
  546	}
  547
  548exit:
  549	return;
  550}
  551
  552/**
  553 *  igb_get_i2c_data - Reads the I2C SDA data bit
  554 *  @data: opaque pointer to adapter struct
 
  555 *
  556 *  Returns the I2C data bit value
  557 **/
  558static int igb_get_i2c_data(void *data)
  559{
  560	struct igb_adapter *adapter = (struct igb_adapter *)data;
  561	struct e1000_hw *hw = &adapter->hw;
  562	s32 i2cctl = rd32(E1000_I2CPARAMS);
  563
  564	return !!(i2cctl & E1000_I2C_DATA_IN);
  565}
  566
  567/**
  568 *  igb_set_i2c_data - Sets the I2C data bit
  569 *  @data: pointer to hardware structure
  570 *  @state: I2C data value (0 or 1) to set
  571 *
  572 *  Sets the I2C data bit
  573 **/
  574static void igb_set_i2c_data(void *data, int state)
  575{
  576	struct igb_adapter *adapter = (struct igb_adapter *)data;
  577	struct e1000_hw *hw = &adapter->hw;
  578	s32 i2cctl = rd32(E1000_I2CPARAMS);
  579
  580	if (state) {
  581		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
  582	} else {
  583		i2cctl &= ~E1000_I2C_DATA_OE_N;
  584		i2cctl &= ~E1000_I2C_DATA_OUT;
  585	}
  586
 
 
  587	wr32(E1000_I2CPARAMS, i2cctl);
  588	wrfl();
 
  589}
  590
  591/**
  592 *  igb_set_i2c_clk - Sets the I2C SCL clock
  593 *  @data: pointer to hardware structure
  594 *  @state: state to set clock
  595 *
  596 *  Sets the I2C clock line to state
  597 **/
  598static void igb_set_i2c_clk(void *data, int state)
  599{
  600	struct igb_adapter *adapter = (struct igb_adapter *)data;
  601	struct e1000_hw *hw = &adapter->hw;
  602	s32 i2cctl = rd32(E1000_I2CPARAMS);
  603
  604	if (state) {
  605		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
 
  606	} else {
  607		i2cctl &= ~E1000_I2C_CLK_OUT;
  608		i2cctl &= ~E1000_I2C_CLK_OE_N;
  609	}
  610	wr32(E1000_I2CPARAMS, i2cctl);
  611	wrfl();
  612}
  613
  614/**
  615 *  igb_get_i2c_clk - Gets the I2C SCL clock state
  616 *  @data: pointer to hardware structure
  617 *
  618 *  Gets the I2C clock state
  619 **/
  620static int igb_get_i2c_clk(void *data)
  621{
  622	struct igb_adapter *adapter = (struct igb_adapter *)data;
  623	struct e1000_hw *hw = &adapter->hw;
  624	s32 i2cctl = rd32(E1000_I2CPARAMS);
  625
  626	return !!(i2cctl & E1000_I2C_CLK_IN);
  627}
  628
  629static const struct i2c_algo_bit_data igb_i2c_algo = {
  630	.setsda		= igb_set_i2c_data,
  631	.setscl		= igb_set_i2c_clk,
  632	.getsda		= igb_get_i2c_data,
  633	.getscl		= igb_get_i2c_clk,
  634	.udelay		= 5,
  635	.timeout	= 20,
  636};
  637
  638/**
  639 *  igb_get_hw_dev - return device
  640 *  @hw: pointer to hardware structure
  641 *
  642 *  used by hardware layer to print debugging information
  643 **/
  644struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  645{
  646	struct igb_adapter *adapter = hw->back;
  647	return adapter->netdev;
  648}
  649
  650/**
  651 *  igb_init_module - Driver Registration Routine
  652 *
  653 *  igb_init_module is the first routine called when the driver is
  654 *  loaded. All it does is register with the PCI subsystem.
  655 **/
  656static int __init igb_init_module(void)
  657{
  658	int ret;
  659
  660	pr_info("%s\n", igb_driver_string);
 
  661	pr_info("%s\n", igb_copyright);
  662
  663#ifdef CONFIG_IGB_DCA
  664	dca_register_notify(&dca_notifier);
  665#endif
  666	ret = pci_register_driver(&igb_driver);
  667	return ret;
  668}
  669
  670module_init(igb_init_module);
  671
  672/**
  673 *  igb_exit_module - Driver Exit Cleanup Routine
  674 *
  675 *  igb_exit_module is called just before the driver is removed
  676 *  from memory.
  677 **/
  678static void __exit igb_exit_module(void)
  679{
  680#ifdef CONFIG_IGB_DCA
  681	dca_unregister_notify(&dca_notifier);
  682#endif
  683	pci_unregister_driver(&igb_driver);
  684}
  685
  686module_exit(igb_exit_module);
  687
  688#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  689/**
  690 *  igb_cache_ring_register - Descriptor ring to register mapping
  691 *  @adapter: board private structure to initialize
  692 *
  693 *  Once we know the feature-set enabled for the device, we'll cache
  694 *  the register offset the descriptor ring is assigned to.
  695 **/
  696static void igb_cache_ring_register(struct igb_adapter *adapter)
  697{
  698	int i = 0, j = 0;
  699	u32 rbase_offset = adapter->vfs_allocated_count;
  700
  701	switch (adapter->hw.mac.type) {
  702	case e1000_82576:
  703		/* The queues are allocated for virtualization such that VF 0
  704		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  705		 * In order to avoid collision we start at the first free queue
  706		 * and continue consuming queues in the same sequence
  707		 */
  708		if (adapter->vfs_allocated_count) {
  709			for (; i < adapter->rss_queues; i++)
  710				adapter->rx_ring[i]->reg_idx = rbase_offset +
  711							       Q_IDX_82576(i);
  712		}
  713		fallthrough;
  714	case e1000_82575:
  715	case e1000_82580:
  716	case e1000_i350:
  717	case e1000_i354:
  718	case e1000_i210:
  719	case e1000_i211:
 
  720	default:
  721		for (; i < adapter->num_rx_queues; i++)
  722			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  723		for (; j < adapter->num_tx_queues; j++)
  724			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  725		break;
  726	}
  727}
  728
  729u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  730{
  731	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  732	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
  733	u32 value = 0;
  734
  735	if (E1000_REMOVED(hw_addr))
  736		return ~value;
  737
  738	value = readl(&hw_addr[reg]);
  739
  740	/* reads should not return all F's */
  741	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  742		struct net_device *netdev = igb->netdev;
  743		hw->hw_addr = NULL;
  744		netdev_err(netdev, "PCIe link lost\n");
  745		WARN(pci_device_is_present(igb->pdev),
  746		     "igb: Failed to read reg 0x%x!\n", reg);
  747	}
  748
  749	return value;
  750}
  751
  752/**
  753 *  igb_write_ivar - configure ivar for given MSI-X vector
  754 *  @hw: pointer to the HW structure
  755 *  @msix_vector: vector number we are allocating to a given ring
  756 *  @index: row index of IVAR register to write within IVAR table
  757 *  @offset: column offset of in IVAR, should be multiple of 8
  758 *
  759 *  This function is intended to handle the writing of the IVAR register
  760 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
  761 *  each containing an cause allocation for an Rx and Tx ring, and a
  762 *  variable number of rows depending on the number of queues supported.
  763 **/
  764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  765			   int index, int offset)
  766{
  767	u32 ivar = array_rd32(E1000_IVAR0, index);
  768
  769	/* clear any bits that are currently set */
  770	ivar &= ~((u32)0xFF << offset);
  771
  772	/* write vector and valid bit */
  773	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  774
  775	array_wr32(E1000_IVAR0, index, ivar);
  776}
  777
  778#define IGB_N0_QUEUE -1
  779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  780{
  781	struct igb_adapter *adapter = q_vector->adapter;
  782	struct e1000_hw *hw = &adapter->hw;
  783	int rx_queue = IGB_N0_QUEUE;
  784	int tx_queue = IGB_N0_QUEUE;
  785	u32 msixbm = 0;
  786
  787	if (q_vector->rx.ring)
  788		rx_queue = q_vector->rx.ring->reg_idx;
  789	if (q_vector->tx.ring)
  790		tx_queue = q_vector->tx.ring->reg_idx;
  791
  792	switch (hw->mac.type) {
  793	case e1000_82575:
  794		/* The 82575 assigns vectors using a bitmask, which matches the
  795		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
  796		 * or more queues to a vector, we write the appropriate bits
  797		 * into the MSIXBM register for that vector.
  798		 */
  799		if (rx_queue > IGB_N0_QUEUE)
  800			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  801		if (tx_queue > IGB_N0_QUEUE)
  802			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  803		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  804			msixbm |= E1000_EIMS_OTHER;
  805		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  806		q_vector->eims_value = msixbm;
  807		break;
  808	case e1000_82576:
  809		/* 82576 uses a table that essentially consists of 2 columns
  810		 * with 8 rows.  The ordering is column-major so we use the
  811		 * lower 3 bits as the row index, and the 4th bit as the
  812		 * column offset.
  813		 */
  814		if (rx_queue > IGB_N0_QUEUE)
  815			igb_write_ivar(hw, msix_vector,
  816				       rx_queue & 0x7,
  817				       (rx_queue & 0x8) << 1);
  818		if (tx_queue > IGB_N0_QUEUE)
  819			igb_write_ivar(hw, msix_vector,
  820				       tx_queue & 0x7,
  821				       ((tx_queue & 0x8) << 1) + 8);
  822		q_vector->eims_value = BIT(msix_vector);
  823		break;
  824	case e1000_82580:
  825	case e1000_i350:
  826	case e1000_i354:
  827	case e1000_i210:
  828	case e1000_i211:
  829		/* On 82580 and newer adapters the scheme is similar to 82576
  830		 * however instead of ordering column-major we have things
  831		 * ordered row-major.  So we traverse the table by using
  832		 * bit 0 as the column offset, and the remaining bits as the
  833		 * row index.
  834		 */
  835		if (rx_queue > IGB_N0_QUEUE)
  836			igb_write_ivar(hw, msix_vector,
  837				       rx_queue >> 1,
  838				       (rx_queue & 0x1) << 4);
  839		if (tx_queue > IGB_N0_QUEUE)
  840			igb_write_ivar(hw, msix_vector,
  841				       tx_queue >> 1,
  842				       ((tx_queue & 0x1) << 4) + 8);
  843		q_vector->eims_value = BIT(msix_vector);
  844		break;
  845	default:
  846		BUG();
  847		break;
  848	}
  849
  850	/* add q_vector eims value to global eims_enable_mask */
  851	adapter->eims_enable_mask |= q_vector->eims_value;
  852
  853	/* configure q_vector to set itr on first interrupt */
  854	q_vector->set_itr = 1;
  855}
  856
  857/**
  858 *  igb_configure_msix - Configure MSI-X hardware
  859 *  @adapter: board private structure to initialize
  860 *
  861 *  igb_configure_msix sets up the hardware to properly
  862 *  generate MSI-X interrupts.
  863 **/
  864static void igb_configure_msix(struct igb_adapter *adapter)
  865{
  866	u32 tmp;
  867	int i, vector = 0;
  868	struct e1000_hw *hw = &adapter->hw;
  869
  870	adapter->eims_enable_mask = 0;
  871
  872	/* set vector for other causes, i.e. link changes */
  873	switch (hw->mac.type) {
  874	case e1000_82575:
  875		tmp = rd32(E1000_CTRL_EXT);
  876		/* enable MSI-X PBA support*/
  877		tmp |= E1000_CTRL_EXT_PBA_CLR;
  878
  879		/* Auto-Mask interrupts upon ICR read. */
  880		tmp |= E1000_CTRL_EXT_EIAME;
  881		tmp |= E1000_CTRL_EXT_IRCA;
  882
  883		wr32(E1000_CTRL_EXT, tmp);
  884
  885		/* enable msix_other interrupt */
  886		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  887		adapter->eims_other = E1000_EIMS_OTHER;
  888
  889		break;
  890
  891	case e1000_82576:
  892	case e1000_82580:
  893	case e1000_i350:
  894	case e1000_i354:
  895	case e1000_i210:
  896	case e1000_i211:
  897		/* Turn on MSI-X capability first, or our settings
  898		 * won't stick.  And it will take days to debug.
  899		 */
  900		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  901		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
  902		     E1000_GPIE_NSICR);
  903
  904		/* enable msix_other interrupt */
  905		adapter->eims_other = BIT(vector);
  906		tmp = (vector++ | E1000_IVAR_VALID) << 8;
  907
  908		wr32(E1000_IVAR_MISC, tmp);
  909		break;
  910	default:
  911		/* do nothing, since nothing else supports MSI-X */
  912		break;
  913	} /* switch (hw->mac.type) */
  914
  915	adapter->eims_enable_mask |= adapter->eims_other;
  916
  917	for (i = 0; i < adapter->num_q_vectors; i++)
  918		igb_assign_vector(adapter->q_vector[i], vector++);
  919
  920	wrfl();
  921}
  922
  923/**
  924 *  igb_request_msix - Initialize MSI-X interrupts
  925 *  @adapter: board private structure to initialize
  926 *
  927 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
  928 *  kernel.
  929 **/
  930static int igb_request_msix(struct igb_adapter *adapter)
  931{
  932	unsigned int num_q_vectors = adapter->num_q_vectors;
  933	struct net_device *netdev = adapter->netdev;
  934	int i, err = 0, vector = 0, free_vector = 0;
  935
  936	err = request_irq(adapter->msix_entries[vector].vector,
  937			  igb_msix_other, 0, netdev->name, adapter);
  938	if (err)
  939		goto err_out;
  940
  941	if (num_q_vectors > MAX_Q_VECTORS) {
  942		num_q_vectors = MAX_Q_VECTORS;
  943		dev_warn(&adapter->pdev->dev,
  944			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
  945			 adapter->num_q_vectors, MAX_Q_VECTORS);
  946	}
  947	for (i = 0; i < num_q_vectors; i++) {
  948		struct igb_q_vector *q_vector = adapter->q_vector[i];
  949
  950		vector++;
  951
  952		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
  953
  954		if (q_vector->rx.ring && q_vector->tx.ring)
  955			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  956				q_vector->rx.ring->queue_index);
  957		else if (q_vector->tx.ring)
  958			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  959				q_vector->tx.ring->queue_index);
  960		else if (q_vector->rx.ring)
  961			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  962				q_vector->rx.ring->queue_index);
  963		else
  964			sprintf(q_vector->name, "%s-unused", netdev->name);
  965
  966		err = request_irq(adapter->msix_entries[vector].vector,
  967				  igb_msix_ring, 0, q_vector->name,
  968				  q_vector);
  969		if (err)
  970			goto err_free;
  971	}
  972
  973	igb_configure_msix(adapter);
  974	return 0;
  975
  976err_free:
  977	/* free already assigned IRQs */
  978	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  979
  980	vector--;
  981	for (i = 0; i < vector; i++) {
  982		free_irq(adapter->msix_entries[free_vector++].vector,
  983			 adapter->q_vector[i]);
  984	}
  985err_out:
  986	return err;
  987}
  988
  989/**
  990 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
  991 *  @adapter: board private structure to initialize
  992 *  @v_idx: Index of vector to be freed
  993 *
  994 *  This function frees the memory allocated to the q_vector.
  995 **/
  996static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  997{
  998	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  999
 1000	adapter->q_vector[v_idx] = NULL;
 1001
 1002	/* igb_get_stats64() might access the rings on this vector,
 1003	 * we must wait a grace period before freeing it.
 1004	 */
 1005	if (q_vector)
 1006		kfree_rcu(q_vector, rcu);
 1007}
 1008
 1009/**
 1010 *  igb_reset_q_vector - Reset config for interrupt vector
 1011 *  @adapter: board private structure to initialize
 1012 *  @v_idx: Index of vector to be reset
 1013 *
 1014 *  If NAPI is enabled it will delete any references to the
 1015 *  NAPI struct. This is preparation for igb_free_q_vector.
 1016 **/
 1017static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
 1018{
 1019	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 1020
 1021	/* Coming from igb_set_interrupt_capability, the vectors are not yet
 1022	 * allocated. So, q_vector is NULL so we should stop here.
 1023	 */
 1024	if (!q_vector)
 1025		return;
 1026
 1027	if (q_vector->tx.ring)
 1028		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
 1029
 1030	if (q_vector->rx.ring)
 1031		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
 1032
 1033	netif_napi_del(&q_vector->napi);
 1034
 1035}
 1036
 1037static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 1038{
 1039	int v_idx = adapter->num_q_vectors;
 1040
 1041	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 1042		pci_disable_msix(adapter->pdev);
 1043	else if (adapter->flags & IGB_FLAG_HAS_MSI)
 1044		pci_disable_msi(adapter->pdev);
 1045
 1046	while (v_idx--)
 1047		igb_reset_q_vector(adapter, v_idx);
 1048}
 1049
 1050/**
 1051 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 1052 *  @adapter: board private structure to initialize
 1053 *
 1054 *  This function frees the memory allocated to the q_vectors.  In addition if
 1055 *  NAPI is enabled it will delete any references to the NAPI struct prior
 1056 *  to freeing the q_vector.
 1057 **/
 1058static void igb_free_q_vectors(struct igb_adapter *adapter)
 1059{
 1060	int v_idx = adapter->num_q_vectors;
 1061
 1062	adapter->num_tx_queues = 0;
 1063	adapter->num_rx_queues = 0;
 1064	adapter->num_q_vectors = 0;
 1065
 1066	while (v_idx--) {
 1067		igb_reset_q_vector(adapter, v_idx);
 1068		igb_free_q_vector(adapter, v_idx);
 1069	}
 1070}
 1071
 1072/**
 1073 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 1074 *  @adapter: board private structure to initialize
 1075 *
 1076 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 1077 *  MSI-X interrupts allocated.
 1078 */
 1079static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
 1080{
 1081	igb_free_q_vectors(adapter);
 1082	igb_reset_interrupt_capability(adapter);
 1083}
 1084
 1085/**
 1086 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 1087 *  @adapter: board private structure to initialize
 1088 *  @msix: boolean value of MSIX capability
 1089 *
 1090 *  Attempt to configure interrupts using the best available
 1091 *  capabilities of the hardware and kernel.
 1092 **/
 1093static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
 1094{
 1095	int err;
 1096	int numvecs, i;
 1097
 1098	if (!msix)
 1099		goto msi_only;
 1100	adapter->flags |= IGB_FLAG_HAS_MSIX;
 1101
 1102	/* Number of supported queues. */
 1103	adapter->num_rx_queues = adapter->rss_queues;
 1104	if (adapter->vfs_allocated_count)
 1105		adapter->num_tx_queues = 1;
 1106	else
 1107		adapter->num_tx_queues = adapter->rss_queues;
 1108
 1109	/* start with one vector for every Rx queue */
 1110	numvecs = adapter->num_rx_queues;
 1111
 1112	/* if Tx handler is separate add 1 for every Tx queue */
 1113	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
 1114		numvecs += adapter->num_tx_queues;
 1115
 1116	/* store the number of vectors reserved for queues */
 1117	adapter->num_q_vectors = numvecs;
 1118
 1119	/* add 1 vector for link status interrupts */
 1120	numvecs++;
 1121	for (i = 0; i < numvecs; i++)
 1122		adapter->msix_entries[i].entry = i;
 1123
 1124	err = pci_enable_msix_range(adapter->pdev,
 1125				    adapter->msix_entries,
 1126				    numvecs,
 1127				    numvecs);
 1128	if (err > 0)
 1129		return;
 1130
 1131	igb_reset_interrupt_capability(adapter);
 1132
 1133	/* If we can't do MSI-X, try MSI */
 1134msi_only:
 1135	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
 1136#ifdef CONFIG_PCI_IOV
 1137	/* disable SR-IOV for non MSI-X configurations */
 1138	if (adapter->vf_data) {
 1139		struct e1000_hw *hw = &adapter->hw;
 1140		/* disable iov and allow time for transactions to clear */
 1141		pci_disable_sriov(adapter->pdev);
 1142		msleep(500);
 1143
 1144		kfree(adapter->vf_mac_list);
 1145		adapter->vf_mac_list = NULL;
 1146		kfree(adapter->vf_data);
 1147		adapter->vf_data = NULL;
 1148		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 1149		wrfl();
 1150		msleep(100);
 1151		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
 1152	}
 1153#endif
 1154	adapter->vfs_allocated_count = 0;
 1155	adapter->rss_queues = 1;
 1156	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 1157	adapter->num_rx_queues = 1;
 1158	adapter->num_tx_queues = 1;
 1159	adapter->num_q_vectors = 1;
 1160	if (!pci_enable_msi(adapter->pdev))
 1161		adapter->flags |= IGB_FLAG_HAS_MSI;
 1162}
 1163
 1164static void igb_add_ring(struct igb_ring *ring,
 1165			 struct igb_ring_container *head)
 1166{
 1167	head->ring = ring;
 1168	head->count++;
 1169}
 1170
 1171/**
 1172 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 1173 *  @adapter: board private structure to initialize
 1174 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 1175 *  @v_idx: index of vector in adapter struct
 1176 *  @txr_count: total number of Tx rings to allocate
 1177 *  @txr_idx: index of first Tx ring to allocate
 1178 *  @rxr_count: total number of Rx rings to allocate
 1179 *  @rxr_idx: index of first Rx ring to allocate
 1180 *
 1181 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
 1182 **/
 1183static int igb_alloc_q_vector(struct igb_adapter *adapter,
 1184			      int v_count, int v_idx,
 1185			      int txr_count, int txr_idx,
 1186			      int rxr_count, int rxr_idx)
 1187{
 1188	struct igb_q_vector *q_vector;
 1189	struct igb_ring *ring;
 1190	int ring_count;
 1191	size_t size;
 1192
 1193	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
 1194	if (txr_count > 1 || rxr_count > 1)
 1195		return -ENOMEM;
 1196
 1197	ring_count = txr_count + rxr_count;
 1198	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
 1199
 1200	/* allocate q_vector and rings */
 1201	q_vector = adapter->q_vector[v_idx];
 1202	if (!q_vector) {
 1203		q_vector = kzalloc(size, GFP_KERNEL);
 1204	} else if (size > ksize(q_vector)) {
 1205		struct igb_q_vector *new_q_vector;
 1206
 1207		new_q_vector = kzalloc(size, GFP_KERNEL);
 1208		if (new_q_vector)
 1209			kfree_rcu(q_vector, rcu);
 1210		q_vector = new_q_vector;
 1211	} else {
 1212		memset(q_vector, 0, size);
 1213	}
 1214	if (!q_vector)
 1215		return -ENOMEM;
 1216
 1217	/* initialize NAPI */
 1218	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
 
 1219
 1220	/* tie q_vector and adapter together */
 1221	adapter->q_vector[v_idx] = q_vector;
 1222	q_vector->adapter = adapter;
 1223
 1224	/* initialize work limits */
 1225	q_vector->tx.work_limit = adapter->tx_work_limit;
 1226
 1227	/* initialize ITR configuration */
 1228	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
 1229	q_vector->itr_val = IGB_START_ITR;
 1230
 1231	/* initialize pointer to rings */
 1232	ring = q_vector->ring;
 1233
 1234	/* intialize ITR */
 1235	if (rxr_count) {
 1236		/* rx or rx/tx vector */
 1237		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
 1238			q_vector->itr_val = adapter->rx_itr_setting;
 1239	} else {
 1240		/* tx only vector */
 1241		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
 1242			q_vector->itr_val = adapter->tx_itr_setting;
 1243	}
 1244
 1245	if (txr_count) {
 1246		/* assign generic ring traits */
 1247		ring->dev = &adapter->pdev->dev;
 1248		ring->netdev = adapter->netdev;
 1249
 1250		/* configure backlink on ring */
 1251		ring->q_vector = q_vector;
 1252
 1253		/* update q_vector Tx values */
 1254		igb_add_ring(ring, &q_vector->tx);
 1255
 1256		/* For 82575, context index must be unique per ring. */
 1257		if (adapter->hw.mac.type == e1000_82575)
 1258			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
 1259
 1260		/* apply Tx specific ring traits */
 1261		ring->count = adapter->tx_ring_count;
 1262		ring->queue_index = txr_idx;
 1263
 1264		ring->cbs_enable = false;
 1265		ring->idleslope = 0;
 1266		ring->sendslope = 0;
 1267		ring->hicredit = 0;
 1268		ring->locredit = 0;
 1269
 1270		u64_stats_init(&ring->tx_syncp);
 1271		u64_stats_init(&ring->tx_syncp2);
 1272
 1273		/* assign ring to adapter */
 1274		adapter->tx_ring[txr_idx] = ring;
 1275
 1276		/* push pointer to next ring */
 1277		ring++;
 1278	}
 1279
 1280	if (rxr_count) {
 1281		/* assign generic ring traits */
 1282		ring->dev = &adapter->pdev->dev;
 1283		ring->netdev = adapter->netdev;
 1284
 1285		/* configure backlink on ring */
 1286		ring->q_vector = q_vector;
 1287
 1288		/* update q_vector Rx values */
 1289		igb_add_ring(ring, &q_vector->rx);
 1290
 1291		/* set flag indicating ring supports SCTP checksum offload */
 1292		if (adapter->hw.mac.type >= e1000_82576)
 1293			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
 1294
 1295		/* On i350, i354, i210, and i211, loopback VLAN packets
 1296		 * have the tag byte-swapped.
 1297		 */
 1298		if (adapter->hw.mac.type >= e1000_i350)
 1299			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
 1300
 1301		/* apply Rx specific ring traits */
 1302		ring->count = adapter->rx_ring_count;
 1303		ring->queue_index = rxr_idx;
 1304
 1305		u64_stats_init(&ring->rx_syncp);
 1306
 1307		/* assign ring to adapter */
 1308		adapter->rx_ring[rxr_idx] = ring;
 1309	}
 1310
 1311	return 0;
 1312}
 1313
 1314
 1315/**
 1316 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 1317 *  @adapter: board private structure to initialize
 1318 *
 1319 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 1320 *  return -ENOMEM.
 1321 **/
 1322static int igb_alloc_q_vectors(struct igb_adapter *adapter)
 1323{
 1324	int q_vectors = adapter->num_q_vectors;
 1325	int rxr_remaining = adapter->num_rx_queues;
 1326	int txr_remaining = adapter->num_tx_queues;
 1327	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 1328	int err;
 1329
 1330	if (q_vectors >= (rxr_remaining + txr_remaining)) {
 1331		for (; rxr_remaining; v_idx++) {
 1332			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1333						 0, 0, 1, rxr_idx);
 1334
 1335			if (err)
 1336				goto err_out;
 1337
 1338			/* update counts and index */
 1339			rxr_remaining--;
 1340			rxr_idx++;
 1341		}
 1342	}
 1343
 1344	for (; v_idx < q_vectors; v_idx++) {
 1345		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 1346		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 1347
 1348		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1349					 tqpv, txr_idx, rqpv, rxr_idx);
 1350
 1351		if (err)
 1352			goto err_out;
 1353
 1354		/* update counts and index */
 1355		rxr_remaining -= rqpv;
 1356		txr_remaining -= tqpv;
 1357		rxr_idx++;
 1358		txr_idx++;
 1359	}
 1360
 1361	return 0;
 1362
 1363err_out:
 1364	adapter->num_tx_queues = 0;
 1365	adapter->num_rx_queues = 0;
 1366	adapter->num_q_vectors = 0;
 1367
 1368	while (v_idx--)
 1369		igb_free_q_vector(adapter, v_idx);
 1370
 1371	return -ENOMEM;
 1372}
 1373
 1374/**
 1375 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 1376 *  @adapter: board private structure to initialize
 1377 *  @msix: boolean value of MSIX capability
 1378 *
 1379 *  This function initializes the interrupts and allocates all of the queues.
 1380 **/
 1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
 1382{
 1383	struct pci_dev *pdev = adapter->pdev;
 1384	int err;
 1385
 1386	igb_set_interrupt_capability(adapter, msix);
 1387
 1388	err = igb_alloc_q_vectors(adapter);
 1389	if (err) {
 1390		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
 1391		goto err_alloc_q_vectors;
 1392	}
 1393
 1394	igb_cache_ring_register(adapter);
 1395
 1396	return 0;
 1397
 1398err_alloc_q_vectors:
 1399	igb_reset_interrupt_capability(adapter);
 1400	return err;
 1401}
 1402
 1403/**
 1404 *  igb_request_irq - initialize interrupts
 1405 *  @adapter: board private structure to initialize
 1406 *
 1407 *  Attempts to configure interrupts using the best available
 1408 *  capabilities of the hardware and kernel.
 1409 **/
 1410static int igb_request_irq(struct igb_adapter *adapter)
 1411{
 1412	struct net_device *netdev = adapter->netdev;
 1413	struct pci_dev *pdev = adapter->pdev;
 1414	int err = 0;
 1415
 1416	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1417		err = igb_request_msix(adapter);
 1418		if (!err)
 1419			goto request_done;
 1420		/* fall back to MSI */
 1421		igb_free_all_tx_resources(adapter);
 1422		igb_free_all_rx_resources(adapter);
 1423
 1424		igb_clear_interrupt_scheme(adapter);
 1425		err = igb_init_interrupt_scheme(adapter, false);
 1426		if (err)
 1427			goto request_done;
 1428
 1429		igb_setup_all_tx_resources(adapter);
 1430		igb_setup_all_rx_resources(adapter);
 1431		igb_configure(adapter);
 1432	}
 1433
 1434	igb_assign_vector(adapter->q_vector[0], 0);
 1435
 1436	if (adapter->flags & IGB_FLAG_HAS_MSI) {
 1437		err = request_irq(pdev->irq, igb_intr_msi, 0,
 1438				  netdev->name, adapter);
 1439		if (!err)
 1440			goto request_done;
 1441
 1442		/* fall back to legacy interrupts */
 1443		igb_reset_interrupt_capability(adapter);
 1444		adapter->flags &= ~IGB_FLAG_HAS_MSI;
 1445	}
 1446
 1447	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
 1448			  netdev->name, adapter);
 1449
 1450	if (err)
 1451		dev_err(&pdev->dev, "Error %d getting interrupt\n",
 1452			err);
 1453
 1454request_done:
 1455	return err;
 1456}
 1457
 1458static void igb_free_irq(struct igb_adapter *adapter)
 1459{
 1460	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1461		int vector = 0, i;
 1462
 1463		free_irq(adapter->msix_entries[vector++].vector, adapter);
 1464
 1465		for (i = 0; i < adapter->num_q_vectors; i++)
 1466			free_irq(adapter->msix_entries[vector++].vector,
 1467				 adapter->q_vector[i]);
 1468	} else {
 1469		free_irq(adapter->pdev->irq, adapter);
 1470	}
 1471}
 1472
 1473/**
 1474 *  igb_irq_disable - Mask off interrupt generation on the NIC
 1475 *  @adapter: board private structure
 1476 **/
 1477static void igb_irq_disable(struct igb_adapter *adapter)
 1478{
 1479	struct e1000_hw *hw = &adapter->hw;
 1480
 1481	/* we need to be careful when disabling interrupts.  The VFs are also
 1482	 * mapped into these registers and so clearing the bits can cause
 1483	 * issues on the VF drivers so we only need to clear what we set
 1484	 */
 1485	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1486		u32 regval = rd32(E1000_EIAM);
 1487
 1488		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
 1489		wr32(E1000_EIMC, adapter->eims_enable_mask);
 1490		regval = rd32(E1000_EIAC);
 1491		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
 1492	}
 1493
 1494	wr32(E1000_IAM, 0);
 1495	wr32(E1000_IMC, ~0);
 1496	wrfl();
 1497	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1498		int i;
 1499
 1500		for (i = 0; i < adapter->num_q_vectors; i++)
 1501			synchronize_irq(adapter->msix_entries[i].vector);
 1502	} else {
 1503		synchronize_irq(adapter->pdev->irq);
 1504	}
 1505}
 1506
 1507/**
 1508 *  igb_irq_enable - Enable default interrupt generation settings
 1509 *  @adapter: board private structure
 1510 **/
 1511static void igb_irq_enable(struct igb_adapter *adapter)
 1512{
 1513	struct e1000_hw *hw = &adapter->hw;
 1514
 1515	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1516		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
 1517		u32 regval = rd32(E1000_EIAC);
 1518
 1519		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
 1520		regval = rd32(E1000_EIAM);
 1521		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
 1522		wr32(E1000_EIMS, adapter->eims_enable_mask);
 1523		if (adapter->vfs_allocated_count) {
 1524			wr32(E1000_MBVFIMR, 0xFF);
 1525			ims |= E1000_IMS_VMMB;
 1526		}
 1527		wr32(E1000_IMS, ims);
 1528	} else {
 1529		wr32(E1000_IMS, IMS_ENABLE_MASK |
 1530				E1000_IMS_DRSTA);
 1531		wr32(E1000_IAM, IMS_ENABLE_MASK |
 1532				E1000_IMS_DRSTA);
 1533	}
 1534}
 1535
 1536static void igb_update_mng_vlan(struct igb_adapter *adapter)
 1537{
 1538	struct e1000_hw *hw = &adapter->hw;
 1539	u16 pf_id = adapter->vfs_allocated_count;
 1540	u16 vid = adapter->hw.mng_cookie.vlan_id;
 1541	u16 old_vid = adapter->mng_vlan_id;
 1542
 1543	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
 1544		/* add VID to filter table */
 1545		igb_vfta_set(hw, vid, pf_id, true, true);
 1546		adapter->mng_vlan_id = vid;
 1547	} else {
 1548		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
 1549	}
 1550
 1551	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
 1552	    (vid != old_vid) &&
 1553	    !test_bit(old_vid, adapter->active_vlans)) {
 1554		/* remove VID from filter table */
 1555		igb_vfta_set(hw, vid, pf_id, false, true);
 1556	}
 1557}
 1558
 1559/**
 1560 *  igb_release_hw_control - release control of the h/w to f/w
 1561 *  @adapter: address of board private structure
 1562 *
 1563 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 1564 *  For ASF and Pass Through versions of f/w this means that the
 1565 *  driver is no longer loaded.
 1566 **/
 1567static void igb_release_hw_control(struct igb_adapter *adapter)
 1568{
 1569	struct e1000_hw *hw = &adapter->hw;
 1570	u32 ctrl_ext;
 1571
 1572	/* Let firmware take over control of h/w */
 1573	ctrl_ext = rd32(E1000_CTRL_EXT);
 1574	wr32(E1000_CTRL_EXT,
 1575			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
 1576}
 1577
 1578/**
 1579 *  igb_get_hw_control - get control of the h/w from f/w
 1580 *  @adapter: address of board private structure
 1581 *
 1582 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 1583 *  For ASF and Pass Through versions of f/w this means that
 1584 *  the driver is loaded.
 1585 **/
 1586static void igb_get_hw_control(struct igb_adapter *adapter)
 1587{
 1588	struct e1000_hw *hw = &adapter->hw;
 1589	u32 ctrl_ext;
 1590
 1591	/* Let firmware know the driver has taken over */
 1592	ctrl_ext = rd32(E1000_CTRL_EXT);
 1593	wr32(E1000_CTRL_EXT,
 1594			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
 1595}
 1596
 1597static void enable_fqtss(struct igb_adapter *adapter, bool enable)
 1598{
 1599	struct net_device *netdev = adapter->netdev;
 1600	struct e1000_hw *hw = &adapter->hw;
 1601
 1602	WARN_ON(hw->mac.type != e1000_i210);
 1603
 1604	if (enable)
 1605		adapter->flags |= IGB_FLAG_FQTSS;
 1606	else
 1607		adapter->flags &= ~IGB_FLAG_FQTSS;
 1608
 1609	if (netif_running(netdev))
 1610		schedule_work(&adapter->reset_task);
 1611}
 1612
 1613static bool is_fqtss_enabled(struct igb_adapter *adapter)
 1614{
 1615	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
 1616}
 1617
 1618static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
 1619				   enum tx_queue_prio prio)
 1620{
 1621	u32 val;
 1622
 1623	WARN_ON(hw->mac.type != e1000_i210);
 1624	WARN_ON(queue < 0 || queue > 4);
 1625
 1626	val = rd32(E1000_I210_TXDCTL(queue));
 1627
 1628	if (prio == TX_QUEUE_PRIO_HIGH)
 1629		val |= E1000_TXDCTL_PRIORITY;
 1630	else
 1631		val &= ~E1000_TXDCTL_PRIORITY;
 1632
 1633	wr32(E1000_I210_TXDCTL(queue), val);
 1634}
 1635
 1636static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
 1637{
 1638	u32 val;
 1639
 1640	WARN_ON(hw->mac.type != e1000_i210);
 1641	WARN_ON(queue < 0 || queue > 1);
 1642
 1643	val = rd32(E1000_I210_TQAVCC(queue));
 1644
 1645	if (mode == QUEUE_MODE_STREAM_RESERVATION)
 1646		val |= E1000_TQAVCC_QUEUEMODE;
 1647	else
 1648		val &= ~E1000_TQAVCC_QUEUEMODE;
 1649
 1650	wr32(E1000_I210_TQAVCC(queue), val);
 1651}
 1652
 1653static bool is_any_cbs_enabled(struct igb_adapter *adapter)
 1654{
 1655	int i;
 1656
 1657	for (i = 0; i < adapter->num_tx_queues; i++) {
 1658		if (adapter->tx_ring[i]->cbs_enable)
 1659			return true;
 1660	}
 1661
 1662	return false;
 1663}
 1664
 1665static bool is_any_txtime_enabled(struct igb_adapter *adapter)
 1666{
 1667	int i;
 1668
 1669	for (i = 0; i < adapter->num_tx_queues; i++) {
 1670		if (adapter->tx_ring[i]->launchtime_enable)
 1671			return true;
 1672	}
 1673
 1674	return false;
 1675}
 1676
 1677/**
 1678 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
 1679 *  @adapter: pointer to adapter struct
 1680 *  @queue: queue number
 1681 *
 1682 *  Configure CBS and Launchtime for a given hardware queue.
 1683 *  Parameters are retrieved from the correct Tx ring, so
 1684 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
 1685 *  for setting those correctly prior to this function being called.
 1686 **/
 1687static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
 1688{
 
 1689	struct net_device *netdev = adapter->netdev;
 1690	struct e1000_hw *hw = &adapter->hw;
 1691	struct igb_ring *ring;
 1692	u32 tqavcc, tqavctrl;
 1693	u16 value;
 1694
 1695	WARN_ON(hw->mac.type != e1000_i210);
 1696	WARN_ON(queue < 0 || queue > 1);
 1697	ring = adapter->tx_ring[queue];
 1698
 1699	/* If any of the Qav features is enabled, configure queues as SR and
 1700	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
 1701	 * as SP.
 1702	 */
 1703	if (ring->cbs_enable || ring->launchtime_enable) {
 1704		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
 1705		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
 1706	} else {
 1707		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
 1708		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
 1709	}
 1710
 1711	/* If CBS is enabled, set DataTranARB and config its parameters. */
 1712	if (ring->cbs_enable || queue == 0) {
 1713		/* i210 does not allow the queue 0 to be in the Strict
 1714		 * Priority mode while the Qav mode is enabled, so,
 1715		 * instead of disabling strict priority mode, we give
 1716		 * queue 0 the maximum of credits possible.
 1717		 *
 1718		 * See section 8.12.19 of the i210 datasheet, "Note:
 1719		 * Queue0 QueueMode must be set to 1b when
 1720		 * TransmitMode is set to Qav."
 1721		 */
 1722		if (queue == 0 && !ring->cbs_enable) {
 1723			/* max "linkspeed" idleslope in kbps */
 1724			ring->idleslope = 1000000;
 1725			ring->hicredit = ETH_FRAME_LEN;
 1726		}
 1727
 1728		/* Always set data transfer arbitration to credit-based
 1729		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
 1730		 * the queues.
 1731		 */
 1732		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1733		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
 1734		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1735
 1736		/* According to i210 datasheet section 7.2.7.7, we should set
 1737		 * the 'idleSlope' field from TQAVCC register following the
 1738		 * equation:
 1739		 *
 1740		 * For 100 Mbps link speed:
 1741		 *
 1742		 *     value = BW * 0x7735 * 0.2                          (E1)
 1743		 *
 1744		 * For 1000Mbps link speed:
 1745		 *
 1746		 *     value = BW * 0x7735 * 2                            (E2)
 1747		 *
 1748		 * E1 and E2 can be merged into one equation as shown below.
 1749		 * Note that 'link-speed' is in Mbps.
 1750		 *
 1751		 *     value = BW * 0x7735 * 2 * link-speed
 1752		 *                           --------------               (E3)
 1753		 *                                1000
 1754		 *
 1755		 * 'BW' is the percentage bandwidth out of full link speed
 1756		 * which can be found with the following equation. Note that
 1757		 * idleSlope here is the parameter from this function which
 1758		 * is in kbps.
 1759		 *
 1760		 *     BW =     idleSlope
 1761		 *          -----------------                             (E4)
 1762		 *          link-speed * 1000
 1763		 *
 1764		 * That said, we can come up with a generic equation to
 1765		 * calculate the value we should set it TQAVCC register by
 1766		 * replacing 'BW' in E3 by E4. The resulting equation is:
 1767		 *
 1768		 * value =     idleSlope     * 0x7735 * 2 * link-speed
 1769		 *         -----------------            --------------    (E5)
 1770		 *         link-speed * 1000                 1000
 1771		 *
 1772		 * 'link-speed' is present in both sides of the fraction so
 1773		 * it is canceled out. The final equation is the following:
 1774		 *
 1775		 *     value = idleSlope * 61034
 1776		 *             -----------------                          (E6)
 1777		 *                  1000000
 1778		 *
 1779		 * NOTE: For i210, given the above, we can see that idleslope
 1780		 *       is represented in 16.38431 kbps units by the value at
 1781		 *       the TQAVCC register (1Gbps / 61034), which reduces
 1782		 *       the granularity for idleslope increments.
 1783		 *       For instance, if you want to configure a 2576kbps
 1784		 *       idleslope, the value to be written on the register
 1785		 *       would have to be 157.23. If rounded down, you end
 1786		 *       up with less bandwidth available than originally
 1787		 *       required (~2572 kbps). If rounded up, you end up
 1788		 *       with a higher bandwidth (~2589 kbps). Below the
 1789		 *       approach we take is to always round up the
 1790		 *       calculated value, so the resulting bandwidth might
 1791		 *       be slightly higher for some configurations.
 1792		 */
 1793		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
 1794
 1795		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1796		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1797		tqavcc |= value;
 1798		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1799
 1800		wr32(E1000_I210_TQAVHC(queue),
 1801		     0x80000000 + ring->hicredit * 0x7735);
 1802	} else {
 1803
 1804		/* Set idleSlope to zero. */
 1805		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1806		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1807		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1808
 1809		/* Set hiCredit to zero. */
 1810		wr32(E1000_I210_TQAVHC(queue), 0);
 1811
 1812		/* If CBS is not enabled for any queues anymore, then return to
 1813		 * the default state of Data Transmission Arbitration on
 1814		 * TQAVCTRL.
 1815		 */
 1816		if (!is_any_cbs_enabled(adapter)) {
 1817			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1818			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
 1819			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1820		}
 1821	}
 1822
 1823	/* If LaunchTime is enabled, set DataTranTIM. */
 1824	if (ring->launchtime_enable) {
 1825		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
 1826		 * for any of the SR queues, and configure fetchtime delta.
 1827		 * XXX NOTE:
 1828		 *     - LaunchTime will be enabled for all SR queues.
 1829		 *     - A fixed offset can be added relative to the launch
 1830		 *       time of all packets if configured at reg LAUNCH_OS0.
 1831		 *       We are keeping it as 0 for now (default value).
 1832		 */
 1833		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1834		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
 1835		       E1000_TQAVCTRL_FETCHTIME_DELTA;
 1836		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1837	} else {
 1838		/* If Launchtime is not enabled for any SR queues anymore,
 1839		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
 1840		 * effectively disabling Launchtime.
 1841		 */
 1842		if (!is_any_txtime_enabled(adapter)) {
 1843			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1844			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
 1845			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
 1846			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1847		}
 1848	}
 1849
 1850	/* XXX: In i210 controller the sendSlope and loCredit parameters from
 1851	 * CBS are not configurable by software so we don't do any 'controller
 1852	 * configuration' in respect to these parameters.
 1853	 */
 1854
 1855	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
 1856		   ring->cbs_enable ? "enabled" : "disabled",
 1857		   ring->launchtime_enable ? "enabled" : "disabled",
 1858		   queue,
 1859		   ring->idleslope, ring->sendslope,
 1860		   ring->hicredit, ring->locredit);
 1861}
 1862
 1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
 1864				  bool enable)
 1865{
 1866	struct igb_ring *ring;
 1867
 1868	if (queue < 0 || queue > adapter->num_tx_queues)
 1869		return -EINVAL;
 1870
 1871	ring = adapter->tx_ring[queue];
 1872	ring->launchtime_enable = enable;
 1873
 1874	return 0;
 1875}
 1876
 1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
 1878			       bool enable, int idleslope, int sendslope,
 1879			       int hicredit, int locredit)
 1880{
 1881	struct igb_ring *ring;
 1882
 1883	if (queue < 0 || queue > adapter->num_tx_queues)
 1884		return -EINVAL;
 1885
 1886	ring = adapter->tx_ring[queue];
 1887
 1888	ring->cbs_enable = enable;
 1889	ring->idleslope = idleslope;
 1890	ring->sendslope = sendslope;
 1891	ring->hicredit = hicredit;
 1892	ring->locredit = locredit;
 1893
 1894	return 0;
 1895}
 1896
 1897/**
 1898 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
 1899 *  @adapter: pointer to adapter struct
 1900 *
 1901 *  Configure TQAVCTRL register switching the controller's Tx mode
 1902 *  if FQTSS mode is enabled or disabled. Additionally, will issue
 1903 *  a call to igb_config_tx_modes() per queue so any previously saved
 1904 *  Tx parameters are applied.
 1905 **/
 1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
 1907{
 1908	struct net_device *netdev = adapter->netdev;
 1909	struct e1000_hw *hw = &adapter->hw;
 1910	u32 val;
 1911
 1912	/* Only i210 controller supports changing the transmission mode. */
 1913	if (hw->mac.type != e1000_i210)
 1914		return;
 1915
 1916	if (is_fqtss_enabled(adapter)) {
 1917		int i, max_queue;
 1918
 1919		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
 1920		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
 1921		 * so SP queues wait for SR ones.
 1922		 */
 1923		val = rd32(E1000_I210_TQAVCTRL);
 1924		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
 1925		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
 1926		wr32(E1000_I210_TQAVCTRL, val);
 1927
 1928		/* Configure Tx and Rx packet buffers sizes as described in
 1929		 * i210 datasheet section 7.2.7.7.
 1930		 */
 1931		val = rd32(E1000_TXPBS);
 1932		val &= ~I210_TXPBSIZE_MASK;
 1933		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
 1934			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
 1935		wr32(E1000_TXPBS, val);
 1936
 1937		val = rd32(E1000_RXPBS);
 1938		val &= ~I210_RXPBSIZE_MASK;
 1939		val |= I210_RXPBSIZE_PB_30KB;
 1940		wr32(E1000_RXPBS, val);
 1941
 1942		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
 1943		 * register should not exceed the buffer size programmed in
 1944		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
 1945		 * so according to the datasheet we should set MAX_TPKT_SIZE to
 1946		 * 4kB / 64.
 1947		 *
 1948		 * However, when we do so, no frame from queue 2 and 3 are
 1949		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
 1950		 * or _equal_ to the buffer size programmed in TXPBS. For this
 1951		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
 1952		 */
 1953		val = (4096 - 1) / 64;
 1954		wr32(E1000_I210_DTXMXPKTSZ, val);
 1955
 1956		/* Since FQTSS mode is enabled, apply any CBS configuration
 1957		 * previously set. If no previous CBS configuration has been
 1958		 * done, then the initial configuration is applied, which means
 1959		 * CBS is disabled.
 1960		 */
 1961		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
 1962			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
 1963
 1964		for (i = 0; i < max_queue; i++) {
 1965			igb_config_tx_modes(adapter, i);
 1966		}
 1967	} else {
 1968		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 1969		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 1970		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
 1971
 1972		val = rd32(E1000_I210_TQAVCTRL);
 1973		/* According to Section 8.12.21, the other flags we've set when
 1974		 * enabling FQTSS are not relevant when disabling FQTSS so we
 1975		 * don't set they here.
 1976		 */
 1977		val &= ~E1000_TQAVCTRL_XMIT_MODE;
 1978		wr32(E1000_I210_TQAVCTRL, val);
 1979	}
 1980
 1981	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
 1982		   "enabled" : "disabled");
 1983}
 1984
 1985/**
 1986 *  igb_configure - configure the hardware for RX and TX
 1987 *  @adapter: private board structure
 1988 **/
 1989static void igb_configure(struct igb_adapter *adapter)
 1990{
 1991	struct net_device *netdev = adapter->netdev;
 1992	int i;
 1993
 1994	igb_get_hw_control(adapter);
 1995	igb_set_rx_mode(netdev);
 1996	igb_setup_tx_mode(adapter);
 1997
 1998	igb_restore_vlan(adapter);
 1999
 2000	igb_setup_tctl(adapter);
 2001	igb_setup_mrqc(adapter);
 2002	igb_setup_rctl(adapter);
 2003
 2004	igb_nfc_filter_restore(adapter);
 2005	igb_configure_tx(adapter);
 2006	igb_configure_rx(adapter);
 2007
 2008	igb_rx_fifo_flush_82575(&adapter->hw);
 2009
 2010	/* call igb_desc_unused which always leaves
 2011	 * at least 1 descriptor unused to make sure
 2012	 * next_to_use != next_to_clean
 2013	 */
 2014	for (i = 0; i < adapter->num_rx_queues; i++) {
 2015		struct igb_ring *ring = adapter->rx_ring[i];
 2016		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
 2017	}
 2018}
 2019
 2020/**
 2021 *  igb_power_up_link - Power up the phy/serdes link
 2022 *  @adapter: address of board private structure
 2023 **/
 2024void igb_power_up_link(struct igb_adapter *adapter)
 2025{
 2026	igb_reset_phy(&adapter->hw);
 2027
 2028	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2029		igb_power_up_phy_copper(&adapter->hw);
 2030	else
 2031		igb_power_up_serdes_link_82575(&adapter->hw);
 2032
 2033	igb_setup_link(&adapter->hw);
 2034}
 2035
 2036/**
 2037 *  igb_power_down_link - Power down the phy/serdes link
 2038 *  @adapter: address of board private structure
 2039 */
 2040static void igb_power_down_link(struct igb_adapter *adapter)
 2041{
 2042	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2043		igb_power_down_phy_copper_82575(&adapter->hw);
 2044	else
 2045		igb_shutdown_serdes_link_82575(&adapter->hw);
 2046}
 2047
 2048/**
 2049 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
 2050 * @adapter: address of the board private structure
 2051 **/
 2052static void igb_check_swap_media(struct igb_adapter *adapter)
 2053{
 2054	struct e1000_hw *hw = &adapter->hw;
 2055	u32 ctrl_ext, connsw;
 2056	bool swap_now = false;
 2057
 2058	ctrl_ext = rd32(E1000_CTRL_EXT);
 2059	connsw = rd32(E1000_CONNSW);
 2060
 2061	/* need to live swap if current media is copper and we have fiber/serdes
 2062	 * to go to.
 2063	 */
 2064
 2065	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2066	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
 2067		swap_now = true;
 2068	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
 2069		   !(connsw & E1000_CONNSW_SERDESD)) {
 2070		/* copper signal takes time to appear */
 2071		if (adapter->copper_tries < 4) {
 2072			adapter->copper_tries++;
 2073			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
 2074			wr32(E1000_CONNSW, connsw);
 2075			return;
 2076		} else {
 2077			adapter->copper_tries = 0;
 2078			if ((connsw & E1000_CONNSW_PHYSD) &&
 2079			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
 2080				swap_now = true;
 2081				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
 2082				wr32(E1000_CONNSW, connsw);
 2083			}
 2084		}
 2085	}
 2086
 2087	if (!swap_now)
 2088		return;
 2089
 2090	switch (hw->phy.media_type) {
 2091	case e1000_media_type_copper:
 2092		netdev_info(adapter->netdev,
 2093			"MAS: changing media to fiber/serdes\n");
 2094		ctrl_ext |=
 2095			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2096		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2097		adapter->copper_tries = 0;
 2098		break;
 2099	case e1000_media_type_internal_serdes:
 2100	case e1000_media_type_fiber:
 2101		netdev_info(adapter->netdev,
 2102			"MAS: changing media to copper\n");
 2103		ctrl_ext &=
 2104			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2105		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2106		break;
 2107	default:
 2108		/* shouldn't get here during regular operation */
 2109		netdev_err(adapter->netdev,
 2110			"AMS: Invalid media type found, returning\n");
 2111		break;
 2112	}
 2113	wr32(E1000_CTRL_EXT, ctrl_ext);
 2114}
 2115
 2116/**
 2117 *  igb_up - Open the interface and prepare it to handle traffic
 2118 *  @adapter: board private structure
 2119 **/
 2120int igb_up(struct igb_adapter *adapter)
 2121{
 2122	struct e1000_hw *hw = &adapter->hw;
 2123	int i;
 2124
 2125	/* hardware has been reset, we need to reload some things */
 2126	igb_configure(adapter);
 2127
 2128	clear_bit(__IGB_DOWN, &adapter->state);
 2129
 2130	for (i = 0; i < adapter->num_q_vectors; i++)
 2131		napi_enable(&(adapter->q_vector[i]->napi));
 2132
 2133	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 2134		igb_configure_msix(adapter);
 2135	else
 2136		igb_assign_vector(adapter->q_vector[0], 0);
 2137
 2138	/* Clear any pending interrupts. */
 2139	rd32(E1000_TSICR);
 2140	rd32(E1000_ICR);
 2141	igb_irq_enable(adapter);
 2142
 2143	/* notify VFs that reset has been completed */
 2144	if (adapter->vfs_allocated_count) {
 2145		u32 reg_data = rd32(E1000_CTRL_EXT);
 2146
 2147		reg_data |= E1000_CTRL_EXT_PFRSTD;
 2148		wr32(E1000_CTRL_EXT, reg_data);
 2149	}
 2150
 2151	netif_tx_start_all_queues(adapter->netdev);
 2152
 2153	/* start the watchdog. */
 2154	hw->mac.get_link_status = 1;
 2155	schedule_work(&adapter->watchdog_task);
 2156
 2157	if ((adapter->flags & IGB_FLAG_EEE) &&
 2158	    (!hw->dev_spec._82575.eee_disable))
 2159		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
 2160
 2161	return 0;
 2162}
 2163
 2164void igb_down(struct igb_adapter *adapter)
 2165{
 2166	struct net_device *netdev = adapter->netdev;
 2167	struct e1000_hw *hw = &adapter->hw;
 2168	u32 tctl, rctl;
 2169	int i;
 2170
 2171	/* signal that we're down so the interrupt handler does not
 2172	 * reschedule our watchdog timer
 2173	 */
 2174	set_bit(__IGB_DOWN, &adapter->state);
 2175
 2176	/* disable receives in the hardware */
 2177	rctl = rd32(E1000_RCTL);
 2178	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
 2179	/* flush and sleep below */
 2180
 2181	igb_nfc_filter_exit(adapter);
 2182
 2183	netif_carrier_off(netdev);
 2184	netif_tx_stop_all_queues(netdev);
 2185
 2186	/* disable transmits in the hardware */
 2187	tctl = rd32(E1000_TCTL);
 2188	tctl &= ~E1000_TCTL_EN;
 2189	wr32(E1000_TCTL, tctl);
 2190	/* flush both disables and wait for them to finish */
 2191	wrfl();
 2192	usleep_range(10000, 11000);
 2193
 2194	igb_irq_disable(adapter);
 2195
 2196	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 2197
 2198	for (i = 0; i < adapter->num_q_vectors; i++) {
 2199		if (adapter->q_vector[i]) {
 2200			napi_synchronize(&adapter->q_vector[i]->napi);
 2201			napi_disable(&adapter->q_vector[i]->napi);
 2202		}
 2203	}
 2204
 2205	del_timer_sync(&adapter->watchdog_timer);
 2206	del_timer_sync(&adapter->phy_info_timer);
 2207
 2208	/* record the stats before reset*/
 2209	spin_lock(&adapter->stats64_lock);
 2210	igb_update_stats(adapter);
 2211	spin_unlock(&adapter->stats64_lock);
 2212
 2213	adapter->link_speed = 0;
 2214	adapter->link_duplex = 0;
 2215
 2216	if (!pci_channel_offline(adapter->pdev))
 2217		igb_reset(adapter);
 2218
 2219	/* clear VLAN promisc flag so VFTA will be updated if necessary */
 2220	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 2221
 2222	igb_clean_all_tx_rings(adapter);
 2223	igb_clean_all_rx_rings(adapter);
 2224#ifdef CONFIG_IGB_DCA
 2225
 2226	/* since we reset the hardware DCA settings were cleared */
 2227	igb_setup_dca(adapter);
 2228#endif
 2229}
 2230
 2231void igb_reinit_locked(struct igb_adapter *adapter)
 2232{
 
 2233	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 2234		usleep_range(1000, 2000);
 2235	igb_down(adapter);
 2236	igb_up(adapter);
 2237	clear_bit(__IGB_RESETTING, &adapter->state);
 2238}
 2239
 2240/** igb_enable_mas - Media Autosense re-enable after swap
 2241 *
 2242 * @adapter: adapter struct
 2243 **/
 2244static void igb_enable_mas(struct igb_adapter *adapter)
 2245{
 2246	struct e1000_hw *hw = &adapter->hw;
 2247	u32 connsw = rd32(E1000_CONNSW);
 2248
 2249	/* configure for SerDes media detect */
 2250	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2251	    (!(connsw & E1000_CONNSW_SERDESD))) {
 2252		connsw |= E1000_CONNSW_ENRGSRC;
 2253		connsw |= E1000_CONNSW_AUTOSENSE_EN;
 2254		wr32(E1000_CONNSW, connsw);
 2255		wrfl();
 2256	}
 2257}
 2258
 2259#ifdef CONFIG_IGB_HWMON
 2260/**
 2261 *  igb_set_i2c_bb - Init I2C interface
 2262 *  @hw: pointer to hardware structure
 2263 **/
 2264static void igb_set_i2c_bb(struct e1000_hw *hw)
 2265{
 2266	u32 ctrl_ext;
 2267	s32 i2cctl;
 2268
 2269	ctrl_ext = rd32(E1000_CTRL_EXT);
 2270	ctrl_ext |= E1000_CTRL_I2C_ENA;
 2271	wr32(E1000_CTRL_EXT, ctrl_ext);
 2272	wrfl();
 2273
 2274	i2cctl = rd32(E1000_I2CPARAMS);
 2275	i2cctl |= E1000_I2CBB_EN
 2276		| E1000_I2C_CLK_OE_N
 2277		| E1000_I2C_DATA_OE_N;
 2278	wr32(E1000_I2CPARAMS, i2cctl);
 2279	wrfl();
 2280}
 2281#endif
 2282
 2283void igb_reset(struct igb_adapter *adapter)
 2284{
 2285	struct pci_dev *pdev = adapter->pdev;
 2286	struct e1000_hw *hw = &adapter->hw;
 2287	struct e1000_mac_info *mac = &hw->mac;
 2288	struct e1000_fc_info *fc = &hw->fc;
 2289	u32 pba, hwm;
 2290
 2291	/* Repartition Pba for greater than 9k mtu
 2292	 * To take effect CTRL.RST is required.
 2293	 */
 2294	switch (mac->type) {
 2295	case e1000_i350:
 2296	case e1000_i354:
 2297	case e1000_82580:
 2298		pba = rd32(E1000_RXPBS);
 2299		pba = igb_rxpbs_adjust_82580(pba);
 2300		break;
 2301	case e1000_82576:
 2302		pba = rd32(E1000_RXPBS);
 2303		pba &= E1000_RXPBS_SIZE_MASK_82576;
 2304		break;
 2305	case e1000_82575:
 2306	case e1000_i210:
 2307	case e1000_i211:
 2308	default:
 2309		pba = E1000_PBA_34K;
 2310		break;
 2311	}
 2312
 2313	if (mac->type == e1000_82575) {
 2314		u32 min_rx_space, min_tx_space, needed_tx_space;
 2315
 2316		/* write Rx PBA so that hardware can report correct Tx PBA */
 2317		wr32(E1000_PBA, pba);
 2318
 2319		/* To maintain wire speed transmits, the Tx FIFO should be
 2320		 * large enough to accommodate two full transmit packets,
 2321		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 2322		 * the Rx FIFO should be large enough to accommodate at least
 2323		 * one full receive packet and is similarly rounded up and
 2324		 * expressed in KB.
 2325		 */
 2326		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
 2327
 2328		/* The Tx FIFO also stores 16 bytes of information about the Tx
 2329		 * but don't include Ethernet FCS because hardware appends it.
 2330		 * We only need to round down to the nearest 512 byte block
 2331		 * count since the value we care about is 2 frames, not 1.
 2332		 */
 2333		min_tx_space = adapter->max_frame_size;
 2334		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
 2335		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
 2336
 2337		/* upper 16 bits has Tx packet buffer allocation size in KB */
 2338		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
 2339
 2340		/* If current Tx allocation is less than the min Tx FIFO size,
 2341		 * and the min Tx FIFO size is less than the current Rx FIFO
 2342		 * allocation, take space away from current Rx allocation.
 2343		 */
 2344		if (needed_tx_space < pba) {
 2345			pba -= needed_tx_space;
 2346
 2347			/* if short on Rx space, Rx wins and must trump Tx
 2348			 * adjustment
 2349			 */
 2350			if (pba < min_rx_space)
 2351				pba = min_rx_space;
 2352		}
 2353
 2354		/* adjust PBA for jumbo frames */
 2355		wr32(E1000_PBA, pba);
 2356	}
 2357
 2358	/* flow control settings
 2359	 * The high water mark must be low enough to fit one full frame
 2360	 * after transmitting the pause frame.  As such we must have enough
 2361	 * space to allow for us to complete our current transmit and then
 2362	 * receive the frame that is in progress from the link partner.
 2363	 * Set it to:
 2364	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
 2365	 */
 2366	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
 2367
 2368	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
 2369	fc->low_water = fc->high_water - 16;
 2370	fc->pause_time = 0xFFFF;
 2371	fc->send_xon = 1;
 2372	fc->current_mode = fc->requested_mode;
 2373
 2374	/* disable receive for all VFs and wait one second */
 2375	if (adapter->vfs_allocated_count) {
 2376		int i;
 2377
 2378		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
 2379			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
 2380
 2381		/* ping all the active vfs to let them know we are going down */
 2382		igb_ping_all_vfs(adapter);
 2383
 2384		/* disable transmits and receives */
 2385		wr32(E1000_VFRE, 0);
 2386		wr32(E1000_VFTE, 0);
 2387	}
 2388
 2389	/* Allow time for pending master requests to run */
 2390	hw->mac.ops.reset_hw(hw);
 2391	wr32(E1000_WUC, 0);
 2392
 2393	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 2394		/* need to resetup here after media swap */
 2395		adapter->ei.get_invariants(hw);
 2396		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
 2397	}
 2398	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
 2399	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 2400		igb_enable_mas(adapter);
 2401	}
 2402	if (hw->mac.ops.init_hw(hw))
 2403		dev_err(&pdev->dev, "Hardware Error\n");
 2404
 2405	/* RAR registers were cleared during init_hw, clear mac table */
 2406	igb_flush_mac_table(adapter);
 2407	__dev_uc_unsync(adapter->netdev, NULL);
 2408
 2409	/* Recover default RAR entry */
 2410	igb_set_default_mac_filter(adapter);
 2411
 2412	/* Flow control settings reset on hardware reset, so guarantee flow
 2413	 * control is off when forcing speed.
 2414	 */
 2415	if (!hw->mac.autoneg)
 2416		igb_force_mac_fc(hw);
 2417
 2418	igb_init_dmac(adapter, pba);
 2419#ifdef CONFIG_IGB_HWMON
 2420	/* Re-initialize the thermal sensor on i350 devices. */
 2421	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 2422		if (mac->type == e1000_i350 && hw->bus.func == 0) {
 2423			/* If present, re-initialize the external thermal sensor
 2424			 * interface.
 2425			 */
 2426			if (adapter->ets)
 2427				igb_set_i2c_bb(hw);
 2428			mac->ops.init_thermal_sensor_thresh(hw);
 2429		}
 2430	}
 2431#endif
 2432	/* Re-establish EEE setting */
 2433	if (hw->phy.media_type == e1000_media_type_copper) {
 2434		switch (mac->type) {
 2435		case e1000_i350:
 2436		case e1000_i210:
 2437		case e1000_i211:
 2438			igb_set_eee_i350(hw, true, true);
 2439			break;
 2440		case e1000_i354:
 2441			igb_set_eee_i354(hw, true, true);
 2442			break;
 2443		default:
 2444			break;
 2445		}
 2446	}
 2447	if (!netif_running(adapter->netdev))
 2448		igb_power_down_link(adapter);
 2449
 2450	igb_update_mng_vlan(adapter);
 2451
 2452	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 2453	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
 2454
 2455	/* Re-enable PTP, where applicable. */
 2456	if (adapter->ptp_flags & IGB_PTP_ENABLED)
 2457		igb_ptp_reset(adapter);
 2458
 2459	igb_get_phy_info(hw);
 2460}
 2461
 2462static netdev_features_t igb_fix_features(struct net_device *netdev,
 2463	netdev_features_t features)
 2464{
 2465	/* Since there is no support for separate Rx/Tx vlan accel
 2466	 * enable/disable make sure Tx flag is always in same state as Rx.
 2467	 */
 2468	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 2469		features |= NETIF_F_HW_VLAN_CTAG_TX;
 2470	else
 2471		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 2472
 2473	return features;
 2474}
 2475
 2476static int igb_set_features(struct net_device *netdev,
 2477	netdev_features_t features)
 2478{
 2479	netdev_features_t changed = netdev->features ^ features;
 2480	struct igb_adapter *adapter = netdev_priv(netdev);
 2481
 2482	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 2483		igb_vlan_mode(netdev, features);
 2484
 2485	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
 2486		return 0;
 2487
 2488	if (!(features & NETIF_F_NTUPLE)) {
 2489		struct hlist_node *node2;
 2490		struct igb_nfc_filter *rule;
 2491
 2492		spin_lock(&adapter->nfc_lock);
 2493		hlist_for_each_entry_safe(rule, node2,
 2494					  &adapter->nfc_filter_list, nfc_node) {
 2495			igb_erase_filter(adapter, rule);
 2496			hlist_del(&rule->nfc_node);
 2497			kfree(rule);
 2498		}
 2499		spin_unlock(&adapter->nfc_lock);
 2500		adapter->nfc_filter_count = 0;
 2501	}
 2502
 2503	netdev->features = features;
 2504
 2505	if (netif_running(netdev))
 2506		igb_reinit_locked(adapter);
 2507	else
 2508		igb_reset(adapter);
 2509
 2510	return 1;
 2511}
 2512
 2513static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
 2514			   struct net_device *dev,
 2515			   const unsigned char *addr, u16 vid,
 2516			   u16 flags,
 2517			   struct netlink_ext_ack *extack)
 2518{
 2519	/* guarantee we can provide a unique filter for the unicast address */
 2520	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
 2521		struct igb_adapter *adapter = netdev_priv(dev);
 2522		int vfn = adapter->vfs_allocated_count;
 2523
 2524		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
 2525			return -ENOMEM;
 2526	}
 2527
 2528	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
 2529}
 2530
 2531#define IGB_MAX_MAC_HDR_LEN	127
 2532#define IGB_MAX_NETWORK_HDR_LEN	511
 2533
 2534static netdev_features_t
 2535igb_features_check(struct sk_buff *skb, struct net_device *dev,
 2536		   netdev_features_t features)
 2537{
 2538	unsigned int network_hdr_len, mac_hdr_len;
 2539
 2540	/* Make certain the headers can be described by a context descriptor */
 2541	mac_hdr_len = skb_network_header(skb) - skb->data;
 2542	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
 2543		return features & ~(NETIF_F_HW_CSUM |
 2544				    NETIF_F_SCTP_CRC |
 2545				    NETIF_F_GSO_UDP_L4 |
 2546				    NETIF_F_HW_VLAN_CTAG_TX |
 2547				    NETIF_F_TSO |
 2548				    NETIF_F_TSO6);
 2549
 2550	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
 2551	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
 2552		return features & ~(NETIF_F_HW_CSUM |
 2553				    NETIF_F_SCTP_CRC |
 2554				    NETIF_F_GSO_UDP_L4 |
 2555				    NETIF_F_TSO |
 2556				    NETIF_F_TSO6);
 2557
 2558	/* We can only support IPV4 TSO in tunnels if we can mangle the
 2559	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
 2560	 */
 2561	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
 2562		features &= ~NETIF_F_TSO;
 2563
 2564	return features;
 2565}
 2566
 2567static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
 2568{
 2569	if (!is_fqtss_enabled(adapter)) {
 2570		enable_fqtss(adapter, true);
 2571		return;
 2572	}
 2573
 2574	igb_config_tx_modes(adapter, queue);
 2575
 2576	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
 2577		enable_fqtss(adapter, false);
 2578}
 2579
 2580static int igb_offload_cbs(struct igb_adapter *adapter,
 2581			   struct tc_cbs_qopt_offload *qopt)
 2582{
 2583	struct e1000_hw *hw = &adapter->hw;
 2584	int err;
 2585
 2586	/* CBS offloading is only supported by i210 controller. */
 2587	if (hw->mac.type != e1000_i210)
 2588		return -EOPNOTSUPP;
 2589
 2590	/* CBS offloading is only supported by queue 0 and queue 1. */
 2591	if (qopt->queue < 0 || qopt->queue > 1)
 2592		return -EINVAL;
 2593
 2594	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
 2595				  qopt->idleslope, qopt->sendslope,
 2596				  qopt->hicredit, qopt->locredit);
 2597	if (err)
 2598		return err;
 2599
 2600	igb_offload_apply(adapter, qopt->queue);
 2601
 2602	return 0;
 2603}
 2604
 2605#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
 2606#define VLAN_PRIO_FULL_MASK (0x07)
 2607
 2608static int igb_parse_cls_flower(struct igb_adapter *adapter,
 2609				struct flow_cls_offload *f,
 2610				int traffic_class,
 2611				struct igb_nfc_filter *input)
 2612{
 2613	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
 2614	struct flow_dissector *dissector = rule->match.dissector;
 2615	struct netlink_ext_ack *extack = f->common.extack;
 2616
 2617	if (dissector->used_keys &
 2618	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
 2619	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
 2620	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
 2621	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
 2622		NL_SET_ERR_MSG_MOD(extack,
 2623				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
 2624		return -EOPNOTSUPP;
 2625	}
 2626
 2627	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
 2628		struct flow_match_eth_addrs match;
 2629
 2630		flow_rule_match_eth_addrs(rule, &match);
 2631		if (!is_zero_ether_addr(match.mask->dst)) {
 2632			if (!is_broadcast_ether_addr(match.mask->dst)) {
 2633				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
 2634				return -EINVAL;
 2635			}
 2636
 2637			input->filter.match_flags |=
 2638				IGB_FILTER_FLAG_DST_MAC_ADDR;
 2639			ether_addr_copy(input->filter.dst_addr, match.key->dst);
 2640		}
 2641
 2642		if (!is_zero_ether_addr(match.mask->src)) {
 2643			if (!is_broadcast_ether_addr(match.mask->src)) {
 2644				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
 2645				return -EINVAL;
 2646			}
 2647
 2648			input->filter.match_flags |=
 2649				IGB_FILTER_FLAG_SRC_MAC_ADDR;
 2650			ether_addr_copy(input->filter.src_addr, match.key->src);
 2651		}
 2652	}
 2653
 2654	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
 2655		struct flow_match_basic match;
 2656
 2657		flow_rule_match_basic(rule, &match);
 2658		if (match.mask->n_proto) {
 2659			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
 2660				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
 2661				return -EINVAL;
 2662			}
 2663
 2664			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
 2665			input->filter.etype = match.key->n_proto;
 2666		}
 2667	}
 2668
 2669	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
 2670		struct flow_match_vlan match;
 2671
 2672		flow_rule_match_vlan(rule, &match);
 2673		if (match.mask->vlan_priority) {
 2674			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
 2675				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
 2676				return -EINVAL;
 2677			}
 2678
 2679			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
 2680			input->filter.vlan_tci =
 2681				(__force __be16)match.key->vlan_priority;
 2682		}
 2683	}
 2684
 2685	input->action = traffic_class;
 2686	input->cookie = f->cookie;
 2687
 2688	return 0;
 2689}
 2690
 2691static int igb_configure_clsflower(struct igb_adapter *adapter,
 2692				   struct flow_cls_offload *cls_flower)
 2693{
 2694	struct netlink_ext_ack *extack = cls_flower->common.extack;
 2695	struct igb_nfc_filter *filter, *f;
 2696	int err, tc;
 2697
 2698	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
 2699	if (tc < 0) {
 2700		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
 2701		return -EINVAL;
 2702	}
 2703
 2704	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
 2705	if (!filter)
 2706		return -ENOMEM;
 2707
 2708	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
 2709	if (err < 0)
 2710		goto err_parse;
 2711
 2712	spin_lock(&adapter->nfc_lock);
 2713
 2714	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
 2715		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2716			err = -EEXIST;
 2717			NL_SET_ERR_MSG_MOD(extack,
 2718					   "This filter is already set in ethtool");
 2719			goto err_locked;
 2720		}
 2721	}
 2722
 2723	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
 2724		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2725			err = -EEXIST;
 2726			NL_SET_ERR_MSG_MOD(extack,
 2727					   "This filter is already set in cls_flower");
 2728			goto err_locked;
 2729		}
 2730	}
 2731
 2732	err = igb_add_filter(adapter, filter);
 2733	if (err < 0) {
 2734		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
 2735		goto err_locked;
 2736	}
 2737
 2738	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
 2739
 2740	spin_unlock(&adapter->nfc_lock);
 2741
 2742	return 0;
 2743
 2744err_locked:
 2745	spin_unlock(&adapter->nfc_lock);
 2746
 2747err_parse:
 2748	kfree(filter);
 2749
 2750	return err;
 2751}
 2752
 2753static int igb_delete_clsflower(struct igb_adapter *adapter,
 2754				struct flow_cls_offload *cls_flower)
 2755{
 2756	struct igb_nfc_filter *filter;
 2757	int err;
 2758
 2759	spin_lock(&adapter->nfc_lock);
 2760
 2761	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
 2762		if (filter->cookie == cls_flower->cookie)
 2763			break;
 2764
 2765	if (!filter) {
 2766		err = -ENOENT;
 2767		goto out;
 2768	}
 2769
 2770	err = igb_erase_filter(adapter, filter);
 2771	if (err < 0)
 2772		goto out;
 2773
 2774	hlist_del(&filter->nfc_node);
 2775	kfree(filter);
 2776
 2777out:
 2778	spin_unlock(&adapter->nfc_lock);
 2779
 2780	return err;
 2781}
 2782
 2783static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
 2784				   struct flow_cls_offload *cls_flower)
 2785{
 2786	switch (cls_flower->command) {
 2787	case FLOW_CLS_REPLACE:
 2788		return igb_configure_clsflower(adapter, cls_flower);
 2789	case FLOW_CLS_DESTROY:
 2790		return igb_delete_clsflower(adapter, cls_flower);
 2791	case FLOW_CLS_STATS:
 2792		return -EOPNOTSUPP;
 2793	default:
 2794		return -EOPNOTSUPP;
 2795	}
 2796}
 2797
 2798static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 2799				 void *cb_priv)
 2800{
 2801	struct igb_adapter *adapter = cb_priv;
 2802
 2803	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
 2804		return -EOPNOTSUPP;
 2805
 2806	switch (type) {
 2807	case TC_SETUP_CLSFLOWER:
 2808		return igb_setup_tc_cls_flower(adapter, type_data);
 2809
 2810	default:
 2811		return -EOPNOTSUPP;
 2812	}
 2813}
 2814
 2815static int igb_offload_txtime(struct igb_adapter *adapter,
 2816			      struct tc_etf_qopt_offload *qopt)
 2817{
 2818	struct e1000_hw *hw = &adapter->hw;
 2819	int err;
 2820
 2821	/* Launchtime offloading is only supported by i210 controller. */
 2822	if (hw->mac.type != e1000_i210)
 2823		return -EOPNOTSUPP;
 2824
 2825	/* Launchtime offloading is only supported by queues 0 and 1. */
 2826	if (qopt->queue < 0 || qopt->queue > 1)
 2827		return -EINVAL;
 2828
 2829	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
 2830	if (err)
 2831		return err;
 2832
 2833	igb_offload_apply(adapter, qopt->queue);
 2834
 2835	return 0;
 2836}
 2837
 2838static LIST_HEAD(igb_block_cb_list);
 2839
 2840static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
 2841			void *type_data)
 2842{
 2843	struct igb_adapter *adapter = netdev_priv(dev);
 2844
 2845	switch (type) {
 2846	case TC_SETUP_QDISC_CBS:
 2847		return igb_offload_cbs(adapter, type_data);
 2848	case TC_SETUP_BLOCK:
 2849		return flow_block_cb_setup_simple(type_data,
 2850						  &igb_block_cb_list,
 2851						  igb_setup_tc_block_cb,
 2852						  adapter, adapter, true);
 2853
 2854	case TC_SETUP_QDISC_ETF:
 2855		return igb_offload_txtime(adapter, type_data);
 2856
 2857	default:
 2858		return -EOPNOTSUPP;
 2859	}
 2860}
 2861
 2862static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
 2863{
 2864	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
 2865	struct igb_adapter *adapter = netdev_priv(dev);
 2866	struct bpf_prog *prog = bpf->prog, *old_prog;
 2867	bool running = netif_running(dev);
 2868	bool need_reset;
 2869
 2870	/* verify igb ring attributes are sufficient for XDP */
 2871	for (i = 0; i < adapter->num_rx_queues; i++) {
 2872		struct igb_ring *ring = adapter->rx_ring[i];
 2873
 2874		if (frame_size > igb_rx_bufsz(ring)) {
 2875			NL_SET_ERR_MSG_MOD(bpf->extack,
 2876					   "The RX buffer size is too small for the frame size");
 2877			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
 2878				    igb_rx_bufsz(ring), frame_size);
 2879			return -EINVAL;
 2880		}
 2881	}
 2882
 2883	old_prog = xchg(&adapter->xdp_prog, prog);
 2884	need_reset = (!!prog != !!old_prog);
 2885
 2886	/* device is up and bpf is added/removed, must setup the RX queues */
 2887	if (need_reset && running) {
 2888		igb_close(dev);
 2889	} else {
 2890		for (i = 0; i < adapter->num_rx_queues; i++)
 2891			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
 2892			    adapter->xdp_prog);
 2893	}
 2894
 2895	if (old_prog)
 2896		bpf_prog_put(old_prog);
 2897
 2898	/* bpf is just replaced, RXQ and MTU are already setup */
 2899	if (!need_reset)
 2900		return 0;
 2901
 2902	if (running)
 2903		igb_open(dev);
 2904
 2905	return 0;
 2906}
 2907
 2908static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 2909{
 2910	switch (xdp->command) {
 2911	case XDP_SETUP_PROG:
 2912		return igb_xdp_setup(dev, xdp);
 2913	default:
 2914		return -EINVAL;
 2915	}
 2916}
 2917
 2918static void igb_xdp_ring_update_tail(struct igb_ring *ring)
 2919{
 2920	/* Force memory writes to complete before letting h/w know there
 2921	 * are new descriptors to fetch.
 2922	 */
 2923	wmb();
 2924	writel(ring->next_to_use, ring->tail);
 2925}
 2926
 2927static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
 2928{
 2929	unsigned int r_idx = smp_processor_id();
 2930
 2931	if (r_idx >= adapter->num_tx_queues)
 2932		r_idx = r_idx % adapter->num_tx_queues;
 2933
 2934	return adapter->tx_ring[r_idx];
 2935}
 2936
 2937static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
 2938{
 2939	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
 2940	int cpu = smp_processor_id();
 2941	struct igb_ring *tx_ring;
 2942	struct netdev_queue *nq;
 2943	u32 ret;
 2944
 2945	if (unlikely(!xdpf))
 2946		return IGB_XDP_CONSUMED;
 2947
 2948	/* During program transitions its possible adapter->xdp_prog is assigned
 2949	 * but ring has not been configured yet. In this case simply abort xmit.
 2950	 */
 2951	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 2952	if (unlikely(!tx_ring))
 2953		return IGB_XDP_CONSUMED;
 2954
 2955	nq = txring_txq(tx_ring);
 2956	__netif_tx_lock(nq, cpu);
 2957	/* Avoid transmit queue timeout since we share it with the slow path */
 2958	txq_trans_cond_update(nq);
 2959	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 2960	__netif_tx_unlock(nq);
 2961
 2962	return ret;
 2963}
 2964
 2965static int igb_xdp_xmit(struct net_device *dev, int n,
 2966			struct xdp_frame **frames, u32 flags)
 2967{
 2968	struct igb_adapter *adapter = netdev_priv(dev);
 2969	int cpu = smp_processor_id();
 2970	struct igb_ring *tx_ring;
 2971	struct netdev_queue *nq;
 2972	int nxmit = 0;
 2973	int i;
 2974
 2975	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
 2976		return -ENETDOWN;
 2977
 2978	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 2979		return -EINVAL;
 2980
 2981	/* During program transitions its possible adapter->xdp_prog is assigned
 2982	 * but ring has not been configured yet. In this case simply abort xmit.
 2983	 */
 2984	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 2985	if (unlikely(!tx_ring))
 2986		return -ENXIO;
 2987
 2988	nq = txring_txq(tx_ring);
 2989	__netif_tx_lock(nq, cpu);
 2990
 2991	/* Avoid transmit queue timeout since we share it with the slow path */
 2992	txq_trans_cond_update(nq);
 2993
 2994	for (i = 0; i < n; i++) {
 2995		struct xdp_frame *xdpf = frames[i];
 2996		int err;
 2997
 2998		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 2999		if (err != IGB_XDP_TX)
 3000			break;
 3001		nxmit++;
 3002	}
 3003
 3004	__netif_tx_unlock(nq);
 3005
 3006	if (unlikely(flags & XDP_XMIT_FLUSH))
 3007		igb_xdp_ring_update_tail(tx_ring);
 3008
 3009	return nxmit;
 3010}
 3011
 3012static const struct net_device_ops igb_netdev_ops = {
 3013	.ndo_open		= igb_open,
 3014	.ndo_stop		= igb_close,
 3015	.ndo_start_xmit		= igb_xmit_frame,
 3016	.ndo_get_stats64	= igb_get_stats64,
 3017	.ndo_set_rx_mode	= igb_set_rx_mode,
 3018	.ndo_set_mac_address	= igb_set_mac,
 3019	.ndo_change_mtu		= igb_change_mtu,
 3020	.ndo_eth_ioctl		= igb_ioctl,
 3021	.ndo_tx_timeout		= igb_tx_timeout,
 3022	.ndo_validate_addr	= eth_validate_addr,
 3023	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
 3024	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
 3025	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
 3026	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
 3027	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
 3028	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
 3029	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
 3030	.ndo_get_vf_config	= igb_ndo_get_vf_config,
 3031	.ndo_fix_features	= igb_fix_features,
 3032	.ndo_set_features	= igb_set_features,
 3033	.ndo_fdb_add		= igb_ndo_fdb_add,
 3034	.ndo_features_check	= igb_features_check,
 3035	.ndo_setup_tc		= igb_setup_tc,
 3036	.ndo_bpf		= igb_xdp,
 3037	.ndo_xdp_xmit		= igb_xdp_xmit,
 3038};
 3039
 3040/**
 3041 * igb_set_fw_version - Configure version string for ethtool
 3042 * @adapter: adapter struct
 3043 **/
 3044void igb_set_fw_version(struct igb_adapter *adapter)
 3045{
 3046	struct e1000_hw *hw = &adapter->hw;
 3047	struct e1000_fw_version fw;
 3048
 3049	igb_get_fw_version(hw, &fw);
 3050
 3051	switch (hw->mac.type) {
 3052	case e1000_i210:
 3053	case e1000_i211:
 3054		if (!(igb_get_flash_presence_i210(hw))) {
 3055			snprintf(adapter->fw_version,
 3056				 sizeof(adapter->fw_version),
 3057				 "%2d.%2d-%d",
 3058				 fw.invm_major, fw.invm_minor,
 3059				 fw.invm_img_type);
 3060			break;
 3061		}
 3062		fallthrough;
 3063	default:
 3064		/* if option is rom valid, display its version too */
 3065		if (fw.or_valid) {
 3066			snprintf(adapter->fw_version,
 3067				 sizeof(adapter->fw_version),
 3068				 "%d.%d, 0x%08x, %d.%d.%d",
 3069				 fw.eep_major, fw.eep_minor, fw.etrack_id,
 3070				 fw.or_major, fw.or_build, fw.or_patch);
 3071		/* no option rom */
 3072		} else if (fw.etrack_id != 0X0000) {
 3073			snprintf(adapter->fw_version,
 3074			    sizeof(adapter->fw_version),
 3075			    "%d.%d, 0x%08x",
 3076			    fw.eep_major, fw.eep_minor, fw.etrack_id);
 3077		} else {
 3078		snprintf(adapter->fw_version,
 3079		    sizeof(adapter->fw_version),
 3080		    "%d.%d.%d",
 3081		    fw.eep_major, fw.eep_minor, fw.eep_build);
 3082		}
 3083		break;
 3084	}
 3085}
 3086
 3087/**
 3088 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 3089 *
 3090 * @adapter: adapter struct
 3091 **/
 3092static void igb_init_mas(struct igb_adapter *adapter)
 3093{
 3094	struct e1000_hw *hw = &adapter->hw;
 3095	u16 eeprom_data;
 3096
 3097	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
 3098	switch (hw->bus.func) {
 3099	case E1000_FUNC_0:
 3100		if (eeprom_data & IGB_MAS_ENABLE_0) {
 3101			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3102			netdev_info(adapter->netdev,
 3103				"MAS: Enabling Media Autosense for port %d\n",
 3104				hw->bus.func);
 3105		}
 3106		break;
 3107	case E1000_FUNC_1:
 3108		if (eeprom_data & IGB_MAS_ENABLE_1) {
 3109			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3110			netdev_info(adapter->netdev,
 3111				"MAS: Enabling Media Autosense for port %d\n",
 3112				hw->bus.func);
 3113		}
 3114		break;
 3115	case E1000_FUNC_2:
 3116		if (eeprom_data & IGB_MAS_ENABLE_2) {
 3117			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3118			netdev_info(adapter->netdev,
 3119				"MAS: Enabling Media Autosense for port %d\n",
 3120				hw->bus.func);
 3121		}
 3122		break;
 3123	case E1000_FUNC_3:
 3124		if (eeprom_data & IGB_MAS_ENABLE_3) {
 3125			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3126			netdev_info(adapter->netdev,
 3127				"MAS: Enabling Media Autosense for port %d\n",
 3128				hw->bus.func);
 3129		}
 3130		break;
 3131	default:
 3132		/* Shouldn't get here */
 3133		netdev_err(adapter->netdev,
 3134			"MAS: Invalid port configuration, returning\n");
 3135		break;
 3136	}
 3137}
 3138
 3139/**
 3140 *  igb_init_i2c - Init I2C interface
 3141 *  @adapter: pointer to adapter structure
 3142 **/
 3143static s32 igb_init_i2c(struct igb_adapter *adapter)
 3144{
 3145	s32 status = 0;
 3146
 3147	/* I2C interface supported on i350 devices */
 3148	if (adapter->hw.mac.type != e1000_i350)
 3149		return 0;
 3150
 3151	/* Initialize the i2c bus which is controlled by the registers.
 3152	 * This bus will use the i2c_algo_bit structure that implements
 3153	 * the protocol through toggling of the 4 bits in the register.
 3154	 */
 3155	adapter->i2c_adap.owner = THIS_MODULE;
 3156	adapter->i2c_algo = igb_i2c_algo;
 3157	adapter->i2c_algo.data = adapter;
 3158	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
 3159	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
 3160	strscpy(adapter->i2c_adap.name, "igb BB",
 3161		sizeof(adapter->i2c_adap.name));
 3162	status = i2c_bit_add_bus(&adapter->i2c_adap);
 3163	return status;
 3164}
 3165
 3166/**
 3167 *  igb_probe - Device Initialization Routine
 3168 *  @pdev: PCI device information struct
 3169 *  @ent: entry in igb_pci_tbl
 3170 *
 3171 *  Returns 0 on success, negative on failure
 3172 *
 3173 *  igb_probe initializes an adapter identified by a pci_dev structure.
 3174 *  The OS initialization, configuring of the adapter private structure,
 3175 *  and a hardware reset occur.
 3176 **/
 3177static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 3178{
 3179	struct net_device *netdev;
 3180	struct igb_adapter *adapter;
 3181	struct e1000_hw *hw;
 3182	u16 eeprom_data = 0;
 3183	s32 ret_val;
 3184	static int global_quad_port_a; /* global quad port a indication */
 3185	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
 
 3186	u8 part_str[E1000_PBANUM_LENGTH];
 3187	int err;
 3188
 3189	/* Catch broken hardware that put the wrong VF device ID in
 3190	 * the PCIe SR-IOV capability.
 3191	 */
 3192	if (pdev->is_virtfn) {
 3193		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
 3194			pci_name(pdev), pdev->vendor, pdev->device);
 3195		return -EINVAL;
 3196	}
 3197
 3198	err = pci_enable_device_mem(pdev);
 3199	if (err)
 3200		return err;
 3201
 
 3202	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 3203	if (err) {
 3204		dev_err(&pdev->dev,
 3205			"No usable DMA configuration, aborting\n");
 3206		goto err_dma;
 
 
 
 
 
 3207	}
 3208
 3209	err = pci_request_mem_regions(pdev, igb_driver_name);
 3210	if (err)
 3211		goto err_pci_reg;
 3212
 3213	pci_enable_pcie_error_reporting(pdev);
 3214
 3215	pci_set_master(pdev);
 3216	pci_save_state(pdev);
 3217
 3218	err = -ENOMEM;
 3219	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
 3220				   IGB_MAX_TX_QUEUES);
 3221	if (!netdev)
 3222		goto err_alloc_etherdev;
 3223
 3224	SET_NETDEV_DEV(netdev, &pdev->dev);
 3225
 3226	pci_set_drvdata(pdev, netdev);
 3227	adapter = netdev_priv(netdev);
 3228	adapter->netdev = netdev;
 3229	adapter->pdev = pdev;
 3230	hw = &adapter->hw;
 3231	hw->back = adapter;
 3232	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 3233
 3234	err = -EIO;
 3235	adapter->io_addr = pci_iomap(pdev, 0, 0);
 3236	if (!adapter->io_addr)
 3237		goto err_ioremap;
 3238	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
 3239	hw->hw_addr = adapter->io_addr;
 3240
 3241	netdev->netdev_ops = &igb_netdev_ops;
 3242	igb_set_ethtool_ops(netdev);
 3243	netdev->watchdog_timeo = 5 * HZ;
 3244
 3245	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
 3246
 3247	netdev->mem_start = pci_resource_start(pdev, 0);
 3248	netdev->mem_end = pci_resource_end(pdev, 0);
 3249
 3250	/* PCI config space info */
 3251	hw->vendor_id = pdev->vendor;
 3252	hw->device_id = pdev->device;
 3253	hw->revision_id = pdev->revision;
 3254	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 3255	hw->subsystem_device_id = pdev->subsystem_device;
 3256
 3257	/* Copy the default MAC, PHY and NVM function pointers */
 3258	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
 3259	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
 3260	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
 3261	/* Initialize skew-specific constants */
 3262	err = ei->get_invariants(hw);
 3263	if (err)
 3264		goto err_sw_init;
 3265
 3266	/* setup the private structure */
 3267	err = igb_sw_init(adapter);
 3268	if (err)
 3269		goto err_sw_init;
 3270
 3271	igb_get_bus_info_pcie(hw);
 3272
 3273	hw->phy.autoneg_wait_to_complete = false;
 3274
 3275	/* Copper options */
 3276	if (hw->phy.media_type == e1000_media_type_copper) {
 3277		hw->phy.mdix = AUTO_ALL_MODES;
 3278		hw->phy.disable_polarity_correction = false;
 3279		hw->phy.ms_type = e1000_ms_hw_default;
 3280	}
 3281
 3282	if (igb_check_reset_block(hw))
 3283		dev_info(&pdev->dev,
 3284			"PHY reset is blocked due to SOL/IDER session.\n");
 3285
 3286	/* features is initialized to 0 in allocation, it might have bits
 3287	 * set by igb_sw_init so we should use an or instead of an
 3288	 * assignment.
 3289	 */
 3290	netdev->features |= NETIF_F_SG |
 3291			    NETIF_F_TSO |
 3292			    NETIF_F_TSO6 |
 3293			    NETIF_F_RXHASH |
 3294			    NETIF_F_RXCSUM |
 3295			    NETIF_F_HW_CSUM;
 3296
 3297	if (hw->mac.type >= e1000_82576)
 3298		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
 3299
 3300	if (hw->mac.type >= e1000_i350)
 3301		netdev->features |= NETIF_F_HW_TC;
 3302
 3303#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
 3304				  NETIF_F_GSO_GRE_CSUM | \
 3305				  NETIF_F_GSO_IPXIP4 | \
 3306				  NETIF_F_GSO_IPXIP6 | \
 3307				  NETIF_F_GSO_UDP_TUNNEL | \
 3308				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
 3309
 3310	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
 3311	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
 3312
 3313	/* copy netdev features into list of user selectable features */
 3314	netdev->hw_features |= netdev->features |
 3315			       NETIF_F_HW_VLAN_CTAG_RX |
 3316			       NETIF_F_HW_VLAN_CTAG_TX |
 3317			       NETIF_F_RXALL;
 3318
 3319	if (hw->mac.type >= e1000_i350)
 3320		netdev->hw_features |= NETIF_F_NTUPLE;
 3321
 3322	netdev->features |= NETIF_F_HIGHDMA;
 
 3323
 3324	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
 3325	netdev->mpls_features |= NETIF_F_HW_CSUM;
 3326	netdev->hw_enc_features |= netdev->vlan_features;
 3327
 3328	/* set this bit last since it cannot be part of vlan_features */
 3329	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
 3330			    NETIF_F_HW_VLAN_CTAG_RX |
 3331			    NETIF_F_HW_VLAN_CTAG_TX;
 3332
 3333	netdev->priv_flags |= IFF_SUPP_NOFCS;
 3334
 3335	netdev->priv_flags |= IFF_UNICAST_FLT;
 3336
 3337	/* MTU range: 68 - 9216 */
 3338	netdev->min_mtu = ETH_MIN_MTU;
 3339	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
 3340
 3341	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
 3342
 3343	/* before reading the NVM, reset the controller to put the device in a
 3344	 * known good starting state
 3345	 */
 3346	hw->mac.ops.reset_hw(hw);
 3347
 3348	/* make sure the NVM is good , i211/i210 parts can have special NVM
 3349	 * that doesn't contain a checksum
 3350	 */
 3351	switch (hw->mac.type) {
 3352	case e1000_i210:
 3353	case e1000_i211:
 3354		if (igb_get_flash_presence_i210(hw)) {
 3355			if (hw->nvm.ops.validate(hw) < 0) {
 3356				dev_err(&pdev->dev,
 3357					"The NVM Checksum Is Not Valid\n");
 3358				err = -EIO;
 3359				goto err_eeprom;
 3360			}
 3361		}
 3362		break;
 3363	default:
 3364		if (hw->nvm.ops.validate(hw) < 0) {
 3365			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
 3366			err = -EIO;
 3367			goto err_eeprom;
 3368		}
 3369		break;
 3370	}
 3371
 3372	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
 3373		/* copy the MAC address out of the NVM */
 3374		if (hw->mac.ops.read_mac_addr(hw))
 3375			dev_err(&pdev->dev, "NVM Read Error\n");
 3376	}
 3377
 3378	eth_hw_addr_set(netdev, hw->mac.addr);
 3379
 3380	if (!is_valid_ether_addr(netdev->dev_addr)) {
 3381		dev_err(&pdev->dev, "Invalid MAC Address\n");
 3382		err = -EIO;
 3383		goto err_eeprom;
 3384	}
 3385
 3386	igb_set_default_mac_filter(adapter);
 3387
 3388	/* get firmware version for ethtool -i */
 3389	igb_set_fw_version(adapter);
 3390
 3391	/* configure RXPBSIZE and TXPBSIZE */
 3392	if (hw->mac.type == e1000_i210) {
 3393		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 3394		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 3395	}
 3396
 3397	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
 3398	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
 3399
 3400	INIT_WORK(&adapter->reset_task, igb_reset_task);
 3401	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
 3402
 3403	/* Initialize link properties that are user-changeable */
 3404	adapter->fc_autoneg = true;
 3405	hw->mac.autoneg = true;
 3406	hw->phy.autoneg_advertised = 0x2f;
 3407
 3408	hw->fc.requested_mode = e1000_fc_default;
 3409	hw->fc.current_mode = e1000_fc_default;
 3410
 3411	igb_validate_mdi_setting(hw);
 3412
 3413	/* By default, support wake on port A */
 3414	if (hw->bus.func == 0)
 3415		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3416
 3417	/* Check the NVM for wake support on non-port A ports */
 3418	if (hw->mac.type >= e1000_82580)
 3419		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 3420				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 3421				 &eeprom_data);
 3422	else if (hw->bus.func == 1)
 3423		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 3424
 3425	if (eeprom_data & IGB_EEPROM_APME)
 3426		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3427
 3428	/* now that we have the eeprom settings, apply the special cases where
 3429	 * the eeprom may be wrong or the board simply won't support wake on
 3430	 * lan on a particular port
 3431	 */
 3432	switch (pdev->device) {
 3433	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 3434		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3435		break;
 3436	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 3437	case E1000_DEV_ID_82576_FIBER:
 3438	case E1000_DEV_ID_82576_SERDES:
 3439		/* Wake events only supported on port A for dual fiber
 3440		 * regardless of eeprom setting
 3441		 */
 3442		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
 3443			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3444		break;
 3445	case E1000_DEV_ID_82576_QUAD_COPPER:
 3446	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 3447		/* if quad port adapter, disable WoL on all but port A */
 3448		if (global_quad_port_a != 0)
 3449			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3450		else
 3451			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
 3452		/* Reset for multiple quad port adapters */
 3453		if (++global_quad_port_a == 4)
 3454			global_quad_port_a = 0;
 3455		break;
 3456	default:
 3457		/* If the device can't wake, don't set software support */
 3458		if (!device_can_wakeup(&adapter->pdev->dev))
 3459			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3460	}
 3461
 3462	/* initialize the wol settings based on the eeprom settings */
 3463	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
 3464		adapter->wol |= E1000_WUFC_MAG;
 3465
 3466	/* Some vendors want WoL disabled by default, but still supported */
 3467	if ((hw->mac.type == e1000_i350) &&
 3468	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
 3469		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3470		adapter->wol = 0;
 3471	}
 3472
 3473	/* Some vendors want the ability to Use the EEPROM setting as
 3474	 * enable/disable only, and not for capability
 3475	 */
 3476	if (((hw->mac.type == e1000_i350) ||
 3477	     (hw->mac.type == e1000_i354)) &&
 3478	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
 3479		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3480		adapter->wol = 0;
 3481	}
 3482	if (hw->mac.type == e1000_i350) {
 3483		if (((pdev->subsystem_device == 0x5001) ||
 3484		     (pdev->subsystem_device == 0x5002)) &&
 3485				(hw->bus.func == 0)) {
 3486			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3487			adapter->wol = 0;
 3488		}
 3489		if (pdev->subsystem_device == 0x1F52)
 3490			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3491	}
 3492
 3493	device_set_wakeup_enable(&adapter->pdev->dev,
 3494				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
 3495
 3496	/* reset the hardware with the new settings */
 3497	igb_reset(adapter);
 3498
 3499	/* Init the I2C interface */
 3500	err = igb_init_i2c(adapter);
 3501	if (err) {
 3502		dev_err(&pdev->dev, "failed to init i2c interface\n");
 3503		goto err_eeprom;
 3504	}
 3505
 3506	/* let the f/w know that the h/w is now under the control of the
 3507	 * driver.
 3508	 */
 3509	igb_get_hw_control(adapter);
 3510
 3511	strcpy(netdev->name, "eth%d");
 3512	err = register_netdev(netdev);
 3513	if (err)
 3514		goto err_register;
 3515
 3516	/* carrier off reporting is important to ethtool even BEFORE open */
 3517	netif_carrier_off(netdev);
 3518
 3519#ifdef CONFIG_IGB_DCA
 3520	if (dca_add_requester(&pdev->dev) == 0) {
 3521		adapter->flags |= IGB_FLAG_DCA_ENABLED;
 3522		dev_info(&pdev->dev, "DCA enabled\n");
 3523		igb_setup_dca(adapter);
 3524	}
 3525
 3526#endif
 3527#ifdef CONFIG_IGB_HWMON
 3528	/* Initialize the thermal sensor on i350 devices. */
 3529	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
 3530		u16 ets_word;
 3531
 3532		/* Read the NVM to determine if this i350 device supports an
 3533		 * external thermal sensor.
 3534		 */
 3535		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
 3536		if (ets_word != 0x0000 && ets_word != 0xFFFF)
 3537			adapter->ets = true;
 3538		else
 3539			adapter->ets = false;
 3540		/* Only enable I2C bit banging if an external thermal
 3541		 * sensor is supported.
 3542		 */
 3543		if (adapter->ets)
 3544			igb_set_i2c_bb(hw);
 3545		hw->mac.ops.init_thermal_sensor_thresh(hw);
 3546		if (igb_sysfs_init(adapter))
 3547			dev_err(&pdev->dev,
 3548				"failed to allocate sysfs resources\n");
 3549	} else {
 3550		adapter->ets = false;
 3551	}
 3552#endif
 3553	/* Check if Media Autosense is enabled */
 3554	adapter->ei = *ei;
 3555	if (hw->dev_spec._82575.mas_capable)
 3556		igb_init_mas(adapter);
 3557
 3558	/* do hw tstamp init after resetting */
 3559	igb_ptp_init(adapter);
 3560
 3561	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
 3562	/* print bus type/speed/width info, not applicable to i354 */
 3563	if (hw->mac.type != e1000_i354) {
 3564		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
 3565			 netdev->name,
 3566			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
 3567			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
 3568			   "unknown"),
 3569			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
 3570			  "Width x4" :
 3571			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
 3572			  "Width x2" :
 3573			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
 3574			  "Width x1" : "unknown"), netdev->dev_addr);
 3575	}
 3576
 3577	if ((hw->mac.type == e1000_82576 &&
 3578	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
 3579	    (hw->mac.type >= e1000_i210 ||
 3580	     igb_get_flash_presence_i210(hw))) {
 3581		ret_val = igb_read_part_string(hw, part_str,
 3582					       E1000_PBANUM_LENGTH);
 3583	} else {
 3584		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
 3585	}
 3586
 3587	if (ret_val)
 3588		strcpy(part_str, "Unknown");
 3589	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
 3590	dev_info(&pdev->dev,
 3591		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
 3592		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
 3593		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
 3594		adapter->num_rx_queues, adapter->num_tx_queues);
 3595	if (hw->phy.media_type == e1000_media_type_copper) {
 3596		switch (hw->mac.type) {
 3597		case e1000_i350:
 3598		case e1000_i210:
 3599		case e1000_i211:
 3600			/* Enable EEE for internal copper PHY devices */
 3601			err = igb_set_eee_i350(hw, true, true);
 3602			if ((!err) &&
 3603			    (!hw->dev_spec._82575.eee_disable)) {
 3604				adapter->eee_advert =
 3605					MDIO_EEE_100TX | MDIO_EEE_1000T;
 3606				adapter->flags |= IGB_FLAG_EEE;
 3607			}
 3608			break;
 3609		case e1000_i354:
 3610			if ((rd32(E1000_CTRL_EXT) &
 3611			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
 3612				err = igb_set_eee_i354(hw, true, true);
 3613				if ((!err) &&
 3614					(!hw->dev_spec._82575.eee_disable)) {
 3615					adapter->eee_advert =
 3616					   MDIO_EEE_100TX | MDIO_EEE_1000T;
 3617					adapter->flags |= IGB_FLAG_EEE;
 3618				}
 3619			}
 3620			break;
 3621		default:
 3622			break;
 3623		}
 3624	}
 3625
 3626	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
 3627
 3628	pm_runtime_put_noidle(&pdev->dev);
 3629	return 0;
 3630
 3631err_register:
 3632	igb_release_hw_control(adapter);
 3633	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
 3634err_eeprom:
 3635	if (!igb_check_reset_block(hw))
 3636		igb_reset_phy(hw);
 3637
 3638	if (hw->flash_address)
 3639		iounmap(hw->flash_address);
 3640err_sw_init:
 3641	kfree(adapter->mac_table);
 3642	kfree(adapter->shadow_vfta);
 3643	igb_clear_interrupt_scheme(adapter);
 3644#ifdef CONFIG_PCI_IOV
 3645	igb_disable_sriov(pdev);
 3646#endif
 3647	pci_iounmap(pdev, adapter->io_addr);
 3648err_ioremap:
 3649	free_netdev(netdev);
 3650err_alloc_etherdev:
 3651	pci_disable_pcie_error_reporting(pdev);
 3652	pci_release_mem_regions(pdev);
 3653err_pci_reg:
 3654err_dma:
 3655	pci_disable_device(pdev);
 3656	return err;
 3657}
 3658
 3659#ifdef CONFIG_PCI_IOV
 3660static int igb_disable_sriov(struct pci_dev *pdev)
 3661{
 3662	struct net_device *netdev = pci_get_drvdata(pdev);
 3663	struct igb_adapter *adapter = netdev_priv(netdev);
 3664	struct e1000_hw *hw = &adapter->hw;
 3665	unsigned long flags;
 3666
 3667	/* reclaim resources allocated to VFs */
 3668	if (adapter->vf_data) {
 3669		/* disable iov and allow time for transactions to clear */
 3670		if (pci_vfs_assigned(pdev)) {
 3671			dev_warn(&pdev->dev,
 3672				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
 3673			return -EPERM;
 3674		} else {
 3675			pci_disable_sriov(pdev);
 3676			msleep(500);
 3677		}
 3678		spin_lock_irqsave(&adapter->vfs_lock, flags);
 3679		kfree(adapter->vf_mac_list);
 3680		adapter->vf_mac_list = NULL;
 3681		kfree(adapter->vf_data);
 3682		adapter->vf_data = NULL;
 3683		adapter->vfs_allocated_count = 0;
 3684		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 3685		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 3686		wrfl();
 3687		msleep(100);
 3688		dev_info(&pdev->dev, "IOV Disabled\n");
 3689
 3690		/* Re-enable DMA Coalescing flag since IOV is turned off */
 3691		adapter->flags |= IGB_FLAG_DMAC;
 3692	}
 3693
 3694	return 0;
 3695}
 3696
 3697static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
 3698{
 3699	struct net_device *netdev = pci_get_drvdata(pdev);
 3700	struct igb_adapter *adapter = netdev_priv(netdev);
 3701	int old_vfs = pci_num_vf(pdev);
 3702	struct vf_mac_filter *mac_list;
 3703	int err = 0;
 3704	int num_vf_mac_filters, i;
 3705
 3706	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
 3707		err = -EPERM;
 3708		goto out;
 3709	}
 3710	if (!num_vfs)
 3711		goto out;
 3712
 3713	if (old_vfs) {
 3714		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
 3715			 old_vfs, max_vfs);
 3716		adapter->vfs_allocated_count = old_vfs;
 3717	} else
 3718		adapter->vfs_allocated_count = num_vfs;
 3719
 3720	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
 3721				sizeof(struct vf_data_storage), GFP_KERNEL);
 3722
 3723	/* if allocation failed then we do not support SR-IOV */
 3724	if (!adapter->vf_data) {
 3725		adapter->vfs_allocated_count = 0;
 3726		err = -ENOMEM;
 3727		goto out;
 3728	}
 3729
 3730	/* Due to the limited number of RAR entries calculate potential
 3731	 * number of MAC filters available for the VFs. Reserve entries
 3732	 * for PF default MAC, PF MAC filters and at least one RAR entry
 3733	 * for each VF for VF MAC.
 3734	 */
 3735	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
 3736			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
 3737			      adapter->vfs_allocated_count);
 3738
 3739	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
 3740				       sizeof(struct vf_mac_filter),
 3741				       GFP_KERNEL);
 3742
 3743	mac_list = adapter->vf_mac_list;
 3744	INIT_LIST_HEAD(&adapter->vf_macs.l);
 3745
 3746	if (adapter->vf_mac_list) {
 3747		/* Initialize list of VF MAC filters */
 3748		for (i = 0; i < num_vf_mac_filters; i++) {
 3749			mac_list->vf = -1;
 3750			mac_list->free = true;
 3751			list_add(&mac_list->l, &adapter->vf_macs.l);
 3752			mac_list++;
 3753		}
 3754	} else {
 3755		/* If we could not allocate memory for the VF MAC filters
 3756		 * we can continue without this feature but warn user.
 3757		 */
 3758		dev_err(&pdev->dev,
 3759			"Unable to allocate memory for VF MAC filter list\n");
 3760	}
 3761
 3762	/* only call pci_enable_sriov() if no VFs are allocated already */
 3763	if (!old_vfs) {
 3764		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
 3765		if (err)
 3766			goto err_out;
 3767	}
 3768	dev_info(&pdev->dev, "%d VFs allocated\n",
 3769		 adapter->vfs_allocated_count);
 3770	for (i = 0; i < adapter->vfs_allocated_count; i++)
 3771		igb_vf_configure(adapter, i);
 3772
 3773	/* DMA Coalescing is not supported in IOV mode. */
 3774	adapter->flags &= ~IGB_FLAG_DMAC;
 3775	goto out;
 3776
 3777err_out:
 3778	kfree(adapter->vf_mac_list);
 3779	adapter->vf_mac_list = NULL;
 3780	kfree(adapter->vf_data);
 3781	adapter->vf_data = NULL;
 3782	adapter->vfs_allocated_count = 0;
 3783out:
 3784	return err;
 3785}
 3786
 3787#endif
 3788/**
 3789 *  igb_remove_i2c - Cleanup  I2C interface
 3790 *  @adapter: pointer to adapter structure
 3791 **/
 3792static void igb_remove_i2c(struct igb_adapter *adapter)
 3793{
 3794	/* free the adapter bus structure */
 3795	i2c_del_adapter(&adapter->i2c_adap);
 3796}
 3797
 3798/**
 3799 *  igb_remove - Device Removal Routine
 3800 *  @pdev: PCI device information struct
 3801 *
 3802 *  igb_remove is called by the PCI subsystem to alert the driver
 3803 *  that it should release a PCI device.  The could be caused by a
 3804 *  Hot-Plug event, or because the driver is going to be removed from
 3805 *  memory.
 3806 **/
 3807static void igb_remove(struct pci_dev *pdev)
 3808{
 3809	struct net_device *netdev = pci_get_drvdata(pdev);
 3810	struct igb_adapter *adapter = netdev_priv(netdev);
 3811	struct e1000_hw *hw = &adapter->hw;
 3812
 3813	pm_runtime_get_noresume(&pdev->dev);
 3814#ifdef CONFIG_IGB_HWMON
 3815	igb_sysfs_exit(adapter);
 3816#endif
 3817	igb_remove_i2c(adapter);
 3818	igb_ptp_stop(adapter);
 3819	/* The watchdog timer may be rescheduled, so explicitly
 3820	 * disable watchdog from being rescheduled.
 3821	 */
 3822	set_bit(__IGB_DOWN, &adapter->state);
 3823	del_timer_sync(&adapter->watchdog_timer);
 3824	del_timer_sync(&adapter->phy_info_timer);
 3825
 3826	cancel_work_sync(&adapter->reset_task);
 3827	cancel_work_sync(&adapter->watchdog_task);
 3828
 3829#ifdef CONFIG_IGB_DCA
 3830	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 3831		dev_info(&pdev->dev, "DCA disabled\n");
 3832		dca_remove_requester(&pdev->dev);
 3833		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 3834		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 3835	}
 3836#endif
 3837
 3838	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 3839	 * would have already happened in close and is redundant.
 3840	 */
 3841	igb_release_hw_control(adapter);
 3842
 3843#ifdef CONFIG_PCI_IOV
 3844	rtnl_lock();
 3845	igb_disable_sriov(pdev);
 3846	rtnl_unlock();
 3847#endif
 3848
 3849	unregister_netdev(netdev);
 3850
 3851	igb_clear_interrupt_scheme(adapter);
 3852
 3853	pci_iounmap(pdev, adapter->io_addr);
 3854	if (hw->flash_address)
 3855		iounmap(hw->flash_address);
 3856	pci_release_mem_regions(pdev);
 3857
 3858	kfree(adapter->mac_table);
 3859	kfree(adapter->shadow_vfta);
 3860	free_netdev(netdev);
 3861
 3862	pci_disable_pcie_error_reporting(pdev);
 3863
 3864	pci_disable_device(pdev);
 3865}
 3866
 3867/**
 3868 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 3869 *  @adapter: board private structure to initialize
 3870 *
 3871 *  This function initializes the vf specific data storage and then attempts to
 3872 *  allocate the VFs.  The reason for ordering it this way is because it is much
 3873 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 3874 *  the memory for the VFs.
 3875 **/
 3876static void igb_probe_vfs(struct igb_adapter *adapter)
 3877{
 3878#ifdef CONFIG_PCI_IOV
 3879	struct pci_dev *pdev = adapter->pdev;
 3880	struct e1000_hw *hw = &adapter->hw;
 3881
 3882	/* Virtualization features not supported on i210 family. */
 3883	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
 3884		return;
 3885
 3886	/* Of the below we really only want the effect of getting
 3887	 * IGB_FLAG_HAS_MSIX set (if available), without which
 3888	 * igb_enable_sriov() has no effect.
 3889	 */
 3890	igb_set_interrupt_capability(adapter, true);
 3891	igb_reset_interrupt_capability(adapter);
 3892
 3893	pci_sriov_set_totalvfs(pdev, 7);
 3894	igb_enable_sriov(pdev, max_vfs);
 3895
 3896#endif /* CONFIG_PCI_IOV */
 3897}
 3898
 3899unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
 3900{
 3901	struct e1000_hw *hw = &adapter->hw;
 3902	unsigned int max_rss_queues;
 3903
 3904	/* Determine the maximum number of RSS queues supported. */
 3905	switch (hw->mac.type) {
 3906	case e1000_i211:
 3907		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
 3908		break;
 3909	case e1000_82575:
 3910	case e1000_i210:
 3911		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
 3912		break;
 3913	case e1000_i350:
 3914		/* I350 cannot do RSS and SR-IOV at the same time */
 3915		if (!!adapter->vfs_allocated_count) {
 3916			max_rss_queues = 1;
 3917			break;
 3918		}
 3919		fallthrough;
 3920	case e1000_82576:
 3921		if (!!adapter->vfs_allocated_count) {
 3922			max_rss_queues = 2;
 3923			break;
 3924		}
 3925		fallthrough;
 3926	case e1000_82580:
 3927	case e1000_i354:
 3928	default:
 3929		max_rss_queues = IGB_MAX_RX_QUEUES;
 3930		break;
 3931	}
 3932
 3933	return max_rss_queues;
 3934}
 3935
 3936static void igb_init_queue_configuration(struct igb_adapter *adapter)
 3937{
 3938	u32 max_rss_queues;
 3939
 3940	max_rss_queues = igb_get_max_rss_queues(adapter);
 3941	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
 3942
 3943	igb_set_flag_queue_pairs(adapter, max_rss_queues);
 3944}
 3945
 3946void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
 3947			      const u32 max_rss_queues)
 3948{
 3949	struct e1000_hw *hw = &adapter->hw;
 3950
 3951	/* Determine if we need to pair queues. */
 3952	switch (hw->mac.type) {
 3953	case e1000_82575:
 3954	case e1000_i211:
 3955		/* Device supports enough interrupts without queue pairing. */
 3956		break;
 3957	case e1000_82576:
 3958	case e1000_82580:
 3959	case e1000_i350:
 3960	case e1000_i354:
 3961	case e1000_i210:
 3962	default:
 3963		/* If rss_queues > half of max_rss_queues, pair the queues in
 3964		 * order to conserve interrupts due to limited supply.
 3965		 */
 3966		if (adapter->rss_queues > (max_rss_queues / 2))
 3967			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 3968		else
 3969			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
 3970		break;
 3971	}
 3972}
 3973
 3974/**
 3975 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 3976 *  @adapter: board private structure to initialize
 3977 *
 3978 *  igb_sw_init initializes the Adapter private data structure.
 3979 *  Fields are initialized based on PCI device information and
 3980 *  OS network device settings (MTU size).
 3981 **/
 3982static int igb_sw_init(struct igb_adapter *adapter)
 3983{
 3984	struct e1000_hw *hw = &adapter->hw;
 3985	struct net_device *netdev = adapter->netdev;
 3986	struct pci_dev *pdev = adapter->pdev;
 3987
 3988	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
 3989
 3990	/* set default ring sizes */
 3991	adapter->tx_ring_count = IGB_DEFAULT_TXD;
 3992	adapter->rx_ring_count = IGB_DEFAULT_RXD;
 3993
 3994	/* set default ITR values */
 3995	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
 3996	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
 3997
 3998	/* set default work limits */
 3999	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
 4000
 4001	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
 
 4002	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 4003
 4004	spin_lock_init(&adapter->nfc_lock);
 4005	spin_lock_init(&adapter->stats64_lock);
 4006
 4007	/* init spinlock to avoid concurrency of VF resources */
 4008	spin_lock_init(&adapter->vfs_lock);
 4009#ifdef CONFIG_PCI_IOV
 4010	switch (hw->mac.type) {
 4011	case e1000_82576:
 4012	case e1000_i350:
 4013		if (max_vfs > 7) {
 4014			dev_warn(&pdev->dev,
 4015				 "Maximum of 7 VFs per PF, using max\n");
 4016			max_vfs = adapter->vfs_allocated_count = 7;
 4017		} else
 4018			adapter->vfs_allocated_count = max_vfs;
 4019		if (adapter->vfs_allocated_count)
 4020			dev_warn(&pdev->dev,
 4021				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
 4022		break;
 4023	default:
 4024		break;
 4025	}
 4026#endif /* CONFIG_PCI_IOV */
 4027
 4028	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
 4029	adapter->flags |= IGB_FLAG_HAS_MSIX;
 4030
 4031	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
 4032				     sizeof(struct igb_mac_addr),
 4033				     GFP_KERNEL);
 4034	if (!adapter->mac_table)
 4035		return -ENOMEM;
 4036
 4037	igb_probe_vfs(adapter);
 4038
 4039	igb_init_queue_configuration(adapter);
 4040
 4041	/* Setup and initialize a copy of the hw vlan table array */
 4042	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
 4043				       GFP_KERNEL);
 4044	if (!adapter->shadow_vfta)
 4045		return -ENOMEM;
 4046
 4047	/* This call may decrease the number of queues */
 4048	if (igb_init_interrupt_scheme(adapter, true)) {
 4049		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 4050		return -ENOMEM;
 4051	}
 4052
 4053	/* Explicitly disable IRQ since the NIC can be in any state. */
 4054	igb_irq_disable(adapter);
 4055
 4056	if (hw->mac.type >= e1000_i350)
 4057		adapter->flags &= ~IGB_FLAG_DMAC;
 4058
 4059	set_bit(__IGB_DOWN, &adapter->state);
 4060	return 0;
 4061}
 4062
 4063/**
 4064 *  __igb_open - Called when a network interface is made active
 4065 *  @netdev: network interface device structure
 4066 *  @resuming: indicates whether we are in a resume call
 4067 *
 4068 *  Returns 0 on success, negative value on failure
 4069 *
 4070 *  The open entry point is called when a network interface is made
 4071 *  active by the system (IFF_UP).  At this point all resources needed
 4072 *  for transmit and receive operations are allocated, the interrupt
 4073 *  handler is registered with the OS, the watchdog timer is started,
 4074 *  and the stack is notified that the interface is ready.
 4075 **/
 4076static int __igb_open(struct net_device *netdev, bool resuming)
 4077{
 4078	struct igb_adapter *adapter = netdev_priv(netdev);
 4079	struct e1000_hw *hw = &adapter->hw;
 4080	struct pci_dev *pdev = adapter->pdev;
 4081	int err;
 4082	int i;
 4083
 4084	/* disallow open during test */
 4085	if (test_bit(__IGB_TESTING, &adapter->state)) {
 4086		WARN_ON(resuming);
 4087		return -EBUSY;
 4088	}
 4089
 4090	if (!resuming)
 4091		pm_runtime_get_sync(&pdev->dev);
 4092
 4093	netif_carrier_off(netdev);
 4094
 4095	/* allocate transmit descriptors */
 4096	err = igb_setup_all_tx_resources(adapter);
 4097	if (err)
 4098		goto err_setup_tx;
 4099
 4100	/* allocate receive descriptors */
 4101	err = igb_setup_all_rx_resources(adapter);
 4102	if (err)
 4103		goto err_setup_rx;
 4104
 4105	igb_power_up_link(adapter);
 4106
 4107	/* before we allocate an interrupt, we must be ready to handle it.
 4108	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 4109	 * as soon as we call pci_request_irq, so we have to setup our
 4110	 * clean_rx handler before we do so.
 4111	 */
 4112	igb_configure(adapter);
 4113
 4114	err = igb_request_irq(adapter);
 4115	if (err)
 4116		goto err_req_irq;
 4117
 4118	/* Notify the stack of the actual queue counts. */
 4119	err = netif_set_real_num_tx_queues(adapter->netdev,
 4120					   adapter->num_tx_queues);
 4121	if (err)
 4122		goto err_set_queues;
 4123
 4124	err = netif_set_real_num_rx_queues(adapter->netdev,
 4125					   adapter->num_rx_queues);
 4126	if (err)
 4127		goto err_set_queues;
 4128
 4129	/* From here on the code is the same as igb_up() */
 4130	clear_bit(__IGB_DOWN, &adapter->state);
 4131
 4132	for (i = 0; i < adapter->num_q_vectors; i++)
 4133		napi_enable(&(adapter->q_vector[i]->napi));
 4134
 4135	/* Clear any pending interrupts. */
 4136	rd32(E1000_TSICR);
 4137	rd32(E1000_ICR);
 4138
 4139	igb_irq_enable(adapter);
 4140
 4141	/* notify VFs that reset has been completed */
 4142	if (adapter->vfs_allocated_count) {
 4143		u32 reg_data = rd32(E1000_CTRL_EXT);
 4144
 4145		reg_data |= E1000_CTRL_EXT_PFRSTD;
 4146		wr32(E1000_CTRL_EXT, reg_data);
 4147	}
 4148
 4149	netif_tx_start_all_queues(netdev);
 4150
 4151	if (!resuming)
 4152		pm_runtime_put(&pdev->dev);
 4153
 4154	/* start the watchdog. */
 4155	hw->mac.get_link_status = 1;
 4156	schedule_work(&adapter->watchdog_task);
 4157
 4158	return 0;
 4159
 4160err_set_queues:
 4161	igb_free_irq(adapter);
 4162err_req_irq:
 4163	igb_release_hw_control(adapter);
 4164	igb_power_down_link(adapter);
 4165	igb_free_all_rx_resources(adapter);
 4166err_setup_rx:
 4167	igb_free_all_tx_resources(adapter);
 4168err_setup_tx:
 4169	igb_reset(adapter);
 4170	if (!resuming)
 4171		pm_runtime_put(&pdev->dev);
 4172
 4173	return err;
 4174}
 4175
 4176int igb_open(struct net_device *netdev)
 4177{
 4178	return __igb_open(netdev, false);
 4179}
 4180
 4181/**
 4182 *  __igb_close - Disables a network interface
 4183 *  @netdev: network interface device structure
 4184 *  @suspending: indicates we are in a suspend call
 4185 *
 4186 *  Returns 0, this is not allowed to fail
 4187 *
 4188 *  The close entry point is called when an interface is de-activated
 4189 *  by the OS.  The hardware is still under the driver's control, but
 4190 *  needs to be disabled.  A global MAC reset is issued to stop the
 4191 *  hardware, and all transmit and receive resources are freed.
 4192 **/
 4193static int __igb_close(struct net_device *netdev, bool suspending)
 4194{
 4195	struct igb_adapter *adapter = netdev_priv(netdev);
 4196	struct pci_dev *pdev = adapter->pdev;
 4197
 4198	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
 4199
 4200	if (!suspending)
 4201		pm_runtime_get_sync(&pdev->dev);
 4202
 4203	igb_down(adapter);
 4204	igb_free_irq(adapter);
 4205
 4206	igb_free_all_tx_resources(adapter);
 4207	igb_free_all_rx_resources(adapter);
 4208
 4209	if (!suspending)
 4210		pm_runtime_put_sync(&pdev->dev);
 4211	return 0;
 4212}
 4213
 4214int igb_close(struct net_device *netdev)
 4215{
 4216	if (netif_device_present(netdev) || netdev->dismantle)
 4217		return __igb_close(netdev, false);
 4218	return 0;
 4219}
 4220
 4221/**
 4222 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 4223 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
 4224 *
 4225 *  Return 0 on success, negative on failure
 4226 **/
 4227int igb_setup_tx_resources(struct igb_ring *tx_ring)
 4228{
 4229	struct device *dev = tx_ring->dev;
 4230	int size;
 4231
 4232	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
 4233
 4234	tx_ring->tx_buffer_info = vmalloc(size);
 4235	if (!tx_ring->tx_buffer_info)
 4236		goto err;
 4237
 4238	/* round up to nearest 4K */
 4239	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 4240	tx_ring->size = ALIGN(tx_ring->size, 4096);
 4241
 4242	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 4243					   &tx_ring->dma, GFP_KERNEL);
 4244	if (!tx_ring->desc)
 4245		goto err;
 4246
 4247	tx_ring->next_to_use = 0;
 4248	tx_ring->next_to_clean = 0;
 4249
 4250	return 0;
 4251
 4252err:
 4253	vfree(tx_ring->tx_buffer_info);
 4254	tx_ring->tx_buffer_info = NULL;
 4255	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
 4256	return -ENOMEM;
 4257}
 4258
 4259/**
 4260 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 4261 *				 (Descriptors) for all queues
 4262 *  @adapter: board private structure
 4263 *
 4264 *  Return 0 on success, negative on failure
 4265 **/
 4266static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
 4267{
 4268	struct pci_dev *pdev = adapter->pdev;
 4269	int i, err = 0;
 4270
 4271	for (i = 0; i < adapter->num_tx_queues; i++) {
 4272		err = igb_setup_tx_resources(adapter->tx_ring[i]);
 4273		if (err) {
 4274			dev_err(&pdev->dev,
 4275				"Allocation for Tx Queue %u failed\n", i);
 4276			for (i--; i >= 0; i--)
 4277				igb_free_tx_resources(adapter->tx_ring[i]);
 4278			break;
 4279		}
 4280	}
 4281
 4282	return err;
 4283}
 4284
 4285/**
 4286 *  igb_setup_tctl - configure the transmit control registers
 4287 *  @adapter: Board private structure
 4288 **/
 4289void igb_setup_tctl(struct igb_adapter *adapter)
 4290{
 4291	struct e1000_hw *hw = &adapter->hw;
 4292	u32 tctl;
 4293
 4294	/* disable queue 0 which is enabled by default on 82575 and 82576 */
 4295	wr32(E1000_TXDCTL(0), 0);
 4296
 4297	/* Program the Transmit Control Register */
 4298	tctl = rd32(E1000_TCTL);
 4299	tctl &= ~E1000_TCTL_CT;
 4300	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 4301		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 4302
 4303	igb_config_collision_dist(hw);
 4304
 4305	/* Enable transmits */
 4306	tctl |= E1000_TCTL_EN;
 4307
 4308	wr32(E1000_TCTL, tctl);
 4309}
 4310
 4311/**
 4312 *  igb_configure_tx_ring - Configure transmit ring after Reset
 4313 *  @adapter: board private structure
 4314 *  @ring: tx ring to configure
 4315 *
 4316 *  Configure a transmit ring after a reset.
 4317 **/
 4318void igb_configure_tx_ring(struct igb_adapter *adapter,
 4319			   struct igb_ring *ring)
 4320{
 4321	struct e1000_hw *hw = &adapter->hw;
 4322	u32 txdctl = 0;
 4323	u64 tdba = ring->dma;
 4324	int reg_idx = ring->reg_idx;
 4325
 4326	wr32(E1000_TDLEN(reg_idx),
 4327	     ring->count * sizeof(union e1000_adv_tx_desc));
 4328	wr32(E1000_TDBAL(reg_idx),
 4329	     tdba & 0x00000000ffffffffULL);
 4330	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
 4331
 4332	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
 4333	wr32(E1000_TDH(reg_idx), 0);
 4334	writel(0, ring->tail);
 4335
 4336	txdctl |= IGB_TX_PTHRESH;
 4337	txdctl |= IGB_TX_HTHRESH << 8;
 4338	txdctl |= IGB_TX_WTHRESH << 16;
 4339
 4340	/* reinitialize tx_buffer_info */
 4341	memset(ring->tx_buffer_info, 0,
 4342	       sizeof(struct igb_tx_buffer) * ring->count);
 4343
 4344	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
 4345	wr32(E1000_TXDCTL(reg_idx), txdctl);
 4346}
 4347
 4348/**
 4349 *  igb_configure_tx - Configure transmit Unit after Reset
 4350 *  @adapter: board private structure
 4351 *
 4352 *  Configure the Tx unit of the MAC after a reset.
 4353 **/
 4354static void igb_configure_tx(struct igb_adapter *adapter)
 4355{
 4356	struct e1000_hw *hw = &adapter->hw;
 4357	int i;
 4358
 4359	/* disable the queues */
 4360	for (i = 0; i < adapter->num_tx_queues; i++)
 4361		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
 4362
 4363	wrfl();
 4364	usleep_range(10000, 20000);
 4365
 4366	for (i = 0; i < adapter->num_tx_queues; i++)
 4367		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
 4368}
 4369
 4370/**
 4371 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 4372 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
 4373 *
 4374 *  Returns 0 on success, negative on failure
 4375 **/
 4376int igb_setup_rx_resources(struct igb_ring *rx_ring)
 4377{
 4378	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
 4379	struct device *dev = rx_ring->dev;
 4380	int size, res;
 4381
 4382	/* XDP RX-queue info */
 4383	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 4384		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4385	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 4386			       rx_ring->queue_index, 0);
 4387	if (res < 0) {
 4388		dev_err(dev, "Failed to register xdp_rxq index %u\n",
 4389			rx_ring->queue_index);
 4390		return res;
 4391	}
 4392
 4393	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
 4394
 4395	rx_ring->rx_buffer_info = vmalloc(size);
 4396	if (!rx_ring->rx_buffer_info)
 4397		goto err;
 4398
 4399	/* Round up to nearest 4K */
 4400	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
 4401	rx_ring->size = ALIGN(rx_ring->size, 4096);
 4402
 4403	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 4404					   &rx_ring->dma, GFP_KERNEL);
 4405	if (!rx_ring->desc)
 4406		goto err;
 4407
 4408	rx_ring->next_to_alloc = 0;
 4409	rx_ring->next_to_clean = 0;
 4410	rx_ring->next_to_use = 0;
 4411
 4412	rx_ring->xdp_prog = adapter->xdp_prog;
 4413
 4414	return 0;
 4415
 4416err:
 4417	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4418	vfree(rx_ring->rx_buffer_info);
 4419	rx_ring->rx_buffer_info = NULL;
 4420	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
 4421	return -ENOMEM;
 4422}
 4423
 4424/**
 4425 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 4426 *				 (Descriptors) for all queues
 4427 *  @adapter: board private structure
 4428 *
 4429 *  Return 0 on success, negative on failure
 4430 **/
 4431static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
 4432{
 4433	struct pci_dev *pdev = adapter->pdev;
 4434	int i, err = 0;
 4435
 4436	for (i = 0; i < adapter->num_rx_queues; i++) {
 4437		err = igb_setup_rx_resources(adapter->rx_ring[i]);
 4438		if (err) {
 4439			dev_err(&pdev->dev,
 4440				"Allocation for Rx Queue %u failed\n", i);
 4441			for (i--; i >= 0; i--)
 4442				igb_free_rx_resources(adapter->rx_ring[i]);
 4443			break;
 4444		}
 4445	}
 4446
 4447	return err;
 4448}
 4449
 4450/**
 4451 *  igb_setup_mrqc - configure the multiple receive queue control registers
 4452 *  @adapter: Board private structure
 4453 **/
 4454static void igb_setup_mrqc(struct igb_adapter *adapter)
 4455{
 4456	struct e1000_hw *hw = &adapter->hw;
 4457	u32 mrqc, rxcsum;
 4458	u32 j, num_rx_queues;
 4459	u32 rss_key[10];
 4460
 4461	netdev_rss_key_fill(rss_key, sizeof(rss_key));
 4462	for (j = 0; j < 10; j++)
 4463		wr32(E1000_RSSRK(j), rss_key[j]);
 4464
 4465	num_rx_queues = adapter->rss_queues;
 4466
 4467	switch (hw->mac.type) {
 4468	case e1000_82576:
 4469		/* 82576 supports 2 RSS queues for SR-IOV */
 4470		if (adapter->vfs_allocated_count)
 4471			num_rx_queues = 2;
 4472		break;
 4473	default:
 4474		break;
 4475	}
 4476
 4477	if (adapter->rss_indir_tbl_init != num_rx_queues) {
 4478		for (j = 0; j < IGB_RETA_SIZE; j++)
 4479			adapter->rss_indir_tbl[j] =
 4480			(j * num_rx_queues) / IGB_RETA_SIZE;
 4481		adapter->rss_indir_tbl_init = num_rx_queues;
 4482	}
 4483	igb_write_rss_indir_tbl(adapter);
 4484
 4485	/* Disable raw packet checksumming so that RSS hash is placed in
 4486	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 4487	 * offloads as they are enabled by default
 4488	 */
 4489	rxcsum = rd32(E1000_RXCSUM);
 4490	rxcsum |= E1000_RXCSUM_PCSD;
 4491
 4492	if (adapter->hw.mac.type >= e1000_82576)
 4493		/* Enable Receive Checksum Offload for SCTP */
 4494		rxcsum |= E1000_RXCSUM_CRCOFL;
 4495
 4496	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 4497	wr32(E1000_RXCSUM, rxcsum);
 4498
 4499	/* Generate RSS hash based on packet types, TCP/UDP
 4500	 * port numbers and/or IPv4/v6 src and dst addresses
 4501	 */
 4502	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
 4503	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
 4504	       E1000_MRQC_RSS_FIELD_IPV6 |
 4505	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
 4506	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
 4507
 4508	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
 4509		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
 4510	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
 4511		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
 4512
 4513	/* If VMDq is enabled then we set the appropriate mode for that, else
 4514	 * we default to RSS so that an RSS hash is calculated per packet even
 4515	 * if we are only using one queue
 4516	 */
 4517	if (adapter->vfs_allocated_count) {
 4518		if (hw->mac.type > e1000_82575) {
 4519			/* Set the default pool for the PF's first queue */
 4520			u32 vtctl = rd32(E1000_VT_CTL);
 4521
 4522			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
 4523				   E1000_VT_CTL_DISABLE_DEF_POOL);
 4524			vtctl |= adapter->vfs_allocated_count <<
 4525				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
 4526			wr32(E1000_VT_CTL, vtctl);
 4527		}
 4528		if (adapter->rss_queues > 1)
 4529			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
 4530		else
 4531			mrqc |= E1000_MRQC_ENABLE_VMDQ;
 4532	} else {
 4533		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
 
 4534	}
 4535	igb_vmm_control(adapter);
 4536
 4537	wr32(E1000_MRQC, mrqc);
 4538}
 4539
 4540/**
 4541 *  igb_setup_rctl - configure the receive control registers
 4542 *  @adapter: Board private structure
 4543 **/
 4544void igb_setup_rctl(struct igb_adapter *adapter)
 4545{
 4546	struct e1000_hw *hw = &adapter->hw;
 4547	u32 rctl;
 4548
 4549	rctl = rd32(E1000_RCTL);
 4550
 4551	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 4552	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
 4553
 4554	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
 4555		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 4556
 4557	/* enable stripping of CRC. It's unlikely this will break BMC
 4558	 * redirection as it did with e1000. Newer features require
 4559	 * that the HW strips the CRC.
 4560	 */
 4561	rctl |= E1000_RCTL_SECRC;
 4562
 4563	/* disable store bad packets and clear size bits. */
 4564	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
 4565
 4566	/* enable LPE to allow for reception of jumbo frames */
 4567	rctl |= E1000_RCTL_LPE;
 4568
 4569	/* disable queue 0 to prevent tail write w/o re-config */
 4570	wr32(E1000_RXDCTL(0), 0);
 4571
 4572	/* Attention!!!  For SR-IOV PF driver operations you must enable
 4573	 * queue drop for all VF and PF queues to prevent head of line blocking
 4574	 * if an un-trusted VF does not provide descriptors to hardware.
 4575	 */
 4576	if (adapter->vfs_allocated_count) {
 4577		/* set all queue drop enable bits */
 4578		wr32(E1000_QDE, ALL_QUEUES);
 4579	}
 4580
 4581	/* This is useful for sniffing bad packets. */
 4582	if (adapter->netdev->features & NETIF_F_RXALL) {
 4583		/* UPE and MPE will be handled by normal PROMISC logic
 4584		 * in e1000e_set_rx_mode
 4585		 */
 4586		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
 4587			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
 4588			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 4589
 4590		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
 4591			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 4592		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
 4593		 * and that breaks VLANs.
 4594		 */
 4595	}
 4596
 4597	wr32(E1000_RCTL, rctl);
 4598}
 4599
 4600static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
 4601				   int vfn)
 4602{
 4603	struct e1000_hw *hw = &adapter->hw;
 4604	u32 vmolr;
 4605
 4606	if (size > MAX_JUMBO_FRAME_SIZE)
 4607		size = MAX_JUMBO_FRAME_SIZE;
 4608
 4609	vmolr = rd32(E1000_VMOLR(vfn));
 4610	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 4611	vmolr |= size | E1000_VMOLR_LPE;
 4612	wr32(E1000_VMOLR(vfn), vmolr);
 4613
 4614	return 0;
 4615}
 4616
 4617static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
 4618					 int vfn, bool enable)
 4619{
 4620	struct e1000_hw *hw = &adapter->hw;
 4621	u32 val, reg;
 4622
 4623	if (hw->mac.type < e1000_82576)
 4624		return;
 4625
 4626	if (hw->mac.type == e1000_i350)
 4627		reg = E1000_DVMOLR(vfn);
 4628	else
 4629		reg = E1000_VMOLR(vfn);
 4630
 4631	val = rd32(reg);
 4632	if (enable)
 4633		val |= E1000_VMOLR_STRVLAN;
 4634	else
 4635		val &= ~(E1000_VMOLR_STRVLAN);
 4636	wr32(reg, val);
 4637}
 4638
 4639static inline void igb_set_vmolr(struct igb_adapter *adapter,
 4640				 int vfn, bool aupe)
 4641{
 4642	struct e1000_hw *hw = &adapter->hw;
 4643	u32 vmolr;
 4644
 4645	/* This register exists only on 82576 and newer so if we are older then
 4646	 * we should exit and do nothing
 4647	 */
 4648	if (hw->mac.type < e1000_82576)
 4649		return;
 4650
 4651	vmolr = rd32(E1000_VMOLR(vfn));
 4652	if (aupe)
 4653		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
 4654	else
 4655		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
 4656
 4657	/* clear all bits that might not be set */
 4658	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
 4659
 4660	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
 4661		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
 4662	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
 4663	 * multicast packets
 4664	 */
 4665	if (vfn <= adapter->vfs_allocated_count)
 4666		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
 4667
 4668	wr32(E1000_VMOLR(vfn), vmolr);
 4669}
 4670
 4671/**
 4672 *  igb_setup_srrctl - configure the split and replication receive control
 4673 *                     registers
 4674 *  @adapter: Board private structure
 4675 *  @ring: receive ring to be configured
 4676 **/
 4677void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
 4678{
 4679	struct e1000_hw *hw = &adapter->hw;
 4680	int reg_idx = ring->reg_idx;
 4681	u32 srrctl = 0;
 4682
 4683	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
 4684	if (ring_uses_large_buffer(ring))
 4685		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4686	else
 4687		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4688	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
 4689	if (hw->mac.type >= e1000_82580)
 4690		srrctl |= E1000_SRRCTL_TIMESTAMP;
 4691	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
 4692	 * queues and rx flow control is disabled
 4693	 */
 4694	if (adapter->vfs_allocated_count ||
 4695	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
 4696	     adapter->num_rx_queues > 1))
 4697		srrctl |= E1000_SRRCTL_DROP_EN;
 4698
 4699	wr32(E1000_SRRCTL(reg_idx), srrctl);
 4700}
 4701
 4702/**
 4703 *  igb_configure_rx_ring - Configure a receive ring after Reset
 4704 *  @adapter: board private structure
 4705 *  @ring: receive ring to be configured
 4706 *
 4707 *  Configure the Rx unit of the MAC after a reset.
 4708 **/
 4709void igb_configure_rx_ring(struct igb_adapter *adapter,
 4710			   struct igb_ring *ring)
 4711{
 4712	struct e1000_hw *hw = &adapter->hw;
 4713	union e1000_adv_rx_desc *rx_desc;
 4714	u64 rdba = ring->dma;
 4715	int reg_idx = ring->reg_idx;
 4716	u32 rxdctl = 0;
 4717
 4718	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 4719	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 4720					   MEM_TYPE_PAGE_SHARED, NULL));
 4721
 4722	/* disable the queue */
 4723	wr32(E1000_RXDCTL(reg_idx), 0);
 4724
 4725	/* Set DMA base address registers */
 4726	wr32(E1000_RDBAL(reg_idx),
 4727	     rdba & 0x00000000ffffffffULL);
 4728	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
 4729	wr32(E1000_RDLEN(reg_idx),
 4730	     ring->count * sizeof(union e1000_adv_rx_desc));
 4731
 4732	/* initialize head and tail */
 4733	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
 4734	wr32(E1000_RDH(reg_idx), 0);
 4735	writel(0, ring->tail);
 4736
 4737	/* set descriptor configuration */
 4738	igb_setup_srrctl(adapter, ring);
 
 
 
 
 
 
 
 
 
 
 
 
 4739
 4740	/* set filtering for VMDQ pools */
 4741	igb_set_vmolr(adapter, reg_idx & 0x7, true);
 4742
 4743	rxdctl |= IGB_RX_PTHRESH;
 4744	rxdctl |= IGB_RX_HTHRESH << 8;
 4745	rxdctl |= IGB_RX_WTHRESH << 16;
 4746
 4747	/* initialize rx_buffer_info */
 4748	memset(ring->rx_buffer_info, 0,
 4749	       sizeof(struct igb_rx_buffer) * ring->count);
 4750
 4751	/* initialize Rx descriptor 0 */
 4752	rx_desc = IGB_RX_DESC(ring, 0);
 4753	rx_desc->wb.upper.length = 0;
 4754
 4755	/* enable receive descriptor fetching */
 4756	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
 4757	wr32(E1000_RXDCTL(reg_idx), rxdctl);
 4758}
 4759
 4760static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
 4761				  struct igb_ring *rx_ring)
 4762{
 4763	/* set build_skb and buffer size flags */
 4764	clear_ring_build_skb_enabled(rx_ring);
 4765	clear_ring_uses_large_buffer(rx_ring);
 4766
 4767	if (adapter->flags & IGB_FLAG_RX_LEGACY)
 4768		return;
 4769
 4770	set_ring_build_skb_enabled(rx_ring);
 4771
 4772#if (PAGE_SIZE < 8192)
 4773	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 4774		return;
 4775
 4776	set_ring_uses_large_buffer(rx_ring);
 4777#endif
 4778}
 4779
 4780/**
 4781 *  igb_configure_rx - Configure receive Unit after Reset
 4782 *  @adapter: board private structure
 4783 *
 4784 *  Configure the Rx unit of the MAC after a reset.
 4785 **/
 4786static void igb_configure_rx(struct igb_adapter *adapter)
 4787{
 4788	int i;
 4789
 4790	/* set the correct pool for the PF default MAC address in entry 0 */
 4791	igb_set_default_mac_filter(adapter);
 4792
 4793	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 4794	 * the Base and Length of the Rx Descriptor Ring
 4795	 */
 4796	for (i = 0; i < adapter->num_rx_queues; i++) {
 4797		struct igb_ring *rx_ring = adapter->rx_ring[i];
 4798
 4799		igb_set_rx_buffer_len(adapter, rx_ring);
 4800		igb_configure_rx_ring(adapter, rx_ring);
 4801	}
 4802}
 4803
 4804/**
 4805 *  igb_free_tx_resources - Free Tx Resources per Queue
 4806 *  @tx_ring: Tx descriptor ring for a specific queue
 4807 *
 4808 *  Free all transmit software resources
 4809 **/
 4810void igb_free_tx_resources(struct igb_ring *tx_ring)
 4811{
 4812	igb_clean_tx_ring(tx_ring);
 4813
 4814	vfree(tx_ring->tx_buffer_info);
 4815	tx_ring->tx_buffer_info = NULL;
 4816
 4817	/* if not set, then don't free */
 4818	if (!tx_ring->desc)
 4819		return;
 4820
 4821	dma_free_coherent(tx_ring->dev, tx_ring->size,
 4822			  tx_ring->desc, tx_ring->dma);
 4823
 4824	tx_ring->desc = NULL;
 4825}
 4826
 4827/**
 4828 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 4829 *  @adapter: board private structure
 4830 *
 4831 *  Free all transmit software resources
 4832 **/
 4833static void igb_free_all_tx_resources(struct igb_adapter *adapter)
 4834{
 4835	int i;
 4836
 4837	for (i = 0; i < adapter->num_tx_queues; i++)
 4838		if (adapter->tx_ring[i])
 4839			igb_free_tx_resources(adapter->tx_ring[i]);
 4840}
 4841
 4842/**
 4843 *  igb_clean_tx_ring - Free Tx Buffers
 4844 *  @tx_ring: ring to be cleaned
 4845 **/
 4846static void igb_clean_tx_ring(struct igb_ring *tx_ring)
 4847{
 4848	u16 i = tx_ring->next_to_clean;
 4849	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 4850
 4851	while (i != tx_ring->next_to_use) {
 4852		union e1000_adv_tx_desc *eop_desc, *tx_desc;
 4853
 4854		/* Free all the Tx ring sk_buffs or xdp frames */
 4855		if (tx_buffer->type == IGB_TYPE_SKB)
 4856			dev_kfree_skb_any(tx_buffer->skb);
 4857		else
 4858			xdp_return_frame(tx_buffer->xdpf);
 4859
 4860		/* unmap skb header data */
 4861		dma_unmap_single(tx_ring->dev,
 4862				 dma_unmap_addr(tx_buffer, dma),
 4863				 dma_unmap_len(tx_buffer, len),
 4864				 DMA_TO_DEVICE);
 4865
 4866		/* check for eop_desc to determine the end of the packet */
 4867		eop_desc = tx_buffer->next_to_watch;
 4868		tx_desc = IGB_TX_DESC(tx_ring, i);
 4869
 4870		/* unmap remaining buffers */
 4871		while (tx_desc != eop_desc) {
 4872			tx_buffer++;
 4873			tx_desc++;
 4874			i++;
 4875			if (unlikely(i == tx_ring->count)) {
 4876				i = 0;
 4877				tx_buffer = tx_ring->tx_buffer_info;
 4878				tx_desc = IGB_TX_DESC(tx_ring, 0);
 4879			}
 4880
 4881			/* unmap any remaining paged data */
 4882			if (dma_unmap_len(tx_buffer, len))
 4883				dma_unmap_page(tx_ring->dev,
 4884					       dma_unmap_addr(tx_buffer, dma),
 4885					       dma_unmap_len(tx_buffer, len),
 4886					       DMA_TO_DEVICE);
 4887		}
 4888
 4889		tx_buffer->next_to_watch = NULL;
 4890
 4891		/* move us one more past the eop_desc for start of next pkt */
 4892		tx_buffer++;
 4893		i++;
 4894		if (unlikely(i == tx_ring->count)) {
 4895			i = 0;
 4896			tx_buffer = tx_ring->tx_buffer_info;
 4897		}
 4898	}
 4899
 4900	/* reset BQL for queue */
 4901	netdev_tx_reset_queue(txring_txq(tx_ring));
 4902
 4903	/* reset next_to_use and next_to_clean */
 4904	tx_ring->next_to_use = 0;
 4905	tx_ring->next_to_clean = 0;
 4906}
 4907
 4908/**
 4909 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 4910 *  @adapter: board private structure
 4911 **/
 4912static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
 4913{
 4914	int i;
 4915
 4916	for (i = 0; i < adapter->num_tx_queues; i++)
 4917		if (adapter->tx_ring[i])
 4918			igb_clean_tx_ring(adapter->tx_ring[i]);
 4919}
 4920
 4921/**
 4922 *  igb_free_rx_resources - Free Rx Resources
 4923 *  @rx_ring: ring to clean the resources from
 4924 *
 4925 *  Free all receive software resources
 4926 **/
 4927void igb_free_rx_resources(struct igb_ring *rx_ring)
 4928{
 4929	igb_clean_rx_ring(rx_ring);
 4930
 4931	rx_ring->xdp_prog = NULL;
 4932	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4933	vfree(rx_ring->rx_buffer_info);
 4934	rx_ring->rx_buffer_info = NULL;
 4935
 4936	/* if not set, then don't free */
 4937	if (!rx_ring->desc)
 4938		return;
 4939
 4940	dma_free_coherent(rx_ring->dev, rx_ring->size,
 4941			  rx_ring->desc, rx_ring->dma);
 4942
 4943	rx_ring->desc = NULL;
 4944}
 4945
 4946/**
 4947 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 4948 *  @adapter: board private structure
 4949 *
 4950 *  Free all receive software resources
 4951 **/
 4952static void igb_free_all_rx_resources(struct igb_adapter *adapter)
 4953{
 4954	int i;
 4955
 4956	for (i = 0; i < adapter->num_rx_queues; i++)
 4957		if (adapter->rx_ring[i])
 4958			igb_free_rx_resources(adapter->rx_ring[i]);
 4959}
 4960
 4961/**
 4962 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 4963 *  @rx_ring: ring to free buffers from
 4964 **/
 4965static void igb_clean_rx_ring(struct igb_ring *rx_ring)
 4966{
 4967	u16 i = rx_ring->next_to_clean;
 4968
 4969	dev_kfree_skb(rx_ring->skb);
 4970	rx_ring->skb = NULL;
 4971
 4972	/* Free all the Rx ring sk_buffs */
 4973	while (i != rx_ring->next_to_alloc) {
 4974		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 4975
 4976		/* Invalidate cache lines that may have been written to by
 4977		 * device so that we avoid corrupting memory.
 4978		 */
 4979		dma_sync_single_range_for_cpu(rx_ring->dev,
 4980					      buffer_info->dma,
 4981					      buffer_info->page_offset,
 4982					      igb_rx_bufsz(rx_ring),
 4983					      DMA_FROM_DEVICE);
 4984
 4985		/* free resources associated with mapping */
 4986		dma_unmap_page_attrs(rx_ring->dev,
 4987				     buffer_info->dma,
 4988				     igb_rx_pg_size(rx_ring),
 4989				     DMA_FROM_DEVICE,
 4990				     IGB_RX_DMA_ATTR);
 4991		__page_frag_cache_drain(buffer_info->page,
 4992					buffer_info->pagecnt_bias);
 4993
 4994		i++;
 4995		if (i == rx_ring->count)
 4996			i = 0;
 4997	}
 4998
 4999	rx_ring->next_to_alloc = 0;
 5000	rx_ring->next_to_clean = 0;
 5001	rx_ring->next_to_use = 0;
 5002}
 5003
 5004/**
 5005 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 5006 *  @adapter: board private structure
 5007 **/
 5008static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
 5009{
 5010	int i;
 5011
 5012	for (i = 0; i < adapter->num_rx_queues; i++)
 5013		if (adapter->rx_ring[i])
 5014			igb_clean_rx_ring(adapter->rx_ring[i]);
 5015}
 5016
 5017/**
 5018 *  igb_set_mac - Change the Ethernet Address of the NIC
 5019 *  @netdev: network interface device structure
 5020 *  @p: pointer to an address structure
 5021 *
 5022 *  Returns 0 on success, negative on failure
 5023 **/
 5024static int igb_set_mac(struct net_device *netdev, void *p)
 5025{
 5026	struct igb_adapter *adapter = netdev_priv(netdev);
 5027	struct e1000_hw *hw = &adapter->hw;
 5028	struct sockaddr *addr = p;
 5029
 5030	if (!is_valid_ether_addr(addr->sa_data))
 5031		return -EADDRNOTAVAIL;
 5032
 5033	eth_hw_addr_set(netdev, addr->sa_data);
 5034	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 5035
 5036	/* set the correct pool for the new PF MAC address in entry 0 */
 5037	igb_set_default_mac_filter(adapter);
 5038
 5039	return 0;
 5040}
 5041
 5042/**
 5043 *  igb_write_mc_addr_list - write multicast addresses to MTA
 5044 *  @netdev: network interface device structure
 5045 *
 5046 *  Writes multicast address list to the MTA hash table.
 5047 *  Returns: -ENOMEM on failure
 5048 *           0 on no addresses written
 5049 *           X on writing X addresses to MTA
 5050 **/
 5051static int igb_write_mc_addr_list(struct net_device *netdev)
 5052{
 5053	struct igb_adapter *adapter = netdev_priv(netdev);
 5054	struct e1000_hw *hw = &adapter->hw;
 5055	struct netdev_hw_addr *ha;
 5056	u8  *mta_list;
 5057	int i;
 5058
 5059	if (netdev_mc_empty(netdev)) {
 5060		/* nothing to program, so clear mc list */
 5061		igb_update_mc_addr_list(hw, NULL, 0);
 5062		igb_restore_vf_multicasts(adapter);
 5063		return 0;
 5064	}
 5065
 5066	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
 5067	if (!mta_list)
 5068		return -ENOMEM;
 5069
 5070	/* The shared function expects a packed array of only addresses. */
 5071	i = 0;
 5072	netdev_for_each_mc_addr(ha, netdev)
 5073		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 5074
 5075	igb_update_mc_addr_list(hw, mta_list, i);
 5076	kfree(mta_list);
 5077
 5078	return netdev_mc_count(netdev);
 5079}
 5080
 5081static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
 5082{
 5083	struct e1000_hw *hw = &adapter->hw;
 5084	u32 i, pf_id;
 5085
 5086	switch (hw->mac.type) {
 5087	case e1000_i210:
 5088	case e1000_i211:
 5089	case e1000_i350:
 5090		/* VLAN filtering needed for VLAN prio filter */
 5091		if (adapter->netdev->features & NETIF_F_NTUPLE)
 5092			break;
 5093		fallthrough;
 5094	case e1000_82576:
 5095	case e1000_82580:
 5096	case e1000_i354:
 5097		/* VLAN filtering needed for pool filtering */
 5098		if (adapter->vfs_allocated_count)
 5099			break;
 5100		fallthrough;
 5101	default:
 5102		return 1;
 5103	}
 5104
 5105	/* We are already in VLAN promisc, nothing to do */
 5106	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 5107		return 0;
 5108
 5109	if (!adapter->vfs_allocated_count)
 5110		goto set_vfta;
 5111
 5112	/* Add PF to all active pools */
 5113	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5114
 5115	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5116		u32 vlvf = rd32(E1000_VLVF(i));
 5117
 5118		vlvf |= BIT(pf_id);
 5119		wr32(E1000_VLVF(i), vlvf);
 5120	}
 5121
 5122set_vfta:
 5123	/* Set all bits in the VLAN filter table array */
 5124	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
 5125		hw->mac.ops.write_vfta(hw, i, ~0U);
 5126
 5127	/* Set flag so we don't redo unnecessary work */
 5128	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
 5129
 5130	return 0;
 5131}
 5132
 5133#define VFTA_BLOCK_SIZE 8
 5134static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
 5135{
 5136	struct e1000_hw *hw = &adapter->hw;
 5137	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
 5138	u32 vid_start = vfta_offset * 32;
 5139	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
 5140	u32 i, vid, word, bits, pf_id;
 5141
 5142	/* guarantee that we don't scrub out management VLAN */
 5143	vid = adapter->mng_vlan_id;
 5144	if (vid >= vid_start && vid < vid_end)
 5145		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5146
 5147	if (!adapter->vfs_allocated_count)
 5148		goto set_vfta;
 5149
 5150	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5151
 5152	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5153		u32 vlvf = rd32(E1000_VLVF(i));
 5154
 5155		/* pull VLAN ID from VLVF */
 5156		vid = vlvf & VLAN_VID_MASK;
 5157
 5158		/* only concern ourselves with a certain range */
 5159		if (vid < vid_start || vid >= vid_end)
 5160			continue;
 5161
 5162		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
 5163			/* record VLAN ID in VFTA */
 5164			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5165
 5166			/* if PF is part of this then continue */
 5167			if (test_bit(vid, adapter->active_vlans))
 5168				continue;
 5169		}
 5170
 5171		/* remove PF from the pool */
 5172		bits = ~BIT(pf_id);
 5173		bits &= rd32(E1000_VLVF(i));
 5174		wr32(E1000_VLVF(i), bits);
 5175	}
 5176
 5177set_vfta:
 5178	/* extract values from active_vlans and write back to VFTA */
 5179	for (i = VFTA_BLOCK_SIZE; i--;) {
 5180		vid = (vfta_offset + i) * 32;
 5181		word = vid / BITS_PER_LONG;
 5182		bits = vid % BITS_PER_LONG;
 5183
 5184		vfta[i] |= adapter->active_vlans[word] >> bits;
 5185
 5186		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
 5187	}
 5188}
 5189
 5190static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
 5191{
 5192	u32 i;
 5193
 5194	/* We are not in VLAN promisc, nothing to do */
 5195	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 5196		return;
 5197
 5198	/* Set flag so we don't redo unnecessary work */
 5199	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 5200
 5201	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
 5202		igb_scrub_vfta(adapter, i);
 5203}
 5204
 5205/**
 5206 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 5207 *  @netdev: network interface device structure
 5208 *
 5209 *  The set_rx_mode entry point is called whenever the unicast or multicast
 5210 *  address lists or the network interface flags are updated.  This routine is
 5211 *  responsible for configuring the hardware for proper unicast, multicast,
 5212 *  promiscuous mode, and all-multi behavior.
 5213 **/
 5214static void igb_set_rx_mode(struct net_device *netdev)
 5215{
 5216	struct igb_adapter *adapter = netdev_priv(netdev);
 5217	struct e1000_hw *hw = &adapter->hw;
 5218	unsigned int vfn = adapter->vfs_allocated_count;
 5219	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
 5220	int count;
 5221
 5222	/* Check for Promiscuous and All Multicast modes */
 5223	if (netdev->flags & IFF_PROMISC) {
 5224		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
 5225		vmolr |= E1000_VMOLR_MPME;
 5226
 5227		/* enable use of UTA filter to force packets to default pool */
 5228		if (hw->mac.type == e1000_82576)
 5229			vmolr |= E1000_VMOLR_ROPE;
 5230	} else {
 5231		if (netdev->flags & IFF_ALLMULTI) {
 5232			rctl |= E1000_RCTL_MPE;
 5233			vmolr |= E1000_VMOLR_MPME;
 5234		} else {
 5235			/* Write addresses to the MTA, if the attempt fails
 5236			 * then we should just turn on promiscuous mode so
 5237			 * that we can at least receive multicast traffic
 5238			 */
 5239			count = igb_write_mc_addr_list(netdev);
 5240			if (count < 0) {
 5241				rctl |= E1000_RCTL_MPE;
 5242				vmolr |= E1000_VMOLR_MPME;
 5243			} else if (count) {
 5244				vmolr |= E1000_VMOLR_ROMPE;
 5245			}
 5246		}
 5247	}
 5248
 5249	/* Write addresses to available RAR registers, if there is not
 5250	 * sufficient space to store all the addresses then enable
 5251	 * unicast promiscuous mode
 5252	 */
 5253	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
 5254		rctl |= E1000_RCTL_UPE;
 5255		vmolr |= E1000_VMOLR_ROPE;
 5256	}
 5257
 5258	/* enable VLAN filtering by default */
 5259	rctl |= E1000_RCTL_VFE;
 5260
 5261	/* disable VLAN filtering for modes that require it */
 5262	if ((netdev->flags & IFF_PROMISC) ||
 5263	    (netdev->features & NETIF_F_RXALL)) {
 5264		/* if we fail to set all rules then just clear VFE */
 5265		if (igb_vlan_promisc_enable(adapter))
 5266			rctl &= ~E1000_RCTL_VFE;
 5267	} else {
 5268		igb_vlan_promisc_disable(adapter);
 5269	}
 5270
 5271	/* update state of unicast, multicast, and VLAN filtering modes */
 5272	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
 5273				     E1000_RCTL_VFE);
 5274	wr32(E1000_RCTL, rctl);
 5275
 5276#if (PAGE_SIZE < 8192)
 5277	if (!adapter->vfs_allocated_count) {
 5278		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5279			rlpml = IGB_MAX_FRAME_BUILD_SKB;
 5280	}
 5281#endif
 5282	wr32(E1000_RLPML, rlpml);
 5283
 5284	/* In order to support SR-IOV and eventually VMDq it is necessary to set
 5285	 * the VMOLR to enable the appropriate modes.  Without this workaround
 5286	 * we will have issues with VLAN tag stripping not being done for frames
 5287	 * that are only arriving because we are the default pool
 5288	 */
 5289	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
 5290		return;
 5291
 5292	/* set UTA to appropriate mode */
 5293	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
 5294
 5295	vmolr |= rd32(E1000_VMOLR(vfn)) &
 5296		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
 5297
 5298	/* enable Rx jumbo frames, restrict as needed to support build_skb */
 5299	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 5300#if (PAGE_SIZE < 8192)
 5301	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5302		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
 5303	else
 5304#endif
 5305		vmolr |= MAX_JUMBO_FRAME_SIZE;
 5306	vmolr |= E1000_VMOLR_LPE;
 5307
 5308	wr32(E1000_VMOLR(vfn), vmolr);
 5309
 5310	igb_restore_vf_multicasts(adapter);
 5311}
 5312
 5313static void igb_check_wvbr(struct igb_adapter *adapter)
 5314{
 5315	struct e1000_hw *hw = &adapter->hw;
 5316	u32 wvbr = 0;
 5317
 5318	switch (hw->mac.type) {
 5319	case e1000_82576:
 5320	case e1000_i350:
 5321		wvbr = rd32(E1000_WVBR);
 5322		if (!wvbr)
 5323			return;
 5324		break;
 5325	default:
 5326		break;
 5327	}
 5328
 5329	adapter->wvbr |= wvbr;
 5330}
 5331
 5332#define IGB_STAGGERED_QUEUE_OFFSET 8
 5333
 5334static void igb_spoof_check(struct igb_adapter *adapter)
 5335{
 5336	int j;
 5337
 5338	if (!adapter->wvbr)
 5339		return;
 5340
 5341	for (j = 0; j < adapter->vfs_allocated_count; j++) {
 5342		if (adapter->wvbr & BIT(j) ||
 5343		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
 5344			dev_warn(&adapter->pdev->dev,
 5345				"Spoof event(s) detected on VF %d\n", j);
 5346			adapter->wvbr &=
 5347				~(BIT(j) |
 5348				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
 5349		}
 5350	}
 5351}
 5352
 5353/* Need to wait a few seconds after link up to get diagnostic information from
 5354 * the phy
 5355 */
 5356static void igb_update_phy_info(struct timer_list *t)
 5357{
 5358	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
 5359	igb_get_phy_info(&adapter->hw);
 5360}
 5361
 5362/**
 5363 *  igb_has_link - check shared code for link and determine up/down
 5364 *  @adapter: pointer to driver private info
 5365 **/
 5366bool igb_has_link(struct igb_adapter *adapter)
 5367{
 5368	struct e1000_hw *hw = &adapter->hw;
 5369	bool link_active = false;
 5370
 5371	/* get_link_status is set on LSC (link status) interrupt or
 5372	 * rx sequence error interrupt.  get_link_status will stay
 5373	 * false until the e1000_check_for_link establishes link
 5374	 * for copper adapters ONLY
 5375	 */
 5376	switch (hw->phy.media_type) {
 5377	case e1000_media_type_copper:
 5378		if (!hw->mac.get_link_status)
 5379			return true;
 5380		fallthrough;
 5381	case e1000_media_type_internal_serdes:
 5382		hw->mac.ops.check_for_link(hw);
 5383		link_active = !hw->mac.get_link_status;
 5384		break;
 5385	default:
 5386	case e1000_media_type_unknown:
 5387		break;
 5388	}
 5389
 5390	if (((hw->mac.type == e1000_i210) ||
 5391	     (hw->mac.type == e1000_i211)) &&
 5392	     (hw->phy.id == I210_I_PHY_ID)) {
 5393		if (!netif_carrier_ok(adapter->netdev)) {
 5394			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5395		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
 5396			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
 5397			adapter->link_check_timeout = jiffies;
 5398		}
 5399	}
 5400
 5401	return link_active;
 5402}
 5403
 5404static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
 5405{
 5406	bool ret = false;
 5407	u32 ctrl_ext, thstat;
 5408
 5409	/* check for thermal sensor event on i350 copper only */
 5410	if (hw->mac.type == e1000_i350) {
 5411		thstat = rd32(E1000_THSTAT);
 5412		ctrl_ext = rd32(E1000_CTRL_EXT);
 5413
 5414		if ((hw->phy.media_type == e1000_media_type_copper) &&
 5415		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
 5416			ret = !!(thstat & event);
 5417	}
 5418
 5419	return ret;
 5420}
 5421
 5422/**
 5423 *  igb_check_lvmmc - check for malformed packets received
 5424 *  and indicated in LVMMC register
 5425 *  @adapter: pointer to adapter
 5426 **/
 5427static void igb_check_lvmmc(struct igb_adapter *adapter)
 5428{
 5429	struct e1000_hw *hw = &adapter->hw;
 5430	u32 lvmmc;
 5431
 5432	lvmmc = rd32(E1000_LVMMC);
 5433	if (lvmmc) {
 5434		if (unlikely(net_ratelimit())) {
 5435			netdev_warn(adapter->netdev,
 5436				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
 5437				    lvmmc);
 5438		}
 5439	}
 5440}
 5441
 5442/**
 5443 *  igb_watchdog - Timer Call-back
 5444 *  @t: pointer to timer_list containing our private info pointer
 5445 **/
 5446static void igb_watchdog(struct timer_list *t)
 5447{
 5448	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
 5449	/* Do the rest outside of interrupt context */
 5450	schedule_work(&adapter->watchdog_task);
 5451}
 5452
 5453static void igb_watchdog_task(struct work_struct *work)
 5454{
 5455	struct igb_adapter *adapter = container_of(work,
 5456						   struct igb_adapter,
 5457						   watchdog_task);
 5458	struct e1000_hw *hw = &adapter->hw;
 5459	struct e1000_phy_info *phy = &hw->phy;
 5460	struct net_device *netdev = adapter->netdev;
 5461	u32 link;
 5462	int i;
 5463	u32 connsw;
 5464	u16 phy_data, retry_count = 20;
 5465
 5466	link = igb_has_link(adapter);
 5467
 5468	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
 5469		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
 5470			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5471		else
 5472			link = false;
 5473	}
 5474
 5475	/* Force link down if we have fiber to swap to */
 5476	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5477		if (hw->phy.media_type == e1000_media_type_copper) {
 5478			connsw = rd32(E1000_CONNSW);
 5479			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
 5480				link = 0;
 5481		}
 5482	}
 5483	if (link) {
 5484		/* Perform a reset if the media type changed. */
 5485		if (hw->dev_spec._82575.media_changed) {
 5486			hw->dev_spec._82575.media_changed = false;
 5487			adapter->flags |= IGB_FLAG_MEDIA_RESET;
 5488			igb_reset(adapter);
 5489		}
 5490		/* Cancel scheduled suspend requests. */
 5491		pm_runtime_resume(netdev->dev.parent);
 5492
 5493		if (!netif_carrier_ok(netdev)) {
 5494			u32 ctrl;
 5495
 5496			hw->mac.ops.get_speed_and_duplex(hw,
 5497							 &adapter->link_speed,
 5498							 &adapter->link_duplex);
 5499
 5500			ctrl = rd32(E1000_CTRL);
 5501			/* Links status message must follow this format */
 5502			netdev_info(netdev,
 5503			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
 5504			       netdev->name,
 5505			       adapter->link_speed,
 5506			       adapter->link_duplex == FULL_DUPLEX ?
 5507			       "Full" : "Half",
 5508			       (ctrl & E1000_CTRL_TFCE) &&
 5509			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
 5510			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
 5511			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
 5512
 5513			/* disable EEE if enabled */
 5514			if ((adapter->flags & IGB_FLAG_EEE) &&
 5515				(adapter->link_duplex == HALF_DUPLEX)) {
 5516				dev_info(&adapter->pdev->dev,
 5517				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
 5518				adapter->hw.dev_spec._82575.eee_disable = true;
 5519				adapter->flags &= ~IGB_FLAG_EEE;
 5520			}
 5521
 5522			/* check if SmartSpeed worked */
 5523			igb_check_downshift(hw);
 5524			if (phy->speed_downgraded)
 5525				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
 5526
 5527			/* check for thermal sensor event */
 5528			if (igb_thermal_sensor_event(hw,
 5529			    E1000_THSTAT_LINK_THROTTLE))
 5530				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
 5531
 5532			/* adjust timeout factor according to speed/duplex */
 5533			adapter->tx_timeout_factor = 1;
 5534			switch (adapter->link_speed) {
 5535			case SPEED_10:
 5536				adapter->tx_timeout_factor = 14;
 5537				break;
 5538			case SPEED_100:
 5539				/* maybe add some timeout factor ? */
 5540				break;
 5541			}
 5542
 5543			if (adapter->link_speed != SPEED_1000 ||
 5544			    !hw->phy.ops.read_reg)
 5545				goto no_wait;
 5546
 5547			/* wait for Remote receiver status OK */
 5548retry_read_status:
 5549			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
 5550					      &phy_data)) {
 5551				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
 5552				    retry_count) {
 5553					msleep(100);
 5554					retry_count--;
 5555					goto retry_read_status;
 5556				} else if (!retry_count) {
 5557					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
 5558				}
 5559			} else {
 5560				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
 5561			}
 5562no_wait:
 5563			netif_carrier_on(netdev);
 5564
 5565			igb_ping_all_vfs(adapter);
 5566			igb_check_vf_rate_limit(adapter);
 5567
 5568			/* link state has changed, schedule phy info update */
 5569			if (!test_bit(__IGB_DOWN, &adapter->state))
 5570				mod_timer(&adapter->phy_info_timer,
 5571					  round_jiffies(jiffies + 2 * HZ));
 5572		}
 5573	} else {
 5574		if (netif_carrier_ok(netdev)) {
 5575			adapter->link_speed = 0;
 5576			adapter->link_duplex = 0;
 5577
 5578			/* check for thermal sensor event */
 5579			if (igb_thermal_sensor_event(hw,
 5580			    E1000_THSTAT_PWR_DOWN)) {
 5581				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
 5582			}
 5583
 5584			/* Links status message must follow this format */
 5585			netdev_info(netdev, "igb: %s NIC Link is Down\n",
 5586			       netdev->name);
 5587			netif_carrier_off(netdev);
 5588
 5589			igb_ping_all_vfs(adapter);
 5590
 5591			/* link state has changed, schedule phy info update */
 5592			if (!test_bit(__IGB_DOWN, &adapter->state))
 5593				mod_timer(&adapter->phy_info_timer,
 5594					  round_jiffies(jiffies + 2 * HZ));
 5595
 5596			/* link is down, time to check for alternate media */
 5597			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5598				igb_check_swap_media(adapter);
 5599				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5600					schedule_work(&adapter->reset_task);
 5601					/* return immediately */
 5602					return;
 5603				}
 5604			}
 5605			pm_schedule_suspend(netdev->dev.parent,
 5606					    MSEC_PER_SEC * 5);
 5607
 5608		/* also check for alternate media here */
 5609		} else if (!netif_carrier_ok(netdev) &&
 5610			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 5611			igb_check_swap_media(adapter);
 5612			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5613				schedule_work(&adapter->reset_task);
 5614				/* return immediately */
 5615				return;
 5616			}
 5617		}
 5618	}
 5619
 5620	spin_lock(&adapter->stats64_lock);
 5621	igb_update_stats(adapter);
 5622	spin_unlock(&adapter->stats64_lock);
 5623
 5624	for (i = 0; i < adapter->num_tx_queues; i++) {
 5625		struct igb_ring *tx_ring = adapter->tx_ring[i];
 5626		if (!netif_carrier_ok(netdev)) {
 5627			/* We've lost link, so the controller stops DMA,
 5628			 * but we've got queued Tx work that's never going
 5629			 * to get done, so reset controller to flush Tx.
 5630			 * (Do the reset outside of interrupt context).
 5631			 */
 5632			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
 5633				adapter->tx_timeout_count++;
 5634				schedule_work(&adapter->reset_task);
 5635				/* return immediately since reset is imminent */
 5636				return;
 5637			}
 5638		}
 5639
 5640		/* Force detection of hung controller every watchdog period */
 5641		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 5642	}
 5643
 5644	/* Cause software interrupt to ensure Rx ring is cleaned */
 5645	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 5646		u32 eics = 0;
 5647
 5648		for (i = 0; i < adapter->num_q_vectors; i++)
 5649			eics |= adapter->q_vector[i]->eims_value;
 5650		wr32(E1000_EICS, eics);
 5651	} else {
 5652		wr32(E1000_ICS, E1000_ICS_RXDMT0);
 5653	}
 5654
 5655	igb_spoof_check(adapter);
 5656	igb_ptp_rx_hang(adapter);
 5657	igb_ptp_tx_hang(adapter);
 5658
 5659	/* Check LVMMC register on i350/i354 only */
 5660	if ((adapter->hw.mac.type == e1000_i350) ||
 5661	    (adapter->hw.mac.type == e1000_i354))
 5662		igb_check_lvmmc(adapter);
 5663
 5664	/* Reset the timer */
 5665	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 5666		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
 5667			mod_timer(&adapter->watchdog_timer,
 5668				  round_jiffies(jiffies +  HZ));
 5669		else
 5670			mod_timer(&adapter->watchdog_timer,
 5671				  round_jiffies(jiffies + 2 * HZ));
 5672	}
 5673}
 5674
 5675enum latency_range {
 5676	lowest_latency = 0,
 5677	low_latency = 1,
 5678	bulk_latency = 2,
 5679	latency_invalid = 255
 5680};
 5681
 5682/**
 5683 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 5684 *  @q_vector: pointer to q_vector
 5685 *
 5686 *  Stores a new ITR value based on strictly on packet size.  This
 5687 *  algorithm is less sophisticated than that used in igb_update_itr,
 5688 *  due to the difficulty of synchronizing statistics across multiple
 5689 *  receive rings.  The divisors and thresholds used by this function
 5690 *  were determined based on theoretical maximum wire speed and testing
 5691 *  data, in order to minimize response time while increasing bulk
 5692 *  throughput.
 5693 *  This functionality is controlled by ethtool's coalescing settings.
 5694 *  NOTE:  This function is called only when operating in a multiqueue
 5695 *         receive environment.
 5696 **/
 5697static void igb_update_ring_itr(struct igb_q_vector *q_vector)
 5698{
 5699	int new_val = q_vector->itr_val;
 5700	int avg_wire_size = 0;
 5701	struct igb_adapter *adapter = q_vector->adapter;
 5702	unsigned int packets;
 5703
 5704	/* For non-gigabit speeds, just fix the interrupt rate at 4000
 5705	 * ints/sec - ITR timer value of 120 ticks.
 5706	 */
 5707	if (adapter->link_speed != SPEED_1000) {
 5708		new_val = IGB_4K_ITR;
 5709		goto set_itr_val;
 5710	}
 5711
 5712	packets = q_vector->rx.total_packets;
 5713	if (packets)
 5714		avg_wire_size = q_vector->rx.total_bytes / packets;
 5715
 5716	packets = q_vector->tx.total_packets;
 5717	if (packets)
 5718		avg_wire_size = max_t(u32, avg_wire_size,
 5719				      q_vector->tx.total_bytes / packets);
 5720
 5721	/* if avg_wire_size isn't set no work was done */
 5722	if (!avg_wire_size)
 5723		goto clear_counts;
 5724
 5725	/* Add 24 bytes to size to account for CRC, preamble, and gap */
 5726	avg_wire_size += 24;
 5727
 5728	/* Don't starve jumbo frames */
 5729	avg_wire_size = min(avg_wire_size, 3000);
 5730
 5731	/* Give a little boost to mid-size frames */
 5732	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
 5733		new_val = avg_wire_size / 3;
 5734	else
 5735		new_val = avg_wire_size / 2;
 5736
 5737	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5738	if (new_val < IGB_20K_ITR &&
 5739	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5740	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5741		new_val = IGB_20K_ITR;
 5742
 5743set_itr_val:
 5744	if (new_val != q_vector->itr_val) {
 5745		q_vector->itr_val = new_val;
 5746		q_vector->set_itr = 1;
 5747	}
 5748clear_counts:
 5749	q_vector->rx.total_bytes = 0;
 5750	q_vector->rx.total_packets = 0;
 5751	q_vector->tx.total_bytes = 0;
 5752	q_vector->tx.total_packets = 0;
 5753}
 5754
 5755/**
 5756 *  igb_update_itr - update the dynamic ITR value based on statistics
 5757 *  @q_vector: pointer to q_vector
 5758 *  @ring_container: ring info to update the itr for
 5759 *
 5760 *  Stores a new ITR value based on packets and byte
 5761 *  counts during the last interrupt.  The advantage of per interrupt
 5762 *  computation is faster updates and more accurate ITR for the current
 5763 *  traffic pattern.  Constants in this function were computed
 5764 *  based on theoretical maximum wire speed and thresholds were set based
 5765 *  on testing data as well as attempting to minimize response time
 5766 *  while increasing bulk throughput.
 5767 *  This functionality is controlled by ethtool's coalescing settings.
 5768 *  NOTE:  These calculations are only valid when operating in a single-
 5769 *         queue environment.
 5770 **/
 5771static void igb_update_itr(struct igb_q_vector *q_vector,
 5772			   struct igb_ring_container *ring_container)
 5773{
 5774	unsigned int packets = ring_container->total_packets;
 5775	unsigned int bytes = ring_container->total_bytes;
 5776	u8 itrval = ring_container->itr;
 5777
 5778	/* no packets, exit with status unchanged */
 5779	if (packets == 0)
 5780		return;
 5781
 5782	switch (itrval) {
 5783	case lowest_latency:
 5784		/* handle TSO and jumbo frames */
 5785		if (bytes/packets > 8000)
 5786			itrval = bulk_latency;
 5787		else if ((packets < 5) && (bytes > 512))
 5788			itrval = low_latency;
 5789		break;
 5790	case low_latency:  /* 50 usec aka 20000 ints/s */
 5791		if (bytes > 10000) {
 5792			/* this if handles the TSO accounting */
 5793			if (bytes/packets > 8000)
 5794				itrval = bulk_latency;
 5795			else if ((packets < 10) || ((bytes/packets) > 1200))
 5796				itrval = bulk_latency;
 5797			else if ((packets > 35))
 5798				itrval = lowest_latency;
 5799		} else if (bytes/packets > 2000) {
 5800			itrval = bulk_latency;
 5801		} else if (packets <= 2 && bytes < 512) {
 5802			itrval = lowest_latency;
 5803		}
 5804		break;
 5805	case bulk_latency: /* 250 usec aka 4000 ints/s */
 5806		if (bytes > 25000) {
 5807			if (packets > 35)
 5808				itrval = low_latency;
 5809		} else if (bytes < 1500) {
 5810			itrval = low_latency;
 5811		}
 5812		break;
 5813	}
 5814
 5815	/* clear work counters since we have the values we need */
 5816	ring_container->total_bytes = 0;
 5817	ring_container->total_packets = 0;
 5818
 5819	/* write updated itr to ring container */
 5820	ring_container->itr = itrval;
 5821}
 5822
 5823static void igb_set_itr(struct igb_q_vector *q_vector)
 5824{
 5825	struct igb_adapter *adapter = q_vector->adapter;
 5826	u32 new_itr = q_vector->itr_val;
 5827	u8 current_itr = 0;
 5828
 5829	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 5830	if (adapter->link_speed != SPEED_1000) {
 5831		current_itr = 0;
 5832		new_itr = IGB_4K_ITR;
 5833		goto set_itr_now;
 5834	}
 5835
 5836	igb_update_itr(q_vector, &q_vector->tx);
 5837	igb_update_itr(q_vector, &q_vector->rx);
 5838
 5839	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
 5840
 5841	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5842	if (current_itr == lowest_latency &&
 5843	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5844	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5845		current_itr = low_latency;
 5846
 5847	switch (current_itr) {
 5848	/* counts and packets in update_itr are dependent on these numbers */
 5849	case lowest_latency:
 5850		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
 5851		break;
 5852	case low_latency:
 5853		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
 5854		break;
 5855	case bulk_latency:
 5856		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
 5857		break;
 5858	default:
 5859		break;
 5860	}
 5861
 5862set_itr_now:
 5863	if (new_itr != q_vector->itr_val) {
 5864		/* this attempts to bias the interrupt rate towards Bulk
 5865		 * by adding intermediate steps when interrupt rate is
 5866		 * increasing
 5867		 */
 5868		new_itr = new_itr > q_vector->itr_val ?
 5869			  max((new_itr * q_vector->itr_val) /
 5870			  (new_itr + (q_vector->itr_val >> 2)),
 5871			  new_itr) : new_itr;
 5872		/* Don't write the value here; it resets the adapter's
 5873		 * internal timer, and causes us to delay far longer than
 5874		 * we should between interrupts.  Instead, we write the ITR
 5875		 * value at the beginning of the next interrupt so the timing
 5876		 * ends up being correct.
 5877		 */
 5878		q_vector->itr_val = new_itr;
 5879		q_vector->set_itr = 1;
 5880	}
 5881}
 5882
 5883static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
 5884			    struct igb_tx_buffer *first,
 5885			    u32 vlan_macip_lens, u32 type_tucmd,
 5886			    u32 mss_l4len_idx)
 5887{
 5888	struct e1000_adv_tx_context_desc *context_desc;
 5889	u16 i = tx_ring->next_to_use;
 5890	struct timespec64 ts;
 5891
 5892	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
 5893
 5894	i++;
 5895	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 5896
 5897	/* set bits to identify this as an advanced context descriptor */
 5898	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
 5899
 5900	/* For 82575, context index must be unique per ring. */
 5901	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 5902		mss_l4len_idx |= tx_ring->reg_idx << 4;
 5903
 5904	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
 5905	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
 5906	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 5907
 5908	/* We assume there is always a valid tx time available. Invalid times
 5909	 * should have been handled by the upper layers.
 5910	 */
 5911	if (tx_ring->launchtime_enable) {
 5912		ts = ktime_to_timespec64(first->skb->tstamp);
 5913		skb_txtime_consumed(first->skb);
 5914		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
 5915	} else {
 5916		context_desc->seqnum_seed = 0;
 5917	}
 5918}
 5919
 5920static int igb_tso(struct igb_ring *tx_ring,
 5921		   struct igb_tx_buffer *first,
 5922		   u8 *hdr_len)
 5923{
 5924	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
 5925	struct sk_buff *skb = first->skb;
 5926	union {
 5927		struct iphdr *v4;
 5928		struct ipv6hdr *v6;
 5929		unsigned char *hdr;
 5930	} ip;
 5931	union {
 5932		struct tcphdr *tcp;
 5933		struct udphdr *udp;
 5934		unsigned char *hdr;
 5935	} l4;
 5936	u32 paylen, l4_offset;
 5937	int err;
 5938
 5939	if (skb->ip_summed != CHECKSUM_PARTIAL)
 5940		return 0;
 5941
 5942	if (!skb_is_gso(skb))
 5943		return 0;
 5944
 5945	err = skb_cow_head(skb, 0);
 5946	if (err < 0)
 5947		return err;
 5948
 5949	ip.hdr = skb_network_header(skb);
 5950	l4.hdr = skb_checksum_start(skb);
 5951
 5952	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
 5953	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
 5954		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
 5955
 5956	/* initialize outer IP header fields */
 5957	if (ip.v4->version == 4) {
 5958		unsigned char *csum_start = skb_checksum_start(skb);
 5959		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
 5960
 5961		/* IP header will have to cancel out any data that
 5962		 * is not a part of the outer IP header
 5963		 */
 5964		ip.v4->check = csum_fold(csum_partial(trans_start,
 5965						      csum_start - trans_start,
 5966						      0));
 5967		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 5968
 5969		ip.v4->tot_len = 0;
 5970		first->tx_flags |= IGB_TX_FLAGS_TSO |
 5971				   IGB_TX_FLAGS_CSUM |
 5972				   IGB_TX_FLAGS_IPV4;
 5973	} else {
 5974		ip.v6->payload_len = 0;
 5975		first->tx_flags |= IGB_TX_FLAGS_TSO |
 5976				   IGB_TX_FLAGS_CSUM;
 5977	}
 5978
 5979	/* determine offset of inner transport header */
 5980	l4_offset = l4.hdr - skb->data;
 5981
 
 
 
 5982	/* remove payload length from inner checksum */
 5983	paylen = skb->len - l4_offset;
 5984	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
 5985		/* compute length of segmentation header */
 5986		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 5987		csum_replace_by_diff(&l4.tcp->check,
 5988			(__force __wsum)htonl(paylen));
 5989	} else {
 5990		/* compute length of segmentation header */
 5991		*hdr_len = sizeof(*l4.udp) + l4_offset;
 5992		csum_replace_by_diff(&l4.udp->check,
 5993				     (__force __wsum)htonl(paylen));
 5994	}
 5995
 5996	/* update gso size and bytecount with header size */
 5997	first->gso_segs = skb_shinfo(skb)->gso_segs;
 5998	first->bytecount += (first->gso_segs - 1) * *hdr_len;
 5999
 6000	/* MSS L4LEN IDX */
 6001	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
 6002	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
 6003
 6004	/* VLAN MACLEN IPLEN */
 6005	vlan_macip_lens = l4.hdr - ip.hdr;
 6006	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
 6007	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6008
 6009	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
 6010			type_tucmd, mss_l4len_idx);
 6011
 6012	return 1;
 6013}
 6014
 
 
 
 
 
 
 
 
 
 6015static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
 6016{
 6017	struct sk_buff *skb = first->skb;
 6018	u32 vlan_macip_lens = 0;
 6019	u32 type_tucmd = 0;
 6020
 6021	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 6022csum_failed:
 6023		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
 6024		    !tx_ring->launchtime_enable)
 6025			return;
 6026		goto no_csum;
 6027	}
 6028
 6029	switch (skb->csum_offset) {
 6030	case offsetof(struct tcphdr, check):
 6031		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 6032		fallthrough;
 6033	case offsetof(struct udphdr, check):
 6034		break;
 6035	case offsetof(struct sctphdr, checksum):
 6036		/* validate that this is actually an SCTP request */
 6037		if (skb_csum_is_sctp(skb)) {
 
 
 
 6038			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
 6039			break;
 6040		}
 6041		fallthrough;
 6042	default:
 6043		skb_checksum_help(skb);
 6044		goto csum_failed;
 6045	}
 6046
 6047	/* update TX checksum flag */
 6048	first->tx_flags |= IGB_TX_FLAGS_CSUM;
 6049	vlan_macip_lens = skb_checksum_start_offset(skb) -
 6050			  skb_network_offset(skb);
 6051no_csum:
 6052	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
 6053	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6054
 6055	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
 6056}
 6057
 6058#define IGB_SET_FLAG(_input, _flag, _result) \
 6059	((_flag <= _result) ? \
 6060	 ((u32)(_input & _flag) * (_result / _flag)) : \
 6061	 ((u32)(_input & _flag) / (_flag / _result)))
 6062
 6063static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
 6064{
 6065	/* set type for advanced descriptor with frame checksum insertion */
 6066	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
 6067		       E1000_ADVTXD_DCMD_DEXT |
 6068		       E1000_ADVTXD_DCMD_IFCS;
 6069
 6070	/* set HW vlan bit if vlan is present */
 6071	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
 6072				 (E1000_ADVTXD_DCMD_VLE));
 6073
 6074	/* set segmentation bits for TSO */
 6075	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
 6076				 (E1000_ADVTXD_DCMD_TSE));
 6077
 6078	/* set timestamp bit if present */
 6079	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
 6080				 (E1000_ADVTXD_MAC_TSTAMP));
 6081
 6082	/* insert frame checksum */
 6083	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
 6084
 6085	return cmd_type;
 6086}
 6087
 6088static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
 6089				 union e1000_adv_tx_desc *tx_desc,
 6090				 u32 tx_flags, unsigned int paylen)
 6091{
 6092	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
 6093
 6094	/* 82575 requires a unique index per ring */
 6095	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6096		olinfo_status |= tx_ring->reg_idx << 4;
 6097
 6098	/* insert L4 checksum */
 6099	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6100				      IGB_TX_FLAGS_CSUM,
 6101				      (E1000_TXD_POPTS_TXSM << 8));
 6102
 6103	/* insert IPv4 checksum */
 6104	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6105				      IGB_TX_FLAGS_IPV4,
 6106				      (E1000_TXD_POPTS_IXSM << 8));
 6107
 6108	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6109}
 6110
 6111static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6112{
 6113	struct net_device *netdev = tx_ring->netdev;
 6114
 6115	netif_stop_subqueue(netdev, tx_ring->queue_index);
 6116
 6117	/* Herbert's original patch had:
 6118	 *  smp_mb__after_netif_stop_queue();
 6119	 * but since that doesn't exist yet, just open code it.
 6120	 */
 6121	smp_mb();
 6122
 6123	/* We need to check again in a case another CPU has just
 6124	 * made room available.
 6125	 */
 6126	if (igb_desc_unused(tx_ring) < size)
 6127		return -EBUSY;
 6128
 6129	/* A reprieve! */
 6130	netif_wake_subqueue(netdev, tx_ring->queue_index);
 6131
 6132	u64_stats_update_begin(&tx_ring->tx_syncp2);
 6133	tx_ring->tx_stats.restart_queue2++;
 6134	u64_stats_update_end(&tx_ring->tx_syncp2);
 6135
 6136	return 0;
 6137}
 6138
 6139static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6140{
 6141	if (igb_desc_unused(tx_ring) >= size)
 6142		return 0;
 6143	return __igb_maybe_stop_tx(tx_ring, size);
 6144}
 6145
 6146static int igb_tx_map(struct igb_ring *tx_ring,
 6147		      struct igb_tx_buffer *first,
 6148		      const u8 hdr_len)
 6149{
 6150	struct sk_buff *skb = first->skb;
 6151	struct igb_tx_buffer *tx_buffer;
 6152	union e1000_adv_tx_desc *tx_desc;
 6153	skb_frag_t *frag;
 6154	dma_addr_t dma;
 6155	unsigned int data_len, size;
 6156	u32 tx_flags = first->tx_flags;
 6157	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
 6158	u16 i = tx_ring->next_to_use;
 6159
 6160	tx_desc = IGB_TX_DESC(tx_ring, i);
 6161
 6162	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
 6163
 6164	size = skb_headlen(skb);
 6165	data_len = skb->data_len;
 6166
 6167	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 6168
 6169	tx_buffer = first;
 6170
 6171	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 6172		if (dma_mapping_error(tx_ring->dev, dma))
 6173			goto dma_error;
 6174
 6175		/* record length, and DMA address */
 6176		dma_unmap_len_set(tx_buffer, len, size);
 6177		dma_unmap_addr_set(tx_buffer, dma, dma);
 6178
 6179		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6180
 6181		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
 6182			tx_desc->read.cmd_type_len =
 6183				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
 6184
 6185			i++;
 6186			tx_desc++;
 6187			if (i == tx_ring->count) {
 6188				tx_desc = IGB_TX_DESC(tx_ring, 0);
 6189				i = 0;
 6190			}
 6191			tx_desc->read.olinfo_status = 0;
 6192
 6193			dma += IGB_MAX_DATA_PER_TXD;
 6194			size -= IGB_MAX_DATA_PER_TXD;
 6195
 6196			tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6197		}
 6198
 6199		if (likely(!data_len))
 6200			break;
 6201
 6202		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
 6203
 6204		i++;
 6205		tx_desc++;
 6206		if (i == tx_ring->count) {
 6207			tx_desc = IGB_TX_DESC(tx_ring, 0);
 6208			i = 0;
 6209		}
 6210		tx_desc->read.olinfo_status = 0;
 6211
 6212		size = skb_frag_size(frag);
 6213		data_len -= size;
 6214
 6215		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
 6216				       size, DMA_TO_DEVICE);
 6217
 6218		tx_buffer = &tx_ring->tx_buffer_info[i];
 6219	}
 6220
 6221	/* write last descriptor with RS and EOP bits */
 6222	cmd_type |= size | IGB_TXD_DCMD;
 6223	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6224
 6225	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 6226
 6227	/* set the timestamp */
 6228	first->time_stamp = jiffies;
 6229
 6230	skb_tx_timestamp(skb);
 6231
 6232	/* Force memory writes to complete before letting h/w know there
 6233	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 6234	 * memory model archs, such as IA-64).
 6235	 *
 6236	 * We also need this memory barrier to make certain all of the
 6237	 * status bits have been updated before next_to_watch is written.
 6238	 */
 6239	dma_wmb();
 6240
 6241	/* set next_to_watch value indicating a packet is present */
 6242	first->next_to_watch = tx_desc;
 6243
 6244	i++;
 6245	if (i == tx_ring->count)
 6246		i = 0;
 6247
 6248	tx_ring->next_to_use = i;
 6249
 6250	/* Make sure there is space in the ring for the next send. */
 6251	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6252
 6253	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
 6254		writel(i, tx_ring->tail);
 6255	}
 6256	return 0;
 6257
 6258dma_error:
 6259	dev_err(tx_ring->dev, "TX DMA map failed\n");
 6260	tx_buffer = &tx_ring->tx_buffer_info[i];
 6261
 6262	/* clear dma mappings for failed tx_buffer_info map */
 6263	while (tx_buffer != first) {
 6264		if (dma_unmap_len(tx_buffer, len))
 6265			dma_unmap_page(tx_ring->dev,
 6266				       dma_unmap_addr(tx_buffer, dma),
 6267				       dma_unmap_len(tx_buffer, len),
 6268				       DMA_TO_DEVICE);
 6269		dma_unmap_len_set(tx_buffer, len, 0);
 6270
 6271		if (i-- == 0)
 6272			i += tx_ring->count;
 6273		tx_buffer = &tx_ring->tx_buffer_info[i];
 6274	}
 6275
 6276	if (dma_unmap_len(tx_buffer, len))
 6277		dma_unmap_single(tx_ring->dev,
 6278				 dma_unmap_addr(tx_buffer, dma),
 6279				 dma_unmap_len(tx_buffer, len),
 6280				 DMA_TO_DEVICE);
 6281	dma_unmap_len_set(tx_buffer, len, 0);
 6282
 6283	dev_kfree_skb_any(tx_buffer->skb);
 6284	tx_buffer->skb = NULL;
 6285
 6286	tx_ring->next_to_use = i;
 6287
 6288	return -1;
 6289}
 6290
 6291int igb_xmit_xdp_ring(struct igb_adapter *adapter,
 6292		      struct igb_ring *tx_ring,
 6293		      struct xdp_frame *xdpf)
 6294{
 6295	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
 6296	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
 6297	u16 count, i, index = tx_ring->next_to_use;
 6298	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
 6299	struct igb_tx_buffer *tx_buffer = tx_head;
 6300	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
 6301	u32 len = xdpf->len, cmd_type, olinfo_status;
 6302	void *data = xdpf->data;
 6303
 6304	count = TXD_USE_COUNT(len);
 6305	for (i = 0; i < nr_frags; i++)
 6306		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
 6307
 6308	if (igb_maybe_stop_tx(tx_ring, count + 3))
 6309		return IGB_XDP_CONSUMED;
 6310
 6311	i = 0;
 6312	/* record the location of the first descriptor for this packet */
 6313	tx_head->bytecount = xdp_get_frame_len(xdpf);
 6314	tx_head->type = IGB_TYPE_XDP;
 6315	tx_head->gso_segs = 1;
 6316	tx_head->xdpf = xdpf;
 6317
 6318	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
 6319	/* 82575 requires a unique index per ring */
 6320	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6321		olinfo_status |= tx_ring->reg_idx << 4;
 6322	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6323
 6324	for (;;) {
 6325		dma_addr_t dma;
 6326
 6327		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
 6328		if (dma_mapping_error(tx_ring->dev, dma))
 6329			goto unmap;
 6330
 6331		/* record length, and DMA address */
 6332		dma_unmap_len_set(tx_buffer, len, len);
 6333		dma_unmap_addr_set(tx_buffer, dma, dma);
 6334
 6335		/* put descriptor type bits */
 6336		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
 6337			   E1000_ADVTXD_DCMD_IFCS | len;
 6338
 6339		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6340		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6341
 6342		tx_buffer->protocol = 0;
 6343
 6344		if (++index == tx_ring->count)
 6345			index = 0;
 6346
 6347		if (i == nr_frags)
 6348			break;
 6349
 6350		tx_buffer = &tx_ring->tx_buffer_info[index];
 6351		tx_desc = IGB_TX_DESC(tx_ring, index);
 6352		tx_desc->read.olinfo_status = 0;
 6353
 6354		data = skb_frag_address(&sinfo->frags[i]);
 6355		len = skb_frag_size(&sinfo->frags[i]);
 6356		i++;
 6357	}
 6358	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
 6359
 6360	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
 6361	/* set the timestamp */
 6362	tx_head->time_stamp = jiffies;
 6363
 6364	/* Avoid any potential race with xdp_xmit and cleanup */
 6365	smp_wmb();
 6366
 6367	/* set next_to_watch value indicating a packet is present */
 6368	tx_head->next_to_watch = tx_desc;
 6369	tx_ring->next_to_use = index;
 6370
 6371	/* Make sure there is space in the ring for the next send. */
 6372	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6373
 6374	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 6375		writel(index, tx_ring->tail);
 6376
 6377	return IGB_XDP_TX;
 6378
 6379unmap:
 6380	for (;;) {
 6381		tx_buffer = &tx_ring->tx_buffer_info[index];
 6382		if (dma_unmap_len(tx_buffer, len))
 6383			dma_unmap_page(tx_ring->dev,
 6384				       dma_unmap_addr(tx_buffer, dma),
 6385				       dma_unmap_len(tx_buffer, len),
 6386				       DMA_TO_DEVICE);
 6387		dma_unmap_len_set(tx_buffer, len, 0);
 6388		if (tx_buffer == tx_head)
 6389			break;
 6390
 6391		if (!index)
 6392			index += tx_ring->count;
 6393		index--;
 6394	}
 6395
 6396	return IGB_XDP_CONSUMED;
 6397}
 6398
 6399netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
 6400				struct igb_ring *tx_ring)
 6401{
 6402	struct igb_tx_buffer *first;
 6403	int tso;
 6404	u32 tx_flags = 0;
 6405	unsigned short f;
 6406	u16 count = TXD_USE_COUNT(skb_headlen(skb));
 6407	__be16 protocol = vlan_get_protocol(skb);
 6408	u8 hdr_len = 0;
 6409
 6410	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
 6411	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
 6412	 *       + 2 desc gap to keep tail from touching head,
 6413	 *       + 1 desc for context descriptor,
 6414	 * otherwise try next time
 6415	 */
 6416	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 6417		count += TXD_USE_COUNT(skb_frag_size(
 6418						&skb_shinfo(skb)->frags[f]));
 6419
 6420	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
 6421		/* this is a hard error */
 6422		return NETDEV_TX_BUSY;
 6423	}
 6424
 6425	/* record the location of the first descriptor for this packet */
 6426	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 6427	first->type = IGB_TYPE_SKB;
 6428	first->skb = skb;
 6429	first->bytecount = skb->len;
 6430	first->gso_segs = 1;
 6431
 6432	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
 6433		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6434
 6435		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
 6436		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
 6437					   &adapter->state)) {
 6438			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 6439			tx_flags |= IGB_TX_FLAGS_TSTAMP;
 6440
 6441			adapter->ptp_tx_skb = skb_get(skb);
 6442			adapter->ptp_tx_start = jiffies;
 6443			if (adapter->hw.mac.type == e1000_82576)
 6444				schedule_work(&adapter->ptp_tx_work);
 6445		} else {
 6446			adapter->tx_hwtstamp_skipped++;
 6447		}
 6448	}
 6449
 6450	if (skb_vlan_tag_present(skb)) {
 6451		tx_flags |= IGB_TX_FLAGS_VLAN;
 6452		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
 6453	}
 6454
 6455	/* record initial flags and protocol */
 6456	first->tx_flags = tx_flags;
 6457	first->protocol = protocol;
 6458
 6459	tso = igb_tso(tx_ring, first, &hdr_len);
 6460	if (tso < 0)
 6461		goto out_drop;
 6462	else if (!tso)
 6463		igb_tx_csum(tx_ring, first);
 6464
 6465	if (igb_tx_map(tx_ring, first, hdr_len))
 6466		goto cleanup_tx_tstamp;
 6467
 6468	return NETDEV_TX_OK;
 6469
 6470out_drop:
 6471	dev_kfree_skb_any(first->skb);
 6472	first->skb = NULL;
 6473cleanup_tx_tstamp:
 6474	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
 6475		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6476
 6477		dev_kfree_skb_any(adapter->ptp_tx_skb);
 6478		adapter->ptp_tx_skb = NULL;
 6479		if (adapter->hw.mac.type == e1000_82576)
 6480			cancel_work_sync(&adapter->ptp_tx_work);
 6481		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 6482	}
 6483
 6484	return NETDEV_TX_OK;
 6485}
 6486
 6487static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
 6488						    struct sk_buff *skb)
 6489{
 6490	unsigned int r_idx = skb->queue_mapping;
 6491
 6492	if (r_idx >= adapter->num_tx_queues)
 6493		r_idx = r_idx % adapter->num_tx_queues;
 6494
 6495	return adapter->tx_ring[r_idx];
 6496}
 6497
 6498static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
 6499				  struct net_device *netdev)
 6500{
 6501	struct igb_adapter *adapter = netdev_priv(netdev);
 6502
 6503	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
 6504	 * in order to meet this minimum size requirement.
 6505	 */
 6506	if (skb_put_padto(skb, 17))
 6507		return NETDEV_TX_OK;
 6508
 6509	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
 6510}
 6511
 6512/**
 6513 *  igb_tx_timeout - Respond to a Tx Hang
 6514 *  @netdev: network interface device structure
 6515 *  @txqueue: number of the Tx queue that hung (unused)
 6516 **/
 6517static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
 6518{
 6519	struct igb_adapter *adapter = netdev_priv(netdev);
 6520	struct e1000_hw *hw = &adapter->hw;
 6521
 6522	/* Do the reset outside of interrupt context */
 6523	adapter->tx_timeout_count++;
 6524
 6525	if (hw->mac.type >= e1000_82580)
 6526		hw->dev_spec._82575.global_device_reset = true;
 6527
 6528	schedule_work(&adapter->reset_task);
 6529	wr32(E1000_EICS,
 6530	     (adapter->eims_enable_mask & ~adapter->eims_other));
 6531}
 6532
 6533static void igb_reset_task(struct work_struct *work)
 6534{
 6535	struct igb_adapter *adapter;
 6536	adapter = container_of(work, struct igb_adapter, reset_task);
 6537
 6538	rtnl_lock();
 6539	/* If we're already down or resetting, just bail */
 6540	if (test_bit(__IGB_DOWN, &adapter->state) ||
 6541	    test_bit(__IGB_RESETTING, &adapter->state)) {
 6542		rtnl_unlock();
 6543		return;
 6544	}
 6545
 6546	igb_dump(adapter);
 6547	netdev_err(adapter->netdev, "Reset adapter\n");
 6548	igb_reinit_locked(adapter);
 6549	rtnl_unlock();
 6550}
 6551
 6552/**
 6553 *  igb_get_stats64 - Get System Network Statistics
 6554 *  @netdev: network interface device structure
 6555 *  @stats: rtnl_link_stats64 pointer
 6556 **/
 6557static void igb_get_stats64(struct net_device *netdev,
 6558			    struct rtnl_link_stats64 *stats)
 6559{
 6560	struct igb_adapter *adapter = netdev_priv(netdev);
 6561
 6562	spin_lock(&adapter->stats64_lock);
 6563	igb_update_stats(adapter);
 6564	memcpy(stats, &adapter->stats64, sizeof(*stats));
 6565	spin_unlock(&adapter->stats64_lock);
 6566}
 6567
 6568/**
 6569 *  igb_change_mtu - Change the Maximum Transfer Unit
 6570 *  @netdev: network interface device structure
 6571 *  @new_mtu: new value for maximum frame size
 6572 *
 6573 *  Returns 0 on success, negative on failure
 6574 **/
 6575static int igb_change_mtu(struct net_device *netdev, int new_mtu)
 6576{
 6577	struct igb_adapter *adapter = netdev_priv(netdev);
 6578	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
 6579
 6580	if (adapter->xdp_prog) {
 6581		int i;
 6582
 6583		for (i = 0; i < adapter->num_rx_queues; i++) {
 6584			struct igb_ring *ring = adapter->rx_ring[i];
 6585
 6586			if (max_frame > igb_rx_bufsz(ring)) {
 6587				netdev_warn(adapter->netdev,
 6588					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
 6589					    max_frame);
 6590				return -EINVAL;
 6591			}
 6592		}
 6593	}
 6594
 6595	/* adjust max frame to be at least the size of a standard frame */
 6596	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
 6597		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
 6598
 6599	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 6600		usleep_range(1000, 2000);
 6601
 6602	/* igb_down has a dependency on max_frame_size */
 6603	adapter->max_frame_size = max_frame;
 6604
 6605	if (netif_running(netdev))
 6606		igb_down(adapter);
 6607
 6608	netdev_dbg(netdev, "changing MTU from %d to %d\n",
 6609		   netdev->mtu, new_mtu);
 6610	netdev->mtu = new_mtu;
 6611
 6612	if (netif_running(netdev))
 6613		igb_up(adapter);
 6614	else
 6615		igb_reset(adapter);
 6616
 6617	clear_bit(__IGB_RESETTING, &adapter->state);
 6618
 6619	return 0;
 6620}
 6621
 6622/**
 6623 *  igb_update_stats - Update the board statistics counters
 6624 *  @adapter: board private structure
 6625 **/
 6626void igb_update_stats(struct igb_adapter *adapter)
 6627{
 6628	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
 6629	struct e1000_hw *hw = &adapter->hw;
 6630	struct pci_dev *pdev = adapter->pdev;
 6631	u32 reg, mpc;
 6632	int i;
 6633	u64 bytes, packets;
 6634	unsigned int start;
 6635	u64 _bytes, _packets;
 6636
 6637	/* Prevent stats update while adapter is being reset, or if the pci
 6638	 * connection is down.
 6639	 */
 6640	if (adapter->link_speed == 0)
 6641		return;
 6642	if (pci_channel_offline(pdev))
 6643		return;
 6644
 6645	bytes = 0;
 6646	packets = 0;
 6647
 6648	rcu_read_lock();
 6649	for (i = 0; i < adapter->num_rx_queues; i++) {
 6650		struct igb_ring *ring = adapter->rx_ring[i];
 6651		u32 rqdpc = rd32(E1000_RQDPC(i));
 6652		if (hw->mac.type >= e1000_i210)
 6653			wr32(E1000_RQDPC(i), 0);
 6654
 6655		if (rqdpc) {
 6656			ring->rx_stats.drops += rqdpc;
 6657			net_stats->rx_fifo_errors += rqdpc;
 6658		}
 6659
 6660		do {
 6661			start = u64_stats_fetch_begin(&ring->rx_syncp);
 6662			_bytes = ring->rx_stats.bytes;
 6663			_packets = ring->rx_stats.packets;
 6664		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
 6665		bytes += _bytes;
 6666		packets += _packets;
 6667	}
 6668
 6669	net_stats->rx_bytes = bytes;
 6670	net_stats->rx_packets = packets;
 6671
 6672	bytes = 0;
 6673	packets = 0;
 6674	for (i = 0; i < adapter->num_tx_queues; i++) {
 6675		struct igb_ring *ring = adapter->tx_ring[i];
 6676		do {
 6677			start = u64_stats_fetch_begin(&ring->tx_syncp);
 6678			_bytes = ring->tx_stats.bytes;
 6679			_packets = ring->tx_stats.packets;
 6680		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
 6681		bytes += _bytes;
 6682		packets += _packets;
 6683	}
 6684	net_stats->tx_bytes = bytes;
 6685	net_stats->tx_packets = packets;
 6686	rcu_read_unlock();
 6687
 6688	/* read stats registers */
 6689	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
 6690	adapter->stats.gprc += rd32(E1000_GPRC);
 6691	adapter->stats.gorc += rd32(E1000_GORCL);
 6692	rd32(E1000_GORCH); /* clear GORCL */
 6693	adapter->stats.bprc += rd32(E1000_BPRC);
 6694	adapter->stats.mprc += rd32(E1000_MPRC);
 6695	adapter->stats.roc += rd32(E1000_ROC);
 6696
 6697	adapter->stats.prc64 += rd32(E1000_PRC64);
 6698	adapter->stats.prc127 += rd32(E1000_PRC127);
 6699	adapter->stats.prc255 += rd32(E1000_PRC255);
 6700	adapter->stats.prc511 += rd32(E1000_PRC511);
 6701	adapter->stats.prc1023 += rd32(E1000_PRC1023);
 6702	adapter->stats.prc1522 += rd32(E1000_PRC1522);
 6703	adapter->stats.symerrs += rd32(E1000_SYMERRS);
 6704	adapter->stats.sec += rd32(E1000_SEC);
 6705
 6706	mpc = rd32(E1000_MPC);
 6707	adapter->stats.mpc += mpc;
 6708	net_stats->rx_fifo_errors += mpc;
 6709	adapter->stats.scc += rd32(E1000_SCC);
 6710	adapter->stats.ecol += rd32(E1000_ECOL);
 6711	adapter->stats.mcc += rd32(E1000_MCC);
 6712	adapter->stats.latecol += rd32(E1000_LATECOL);
 6713	adapter->stats.dc += rd32(E1000_DC);
 6714	adapter->stats.rlec += rd32(E1000_RLEC);
 6715	adapter->stats.xonrxc += rd32(E1000_XONRXC);
 6716	adapter->stats.xontxc += rd32(E1000_XONTXC);
 6717	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
 6718	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
 6719	adapter->stats.fcruc += rd32(E1000_FCRUC);
 6720	adapter->stats.gptc += rd32(E1000_GPTC);
 6721	adapter->stats.gotc += rd32(E1000_GOTCL);
 6722	rd32(E1000_GOTCH); /* clear GOTCL */
 6723	adapter->stats.rnbc += rd32(E1000_RNBC);
 6724	adapter->stats.ruc += rd32(E1000_RUC);
 6725	adapter->stats.rfc += rd32(E1000_RFC);
 6726	adapter->stats.rjc += rd32(E1000_RJC);
 6727	adapter->stats.tor += rd32(E1000_TORH);
 6728	adapter->stats.tot += rd32(E1000_TOTH);
 6729	adapter->stats.tpr += rd32(E1000_TPR);
 6730
 6731	adapter->stats.ptc64 += rd32(E1000_PTC64);
 6732	adapter->stats.ptc127 += rd32(E1000_PTC127);
 6733	adapter->stats.ptc255 += rd32(E1000_PTC255);
 6734	adapter->stats.ptc511 += rd32(E1000_PTC511);
 6735	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
 6736	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
 6737
 6738	adapter->stats.mptc += rd32(E1000_MPTC);
 6739	adapter->stats.bptc += rd32(E1000_BPTC);
 6740
 6741	adapter->stats.tpt += rd32(E1000_TPT);
 6742	adapter->stats.colc += rd32(E1000_COLC);
 6743
 6744	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
 6745	/* read internal phy specific stats */
 6746	reg = rd32(E1000_CTRL_EXT);
 6747	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
 6748		adapter->stats.rxerrc += rd32(E1000_RXERRC);
 6749
 6750		/* this stat has invalid values on i210/i211 */
 6751		if ((hw->mac.type != e1000_i210) &&
 6752		    (hw->mac.type != e1000_i211))
 6753			adapter->stats.tncrs += rd32(E1000_TNCRS);
 6754	}
 6755
 6756	adapter->stats.tsctc += rd32(E1000_TSCTC);
 6757	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
 6758
 6759	adapter->stats.iac += rd32(E1000_IAC);
 6760	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
 6761	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
 6762	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
 6763	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
 6764	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
 6765	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
 6766	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
 6767	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
 6768
 6769	/* Fill out the OS statistics structure */
 6770	net_stats->multicast = adapter->stats.mprc;
 6771	net_stats->collisions = adapter->stats.colc;
 6772
 6773	/* Rx Errors */
 6774
 6775	/* RLEC on some newer hardware can be incorrect so build
 6776	 * our own version based on RUC and ROC
 6777	 */
 6778	net_stats->rx_errors = adapter->stats.rxerrc +
 6779		adapter->stats.crcerrs + adapter->stats.algnerrc +
 6780		adapter->stats.ruc + adapter->stats.roc +
 6781		adapter->stats.cexterr;
 6782	net_stats->rx_length_errors = adapter->stats.ruc +
 6783				      adapter->stats.roc;
 6784	net_stats->rx_crc_errors = adapter->stats.crcerrs;
 6785	net_stats->rx_frame_errors = adapter->stats.algnerrc;
 6786	net_stats->rx_missed_errors = adapter->stats.mpc;
 6787
 6788	/* Tx Errors */
 6789	net_stats->tx_errors = adapter->stats.ecol +
 6790			       adapter->stats.latecol;
 6791	net_stats->tx_aborted_errors = adapter->stats.ecol;
 6792	net_stats->tx_window_errors = adapter->stats.latecol;
 6793	net_stats->tx_carrier_errors = adapter->stats.tncrs;
 6794
 6795	/* Tx Dropped needs to be maintained elsewhere */
 6796
 6797	/* Management Stats */
 6798	adapter->stats.mgptc += rd32(E1000_MGTPTC);
 6799	adapter->stats.mgprc += rd32(E1000_MGTPRC);
 6800	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
 6801
 6802	/* OS2BMC Stats */
 6803	reg = rd32(E1000_MANC);
 6804	if (reg & E1000_MANC_EN_BMC2OS) {
 6805		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
 6806		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
 6807		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
 6808		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
 6809	}
 6810}
 6811
 6812static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
 6813{
 6814	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
 6815	struct e1000_hw *hw = &adapter->hw;
 6816	struct timespec64 ts;
 6817	u32 tsauxc;
 6818
 6819	if (pin < 0 || pin >= IGB_N_SDP)
 6820		return;
 6821
 6822	spin_lock(&adapter->tmreg_lock);
 6823
 6824	if (hw->mac.type == e1000_82580 ||
 6825	    hw->mac.type == e1000_i354 ||
 6826	    hw->mac.type == e1000_i350) {
 6827		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
 6828		u32 systiml, systimh, level_mask, level, rem;
 6829		u64 systim, now;
 6830
 6831		/* read systim registers in sequence */
 6832		rd32(E1000_SYSTIMR);
 6833		systiml = rd32(E1000_SYSTIML);
 6834		systimh = rd32(E1000_SYSTIMH);
 6835		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 6836		now = timecounter_cyc2time(&adapter->tc, systim);
 6837
 6838		if (pin < 2) {
 6839			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
 6840			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 6841		} else {
 6842			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
 6843			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 6844		}
 6845
 6846		div_u64_rem(now, ns, &rem);
 6847		systim = systim + (ns - rem);
 6848
 6849		/* synchronize pin level with rising/falling edges */
 6850		div_u64_rem(now, ns << 1, &rem);
 6851		if (rem < ns) {
 6852			/* first half of period */
 6853			if (level == 0) {
 6854				/* output is already low, skip this period */
 6855				systim += ns;
 6856				pr_notice("igb: periodic output on %s missed falling edge\n",
 6857					  adapter->sdp_config[pin].name);
 6858			}
 6859		} else {
 6860			/* second half of period */
 6861			if (level == 1) {
 6862				/* output is already high, skip this period */
 6863				systim += ns;
 6864				pr_notice("igb: periodic output on %s missed rising edge\n",
 6865					  adapter->sdp_config[pin].name);
 6866			}
 6867		}
 6868
 6869		/* for this chip family tv_sec is the upper part of the binary value,
 6870		 * so not seconds
 6871		 */
 6872		ts.tv_nsec = (u32)systim;
 6873		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
 6874	} else {
 6875		ts = timespec64_add(adapter->perout[tsintr_tt].start,
 6876				    adapter->perout[tsintr_tt].period);
 6877	}
 6878
 6879	/* u32 conversion of tv_sec is safe until y2106 */
 6880	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
 6881	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
 6882	tsauxc = rd32(E1000_TSAUXC);
 6883	tsauxc |= TSAUXC_EN_TT0;
 6884	wr32(E1000_TSAUXC, tsauxc);
 6885	adapter->perout[tsintr_tt].start = ts;
 6886
 6887	spin_unlock(&adapter->tmreg_lock);
 6888}
 6889
 6890static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
 6891{
 6892	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
 6893	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
 6894	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
 6895	struct e1000_hw *hw = &adapter->hw;
 6896	struct ptp_clock_event event;
 6897	struct timespec64 ts;
 6898
 6899	if (pin < 0 || pin >= IGB_N_SDP)
 6900		return;
 6901
 6902	if (hw->mac.type == e1000_82580 ||
 6903	    hw->mac.type == e1000_i354 ||
 6904	    hw->mac.type == e1000_i350) {
 6905		s64 ns = rd32(auxstmpl);
 6906
 6907		ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
 6908		ts = ns_to_timespec64(ns);
 6909	} else {
 6910		ts.tv_nsec = rd32(auxstmpl);
 6911		ts.tv_sec  = rd32(auxstmph);
 6912	}
 6913
 6914	event.type = PTP_CLOCK_EXTTS;
 6915	event.index = tsintr_tt;
 6916	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 6917	ptp_clock_event(adapter->ptp_clock, &event);
 6918}
 6919
 6920static void igb_tsync_interrupt(struct igb_adapter *adapter)
 6921{
 6922	struct e1000_hw *hw = &adapter->hw;
 6923	u32 ack = 0, tsicr = rd32(E1000_TSICR);
 6924	struct ptp_clock_event event;
 
 
 6925
 6926	if (tsicr & TSINTR_SYS_WRAP) {
 6927		event.type = PTP_CLOCK_PPS;
 6928		if (adapter->ptp_caps.pps)
 6929			ptp_clock_event(adapter->ptp_clock, &event);
 6930		ack |= TSINTR_SYS_WRAP;
 6931	}
 6932
 6933	if (tsicr & E1000_TSICR_TXTS) {
 6934		/* retrieve hardware timestamp */
 6935		schedule_work(&adapter->ptp_tx_work);
 6936		ack |= E1000_TSICR_TXTS;
 6937	}
 6938
 6939	if (tsicr & TSINTR_TT0) {
 6940		igb_perout(adapter, 0);
 
 
 
 
 
 
 
 
 
 
 6941		ack |= TSINTR_TT0;
 6942	}
 6943
 6944	if (tsicr & TSINTR_TT1) {
 6945		igb_perout(adapter, 1);
 
 
 
 
 
 
 
 
 
 6946		ack |= TSINTR_TT1;
 6947	}
 6948
 6949	if (tsicr & TSINTR_AUTT0) {
 6950		igb_extts(adapter, 0);
 
 
 
 
 
 6951		ack |= TSINTR_AUTT0;
 6952	}
 6953
 6954	if (tsicr & TSINTR_AUTT1) {
 6955		igb_extts(adapter, 1);
 
 
 
 
 
 6956		ack |= TSINTR_AUTT1;
 6957	}
 6958
 6959	/* acknowledge the interrupts */
 6960	wr32(E1000_TSICR, ack);
 6961}
 6962
 6963static irqreturn_t igb_msix_other(int irq, void *data)
 6964{
 6965	struct igb_adapter *adapter = data;
 6966	struct e1000_hw *hw = &adapter->hw;
 6967	u32 icr = rd32(E1000_ICR);
 6968	/* reading ICR causes bit 31 of EICR to be cleared */
 6969
 6970	if (icr & E1000_ICR_DRSTA)
 6971		schedule_work(&adapter->reset_task);
 6972
 6973	if (icr & E1000_ICR_DOUTSYNC) {
 6974		/* HW is reporting DMA is out of sync */
 6975		adapter->stats.doosync++;
 6976		/* The DMA Out of Sync is also indication of a spoof event
 6977		 * in IOV mode. Check the Wrong VM Behavior register to
 6978		 * see if it is really a spoof event.
 6979		 */
 6980		igb_check_wvbr(adapter);
 6981	}
 6982
 6983	/* Check for a mailbox event */
 6984	if (icr & E1000_ICR_VMMB)
 6985		igb_msg_task(adapter);
 6986
 6987	if (icr & E1000_ICR_LSC) {
 6988		hw->mac.get_link_status = 1;
 6989		/* guard against interrupt when we're going down */
 6990		if (!test_bit(__IGB_DOWN, &adapter->state))
 6991			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 6992	}
 6993
 6994	if (icr & E1000_ICR_TS)
 6995		igb_tsync_interrupt(adapter);
 6996
 6997	wr32(E1000_EIMS, adapter->eims_other);
 6998
 6999	return IRQ_HANDLED;
 7000}
 7001
 7002static void igb_write_itr(struct igb_q_vector *q_vector)
 7003{
 7004	struct igb_adapter *adapter = q_vector->adapter;
 7005	u32 itr_val = q_vector->itr_val & 0x7FFC;
 7006
 7007	if (!q_vector->set_itr)
 7008		return;
 7009
 7010	if (!itr_val)
 7011		itr_val = 0x4;
 7012
 7013	if (adapter->hw.mac.type == e1000_82575)
 7014		itr_val |= itr_val << 16;
 7015	else
 7016		itr_val |= E1000_EITR_CNT_IGNR;
 7017
 7018	writel(itr_val, q_vector->itr_register);
 7019	q_vector->set_itr = 0;
 7020}
 7021
 7022static irqreturn_t igb_msix_ring(int irq, void *data)
 7023{
 7024	struct igb_q_vector *q_vector = data;
 7025
 7026	/* Write the ITR value calculated from the previous interrupt. */
 7027	igb_write_itr(q_vector);
 7028
 7029	napi_schedule(&q_vector->napi);
 7030
 7031	return IRQ_HANDLED;
 7032}
 7033
 7034#ifdef CONFIG_IGB_DCA
 7035static void igb_update_tx_dca(struct igb_adapter *adapter,
 7036			      struct igb_ring *tx_ring,
 7037			      int cpu)
 7038{
 7039	struct e1000_hw *hw = &adapter->hw;
 7040	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
 7041
 7042	if (hw->mac.type != e1000_82575)
 7043		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
 7044
 7045	/* We can enable relaxed ordering for reads, but not writes when
 7046	 * DCA is enabled.  This is due to a known issue in some chipsets
 7047	 * which will cause the DCA tag to be cleared.
 7048	 */
 7049	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
 7050		  E1000_DCA_TXCTRL_DATA_RRO_EN |
 7051		  E1000_DCA_TXCTRL_DESC_DCA_EN;
 7052
 7053	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
 7054}
 7055
 7056static void igb_update_rx_dca(struct igb_adapter *adapter,
 7057			      struct igb_ring *rx_ring,
 7058			      int cpu)
 7059{
 7060	struct e1000_hw *hw = &adapter->hw;
 7061	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
 7062
 7063	if (hw->mac.type != e1000_82575)
 7064		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
 7065
 7066	/* We can enable relaxed ordering for reads, but not writes when
 7067	 * DCA is enabled.  This is due to a known issue in some chipsets
 7068	 * which will cause the DCA tag to be cleared.
 7069	 */
 7070	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
 7071		  E1000_DCA_RXCTRL_DESC_DCA_EN;
 7072
 7073	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
 7074}
 7075
 7076static void igb_update_dca(struct igb_q_vector *q_vector)
 7077{
 7078	struct igb_adapter *adapter = q_vector->adapter;
 7079	int cpu = get_cpu();
 7080
 7081	if (q_vector->cpu == cpu)
 7082		goto out_no_update;
 7083
 7084	if (q_vector->tx.ring)
 7085		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
 7086
 7087	if (q_vector->rx.ring)
 7088		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
 7089
 7090	q_vector->cpu = cpu;
 7091out_no_update:
 7092	put_cpu();
 7093}
 7094
 7095static void igb_setup_dca(struct igb_adapter *adapter)
 7096{
 7097	struct e1000_hw *hw = &adapter->hw;
 7098	int i;
 7099
 7100	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
 7101		return;
 7102
 7103	/* Always use CB2 mode, difference is masked in the CB driver. */
 7104	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
 7105
 7106	for (i = 0; i < adapter->num_q_vectors; i++) {
 7107		adapter->q_vector[i]->cpu = -1;
 7108		igb_update_dca(adapter->q_vector[i]);
 7109	}
 7110}
 7111
 7112static int __igb_notify_dca(struct device *dev, void *data)
 7113{
 7114	struct net_device *netdev = dev_get_drvdata(dev);
 7115	struct igb_adapter *adapter = netdev_priv(netdev);
 7116	struct pci_dev *pdev = adapter->pdev;
 7117	struct e1000_hw *hw = &adapter->hw;
 7118	unsigned long event = *(unsigned long *)data;
 7119
 7120	switch (event) {
 7121	case DCA_PROVIDER_ADD:
 7122		/* if already enabled, don't do it again */
 7123		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
 7124			break;
 7125		if (dca_add_requester(dev) == 0) {
 7126			adapter->flags |= IGB_FLAG_DCA_ENABLED;
 7127			dev_info(&pdev->dev, "DCA enabled\n");
 7128			igb_setup_dca(adapter);
 7129			break;
 7130		}
 7131		fallthrough; /* since DCA is disabled. */
 7132	case DCA_PROVIDER_REMOVE:
 7133		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 7134			/* without this a class_device is left
 7135			 * hanging around in the sysfs model
 7136			 */
 7137			dca_remove_requester(dev);
 7138			dev_info(&pdev->dev, "DCA disabled\n");
 7139			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 7140			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 7141		}
 7142		break;
 7143	}
 7144
 7145	return 0;
 7146}
 7147
 7148static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
 7149			  void *p)
 7150{
 7151	int ret_val;
 7152
 7153	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
 7154					 __igb_notify_dca);
 7155
 7156	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
 7157}
 7158#endif /* CONFIG_IGB_DCA */
 7159
 7160#ifdef CONFIG_PCI_IOV
 7161static int igb_vf_configure(struct igb_adapter *adapter, int vf)
 7162{
 7163	unsigned char mac_addr[ETH_ALEN];
 7164
 7165	eth_zero_addr(mac_addr);
 7166	igb_set_vf_mac(adapter, vf, mac_addr);
 7167
 7168	/* By default spoof check is enabled for all VFs */
 7169	adapter->vf_data[vf].spoofchk_enabled = true;
 7170
 7171	/* By default VFs are not trusted */
 7172	adapter->vf_data[vf].trusted = false;
 7173
 7174	return 0;
 7175}
 7176
 7177#endif
 7178static void igb_ping_all_vfs(struct igb_adapter *adapter)
 7179{
 7180	struct e1000_hw *hw = &adapter->hw;
 7181	u32 ping;
 7182	int i;
 7183
 7184	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
 7185		ping = E1000_PF_CONTROL_MSG;
 7186		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
 7187			ping |= E1000_VT_MSGTYPE_CTS;
 7188		igb_write_mbx(hw, &ping, 1, i);
 7189	}
 7190}
 7191
 7192static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7193{
 7194	struct e1000_hw *hw = &adapter->hw;
 7195	u32 vmolr = rd32(E1000_VMOLR(vf));
 7196	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7197
 7198	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
 7199			    IGB_VF_FLAG_MULTI_PROMISC);
 7200	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7201
 7202	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
 7203		vmolr |= E1000_VMOLR_MPME;
 7204		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
 7205		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
 7206	} else {
 7207		/* if we have hashes and we are clearing a multicast promisc
 7208		 * flag we need to write the hashes to the MTA as this step
 7209		 * was previously skipped
 7210		 */
 7211		if (vf_data->num_vf_mc_hashes > 30) {
 7212			vmolr |= E1000_VMOLR_MPME;
 7213		} else if (vf_data->num_vf_mc_hashes) {
 7214			int j;
 7215
 7216			vmolr |= E1000_VMOLR_ROMPE;
 7217			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7218				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7219		}
 7220	}
 7221
 7222	wr32(E1000_VMOLR(vf), vmolr);
 7223
 7224	/* there are flags left unprocessed, likely not supported */
 7225	if (*msgbuf & E1000_VT_MSGINFO_MASK)
 7226		return -EINVAL;
 7227
 7228	return 0;
 7229}
 7230
 7231static int igb_set_vf_multicasts(struct igb_adapter *adapter,
 7232				  u32 *msgbuf, u32 vf)
 7233{
 7234	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
 7235	u16 *hash_list = (u16 *)&msgbuf[1];
 7236	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7237	int i;
 7238
 7239	/* salt away the number of multicast addresses assigned
 7240	 * to this VF for later use to restore when the PF multi cast
 7241	 * list changes
 7242	 */
 7243	vf_data->num_vf_mc_hashes = n;
 7244
 7245	/* only up to 30 hash values supported */
 7246	if (n > 30)
 7247		n = 30;
 7248
 7249	/* store the hashes for later use */
 7250	for (i = 0; i < n; i++)
 7251		vf_data->vf_mc_hashes[i] = hash_list[i];
 7252
 7253	/* Flush and reset the mta with the new values */
 7254	igb_set_rx_mode(adapter->netdev);
 7255
 7256	return 0;
 7257}
 7258
 7259static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
 7260{
 7261	struct e1000_hw *hw = &adapter->hw;
 7262	struct vf_data_storage *vf_data;
 7263	int i, j;
 7264
 7265	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 7266		u32 vmolr = rd32(E1000_VMOLR(i));
 7267
 7268		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7269
 7270		vf_data = &adapter->vf_data[i];
 7271
 7272		if ((vf_data->num_vf_mc_hashes > 30) ||
 7273		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
 7274			vmolr |= E1000_VMOLR_MPME;
 7275		} else if (vf_data->num_vf_mc_hashes) {
 7276			vmolr |= E1000_VMOLR_ROMPE;
 7277			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7278				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7279		}
 7280		wr32(E1000_VMOLR(i), vmolr);
 7281	}
 7282}
 7283
 7284static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
 7285{
 7286	struct e1000_hw *hw = &adapter->hw;
 7287	u32 pool_mask, vlvf_mask, i;
 7288
 7289	/* create mask for VF and other pools */
 7290	pool_mask = E1000_VLVF_POOLSEL_MASK;
 7291	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
 7292
 7293	/* drop PF from pool bits */
 7294	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
 7295			     adapter->vfs_allocated_count);
 7296
 7297	/* Find the vlan filter for this id */
 7298	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
 7299		u32 vlvf = rd32(E1000_VLVF(i));
 7300		u32 vfta_mask, vid, vfta;
 7301
 7302		/* remove the vf from the pool */
 7303		if (!(vlvf & vlvf_mask))
 7304			continue;
 7305
 7306		/* clear out bit from VLVF */
 7307		vlvf ^= vlvf_mask;
 7308
 7309		/* if other pools are present, just remove ourselves */
 7310		if (vlvf & pool_mask)
 7311			goto update_vlvfb;
 7312
 7313		/* if PF is present, leave VFTA */
 7314		if (vlvf & E1000_VLVF_POOLSEL_MASK)
 7315			goto update_vlvf;
 7316
 7317		vid = vlvf & E1000_VLVF_VLANID_MASK;
 7318		vfta_mask = BIT(vid % 32);
 7319
 7320		/* clear bit from VFTA */
 7321		vfta = adapter->shadow_vfta[vid / 32];
 7322		if (vfta & vfta_mask)
 7323			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
 7324update_vlvf:
 7325		/* clear pool selection enable */
 7326		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7327			vlvf &= E1000_VLVF_POOLSEL_MASK;
 7328		else
 7329			vlvf = 0;
 7330update_vlvfb:
 7331		/* clear pool bits */
 7332		wr32(E1000_VLVF(i), vlvf);
 7333	}
 7334}
 7335
 7336static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
 7337{
 7338	u32 vlvf;
 7339	int idx;
 7340
 7341	/* short cut the special case */
 7342	if (vlan == 0)
 7343		return 0;
 7344
 7345	/* Search for the VLAN id in the VLVF entries */
 7346	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
 7347		vlvf = rd32(E1000_VLVF(idx));
 7348		if ((vlvf & VLAN_VID_MASK) == vlan)
 7349			break;
 7350	}
 7351
 7352	return idx;
 7353}
 7354
 7355static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
 7356{
 7357	struct e1000_hw *hw = &adapter->hw;
 7358	u32 bits, pf_id;
 7359	int idx;
 7360
 7361	idx = igb_find_vlvf_entry(hw, vid);
 7362	if (!idx)
 7363		return;
 7364
 7365	/* See if any other pools are set for this VLAN filter
 7366	 * entry other than the PF.
 7367	 */
 7368	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 7369	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
 7370	bits &= rd32(E1000_VLVF(idx));
 7371
 7372	/* Disable the filter so this falls into the default pool. */
 7373	if (!bits) {
 7374		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7375			wr32(E1000_VLVF(idx), BIT(pf_id));
 7376		else
 7377			wr32(E1000_VLVF(idx), 0);
 7378	}
 7379}
 7380
 7381static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
 7382			   bool add, u32 vf)
 7383{
 7384	int pf_id = adapter->vfs_allocated_count;
 7385	struct e1000_hw *hw = &adapter->hw;
 7386	int err;
 7387
 7388	/* If VLAN overlaps with one the PF is currently monitoring make
 7389	 * sure that we are able to allocate a VLVF entry.  This may be
 7390	 * redundant but it guarantees PF will maintain visibility to
 7391	 * the VLAN.
 7392	 */
 7393	if (add && test_bit(vid, adapter->active_vlans)) {
 7394		err = igb_vfta_set(hw, vid, pf_id, true, false);
 7395		if (err)
 7396			return err;
 7397	}
 7398
 7399	err = igb_vfta_set(hw, vid, vf, add, false);
 7400
 7401	if (add && !err)
 7402		return err;
 7403
 7404	/* If we failed to add the VF VLAN or we are removing the VF VLAN
 7405	 * we may need to drop the PF pool bit in order to allow us to free
 7406	 * up the VLVF resources.
 7407	 */
 7408	if (test_bit(vid, adapter->active_vlans) ||
 7409	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
 7410		igb_update_pf_vlvf(adapter, vid);
 7411
 7412	return err;
 7413}
 7414
 7415static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
 7416{
 7417	struct e1000_hw *hw = &adapter->hw;
 7418
 7419	if (vid)
 7420		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
 7421	else
 7422		wr32(E1000_VMVIR(vf), 0);
 7423}
 7424
 7425static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
 7426				u16 vlan, u8 qos)
 7427{
 7428	int err;
 7429
 7430	err = igb_set_vf_vlan(adapter, vlan, true, vf);
 7431	if (err)
 7432		return err;
 7433
 7434	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
 7435	igb_set_vmolr(adapter, vf, !vlan);
 7436
 7437	/* revoke access to previous VLAN */
 7438	if (vlan != adapter->vf_data[vf].pf_vlan)
 7439		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7440				false, vf);
 7441
 7442	adapter->vf_data[vf].pf_vlan = vlan;
 7443	adapter->vf_data[vf].pf_qos = qos;
 7444	igb_set_vf_vlan_strip(adapter, vf, true);
 7445	dev_info(&adapter->pdev->dev,
 7446		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
 7447	if (test_bit(__IGB_DOWN, &adapter->state)) {
 7448		dev_warn(&adapter->pdev->dev,
 7449			 "The VF VLAN has been set, but the PF device is not up.\n");
 7450		dev_warn(&adapter->pdev->dev,
 7451			 "Bring the PF device up before attempting to use the VF device.\n");
 7452	}
 7453
 7454	return err;
 7455}
 7456
 7457static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
 7458{
 7459	/* Restore tagless access via VLAN 0 */
 7460	igb_set_vf_vlan(adapter, 0, true, vf);
 7461
 7462	igb_set_vmvir(adapter, 0, vf);
 7463	igb_set_vmolr(adapter, vf, true);
 7464
 7465	/* Remove any PF assigned VLAN */
 7466	if (adapter->vf_data[vf].pf_vlan)
 7467		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7468				false, vf);
 7469
 7470	adapter->vf_data[vf].pf_vlan = 0;
 7471	adapter->vf_data[vf].pf_qos = 0;
 7472	igb_set_vf_vlan_strip(adapter, vf, false);
 7473
 7474	return 0;
 7475}
 7476
 7477static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
 7478			       u16 vlan, u8 qos, __be16 vlan_proto)
 7479{
 7480	struct igb_adapter *adapter = netdev_priv(netdev);
 7481
 7482	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
 7483		return -EINVAL;
 7484
 7485	if (vlan_proto != htons(ETH_P_8021Q))
 7486		return -EPROTONOSUPPORT;
 7487
 7488	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
 7489			       igb_disable_port_vlan(adapter, vf);
 7490}
 7491
 7492static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7493{
 7494	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
 7495	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
 7496	int ret;
 7497
 7498	if (adapter->vf_data[vf].pf_vlan)
 7499		return -1;
 7500
 7501	/* VLAN 0 is a special case, don't allow it to be removed */
 7502	if (!vid && !add)
 7503		return 0;
 7504
 7505	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
 7506	if (!ret)
 7507		igb_set_vf_vlan_strip(adapter, vf, !!vid);
 7508	return ret;
 7509}
 7510
 7511static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
 7512{
 7513	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7514
 7515	/* clear flags - except flag that indicates PF has set the MAC */
 7516	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
 7517	vf_data->last_nack = jiffies;
 7518
 7519	/* reset vlans for device */
 7520	igb_clear_vf_vfta(adapter, vf);
 7521	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
 7522	igb_set_vmvir(adapter, vf_data->pf_vlan |
 7523			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
 7524	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
 7525	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
 7526
 7527	/* reset multicast table array for vf */
 7528	adapter->vf_data[vf].num_vf_mc_hashes = 0;
 7529
 7530	/* Flush and reset the mta with the new values */
 7531	igb_set_rx_mode(adapter->netdev);
 7532}
 7533
 7534static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
 7535{
 7536	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7537
 7538	/* clear mac address as we were hotplug removed/added */
 7539	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
 7540		eth_zero_addr(vf_mac);
 7541
 7542	/* process remaining reset events */
 7543	igb_vf_reset(adapter, vf);
 7544}
 7545
 7546static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
 7547{
 7548	struct e1000_hw *hw = &adapter->hw;
 7549	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7550	u32 reg, msgbuf[3] = {};
 7551	u8 *addr = (u8 *)(&msgbuf[1]);
 7552
 7553	/* process all the same items cleared in a function level reset */
 7554	igb_vf_reset(adapter, vf);
 7555
 7556	/* set vf mac address */
 7557	igb_set_vf_mac(adapter, vf, vf_mac);
 7558
 7559	/* enable transmit and receive for vf */
 7560	reg = rd32(E1000_VFTE);
 7561	wr32(E1000_VFTE, reg | BIT(vf));
 7562	reg = rd32(E1000_VFRE);
 7563	wr32(E1000_VFRE, reg | BIT(vf));
 7564
 7565	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
 7566
 7567	/* reply to reset with ack and vf mac address */
 7568	if (!is_zero_ether_addr(vf_mac)) {
 7569		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
 7570		memcpy(addr, vf_mac, ETH_ALEN);
 7571	} else {
 7572		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
 7573	}
 7574	igb_write_mbx(hw, msgbuf, 3, vf);
 7575}
 7576
 7577static void igb_flush_mac_table(struct igb_adapter *adapter)
 7578{
 7579	struct e1000_hw *hw = &adapter->hw;
 7580	int i;
 7581
 7582	for (i = 0; i < hw->mac.rar_entry_count; i++) {
 7583		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
 7584		eth_zero_addr(adapter->mac_table[i].addr);
 7585		adapter->mac_table[i].queue = 0;
 7586		igb_rar_set_index(adapter, i);
 7587	}
 7588}
 7589
 7590static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
 7591{
 7592	struct e1000_hw *hw = &adapter->hw;
 7593	/* do not count rar entries reserved for VFs MAC addresses */
 7594	int rar_entries = hw->mac.rar_entry_count -
 7595			  adapter->vfs_allocated_count;
 7596	int i, count = 0;
 7597
 7598	for (i = 0; i < rar_entries; i++) {
 7599		/* do not count default entries */
 7600		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
 7601			continue;
 7602
 7603		/* do not count "in use" entries for different queues */
 7604		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
 7605		    (adapter->mac_table[i].queue != queue))
 7606			continue;
 7607
 7608		count++;
 7609	}
 7610
 7611	return count;
 7612}
 7613
 7614/* Set default MAC address for the PF in the first RAR entry */
 7615static void igb_set_default_mac_filter(struct igb_adapter *adapter)
 7616{
 7617	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
 7618
 7619	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
 7620	mac_table->queue = adapter->vfs_allocated_count;
 7621	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7622
 7623	igb_rar_set_index(adapter, 0);
 7624}
 7625
 7626/* If the filter to be added and an already existing filter express
 7627 * the same address and address type, it should be possible to only
 7628 * override the other configurations, for example the queue to steer
 7629 * traffic.
 7630 */
 7631static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
 7632				      const u8 *addr, const u8 flags)
 7633{
 7634	if (!(entry->state & IGB_MAC_STATE_IN_USE))
 7635		return true;
 7636
 7637	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
 7638	    (flags & IGB_MAC_STATE_SRC_ADDR))
 7639		return false;
 7640
 7641	if (!ether_addr_equal(addr, entry->addr))
 7642		return false;
 7643
 7644	return true;
 7645}
 7646
 7647/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
 7648 * 'flags' is used to indicate what kind of match is made, match is by
 7649 * default for the destination address, if matching by source address
 7650 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
 7651 */
 7652static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
 7653				    const u8 *addr, const u8 queue,
 7654				    const u8 flags)
 7655{
 7656	struct e1000_hw *hw = &adapter->hw;
 7657	int rar_entries = hw->mac.rar_entry_count -
 7658			  adapter->vfs_allocated_count;
 7659	int i;
 7660
 7661	if (is_zero_ether_addr(addr))
 7662		return -EINVAL;
 7663
 7664	/* Search for the first empty entry in the MAC table.
 7665	 * Do not touch entries at the end of the table reserved for the VF MAC
 7666	 * addresses.
 7667	 */
 7668	for (i = 0; i < rar_entries; i++) {
 7669		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
 7670					       addr, flags))
 7671			continue;
 7672
 7673		ether_addr_copy(adapter->mac_table[i].addr, addr);
 7674		adapter->mac_table[i].queue = queue;
 7675		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
 7676
 7677		igb_rar_set_index(adapter, i);
 7678		return i;
 7679	}
 7680
 7681	return -ENOSPC;
 7682}
 7683
 7684static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7685			      const u8 queue)
 7686{
 7687	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
 7688}
 7689
 7690/* Remove a MAC filter for 'addr' directing matching traffic to
 7691 * 'queue', 'flags' is used to indicate what kind of match need to be
 7692 * removed, match is by default for the destination address, if
 7693 * matching by source address is to be removed the flag
 7694 * IGB_MAC_STATE_SRC_ADDR can be used.
 7695 */
 7696static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
 7697				    const u8 *addr, const u8 queue,
 7698				    const u8 flags)
 7699{
 7700	struct e1000_hw *hw = &adapter->hw;
 7701	int rar_entries = hw->mac.rar_entry_count -
 7702			  adapter->vfs_allocated_count;
 7703	int i;
 7704
 7705	if (is_zero_ether_addr(addr))
 7706		return -EINVAL;
 7707
 7708	/* Search for matching entry in the MAC table based on given address
 7709	 * and queue. Do not touch entries at the end of the table reserved
 7710	 * for the VF MAC addresses.
 7711	 */
 7712	for (i = 0; i < rar_entries; i++) {
 7713		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
 7714			continue;
 7715		if ((adapter->mac_table[i].state & flags) != flags)
 7716			continue;
 7717		if (adapter->mac_table[i].queue != queue)
 7718			continue;
 7719		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
 7720			continue;
 7721
 7722		/* When a filter for the default address is "deleted",
 7723		 * we return it to its initial configuration
 7724		 */
 7725		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
 7726			adapter->mac_table[i].state =
 7727				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7728			adapter->mac_table[i].queue =
 7729				adapter->vfs_allocated_count;
 7730		} else {
 7731			adapter->mac_table[i].state = 0;
 7732			adapter->mac_table[i].queue = 0;
 7733			eth_zero_addr(adapter->mac_table[i].addr);
 7734		}
 7735
 7736		igb_rar_set_index(adapter, i);
 7737		return 0;
 7738	}
 7739
 7740	return -ENOENT;
 7741}
 7742
 7743static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7744			      const u8 queue)
 7745{
 7746	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
 7747}
 7748
 7749int igb_add_mac_steering_filter(struct igb_adapter *adapter,
 7750				const u8 *addr, u8 queue, u8 flags)
 7751{
 7752	struct e1000_hw *hw = &adapter->hw;
 7753
 7754	/* In theory, this should be supported on 82575 as well, but
 7755	 * that part wasn't easily accessible during development.
 7756	 */
 7757	if (hw->mac.type != e1000_i210)
 7758		return -EOPNOTSUPP;
 7759
 7760	return igb_add_mac_filter_flags(adapter, addr, queue,
 7761					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7762}
 7763
 7764int igb_del_mac_steering_filter(struct igb_adapter *adapter,
 7765				const u8 *addr, u8 queue, u8 flags)
 7766{
 7767	return igb_del_mac_filter_flags(adapter, addr, queue,
 7768					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7769}
 7770
 7771static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
 7772{
 7773	struct igb_adapter *adapter = netdev_priv(netdev);
 7774	int ret;
 7775
 7776	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7777
 7778	return min_t(int, ret, 0);
 7779}
 7780
 7781static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
 7782{
 7783	struct igb_adapter *adapter = netdev_priv(netdev);
 7784
 7785	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7786
 7787	return 0;
 7788}
 7789
 7790static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
 7791				 const u32 info, const u8 *addr)
 7792{
 7793	struct pci_dev *pdev = adapter->pdev;
 7794	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7795	struct list_head *pos;
 7796	struct vf_mac_filter *entry = NULL;
 7797	int ret = 0;
 7798
 7799	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7800	    !vf_data->trusted) {
 7801		dev_warn(&pdev->dev,
 7802			 "VF %d requested MAC filter but is administratively denied\n",
 7803			  vf);
 7804		return -EINVAL;
 7805	}
 7806	if (!is_valid_ether_addr(addr)) {
 7807		dev_warn(&pdev->dev,
 7808			 "VF %d attempted to set invalid MAC filter\n",
 7809			  vf);
 7810		return -EINVAL;
 7811	}
 7812
 7813	switch (info) {
 7814	case E1000_VF_MAC_FILTER_CLR:
 7815		/* remove all unicast MAC filters related to the current VF */
 7816		list_for_each(pos, &adapter->vf_macs.l) {
 7817			entry = list_entry(pos, struct vf_mac_filter, l);
 7818			if (entry->vf == vf) {
 7819				entry->vf = -1;
 7820				entry->free = true;
 7821				igb_del_mac_filter(adapter, entry->vf_mac, vf);
 7822			}
 7823		}
 7824		break;
 7825	case E1000_VF_MAC_FILTER_ADD:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7826		/* try to find empty slot in the list */
 7827		list_for_each(pos, &adapter->vf_macs.l) {
 7828			entry = list_entry(pos, struct vf_mac_filter, l);
 7829			if (entry->free)
 7830				break;
 7831		}
 7832
 7833		if (entry && entry->free) {
 7834			entry->free = false;
 7835			entry->vf = vf;
 7836			ether_addr_copy(entry->vf_mac, addr);
 7837
 7838			ret = igb_add_mac_filter(adapter, addr, vf);
 7839			ret = min_t(int, ret, 0);
 7840		} else {
 7841			ret = -ENOSPC;
 7842		}
 7843
 7844		if (ret == -ENOSPC)
 7845			dev_warn(&pdev->dev,
 7846				 "VF %d has requested MAC filter but there is no space for it\n",
 7847				 vf);
 7848		break;
 7849	default:
 7850		ret = -EINVAL;
 7851		break;
 7852	}
 7853
 7854	return ret;
 7855}
 7856
 7857static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
 7858{
 7859	struct pci_dev *pdev = adapter->pdev;
 7860	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7861	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
 7862
 7863	/* The VF MAC Address is stored in a packed array of bytes
 7864	 * starting at the second 32 bit word of the msg array
 7865	 */
 7866	unsigned char *addr = (unsigned char *)&msg[1];
 7867	int ret = 0;
 7868
 7869	if (!info) {
 7870		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7871		    !vf_data->trusted) {
 7872			dev_warn(&pdev->dev,
 7873				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
 7874				 vf);
 7875			return -EINVAL;
 7876		}
 7877
 7878		if (!is_valid_ether_addr(addr)) {
 7879			dev_warn(&pdev->dev,
 7880				 "VF %d attempted to set invalid MAC\n",
 7881				 vf);
 7882			return -EINVAL;
 7883		}
 7884
 7885		ret = igb_set_vf_mac(adapter, vf, addr);
 7886	} else {
 7887		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
 7888	}
 7889
 7890	return ret;
 7891}
 7892
 7893static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
 7894{
 7895	struct e1000_hw *hw = &adapter->hw;
 7896	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7897	u32 msg = E1000_VT_MSGTYPE_NACK;
 7898
 7899	/* if device isn't clear to send it shouldn't be reading either */
 7900	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
 7901	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
 7902		igb_write_mbx(hw, &msg, 1, vf);
 7903		vf_data->last_nack = jiffies;
 7904	}
 7905}
 7906
 7907static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
 7908{
 7909	struct pci_dev *pdev = adapter->pdev;
 7910	u32 msgbuf[E1000_VFMAILBOX_SIZE];
 7911	struct e1000_hw *hw = &adapter->hw;
 7912	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7913	s32 retval;
 7914
 7915	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
 7916
 7917	if (retval) {
 7918		/* if receive failed revoke VF CTS stats and restart init */
 7919		dev_err(&pdev->dev, "Error receiving message from VF\n");
 7920		vf_data->flags &= ~IGB_VF_FLAG_CTS;
 7921		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7922			goto unlock;
 7923		goto out;
 7924	}
 7925
 7926	/* this is a message we already processed, do nothing */
 7927	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
 7928		goto unlock;
 7929
 7930	/* until the vf completes a reset it should not be
 7931	 * allowed to start any configuration.
 7932	 */
 7933	if (msgbuf[0] == E1000_VF_RESET) {
 7934		/* unlocks mailbox */
 7935		igb_vf_reset_msg(adapter, vf);
 7936		return;
 7937	}
 7938
 7939	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
 7940		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7941			goto unlock;
 7942		retval = -1;
 7943		goto out;
 7944	}
 7945
 7946	switch ((msgbuf[0] & 0xFFFF)) {
 7947	case E1000_VF_SET_MAC_ADDR:
 7948		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
 7949		break;
 7950	case E1000_VF_SET_PROMISC:
 7951		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
 7952		break;
 7953	case E1000_VF_SET_MULTICAST:
 7954		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
 7955		break;
 7956	case E1000_VF_SET_LPE:
 7957		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
 7958		break;
 7959	case E1000_VF_SET_VLAN:
 7960		retval = -1;
 7961		if (vf_data->pf_vlan)
 7962			dev_warn(&pdev->dev,
 7963				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
 7964				 vf);
 7965		else
 7966			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
 7967		break;
 7968	default:
 7969		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
 7970		retval = -1;
 7971		break;
 7972	}
 7973
 7974	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
 7975out:
 7976	/* notify the VF of the results of what it sent us */
 7977	if (retval)
 7978		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
 7979	else
 7980		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
 7981
 7982	/* unlocks mailbox */
 7983	igb_write_mbx(hw, msgbuf, 1, vf);
 7984	return;
 7985
 7986unlock:
 7987	igb_unlock_mbx(hw, vf);
 7988}
 7989
 7990static void igb_msg_task(struct igb_adapter *adapter)
 7991{
 7992	struct e1000_hw *hw = &adapter->hw;
 7993	unsigned long flags;
 7994	u32 vf;
 7995
 7996	spin_lock_irqsave(&adapter->vfs_lock, flags);
 7997	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
 7998		/* process any reset requests */
 7999		if (!igb_check_for_rst(hw, vf))
 8000			igb_vf_reset_event(adapter, vf);
 8001
 8002		/* process any messages pending */
 8003		if (!igb_check_for_msg(hw, vf))
 8004			igb_rcv_msg_from_vf(adapter, vf);
 8005
 8006		/* process any acks */
 8007		if (!igb_check_for_ack(hw, vf))
 8008			igb_rcv_ack_from_vf(adapter, vf);
 8009	}
 8010	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 8011}
 8012
 8013/**
 8014 *  igb_set_uta - Set unicast filter table address
 8015 *  @adapter: board private structure
 8016 *  @set: boolean indicating if we are setting or clearing bits
 8017 *
 8018 *  The unicast table address is a register array of 32-bit registers.
 8019 *  The table is meant to be used in a way similar to how the MTA is used
 8020 *  however due to certain limitations in the hardware it is necessary to
 8021 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 8022 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 8023 **/
 8024static void igb_set_uta(struct igb_adapter *adapter, bool set)
 8025{
 8026	struct e1000_hw *hw = &adapter->hw;
 8027	u32 uta = set ? ~0 : 0;
 8028	int i;
 8029
 8030	/* we only need to do this if VMDq is enabled */
 8031	if (!adapter->vfs_allocated_count)
 8032		return;
 8033
 8034	for (i = hw->mac.uta_reg_count; i--;)
 8035		array_wr32(E1000_UTA, i, uta);
 8036}
 8037
 8038/**
 8039 *  igb_intr_msi - Interrupt Handler
 8040 *  @irq: interrupt number
 8041 *  @data: pointer to a network interface device structure
 8042 **/
 8043static irqreturn_t igb_intr_msi(int irq, void *data)
 8044{
 8045	struct igb_adapter *adapter = data;
 8046	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8047	struct e1000_hw *hw = &adapter->hw;
 8048	/* read ICR disables interrupts using IAM */
 8049	u32 icr = rd32(E1000_ICR);
 8050
 8051	igb_write_itr(q_vector);
 8052
 8053	if (icr & E1000_ICR_DRSTA)
 8054		schedule_work(&adapter->reset_task);
 8055
 8056	if (icr & E1000_ICR_DOUTSYNC) {
 8057		/* HW is reporting DMA is out of sync */
 8058		adapter->stats.doosync++;
 8059	}
 8060
 8061	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8062		hw->mac.get_link_status = 1;
 8063		if (!test_bit(__IGB_DOWN, &adapter->state))
 8064			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8065	}
 8066
 8067	if (icr & E1000_ICR_TS)
 8068		igb_tsync_interrupt(adapter);
 8069
 8070	napi_schedule(&q_vector->napi);
 8071
 8072	return IRQ_HANDLED;
 8073}
 8074
 8075/**
 8076 *  igb_intr - Legacy Interrupt Handler
 8077 *  @irq: interrupt number
 8078 *  @data: pointer to a network interface device structure
 8079 **/
 8080static irqreturn_t igb_intr(int irq, void *data)
 8081{
 8082	struct igb_adapter *adapter = data;
 8083	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8084	struct e1000_hw *hw = &adapter->hw;
 8085	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
 8086	 * need for the IMC write
 8087	 */
 8088	u32 icr = rd32(E1000_ICR);
 8089
 8090	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 8091	 * not set, then the adapter didn't send an interrupt
 8092	 */
 8093	if (!(icr & E1000_ICR_INT_ASSERTED))
 8094		return IRQ_NONE;
 8095
 8096	igb_write_itr(q_vector);
 8097
 8098	if (icr & E1000_ICR_DRSTA)
 8099		schedule_work(&adapter->reset_task);
 8100
 8101	if (icr & E1000_ICR_DOUTSYNC) {
 8102		/* HW is reporting DMA is out of sync */
 8103		adapter->stats.doosync++;
 8104	}
 8105
 8106	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8107		hw->mac.get_link_status = 1;
 8108		/* guard against interrupt when we're going down */
 8109		if (!test_bit(__IGB_DOWN, &adapter->state))
 8110			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8111	}
 8112
 8113	if (icr & E1000_ICR_TS)
 8114		igb_tsync_interrupt(adapter);
 8115
 8116	napi_schedule(&q_vector->napi);
 8117
 8118	return IRQ_HANDLED;
 8119}
 8120
 8121static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
 8122{
 8123	struct igb_adapter *adapter = q_vector->adapter;
 8124	struct e1000_hw *hw = &adapter->hw;
 8125
 8126	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
 8127	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
 8128		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
 8129			igb_set_itr(q_vector);
 8130		else
 8131			igb_update_ring_itr(q_vector);
 8132	}
 8133
 8134	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 8135		if (adapter->flags & IGB_FLAG_HAS_MSIX)
 8136			wr32(E1000_EIMS, q_vector->eims_value);
 8137		else
 8138			igb_irq_enable(adapter);
 8139	}
 8140}
 8141
 8142/**
 8143 *  igb_poll - NAPI Rx polling callback
 8144 *  @napi: napi polling structure
 8145 *  @budget: count of how many packets we should handle
 8146 **/
 8147static int igb_poll(struct napi_struct *napi, int budget)
 8148{
 8149	struct igb_q_vector *q_vector = container_of(napi,
 8150						     struct igb_q_vector,
 8151						     napi);
 8152	bool clean_complete = true;
 8153	int work_done = 0;
 8154
 8155#ifdef CONFIG_IGB_DCA
 8156	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
 8157		igb_update_dca(q_vector);
 8158#endif
 8159	if (q_vector->tx.ring)
 8160		clean_complete = igb_clean_tx_irq(q_vector, budget);
 8161
 8162	if (q_vector->rx.ring) {
 8163		int cleaned = igb_clean_rx_irq(q_vector, budget);
 8164
 8165		work_done += cleaned;
 8166		if (cleaned >= budget)
 8167			clean_complete = false;
 8168	}
 8169
 8170	/* If all work not completed, return budget and keep polling */
 8171	if (!clean_complete)
 8172		return budget;
 8173
 8174	/* Exit the polling mode, but don't re-enable interrupts if stack might
 8175	 * poll us due to busy-polling
 8176	 */
 8177	if (likely(napi_complete_done(napi, work_done)))
 8178		igb_ring_irq_enable(q_vector);
 8179
 8180	return work_done;
 8181}
 8182
 8183/**
 8184 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 8185 *  @q_vector: pointer to q_vector containing needed info
 8186 *  @napi_budget: Used to determine if we are in netpoll
 8187 *
 8188 *  returns true if ring is completely cleaned
 8189 **/
 8190static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
 8191{
 8192	struct igb_adapter *adapter = q_vector->adapter;
 8193	struct igb_ring *tx_ring = q_vector->tx.ring;
 8194	struct igb_tx_buffer *tx_buffer;
 8195	union e1000_adv_tx_desc *tx_desc;
 8196	unsigned int total_bytes = 0, total_packets = 0;
 8197	unsigned int budget = q_vector->tx.work_limit;
 8198	unsigned int i = tx_ring->next_to_clean;
 8199
 8200	if (test_bit(__IGB_DOWN, &adapter->state))
 8201		return true;
 8202
 8203	tx_buffer = &tx_ring->tx_buffer_info[i];
 8204	tx_desc = IGB_TX_DESC(tx_ring, i);
 8205	i -= tx_ring->count;
 8206
 8207	do {
 8208		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
 8209
 8210		/* if next_to_watch is not set then there is no work pending */
 8211		if (!eop_desc)
 8212			break;
 8213
 8214		/* prevent any other reads prior to eop_desc */
 8215		smp_rmb();
 8216
 8217		/* if DD is not set pending work has not been completed */
 8218		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 8219			break;
 8220
 8221		/* clear next_to_watch to prevent false hangs */
 8222		tx_buffer->next_to_watch = NULL;
 8223
 8224		/* update the statistics for this packet */
 8225		total_bytes += tx_buffer->bytecount;
 8226		total_packets += tx_buffer->gso_segs;
 8227
 8228		/* free the skb */
 8229		if (tx_buffer->type == IGB_TYPE_SKB)
 8230			napi_consume_skb(tx_buffer->skb, napi_budget);
 8231		else
 8232			xdp_return_frame(tx_buffer->xdpf);
 8233
 8234		/* unmap skb header data */
 8235		dma_unmap_single(tx_ring->dev,
 8236				 dma_unmap_addr(tx_buffer, dma),
 8237				 dma_unmap_len(tx_buffer, len),
 8238				 DMA_TO_DEVICE);
 8239
 8240		/* clear tx_buffer data */
 8241		dma_unmap_len_set(tx_buffer, len, 0);
 8242
 8243		/* clear last DMA location and unmap remaining buffers */
 8244		while (tx_desc != eop_desc) {
 8245			tx_buffer++;
 8246			tx_desc++;
 8247			i++;
 8248			if (unlikely(!i)) {
 8249				i -= tx_ring->count;
 8250				tx_buffer = tx_ring->tx_buffer_info;
 8251				tx_desc = IGB_TX_DESC(tx_ring, 0);
 8252			}
 8253
 8254			/* unmap any remaining paged data */
 8255			if (dma_unmap_len(tx_buffer, len)) {
 8256				dma_unmap_page(tx_ring->dev,
 8257					       dma_unmap_addr(tx_buffer, dma),
 8258					       dma_unmap_len(tx_buffer, len),
 8259					       DMA_TO_DEVICE);
 8260				dma_unmap_len_set(tx_buffer, len, 0);
 8261			}
 8262		}
 8263
 8264		/* move us one more past the eop_desc for start of next pkt */
 8265		tx_buffer++;
 8266		tx_desc++;
 8267		i++;
 8268		if (unlikely(!i)) {
 8269			i -= tx_ring->count;
 8270			tx_buffer = tx_ring->tx_buffer_info;
 8271			tx_desc = IGB_TX_DESC(tx_ring, 0);
 8272		}
 8273
 8274		/* issue prefetch for next Tx descriptor */
 8275		prefetch(tx_desc);
 8276
 8277		/* update budget accounting */
 8278		budget--;
 8279	} while (likely(budget));
 8280
 8281	netdev_tx_completed_queue(txring_txq(tx_ring),
 8282				  total_packets, total_bytes);
 8283	i += tx_ring->count;
 8284	tx_ring->next_to_clean = i;
 8285	u64_stats_update_begin(&tx_ring->tx_syncp);
 8286	tx_ring->tx_stats.bytes += total_bytes;
 8287	tx_ring->tx_stats.packets += total_packets;
 8288	u64_stats_update_end(&tx_ring->tx_syncp);
 8289	q_vector->tx.total_bytes += total_bytes;
 8290	q_vector->tx.total_packets += total_packets;
 8291
 8292	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
 8293		struct e1000_hw *hw = &adapter->hw;
 8294
 8295		/* Detect a transmit hang in hardware, this serializes the
 8296		 * check with the clearing of time_stamp and movement of i
 8297		 */
 8298		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 8299		if (tx_buffer->next_to_watch &&
 8300		    time_after(jiffies, tx_buffer->time_stamp +
 8301			       (adapter->tx_timeout_factor * HZ)) &&
 8302		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
 8303
 8304			/* detected Tx unit hang */
 8305			dev_err(tx_ring->dev,
 8306				"Detected Tx Unit Hang\n"
 8307				"  Tx Queue             <%d>\n"
 8308				"  TDH                  <%x>\n"
 8309				"  TDT                  <%x>\n"
 8310				"  next_to_use          <%x>\n"
 8311				"  next_to_clean        <%x>\n"
 8312				"buffer_info[next_to_clean]\n"
 8313				"  time_stamp           <%lx>\n"
 8314				"  next_to_watch        <%p>\n"
 8315				"  jiffies              <%lx>\n"
 8316				"  desc.status          <%x>\n",
 8317				tx_ring->queue_index,
 8318				rd32(E1000_TDH(tx_ring->reg_idx)),
 8319				readl(tx_ring->tail),
 8320				tx_ring->next_to_use,
 8321				tx_ring->next_to_clean,
 8322				tx_buffer->time_stamp,
 8323				tx_buffer->next_to_watch,
 8324				jiffies,
 8325				tx_buffer->next_to_watch->wb.status);
 8326			netif_stop_subqueue(tx_ring->netdev,
 8327					    tx_ring->queue_index);
 8328
 8329			/* we are about to reset, no point in enabling stuff */
 8330			return true;
 8331		}
 8332	}
 8333
 8334#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 8335	if (unlikely(total_packets &&
 8336	    netif_carrier_ok(tx_ring->netdev) &&
 8337	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
 8338		/* Make sure that anybody stopping the queue after this
 8339		 * sees the new next_to_clean.
 8340		 */
 8341		smp_mb();
 8342		if (__netif_subqueue_stopped(tx_ring->netdev,
 8343					     tx_ring->queue_index) &&
 8344		    !(test_bit(__IGB_DOWN, &adapter->state))) {
 8345			netif_wake_subqueue(tx_ring->netdev,
 8346					    tx_ring->queue_index);
 8347
 8348			u64_stats_update_begin(&tx_ring->tx_syncp);
 8349			tx_ring->tx_stats.restart_queue++;
 8350			u64_stats_update_end(&tx_ring->tx_syncp);
 8351		}
 8352	}
 8353
 8354	return !!budget;
 8355}
 8356
 8357/**
 8358 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 8359 *  @rx_ring: rx descriptor ring to store buffers on
 8360 *  @old_buff: donor buffer to have page reused
 8361 *
 8362 *  Synchronizes page for reuse by the adapter
 8363 **/
 8364static void igb_reuse_rx_page(struct igb_ring *rx_ring,
 8365			      struct igb_rx_buffer *old_buff)
 8366{
 8367	struct igb_rx_buffer *new_buff;
 8368	u16 nta = rx_ring->next_to_alloc;
 8369
 8370	new_buff = &rx_ring->rx_buffer_info[nta];
 8371
 8372	/* update, and store next to alloc */
 8373	nta++;
 8374	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 8375
 8376	/* Transfer page from old buffer to new buffer.
 8377	 * Move each member individually to avoid possible store
 8378	 * forwarding stalls.
 8379	 */
 8380	new_buff->dma		= old_buff->dma;
 8381	new_buff->page		= old_buff->page;
 8382	new_buff->page_offset	= old_buff->page_offset;
 8383	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
 8384}
 8385
 8386static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
 8387				  int rx_buf_pgcnt)
 
 
 
 
 8388{
 8389	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
 8390	struct page *page = rx_buffer->page;
 8391
 8392	/* avoid re-using remote and pfmemalloc pages */
 8393	if (!dev_page_is_reusable(page))
 8394		return false;
 8395
 8396#if (PAGE_SIZE < 8192)
 8397	/* if we are only owner of page we can reuse it */
 8398	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 8399		return false;
 8400#else
 8401#define IGB_LAST_OFFSET \
 8402	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
 8403
 8404	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
 8405		return false;
 8406#endif
 8407
 8408	/* If we have drained the page fragment pool we need to update
 8409	 * the pagecnt_bias and page count so that we fully restock the
 8410	 * number of references the driver holds.
 8411	 */
 8412	if (unlikely(pagecnt_bias == 1)) {
 8413		page_ref_add(page, USHRT_MAX - 1);
 8414		rx_buffer->pagecnt_bias = USHRT_MAX;
 8415	}
 8416
 8417	return true;
 8418}
 8419
 8420/**
 8421 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 8422 *  @rx_ring: rx descriptor ring to transact packets on
 8423 *  @rx_buffer: buffer containing page to add
 8424 *  @skb: sk_buff to place the data into
 8425 *  @size: size of buffer to be added
 8426 *
 8427 *  This function will add the data contained in rx_buffer->page to the skb.
 8428 **/
 8429static void igb_add_rx_frag(struct igb_ring *rx_ring,
 8430			    struct igb_rx_buffer *rx_buffer,
 8431			    struct sk_buff *skb,
 8432			    unsigned int size)
 8433{
 8434#if (PAGE_SIZE < 8192)
 8435	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8436#else
 8437	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
 8438				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
 8439				SKB_DATA_ALIGN(size);
 8440#endif
 8441	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
 8442			rx_buffer->page_offset, size, truesize);
 8443#if (PAGE_SIZE < 8192)
 8444	rx_buffer->page_offset ^= truesize;
 8445#else
 8446	rx_buffer->page_offset += truesize;
 8447#endif
 8448}
 8449
 8450static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
 8451					 struct igb_rx_buffer *rx_buffer,
 8452					 struct xdp_buff *xdp,
 8453					 ktime_t timestamp)
 8454{
 
 8455#if (PAGE_SIZE < 8192)
 8456	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8457#else
 8458	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
 8459					       xdp->data_hard_start);
 8460#endif
 8461	unsigned int size = xdp->data_end - xdp->data;
 8462	unsigned int headlen;
 8463	struct sk_buff *skb;
 8464
 8465	/* prefetch first cache line of first page */
 8466	net_prefetch(xdp->data);
 
 
 
 8467
 8468	/* allocate a skb to store the frags */
 8469	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
 8470	if (unlikely(!skb))
 8471		return NULL;
 8472
 8473	if (timestamp)
 8474		skb_hwtstamps(skb)->hwtstamp = timestamp;
 
 
 
 8475
 8476	/* Determine available headroom for copy */
 8477	headlen = size;
 8478	if (headlen > IGB_RX_HDR_LEN)
 8479		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
 8480
 8481	/* align pull length to size of long to optimize memcpy performance */
 8482	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
 8483
 8484	/* update all of the pointers */
 8485	size -= headlen;
 8486	if (size) {
 8487		skb_add_rx_frag(skb, 0, rx_buffer->page,
 8488				(xdp->data + headlen) - page_address(rx_buffer->page),
 8489				size, truesize);
 8490#if (PAGE_SIZE < 8192)
 8491		rx_buffer->page_offset ^= truesize;
 8492#else
 8493		rx_buffer->page_offset += truesize;
 8494#endif
 8495	} else {
 8496		rx_buffer->pagecnt_bias++;
 8497	}
 8498
 8499	return skb;
 8500}
 8501
 8502static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
 8503				     struct igb_rx_buffer *rx_buffer,
 8504				     struct xdp_buff *xdp,
 8505				     ktime_t timestamp)
 8506{
 
 8507#if (PAGE_SIZE < 8192)
 8508	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8509#else
 8510	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 8511				SKB_DATA_ALIGN(xdp->data_end -
 8512					       xdp->data_hard_start);
 8513#endif
 8514	unsigned int metasize = xdp->data - xdp->data_meta;
 8515	struct sk_buff *skb;
 8516
 8517	/* prefetch first cache line of first page */
 8518	net_prefetch(xdp->data_meta);
 
 
 
 8519
 8520	/* build an skb around the page buffer */
 8521	skb = napi_build_skb(xdp->data_hard_start, truesize);
 8522	if (unlikely(!skb))
 8523		return NULL;
 8524
 8525	/* update pointers within the skb to store the data */
 8526	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 8527	__skb_put(skb, xdp->data_end - xdp->data);
 8528
 8529	if (metasize)
 8530		skb_metadata_set(skb, metasize);
 8531
 8532	if (timestamp)
 8533		skb_hwtstamps(skb)->hwtstamp = timestamp;
 
 
 
 8534
 8535	/* update buffer offset */
 8536#if (PAGE_SIZE < 8192)
 8537	rx_buffer->page_offset ^= truesize;
 8538#else
 8539	rx_buffer->page_offset += truesize;
 8540#endif
 8541
 8542	return skb;
 8543}
 8544
 8545static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
 8546				   struct igb_ring *rx_ring,
 8547				   struct xdp_buff *xdp)
 8548{
 8549	int err, result = IGB_XDP_PASS;
 8550	struct bpf_prog *xdp_prog;
 8551	u32 act;
 8552
 8553	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 8554
 8555	if (!xdp_prog)
 8556		goto xdp_out;
 8557
 8558	prefetchw(xdp->data_hard_start); /* xdp_frame write */
 8559
 8560	act = bpf_prog_run_xdp(xdp_prog, xdp);
 8561	switch (act) {
 8562	case XDP_PASS:
 8563		break;
 8564	case XDP_TX:
 8565		result = igb_xdp_xmit_back(adapter, xdp);
 8566		if (result == IGB_XDP_CONSUMED)
 8567			goto out_failure;
 8568		break;
 8569	case XDP_REDIRECT:
 8570		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
 8571		if (err)
 8572			goto out_failure;
 8573		result = IGB_XDP_REDIR;
 8574		break;
 8575	default:
 8576		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
 8577		fallthrough;
 8578	case XDP_ABORTED:
 8579out_failure:
 8580		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 8581		fallthrough;
 8582	case XDP_DROP:
 8583		result = IGB_XDP_CONSUMED;
 8584		break;
 8585	}
 8586xdp_out:
 8587	return ERR_PTR(-result);
 8588}
 8589
 8590static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
 8591					  unsigned int size)
 8592{
 8593	unsigned int truesize;
 8594
 8595#if (PAGE_SIZE < 8192)
 8596	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 8597#else
 8598	truesize = ring_uses_build_skb(rx_ring) ?
 8599		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
 8600		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 8601		SKB_DATA_ALIGN(size);
 8602#endif
 8603	return truesize;
 8604}
 8605
 8606static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
 8607			       struct igb_rx_buffer *rx_buffer,
 8608			       unsigned int size)
 8609{
 8610	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
 8611#if (PAGE_SIZE < 8192)
 8612	rx_buffer->page_offset ^= truesize;
 8613#else
 8614	rx_buffer->page_offset += truesize;
 8615#endif
 8616}
 8617
 8618static inline void igb_rx_checksum(struct igb_ring *ring,
 8619				   union e1000_adv_rx_desc *rx_desc,
 8620				   struct sk_buff *skb)
 8621{
 8622	skb_checksum_none_assert(skb);
 8623
 8624	/* Ignore Checksum bit is set */
 8625	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
 8626		return;
 8627
 8628	/* Rx checksum disabled via ethtool */
 8629	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 8630		return;
 8631
 8632	/* TCP/UDP checksum error bit is set */
 8633	if (igb_test_staterr(rx_desc,
 8634			     E1000_RXDEXT_STATERR_TCPE |
 8635			     E1000_RXDEXT_STATERR_IPE)) {
 8636		/* work around errata with sctp packets where the TCPE aka
 8637		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
 8638		 * packets, (aka let the stack check the crc32c)
 8639		 */
 8640		if (!((skb->len == 60) &&
 8641		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
 8642			u64_stats_update_begin(&ring->rx_syncp);
 8643			ring->rx_stats.csum_err++;
 8644			u64_stats_update_end(&ring->rx_syncp);
 8645		}
 8646		/* let the stack verify checksum errors */
 8647		return;
 8648	}
 8649	/* It must be a TCP or UDP packet with a valid checksum */
 8650	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
 8651				      E1000_RXD_STAT_UDPCS))
 8652		skb->ip_summed = CHECKSUM_UNNECESSARY;
 8653
 8654	dev_dbg(ring->dev, "cksum success: bits %08X\n",
 8655		le32_to_cpu(rx_desc->wb.upper.status_error));
 8656}
 8657
 8658static inline void igb_rx_hash(struct igb_ring *ring,
 8659			       union e1000_adv_rx_desc *rx_desc,
 8660			       struct sk_buff *skb)
 8661{
 8662	if (ring->netdev->features & NETIF_F_RXHASH)
 8663		skb_set_hash(skb,
 8664			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
 8665			     PKT_HASH_TYPE_L3);
 8666}
 8667
 8668/**
 8669 *  igb_is_non_eop - process handling of non-EOP buffers
 8670 *  @rx_ring: Rx ring being processed
 8671 *  @rx_desc: Rx descriptor for current buffer
 
 8672 *
 8673 *  This function updates next to clean.  If the buffer is an EOP buffer
 8674 *  this function exits returning false, otherwise it will place the
 8675 *  sk_buff in the next buffer to be chained and return true indicating
 8676 *  that this is in fact a non-EOP buffer.
 8677 **/
 8678static bool igb_is_non_eop(struct igb_ring *rx_ring,
 8679			   union e1000_adv_rx_desc *rx_desc)
 8680{
 8681	u32 ntc = rx_ring->next_to_clean + 1;
 8682
 8683	/* fetch, update, and store next to clean */
 8684	ntc = (ntc < rx_ring->count) ? ntc : 0;
 8685	rx_ring->next_to_clean = ntc;
 8686
 8687	prefetch(IGB_RX_DESC(rx_ring, ntc));
 8688
 8689	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
 8690		return false;
 8691
 8692	return true;
 8693}
 8694
 8695/**
 8696 *  igb_cleanup_headers - Correct corrupted or empty headers
 8697 *  @rx_ring: rx descriptor ring packet is being transacted on
 8698 *  @rx_desc: pointer to the EOP Rx descriptor
 8699 *  @skb: pointer to current skb being fixed
 8700 *
 8701 *  Address the case where we are pulling data in on pages only
 8702 *  and as such no data is present in the skb header.
 8703 *
 8704 *  In addition if skb is not at least 60 bytes we need to pad it so that
 8705 *  it is large enough to qualify as a valid Ethernet frame.
 8706 *
 8707 *  Returns true if an error was encountered and skb was freed.
 8708 **/
 8709static bool igb_cleanup_headers(struct igb_ring *rx_ring,
 8710				union e1000_adv_rx_desc *rx_desc,
 8711				struct sk_buff *skb)
 8712{
 8713	/* XDP packets use error pointer so abort at this point */
 8714	if (IS_ERR(skb))
 8715		return true;
 8716
 8717	if (unlikely((igb_test_staterr(rx_desc,
 8718				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
 8719		struct net_device *netdev = rx_ring->netdev;
 8720		if (!(netdev->features & NETIF_F_RXALL)) {
 8721			dev_kfree_skb_any(skb);
 8722			return true;
 8723		}
 8724	}
 8725
 8726	/* if eth_skb_pad returns an error the skb was freed */
 8727	if (eth_skb_pad(skb))
 8728		return true;
 8729
 8730	return false;
 8731}
 8732
 8733/**
 8734 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 8735 *  @rx_ring: rx descriptor ring packet is being transacted on
 8736 *  @rx_desc: pointer to the EOP Rx descriptor
 8737 *  @skb: pointer to current skb being populated
 8738 *
 8739 *  This function checks the ring, descriptor, and packet information in
 8740 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 8741 *  other fields within the skb.
 8742 **/
 8743static void igb_process_skb_fields(struct igb_ring *rx_ring,
 8744				   union e1000_adv_rx_desc *rx_desc,
 8745				   struct sk_buff *skb)
 8746{
 8747	struct net_device *dev = rx_ring->netdev;
 8748
 8749	igb_rx_hash(rx_ring, rx_desc, skb);
 8750
 8751	igb_rx_checksum(rx_ring, rx_desc, skb);
 8752
 8753	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
 8754	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
 8755		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
 8756
 8757	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 8758	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
 8759		u16 vid;
 8760
 8761		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
 8762		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
 8763			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
 8764		else
 8765			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
 8766
 8767		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 8768	}
 8769
 8770	skb_record_rx_queue(skb, rx_ring->queue_index);
 8771
 8772	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 8773}
 8774
 8775static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
 8776{
 8777	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
 8778}
 8779
 8780static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
 8781					       const unsigned int size, int *rx_buf_pgcnt)
 8782{
 8783	struct igb_rx_buffer *rx_buffer;
 8784
 8785	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 8786	*rx_buf_pgcnt =
 8787#if (PAGE_SIZE < 8192)
 8788		page_count(rx_buffer->page);
 8789#else
 8790		0;
 8791#endif
 8792	prefetchw(rx_buffer->page);
 8793
 8794	/* we are reusing so sync this buffer for CPU use */
 8795	dma_sync_single_range_for_cpu(rx_ring->dev,
 8796				      rx_buffer->dma,
 8797				      rx_buffer->page_offset,
 8798				      size,
 8799				      DMA_FROM_DEVICE);
 8800
 8801	rx_buffer->pagecnt_bias--;
 8802
 8803	return rx_buffer;
 8804}
 8805
 8806static void igb_put_rx_buffer(struct igb_ring *rx_ring,
 8807			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
 8808{
 8809	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
 8810		/* hand second half of page back to the ring */
 8811		igb_reuse_rx_page(rx_ring, rx_buffer);
 8812	} else {
 8813		/* We are not reusing the buffer so unmap it and free
 8814		 * any references we are holding to it
 8815		 */
 8816		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
 8817				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
 8818				     IGB_RX_DMA_ATTR);
 8819		__page_frag_cache_drain(rx_buffer->page,
 8820					rx_buffer->pagecnt_bias);
 8821	}
 8822
 8823	/* clear contents of rx_buffer */
 8824	rx_buffer->page = NULL;
 8825}
 8826
 8827static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
 8828{
 8829	struct igb_adapter *adapter = q_vector->adapter;
 8830	struct igb_ring *rx_ring = q_vector->rx.ring;
 8831	struct sk_buff *skb = rx_ring->skb;
 8832	unsigned int total_bytes = 0, total_packets = 0;
 8833	u16 cleaned_count = igb_desc_unused(rx_ring);
 8834	unsigned int xdp_xmit = 0;
 8835	struct xdp_buff xdp;
 8836	u32 frame_sz = 0;
 8837	int rx_buf_pgcnt;
 8838
 8839	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
 8840#if (PAGE_SIZE < 8192)
 8841	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
 8842#endif
 8843	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
 8844
 8845	while (likely(total_packets < budget)) {
 8846		union e1000_adv_rx_desc *rx_desc;
 8847		struct igb_rx_buffer *rx_buffer;
 8848		ktime_t timestamp = 0;
 8849		int pkt_offset = 0;
 8850		unsigned int size;
 8851		void *pktbuf;
 8852
 8853		/* return some buffers to hardware, one at a time is too slow */
 8854		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
 8855			igb_alloc_rx_buffers(rx_ring, cleaned_count);
 8856			cleaned_count = 0;
 8857		}
 8858
 8859		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
 8860		size = le16_to_cpu(rx_desc->wb.upper.length);
 8861		if (!size)
 8862			break;
 8863
 8864		/* This memory barrier is needed to keep us from reading
 8865		 * any other fields out of the rx_desc until we know the
 8866		 * descriptor has been written back
 8867		 */
 8868		dma_rmb();
 8869
 8870		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
 8871		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
 8872
 8873		/* pull rx packet timestamp if available and valid */
 8874		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
 8875			int ts_hdr_len;
 8876
 8877			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
 8878							 pktbuf, &timestamp);
 8879
 8880			pkt_offset += ts_hdr_len;
 8881			size -= ts_hdr_len;
 8882		}
 8883
 8884		/* retrieve a buffer from the ring */
 8885		if (!skb) {
 8886			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
 8887			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
 8888
 8889			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
 8890			xdp_buff_clear_frags_flag(&xdp);
 8891#if (PAGE_SIZE > 4096)
 8892			/* At larger PAGE_SIZE, frame_sz depend on len size */
 8893			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
 8894#endif
 8895			skb = igb_run_xdp(adapter, rx_ring, &xdp);
 8896		}
 8897
 8898		if (IS_ERR(skb)) {
 8899			unsigned int xdp_res = -PTR_ERR(skb);
 8900
 8901			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
 8902				xdp_xmit |= xdp_res;
 8903				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
 8904			} else {
 8905				rx_buffer->pagecnt_bias++;
 8906			}
 8907			total_packets++;
 8908			total_bytes += size;
 8909		} else if (skb)
 8910			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
 8911		else if (ring_uses_build_skb(rx_ring))
 8912			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
 8913					    timestamp);
 8914		else
 8915			skb = igb_construct_skb(rx_ring, rx_buffer,
 8916						&xdp, timestamp);
 8917
 8918		/* exit if we failed to retrieve a buffer */
 8919		if (!skb) {
 8920			rx_ring->rx_stats.alloc_failed++;
 8921			rx_buffer->pagecnt_bias++;
 8922			break;
 8923		}
 8924
 8925		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
 8926		cleaned_count++;
 8927
 8928		/* fetch next buffer in frame if non-eop */
 8929		if (igb_is_non_eop(rx_ring, rx_desc))
 8930			continue;
 8931
 8932		/* verify the packet layout is correct */
 8933		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
 8934			skb = NULL;
 8935			continue;
 8936		}
 8937
 8938		/* probably a little skewed due to removing CRC */
 8939		total_bytes += skb->len;
 8940
 8941		/* populate checksum, timestamp, VLAN, and protocol */
 8942		igb_process_skb_fields(rx_ring, rx_desc, skb);
 8943
 8944		napi_gro_receive(&q_vector->napi, skb);
 8945
 8946		/* reset skb pointer */
 8947		skb = NULL;
 8948
 8949		/* update budget accounting */
 8950		total_packets++;
 8951	}
 8952
 8953	/* place incomplete frames back on ring for completion */
 8954	rx_ring->skb = skb;
 8955
 8956	if (xdp_xmit & IGB_XDP_REDIR)
 8957		xdp_do_flush();
 8958
 8959	if (xdp_xmit & IGB_XDP_TX) {
 8960		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
 8961
 8962		igb_xdp_ring_update_tail(tx_ring);
 8963	}
 8964
 8965	u64_stats_update_begin(&rx_ring->rx_syncp);
 8966	rx_ring->rx_stats.packets += total_packets;
 8967	rx_ring->rx_stats.bytes += total_bytes;
 8968	u64_stats_update_end(&rx_ring->rx_syncp);
 8969	q_vector->rx.total_packets += total_packets;
 8970	q_vector->rx.total_bytes += total_bytes;
 8971
 8972	if (cleaned_count)
 8973		igb_alloc_rx_buffers(rx_ring, cleaned_count);
 8974
 8975	return total_packets;
 8976}
 8977
 
 
 
 
 
 8978static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
 8979				  struct igb_rx_buffer *bi)
 8980{
 8981	struct page *page = bi->page;
 8982	dma_addr_t dma;
 8983
 8984	/* since we are recycling buffers we should seldom need to alloc */
 8985	if (likely(page))
 8986		return true;
 8987
 8988	/* alloc new page for storage */
 8989	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
 8990	if (unlikely(!page)) {
 8991		rx_ring->rx_stats.alloc_failed++;
 8992		return false;
 8993	}
 8994
 8995	/* map page for use */
 8996	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 8997				 igb_rx_pg_size(rx_ring),
 8998				 DMA_FROM_DEVICE,
 8999				 IGB_RX_DMA_ATTR);
 9000
 9001	/* if mapping failed free memory back to system since
 9002	 * there isn't much point in holding memory we can't use
 9003	 */
 9004	if (dma_mapping_error(rx_ring->dev, dma)) {
 9005		__free_pages(page, igb_rx_pg_order(rx_ring));
 9006
 9007		rx_ring->rx_stats.alloc_failed++;
 9008		return false;
 9009	}
 9010
 9011	bi->dma = dma;
 9012	bi->page = page;
 9013	bi->page_offset = igb_rx_offset(rx_ring);
 9014	page_ref_add(page, USHRT_MAX - 1);
 9015	bi->pagecnt_bias = USHRT_MAX;
 9016
 9017	return true;
 9018}
 9019
 9020/**
 9021 *  igb_alloc_rx_buffers - Replace used receive buffers
 9022 *  @rx_ring: rx descriptor ring to allocate new receive buffers
 9023 *  @cleaned_count: count of buffers to allocate
 9024 **/
 9025void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
 9026{
 9027	union e1000_adv_rx_desc *rx_desc;
 9028	struct igb_rx_buffer *bi;
 9029	u16 i = rx_ring->next_to_use;
 9030	u16 bufsz;
 9031
 9032	/* nothing to do */
 9033	if (!cleaned_count)
 9034		return;
 9035
 9036	rx_desc = IGB_RX_DESC(rx_ring, i);
 9037	bi = &rx_ring->rx_buffer_info[i];
 9038	i -= rx_ring->count;
 9039
 9040	bufsz = igb_rx_bufsz(rx_ring);
 9041
 9042	do {
 9043		if (!igb_alloc_mapped_page(rx_ring, bi))
 9044			break;
 9045
 9046		/* sync the buffer for use by the device */
 9047		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 9048						 bi->page_offset, bufsz,
 9049						 DMA_FROM_DEVICE);
 9050
 9051		/* Refresh the desc even if buffer_addrs didn't change
 9052		 * because each write-back erases this info.
 9053		 */
 9054		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 9055
 9056		rx_desc++;
 9057		bi++;
 9058		i++;
 9059		if (unlikely(!i)) {
 9060			rx_desc = IGB_RX_DESC(rx_ring, 0);
 9061			bi = rx_ring->rx_buffer_info;
 9062			i -= rx_ring->count;
 9063		}
 9064
 9065		/* clear the length for the next_to_use descriptor */
 9066		rx_desc->wb.upper.length = 0;
 9067
 9068		cleaned_count--;
 9069	} while (cleaned_count);
 9070
 9071	i += rx_ring->count;
 9072
 9073	if (rx_ring->next_to_use != i) {
 9074		/* record the next descriptor to use */
 9075		rx_ring->next_to_use = i;
 9076
 9077		/* update next to alloc since we have filled the ring */
 9078		rx_ring->next_to_alloc = i;
 9079
 9080		/* Force memory writes to complete before letting h/w
 9081		 * know there are new descriptors to fetch.  (Only
 9082		 * applicable for weak-ordered memory model archs,
 9083		 * such as IA-64).
 9084		 */
 9085		dma_wmb();
 9086		writel(i, rx_ring->tail);
 9087	}
 9088}
 9089
 9090/**
 9091 * igb_mii_ioctl -
 9092 * @netdev: pointer to netdev struct
 9093 * @ifr: interface structure
 9094 * @cmd: ioctl command to execute
 9095 **/
 9096static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9097{
 9098	struct igb_adapter *adapter = netdev_priv(netdev);
 9099	struct mii_ioctl_data *data = if_mii(ifr);
 9100
 9101	if (adapter->hw.phy.media_type != e1000_media_type_copper)
 9102		return -EOPNOTSUPP;
 9103
 9104	switch (cmd) {
 9105	case SIOCGMIIPHY:
 9106		data->phy_id = adapter->hw.phy.addr;
 9107		break;
 9108	case SIOCGMIIREG:
 9109		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
 9110				     &data->val_out))
 9111			return -EIO;
 9112		break;
 9113	case SIOCSMIIREG:
 9114	default:
 9115		return -EOPNOTSUPP;
 9116	}
 9117	return 0;
 9118}
 9119
 9120/**
 9121 * igb_ioctl -
 9122 * @netdev: pointer to netdev struct
 9123 * @ifr: interface structure
 9124 * @cmd: ioctl command to execute
 9125 **/
 9126static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9127{
 9128	switch (cmd) {
 9129	case SIOCGMIIPHY:
 9130	case SIOCGMIIREG:
 9131	case SIOCSMIIREG:
 9132		return igb_mii_ioctl(netdev, ifr, cmd);
 9133	case SIOCGHWTSTAMP:
 9134		return igb_ptp_get_ts_config(netdev, ifr);
 9135	case SIOCSHWTSTAMP:
 9136		return igb_ptp_set_ts_config(netdev, ifr);
 9137	default:
 9138		return -EOPNOTSUPP;
 9139	}
 9140}
 9141
 9142void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9143{
 9144	struct igb_adapter *adapter = hw->back;
 9145
 9146	pci_read_config_word(adapter->pdev, reg, value);
 9147}
 9148
 9149void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9150{
 9151	struct igb_adapter *adapter = hw->back;
 9152
 9153	pci_write_config_word(adapter->pdev, reg, *value);
 9154}
 9155
 9156s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9157{
 9158	struct igb_adapter *adapter = hw->back;
 9159
 9160	if (pcie_capability_read_word(adapter->pdev, reg, value))
 9161		return -E1000_ERR_CONFIG;
 9162
 9163	return 0;
 9164}
 9165
 9166s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9167{
 9168	struct igb_adapter *adapter = hw->back;
 9169
 9170	if (pcie_capability_write_word(adapter->pdev, reg, *value))
 9171		return -E1000_ERR_CONFIG;
 9172
 9173	return 0;
 9174}
 9175
 9176static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
 9177{
 9178	struct igb_adapter *adapter = netdev_priv(netdev);
 9179	struct e1000_hw *hw = &adapter->hw;
 9180	u32 ctrl, rctl;
 9181	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
 9182
 9183	if (enable) {
 9184		/* enable VLAN tag insert/strip */
 9185		ctrl = rd32(E1000_CTRL);
 9186		ctrl |= E1000_CTRL_VME;
 9187		wr32(E1000_CTRL, ctrl);
 9188
 9189		/* Disable CFI check */
 9190		rctl = rd32(E1000_RCTL);
 9191		rctl &= ~E1000_RCTL_CFIEN;
 9192		wr32(E1000_RCTL, rctl);
 9193	} else {
 9194		/* disable VLAN tag insert/strip */
 9195		ctrl = rd32(E1000_CTRL);
 9196		ctrl &= ~E1000_CTRL_VME;
 9197		wr32(E1000_CTRL, ctrl);
 9198	}
 9199
 9200	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
 9201}
 9202
 9203static int igb_vlan_rx_add_vid(struct net_device *netdev,
 9204			       __be16 proto, u16 vid)
 9205{
 9206	struct igb_adapter *adapter = netdev_priv(netdev);
 9207	struct e1000_hw *hw = &adapter->hw;
 9208	int pf_id = adapter->vfs_allocated_count;
 9209
 9210	/* add the filter since PF can receive vlans w/o entry in vlvf */
 9211	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9212		igb_vfta_set(hw, vid, pf_id, true, !!vid);
 9213
 9214	set_bit(vid, adapter->active_vlans);
 9215
 9216	return 0;
 9217}
 9218
 9219static int igb_vlan_rx_kill_vid(struct net_device *netdev,
 9220				__be16 proto, u16 vid)
 9221{
 9222	struct igb_adapter *adapter = netdev_priv(netdev);
 9223	int pf_id = adapter->vfs_allocated_count;
 9224	struct e1000_hw *hw = &adapter->hw;
 9225
 9226	/* remove VID from filter table */
 9227	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9228		igb_vfta_set(hw, vid, pf_id, false, true);
 9229
 9230	clear_bit(vid, adapter->active_vlans);
 9231
 9232	return 0;
 9233}
 9234
 9235static void igb_restore_vlan(struct igb_adapter *adapter)
 9236{
 9237	u16 vid = 1;
 9238
 9239	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
 9240	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
 9241
 9242	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
 9243		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
 9244}
 9245
 9246int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
 9247{
 9248	struct pci_dev *pdev = adapter->pdev;
 9249	struct e1000_mac_info *mac = &adapter->hw.mac;
 9250
 9251	mac->autoneg = 0;
 9252
 9253	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 9254	 * for the switch() below to work
 9255	 */
 9256	if ((spd & 1) || (dplx & ~1))
 9257		goto err_inval;
 9258
 9259	/* Fiber NIC's only allow 1000 gbps Full duplex
 9260	 * and 100Mbps Full duplex for 100baseFx sfp
 9261	 */
 9262	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
 9263		switch (spd + dplx) {
 9264		case SPEED_10 + DUPLEX_HALF:
 9265		case SPEED_10 + DUPLEX_FULL:
 9266		case SPEED_100 + DUPLEX_HALF:
 9267			goto err_inval;
 9268		default:
 9269			break;
 9270		}
 9271	}
 9272
 9273	switch (spd + dplx) {
 9274	case SPEED_10 + DUPLEX_HALF:
 9275		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 9276		break;
 9277	case SPEED_10 + DUPLEX_FULL:
 9278		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 9279		break;
 9280	case SPEED_100 + DUPLEX_HALF:
 9281		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 9282		break;
 9283	case SPEED_100 + DUPLEX_FULL:
 9284		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 9285		break;
 9286	case SPEED_1000 + DUPLEX_FULL:
 9287		mac->autoneg = 1;
 9288		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 9289		break;
 9290	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 9291	default:
 9292		goto err_inval;
 9293	}
 9294
 9295	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 9296	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 9297
 9298	return 0;
 9299
 9300err_inval:
 9301	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
 9302	return -EINVAL;
 9303}
 9304
 9305static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
 9306			  bool runtime)
 9307{
 9308	struct net_device *netdev = pci_get_drvdata(pdev);
 9309	struct igb_adapter *adapter = netdev_priv(netdev);
 9310	struct e1000_hw *hw = &adapter->hw;
 9311	u32 ctrl, rctl, status;
 9312	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
 9313	bool wake;
 9314
 9315	rtnl_lock();
 9316	netif_device_detach(netdev);
 9317
 9318	if (netif_running(netdev))
 9319		__igb_close(netdev, true);
 9320
 9321	igb_ptp_suspend(adapter);
 9322
 9323	igb_clear_interrupt_scheme(adapter);
 9324	rtnl_unlock();
 9325
 9326	status = rd32(E1000_STATUS);
 9327	if (status & E1000_STATUS_LU)
 9328		wufc &= ~E1000_WUFC_LNKC;
 9329
 9330	if (wufc) {
 9331		igb_setup_rctl(adapter);
 9332		igb_set_rx_mode(netdev);
 9333
 9334		/* turn on all-multi mode if wake on multicast is enabled */
 9335		if (wufc & E1000_WUFC_MC) {
 9336			rctl = rd32(E1000_RCTL);
 9337			rctl |= E1000_RCTL_MPE;
 9338			wr32(E1000_RCTL, rctl);
 9339		}
 9340
 9341		ctrl = rd32(E1000_CTRL);
 9342		ctrl |= E1000_CTRL_ADVD3WUC;
 9343		wr32(E1000_CTRL, ctrl);
 9344
 9345		/* Allow time for pending master requests to run */
 9346		igb_disable_pcie_master(hw);
 9347
 9348		wr32(E1000_WUC, E1000_WUC_PME_EN);
 9349		wr32(E1000_WUFC, wufc);
 9350	} else {
 9351		wr32(E1000_WUC, 0);
 9352		wr32(E1000_WUFC, 0);
 9353	}
 9354
 9355	wake = wufc || adapter->en_mng_pt;
 9356	if (!wake)
 9357		igb_power_down_link(adapter);
 9358	else
 9359		igb_power_up_link(adapter);
 9360
 9361	if (enable_wake)
 9362		*enable_wake = wake;
 9363
 9364	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 9365	 * would have already happened in close and is redundant.
 9366	 */
 9367	igb_release_hw_control(adapter);
 9368
 9369	pci_disable_device(pdev);
 9370
 9371	return 0;
 9372}
 9373
 9374static void igb_deliver_wake_packet(struct net_device *netdev)
 9375{
 9376	struct igb_adapter *adapter = netdev_priv(netdev);
 9377	struct e1000_hw *hw = &adapter->hw;
 9378	struct sk_buff *skb;
 9379	u32 wupl;
 9380
 9381	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
 9382
 9383	/* WUPM stores only the first 128 bytes of the wake packet.
 9384	 * Read the packet only if we have the whole thing.
 9385	 */
 9386	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
 9387		return;
 9388
 9389	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
 9390	if (!skb)
 9391		return;
 9392
 9393	skb_put(skb, wupl);
 9394
 9395	/* Ensure reads are 32-bit aligned */
 9396	wupl = roundup(wupl, 4);
 9397
 9398	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
 9399
 9400	skb->protocol = eth_type_trans(skb, netdev);
 9401	netif_rx(skb);
 9402}
 9403
 9404static int __maybe_unused igb_suspend(struct device *dev)
 9405{
 9406	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
 9407}
 9408
 9409static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
 9410{
 9411	struct pci_dev *pdev = to_pci_dev(dev);
 9412	struct net_device *netdev = pci_get_drvdata(pdev);
 9413	struct igb_adapter *adapter = netdev_priv(netdev);
 9414	struct e1000_hw *hw = &adapter->hw;
 9415	u32 err, val;
 9416
 9417	pci_set_power_state(pdev, PCI_D0);
 9418	pci_restore_state(pdev);
 9419	pci_save_state(pdev);
 9420
 9421	if (!pci_device_is_present(pdev))
 9422		return -ENODEV;
 9423	err = pci_enable_device_mem(pdev);
 9424	if (err) {
 9425		dev_err(&pdev->dev,
 9426			"igb: Cannot enable PCI device from suspend\n");
 9427		return err;
 9428	}
 9429	pci_set_master(pdev);
 9430
 9431	pci_enable_wake(pdev, PCI_D3hot, 0);
 9432	pci_enable_wake(pdev, PCI_D3cold, 0);
 9433
 9434	if (igb_init_interrupt_scheme(adapter, true)) {
 9435		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 9436		return -ENOMEM;
 9437	}
 9438
 9439	igb_reset(adapter);
 9440
 9441	/* let the f/w know that the h/w is now under the control of the
 9442	 * driver.
 9443	 */
 9444	igb_get_hw_control(adapter);
 9445
 9446	val = rd32(E1000_WUS);
 9447	if (val & WAKE_PKT_WUS)
 9448		igb_deliver_wake_packet(netdev);
 9449
 9450	wr32(E1000_WUS, ~0);
 9451
 9452	if (!rpm)
 9453		rtnl_lock();
 9454	if (!err && netif_running(netdev))
 9455		err = __igb_open(netdev, true);
 9456
 9457	if (!err)
 9458		netif_device_attach(netdev);
 9459	if (!rpm)
 9460		rtnl_unlock();
 9461
 9462	return err;
 9463}
 9464
 9465static int __maybe_unused igb_resume(struct device *dev)
 9466{
 9467	return __igb_resume(dev, false);
 9468}
 9469
 9470static int __maybe_unused igb_runtime_idle(struct device *dev)
 9471{
 9472	struct net_device *netdev = dev_get_drvdata(dev);
 9473	struct igb_adapter *adapter = netdev_priv(netdev);
 9474
 9475	if (!igb_has_link(adapter))
 9476		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
 9477
 9478	return -EBUSY;
 9479}
 9480
 9481static int __maybe_unused igb_runtime_suspend(struct device *dev)
 9482{
 9483	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
 9484}
 9485
 9486static int __maybe_unused igb_runtime_resume(struct device *dev)
 9487{
 9488	return __igb_resume(dev, true);
 9489}
 9490
 9491static void igb_shutdown(struct pci_dev *pdev)
 9492{
 9493	bool wake;
 9494
 9495	__igb_shutdown(pdev, &wake, 0);
 9496
 9497	if (system_state == SYSTEM_POWER_OFF) {
 9498		pci_wake_from_d3(pdev, wake);
 9499		pci_set_power_state(pdev, PCI_D3hot);
 9500	}
 9501}
 9502
 9503#ifdef CONFIG_PCI_IOV
 9504static int igb_sriov_reinit(struct pci_dev *dev)
 9505{
 9506	struct net_device *netdev = pci_get_drvdata(dev);
 9507	struct igb_adapter *adapter = netdev_priv(netdev);
 9508	struct pci_dev *pdev = adapter->pdev;
 9509
 9510	rtnl_lock();
 9511
 9512	if (netif_running(netdev))
 9513		igb_close(netdev);
 9514	else
 9515		igb_reset(adapter);
 9516
 9517	igb_clear_interrupt_scheme(adapter);
 9518
 9519	igb_init_queue_configuration(adapter);
 9520
 9521	if (igb_init_interrupt_scheme(adapter, true)) {
 9522		rtnl_unlock();
 9523		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 9524		return -ENOMEM;
 9525	}
 9526
 9527	if (netif_running(netdev))
 9528		igb_open(netdev);
 9529
 9530	rtnl_unlock();
 9531
 9532	return 0;
 9533}
 9534
 9535static int igb_pci_disable_sriov(struct pci_dev *dev)
 9536{
 9537	int err = igb_disable_sriov(dev);
 9538
 9539	if (!err)
 9540		err = igb_sriov_reinit(dev);
 9541
 9542	return err;
 9543}
 9544
 9545static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
 9546{
 9547	int err = igb_enable_sriov(dev, num_vfs);
 9548
 9549	if (err)
 9550		goto out;
 9551
 9552	err = igb_sriov_reinit(dev);
 9553	if (!err)
 9554		return num_vfs;
 9555
 9556out:
 9557	return err;
 9558}
 9559
 9560#endif
 9561static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
 9562{
 9563#ifdef CONFIG_PCI_IOV
 9564	if (num_vfs == 0)
 9565		return igb_pci_disable_sriov(dev);
 9566	else
 9567		return igb_pci_enable_sriov(dev, num_vfs);
 9568#endif
 9569	return 0;
 9570}
 9571
 9572/**
 9573 *  igb_io_error_detected - called when PCI error is detected
 9574 *  @pdev: Pointer to PCI device
 9575 *  @state: The current pci connection state
 9576 *
 9577 *  This function is called after a PCI bus error affecting
 9578 *  this device has been detected.
 9579 **/
 9580static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
 9581					      pci_channel_state_t state)
 9582{
 9583	struct net_device *netdev = pci_get_drvdata(pdev);
 9584	struct igb_adapter *adapter = netdev_priv(netdev);
 9585
 9586	netif_device_detach(netdev);
 9587
 9588	if (state == pci_channel_io_perm_failure)
 9589		return PCI_ERS_RESULT_DISCONNECT;
 9590
 9591	if (netif_running(netdev))
 9592		igb_down(adapter);
 9593	pci_disable_device(pdev);
 9594
 9595	/* Request a slot reset. */
 9596	return PCI_ERS_RESULT_NEED_RESET;
 9597}
 9598
 9599/**
 9600 *  igb_io_slot_reset - called after the pci bus has been reset.
 9601 *  @pdev: Pointer to PCI device
 9602 *
 9603 *  Restart the card from scratch, as if from a cold-boot. Implementation
 9604 *  resembles the first-half of the __igb_resume routine.
 9605 **/
 9606static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
 9607{
 9608	struct net_device *netdev = pci_get_drvdata(pdev);
 9609	struct igb_adapter *adapter = netdev_priv(netdev);
 9610	struct e1000_hw *hw = &adapter->hw;
 9611	pci_ers_result_t result;
 9612
 9613	if (pci_enable_device_mem(pdev)) {
 9614		dev_err(&pdev->dev,
 9615			"Cannot re-enable PCI device after reset.\n");
 9616		result = PCI_ERS_RESULT_DISCONNECT;
 9617	} else {
 9618		pci_set_master(pdev);
 9619		pci_restore_state(pdev);
 9620		pci_save_state(pdev);
 9621
 9622		pci_enable_wake(pdev, PCI_D3hot, 0);
 9623		pci_enable_wake(pdev, PCI_D3cold, 0);
 9624
 9625		/* In case of PCI error, adapter lose its HW address
 9626		 * so we should re-assign it here.
 9627		 */
 9628		hw->hw_addr = adapter->io_addr;
 9629
 9630		igb_reset(adapter);
 9631		wr32(E1000_WUS, ~0);
 9632		result = PCI_ERS_RESULT_RECOVERED;
 9633	}
 9634
 9635	return result;
 9636}
 9637
 9638/**
 9639 *  igb_io_resume - called when traffic can start flowing again.
 9640 *  @pdev: Pointer to PCI device
 9641 *
 9642 *  This callback is called when the error recovery driver tells us that
 9643 *  its OK to resume normal operation. Implementation resembles the
 9644 *  second-half of the __igb_resume routine.
 9645 */
 9646static void igb_io_resume(struct pci_dev *pdev)
 9647{
 9648	struct net_device *netdev = pci_get_drvdata(pdev);
 9649	struct igb_adapter *adapter = netdev_priv(netdev);
 9650
 9651	if (netif_running(netdev)) {
 9652		if (igb_up(adapter)) {
 9653			dev_err(&pdev->dev, "igb_up failed after reset\n");
 9654			return;
 9655		}
 9656	}
 9657
 9658	netif_device_attach(netdev);
 9659
 9660	/* let the f/w know that the h/w is now under the control of the
 9661	 * driver.
 9662	 */
 9663	igb_get_hw_control(adapter);
 9664}
 9665
 9666/**
 9667 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
 9668 *  @adapter: Pointer to adapter structure
 9669 *  @index: Index of the RAR entry which need to be synced with MAC table
 9670 **/
 9671static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
 9672{
 9673	struct e1000_hw *hw = &adapter->hw;
 9674	u32 rar_low, rar_high;
 9675	u8 *addr = adapter->mac_table[index].addr;
 9676
 9677	/* HW expects these to be in network order when they are plugged
 9678	 * into the registers which are little endian.  In order to guarantee
 9679	 * that ordering we need to do an leXX_to_cpup here in order to be
 9680	 * ready for the byteswap that occurs with writel
 9681	 */
 9682	rar_low = le32_to_cpup((__le32 *)(addr));
 9683	rar_high = le16_to_cpup((__le16 *)(addr + 4));
 9684
 9685	/* Indicate to hardware the Address is Valid. */
 9686	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
 9687		if (is_valid_ether_addr(addr))
 9688			rar_high |= E1000_RAH_AV;
 9689
 9690		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
 9691			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
 9692
 9693		switch (hw->mac.type) {
 9694		case e1000_82575:
 9695		case e1000_i210:
 9696			if (adapter->mac_table[index].state &
 9697			    IGB_MAC_STATE_QUEUE_STEERING)
 9698				rar_high |= E1000_RAH_QSEL_ENABLE;
 9699
 9700			rar_high |= E1000_RAH_POOL_1 *
 9701				    adapter->mac_table[index].queue;
 9702			break;
 9703		default:
 9704			rar_high |= E1000_RAH_POOL_1 <<
 9705				    adapter->mac_table[index].queue;
 9706			break;
 9707		}
 9708	}
 9709
 9710	wr32(E1000_RAL(index), rar_low);
 9711	wrfl();
 9712	wr32(E1000_RAH(index), rar_high);
 9713	wrfl();
 9714}
 9715
 9716static int igb_set_vf_mac(struct igb_adapter *adapter,
 9717			  int vf, unsigned char *mac_addr)
 9718{
 9719	struct e1000_hw *hw = &adapter->hw;
 9720	/* VF MAC addresses start at end of receive addresses and moves
 9721	 * towards the first, as a result a collision should not be possible
 9722	 */
 9723	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 9724	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
 9725
 9726	ether_addr_copy(vf_mac_addr, mac_addr);
 9727	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
 9728	adapter->mac_table[rar_entry].queue = vf;
 9729	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
 9730	igb_rar_set_index(adapter, rar_entry);
 9731
 9732	return 0;
 9733}
 9734
 9735static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
 9736{
 9737	struct igb_adapter *adapter = netdev_priv(netdev);
 9738
 9739	if (vf >= adapter->vfs_allocated_count)
 9740		return -EINVAL;
 9741
 9742	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
 9743	 * flag and allows to overwrite the MAC via VF netdev.  This
 9744	 * is necessary to allow libvirt a way to restore the original
 9745	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
 9746	 * down a VM.
 9747	 */
 9748	if (is_zero_ether_addr(mac)) {
 9749		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
 9750		dev_info(&adapter->pdev->dev,
 9751			 "remove administratively set MAC on VF %d\n",
 9752			 vf);
 9753	} else if (is_valid_ether_addr(mac)) {
 9754		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
 9755		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
 9756			 mac, vf);
 9757		dev_info(&adapter->pdev->dev,
 9758			 "Reload the VF driver to make this change effective.");
 9759		/* Generate additional warning if PF is down */
 9760		if (test_bit(__IGB_DOWN, &adapter->state)) {
 9761			dev_warn(&adapter->pdev->dev,
 9762				 "The VF MAC address has been set, but the PF device is not up.\n");
 9763			dev_warn(&adapter->pdev->dev,
 9764				 "Bring the PF device up before attempting to use the VF device.\n");
 9765		}
 9766	} else {
 9767		return -EINVAL;
 9768	}
 9769	return igb_set_vf_mac(adapter, vf, mac);
 9770}
 9771
 9772static int igb_link_mbps(int internal_link_speed)
 9773{
 9774	switch (internal_link_speed) {
 9775	case SPEED_100:
 9776		return 100;
 9777	case SPEED_1000:
 9778		return 1000;
 9779	default:
 9780		return 0;
 9781	}
 9782}
 9783
 9784static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
 9785				  int link_speed)
 9786{
 9787	int rf_dec, rf_int;
 9788	u32 bcnrc_val;
 9789
 9790	if (tx_rate != 0) {
 9791		/* Calculate the rate factor values to set */
 9792		rf_int = link_speed / tx_rate;
 9793		rf_dec = (link_speed - (rf_int * tx_rate));
 9794		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
 9795			 tx_rate;
 9796
 9797		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
 9798		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
 9799			      E1000_RTTBCNRC_RF_INT_MASK);
 9800		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
 9801	} else {
 9802		bcnrc_val = 0;
 9803	}
 9804
 9805	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
 9806	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
 9807	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
 9808	 */
 9809	wr32(E1000_RTTBCNRM, 0x14);
 9810	wr32(E1000_RTTBCNRC, bcnrc_val);
 9811}
 9812
 9813static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
 9814{
 9815	int actual_link_speed, i;
 9816	bool reset_rate = false;
 9817
 9818	/* VF TX rate limit was not set or not supported */
 9819	if ((adapter->vf_rate_link_speed == 0) ||
 9820	    (adapter->hw.mac.type != e1000_82576))
 9821		return;
 9822
 9823	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9824	if (actual_link_speed != adapter->vf_rate_link_speed) {
 9825		reset_rate = true;
 9826		adapter->vf_rate_link_speed = 0;
 9827		dev_info(&adapter->pdev->dev,
 9828			 "Link speed has been changed. VF Transmit rate is disabled\n");
 9829	}
 9830
 9831	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 9832		if (reset_rate)
 9833			adapter->vf_data[i].tx_rate = 0;
 9834
 9835		igb_set_vf_rate_limit(&adapter->hw, i,
 9836				      adapter->vf_data[i].tx_rate,
 9837				      actual_link_speed);
 9838	}
 9839}
 9840
 9841static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
 9842			     int min_tx_rate, int max_tx_rate)
 9843{
 9844	struct igb_adapter *adapter = netdev_priv(netdev);
 9845	struct e1000_hw *hw = &adapter->hw;
 9846	int actual_link_speed;
 9847
 9848	if (hw->mac.type != e1000_82576)
 9849		return -EOPNOTSUPP;
 9850
 9851	if (min_tx_rate)
 9852		return -EINVAL;
 9853
 9854	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9855	if ((vf >= adapter->vfs_allocated_count) ||
 9856	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
 9857	    (max_tx_rate < 0) ||
 9858	    (max_tx_rate > actual_link_speed))
 9859		return -EINVAL;
 9860
 9861	adapter->vf_rate_link_speed = actual_link_speed;
 9862	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
 9863	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
 9864
 9865	return 0;
 9866}
 9867
 9868static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 9869				   bool setting)
 9870{
 9871	struct igb_adapter *adapter = netdev_priv(netdev);
 9872	struct e1000_hw *hw = &adapter->hw;
 9873	u32 reg_val, reg_offset;
 9874
 9875	if (!adapter->vfs_allocated_count)
 9876		return -EOPNOTSUPP;
 9877
 9878	if (vf >= adapter->vfs_allocated_count)
 9879		return -EINVAL;
 9880
 9881	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
 9882	reg_val = rd32(reg_offset);
 9883	if (setting)
 9884		reg_val |= (BIT(vf) |
 9885			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9886	else
 9887		reg_val &= ~(BIT(vf) |
 9888			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9889	wr32(reg_offset, reg_val);
 9890
 9891	adapter->vf_data[vf].spoofchk_enabled = setting;
 9892	return 0;
 9893}
 9894
 9895static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
 9896{
 9897	struct igb_adapter *adapter = netdev_priv(netdev);
 9898
 9899	if (vf >= adapter->vfs_allocated_count)
 9900		return -EINVAL;
 9901	if (adapter->vf_data[vf].trusted == setting)
 9902		return 0;
 9903
 9904	adapter->vf_data[vf].trusted = setting;
 9905
 9906	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
 9907		 vf, setting ? "" : "not ");
 9908	return 0;
 9909}
 9910
 9911static int igb_ndo_get_vf_config(struct net_device *netdev,
 9912				 int vf, struct ifla_vf_info *ivi)
 9913{
 9914	struct igb_adapter *adapter = netdev_priv(netdev);
 9915	if (vf >= adapter->vfs_allocated_count)
 9916		return -EINVAL;
 9917	ivi->vf = vf;
 9918	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
 9919	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
 9920	ivi->min_tx_rate = 0;
 9921	ivi->vlan = adapter->vf_data[vf].pf_vlan;
 9922	ivi->qos = adapter->vf_data[vf].pf_qos;
 9923	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
 9924	ivi->trusted = adapter->vf_data[vf].trusted;
 9925	return 0;
 9926}
 9927
 9928static void igb_vmm_control(struct igb_adapter *adapter)
 9929{
 9930	struct e1000_hw *hw = &adapter->hw;
 9931	u32 reg;
 9932
 9933	switch (hw->mac.type) {
 9934	case e1000_82575:
 9935	case e1000_i210:
 9936	case e1000_i211:
 9937	case e1000_i354:
 9938	default:
 9939		/* replication is not supported for 82575 */
 9940		return;
 9941	case e1000_82576:
 9942		/* notify HW that the MAC is adding vlan tags */
 9943		reg = rd32(E1000_DTXCTL);
 9944		reg |= E1000_DTXCTL_VLAN_ADDED;
 9945		wr32(E1000_DTXCTL, reg);
 9946		fallthrough;
 9947	case e1000_82580:
 9948		/* enable replication vlan tag stripping */
 9949		reg = rd32(E1000_RPLOLR);
 9950		reg |= E1000_RPLOLR_STRVLAN;
 9951		wr32(E1000_RPLOLR, reg);
 9952		fallthrough;
 9953	case e1000_i350:
 9954		/* none of the above registers are supported by i350 */
 9955		break;
 9956	}
 9957
 9958	if (adapter->vfs_allocated_count) {
 9959		igb_vmdq_set_loopback_pf(hw, true);
 9960		igb_vmdq_set_replication_pf(hw, true);
 9961		igb_vmdq_set_anti_spoofing_pf(hw, true,
 9962					      adapter->vfs_allocated_count);
 9963	} else {
 9964		igb_vmdq_set_loopback_pf(hw, false);
 9965		igb_vmdq_set_replication_pf(hw, false);
 9966	}
 9967}
 9968
 9969static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
 9970{
 9971	struct e1000_hw *hw = &adapter->hw;
 9972	u32 dmac_thr;
 9973	u16 hwm;
 9974	u32 reg;
 9975
 9976	if (hw->mac.type > e1000_82580) {
 9977		if (adapter->flags & IGB_FLAG_DMAC) {
 
 
 9978			/* force threshold to 0. */
 9979			wr32(E1000_DMCTXTH, 0);
 9980
 9981			/* DMA Coalescing high water mark needs to be greater
 9982			 * than the Rx threshold. Set hwm to PBA - max frame
 9983			 * size in 16B units, capping it at PBA - 6KB.
 9984			 */
 9985			hwm = 64 * (pba - 6);
 9986			reg = rd32(E1000_FCRTC);
 9987			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
 9988			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
 9989				& E1000_FCRTC_RTH_COAL_MASK);
 9990			wr32(E1000_FCRTC, reg);
 9991
 9992			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
 9993			 * frame size, capping it at PBA - 10KB.
 9994			 */
 9995			dmac_thr = pba - 10;
 9996			reg = rd32(E1000_DMACR);
 9997			reg &= ~E1000_DMACR_DMACTHR_MASK;
 9998			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
 9999				& E1000_DMACR_DMACTHR_MASK);
10000
10001			/* transition to L0x or L1 if available..*/
10002			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10003
10004			/* watchdog timer= +-1000 usec in 32usec intervals */
10005			reg |= (1000 >> 5);
10006
10007			/* Disable BMC-to-OS Watchdog Enable */
10008			if (hw->mac.type != e1000_i354)
10009				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
 
10010			wr32(E1000_DMACR, reg);
10011
10012			/* no lower threshold to disable
10013			 * coalescing(smart fifb)-UTRESH=0
10014			 */
10015			wr32(E1000_DMCRTRH, 0);
10016
10017			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10018
10019			wr32(E1000_DMCTLX, reg);
10020
10021			/* free space in tx packet buffer to wake from
10022			 * DMA coal
10023			 */
10024			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10025			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10026		}
10027
10028		if (hw->mac.type >= e1000_i210 ||
10029		    (adapter->flags & IGB_FLAG_DMAC)) {
 
10030			reg = rd32(E1000_PCIEMISC);
10031			reg |= E1000_PCIEMISC_LX_DECISION;
10032			wr32(E1000_PCIEMISC, reg);
10033		} /* endif adapter->dmac is not disabled */
10034	} else if (hw->mac.type == e1000_82580) {
10035		u32 reg = rd32(E1000_PCIEMISC);
10036
10037		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10038		wr32(E1000_DMACR, 0);
10039	}
10040}
10041
10042/**
10043 *  igb_read_i2c_byte - Reads 8 bit word over I2C
10044 *  @hw: pointer to hardware structure
10045 *  @byte_offset: byte offset to read
10046 *  @dev_addr: device address
10047 *  @data: value read
10048 *
10049 *  Performs byte read operation over I2C interface at
10050 *  a specified device address.
10051 **/
10052s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10053		      u8 dev_addr, u8 *data)
10054{
10055	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10056	struct i2c_client *this_client = adapter->i2c_client;
10057	s32 status;
10058	u16 swfw_mask = 0;
10059
10060	if (!this_client)
10061		return E1000_ERR_I2C;
10062
10063	swfw_mask = E1000_SWFW_PHY0_SM;
10064
10065	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10066		return E1000_ERR_SWFW_SYNC;
10067
10068	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10069	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10070
10071	if (status < 0)
10072		return E1000_ERR_I2C;
10073	else {
10074		*data = status;
10075		return 0;
10076	}
10077}
10078
10079/**
10080 *  igb_write_i2c_byte - Writes 8 bit word over I2C
10081 *  @hw: pointer to hardware structure
10082 *  @byte_offset: byte offset to write
10083 *  @dev_addr: device address
10084 *  @data: value to write
10085 *
10086 *  Performs byte write operation over I2C interface at
10087 *  a specified device address.
10088 **/
10089s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10090		       u8 dev_addr, u8 data)
10091{
10092	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10093	struct i2c_client *this_client = adapter->i2c_client;
10094	s32 status;
10095	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10096
10097	if (!this_client)
10098		return E1000_ERR_I2C;
10099
10100	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10101		return E1000_ERR_SWFW_SYNC;
10102	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10103	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10104
10105	if (status)
10106		return E1000_ERR_I2C;
10107	else
10108		return 0;
10109
10110}
10111
10112int igb_reinit_queues(struct igb_adapter *adapter)
10113{
10114	struct net_device *netdev = adapter->netdev;
10115	struct pci_dev *pdev = adapter->pdev;
10116	int err = 0;
10117
10118	if (netif_running(netdev))
10119		igb_close(netdev);
10120
10121	igb_reset_interrupt_capability(adapter);
10122
10123	if (igb_init_interrupt_scheme(adapter, true)) {
10124		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10125		return -ENOMEM;
10126	}
10127
10128	if (netif_running(netdev))
10129		err = igb_open(netdev);
10130
10131	return err;
10132}
10133
10134static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10135{
10136	struct igb_nfc_filter *rule;
10137
10138	spin_lock(&adapter->nfc_lock);
10139
10140	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10141		igb_erase_filter(adapter, rule);
10142
10143	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10144		igb_erase_filter(adapter, rule);
10145
10146	spin_unlock(&adapter->nfc_lock);
10147}
10148
10149static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10150{
10151	struct igb_nfc_filter *rule;
10152
10153	spin_lock(&adapter->nfc_lock);
10154
10155	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10156		igb_add_filter(adapter, rule);
10157
10158	spin_unlock(&adapter->nfc_lock);
10159}
10160/* igb_main.c */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/bitops.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/netdevice.h>
  13#include <linux/ipv6.h>
  14#include <linux/slab.h>
  15#include <net/checksum.h>
  16#include <net/ip6_checksum.h>
  17#include <net/pkt_sched.h>
  18#include <net/pkt_cls.h>
  19#include <linux/net_tstamp.h>
  20#include <linux/mii.h>
  21#include <linux/ethtool.h>
  22#include <linux/if.h>
  23#include <linux/if_vlan.h>
  24#include <linux/pci.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/ip.h>
  28#include <linux/tcp.h>
  29#include <linux/sctp.h>
  30#include <linux/if_ether.h>
  31#include <linux/aer.h>
  32#include <linux/prefetch.h>
 
 
  33#include <linux/pm_runtime.h>
  34#include <linux/etherdevice.h>
  35#ifdef CONFIG_IGB_DCA
  36#include <linux/dca.h>
  37#endif
  38#include <linux/i2c.h>
  39#include "igb.h"
  40
  41#define MAJ 5
  42#define MIN 6
  43#define BUILD 0
  44#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  45__stringify(BUILD) "-k"
  46
  47enum queue_mode {
  48	QUEUE_MODE_STRICT_PRIORITY,
  49	QUEUE_MODE_STREAM_RESERVATION,
  50};
  51
  52enum tx_queue_prio {
  53	TX_QUEUE_PRIO_HIGH,
  54	TX_QUEUE_PRIO_LOW,
  55};
  56
  57char igb_driver_name[] = "igb";
  58char igb_driver_version[] = DRV_VERSION;
  59static const char igb_driver_string[] =
  60				"Intel(R) Gigabit Ethernet Network Driver";
  61static const char igb_copyright[] =
  62				"Copyright (c) 2007-2014 Intel Corporation.";
  63
  64static const struct e1000_info *igb_info_tbl[] = {
  65	[board_82575] = &e1000_82575_info,
  66};
  67
  68static const struct pci_device_id igb_pci_tbl[] = {
  69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 104	/* required last entry */
 105	{0, }
 106};
 107
 108MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 109
 110static int igb_setup_all_tx_resources(struct igb_adapter *);
 111static int igb_setup_all_rx_resources(struct igb_adapter *);
 112static void igb_free_all_tx_resources(struct igb_adapter *);
 113static void igb_free_all_rx_resources(struct igb_adapter *);
 114static void igb_setup_mrqc(struct igb_adapter *);
 115static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 116static void igb_remove(struct pci_dev *pdev);
 117static int igb_sw_init(struct igb_adapter *);
 118int igb_open(struct net_device *);
 119int igb_close(struct net_device *);
 120static void igb_configure(struct igb_adapter *);
 121static void igb_configure_tx(struct igb_adapter *);
 122static void igb_configure_rx(struct igb_adapter *);
 123static void igb_clean_all_tx_rings(struct igb_adapter *);
 124static void igb_clean_all_rx_rings(struct igb_adapter *);
 125static void igb_clean_tx_ring(struct igb_ring *);
 126static void igb_clean_rx_ring(struct igb_ring *);
 127static void igb_set_rx_mode(struct net_device *);
 128static void igb_update_phy_info(struct timer_list *);
 129static void igb_watchdog(struct timer_list *);
 130static void igb_watchdog_task(struct work_struct *);
 131static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 132static void igb_get_stats64(struct net_device *dev,
 133			    struct rtnl_link_stats64 *stats);
 134static int igb_change_mtu(struct net_device *, int);
 135static int igb_set_mac(struct net_device *, void *);
 136static void igb_set_uta(struct igb_adapter *adapter, bool set);
 137static irqreturn_t igb_intr(int irq, void *);
 138static irqreturn_t igb_intr_msi(int irq, void *);
 139static irqreturn_t igb_msix_other(int irq, void *);
 140static irqreturn_t igb_msix_ring(int irq, void *);
 141#ifdef CONFIG_IGB_DCA
 142static void igb_update_dca(struct igb_q_vector *);
 143static void igb_setup_dca(struct igb_adapter *);
 144#endif /* CONFIG_IGB_DCA */
 145static int igb_poll(struct napi_struct *, int);
 146static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 147static int igb_clean_rx_irq(struct igb_q_vector *, int);
 148static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 149static void igb_tx_timeout(struct net_device *);
 150static void igb_reset_task(struct work_struct *);
 151static void igb_vlan_mode(struct net_device *netdev,
 152			  netdev_features_t features);
 153static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 154static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 155static void igb_restore_vlan(struct igb_adapter *);
 156static void igb_rar_set_index(struct igb_adapter *, u32);
 157static void igb_ping_all_vfs(struct igb_adapter *);
 158static void igb_msg_task(struct igb_adapter *);
 159static void igb_vmm_control(struct igb_adapter *);
 160static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 161static void igb_flush_mac_table(struct igb_adapter *);
 162static int igb_available_rars(struct igb_adapter *, u8);
 163static void igb_set_default_mac_filter(struct igb_adapter *);
 164static int igb_uc_sync(struct net_device *, const unsigned char *);
 165static int igb_uc_unsync(struct net_device *, const unsigned char *);
 166static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 167static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 168static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 169			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 170static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 171static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 172				   bool setting);
 173static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 174				bool setting);
 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 176				 struct ifla_vf_info *ivi);
 177static void igb_check_vf_rate_limit(struct igb_adapter *);
 178static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 179static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 180
 181#ifdef CONFIG_PCI_IOV
 182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 183static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 184static int igb_disable_sriov(struct pci_dev *dev);
 185static int igb_pci_disable_sriov(struct pci_dev *dev);
 186#endif
 187
 188static int igb_suspend(struct device *);
 189static int igb_resume(struct device *);
 190static int igb_runtime_suspend(struct device *dev);
 191static int igb_runtime_resume(struct device *dev);
 192static int igb_runtime_idle(struct device *dev);
 193static const struct dev_pm_ops igb_pm_ops = {
 194	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 195	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 196			igb_runtime_idle)
 197};
 198static void igb_shutdown(struct pci_dev *);
 199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 200#ifdef CONFIG_IGB_DCA
 201static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 202static struct notifier_block dca_notifier = {
 203	.notifier_call	= igb_notify_dca,
 204	.next		= NULL,
 205	.priority	= 0
 206};
 207#endif
 208#ifdef CONFIG_PCI_IOV
 209static unsigned int max_vfs;
 210module_param(max_vfs, uint, 0);
 211MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 212#endif /* CONFIG_PCI_IOV */
 213
 214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 215		     pci_channel_state_t);
 216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 217static void igb_io_resume(struct pci_dev *);
 218
 219static const struct pci_error_handlers igb_err_handler = {
 220	.error_detected = igb_io_error_detected,
 221	.slot_reset = igb_io_slot_reset,
 222	.resume = igb_io_resume,
 223};
 224
 225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 226
 227static struct pci_driver igb_driver = {
 228	.name     = igb_driver_name,
 229	.id_table = igb_pci_tbl,
 230	.probe    = igb_probe,
 231	.remove   = igb_remove,
 232#ifdef CONFIG_PM
 233	.driver.pm = &igb_pm_ops,
 234#endif
 235	.shutdown = igb_shutdown,
 236	.sriov_configure = igb_pci_sriov_configure,
 237	.err_handler = &igb_err_handler
 238};
 239
 240MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 241MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 242MODULE_LICENSE("GPL v2");
 243MODULE_VERSION(DRV_VERSION);
 244
 245#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 246static int debug = -1;
 247module_param(debug, int, 0);
 248MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 249
 250struct igb_reg_info {
 251	u32 ofs;
 252	char *name;
 253};
 254
 255static const struct igb_reg_info igb_reg_info_tbl[] = {
 256
 257	/* General Registers */
 258	{E1000_CTRL, "CTRL"},
 259	{E1000_STATUS, "STATUS"},
 260	{E1000_CTRL_EXT, "CTRL_EXT"},
 261
 262	/* Interrupt Registers */
 263	{E1000_ICR, "ICR"},
 264
 265	/* RX Registers */
 266	{E1000_RCTL, "RCTL"},
 267	{E1000_RDLEN(0), "RDLEN"},
 268	{E1000_RDH(0), "RDH"},
 269	{E1000_RDT(0), "RDT"},
 270	{E1000_RXDCTL(0), "RXDCTL"},
 271	{E1000_RDBAL(0), "RDBAL"},
 272	{E1000_RDBAH(0), "RDBAH"},
 273
 274	/* TX Registers */
 275	{E1000_TCTL, "TCTL"},
 276	{E1000_TDBAL(0), "TDBAL"},
 277	{E1000_TDBAH(0), "TDBAH"},
 278	{E1000_TDLEN(0), "TDLEN"},
 279	{E1000_TDH(0), "TDH"},
 280	{E1000_TDT(0), "TDT"},
 281	{E1000_TXDCTL(0), "TXDCTL"},
 282	{E1000_TDFH, "TDFH"},
 283	{E1000_TDFT, "TDFT"},
 284	{E1000_TDFHS, "TDFHS"},
 285	{E1000_TDFPC, "TDFPC"},
 286
 287	/* List Terminator */
 288	{}
 289};
 290
 291/* igb_regdump - register printout routine */
 292static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 293{
 294	int n = 0;
 295	char rname[16];
 296	u32 regs[8];
 297
 298	switch (reginfo->ofs) {
 299	case E1000_RDLEN(0):
 300		for (n = 0; n < 4; n++)
 301			regs[n] = rd32(E1000_RDLEN(n));
 302		break;
 303	case E1000_RDH(0):
 304		for (n = 0; n < 4; n++)
 305			regs[n] = rd32(E1000_RDH(n));
 306		break;
 307	case E1000_RDT(0):
 308		for (n = 0; n < 4; n++)
 309			regs[n] = rd32(E1000_RDT(n));
 310		break;
 311	case E1000_RXDCTL(0):
 312		for (n = 0; n < 4; n++)
 313			regs[n] = rd32(E1000_RXDCTL(n));
 314		break;
 315	case E1000_RDBAL(0):
 316		for (n = 0; n < 4; n++)
 317			regs[n] = rd32(E1000_RDBAL(n));
 318		break;
 319	case E1000_RDBAH(0):
 320		for (n = 0; n < 4; n++)
 321			regs[n] = rd32(E1000_RDBAH(n));
 322		break;
 323	case E1000_TDBAL(0):
 324		for (n = 0; n < 4; n++)
 325			regs[n] = rd32(E1000_RDBAL(n));
 326		break;
 327	case E1000_TDBAH(0):
 328		for (n = 0; n < 4; n++)
 329			regs[n] = rd32(E1000_TDBAH(n));
 330		break;
 331	case E1000_TDLEN(0):
 332		for (n = 0; n < 4; n++)
 333			regs[n] = rd32(E1000_TDLEN(n));
 334		break;
 335	case E1000_TDH(0):
 336		for (n = 0; n < 4; n++)
 337			regs[n] = rd32(E1000_TDH(n));
 338		break;
 339	case E1000_TDT(0):
 340		for (n = 0; n < 4; n++)
 341			regs[n] = rd32(E1000_TDT(n));
 342		break;
 343	case E1000_TXDCTL(0):
 344		for (n = 0; n < 4; n++)
 345			regs[n] = rd32(E1000_TXDCTL(n));
 346		break;
 347	default:
 348		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 349		return;
 350	}
 351
 352	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 353	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 354		regs[2], regs[3]);
 355}
 356
 357/* igb_dump - Print registers, Tx-rings and Rx-rings */
 358static void igb_dump(struct igb_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	struct e1000_hw *hw = &adapter->hw;
 362	struct igb_reg_info *reginfo;
 363	struct igb_ring *tx_ring;
 364	union e1000_adv_tx_desc *tx_desc;
 365	struct my_u0 { u64 a; u64 b; } *u0;
 366	struct igb_ring *rx_ring;
 367	union e1000_adv_rx_desc *rx_desc;
 368	u32 staterr;
 369	u16 i, n;
 370
 371	if (!netif_msg_hw(adapter))
 372		return;
 373
 374	/* Print netdevice Info */
 375	if (netdev) {
 376		dev_info(&adapter->pdev->dev, "Net device Info\n");
 377		pr_info("Device Name     state            trans_start\n");
 378		pr_info("%-15s %016lX %016lX\n", netdev->name,
 379			netdev->state, dev_trans_start(netdev));
 380	}
 381
 382	/* Print Registers */
 383	dev_info(&adapter->pdev->dev, "Register Dump\n");
 384	pr_info(" Register Name   Value\n");
 385	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 386	     reginfo->name; reginfo++) {
 387		igb_regdump(hw, reginfo);
 388	}
 389
 390	/* Print TX Ring Summary */
 391	if (!netdev || !netif_running(netdev))
 392		goto exit;
 393
 394	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 395	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 396	for (n = 0; n < adapter->num_tx_queues; n++) {
 397		struct igb_tx_buffer *buffer_info;
 398		tx_ring = adapter->tx_ring[n];
 399		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 400		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 401			n, tx_ring->next_to_use, tx_ring->next_to_clean,
 402			(u64)dma_unmap_addr(buffer_info, dma),
 403			dma_unmap_len(buffer_info, len),
 404			buffer_info->next_to_watch,
 405			(u64)buffer_info->time_stamp);
 406	}
 407
 408	/* Print TX Rings */
 409	if (!netif_msg_tx_done(adapter))
 410		goto rx_ring_summary;
 411
 412	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 413
 414	/* Transmit Descriptor Formats
 415	 *
 416	 * Advanced Transmit Descriptor
 417	 *   +--------------------------------------------------------------+
 418	 * 0 |         Buffer Address [63:0]                                |
 419	 *   +--------------------------------------------------------------+
 420	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 421	 *   +--------------------------------------------------------------+
 422	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
 423	 */
 424
 425	for (n = 0; n < adapter->num_tx_queues; n++) {
 426		tx_ring = adapter->tx_ring[n];
 427		pr_info("------------------------------------\n");
 428		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 429		pr_info("------------------------------------\n");
 430		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 431
 432		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 433			const char *next_desc;
 434			struct igb_tx_buffer *buffer_info;
 435			tx_desc = IGB_TX_DESC(tx_ring, i);
 436			buffer_info = &tx_ring->tx_buffer_info[i];
 437			u0 = (struct my_u0 *)tx_desc;
 438			if (i == tx_ring->next_to_use &&
 439			    i == tx_ring->next_to_clean)
 440				next_desc = " NTC/U";
 441			else if (i == tx_ring->next_to_use)
 442				next_desc = " NTU";
 443			else if (i == tx_ring->next_to_clean)
 444				next_desc = " NTC";
 445			else
 446				next_desc = "";
 447
 448			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 449				i, le64_to_cpu(u0->a),
 450				le64_to_cpu(u0->b),
 451				(u64)dma_unmap_addr(buffer_info, dma),
 452				dma_unmap_len(buffer_info, len),
 453				buffer_info->next_to_watch,
 454				(u64)buffer_info->time_stamp,
 455				buffer_info->skb, next_desc);
 456
 457			if (netif_msg_pktdata(adapter) && buffer_info->skb)
 458				print_hex_dump(KERN_INFO, "",
 459					DUMP_PREFIX_ADDRESS,
 460					16, 1, buffer_info->skb->data,
 461					dma_unmap_len(buffer_info, len),
 462					true);
 463		}
 464	}
 465
 466	/* Print RX Rings Summary */
 467rx_ring_summary:
 468	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 469	pr_info("Queue [NTU] [NTC]\n");
 470	for (n = 0; n < adapter->num_rx_queues; n++) {
 471		rx_ring = adapter->rx_ring[n];
 472		pr_info(" %5d %5X %5X\n",
 473			n, rx_ring->next_to_use, rx_ring->next_to_clean);
 474	}
 475
 476	/* Print RX Rings */
 477	if (!netif_msg_rx_status(adapter))
 478		goto exit;
 479
 480	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 481
 482	/* Advanced Receive Descriptor (Read) Format
 483	 *    63                                           1        0
 484	 *    +-----------------------------------------------------+
 485	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 486	 *    +----------------------------------------------+------+
 487	 *  8 |       Header Buffer Address [63:1]           |  DD  |
 488	 *    +-----------------------------------------------------+
 489	 *
 490	 *
 491	 * Advanced Receive Descriptor (Write-Back) Format
 492	 *
 493	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
 494	 *   +------------------------------------------------------+
 495	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 496	 *   | Checksum   Ident  |   |           |    | Type | Type |
 497	 *   +------------------------------------------------------+
 498	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 499	 *   +------------------------------------------------------+
 500	 *   63       48 47    32 31            20 19               0
 501	 */
 502
 503	for (n = 0; n < adapter->num_rx_queues; n++) {
 504		rx_ring = adapter->rx_ring[n];
 505		pr_info("------------------------------------\n");
 506		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 507		pr_info("------------------------------------\n");
 508		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 509		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 510
 511		for (i = 0; i < rx_ring->count; i++) {
 512			const char *next_desc;
 513			struct igb_rx_buffer *buffer_info;
 514			buffer_info = &rx_ring->rx_buffer_info[i];
 515			rx_desc = IGB_RX_DESC(rx_ring, i);
 516			u0 = (struct my_u0 *)rx_desc;
 517			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 518
 519			if (i == rx_ring->next_to_use)
 520				next_desc = " NTU";
 521			else if (i == rx_ring->next_to_clean)
 522				next_desc = " NTC";
 523			else
 524				next_desc = "";
 525
 526			if (staterr & E1000_RXD_STAT_DD) {
 527				/* Descriptor Done */
 528				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 529					"RWB", i,
 530					le64_to_cpu(u0->a),
 531					le64_to_cpu(u0->b),
 532					next_desc);
 533			} else {
 534				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 535					"R  ", i,
 536					le64_to_cpu(u0->a),
 537					le64_to_cpu(u0->b),
 538					(u64)buffer_info->dma,
 539					next_desc);
 540
 541				if (netif_msg_pktdata(adapter) &&
 542				    buffer_info->dma && buffer_info->page) {
 543					print_hex_dump(KERN_INFO, "",
 544					  DUMP_PREFIX_ADDRESS,
 545					  16, 1,
 546					  page_address(buffer_info->page) +
 547						      buffer_info->page_offset,
 548					  igb_rx_bufsz(rx_ring), true);
 549				}
 550			}
 551		}
 552	}
 553
 554exit:
 555	return;
 556}
 557
 558/**
 559 *  igb_get_i2c_data - Reads the I2C SDA data bit
 560 *  @hw: pointer to hardware structure
 561 *  @i2cctl: Current value of I2CCTL register
 562 *
 563 *  Returns the I2C data bit value
 564 **/
 565static int igb_get_i2c_data(void *data)
 566{
 567	struct igb_adapter *adapter = (struct igb_adapter *)data;
 568	struct e1000_hw *hw = &adapter->hw;
 569	s32 i2cctl = rd32(E1000_I2CPARAMS);
 570
 571	return !!(i2cctl & E1000_I2C_DATA_IN);
 572}
 573
 574/**
 575 *  igb_set_i2c_data - Sets the I2C data bit
 576 *  @data: pointer to hardware structure
 577 *  @state: I2C data value (0 or 1) to set
 578 *
 579 *  Sets the I2C data bit
 580 **/
 581static void igb_set_i2c_data(void *data, int state)
 582{
 583	struct igb_adapter *adapter = (struct igb_adapter *)data;
 584	struct e1000_hw *hw = &adapter->hw;
 585	s32 i2cctl = rd32(E1000_I2CPARAMS);
 586
 587	if (state)
 588		i2cctl |= E1000_I2C_DATA_OUT;
 589	else
 
 590		i2cctl &= ~E1000_I2C_DATA_OUT;
 
 591
 592	i2cctl &= ~E1000_I2C_DATA_OE_N;
 593	i2cctl |= E1000_I2C_CLK_OE_N;
 594	wr32(E1000_I2CPARAMS, i2cctl);
 595	wrfl();
 596
 597}
 598
 599/**
 600 *  igb_set_i2c_clk - Sets the I2C SCL clock
 601 *  @data: pointer to hardware structure
 602 *  @state: state to set clock
 603 *
 604 *  Sets the I2C clock line to state
 605 **/
 606static void igb_set_i2c_clk(void *data, int state)
 607{
 608	struct igb_adapter *adapter = (struct igb_adapter *)data;
 609	struct e1000_hw *hw = &adapter->hw;
 610	s32 i2cctl = rd32(E1000_I2CPARAMS);
 611
 612	if (state) {
 613		i2cctl |= E1000_I2C_CLK_OUT;
 614		i2cctl &= ~E1000_I2C_CLK_OE_N;
 615	} else {
 616		i2cctl &= ~E1000_I2C_CLK_OUT;
 617		i2cctl &= ~E1000_I2C_CLK_OE_N;
 618	}
 619	wr32(E1000_I2CPARAMS, i2cctl);
 620	wrfl();
 621}
 622
 623/**
 624 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 625 *  @data: pointer to hardware structure
 626 *
 627 *  Gets the I2C clock state
 628 **/
 629static int igb_get_i2c_clk(void *data)
 630{
 631	struct igb_adapter *adapter = (struct igb_adapter *)data;
 632	struct e1000_hw *hw = &adapter->hw;
 633	s32 i2cctl = rd32(E1000_I2CPARAMS);
 634
 635	return !!(i2cctl & E1000_I2C_CLK_IN);
 636}
 637
 638static const struct i2c_algo_bit_data igb_i2c_algo = {
 639	.setsda		= igb_set_i2c_data,
 640	.setscl		= igb_set_i2c_clk,
 641	.getsda		= igb_get_i2c_data,
 642	.getscl		= igb_get_i2c_clk,
 643	.udelay		= 5,
 644	.timeout	= 20,
 645};
 646
 647/**
 648 *  igb_get_hw_dev - return device
 649 *  @hw: pointer to hardware structure
 650 *
 651 *  used by hardware layer to print debugging information
 652 **/
 653struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 654{
 655	struct igb_adapter *adapter = hw->back;
 656	return adapter->netdev;
 657}
 658
 659/**
 660 *  igb_init_module - Driver Registration Routine
 661 *
 662 *  igb_init_module is the first routine called when the driver is
 663 *  loaded. All it does is register with the PCI subsystem.
 664 **/
 665static int __init igb_init_module(void)
 666{
 667	int ret;
 668
 669	pr_info("%s - version %s\n",
 670	       igb_driver_string, igb_driver_version);
 671	pr_info("%s\n", igb_copyright);
 672
 673#ifdef CONFIG_IGB_DCA
 674	dca_register_notify(&dca_notifier);
 675#endif
 676	ret = pci_register_driver(&igb_driver);
 677	return ret;
 678}
 679
 680module_init(igb_init_module);
 681
 682/**
 683 *  igb_exit_module - Driver Exit Cleanup Routine
 684 *
 685 *  igb_exit_module is called just before the driver is removed
 686 *  from memory.
 687 **/
 688static void __exit igb_exit_module(void)
 689{
 690#ifdef CONFIG_IGB_DCA
 691	dca_unregister_notify(&dca_notifier);
 692#endif
 693	pci_unregister_driver(&igb_driver);
 694}
 695
 696module_exit(igb_exit_module);
 697
 698#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 699/**
 700 *  igb_cache_ring_register - Descriptor ring to register mapping
 701 *  @adapter: board private structure to initialize
 702 *
 703 *  Once we know the feature-set enabled for the device, we'll cache
 704 *  the register offset the descriptor ring is assigned to.
 705 **/
 706static void igb_cache_ring_register(struct igb_adapter *adapter)
 707{
 708	int i = 0, j = 0;
 709	u32 rbase_offset = adapter->vfs_allocated_count;
 710
 711	switch (adapter->hw.mac.type) {
 712	case e1000_82576:
 713		/* The queues are allocated for virtualization such that VF 0
 714		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 715		 * In order to avoid collision we start at the first free queue
 716		 * and continue consuming queues in the same sequence
 717		 */
 718		if (adapter->vfs_allocated_count) {
 719			for (; i < adapter->rss_queues; i++)
 720				adapter->rx_ring[i]->reg_idx = rbase_offset +
 721							       Q_IDX_82576(i);
 722		}
 723		/* Fall through */
 724	case e1000_82575:
 725	case e1000_82580:
 726	case e1000_i350:
 727	case e1000_i354:
 728	case e1000_i210:
 729	case e1000_i211:
 730		/* Fall through */
 731	default:
 732		for (; i < adapter->num_rx_queues; i++)
 733			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 734		for (; j < adapter->num_tx_queues; j++)
 735			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 736		break;
 737	}
 738}
 739
 740u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 741{
 742	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 743	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 744	u32 value = 0;
 745
 746	if (E1000_REMOVED(hw_addr))
 747		return ~value;
 748
 749	value = readl(&hw_addr[reg]);
 750
 751	/* reads should not return all F's */
 752	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 753		struct net_device *netdev = igb->netdev;
 754		hw->hw_addr = NULL;
 755		netdev_err(netdev, "PCIe link lost\n");
 756		WARN(pci_device_is_present(igb->pdev),
 757		     "igb: Failed to read reg 0x%x!\n", reg);
 758	}
 759
 760	return value;
 761}
 762
 763/**
 764 *  igb_write_ivar - configure ivar for given MSI-X vector
 765 *  @hw: pointer to the HW structure
 766 *  @msix_vector: vector number we are allocating to a given ring
 767 *  @index: row index of IVAR register to write within IVAR table
 768 *  @offset: column offset of in IVAR, should be multiple of 8
 769 *
 770 *  This function is intended to handle the writing of the IVAR register
 771 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 772 *  each containing an cause allocation for an Rx and Tx ring, and a
 773 *  variable number of rows depending on the number of queues supported.
 774 **/
 775static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 776			   int index, int offset)
 777{
 778	u32 ivar = array_rd32(E1000_IVAR0, index);
 779
 780	/* clear any bits that are currently set */
 781	ivar &= ~((u32)0xFF << offset);
 782
 783	/* write vector and valid bit */
 784	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 785
 786	array_wr32(E1000_IVAR0, index, ivar);
 787}
 788
 789#define IGB_N0_QUEUE -1
 790static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 791{
 792	struct igb_adapter *adapter = q_vector->adapter;
 793	struct e1000_hw *hw = &adapter->hw;
 794	int rx_queue = IGB_N0_QUEUE;
 795	int tx_queue = IGB_N0_QUEUE;
 796	u32 msixbm = 0;
 797
 798	if (q_vector->rx.ring)
 799		rx_queue = q_vector->rx.ring->reg_idx;
 800	if (q_vector->tx.ring)
 801		tx_queue = q_vector->tx.ring->reg_idx;
 802
 803	switch (hw->mac.type) {
 804	case e1000_82575:
 805		/* The 82575 assigns vectors using a bitmask, which matches the
 806		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 807		 * or more queues to a vector, we write the appropriate bits
 808		 * into the MSIXBM register for that vector.
 809		 */
 810		if (rx_queue > IGB_N0_QUEUE)
 811			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 812		if (tx_queue > IGB_N0_QUEUE)
 813			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 814		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 815			msixbm |= E1000_EIMS_OTHER;
 816		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 817		q_vector->eims_value = msixbm;
 818		break;
 819	case e1000_82576:
 820		/* 82576 uses a table that essentially consists of 2 columns
 821		 * with 8 rows.  The ordering is column-major so we use the
 822		 * lower 3 bits as the row index, and the 4th bit as the
 823		 * column offset.
 824		 */
 825		if (rx_queue > IGB_N0_QUEUE)
 826			igb_write_ivar(hw, msix_vector,
 827				       rx_queue & 0x7,
 828				       (rx_queue & 0x8) << 1);
 829		if (tx_queue > IGB_N0_QUEUE)
 830			igb_write_ivar(hw, msix_vector,
 831				       tx_queue & 0x7,
 832				       ((tx_queue & 0x8) << 1) + 8);
 833		q_vector->eims_value = BIT(msix_vector);
 834		break;
 835	case e1000_82580:
 836	case e1000_i350:
 837	case e1000_i354:
 838	case e1000_i210:
 839	case e1000_i211:
 840		/* On 82580 and newer adapters the scheme is similar to 82576
 841		 * however instead of ordering column-major we have things
 842		 * ordered row-major.  So we traverse the table by using
 843		 * bit 0 as the column offset, and the remaining bits as the
 844		 * row index.
 845		 */
 846		if (rx_queue > IGB_N0_QUEUE)
 847			igb_write_ivar(hw, msix_vector,
 848				       rx_queue >> 1,
 849				       (rx_queue & 0x1) << 4);
 850		if (tx_queue > IGB_N0_QUEUE)
 851			igb_write_ivar(hw, msix_vector,
 852				       tx_queue >> 1,
 853				       ((tx_queue & 0x1) << 4) + 8);
 854		q_vector->eims_value = BIT(msix_vector);
 855		break;
 856	default:
 857		BUG();
 858		break;
 859	}
 860
 861	/* add q_vector eims value to global eims_enable_mask */
 862	adapter->eims_enable_mask |= q_vector->eims_value;
 863
 864	/* configure q_vector to set itr on first interrupt */
 865	q_vector->set_itr = 1;
 866}
 867
 868/**
 869 *  igb_configure_msix - Configure MSI-X hardware
 870 *  @adapter: board private structure to initialize
 871 *
 872 *  igb_configure_msix sets up the hardware to properly
 873 *  generate MSI-X interrupts.
 874 **/
 875static void igb_configure_msix(struct igb_adapter *adapter)
 876{
 877	u32 tmp;
 878	int i, vector = 0;
 879	struct e1000_hw *hw = &adapter->hw;
 880
 881	adapter->eims_enable_mask = 0;
 882
 883	/* set vector for other causes, i.e. link changes */
 884	switch (hw->mac.type) {
 885	case e1000_82575:
 886		tmp = rd32(E1000_CTRL_EXT);
 887		/* enable MSI-X PBA support*/
 888		tmp |= E1000_CTRL_EXT_PBA_CLR;
 889
 890		/* Auto-Mask interrupts upon ICR read. */
 891		tmp |= E1000_CTRL_EXT_EIAME;
 892		tmp |= E1000_CTRL_EXT_IRCA;
 893
 894		wr32(E1000_CTRL_EXT, tmp);
 895
 896		/* enable msix_other interrupt */
 897		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 898		adapter->eims_other = E1000_EIMS_OTHER;
 899
 900		break;
 901
 902	case e1000_82576:
 903	case e1000_82580:
 904	case e1000_i350:
 905	case e1000_i354:
 906	case e1000_i210:
 907	case e1000_i211:
 908		/* Turn on MSI-X capability first, or our settings
 909		 * won't stick.  And it will take days to debug.
 910		 */
 911		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 912		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 913		     E1000_GPIE_NSICR);
 914
 915		/* enable msix_other interrupt */
 916		adapter->eims_other = BIT(vector);
 917		tmp = (vector++ | E1000_IVAR_VALID) << 8;
 918
 919		wr32(E1000_IVAR_MISC, tmp);
 920		break;
 921	default:
 922		/* do nothing, since nothing else supports MSI-X */
 923		break;
 924	} /* switch (hw->mac.type) */
 925
 926	adapter->eims_enable_mask |= adapter->eims_other;
 927
 928	for (i = 0; i < adapter->num_q_vectors; i++)
 929		igb_assign_vector(adapter->q_vector[i], vector++);
 930
 931	wrfl();
 932}
 933
 934/**
 935 *  igb_request_msix - Initialize MSI-X interrupts
 936 *  @adapter: board private structure to initialize
 937 *
 938 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 939 *  kernel.
 940 **/
 941static int igb_request_msix(struct igb_adapter *adapter)
 942{
 
 943	struct net_device *netdev = adapter->netdev;
 944	int i, err = 0, vector = 0, free_vector = 0;
 945
 946	err = request_irq(adapter->msix_entries[vector].vector,
 947			  igb_msix_other, 0, netdev->name, adapter);
 948	if (err)
 949		goto err_out;
 950
 951	for (i = 0; i < adapter->num_q_vectors; i++) {
 
 
 
 
 
 
 952		struct igb_q_vector *q_vector = adapter->q_vector[i];
 953
 954		vector++;
 955
 956		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 957
 958		if (q_vector->rx.ring && q_vector->tx.ring)
 959			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 960				q_vector->rx.ring->queue_index);
 961		else if (q_vector->tx.ring)
 962			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 963				q_vector->tx.ring->queue_index);
 964		else if (q_vector->rx.ring)
 965			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 966				q_vector->rx.ring->queue_index);
 967		else
 968			sprintf(q_vector->name, "%s-unused", netdev->name);
 969
 970		err = request_irq(adapter->msix_entries[vector].vector,
 971				  igb_msix_ring, 0, q_vector->name,
 972				  q_vector);
 973		if (err)
 974			goto err_free;
 975	}
 976
 977	igb_configure_msix(adapter);
 978	return 0;
 979
 980err_free:
 981	/* free already assigned IRQs */
 982	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 983
 984	vector--;
 985	for (i = 0; i < vector; i++) {
 986		free_irq(adapter->msix_entries[free_vector++].vector,
 987			 adapter->q_vector[i]);
 988	}
 989err_out:
 990	return err;
 991}
 992
 993/**
 994 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 995 *  @adapter: board private structure to initialize
 996 *  @v_idx: Index of vector to be freed
 997 *
 998 *  This function frees the memory allocated to the q_vector.
 999 **/
1000static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1001{
1002	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003
1004	adapter->q_vector[v_idx] = NULL;
1005
1006	/* igb_get_stats64() might access the rings on this vector,
1007	 * we must wait a grace period before freeing it.
1008	 */
1009	if (q_vector)
1010		kfree_rcu(q_vector, rcu);
1011}
1012
1013/**
1014 *  igb_reset_q_vector - Reset config for interrupt vector
1015 *  @adapter: board private structure to initialize
1016 *  @v_idx: Index of vector to be reset
1017 *
1018 *  If NAPI is enabled it will delete any references to the
1019 *  NAPI struct. This is preparation for igb_free_q_vector.
1020 **/
1021static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1022{
1023	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024
1025	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1026	 * allocated. So, q_vector is NULL so we should stop here.
1027	 */
1028	if (!q_vector)
1029		return;
1030
1031	if (q_vector->tx.ring)
1032		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1033
1034	if (q_vector->rx.ring)
1035		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1036
1037	netif_napi_del(&q_vector->napi);
1038
1039}
1040
1041static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1042{
1043	int v_idx = adapter->num_q_vectors;
1044
1045	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1046		pci_disable_msix(adapter->pdev);
1047	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1048		pci_disable_msi(adapter->pdev);
1049
1050	while (v_idx--)
1051		igb_reset_q_vector(adapter, v_idx);
1052}
1053
1054/**
1055 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1056 *  @adapter: board private structure to initialize
1057 *
1058 *  This function frees the memory allocated to the q_vectors.  In addition if
1059 *  NAPI is enabled it will delete any references to the NAPI struct prior
1060 *  to freeing the q_vector.
1061 **/
1062static void igb_free_q_vectors(struct igb_adapter *adapter)
1063{
1064	int v_idx = adapter->num_q_vectors;
1065
1066	adapter->num_tx_queues = 0;
1067	adapter->num_rx_queues = 0;
1068	adapter->num_q_vectors = 0;
1069
1070	while (v_idx--) {
1071		igb_reset_q_vector(adapter, v_idx);
1072		igb_free_q_vector(adapter, v_idx);
1073	}
1074}
1075
1076/**
1077 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1078 *  @adapter: board private structure to initialize
1079 *
1080 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1081 *  MSI-X interrupts allocated.
1082 */
1083static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1084{
1085	igb_free_q_vectors(adapter);
1086	igb_reset_interrupt_capability(adapter);
1087}
1088
1089/**
1090 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1091 *  @adapter: board private structure to initialize
1092 *  @msix: boolean value of MSIX capability
1093 *
1094 *  Attempt to configure interrupts using the best available
1095 *  capabilities of the hardware and kernel.
1096 **/
1097static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1098{
1099	int err;
1100	int numvecs, i;
1101
1102	if (!msix)
1103		goto msi_only;
1104	adapter->flags |= IGB_FLAG_HAS_MSIX;
1105
1106	/* Number of supported queues. */
1107	adapter->num_rx_queues = adapter->rss_queues;
1108	if (adapter->vfs_allocated_count)
1109		adapter->num_tx_queues = 1;
1110	else
1111		adapter->num_tx_queues = adapter->rss_queues;
1112
1113	/* start with one vector for every Rx queue */
1114	numvecs = adapter->num_rx_queues;
1115
1116	/* if Tx handler is separate add 1 for every Tx queue */
1117	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1118		numvecs += adapter->num_tx_queues;
1119
1120	/* store the number of vectors reserved for queues */
1121	adapter->num_q_vectors = numvecs;
1122
1123	/* add 1 vector for link status interrupts */
1124	numvecs++;
1125	for (i = 0; i < numvecs; i++)
1126		adapter->msix_entries[i].entry = i;
1127
1128	err = pci_enable_msix_range(adapter->pdev,
1129				    adapter->msix_entries,
1130				    numvecs,
1131				    numvecs);
1132	if (err > 0)
1133		return;
1134
1135	igb_reset_interrupt_capability(adapter);
1136
1137	/* If we can't do MSI-X, try MSI */
1138msi_only:
1139	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1140#ifdef CONFIG_PCI_IOV
1141	/* disable SR-IOV for non MSI-X configurations */
1142	if (adapter->vf_data) {
1143		struct e1000_hw *hw = &adapter->hw;
1144		/* disable iov and allow time for transactions to clear */
1145		pci_disable_sriov(adapter->pdev);
1146		msleep(500);
1147
1148		kfree(adapter->vf_mac_list);
1149		adapter->vf_mac_list = NULL;
1150		kfree(adapter->vf_data);
1151		adapter->vf_data = NULL;
1152		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1153		wrfl();
1154		msleep(100);
1155		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1156	}
1157#endif
1158	adapter->vfs_allocated_count = 0;
1159	adapter->rss_queues = 1;
1160	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1161	adapter->num_rx_queues = 1;
1162	adapter->num_tx_queues = 1;
1163	adapter->num_q_vectors = 1;
1164	if (!pci_enable_msi(adapter->pdev))
1165		adapter->flags |= IGB_FLAG_HAS_MSI;
1166}
1167
1168static void igb_add_ring(struct igb_ring *ring,
1169			 struct igb_ring_container *head)
1170{
1171	head->ring = ring;
1172	head->count++;
1173}
1174
1175/**
1176 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1177 *  @adapter: board private structure to initialize
1178 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1179 *  @v_idx: index of vector in adapter struct
1180 *  @txr_count: total number of Tx rings to allocate
1181 *  @txr_idx: index of first Tx ring to allocate
1182 *  @rxr_count: total number of Rx rings to allocate
1183 *  @rxr_idx: index of first Rx ring to allocate
1184 *
1185 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1186 **/
1187static int igb_alloc_q_vector(struct igb_adapter *adapter,
1188			      int v_count, int v_idx,
1189			      int txr_count, int txr_idx,
1190			      int rxr_count, int rxr_idx)
1191{
1192	struct igb_q_vector *q_vector;
1193	struct igb_ring *ring;
1194	int ring_count;
1195	size_t size;
1196
1197	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198	if (txr_count > 1 || rxr_count > 1)
1199		return -ENOMEM;
1200
1201	ring_count = txr_count + rxr_count;
1202	size = struct_size(q_vector, ring, ring_count);
1203
1204	/* allocate q_vector and rings */
1205	q_vector = adapter->q_vector[v_idx];
1206	if (!q_vector) {
1207		q_vector = kzalloc(size, GFP_KERNEL);
1208	} else if (size > ksize(q_vector)) {
1209		kfree_rcu(q_vector, rcu);
1210		q_vector = kzalloc(size, GFP_KERNEL);
 
 
 
 
1211	} else {
1212		memset(q_vector, 0, size);
1213	}
1214	if (!q_vector)
1215		return -ENOMEM;
1216
1217	/* initialize NAPI */
1218	netif_napi_add(adapter->netdev, &q_vector->napi,
1219		       igb_poll, 64);
1220
1221	/* tie q_vector and adapter together */
1222	adapter->q_vector[v_idx] = q_vector;
1223	q_vector->adapter = adapter;
1224
1225	/* initialize work limits */
1226	q_vector->tx.work_limit = adapter->tx_work_limit;
1227
1228	/* initialize ITR configuration */
1229	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1230	q_vector->itr_val = IGB_START_ITR;
1231
1232	/* initialize pointer to rings */
1233	ring = q_vector->ring;
1234
1235	/* intialize ITR */
1236	if (rxr_count) {
1237		/* rx or rx/tx vector */
1238		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1239			q_vector->itr_val = adapter->rx_itr_setting;
1240	} else {
1241		/* tx only vector */
1242		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1243			q_vector->itr_val = adapter->tx_itr_setting;
1244	}
1245
1246	if (txr_count) {
1247		/* assign generic ring traits */
1248		ring->dev = &adapter->pdev->dev;
1249		ring->netdev = adapter->netdev;
1250
1251		/* configure backlink on ring */
1252		ring->q_vector = q_vector;
1253
1254		/* update q_vector Tx values */
1255		igb_add_ring(ring, &q_vector->tx);
1256
1257		/* For 82575, context index must be unique per ring. */
1258		if (adapter->hw.mac.type == e1000_82575)
1259			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1260
1261		/* apply Tx specific ring traits */
1262		ring->count = adapter->tx_ring_count;
1263		ring->queue_index = txr_idx;
1264
1265		ring->cbs_enable = false;
1266		ring->idleslope = 0;
1267		ring->sendslope = 0;
1268		ring->hicredit = 0;
1269		ring->locredit = 0;
1270
1271		u64_stats_init(&ring->tx_syncp);
1272		u64_stats_init(&ring->tx_syncp2);
1273
1274		/* assign ring to adapter */
1275		adapter->tx_ring[txr_idx] = ring;
1276
1277		/* push pointer to next ring */
1278		ring++;
1279	}
1280
1281	if (rxr_count) {
1282		/* assign generic ring traits */
1283		ring->dev = &adapter->pdev->dev;
1284		ring->netdev = adapter->netdev;
1285
1286		/* configure backlink on ring */
1287		ring->q_vector = q_vector;
1288
1289		/* update q_vector Rx values */
1290		igb_add_ring(ring, &q_vector->rx);
1291
1292		/* set flag indicating ring supports SCTP checksum offload */
1293		if (adapter->hw.mac.type >= e1000_82576)
1294			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296		/* On i350, i354, i210, and i211, loopback VLAN packets
1297		 * have the tag byte-swapped.
1298		 */
1299		if (adapter->hw.mac.type >= e1000_i350)
1300			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302		/* apply Rx specific ring traits */
1303		ring->count = adapter->rx_ring_count;
1304		ring->queue_index = rxr_idx;
1305
1306		u64_stats_init(&ring->rx_syncp);
1307
1308		/* assign ring to adapter */
1309		adapter->rx_ring[rxr_idx] = ring;
1310	}
1311
1312	return 0;
1313}
1314
1315
1316/**
1317 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 *  @adapter: board private structure to initialize
1319 *
1320 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321 *  return -ENOMEM.
1322 **/
1323static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324{
1325	int q_vectors = adapter->num_q_vectors;
1326	int rxr_remaining = adapter->num_rx_queues;
1327	int txr_remaining = adapter->num_tx_queues;
1328	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329	int err;
1330
1331	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332		for (; rxr_remaining; v_idx++) {
1333			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334						 0, 0, 1, rxr_idx);
1335
1336			if (err)
1337				goto err_out;
1338
1339			/* update counts and index */
1340			rxr_remaining--;
1341			rxr_idx++;
1342		}
1343	}
1344
1345	for (; v_idx < q_vectors; v_idx++) {
1346		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350					 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352		if (err)
1353			goto err_out;
1354
1355		/* update counts and index */
1356		rxr_remaining -= rqpv;
1357		txr_remaining -= tqpv;
1358		rxr_idx++;
1359		txr_idx++;
1360	}
1361
1362	return 0;
1363
1364err_out:
1365	adapter->num_tx_queues = 0;
1366	adapter->num_rx_queues = 0;
1367	adapter->num_q_vectors = 0;
1368
1369	while (v_idx--)
1370		igb_free_q_vector(adapter, v_idx);
1371
1372	return -ENOMEM;
1373}
1374
1375/**
1376 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 *  @adapter: board private structure to initialize
1378 *  @msix: boolean value of MSIX capability
1379 *
1380 *  This function initializes the interrupts and allocates all of the queues.
1381 **/
1382static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383{
1384	struct pci_dev *pdev = adapter->pdev;
1385	int err;
1386
1387	igb_set_interrupt_capability(adapter, msix);
1388
1389	err = igb_alloc_q_vectors(adapter);
1390	if (err) {
1391		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392		goto err_alloc_q_vectors;
1393	}
1394
1395	igb_cache_ring_register(adapter);
1396
1397	return 0;
1398
1399err_alloc_q_vectors:
1400	igb_reset_interrupt_capability(adapter);
1401	return err;
1402}
1403
1404/**
1405 *  igb_request_irq - initialize interrupts
1406 *  @adapter: board private structure to initialize
1407 *
1408 *  Attempts to configure interrupts using the best available
1409 *  capabilities of the hardware and kernel.
1410 **/
1411static int igb_request_irq(struct igb_adapter *adapter)
1412{
1413	struct net_device *netdev = adapter->netdev;
1414	struct pci_dev *pdev = adapter->pdev;
1415	int err = 0;
1416
1417	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418		err = igb_request_msix(adapter);
1419		if (!err)
1420			goto request_done;
1421		/* fall back to MSI */
1422		igb_free_all_tx_resources(adapter);
1423		igb_free_all_rx_resources(adapter);
1424
1425		igb_clear_interrupt_scheme(adapter);
1426		err = igb_init_interrupt_scheme(adapter, false);
1427		if (err)
1428			goto request_done;
1429
1430		igb_setup_all_tx_resources(adapter);
1431		igb_setup_all_rx_resources(adapter);
1432		igb_configure(adapter);
1433	}
1434
1435	igb_assign_vector(adapter->q_vector[0], 0);
1436
1437	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438		err = request_irq(pdev->irq, igb_intr_msi, 0,
1439				  netdev->name, adapter);
1440		if (!err)
1441			goto request_done;
1442
1443		/* fall back to legacy interrupts */
1444		igb_reset_interrupt_capability(adapter);
1445		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446	}
1447
1448	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449			  netdev->name, adapter);
1450
1451	if (err)
1452		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453			err);
1454
1455request_done:
1456	return err;
1457}
1458
1459static void igb_free_irq(struct igb_adapter *adapter)
1460{
1461	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462		int vector = 0, i;
1463
1464		free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466		for (i = 0; i < adapter->num_q_vectors; i++)
1467			free_irq(adapter->msix_entries[vector++].vector,
1468				 adapter->q_vector[i]);
1469	} else {
1470		free_irq(adapter->pdev->irq, adapter);
1471	}
1472}
1473
1474/**
1475 *  igb_irq_disable - Mask off interrupt generation on the NIC
1476 *  @adapter: board private structure
1477 **/
1478static void igb_irq_disable(struct igb_adapter *adapter)
1479{
1480	struct e1000_hw *hw = &adapter->hw;
1481
1482	/* we need to be careful when disabling interrupts.  The VFs are also
1483	 * mapped into these registers and so clearing the bits can cause
1484	 * issues on the VF drivers so we only need to clear what we set
1485	 */
1486	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487		u32 regval = rd32(E1000_EIAM);
1488
1489		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490		wr32(E1000_EIMC, adapter->eims_enable_mask);
1491		regval = rd32(E1000_EIAC);
1492		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493	}
1494
1495	wr32(E1000_IAM, 0);
1496	wr32(E1000_IMC, ~0);
1497	wrfl();
1498	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499		int i;
1500
1501		for (i = 0; i < adapter->num_q_vectors; i++)
1502			synchronize_irq(adapter->msix_entries[i].vector);
1503	} else {
1504		synchronize_irq(adapter->pdev->irq);
1505	}
1506}
1507
1508/**
1509 *  igb_irq_enable - Enable default interrupt generation settings
1510 *  @adapter: board private structure
1511 **/
1512static void igb_irq_enable(struct igb_adapter *adapter)
1513{
1514	struct e1000_hw *hw = &adapter->hw;
1515
1516	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518		u32 regval = rd32(E1000_EIAC);
1519
1520		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521		regval = rd32(E1000_EIAM);
1522		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523		wr32(E1000_EIMS, adapter->eims_enable_mask);
1524		if (adapter->vfs_allocated_count) {
1525			wr32(E1000_MBVFIMR, 0xFF);
1526			ims |= E1000_IMS_VMMB;
1527		}
1528		wr32(E1000_IMS, ims);
1529	} else {
1530		wr32(E1000_IMS, IMS_ENABLE_MASK |
1531				E1000_IMS_DRSTA);
1532		wr32(E1000_IAM, IMS_ENABLE_MASK |
1533				E1000_IMS_DRSTA);
1534	}
1535}
1536
1537static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538{
1539	struct e1000_hw *hw = &adapter->hw;
1540	u16 pf_id = adapter->vfs_allocated_count;
1541	u16 vid = adapter->hw.mng_cookie.vlan_id;
1542	u16 old_vid = adapter->mng_vlan_id;
1543
1544	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545		/* add VID to filter table */
1546		igb_vfta_set(hw, vid, pf_id, true, true);
1547		adapter->mng_vlan_id = vid;
1548	} else {
1549		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550	}
1551
1552	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553	    (vid != old_vid) &&
1554	    !test_bit(old_vid, adapter->active_vlans)) {
1555		/* remove VID from filter table */
1556		igb_vfta_set(hw, vid, pf_id, false, true);
1557	}
1558}
1559
1560/**
1561 *  igb_release_hw_control - release control of the h/w to f/w
1562 *  @adapter: address of board private structure
1563 *
1564 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 *  For ASF and Pass Through versions of f/w this means that the
1566 *  driver is no longer loaded.
1567 **/
1568static void igb_release_hw_control(struct igb_adapter *adapter)
1569{
1570	struct e1000_hw *hw = &adapter->hw;
1571	u32 ctrl_ext;
1572
1573	/* Let firmware take over control of h/w */
1574	ctrl_ext = rd32(E1000_CTRL_EXT);
1575	wr32(E1000_CTRL_EXT,
1576			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577}
1578
1579/**
1580 *  igb_get_hw_control - get control of the h/w from f/w
1581 *  @adapter: address of board private structure
1582 *
1583 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 *  For ASF and Pass Through versions of f/w this means that
1585 *  the driver is loaded.
1586 **/
1587static void igb_get_hw_control(struct igb_adapter *adapter)
1588{
1589	struct e1000_hw *hw = &adapter->hw;
1590	u32 ctrl_ext;
1591
1592	/* Let firmware know the driver has taken over */
1593	ctrl_ext = rd32(E1000_CTRL_EXT);
1594	wr32(E1000_CTRL_EXT,
1595			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596}
1597
1598static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1599{
1600	struct net_device *netdev = adapter->netdev;
1601	struct e1000_hw *hw = &adapter->hw;
1602
1603	WARN_ON(hw->mac.type != e1000_i210);
1604
1605	if (enable)
1606		adapter->flags |= IGB_FLAG_FQTSS;
1607	else
1608		adapter->flags &= ~IGB_FLAG_FQTSS;
1609
1610	if (netif_running(netdev))
1611		schedule_work(&adapter->reset_task);
1612}
1613
1614static bool is_fqtss_enabled(struct igb_adapter *adapter)
1615{
1616	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1617}
1618
1619static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1620				   enum tx_queue_prio prio)
1621{
1622	u32 val;
1623
1624	WARN_ON(hw->mac.type != e1000_i210);
1625	WARN_ON(queue < 0 || queue > 4);
1626
1627	val = rd32(E1000_I210_TXDCTL(queue));
1628
1629	if (prio == TX_QUEUE_PRIO_HIGH)
1630		val |= E1000_TXDCTL_PRIORITY;
1631	else
1632		val &= ~E1000_TXDCTL_PRIORITY;
1633
1634	wr32(E1000_I210_TXDCTL(queue), val);
1635}
1636
1637static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1638{
1639	u32 val;
1640
1641	WARN_ON(hw->mac.type != e1000_i210);
1642	WARN_ON(queue < 0 || queue > 1);
1643
1644	val = rd32(E1000_I210_TQAVCC(queue));
1645
1646	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1647		val |= E1000_TQAVCC_QUEUEMODE;
1648	else
1649		val &= ~E1000_TQAVCC_QUEUEMODE;
1650
1651	wr32(E1000_I210_TQAVCC(queue), val);
1652}
1653
1654static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1655{
1656	int i;
1657
1658	for (i = 0; i < adapter->num_tx_queues; i++) {
1659		if (adapter->tx_ring[i]->cbs_enable)
1660			return true;
1661	}
1662
1663	return false;
1664}
1665
1666static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1667{
1668	int i;
1669
1670	for (i = 0; i < adapter->num_tx_queues; i++) {
1671		if (adapter->tx_ring[i]->launchtime_enable)
1672			return true;
1673	}
1674
1675	return false;
1676}
1677
1678/**
1679 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1680 *  @adapter: pointer to adapter struct
1681 *  @queue: queue number
1682 *
1683 *  Configure CBS and Launchtime for a given hardware queue.
1684 *  Parameters are retrieved from the correct Tx ring, so
1685 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1686 *  for setting those correctly prior to this function being called.
1687 **/
1688static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1689{
1690	struct igb_ring *ring = adapter->tx_ring[queue];
1691	struct net_device *netdev = adapter->netdev;
1692	struct e1000_hw *hw = &adapter->hw;
 
1693	u32 tqavcc, tqavctrl;
1694	u16 value;
1695
1696	WARN_ON(hw->mac.type != e1000_i210);
1697	WARN_ON(queue < 0 || queue > 1);
 
1698
1699	/* If any of the Qav features is enabled, configure queues as SR and
1700	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701	 * as SP.
1702	 */
1703	if (ring->cbs_enable || ring->launchtime_enable) {
1704		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706	} else {
1707		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709	}
1710
1711	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712	if (ring->cbs_enable || queue == 0) {
1713		/* i210 does not allow the queue 0 to be in the Strict
1714		 * Priority mode while the Qav mode is enabled, so,
1715		 * instead of disabling strict priority mode, we give
1716		 * queue 0 the maximum of credits possible.
1717		 *
1718		 * See section 8.12.19 of the i210 datasheet, "Note:
1719		 * Queue0 QueueMode must be set to 1b when
1720		 * TransmitMode is set to Qav."
1721		 */
1722		if (queue == 0 && !ring->cbs_enable) {
1723			/* max "linkspeed" idleslope in kbps */
1724			ring->idleslope = 1000000;
1725			ring->hicredit = ETH_FRAME_LEN;
1726		}
1727
1728		/* Always set data transfer arbitration to credit-based
1729		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730		 * the queues.
1731		 */
1732		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736		/* According to i210 datasheet section 7.2.7.7, we should set
1737		 * the 'idleSlope' field from TQAVCC register following the
1738		 * equation:
1739		 *
1740		 * For 100 Mbps link speed:
1741		 *
1742		 *     value = BW * 0x7735 * 0.2                          (E1)
1743		 *
1744		 * For 1000Mbps link speed:
1745		 *
1746		 *     value = BW * 0x7735 * 2                            (E2)
1747		 *
1748		 * E1 and E2 can be merged into one equation as shown below.
1749		 * Note that 'link-speed' is in Mbps.
1750		 *
1751		 *     value = BW * 0x7735 * 2 * link-speed
1752		 *                           --------------               (E3)
1753		 *                                1000
1754		 *
1755		 * 'BW' is the percentage bandwidth out of full link speed
1756		 * which can be found with the following equation. Note that
1757		 * idleSlope here is the parameter from this function which
1758		 * is in kbps.
1759		 *
1760		 *     BW =     idleSlope
1761		 *          -----------------                             (E4)
1762		 *          link-speed * 1000
1763		 *
1764		 * That said, we can come up with a generic equation to
1765		 * calculate the value we should set it TQAVCC register by
1766		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767		 *
1768		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769		 *         -----------------            --------------    (E5)
1770		 *         link-speed * 1000                 1000
1771		 *
1772		 * 'link-speed' is present in both sides of the fraction so
1773		 * it is canceled out. The final equation is the following:
1774		 *
1775		 *     value = idleSlope * 61034
1776		 *             -----------------                          (E6)
1777		 *                  1000000
1778		 *
1779		 * NOTE: For i210, given the above, we can see that idleslope
1780		 *       is represented in 16.38431 kbps units by the value at
1781		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782		 *       the granularity for idleslope increments.
1783		 *       For instance, if you want to configure a 2576kbps
1784		 *       idleslope, the value to be written on the register
1785		 *       would have to be 157.23. If rounded down, you end
1786		 *       up with less bandwidth available than originally
1787		 *       required (~2572 kbps). If rounded up, you end up
1788		 *       with a higher bandwidth (~2589 kbps). Below the
1789		 *       approach we take is to always round up the
1790		 *       calculated value, so the resulting bandwidth might
1791		 *       be slightly higher for some configurations.
1792		 */
1793		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797		tqavcc |= value;
1798		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800		wr32(E1000_I210_TQAVHC(queue),
1801		     0x80000000 + ring->hicredit * 0x7735);
1802	} else {
1803
1804		/* Set idleSlope to zero. */
1805		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809		/* Set hiCredit to zero. */
1810		wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812		/* If CBS is not enabled for any queues anymore, then return to
1813		 * the default state of Data Transmission Arbitration on
1814		 * TQAVCTRL.
1815		 */
1816		if (!is_any_cbs_enabled(adapter)) {
1817			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820		}
1821	}
1822
1823	/* If LaunchTime is enabled, set DataTranTIM. */
1824	if (ring->launchtime_enable) {
1825		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826		 * for any of the SR queues, and configure fetchtime delta.
1827		 * XXX NOTE:
1828		 *     - LaunchTime will be enabled for all SR queues.
1829		 *     - A fixed offset can be added relative to the launch
1830		 *       time of all packets if configured at reg LAUNCH_OS0.
1831		 *       We are keeping it as 0 for now (default value).
1832		 */
1833		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837	} else {
1838		/* If Launchtime is not enabled for any SR queues anymore,
1839		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840		 * effectively disabling Launchtime.
1841		 */
1842		if (!is_any_txtime_enabled(adapter)) {
1843			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847		}
1848	}
1849
1850	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851	 * CBS are not configurable by software so we don't do any 'controller
1852	 * configuration' in respect to these parameters.
1853	 */
1854
1855	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856		   ring->cbs_enable ? "enabled" : "disabled",
1857		   ring->launchtime_enable ? "enabled" : "disabled",
1858		   queue,
1859		   ring->idleslope, ring->sendslope,
1860		   ring->hicredit, ring->locredit);
1861}
1862
1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864				  bool enable)
1865{
1866	struct igb_ring *ring;
1867
1868	if (queue < 0 || queue > adapter->num_tx_queues)
1869		return -EINVAL;
1870
1871	ring = adapter->tx_ring[queue];
1872	ring->launchtime_enable = enable;
1873
1874	return 0;
1875}
1876
1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878			       bool enable, int idleslope, int sendslope,
1879			       int hicredit, int locredit)
1880{
1881	struct igb_ring *ring;
1882
1883	if (queue < 0 || queue > adapter->num_tx_queues)
1884		return -EINVAL;
1885
1886	ring = adapter->tx_ring[queue];
1887
1888	ring->cbs_enable = enable;
1889	ring->idleslope = idleslope;
1890	ring->sendslope = sendslope;
1891	ring->hicredit = hicredit;
1892	ring->locredit = locredit;
1893
1894	return 0;
1895}
1896
1897/**
1898 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 *  @adapter: pointer to adapter struct
1900 *
1901 *  Configure TQAVCTRL register switching the controller's Tx mode
1902 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903 *  a call to igb_config_tx_modes() per queue so any previously saved
1904 *  Tx parameters are applied.
1905 **/
1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907{
1908	struct net_device *netdev = adapter->netdev;
1909	struct e1000_hw *hw = &adapter->hw;
1910	u32 val;
1911
1912	/* Only i210 controller supports changing the transmission mode. */
1913	if (hw->mac.type != e1000_i210)
1914		return;
1915
1916	if (is_fqtss_enabled(adapter)) {
1917		int i, max_queue;
1918
1919		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921		 * so SP queues wait for SR ones.
1922		 */
1923		val = rd32(E1000_I210_TQAVCTRL);
1924		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926		wr32(E1000_I210_TQAVCTRL, val);
1927
1928		/* Configure Tx and Rx packet buffers sizes as described in
1929		 * i210 datasheet section 7.2.7.7.
1930		 */
1931		val = rd32(E1000_TXPBS);
1932		val &= ~I210_TXPBSIZE_MASK;
1933		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1934			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1935		wr32(E1000_TXPBS, val);
1936
1937		val = rd32(E1000_RXPBS);
1938		val &= ~I210_RXPBSIZE_MASK;
1939		val |= I210_RXPBSIZE_PB_30KB;
1940		wr32(E1000_RXPBS, val);
1941
1942		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943		 * register should not exceed the buffer size programmed in
1944		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946		 * 4kB / 64.
1947		 *
1948		 * However, when we do so, no frame from queue 2 and 3 are
1949		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952		 */
1953		val = (4096 - 1) / 64;
1954		wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956		/* Since FQTSS mode is enabled, apply any CBS configuration
1957		 * previously set. If no previous CBS configuration has been
1958		 * done, then the initial configuration is applied, which means
1959		 * CBS is disabled.
1960		 */
1961		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964		for (i = 0; i < max_queue; i++) {
1965			igb_config_tx_modes(adapter, i);
1966		}
1967	} else {
1968		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972		val = rd32(E1000_I210_TQAVCTRL);
1973		/* According to Section 8.12.21, the other flags we've set when
1974		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975		 * don't set they here.
1976		 */
1977		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978		wr32(E1000_I210_TQAVCTRL, val);
1979	}
1980
1981	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982		   "enabled" : "disabled");
1983}
1984
1985/**
1986 *  igb_configure - configure the hardware for RX and TX
1987 *  @adapter: private board structure
1988 **/
1989static void igb_configure(struct igb_adapter *adapter)
1990{
1991	struct net_device *netdev = adapter->netdev;
1992	int i;
1993
1994	igb_get_hw_control(adapter);
1995	igb_set_rx_mode(netdev);
1996	igb_setup_tx_mode(adapter);
1997
1998	igb_restore_vlan(adapter);
1999
2000	igb_setup_tctl(adapter);
2001	igb_setup_mrqc(adapter);
2002	igb_setup_rctl(adapter);
2003
2004	igb_nfc_filter_restore(adapter);
2005	igb_configure_tx(adapter);
2006	igb_configure_rx(adapter);
2007
2008	igb_rx_fifo_flush_82575(&adapter->hw);
2009
2010	/* call igb_desc_unused which always leaves
2011	 * at least 1 descriptor unused to make sure
2012	 * next_to_use != next_to_clean
2013	 */
2014	for (i = 0; i < adapter->num_rx_queues; i++) {
2015		struct igb_ring *ring = adapter->rx_ring[i];
2016		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017	}
2018}
2019
2020/**
2021 *  igb_power_up_link - Power up the phy/serdes link
2022 *  @adapter: address of board private structure
2023 **/
2024void igb_power_up_link(struct igb_adapter *adapter)
2025{
2026	igb_reset_phy(&adapter->hw);
2027
2028	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029		igb_power_up_phy_copper(&adapter->hw);
2030	else
2031		igb_power_up_serdes_link_82575(&adapter->hw);
2032
2033	igb_setup_link(&adapter->hw);
2034}
2035
2036/**
2037 *  igb_power_down_link - Power down the phy/serdes link
2038 *  @adapter: address of board private structure
2039 */
2040static void igb_power_down_link(struct igb_adapter *adapter)
2041{
2042	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043		igb_power_down_phy_copper_82575(&adapter->hw);
2044	else
2045		igb_shutdown_serdes_link_82575(&adapter->hw);
2046}
2047
2048/**
2049 * Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2051 **/
2052static void igb_check_swap_media(struct igb_adapter *adapter)
2053{
2054	struct e1000_hw *hw = &adapter->hw;
2055	u32 ctrl_ext, connsw;
2056	bool swap_now = false;
2057
2058	ctrl_ext = rd32(E1000_CTRL_EXT);
2059	connsw = rd32(E1000_CONNSW);
2060
2061	/* need to live swap if current media is copper and we have fiber/serdes
2062	 * to go to.
2063	 */
2064
2065	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067		swap_now = true;
2068	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069		   !(connsw & E1000_CONNSW_SERDESD)) {
2070		/* copper signal takes time to appear */
2071		if (adapter->copper_tries < 4) {
2072			adapter->copper_tries++;
2073			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074			wr32(E1000_CONNSW, connsw);
2075			return;
2076		} else {
2077			adapter->copper_tries = 0;
2078			if ((connsw & E1000_CONNSW_PHYSD) &&
2079			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080				swap_now = true;
2081				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082				wr32(E1000_CONNSW, connsw);
2083			}
2084		}
2085	}
2086
2087	if (!swap_now)
2088		return;
2089
2090	switch (hw->phy.media_type) {
2091	case e1000_media_type_copper:
2092		netdev_info(adapter->netdev,
2093			"MAS: changing media to fiber/serdes\n");
2094		ctrl_ext |=
2095			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097		adapter->copper_tries = 0;
2098		break;
2099	case e1000_media_type_internal_serdes:
2100	case e1000_media_type_fiber:
2101		netdev_info(adapter->netdev,
2102			"MAS: changing media to copper\n");
2103		ctrl_ext &=
2104			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106		break;
2107	default:
2108		/* shouldn't get here during regular operation */
2109		netdev_err(adapter->netdev,
2110			"AMS: Invalid media type found, returning\n");
2111		break;
2112	}
2113	wr32(E1000_CTRL_EXT, ctrl_ext);
2114}
2115
2116/**
2117 *  igb_up - Open the interface and prepare it to handle traffic
2118 *  @adapter: board private structure
2119 **/
2120int igb_up(struct igb_adapter *adapter)
2121{
2122	struct e1000_hw *hw = &adapter->hw;
2123	int i;
2124
2125	/* hardware has been reset, we need to reload some things */
2126	igb_configure(adapter);
2127
2128	clear_bit(__IGB_DOWN, &adapter->state);
2129
2130	for (i = 0; i < adapter->num_q_vectors; i++)
2131		napi_enable(&(adapter->q_vector[i]->napi));
2132
2133	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134		igb_configure_msix(adapter);
2135	else
2136		igb_assign_vector(adapter->q_vector[0], 0);
2137
2138	/* Clear any pending interrupts. */
2139	rd32(E1000_TSICR);
2140	rd32(E1000_ICR);
2141	igb_irq_enable(adapter);
2142
2143	/* notify VFs that reset has been completed */
2144	if (adapter->vfs_allocated_count) {
2145		u32 reg_data = rd32(E1000_CTRL_EXT);
2146
2147		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148		wr32(E1000_CTRL_EXT, reg_data);
2149	}
2150
2151	netif_tx_start_all_queues(adapter->netdev);
2152
2153	/* start the watchdog. */
2154	hw->mac.get_link_status = 1;
2155	schedule_work(&adapter->watchdog_task);
2156
2157	if ((adapter->flags & IGB_FLAG_EEE) &&
2158	    (!hw->dev_spec._82575.eee_disable))
2159		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160
2161	return 0;
2162}
2163
2164void igb_down(struct igb_adapter *adapter)
2165{
2166	struct net_device *netdev = adapter->netdev;
2167	struct e1000_hw *hw = &adapter->hw;
2168	u32 tctl, rctl;
2169	int i;
2170
2171	/* signal that we're down so the interrupt handler does not
2172	 * reschedule our watchdog timer
2173	 */
2174	set_bit(__IGB_DOWN, &adapter->state);
2175
2176	/* disable receives in the hardware */
2177	rctl = rd32(E1000_RCTL);
2178	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179	/* flush and sleep below */
2180
2181	igb_nfc_filter_exit(adapter);
2182
2183	netif_carrier_off(netdev);
2184	netif_tx_stop_all_queues(netdev);
2185
2186	/* disable transmits in the hardware */
2187	tctl = rd32(E1000_TCTL);
2188	tctl &= ~E1000_TCTL_EN;
2189	wr32(E1000_TCTL, tctl);
2190	/* flush both disables and wait for them to finish */
2191	wrfl();
2192	usleep_range(10000, 11000);
2193
2194	igb_irq_disable(adapter);
2195
2196	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197
2198	for (i = 0; i < adapter->num_q_vectors; i++) {
2199		if (adapter->q_vector[i]) {
2200			napi_synchronize(&adapter->q_vector[i]->napi);
2201			napi_disable(&adapter->q_vector[i]->napi);
2202		}
2203	}
2204
2205	del_timer_sync(&adapter->watchdog_timer);
2206	del_timer_sync(&adapter->phy_info_timer);
2207
2208	/* record the stats before reset*/
2209	spin_lock(&adapter->stats64_lock);
2210	igb_update_stats(adapter);
2211	spin_unlock(&adapter->stats64_lock);
2212
2213	adapter->link_speed = 0;
2214	adapter->link_duplex = 0;
2215
2216	if (!pci_channel_offline(adapter->pdev))
2217		igb_reset(adapter);
2218
2219	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221
2222	igb_clean_all_tx_rings(adapter);
2223	igb_clean_all_rx_rings(adapter);
2224#ifdef CONFIG_IGB_DCA
2225
2226	/* since we reset the hardware DCA settings were cleared */
2227	igb_setup_dca(adapter);
2228#endif
2229}
2230
2231void igb_reinit_locked(struct igb_adapter *adapter)
2232{
2233	WARN_ON(in_interrupt());
2234	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2235		usleep_range(1000, 2000);
2236	igb_down(adapter);
2237	igb_up(adapter);
2238	clear_bit(__IGB_RESETTING, &adapter->state);
2239}
2240
2241/** igb_enable_mas - Media Autosense re-enable after swap
2242 *
2243 * @adapter: adapter struct
2244 **/
2245static void igb_enable_mas(struct igb_adapter *adapter)
2246{
2247	struct e1000_hw *hw = &adapter->hw;
2248	u32 connsw = rd32(E1000_CONNSW);
2249
2250	/* configure for SerDes media detect */
2251	if ((hw->phy.media_type == e1000_media_type_copper) &&
2252	    (!(connsw & E1000_CONNSW_SERDESD))) {
2253		connsw |= E1000_CONNSW_ENRGSRC;
2254		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2255		wr32(E1000_CONNSW, connsw);
2256		wrfl();
2257	}
2258}
2259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260void igb_reset(struct igb_adapter *adapter)
2261{
2262	struct pci_dev *pdev = adapter->pdev;
2263	struct e1000_hw *hw = &adapter->hw;
2264	struct e1000_mac_info *mac = &hw->mac;
2265	struct e1000_fc_info *fc = &hw->fc;
2266	u32 pba, hwm;
2267
2268	/* Repartition Pba for greater than 9k mtu
2269	 * To take effect CTRL.RST is required.
2270	 */
2271	switch (mac->type) {
2272	case e1000_i350:
2273	case e1000_i354:
2274	case e1000_82580:
2275		pba = rd32(E1000_RXPBS);
2276		pba = igb_rxpbs_adjust_82580(pba);
2277		break;
2278	case e1000_82576:
2279		pba = rd32(E1000_RXPBS);
2280		pba &= E1000_RXPBS_SIZE_MASK_82576;
2281		break;
2282	case e1000_82575:
2283	case e1000_i210:
2284	case e1000_i211:
2285	default:
2286		pba = E1000_PBA_34K;
2287		break;
2288	}
2289
2290	if (mac->type == e1000_82575) {
2291		u32 min_rx_space, min_tx_space, needed_tx_space;
2292
2293		/* write Rx PBA so that hardware can report correct Tx PBA */
2294		wr32(E1000_PBA, pba);
2295
2296		/* To maintain wire speed transmits, the Tx FIFO should be
2297		 * large enough to accommodate two full transmit packets,
2298		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2299		 * the Rx FIFO should be large enough to accommodate at least
2300		 * one full receive packet and is similarly rounded up and
2301		 * expressed in KB.
2302		 */
2303		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2304
2305		/* The Tx FIFO also stores 16 bytes of information about the Tx
2306		 * but don't include Ethernet FCS because hardware appends it.
2307		 * We only need to round down to the nearest 512 byte block
2308		 * count since the value we care about is 2 frames, not 1.
2309		 */
2310		min_tx_space = adapter->max_frame_size;
2311		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2312		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2313
2314		/* upper 16 bits has Tx packet buffer allocation size in KB */
2315		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2316
2317		/* If current Tx allocation is less than the min Tx FIFO size,
2318		 * and the min Tx FIFO size is less than the current Rx FIFO
2319		 * allocation, take space away from current Rx allocation.
2320		 */
2321		if (needed_tx_space < pba) {
2322			pba -= needed_tx_space;
2323
2324			/* if short on Rx space, Rx wins and must trump Tx
2325			 * adjustment
2326			 */
2327			if (pba < min_rx_space)
2328				pba = min_rx_space;
2329		}
2330
2331		/* adjust PBA for jumbo frames */
2332		wr32(E1000_PBA, pba);
2333	}
2334
2335	/* flow control settings
2336	 * The high water mark must be low enough to fit one full frame
2337	 * after transmitting the pause frame.  As such we must have enough
2338	 * space to allow for us to complete our current transmit and then
2339	 * receive the frame that is in progress from the link partner.
2340	 * Set it to:
2341	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2342	 */
2343	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2344
2345	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2346	fc->low_water = fc->high_water - 16;
2347	fc->pause_time = 0xFFFF;
2348	fc->send_xon = 1;
2349	fc->current_mode = fc->requested_mode;
2350
2351	/* disable receive for all VFs and wait one second */
2352	if (adapter->vfs_allocated_count) {
2353		int i;
2354
2355		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2356			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2357
2358		/* ping all the active vfs to let them know we are going down */
2359		igb_ping_all_vfs(adapter);
2360
2361		/* disable transmits and receives */
2362		wr32(E1000_VFRE, 0);
2363		wr32(E1000_VFTE, 0);
2364	}
2365
2366	/* Allow time for pending master requests to run */
2367	hw->mac.ops.reset_hw(hw);
2368	wr32(E1000_WUC, 0);
2369
2370	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2371		/* need to resetup here after media swap */
2372		adapter->ei.get_invariants(hw);
2373		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2374	}
2375	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2376	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2377		igb_enable_mas(adapter);
2378	}
2379	if (hw->mac.ops.init_hw(hw))
2380		dev_err(&pdev->dev, "Hardware Error\n");
2381
2382	/* RAR registers were cleared during init_hw, clear mac table */
2383	igb_flush_mac_table(adapter);
2384	__dev_uc_unsync(adapter->netdev, NULL);
2385
2386	/* Recover default RAR entry */
2387	igb_set_default_mac_filter(adapter);
2388
2389	/* Flow control settings reset on hardware reset, so guarantee flow
2390	 * control is off when forcing speed.
2391	 */
2392	if (!hw->mac.autoneg)
2393		igb_force_mac_fc(hw);
2394
2395	igb_init_dmac(adapter, pba);
2396#ifdef CONFIG_IGB_HWMON
2397	/* Re-initialize the thermal sensor on i350 devices. */
2398	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2399		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2400			/* If present, re-initialize the external thermal sensor
2401			 * interface.
2402			 */
2403			if (adapter->ets)
2404				mac->ops.init_thermal_sensor_thresh(hw);
 
2405		}
2406	}
2407#endif
2408	/* Re-establish EEE setting */
2409	if (hw->phy.media_type == e1000_media_type_copper) {
2410		switch (mac->type) {
2411		case e1000_i350:
2412		case e1000_i210:
2413		case e1000_i211:
2414			igb_set_eee_i350(hw, true, true);
2415			break;
2416		case e1000_i354:
2417			igb_set_eee_i354(hw, true, true);
2418			break;
2419		default:
2420			break;
2421		}
2422	}
2423	if (!netif_running(adapter->netdev))
2424		igb_power_down_link(adapter);
2425
2426	igb_update_mng_vlan(adapter);
2427
2428	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2429	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2430
2431	/* Re-enable PTP, where applicable. */
2432	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2433		igb_ptp_reset(adapter);
2434
2435	igb_get_phy_info(hw);
2436}
2437
2438static netdev_features_t igb_fix_features(struct net_device *netdev,
2439	netdev_features_t features)
2440{
2441	/* Since there is no support for separate Rx/Tx vlan accel
2442	 * enable/disable make sure Tx flag is always in same state as Rx.
2443	 */
2444	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2445		features |= NETIF_F_HW_VLAN_CTAG_TX;
2446	else
2447		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2448
2449	return features;
2450}
2451
2452static int igb_set_features(struct net_device *netdev,
2453	netdev_features_t features)
2454{
2455	netdev_features_t changed = netdev->features ^ features;
2456	struct igb_adapter *adapter = netdev_priv(netdev);
2457
2458	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2459		igb_vlan_mode(netdev, features);
2460
2461	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2462		return 0;
2463
2464	if (!(features & NETIF_F_NTUPLE)) {
2465		struct hlist_node *node2;
2466		struct igb_nfc_filter *rule;
2467
2468		spin_lock(&adapter->nfc_lock);
2469		hlist_for_each_entry_safe(rule, node2,
2470					  &adapter->nfc_filter_list, nfc_node) {
2471			igb_erase_filter(adapter, rule);
2472			hlist_del(&rule->nfc_node);
2473			kfree(rule);
2474		}
2475		spin_unlock(&adapter->nfc_lock);
2476		adapter->nfc_filter_count = 0;
2477	}
2478
2479	netdev->features = features;
2480
2481	if (netif_running(netdev))
2482		igb_reinit_locked(adapter);
2483	else
2484		igb_reset(adapter);
2485
2486	return 1;
2487}
2488
2489static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2490			   struct net_device *dev,
2491			   const unsigned char *addr, u16 vid,
2492			   u16 flags,
2493			   struct netlink_ext_ack *extack)
2494{
2495	/* guarantee we can provide a unique filter for the unicast address */
2496	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2497		struct igb_adapter *adapter = netdev_priv(dev);
2498		int vfn = adapter->vfs_allocated_count;
2499
2500		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2501			return -ENOMEM;
2502	}
2503
2504	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2505}
2506
2507#define IGB_MAX_MAC_HDR_LEN	127
2508#define IGB_MAX_NETWORK_HDR_LEN	511
2509
2510static netdev_features_t
2511igb_features_check(struct sk_buff *skb, struct net_device *dev,
2512		   netdev_features_t features)
2513{
2514	unsigned int network_hdr_len, mac_hdr_len;
2515
2516	/* Make certain the headers can be described by a context descriptor */
2517	mac_hdr_len = skb_network_header(skb) - skb->data;
2518	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2519		return features & ~(NETIF_F_HW_CSUM |
2520				    NETIF_F_SCTP_CRC |
 
2521				    NETIF_F_HW_VLAN_CTAG_TX |
2522				    NETIF_F_TSO |
2523				    NETIF_F_TSO6);
2524
2525	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2527		return features & ~(NETIF_F_HW_CSUM |
2528				    NETIF_F_SCTP_CRC |
 
2529				    NETIF_F_TSO |
2530				    NETIF_F_TSO6);
2531
2532	/* We can only support IPV4 TSO in tunnels if we can mangle the
2533	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534	 */
2535	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536		features &= ~NETIF_F_TSO;
2537
2538	return features;
2539}
2540
2541static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542{
2543	if (!is_fqtss_enabled(adapter)) {
2544		enable_fqtss(adapter, true);
2545		return;
2546	}
2547
2548	igb_config_tx_modes(adapter, queue);
2549
2550	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551		enable_fqtss(adapter, false);
2552}
2553
2554static int igb_offload_cbs(struct igb_adapter *adapter,
2555			   struct tc_cbs_qopt_offload *qopt)
2556{
2557	struct e1000_hw *hw = &adapter->hw;
2558	int err;
2559
2560	/* CBS offloading is only supported by i210 controller. */
2561	if (hw->mac.type != e1000_i210)
2562		return -EOPNOTSUPP;
2563
2564	/* CBS offloading is only supported by queue 0 and queue 1. */
2565	if (qopt->queue < 0 || qopt->queue > 1)
2566		return -EINVAL;
2567
2568	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569				  qopt->idleslope, qopt->sendslope,
2570				  qopt->hicredit, qopt->locredit);
2571	if (err)
2572		return err;
2573
2574	igb_offload_apply(adapter, qopt->queue);
2575
2576	return 0;
2577}
2578
2579#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580#define VLAN_PRIO_FULL_MASK (0x07)
2581
2582static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583				struct flow_cls_offload *f,
2584				int traffic_class,
2585				struct igb_nfc_filter *input)
2586{
2587	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588	struct flow_dissector *dissector = rule->match.dissector;
2589	struct netlink_ext_ack *extack = f->common.extack;
2590
2591	if (dissector->used_keys &
2592	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596		NL_SET_ERR_MSG_MOD(extack,
2597				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598		return -EOPNOTSUPP;
2599	}
2600
2601	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602		struct flow_match_eth_addrs match;
2603
2604		flow_rule_match_eth_addrs(rule, &match);
2605		if (!is_zero_ether_addr(match.mask->dst)) {
2606			if (!is_broadcast_ether_addr(match.mask->dst)) {
2607				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608				return -EINVAL;
2609			}
2610
2611			input->filter.match_flags |=
2612				IGB_FILTER_FLAG_DST_MAC_ADDR;
2613			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614		}
2615
2616		if (!is_zero_ether_addr(match.mask->src)) {
2617			if (!is_broadcast_ether_addr(match.mask->src)) {
2618				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619				return -EINVAL;
2620			}
2621
2622			input->filter.match_flags |=
2623				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624			ether_addr_copy(input->filter.src_addr, match.key->src);
2625		}
2626	}
2627
2628	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629		struct flow_match_basic match;
2630
2631		flow_rule_match_basic(rule, &match);
2632		if (match.mask->n_proto) {
2633			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635				return -EINVAL;
2636			}
2637
2638			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639			input->filter.etype = match.key->n_proto;
2640		}
2641	}
2642
2643	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644		struct flow_match_vlan match;
2645
2646		flow_rule_match_vlan(rule, &match);
2647		if (match.mask->vlan_priority) {
2648			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650				return -EINVAL;
2651			}
2652
2653			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654			input->filter.vlan_tci = match.key->vlan_priority;
 
2655		}
2656	}
2657
2658	input->action = traffic_class;
2659	input->cookie = f->cookie;
2660
2661	return 0;
2662}
2663
2664static int igb_configure_clsflower(struct igb_adapter *adapter,
2665				   struct flow_cls_offload *cls_flower)
2666{
2667	struct netlink_ext_ack *extack = cls_flower->common.extack;
2668	struct igb_nfc_filter *filter, *f;
2669	int err, tc;
2670
2671	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2672	if (tc < 0) {
2673		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2674		return -EINVAL;
2675	}
2676
2677	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2678	if (!filter)
2679		return -ENOMEM;
2680
2681	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2682	if (err < 0)
2683		goto err_parse;
2684
2685	spin_lock(&adapter->nfc_lock);
2686
2687	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2688		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2689			err = -EEXIST;
2690			NL_SET_ERR_MSG_MOD(extack,
2691					   "This filter is already set in ethtool");
2692			goto err_locked;
2693		}
2694	}
2695
2696	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2697		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2698			err = -EEXIST;
2699			NL_SET_ERR_MSG_MOD(extack,
2700					   "This filter is already set in cls_flower");
2701			goto err_locked;
2702		}
2703	}
2704
2705	err = igb_add_filter(adapter, filter);
2706	if (err < 0) {
2707		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2708		goto err_locked;
2709	}
2710
2711	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2712
2713	spin_unlock(&adapter->nfc_lock);
2714
2715	return 0;
2716
2717err_locked:
2718	spin_unlock(&adapter->nfc_lock);
2719
2720err_parse:
2721	kfree(filter);
2722
2723	return err;
2724}
2725
2726static int igb_delete_clsflower(struct igb_adapter *adapter,
2727				struct flow_cls_offload *cls_flower)
2728{
2729	struct igb_nfc_filter *filter;
2730	int err;
2731
2732	spin_lock(&adapter->nfc_lock);
2733
2734	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2735		if (filter->cookie == cls_flower->cookie)
2736			break;
2737
2738	if (!filter) {
2739		err = -ENOENT;
2740		goto out;
2741	}
2742
2743	err = igb_erase_filter(adapter, filter);
2744	if (err < 0)
2745		goto out;
2746
2747	hlist_del(&filter->nfc_node);
2748	kfree(filter);
2749
2750out:
2751	spin_unlock(&adapter->nfc_lock);
2752
2753	return err;
2754}
2755
2756static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2757				   struct flow_cls_offload *cls_flower)
2758{
2759	switch (cls_flower->command) {
2760	case FLOW_CLS_REPLACE:
2761		return igb_configure_clsflower(adapter, cls_flower);
2762	case FLOW_CLS_DESTROY:
2763		return igb_delete_clsflower(adapter, cls_flower);
2764	case FLOW_CLS_STATS:
2765		return -EOPNOTSUPP;
2766	default:
2767		return -EOPNOTSUPP;
2768	}
2769}
2770
2771static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2772				 void *cb_priv)
2773{
2774	struct igb_adapter *adapter = cb_priv;
2775
2776	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2777		return -EOPNOTSUPP;
2778
2779	switch (type) {
2780	case TC_SETUP_CLSFLOWER:
2781		return igb_setup_tc_cls_flower(adapter, type_data);
2782
2783	default:
2784		return -EOPNOTSUPP;
2785	}
2786}
2787
2788static int igb_offload_txtime(struct igb_adapter *adapter,
2789			      struct tc_etf_qopt_offload *qopt)
2790{
2791	struct e1000_hw *hw = &adapter->hw;
2792	int err;
2793
2794	/* Launchtime offloading is only supported by i210 controller. */
2795	if (hw->mac.type != e1000_i210)
2796		return -EOPNOTSUPP;
2797
2798	/* Launchtime offloading is only supported by queues 0 and 1. */
2799	if (qopt->queue < 0 || qopt->queue > 1)
2800		return -EINVAL;
2801
2802	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2803	if (err)
2804		return err;
2805
2806	igb_offload_apply(adapter, qopt->queue);
2807
2808	return 0;
2809}
2810
2811static LIST_HEAD(igb_block_cb_list);
2812
2813static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2814			void *type_data)
2815{
2816	struct igb_adapter *adapter = netdev_priv(dev);
2817
2818	switch (type) {
2819	case TC_SETUP_QDISC_CBS:
2820		return igb_offload_cbs(adapter, type_data);
2821	case TC_SETUP_BLOCK:
2822		return flow_block_cb_setup_simple(type_data,
2823						  &igb_block_cb_list,
2824						  igb_setup_tc_block_cb,
2825						  adapter, adapter, true);
2826
2827	case TC_SETUP_QDISC_ETF:
2828		return igb_offload_txtime(adapter, type_data);
2829
2830	default:
2831		return -EOPNOTSUPP;
2832	}
2833}
2834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835static const struct net_device_ops igb_netdev_ops = {
2836	.ndo_open		= igb_open,
2837	.ndo_stop		= igb_close,
2838	.ndo_start_xmit		= igb_xmit_frame,
2839	.ndo_get_stats64	= igb_get_stats64,
2840	.ndo_set_rx_mode	= igb_set_rx_mode,
2841	.ndo_set_mac_address	= igb_set_mac,
2842	.ndo_change_mtu		= igb_change_mtu,
2843	.ndo_do_ioctl		= igb_ioctl,
2844	.ndo_tx_timeout		= igb_tx_timeout,
2845	.ndo_validate_addr	= eth_validate_addr,
2846	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2847	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2848	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2849	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2850	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2851	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2852	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2853	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2854	.ndo_fix_features	= igb_fix_features,
2855	.ndo_set_features	= igb_set_features,
2856	.ndo_fdb_add		= igb_ndo_fdb_add,
2857	.ndo_features_check	= igb_features_check,
2858	.ndo_setup_tc		= igb_setup_tc,
 
 
2859};
2860
2861/**
2862 * igb_set_fw_version - Configure version string for ethtool
2863 * @adapter: adapter struct
2864 **/
2865void igb_set_fw_version(struct igb_adapter *adapter)
2866{
2867	struct e1000_hw *hw = &adapter->hw;
2868	struct e1000_fw_version fw;
2869
2870	igb_get_fw_version(hw, &fw);
2871
2872	switch (hw->mac.type) {
2873	case e1000_i210:
2874	case e1000_i211:
2875		if (!(igb_get_flash_presence_i210(hw))) {
2876			snprintf(adapter->fw_version,
2877				 sizeof(adapter->fw_version),
2878				 "%2d.%2d-%d",
2879				 fw.invm_major, fw.invm_minor,
2880				 fw.invm_img_type);
2881			break;
2882		}
2883		/* fall through */
2884	default:
2885		/* if option is rom valid, display its version too */
2886		if (fw.or_valid) {
2887			snprintf(adapter->fw_version,
2888				 sizeof(adapter->fw_version),
2889				 "%d.%d, 0x%08x, %d.%d.%d",
2890				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2891				 fw.or_major, fw.or_build, fw.or_patch);
2892		/* no option rom */
2893		} else if (fw.etrack_id != 0X0000) {
2894			snprintf(adapter->fw_version,
2895			    sizeof(adapter->fw_version),
2896			    "%d.%d, 0x%08x",
2897			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2898		} else {
2899		snprintf(adapter->fw_version,
2900		    sizeof(adapter->fw_version),
2901		    "%d.%d.%d",
2902		    fw.eep_major, fw.eep_minor, fw.eep_build);
2903		}
2904		break;
2905	}
2906}
2907
2908/**
2909 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2910 *
2911 * @adapter: adapter struct
2912 **/
2913static void igb_init_mas(struct igb_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	u16 eeprom_data;
2917
2918	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2919	switch (hw->bus.func) {
2920	case E1000_FUNC_0:
2921		if (eeprom_data & IGB_MAS_ENABLE_0) {
2922			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923			netdev_info(adapter->netdev,
2924				"MAS: Enabling Media Autosense for port %d\n",
2925				hw->bus.func);
2926		}
2927		break;
2928	case E1000_FUNC_1:
2929		if (eeprom_data & IGB_MAS_ENABLE_1) {
2930			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931			netdev_info(adapter->netdev,
2932				"MAS: Enabling Media Autosense for port %d\n",
2933				hw->bus.func);
2934		}
2935		break;
2936	case E1000_FUNC_2:
2937		if (eeprom_data & IGB_MAS_ENABLE_2) {
2938			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939			netdev_info(adapter->netdev,
2940				"MAS: Enabling Media Autosense for port %d\n",
2941				hw->bus.func);
2942		}
2943		break;
2944	case E1000_FUNC_3:
2945		if (eeprom_data & IGB_MAS_ENABLE_3) {
2946			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2947			netdev_info(adapter->netdev,
2948				"MAS: Enabling Media Autosense for port %d\n",
2949				hw->bus.func);
2950		}
2951		break;
2952	default:
2953		/* Shouldn't get here */
2954		netdev_err(adapter->netdev,
2955			"MAS: Invalid port configuration, returning\n");
2956		break;
2957	}
2958}
2959
2960/**
2961 *  igb_init_i2c - Init I2C interface
2962 *  @adapter: pointer to adapter structure
2963 **/
2964static s32 igb_init_i2c(struct igb_adapter *adapter)
2965{
2966	s32 status = 0;
2967
2968	/* I2C interface supported on i350 devices */
2969	if (adapter->hw.mac.type != e1000_i350)
2970		return 0;
2971
2972	/* Initialize the i2c bus which is controlled by the registers.
2973	 * This bus will use the i2c_algo_bit structue that implements
2974	 * the protocol through toggling of the 4 bits in the register.
2975	 */
2976	adapter->i2c_adap.owner = THIS_MODULE;
2977	adapter->i2c_algo = igb_i2c_algo;
2978	adapter->i2c_algo.data = adapter;
2979	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2980	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2981	strlcpy(adapter->i2c_adap.name, "igb BB",
2982		sizeof(adapter->i2c_adap.name));
2983	status = i2c_bit_add_bus(&adapter->i2c_adap);
2984	return status;
2985}
2986
2987/**
2988 *  igb_probe - Device Initialization Routine
2989 *  @pdev: PCI device information struct
2990 *  @ent: entry in igb_pci_tbl
2991 *
2992 *  Returns 0 on success, negative on failure
2993 *
2994 *  igb_probe initializes an adapter identified by a pci_dev structure.
2995 *  The OS initialization, configuring of the adapter private structure,
2996 *  and a hardware reset occur.
2997 **/
2998static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2999{
3000	struct net_device *netdev;
3001	struct igb_adapter *adapter;
3002	struct e1000_hw *hw;
3003	u16 eeprom_data = 0;
3004	s32 ret_val;
3005	static int global_quad_port_a; /* global quad port a indication */
3006	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3007	int err, pci_using_dac;
3008	u8 part_str[E1000_PBANUM_LENGTH];
 
3009
3010	/* Catch broken hardware that put the wrong VF device ID in
3011	 * the PCIe SR-IOV capability.
3012	 */
3013	if (pdev->is_virtfn) {
3014		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3015			pci_name(pdev), pdev->vendor, pdev->device);
3016		return -EINVAL;
3017	}
3018
3019	err = pci_enable_device_mem(pdev);
3020	if (err)
3021		return err;
3022
3023	pci_using_dac = 0;
3024	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3025	if (!err) {
3026		pci_using_dac = 1;
3027	} else {
3028		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3029		if (err) {
3030			dev_err(&pdev->dev,
3031				"No usable DMA configuration, aborting\n");
3032			goto err_dma;
3033		}
3034	}
3035
3036	err = pci_request_mem_regions(pdev, igb_driver_name);
3037	if (err)
3038		goto err_pci_reg;
3039
3040	pci_enable_pcie_error_reporting(pdev);
3041
3042	pci_set_master(pdev);
3043	pci_save_state(pdev);
3044
3045	err = -ENOMEM;
3046	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3047				   IGB_MAX_TX_QUEUES);
3048	if (!netdev)
3049		goto err_alloc_etherdev;
3050
3051	SET_NETDEV_DEV(netdev, &pdev->dev);
3052
3053	pci_set_drvdata(pdev, netdev);
3054	adapter = netdev_priv(netdev);
3055	adapter->netdev = netdev;
3056	adapter->pdev = pdev;
3057	hw = &adapter->hw;
3058	hw->back = adapter;
3059	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3060
3061	err = -EIO;
3062	adapter->io_addr = pci_iomap(pdev, 0, 0);
3063	if (!adapter->io_addr)
3064		goto err_ioremap;
3065	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3066	hw->hw_addr = adapter->io_addr;
3067
3068	netdev->netdev_ops = &igb_netdev_ops;
3069	igb_set_ethtool_ops(netdev);
3070	netdev->watchdog_timeo = 5 * HZ;
3071
3072	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3073
3074	netdev->mem_start = pci_resource_start(pdev, 0);
3075	netdev->mem_end = pci_resource_end(pdev, 0);
3076
3077	/* PCI config space info */
3078	hw->vendor_id = pdev->vendor;
3079	hw->device_id = pdev->device;
3080	hw->revision_id = pdev->revision;
3081	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3082	hw->subsystem_device_id = pdev->subsystem_device;
3083
3084	/* Copy the default MAC, PHY and NVM function pointers */
3085	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3086	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3087	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3088	/* Initialize skew-specific constants */
3089	err = ei->get_invariants(hw);
3090	if (err)
3091		goto err_sw_init;
3092
3093	/* setup the private structure */
3094	err = igb_sw_init(adapter);
3095	if (err)
3096		goto err_sw_init;
3097
3098	igb_get_bus_info_pcie(hw);
3099
3100	hw->phy.autoneg_wait_to_complete = false;
3101
3102	/* Copper options */
3103	if (hw->phy.media_type == e1000_media_type_copper) {
3104		hw->phy.mdix = AUTO_ALL_MODES;
3105		hw->phy.disable_polarity_correction = false;
3106		hw->phy.ms_type = e1000_ms_hw_default;
3107	}
3108
3109	if (igb_check_reset_block(hw))
3110		dev_info(&pdev->dev,
3111			"PHY reset is blocked due to SOL/IDER session.\n");
3112
3113	/* features is initialized to 0 in allocation, it might have bits
3114	 * set by igb_sw_init so we should use an or instead of an
3115	 * assignment.
3116	 */
3117	netdev->features |= NETIF_F_SG |
3118			    NETIF_F_TSO |
3119			    NETIF_F_TSO6 |
3120			    NETIF_F_RXHASH |
3121			    NETIF_F_RXCSUM |
3122			    NETIF_F_HW_CSUM;
3123
3124	if (hw->mac.type >= e1000_82576)
3125		netdev->features |= NETIF_F_SCTP_CRC;
3126
3127	if (hw->mac.type >= e1000_i350)
3128		netdev->features |= NETIF_F_HW_TC;
3129
3130#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3131				  NETIF_F_GSO_GRE_CSUM | \
3132				  NETIF_F_GSO_IPXIP4 | \
3133				  NETIF_F_GSO_IPXIP6 | \
3134				  NETIF_F_GSO_UDP_TUNNEL | \
3135				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3136
3137	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3138	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3139
3140	/* copy netdev features into list of user selectable features */
3141	netdev->hw_features |= netdev->features |
3142			       NETIF_F_HW_VLAN_CTAG_RX |
3143			       NETIF_F_HW_VLAN_CTAG_TX |
3144			       NETIF_F_RXALL;
3145
3146	if (hw->mac.type >= e1000_i350)
3147		netdev->hw_features |= NETIF_F_NTUPLE;
3148
3149	if (pci_using_dac)
3150		netdev->features |= NETIF_F_HIGHDMA;
3151
3152	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3153	netdev->mpls_features |= NETIF_F_HW_CSUM;
3154	netdev->hw_enc_features |= netdev->vlan_features;
3155
3156	/* set this bit last since it cannot be part of vlan_features */
3157	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3158			    NETIF_F_HW_VLAN_CTAG_RX |
3159			    NETIF_F_HW_VLAN_CTAG_TX;
3160
3161	netdev->priv_flags |= IFF_SUPP_NOFCS;
3162
3163	netdev->priv_flags |= IFF_UNICAST_FLT;
3164
3165	/* MTU range: 68 - 9216 */
3166	netdev->min_mtu = ETH_MIN_MTU;
3167	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3168
3169	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3170
3171	/* before reading the NVM, reset the controller to put the device in a
3172	 * known good starting state
3173	 */
3174	hw->mac.ops.reset_hw(hw);
3175
3176	/* make sure the NVM is good , i211/i210 parts can have special NVM
3177	 * that doesn't contain a checksum
3178	 */
3179	switch (hw->mac.type) {
3180	case e1000_i210:
3181	case e1000_i211:
3182		if (igb_get_flash_presence_i210(hw)) {
3183			if (hw->nvm.ops.validate(hw) < 0) {
3184				dev_err(&pdev->dev,
3185					"The NVM Checksum Is Not Valid\n");
3186				err = -EIO;
3187				goto err_eeprom;
3188			}
3189		}
3190		break;
3191	default:
3192		if (hw->nvm.ops.validate(hw) < 0) {
3193			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3194			err = -EIO;
3195			goto err_eeprom;
3196		}
3197		break;
3198	}
3199
3200	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3201		/* copy the MAC address out of the NVM */
3202		if (hw->mac.ops.read_mac_addr(hw))
3203			dev_err(&pdev->dev, "NVM Read Error\n");
3204	}
3205
3206	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3207
3208	if (!is_valid_ether_addr(netdev->dev_addr)) {
3209		dev_err(&pdev->dev, "Invalid MAC Address\n");
3210		err = -EIO;
3211		goto err_eeprom;
3212	}
3213
3214	igb_set_default_mac_filter(adapter);
3215
3216	/* get firmware version for ethtool -i */
3217	igb_set_fw_version(adapter);
3218
3219	/* configure RXPBSIZE and TXPBSIZE */
3220	if (hw->mac.type == e1000_i210) {
3221		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3222		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3223	}
3224
3225	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3226	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3227
3228	INIT_WORK(&adapter->reset_task, igb_reset_task);
3229	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3230
3231	/* Initialize link properties that are user-changeable */
3232	adapter->fc_autoneg = true;
3233	hw->mac.autoneg = true;
3234	hw->phy.autoneg_advertised = 0x2f;
3235
3236	hw->fc.requested_mode = e1000_fc_default;
3237	hw->fc.current_mode = e1000_fc_default;
3238
3239	igb_validate_mdi_setting(hw);
3240
3241	/* By default, support wake on port A */
3242	if (hw->bus.func == 0)
3243		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3244
3245	/* Check the NVM for wake support on non-port A ports */
3246	if (hw->mac.type >= e1000_82580)
3247		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3248				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3249				 &eeprom_data);
3250	else if (hw->bus.func == 1)
3251		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3252
3253	if (eeprom_data & IGB_EEPROM_APME)
3254		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3255
3256	/* now that we have the eeprom settings, apply the special cases where
3257	 * the eeprom may be wrong or the board simply won't support wake on
3258	 * lan on a particular port
3259	 */
3260	switch (pdev->device) {
3261	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3262		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3263		break;
3264	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3265	case E1000_DEV_ID_82576_FIBER:
3266	case E1000_DEV_ID_82576_SERDES:
3267		/* Wake events only supported on port A for dual fiber
3268		 * regardless of eeprom setting
3269		 */
3270		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3271			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3272		break;
3273	case E1000_DEV_ID_82576_QUAD_COPPER:
3274	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3275		/* if quad port adapter, disable WoL on all but port A */
3276		if (global_quad_port_a != 0)
3277			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3278		else
3279			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3280		/* Reset for multiple quad port adapters */
3281		if (++global_quad_port_a == 4)
3282			global_quad_port_a = 0;
3283		break;
3284	default:
3285		/* If the device can't wake, don't set software support */
3286		if (!device_can_wakeup(&adapter->pdev->dev))
3287			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288	}
3289
3290	/* initialize the wol settings based on the eeprom settings */
3291	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3292		adapter->wol |= E1000_WUFC_MAG;
3293
3294	/* Some vendors want WoL disabled by default, but still supported */
3295	if ((hw->mac.type == e1000_i350) &&
3296	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3297		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3298		adapter->wol = 0;
3299	}
3300
3301	/* Some vendors want the ability to Use the EEPROM setting as
3302	 * enable/disable only, and not for capability
3303	 */
3304	if (((hw->mac.type == e1000_i350) ||
3305	     (hw->mac.type == e1000_i354)) &&
3306	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3307		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308		adapter->wol = 0;
3309	}
3310	if (hw->mac.type == e1000_i350) {
3311		if (((pdev->subsystem_device == 0x5001) ||
3312		     (pdev->subsystem_device == 0x5002)) &&
3313				(hw->bus.func == 0)) {
3314			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3315			adapter->wol = 0;
3316		}
3317		if (pdev->subsystem_device == 0x1F52)
3318			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3319	}
3320
3321	device_set_wakeup_enable(&adapter->pdev->dev,
3322				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3323
3324	/* reset the hardware with the new settings */
3325	igb_reset(adapter);
3326
3327	/* Init the I2C interface */
3328	err = igb_init_i2c(adapter);
3329	if (err) {
3330		dev_err(&pdev->dev, "failed to init i2c interface\n");
3331		goto err_eeprom;
3332	}
3333
3334	/* let the f/w know that the h/w is now under the control of the
3335	 * driver.
3336	 */
3337	igb_get_hw_control(adapter);
3338
3339	strcpy(netdev->name, "eth%d");
3340	err = register_netdev(netdev);
3341	if (err)
3342		goto err_register;
3343
3344	/* carrier off reporting is important to ethtool even BEFORE open */
3345	netif_carrier_off(netdev);
3346
3347#ifdef CONFIG_IGB_DCA
3348	if (dca_add_requester(&pdev->dev) == 0) {
3349		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3350		dev_info(&pdev->dev, "DCA enabled\n");
3351		igb_setup_dca(adapter);
3352	}
3353
3354#endif
3355#ifdef CONFIG_IGB_HWMON
3356	/* Initialize the thermal sensor on i350 devices. */
3357	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3358		u16 ets_word;
3359
3360		/* Read the NVM to determine if this i350 device supports an
3361		 * external thermal sensor.
3362		 */
3363		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3364		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3365			adapter->ets = true;
3366		else
3367			adapter->ets = false;
 
 
 
 
 
 
3368		if (igb_sysfs_init(adapter))
3369			dev_err(&pdev->dev,
3370				"failed to allocate sysfs resources\n");
3371	} else {
3372		adapter->ets = false;
3373	}
3374#endif
3375	/* Check if Media Autosense is enabled */
3376	adapter->ei = *ei;
3377	if (hw->dev_spec._82575.mas_capable)
3378		igb_init_mas(adapter);
3379
3380	/* do hw tstamp init after resetting */
3381	igb_ptp_init(adapter);
3382
3383	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3384	/* print bus type/speed/width info, not applicable to i354 */
3385	if (hw->mac.type != e1000_i354) {
3386		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3387			 netdev->name,
3388			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3389			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3390			   "unknown"),
3391			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3392			  "Width x4" :
3393			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3394			  "Width x2" :
3395			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3396			  "Width x1" : "unknown"), netdev->dev_addr);
3397	}
3398
3399	if ((hw->mac.type >= e1000_i210 ||
 
 
3400	     igb_get_flash_presence_i210(hw))) {
3401		ret_val = igb_read_part_string(hw, part_str,
3402					       E1000_PBANUM_LENGTH);
3403	} else {
3404		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3405	}
3406
3407	if (ret_val)
3408		strcpy(part_str, "Unknown");
3409	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3410	dev_info(&pdev->dev,
3411		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3412		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3413		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3414		adapter->num_rx_queues, adapter->num_tx_queues);
3415	if (hw->phy.media_type == e1000_media_type_copper) {
3416		switch (hw->mac.type) {
3417		case e1000_i350:
3418		case e1000_i210:
3419		case e1000_i211:
3420			/* Enable EEE for internal copper PHY devices */
3421			err = igb_set_eee_i350(hw, true, true);
3422			if ((!err) &&
3423			    (!hw->dev_spec._82575.eee_disable)) {
3424				adapter->eee_advert =
3425					MDIO_EEE_100TX | MDIO_EEE_1000T;
3426				adapter->flags |= IGB_FLAG_EEE;
3427			}
3428			break;
3429		case e1000_i354:
3430			if ((rd32(E1000_CTRL_EXT) &
3431			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3432				err = igb_set_eee_i354(hw, true, true);
3433				if ((!err) &&
3434					(!hw->dev_spec._82575.eee_disable)) {
3435					adapter->eee_advert =
3436					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3437					adapter->flags |= IGB_FLAG_EEE;
3438				}
3439			}
3440			break;
3441		default:
3442			break;
3443		}
3444	}
3445
3446	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3447
3448	pm_runtime_put_noidle(&pdev->dev);
3449	return 0;
3450
3451err_register:
3452	igb_release_hw_control(adapter);
3453	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3454err_eeprom:
3455	if (!igb_check_reset_block(hw))
3456		igb_reset_phy(hw);
3457
3458	if (hw->flash_address)
3459		iounmap(hw->flash_address);
3460err_sw_init:
3461	kfree(adapter->mac_table);
3462	kfree(adapter->shadow_vfta);
3463	igb_clear_interrupt_scheme(adapter);
3464#ifdef CONFIG_PCI_IOV
3465	igb_disable_sriov(pdev);
3466#endif
3467	pci_iounmap(pdev, adapter->io_addr);
3468err_ioremap:
3469	free_netdev(netdev);
3470err_alloc_etherdev:
 
3471	pci_release_mem_regions(pdev);
3472err_pci_reg:
3473err_dma:
3474	pci_disable_device(pdev);
3475	return err;
3476}
3477
3478#ifdef CONFIG_PCI_IOV
3479static int igb_disable_sriov(struct pci_dev *pdev)
3480{
3481	struct net_device *netdev = pci_get_drvdata(pdev);
3482	struct igb_adapter *adapter = netdev_priv(netdev);
3483	struct e1000_hw *hw = &adapter->hw;
 
3484
3485	/* reclaim resources allocated to VFs */
3486	if (adapter->vf_data) {
3487		/* disable iov and allow time for transactions to clear */
3488		if (pci_vfs_assigned(pdev)) {
3489			dev_warn(&pdev->dev,
3490				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3491			return -EPERM;
3492		} else {
3493			pci_disable_sriov(pdev);
3494			msleep(500);
3495		}
3496
3497		kfree(adapter->vf_mac_list);
3498		adapter->vf_mac_list = NULL;
3499		kfree(adapter->vf_data);
3500		adapter->vf_data = NULL;
3501		adapter->vfs_allocated_count = 0;
 
3502		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3503		wrfl();
3504		msleep(100);
3505		dev_info(&pdev->dev, "IOV Disabled\n");
3506
3507		/* Re-enable DMA Coalescing flag since IOV is turned off */
3508		adapter->flags |= IGB_FLAG_DMAC;
3509	}
3510
3511	return 0;
3512}
3513
3514static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3515{
3516	struct net_device *netdev = pci_get_drvdata(pdev);
3517	struct igb_adapter *adapter = netdev_priv(netdev);
3518	int old_vfs = pci_num_vf(pdev);
3519	struct vf_mac_filter *mac_list;
3520	int err = 0;
3521	int num_vf_mac_filters, i;
3522
3523	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3524		err = -EPERM;
3525		goto out;
3526	}
3527	if (!num_vfs)
3528		goto out;
3529
3530	if (old_vfs) {
3531		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3532			 old_vfs, max_vfs);
3533		adapter->vfs_allocated_count = old_vfs;
3534	} else
3535		adapter->vfs_allocated_count = num_vfs;
3536
3537	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3538				sizeof(struct vf_data_storage), GFP_KERNEL);
3539
3540	/* if allocation failed then we do not support SR-IOV */
3541	if (!adapter->vf_data) {
3542		adapter->vfs_allocated_count = 0;
3543		err = -ENOMEM;
3544		goto out;
3545	}
3546
3547	/* Due to the limited number of RAR entries calculate potential
3548	 * number of MAC filters available for the VFs. Reserve entries
3549	 * for PF default MAC, PF MAC filters and at least one RAR entry
3550	 * for each VF for VF MAC.
3551	 */
3552	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3553			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3554			      adapter->vfs_allocated_count);
3555
3556	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3557				       sizeof(struct vf_mac_filter),
3558				       GFP_KERNEL);
3559
3560	mac_list = adapter->vf_mac_list;
3561	INIT_LIST_HEAD(&adapter->vf_macs.l);
3562
3563	if (adapter->vf_mac_list) {
3564		/* Initialize list of VF MAC filters */
3565		for (i = 0; i < num_vf_mac_filters; i++) {
3566			mac_list->vf = -1;
3567			mac_list->free = true;
3568			list_add(&mac_list->l, &adapter->vf_macs.l);
3569			mac_list++;
3570		}
3571	} else {
3572		/* If we could not allocate memory for the VF MAC filters
3573		 * we can continue without this feature but warn user.
3574		 */
3575		dev_err(&pdev->dev,
3576			"Unable to allocate memory for VF MAC filter list\n");
3577	}
3578
3579	/* only call pci_enable_sriov() if no VFs are allocated already */
3580	if (!old_vfs) {
3581		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3582		if (err)
3583			goto err_out;
3584	}
3585	dev_info(&pdev->dev, "%d VFs allocated\n",
3586		 adapter->vfs_allocated_count);
3587	for (i = 0; i < adapter->vfs_allocated_count; i++)
3588		igb_vf_configure(adapter, i);
3589
3590	/* DMA Coalescing is not supported in IOV mode. */
3591	adapter->flags &= ~IGB_FLAG_DMAC;
3592	goto out;
3593
3594err_out:
3595	kfree(adapter->vf_mac_list);
3596	adapter->vf_mac_list = NULL;
3597	kfree(adapter->vf_data);
3598	adapter->vf_data = NULL;
3599	adapter->vfs_allocated_count = 0;
3600out:
3601	return err;
3602}
3603
3604#endif
3605/**
3606 *  igb_remove_i2c - Cleanup  I2C interface
3607 *  @adapter: pointer to adapter structure
3608 **/
3609static void igb_remove_i2c(struct igb_adapter *adapter)
3610{
3611	/* free the adapter bus structure */
3612	i2c_del_adapter(&adapter->i2c_adap);
3613}
3614
3615/**
3616 *  igb_remove - Device Removal Routine
3617 *  @pdev: PCI device information struct
3618 *
3619 *  igb_remove is called by the PCI subsystem to alert the driver
3620 *  that it should release a PCI device.  The could be caused by a
3621 *  Hot-Plug event, or because the driver is going to be removed from
3622 *  memory.
3623 **/
3624static void igb_remove(struct pci_dev *pdev)
3625{
3626	struct net_device *netdev = pci_get_drvdata(pdev);
3627	struct igb_adapter *adapter = netdev_priv(netdev);
3628	struct e1000_hw *hw = &adapter->hw;
3629
3630	pm_runtime_get_noresume(&pdev->dev);
3631#ifdef CONFIG_IGB_HWMON
3632	igb_sysfs_exit(adapter);
3633#endif
3634	igb_remove_i2c(adapter);
3635	igb_ptp_stop(adapter);
3636	/* The watchdog timer may be rescheduled, so explicitly
3637	 * disable watchdog from being rescheduled.
3638	 */
3639	set_bit(__IGB_DOWN, &adapter->state);
3640	del_timer_sync(&adapter->watchdog_timer);
3641	del_timer_sync(&adapter->phy_info_timer);
3642
3643	cancel_work_sync(&adapter->reset_task);
3644	cancel_work_sync(&adapter->watchdog_task);
3645
3646#ifdef CONFIG_IGB_DCA
3647	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3648		dev_info(&pdev->dev, "DCA disabled\n");
3649		dca_remove_requester(&pdev->dev);
3650		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3651		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3652	}
3653#endif
3654
3655	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3656	 * would have already happened in close and is redundant.
3657	 */
3658	igb_release_hw_control(adapter);
3659
3660#ifdef CONFIG_PCI_IOV
 
3661	igb_disable_sriov(pdev);
 
3662#endif
3663
3664	unregister_netdev(netdev);
3665
3666	igb_clear_interrupt_scheme(adapter);
3667
3668	pci_iounmap(pdev, adapter->io_addr);
3669	if (hw->flash_address)
3670		iounmap(hw->flash_address);
3671	pci_release_mem_regions(pdev);
3672
3673	kfree(adapter->mac_table);
3674	kfree(adapter->shadow_vfta);
3675	free_netdev(netdev);
3676
3677	pci_disable_pcie_error_reporting(pdev);
3678
3679	pci_disable_device(pdev);
3680}
3681
3682/**
3683 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3684 *  @adapter: board private structure to initialize
3685 *
3686 *  This function initializes the vf specific data storage and then attempts to
3687 *  allocate the VFs.  The reason for ordering it this way is because it is much
3688 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3689 *  the memory for the VFs.
3690 **/
3691static void igb_probe_vfs(struct igb_adapter *adapter)
3692{
3693#ifdef CONFIG_PCI_IOV
3694	struct pci_dev *pdev = adapter->pdev;
3695	struct e1000_hw *hw = &adapter->hw;
3696
3697	/* Virtualization features not supported on i210 family. */
3698	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3699		return;
3700
3701	/* Of the below we really only want the effect of getting
3702	 * IGB_FLAG_HAS_MSIX set (if available), without which
3703	 * igb_enable_sriov() has no effect.
3704	 */
3705	igb_set_interrupt_capability(adapter, true);
3706	igb_reset_interrupt_capability(adapter);
3707
3708	pci_sriov_set_totalvfs(pdev, 7);
3709	igb_enable_sriov(pdev, max_vfs);
3710
3711#endif /* CONFIG_PCI_IOV */
3712}
3713
3714unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3715{
3716	struct e1000_hw *hw = &adapter->hw;
3717	unsigned int max_rss_queues;
3718
3719	/* Determine the maximum number of RSS queues supported. */
3720	switch (hw->mac.type) {
3721	case e1000_i211:
3722		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3723		break;
3724	case e1000_82575:
3725	case e1000_i210:
3726		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3727		break;
3728	case e1000_i350:
3729		/* I350 cannot do RSS and SR-IOV at the same time */
3730		if (!!adapter->vfs_allocated_count) {
3731			max_rss_queues = 1;
3732			break;
3733		}
3734		/* fall through */
3735	case e1000_82576:
3736		if (!!adapter->vfs_allocated_count) {
3737			max_rss_queues = 2;
3738			break;
3739		}
3740		/* fall through */
3741	case e1000_82580:
3742	case e1000_i354:
3743	default:
3744		max_rss_queues = IGB_MAX_RX_QUEUES;
3745		break;
3746	}
3747
3748	return max_rss_queues;
3749}
3750
3751static void igb_init_queue_configuration(struct igb_adapter *adapter)
3752{
3753	u32 max_rss_queues;
3754
3755	max_rss_queues = igb_get_max_rss_queues(adapter);
3756	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3757
3758	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3759}
3760
3761void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3762			      const u32 max_rss_queues)
3763{
3764	struct e1000_hw *hw = &adapter->hw;
3765
3766	/* Determine if we need to pair queues. */
3767	switch (hw->mac.type) {
3768	case e1000_82575:
3769	case e1000_i211:
3770		/* Device supports enough interrupts without queue pairing. */
3771		break;
3772	case e1000_82576:
3773	case e1000_82580:
3774	case e1000_i350:
3775	case e1000_i354:
3776	case e1000_i210:
3777	default:
3778		/* If rss_queues > half of max_rss_queues, pair the queues in
3779		 * order to conserve interrupts due to limited supply.
3780		 */
3781		if (adapter->rss_queues > (max_rss_queues / 2))
3782			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3783		else
3784			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3785		break;
3786	}
3787}
3788
3789/**
3790 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3791 *  @adapter: board private structure to initialize
3792 *
3793 *  igb_sw_init initializes the Adapter private data structure.
3794 *  Fields are initialized based on PCI device information and
3795 *  OS network device settings (MTU size).
3796 **/
3797static int igb_sw_init(struct igb_adapter *adapter)
3798{
3799	struct e1000_hw *hw = &adapter->hw;
3800	struct net_device *netdev = adapter->netdev;
3801	struct pci_dev *pdev = adapter->pdev;
3802
3803	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3804
3805	/* set default ring sizes */
3806	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3807	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3808
3809	/* set default ITR values */
3810	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3811	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3812
3813	/* set default work limits */
3814	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3815
3816	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3817				  VLAN_HLEN;
3818	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3819
3820	spin_lock_init(&adapter->nfc_lock);
3821	spin_lock_init(&adapter->stats64_lock);
 
 
 
3822#ifdef CONFIG_PCI_IOV
3823	switch (hw->mac.type) {
3824	case e1000_82576:
3825	case e1000_i350:
3826		if (max_vfs > 7) {
3827			dev_warn(&pdev->dev,
3828				 "Maximum of 7 VFs per PF, using max\n");
3829			max_vfs = adapter->vfs_allocated_count = 7;
3830		} else
3831			adapter->vfs_allocated_count = max_vfs;
3832		if (adapter->vfs_allocated_count)
3833			dev_warn(&pdev->dev,
3834				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3835		break;
3836	default:
3837		break;
3838	}
3839#endif /* CONFIG_PCI_IOV */
3840
3841	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3842	adapter->flags |= IGB_FLAG_HAS_MSIX;
3843
3844	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3845				     sizeof(struct igb_mac_addr),
3846				     GFP_KERNEL);
3847	if (!adapter->mac_table)
3848		return -ENOMEM;
3849
3850	igb_probe_vfs(adapter);
3851
3852	igb_init_queue_configuration(adapter);
3853
3854	/* Setup and initialize a copy of the hw vlan table array */
3855	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3856				       GFP_KERNEL);
3857	if (!adapter->shadow_vfta)
3858		return -ENOMEM;
3859
3860	/* This call may decrease the number of queues */
3861	if (igb_init_interrupt_scheme(adapter, true)) {
3862		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3863		return -ENOMEM;
3864	}
3865
3866	/* Explicitly disable IRQ since the NIC can be in any state. */
3867	igb_irq_disable(adapter);
3868
3869	if (hw->mac.type >= e1000_i350)
3870		adapter->flags &= ~IGB_FLAG_DMAC;
3871
3872	set_bit(__IGB_DOWN, &adapter->state);
3873	return 0;
3874}
3875
3876/**
3877 *  igb_open - Called when a network interface is made active
3878 *  @netdev: network interface device structure
 
3879 *
3880 *  Returns 0 on success, negative value on failure
3881 *
3882 *  The open entry point is called when a network interface is made
3883 *  active by the system (IFF_UP).  At this point all resources needed
3884 *  for transmit and receive operations are allocated, the interrupt
3885 *  handler is registered with the OS, the watchdog timer is started,
3886 *  and the stack is notified that the interface is ready.
3887 **/
3888static int __igb_open(struct net_device *netdev, bool resuming)
3889{
3890	struct igb_adapter *adapter = netdev_priv(netdev);
3891	struct e1000_hw *hw = &adapter->hw;
3892	struct pci_dev *pdev = adapter->pdev;
3893	int err;
3894	int i;
3895
3896	/* disallow open during test */
3897	if (test_bit(__IGB_TESTING, &adapter->state)) {
3898		WARN_ON(resuming);
3899		return -EBUSY;
3900	}
3901
3902	if (!resuming)
3903		pm_runtime_get_sync(&pdev->dev);
3904
3905	netif_carrier_off(netdev);
3906
3907	/* allocate transmit descriptors */
3908	err = igb_setup_all_tx_resources(adapter);
3909	if (err)
3910		goto err_setup_tx;
3911
3912	/* allocate receive descriptors */
3913	err = igb_setup_all_rx_resources(adapter);
3914	if (err)
3915		goto err_setup_rx;
3916
3917	igb_power_up_link(adapter);
3918
3919	/* before we allocate an interrupt, we must be ready to handle it.
3920	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3921	 * as soon as we call pci_request_irq, so we have to setup our
3922	 * clean_rx handler before we do so.
3923	 */
3924	igb_configure(adapter);
3925
3926	err = igb_request_irq(adapter);
3927	if (err)
3928		goto err_req_irq;
3929
3930	/* Notify the stack of the actual queue counts. */
3931	err = netif_set_real_num_tx_queues(adapter->netdev,
3932					   adapter->num_tx_queues);
3933	if (err)
3934		goto err_set_queues;
3935
3936	err = netif_set_real_num_rx_queues(adapter->netdev,
3937					   adapter->num_rx_queues);
3938	if (err)
3939		goto err_set_queues;
3940
3941	/* From here on the code is the same as igb_up() */
3942	clear_bit(__IGB_DOWN, &adapter->state);
3943
3944	for (i = 0; i < adapter->num_q_vectors; i++)
3945		napi_enable(&(adapter->q_vector[i]->napi));
3946
3947	/* Clear any pending interrupts. */
3948	rd32(E1000_TSICR);
3949	rd32(E1000_ICR);
3950
3951	igb_irq_enable(adapter);
3952
3953	/* notify VFs that reset has been completed */
3954	if (adapter->vfs_allocated_count) {
3955		u32 reg_data = rd32(E1000_CTRL_EXT);
3956
3957		reg_data |= E1000_CTRL_EXT_PFRSTD;
3958		wr32(E1000_CTRL_EXT, reg_data);
3959	}
3960
3961	netif_tx_start_all_queues(netdev);
3962
3963	if (!resuming)
3964		pm_runtime_put(&pdev->dev);
3965
3966	/* start the watchdog. */
3967	hw->mac.get_link_status = 1;
3968	schedule_work(&adapter->watchdog_task);
3969
3970	return 0;
3971
3972err_set_queues:
3973	igb_free_irq(adapter);
3974err_req_irq:
3975	igb_release_hw_control(adapter);
3976	igb_power_down_link(adapter);
3977	igb_free_all_rx_resources(adapter);
3978err_setup_rx:
3979	igb_free_all_tx_resources(adapter);
3980err_setup_tx:
3981	igb_reset(adapter);
3982	if (!resuming)
3983		pm_runtime_put(&pdev->dev);
3984
3985	return err;
3986}
3987
3988int igb_open(struct net_device *netdev)
3989{
3990	return __igb_open(netdev, false);
3991}
3992
3993/**
3994 *  igb_close - Disables a network interface
3995 *  @netdev: network interface device structure
 
3996 *
3997 *  Returns 0, this is not allowed to fail
3998 *
3999 *  The close entry point is called when an interface is de-activated
4000 *  by the OS.  The hardware is still under the driver's control, but
4001 *  needs to be disabled.  A global MAC reset is issued to stop the
4002 *  hardware, and all transmit and receive resources are freed.
4003 **/
4004static int __igb_close(struct net_device *netdev, bool suspending)
4005{
4006	struct igb_adapter *adapter = netdev_priv(netdev);
4007	struct pci_dev *pdev = adapter->pdev;
4008
4009	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4010
4011	if (!suspending)
4012		pm_runtime_get_sync(&pdev->dev);
4013
4014	igb_down(adapter);
4015	igb_free_irq(adapter);
4016
4017	igb_free_all_tx_resources(adapter);
4018	igb_free_all_rx_resources(adapter);
4019
4020	if (!suspending)
4021		pm_runtime_put_sync(&pdev->dev);
4022	return 0;
4023}
4024
4025int igb_close(struct net_device *netdev)
4026{
4027	if (netif_device_present(netdev) || netdev->dismantle)
4028		return __igb_close(netdev, false);
4029	return 0;
4030}
4031
4032/**
4033 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4034 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4035 *
4036 *  Return 0 on success, negative on failure
4037 **/
4038int igb_setup_tx_resources(struct igb_ring *tx_ring)
4039{
4040	struct device *dev = tx_ring->dev;
4041	int size;
4042
4043	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4044
4045	tx_ring->tx_buffer_info = vmalloc(size);
4046	if (!tx_ring->tx_buffer_info)
4047		goto err;
4048
4049	/* round up to nearest 4K */
4050	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4051	tx_ring->size = ALIGN(tx_ring->size, 4096);
4052
4053	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4054					   &tx_ring->dma, GFP_KERNEL);
4055	if (!tx_ring->desc)
4056		goto err;
4057
4058	tx_ring->next_to_use = 0;
4059	tx_ring->next_to_clean = 0;
4060
4061	return 0;
4062
4063err:
4064	vfree(tx_ring->tx_buffer_info);
4065	tx_ring->tx_buffer_info = NULL;
4066	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4067	return -ENOMEM;
4068}
4069
4070/**
4071 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4072 *				 (Descriptors) for all queues
4073 *  @adapter: board private structure
4074 *
4075 *  Return 0 on success, negative on failure
4076 **/
4077static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4078{
4079	struct pci_dev *pdev = adapter->pdev;
4080	int i, err = 0;
4081
4082	for (i = 0; i < adapter->num_tx_queues; i++) {
4083		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4084		if (err) {
4085			dev_err(&pdev->dev,
4086				"Allocation for Tx Queue %u failed\n", i);
4087			for (i--; i >= 0; i--)
4088				igb_free_tx_resources(adapter->tx_ring[i]);
4089			break;
4090		}
4091	}
4092
4093	return err;
4094}
4095
4096/**
4097 *  igb_setup_tctl - configure the transmit control registers
4098 *  @adapter: Board private structure
4099 **/
4100void igb_setup_tctl(struct igb_adapter *adapter)
4101{
4102	struct e1000_hw *hw = &adapter->hw;
4103	u32 tctl;
4104
4105	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4106	wr32(E1000_TXDCTL(0), 0);
4107
4108	/* Program the Transmit Control Register */
4109	tctl = rd32(E1000_TCTL);
4110	tctl &= ~E1000_TCTL_CT;
4111	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4112		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4113
4114	igb_config_collision_dist(hw);
4115
4116	/* Enable transmits */
4117	tctl |= E1000_TCTL_EN;
4118
4119	wr32(E1000_TCTL, tctl);
4120}
4121
4122/**
4123 *  igb_configure_tx_ring - Configure transmit ring after Reset
4124 *  @adapter: board private structure
4125 *  @ring: tx ring to configure
4126 *
4127 *  Configure a transmit ring after a reset.
4128 **/
4129void igb_configure_tx_ring(struct igb_adapter *adapter,
4130			   struct igb_ring *ring)
4131{
4132	struct e1000_hw *hw = &adapter->hw;
4133	u32 txdctl = 0;
4134	u64 tdba = ring->dma;
4135	int reg_idx = ring->reg_idx;
4136
4137	wr32(E1000_TDLEN(reg_idx),
4138	     ring->count * sizeof(union e1000_adv_tx_desc));
4139	wr32(E1000_TDBAL(reg_idx),
4140	     tdba & 0x00000000ffffffffULL);
4141	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4142
4143	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4144	wr32(E1000_TDH(reg_idx), 0);
4145	writel(0, ring->tail);
4146
4147	txdctl |= IGB_TX_PTHRESH;
4148	txdctl |= IGB_TX_HTHRESH << 8;
4149	txdctl |= IGB_TX_WTHRESH << 16;
4150
4151	/* reinitialize tx_buffer_info */
4152	memset(ring->tx_buffer_info, 0,
4153	       sizeof(struct igb_tx_buffer) * ring->count);
4154
4155	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4156	wr32(E1000_TXDCTL(reg_idx), txdctl);
4157}
4158
4159/**
4160 *  igb_configure_tx - Configure transmit Unit after Reset
4161 *  @adapter: board private structure
4162 *
4163 *  Configure the Tx unit of the MAC after a reset.
4164 **/
4165static void igb_configure_tx(struct igb_adapter *adapter)
4166{
4167	struct e1000_hw *hw = &adapter->hw;
4168	int i;
4169
4170	/* disable the queues */
4171	for (i = 0; i < adapter->num_tx_queues; i++)
4172		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4173
4174	wrfl();
4175	usleep_range(10000, 20000);
4176
4177	for (i = 0; i < adapter->num_tx_queues; i++)
4178		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4179}
4180
4181/**
4182 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4183 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4184 *
4185 *  Returns 0 on success, negative on failure
4186 **/
4187int igb_setup_rx_resources(struct igb_ring *rx_ring)
4188{
 
4189	struct device *dev = rx_ring->dev;
4190	int size;
 
 
 
 
 
 
 
 
 
 
 
4191
4192	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4193
4194	rx_ring->rx_buffer_info = vmalloc(size);
4195	if (!rx_ring->rx_buffer_info)
4196		goto err;
4197
4198	/* Round up to nearest 4K */
4199	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4200	rx_ring->size = ALIGN(rx_ring->size, 4096);
4201
4202	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4203					   &rx_ring->dma, GFP_KERNEL);
4204	if (!rx_ring->desc)
4205		goto err;
4206
4207	rx_ring->next_to_alloc = 0;
4208	rx_ring->next_to_clean = 0;
4209	rx_ring->next_to_use = 0;
4210
 
 
4211	return 0;
4212
4213err:
 
4214	vfree(rx_ring->rx_buffer_info);
4215	rx_ring->rx_buffer_info = NULL;
4216	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4217	return -ENOMEM;
4218}
4219
4220/**
4221 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4222 *				 (Descriptors) for all queues
4223 *  @adapter: board private structure
4224 *
4225 *  Return 0 on success, negative on failure
4226 **/
4227static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4228{
4229	struct pci_dev *pdev = adapter->pdev;
4230	int i, err = 0;
4231
4232	for (i = 0; i < adapter->num_rx_queues; i++) {
4233		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4234		if (err) {
4235			dev_err(&pdev->dev,
4236				"Allocation for Rx Queue %u failed\n", i);
4237			for (i--; i >= 0; i--)
4238				igb_free_rx_resources(adapter->rx_ring[i]);
4239			break;
4240		}
4241	}
4242
4243	return err;
4244}
4245
4246/**
4247 *  igb_setup_mrqc - configure the multiple receive queue control registers
4248 *  @adapter: Board private structure
4249 **/
4250static void igb_setup_mrqc(struct igb_adapter *adapter)
4251{
4252	struct e1000_hw *hw = &adapter->hw;
4253	u32 mrqc, rxcsum;
4254	u32 j, num_rx_queues;
4255	u32 rss_key[10];
4256
4257	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4258	for (j = 0; j < 10; j++)
4259		wr32(E1000_RSSRK(j), rss_key[j]);
4260
4261	num_rx_queues = adapter->rss_queues;
4262
4263	switch (hw->mac.type) {
4264	case e1000_82576:
4265		/* 82576 supports 2 RSS queues for SR-IOV */
4266		if (adapter->vfs_allocated_count)
4267			num_rx_queues = 2;
4268		break;
4269	default:
4270		break;
4271	}
4272
4273	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4274		for (j = 0; j < IGB_RETA_SIZE; j++)
4275			adapter->rss_indir_tbl[j] =
4276			(j * num_rx_queues) / IGB_RETA_SIZE;
4277		adapter->rss_indir_tbl_init = num_rx_queues;
4278	}
4279	igb_write_rss_indir_tbl(adapter);
4280
4281	/* Disable raw packet checksumming so that RSS hash is placed in
4282	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4283	 * offloads as they are enabled by default
4284	 */
4285	rxcsum = rd32(E1000_RXCSUM);
4286	rxcsum |= E1000_RXCSUM_PCSD;
4287
4288	if (adapter->hw.mac.type >= e1000_82576)
4289		/* Enable Receive Checksum Offload for SCTP */
4290		rxcsum |= E1000_RXCSUM_CRCOFL;
4291
4292	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4293	wr32(E1000_RXCSUM, rxcsum);
4294
4295	/* Generate RSS hash based on packet types, TCP/UDP
4296	 * port numbers and/or IPv4/v6 src and dst addresses
4297	 */
4298	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4299	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4300	       E1000_MRQC_RSS_FIELD_IPV6 |
4301	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4302	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4303
4304	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4305		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4306	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4307		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4308
4309	/* If VMDq is enabled then we set the appropriate mode for that, else
4310	 * we default to RSS so that an RSS hash is calculated per packet even
4311	 * if we are only using one queue
4312	 */
4313	if (adapter->vfs_allocated_count) {
4314		if (hw->mac.type > e1000_82575) {
4315			/* Set the default pool for the PF's first queue */
4316			u32 vtctl = rd32(E1000_VT_CTL);
4317
4318			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4319				   E1000_VT_CTL_DISABLE_DEF_POOL);
4320			vtctl |= adapter->vfs_allocated_count <<
4321				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4322			wr32(E1000_VT_CTL, vtctl);
4323		}
4324		if (adapter->rss_queues > 1)
4325			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4326		else
4327			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4328	} else {
4329		if (hw->mac.type != e1000_i211)
4330			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4331	}
4332	igb_vmm_control(adapter);
4333
4334	wr32(E1000_MRQC, mrqc);
4335}
4336
4337/**
4338 *  igb_setup_rctl - configure the receive control registers
4339 *  @adapter: Board private structure
4340 **/
4341void igb_setup_rctl(struct igb_adapter *adapter)
4342{
4343	struct e1000_hw *hw = &adapter->hw;
4344	u32 rctl;
4345
4346	rctl = rd32(E1000_RCTL);
4347
4348	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4349	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4350
4351	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4352		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4353
4354	/* enable stripping of CRC. It's unlikely this will break BMC
4355	 * redirection as it did with e1000. Newer features require
4356	 * that the HW strips the CRC.
4357	 */
4358	rctl |= E1000_RCTL_SECRC;
4359
4360	/* disable store bad packets and clear size bits. */
4361	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4362
4363	/* enable LPE to allow for reception of jumbo frames */
4364	rctl |= E1000_RCTL_LPE;
4365
4366	/* disable queue 0 to prevent tail write w/o re-config */
4367	wr32(E1000_RXDCTL(0), 0);
4368
4369	/* Attention!!!  For SR-IOV PF driver operations you must enable
4370	 * queue drop for all VF and PF queues to prevent head of line blocking
4371	 * if an un-trusted VF does not provide descriptors to hardware.
4372	 */
4373	if (adapter->vfs_allocated_count) {
4374		/* set all queue drop enable bits */
4375		wr32(E1000_QDE, ALL_QUEUES);
4376	}
4377
4378	/* This is useful for sniffing bad packets. */
4379	if (adapter->netdev->features & NETIF_F_RXALL) {
4380		/* UPE and MPE will be handled by normal PROMISC logic
4381		 * in e1000e_set_rx_mode
4382		 */
4383		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4384			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4385			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4386
4387		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4388			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4389		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4390		 * and that breaks VLANs.
4391		 */
4392	}
4393
4394	wr32(E1000_RCTL, rctl);
4395}
4396
4397static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4398				   int vfn)
4399{
4400	struct e1000_hw *hw = &adapter->hw;
4401	u32 vmolr;
4402
4403	if (size > MAX_JUMBO_FRAME_SIZE)
4404		size = MAX_JUMBO_FRAME_SIZE;
4405
4406	vmolr = rd32(E1000_VMOLR(vfn));
4407	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4408	vmolr |= size | E1000_VMOLR_LPE;
4409	wr32(E1000_VMOLR(vfn), vmolr);
4410
4411	return 0;
4412}
4413
4414static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4415					 int vfn, bool enable)
4416{
4417	struct e1000_hw *hw = &adapter->hw;
4418	u32 val, reg;
4419
4420	if (hw->mac.type < e1000_82576)
4421		return;
4422
4423	if (hw->mac.type == e1000_i350)
4424		reg = E1000_DVMOLR(vfn);
4425	else
4426		reg = E1000_VMOLR(vfn);
4427
4428	val = rd32(reg);
4429	if (enable)
4430		val |= E1000_VMOLR_STRVLAN;
4431	else
4432		val &= ~(E1000_VMOLR_STRVLAN);
4433	wr32(reg, val);
4434}
4435
4436static inline void igb_set_vmolr(struct igb_adapter *adapter,
4437				 int vfn, bool aupe)
4438{
4439	struct e1000_hw *hw = &adapter->hw;
4440	u32 vmolr;
4441
4442	/* This register exists only on 82576 and newer so if we are older then
4443	 * we should exit and do nothing
4444	 */
4445	if (hw->mac.type < e1000_82576)
4446		return;
4447
4448	vmolr = rd32(E1000_VMOLR(vfn));
4449	if (aupe)
4450		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4451	else
4452		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4453
4454	/* clear all bits that might not be set */
4455	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4456
4457	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4458		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4459	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4460	 * multicast packets
4461	 */
4462	if (vfn <= adapter->vfs_allocated_count)
4463		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4464
4465	wr32(E1000_VMOLR(vfn), vmolr);
4466}
4467
4468/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4469 *  igb_configure_rx_ring - Configure a receive ring after Reset
4470 *  @adapter: board private structure
4471 *  @ring: receive ring to be configured
4472 *
4473 *  Configure the Rx unit of the MAC after a reset.
4474 **/
4475void igb_configure_rx_ring(struct igb_adapter *adapter,
4476			   struct igb_ring *ring)
4477{
4478	struct e1000_hw *hw = &adapter->hw;
4479	union e1000_adv_rx_desc *rx_desc;
4480	u64 rdba = ring->dma;
4481	int reg_idx = ring->reg_idx;
4482	u32 srrctl = 0, rxdctl = 0;
 
 
 
 
4483
4484	/* disable the queue */
4485	wr32(E1000_RXDCTL(reg_idx), 0);
4486
4487	/* Set DMA base address registers */
4488	wr32(E1000_RDBAL(reg_idx),
4489	     rdba & 0x00000000ffffffffULL);
4490	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4491	wr32(E1000_RDLEN(reg_idx),
4492	     ring->count * sizeof(union e1000_adv_rx_desc));
4493
4494	/* initialize head and tail */
4495	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4496	wr32(E1000_RDH(reg_idx), 0);
4497	writel(0, ring->tail);
4498
4499	/* set descriptor configuration */
4500	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4501	if (ring_uses_large_buffer(ring))
4502		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4503	else
4504		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4505	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4506	if (hw->mac.type >= e1000_82580)
4507		srrctl |= E1000_SRRCTL_TIMESTAMP;
4508	/* Only set Drop Enable if we are supporting multiple queues */
4509	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4510		srrctl |= E1000_SRRCTL_DROP_EN;
4511
4512	wr32(E1000_SRRCTL(reg_idx), srrctl);
4513
4514	/* set filtering for VMDQ pools */
4515	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4516
4517	rxdctl |= IGB_RX_PTHRESH;
4518	rxdctl |= IGB_RX_HTHRESH << 8;
4519	rxdctl |= IGB_RX_WTHRESH << 16;
4520
4521	/* initialize rx_buffer_info */
4522	memset(ring->rx_buffer_info, 0,
4523	       sizeof(struct igb_rx_buffer) * ring->count);
4524
4525	/* initialize Rx descriptor 0 */
4526	rx_desc = IGB_RX_DESC(ring, 0);
4527	rx_desc->wb.upper.length = 0;
4528
4529	/* enable receive descriptor fetching */
4530	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4531	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4532}
4533
4534static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4535				  struct igb_ring *rx_ring)
4536{
4537	/* set build_skb and buffer size flags */
4538	clear_ring_build_skb_enabled(rx_ring);
4539	clear_ring_uses_large_buffer(rx_ring);
4540
4541	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4542		return;
4543
4544	set_ring_build_skb_enabled(rx_ring);
4545
4546#if (PAGE_SIZE < 8192)
4547	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4548		return;
4549
4550	set_ring_uses_large_buffer(rx_ring);
4551#endif
4552}
4553
4554/**
4555 *  igb_configure_rx - Configure receive Unit after Reset
4556 *  @adapter: board private structure
4557 *
4558 *  Configure the Rx unit of the MAC after a reset.
4559 **/
4560static void igb_configure_rx(struct igb_adapter *adapter)
4561{
4562	int i;
4563
4564	/* set the correct pool for the PF default MAC address in entry 0 */
4565	igb_set_default_mac_filter(adapter);
4566
4567	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4568	 * the Base and Length of the Rx Descriptor Ring
4569	 */
4570	for (i = 0; i < adapter->num_rx_queues; i++) {
4571		struct igb_ring *rx_ring = adapter->rx_ring[i];
4572
4573		igb_set_rx_buffer_len(adapter, rx_ring);
4574		igb_configure_rx_ring(adapter, rx_ring);
4575	}
4576}
4577
4578/**
4579 *  igb_free_tx_resources - Free Tx Resources per Queue
4580 *  @tx_ring: Tx descriptor ring for a specific queue
4581 *
4582 *  Free all transmit software resources
4583 **/
4584void igb_free_tx_resources(struct igb_ring *tx_ring)
4585{
4586	igb_clean_tx_ring(tx_ring);
4587
4588	vfree(tx_ring->tx_buffer_info);
4589	tx_ring->tx_buffer_info = NULL;
4590
4591	/* if not set, then don't free */
4592	if (!tx_ring->desc)
4593		return;
4594
4595	dma_free_coherent(tx_ring->dev, tx_ring->size,
4596			  tx_ring->desc, tx_ring->dma);
4597
4598	tx_ring->desc = NULL;
4599}
4600
4601/**
4602 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4603 *  @adapter: board private structure
4604 *
4605 *  Free all transmit software resources
4606 **/
4607static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4608{
4609	int i;
4610
4611	for (i = 0; i < adapter->num_tx_queues; i++)
4612		if (adapter->tx_ring[i])
4613			igb_free_tx_resources(adapter->tx_ring[i]);
4614}
4615
4616/**
4617 *  igb_clean_tx_ring - Free Tx Buffers
4618 *  @tx_ring: ring to be cleaned
4619 **/
4620static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4621{
4622	u16 i = tx_ring->next_to_clean;
4623	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4624
4625	while (i != tx_ring->next_to_use) {
4626		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4627
4628		/* Free all the Tx ring sk_buffs */
4629		dev_kfree_skb_any(tx_buffer->skb);
 
 
 
4630
4631		/* unmap skb header data */
4632		dma_unmap_single(tx_ring->dev,
4633				 dma_unmap_addr(tx_buffer, dma),
4634				 dma_unmap_len(tx_buffer, len),
4635				 DMA_TO_DEVICE);
4636
4637		/* check for eop_desc to determine the end of the packet */
4638		eop_desc = tx_buffer->next_to_watch;
4639		tx_desc = IGB_TX_DESC(tx_ring, i);
4640
4641		/* unmap remaining buffers */
4642		while (tx_desc != eop_desc) {
4643			tx_buffer++;
4644			tx_desc++;
4645			i++;
4646			if (unlikely(i == tx_ring->count)) {
4647				i = 0;
4648				tx_buffer = tx_ring->tx_buffer_info;
4649				tx_desc = IGB_TX_DESC(tx_ring, 0);
4650			}
4651
4652			/* unmap any remaining paged data */
4653			if (dma_unmap_len(tx_buffer, len))
4654				dma_unmap_page(tx_ring->dev,
4655					       dma_unmap_addr(tx_buffer, dma),
4656					       dma_unmap_len(tx_buffer, len),
4657					       DMA_TO_DEVICE);
4658		}
4659
 
 
4660		/* move us one more past the eop_desc for start of next pkt */
4661		tx_buffer++;
4662		i++;
4663		if (unlikely(i == tx_ring->count)) {
4664			i = 0;
4665			tx_buffer = tx_ring->tx_buffer_info;
4666		}
4667	}
4668
4669	/* reset BQL for queue */
4670	netdev_tx_reset_queue(txring_txq(tx_ring));
4671
4672	/* reset next_to_use and next_to_clean */
4673	tx_ring->next_to_use = 0;
4674	tx_ring->next_to_clean = 0;
4675}
4676
4677/**
4678 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4679 *  @adapter: board private structure
4680 **/
4681static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4682{
4683	int i;
4684
4685	for (i = 0; i < adapter->num_tx_queues; i++)
4686		if (adapter->tx_ring[i])
4687			igb_clean_tx_ring(adapter->tx_ring[i]);
4688}
4689
4690/**
4691 *  igb_free_rx_resources - Free Rx Resources
4692 *  @rx_ring: ring to clean the resources from
4693 *
4694 *  Free all receive software resources
4695 **/
4696void igb_free_rx_resources(struct igb_ring *rx_ring)
4697{
4698	igb_clean_rx_ring(rx_ring);
4699
 
 
4700	vfree(rx_ring->rx_buffer_info);
4701	rx_ring->rx_buffer_info = NULL;
4702
4703	/* if not set, then don't free */
4704	if (!rx_ring->desc)
4705		return;
4706
4707	dma_free_coherent(rx_ring->dev, rx_ring->size,
4708			  rx_ring->desc, rx_ring->dma);
4709
4710	rx_ring->desc = NULL;
4711}
4712
4713/**
4714 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4715 *  @adapter: board private structure
4716 *
4717 *  Free all receive software resources
4718 **/
4719static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4720{
4721	int i;
4722
4723	for (i = 0; i < adapter->num_rx_queues; i++)
4724		if (adapter->rx_ring[i])
4725			igb_free_rx_resources(adapter->rx_ring[i]);
4726}
4727
4728/**
4729 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4730 *  @rx_ring: ring to free buffers from
4731 **/
4732static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4733{
4734	u16 i = rx_ring->next_to_clean;
4735
4736	dev_kfree_skb(rx_ring->skb);
4737	rx_ring->skb = NULL;
4738
4739	/* Free all the Rx ring sk_buffs */
4740	while (i != rx_ring->next_to_alloc) {
4741		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4742
4743		/* Invalidate cache lines that may have been written to by
4744		 * device so that we avoid corrupting memory.
4745		 */
4746		dma_sync_single_range_for_cpu(rx_ring->dev,
4747					      buffer_info->dma,
4748					      buffer_info->page_offset,
4749					      igb_rx_bufsz(rx_ring),
4750					      DMA_FROM_DEVICE);
4751
4752		/* free resources associated with mapping */
4753		dma_unmap_page_attrs(rx_ring->dev,
4754				     buffer_info->dma,
4755				     igb_rx_pg_size(rx_ring),
4756				     DMA_FROM_DEVICE,
4757				     IGB_RX_DMA_ATTR);
4758		__page_frag_cache_drain(buffer_info->page,
4759					buffer_info->pagecnt_bias);
4760
4761		i++;
4762		if (i == rx_ring->count)
4763			i = 0;
4764	}
4765
4766	rx_ring->next_to_alloc = 0;
4767	rx_ring->next_to_clean = 0;
4768	rx_ring->next_to_use = 0;
4769}
4770
4771/**
4772 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4773 *  @adapter: board private structure
4774 **/
4775static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4776{
4777	int i;
4778
4779	for (i = 0; i < adapter->num_rx_queues; i++)
4780		if (adapter->rx_ring[i])
4781			igb_clean_rx_ring(adapter->rx_ring[i]);
4782}
4783
4784/**
4785 *  igb_set_mac - Change the Ethernet Address of the NIC
4786 *  @netdev: network interface device structure
4787 *  @p: pointer to an address structure
4788 *
4789 *  Returns 0 on success, negative on failure
4790 **/
4791static int igb_set_mac(struct net_device *netdev, void *p)
4792{
4793	struct igb_adapter *adapter = netdev_priv(netdev);
4794	struct e1000_hw *hw = &adapter->hw;
4795	struct sockaddr *addr = p;
4796
4797	if (!is_valid_ether_addr(addr->sa_data))
4798		return -EADDRNOTAVAIL;
4799
4800	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4801	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4802
4803	/* set the correct pool for the new PF MAC address in entry 0 */
4804	igb_set_default_mac_filter(adapter);
4805
4806	return 0;
4807}
4808
4809/**
4810 *  igb_write_mc_addr_list - write multicast addresses to MTA
4811 *  @netdev: network interface device structure
4812 *
4813 *  Writes multicast address list to the MTA hash table.
4814 *  Returns: -ENOMEM on failure
4815 *           0 on no addresses written
4816 *           X on writing X addresses to MTA
4817 **/
4818static int igb_write_mc_addr_list(struct net_device *netdev)
4819{
4820	struct igb_adapter *adapter = netdev_priv(netdev);
4821	struct e1000_hw *hw = &adapter->hw;
4822	struct netdev_hw_addr *ha;
4823	u8  *mta_list;
4824	int i;
4825
4826	if (netdev_mc_empty(netdev)) {
4827		/* nothing to program, so clear mc list */
4828		igb_update_mc_addr_list(hw, NULL, 0);
4829		igb_restore_vf_multicasts(adapter);
4830		return 0;
4831	}
4832
4833	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4834	if (!mta_list)
4835		return -ENOMEM;
4836
4837	/* The shared function expects a packed array of only addresses. */
4838	i = 0;
4839	netdev_for_each_mc_addr(ha, netdev)
4840		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4841
4842	igb_update_mc_addr_list(hw, mta_list, i);
4843	kfree(mta_list);
4844
4845	return netdev_mc_count(netdev);
4846}
4847
4848static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4849{
4850	struct e1000_hw *hw = &adapter->hw;
4851	u32 i, pf_id;
4852
4853	switch (hw->mac.type) {
4854	case e1000_i210:
4855	case e1000_i211:
4856	case e1000_i350:
4857		/* VLAN filtering needed for VLAN prio filter */
4858		if (adapter->netdev->features & NETIF_F_NTUPLE)
4859			break;
4860		/* fall through */
4861	case e1000_82576:
4862	case e1000_82580:
4863	case e1000_i354:
4864		/* VLAN filtering needed for pool filtering */
4865		if (adapter->vfs_allocated_count)
4866			break;
4867		/* fall through */
4868	default:
4869		return 1;
4870	}
4871
4872	/* We are already in VLAN promisc, nothing to do */
4873	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4874		return 0;
4875
4876	if (!adapter->vfs_allocated_count)
4877		goto set_vfta;
4878
4879	/* Add PF to all active pools */
4880	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4881
4882	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4883		u32 vlvf = rd32(E1000_VLVF(i));
4884
4885		vlvf |= BIT(pf_id);
4886		wr32(E1000_VLVF(i), vlvf);
4887	}
4888
4889set_vfta:
4890	/* Set all bits in the VLAN filter table array */
4891	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4892		hw->mac.ops.write_vfta(hw, i, ~0U);
4893
4894	/* Set flag so we don't redo unnecessary work */
4895	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4896
4897	return 0;
4898}
4899
4900#define VFTA_BLOCK_SIZE 8
4901static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4902{
4903	struct e1000_hw *hw = &adapter->hw;
4904	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4905	u32 vid_start = vfta_offset * 32;
4906	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4907	u32 i, vid, word, bits, pf_id;
4908
4909	/* guarantee that we don't scrub out management VLAN */
4910	vid = adapter->mng_vlan_id;
4911	if (vid >= vid_start && vid < vid_end)
4912		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4913
4914	if (!adapter->vfs_allocated_count)
4915		goto set_vfta;
4916
4917	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4918
4919	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4920		u32 vlvf = rd32(E1000_VLVF(i));
4921
4922		/* pull VLAN ID from VLVF */
4923		vid = vlvf & VLAN_VID_MASK;
4924
4925		/* only concern ourselves with a certain range */
4926		if (vid < vid_start || vid >= vid_end)
4927			continue;
4928
4929		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4930			/* record VLAN ID in VFTA */
4931			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4932
4933			/* if PF is part of this then continue */
4934			if (test_bit(vid, adapter->active_vlans))
4935				continue;
4936		}
4937
4938		/* remove PF from the pool */
4939		bits = ~BIT(pf_id);
4940		bits &= rd32(E1000_VLVF(i));
4941		wr32(E1000_VLVF(i), bits);
4942	}
4943
4944set_vfta:
4945	/* extract values from active_vlans and write back to VFTA */
4946	for (i = VFTA_BLOCK_SIZE; i--;) {
4947		vid = (vfta_offset + i) * 32;
4948		word = vid / BITS_PER_LONG;
4949		bits = vid % BITS_PER_LONG;
4950
4951		vfta[i] |= adapter->active_vlans[word] >> bits;
4952
4953		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4954	}
4955}
4956
4957static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4958{
4959	u32 i;
4960
4961	/* We are not in VLAN promisc, nothing to do */
4962	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4963		return;
4964
4965	/* Set flag so we don't redo unnecessary work */
4966	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4967
4968	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4969		igb_scrub_vfta(adapter, i);
4970}
4971
4972/**
4973 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4974 *  @netdev: network interface device structure
4975 *
4976 *  The set_rx_mode entry point is called whenever the unicast or multicast
4977 *  address lists or the network interface flags are updated.  This routine is
4978 *  responsible for configuring the hardware for proper unicast, multicast,
4979 *  promiscuous mode, and all-multi behavior.
4980 **/
4981static void igb_set_rx_mode(struct net_device *netdev)
4982{
4983	struct igb_adapter *adapter = netdev_priv(netdev);
4984	struct e1000_hw *hw = &adapter->hw;
4985	unsigned int vfn = adapter->vfs_allocated_count;
4986	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4987	int count;
4988
4989	/* Check for Promiscuous and All Multicast modes */
4990	if (netdev->flags & IFF_PROMISC) {
4991		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4992		vmolr |= E1000_VMOLR_MPME;
4993
4994		/* enable use of UTA filter to force packets to default pool */
4995		if (hw->mac.type == e1000_82576)
4996			vmolr |= E1000_VMOLR_ROPE;
4997	} else {
4998		if (netdev->flags & IFF_ALLMULTI) {
4999			rctl |= E1000_RCTL_MPE;
5000			vmolr |= E1000_VMOLR_MPME;
5001		} else {
5002			/* Write addresses to the MTA, if the attempt fails
5003			 * then we should just turn on promiscuous mode so
5004			 * that we can at least receive multicast traffic
5005			 */
5006			count = igb_write_mc_addr_list(netdev);
5007			if (count < 0) {
5008				rctl |= E1000_RCTL_MPE;
5009				vmolr |= E1000_VMOLR_MPME;
5010			} else if (count) {
5011				vmolr |= E1000_VMOLR_ROMPE;
5012			}
5013		}
5014	}
5015
5016	/* Write addresses to available RAR registers, if there is not
5017	 * sufficient space to store all the addresses then enable
5018	 * unicast promiscuous mode
5019	 */
5020	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5021		rctl |= E1000_RCTL_UPE;
5022		vmolr |= E1000_VMOLR_ROPE;
5023	}
5024
5025	/* enable VLAN filtering by default */
5026	rctl |= E1000_RCTL_VFE;
5027
5028	/* disable VLAN filtering for modes that require it */
5029	if ((netdev->flags & IFF_PROMISC) ||
5030	    (netdev->features & NETIF_F_RXALL)) {
5031		/* if we fail to set all rules then just clear VFE */
5032		if (igb_vlan_promisc_enable(adapter))
5033			rctl &= ~E1000_RCTL_VFE;
5034	} else {
5035		igb_vlan_promisc_disable(adapter);
5036	}
5037
5038	/* update state of unicast, multicast, and VLAN filtering modes */
5039	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5040				     E1000_RCTL_VFE);
5041	wr32(E1000_RCTL, rctl);
5042
5043#if (PAGE_SIZE < 8192)
5044	if (!adapter->vfs_allocated_count) {
5045		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5046			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5047	}
5048#endif
5049	wr32(E1000_RLPML, rlpml);
5050
5051	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5052	 * the VMOLR to enable the appropriate modes.  Without this workaround
5053	 * we will have issues with VLAN tag stripping not being done for frames
5054	 * that are only arriving because we are the default pool
5055	 */
5056	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5057		return;
5058
5059	/* set UTA to appropriate mode */
5060	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5061
5062	vmolr |= rd32(E1000_VMOLR(vfn)) &
5063		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5064
5065	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5066	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5067#if (PAGE_SIZE < 8192)
5068	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5070	else
5071#endif
5072		vmolr |= MAX_JUMBO_FRAME_SIZE;
5073	vmolr |= E1000_VMOLR_LPE;
5074
5075	wr32(E1000_VMOLR(vfn), vmolr);
5076
5077	igb_restore_vf_multicasts(adapter);
5078}
5079
5080static void igb_check_wvbr(struct igb_adapter *adapter)
5081{
5082	struct e1000_hw *hw = &adapter->hw;
5083	u32 wvbr = 0;
5084
5085	switch (hw->mac.type) {
5086	case e1000_82576:
5087	case e1000_i350:
5088		wvbr = rd32(E1000_WVBR);
5089		if (!wvbr)
5090			return;
5091		break;
5092	default:
5093		break;
5094	}
5095
5096	adapter->wvbr |= wvbr;
5097}
5098
5099#define IGB_STAGGERED_QUEUE_OFFSET 8
5100
5101static void igb_spoof_check(struct igb_adapter *adapter)
5102{
5103	int j;
5104
5105	if (!adapter->wvbr)
5106		return;
5107
5108	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5109		if (adapter->wvbr & BIT(j) ||
5110		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5111			dev_warn(&adapter->pdev->dev,
5112				"Spoof event(s) detected on VF %d\n", j);
5113			adapter->wvbr &=
5114				~(BIT(j) |
5115				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5116		}
5117	}
5118}
5119
5120/* Need to wait a few seconds after link up to get diagnostic information from
5121 * the phy
5122 */
5123static void igb_update_phy_info(struct timer_list *t)
5124{
5125	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5126	igb_get_phy_info(&adapter->hw);
5127}
5128
5129/**
5130 *  igb_has_link - check shared code for link and determine up/down
5131 *  @adapter: pointer to driver private info
5132 **/
5133bool igb_has_link(struct igb_adapter *adapter)
5134{
5135	struct e1000_hw *hw = &adapter->hw;
5136	bool link_active = false;
5137
5138	/* get_link_status is set on LSC (link status) interrupt or
5139	 * rx sequence error interrupt.  get_link_status will stay
5140	 * false until the e1000_check_for_link establishes link
5141	 * for copper adapters ONLY
5142	 */
5143	switch (hw->phy.media_type) {
5144	case e1000_media_type_copper:
5145		if (!hw->mac.get_link_status)
5146			return true;
5147		/* fall through */
5148	case e1000_media_type_internal_serdes:
5149		hw->mac.ops.check_for_link(hw);
5150		link_active = !hw->mac.get_link_status;
5151		break;
5152	default:
5153	case e1000_media_type_unknown:
5154		break;
5155	}
5156
5157	if (((hw->mac.type == e1000_i210) ||
5158	     (hw->mac.type == e1000_i211)) &&
5159	     (hw->phy.id == I210_I_PHY_ID)) {
5160		if (!netif_carrier_ok(adapter->netdev)) {
5161			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5162		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5163			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5164			adapter->link_check_timeout = jiffies;
5165		}
5166	}
5167
5168	return link_active;
5169}
5170
5171static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5172{
5173	bool ret = false;
5174	u32 ctrl_ext, thstat;
5175
5176	/* check for thermal sensor event on i350 copper only */
5177	if (hw->mac.type == e1000_i350) {
5178		thstat = rd32(E1000_THSTAT);
5179		ctrl_ext = rd32(E1000_CTRL_EXT);
5180
5181		if ((hw->phy.media_type == e1000_media_type_copper) &&
5182		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5183			ret = !!(thstat & event);
5184	}
5185
5186	return ret;
5187}
5188
5189/**
5190 *  igb_check_lvmmc - check for malformed packets received
5191 *  and indicated in LVMMC register
5192 *  @adapter: pointer to adapter
5193 **/
5194static void igb_check_lvmmc(struct igb_adapter *adapter)
5195{
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 lvmmc;
5198
5199	lvmmc = rd32(E1000_LVMMC);
5200	if (lvmmc) {
5201		if (unlikely(net_ratelimit())) {
5202			netdev_warn(adapter->netdev,
5203				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5204				    lvmmc);
5205		}
5206	}
5207}
5208
5209/**
5210 *  igb_watchdog - Timer Call-back
5211 *  @data: pointer to adapter cast into an unsigned long
5212 **/
5213static void igb_watchdog(struct timer_list *t)
5214{
5215	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5216	/* Do the rest outside of interrupt context */
5217	schedule_work(&adapter->watchdog_task);
5218}
5219
5220static void igb_watchdog_task(struct work_struct *work)
5221{
5222	struct igb_adapter *adapter = container_of(work,
5223						   struct igb_adapter,
5224						   watchdog_task);
5225	struct e1000_hw *hw = &adapter->hw;
5226	struct e1000_phy_info *phy = &hw->phy;
5227	struct net_device *netdev = adapter->netdev;
5228	u32 link;
5229	int i;
5230	u32 connsw;
5231	u16 phy_data, retry_count = 20;
5232
5233	link = igb_has_link(adapter);
5234
5235	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5236		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5237			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5238		else
5239			link = false;
5240	}
5241
5242	/* Force link down if we have fiber to swap to */
5243	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5244		if (hw->phy.media_type == e1000_media_type_copper) {
5245			connsw = rd32(E1000_CONNSW);
5246			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5247				link = 0;
5248		}
5249	}
5250	if (link) {
5251		/* Perform a reset if the media type changed. */
5252		if (hw->dev_spec._82575.media_changed) {
5253			hw->dev_spec._82575.media_changed = false;
5254			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5255			igb_reset(adapter);
5256		}
5257		/* Cancel scheduled suspend requests. */
5258		pm_runtime_resume(netdev->dev.parent);
5259
5260		if (!netif_carrier_ok(netdev)) {
5261			u32 ctrl;
5262
5263			hw->mac.ops.get_speed_and_duplex(hw,
5264							 &adapter->link_speed,
5265							 &adapter->link_duplex);
5266
5267			ctrl = rd32(E1000_CTRL);
5268			/* Links status message must follow this format */
5269			netdev_info(netdev,
5270			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5271			       netdev->name,
5272			       adapter->link_speed,
5273			       adapter->link_duplex == FULL_DUPLEX ?
5274			       "Full" : "Half",
5275			       (ctrl & E1000_CTRL_TFCE) &&
5276			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5277			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5278			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5279
5280			/* disable EEE if enabled */
5281			if ((adapter->flags & IGB_FLAG_EEE) &&
5282				(adapter->link_duplex == HALF_DUPLEX)) {
5283				dev_info(&adapter->pdev->dev,
5284				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5285				adapter->hw.dev_spec._82575.eee_disable = true;
5286				adapter->flags &= ~IGB_FLAG_EEE;
5287			}
5288
5289			/* check if SmartSpeed worked */
5290			igb_check_downshift(hw);
5291			if (phy->speed_downgraded)
5292				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5293
5294			/* check for thermal sensor event */
5295			if (igb_thermal_sensor_event(hw,
5296			    E1000_THSTAT_LINK_THROTTLE))
5297				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5298
5299			/* adjust timeout factor according to speed/duplex */
5300			adapter->tx_timeout_factor = 1;
5301			switch (adapter->link_speed) {
5302			case SPEED_10:
5303				adapter->tx_timeout_factor = 14;
5304				break;
5305			case SPEED_100:
5306				/* maybe add some timeout factor ? */
5307				break;
5308			}
5309
5310			if (adapter->link_speed != SPEED_1000)
 
5311				goto no_wait;
5312
5313			/* wait for Remote receiver status OK */
5314retry_read_status:
5315			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5316					      &phy_data)) {
5317				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5318				    retry_count) {
5319					msleep(100);
5320					retry_count--;
5321					goto retry_read_status;
5322				} else if (!retry_count) {
5323					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5324				}
5325			} else {
5326				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5327			}
5328no_wait:
5329			netif_carrier_on(netdev);
5330
5331			igb_ping_all_vfs(adapter);
5332			igb_check_vf_rate_limit(adapter);
5333
5334			/* link state has changed, schedule phy info update */
5335			if (!test_bit(__IGB_DOWN, &adapter->state))
5336				mod_timer(&adapter->phy_info_timer,
5337					  round_jiffies(jiffies + 2 * HZ));
5338		}
5339	} else {
5340		if (netif_carrier_ok(netdev)) {
5341			adapter->link_speed = 0;
5342			adapter->link_duplex = 0;
5343
5344			/* check for thermal sensor event */
5345			if (igb_thermal_sensor_event(hw,
5346			    E1000_THSTAT_PWR_DOWN)) {
5347				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5348			}
5349
5350			/* Links status message must follow this format */
5351			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5352			       netdev->name);
5353			netif_carrier_off(netdev);
5354
5355			igb_ping_all_vfs(adapter);
5356
5357			/* link state has changed, schedule phy info update */
5358			if (!test_bit(__IGB_DOWN, &adapter->state))
5359				mod_timer(&adapter->phy_info_timer,
5360					  round_jiffies(jiffies + 2 * HZ));
5361
5362			/* link is down, time to check for alternate media */
5363			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5364				igb_check_swap_media(adapter);
5365				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5366					schedule_work(&adapter->reset_task);
5367					/* return immediately */
5368					return;
5369				}
5370			}
5371			pm_schedule_suspend(netdev->dev.parent,
5372					    MSEC_PER_SEC * 5);
5373
5374		/* also check for alternate media here */
5375		} else if (!netif_carrier_ok(netdev) &&
5376			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5377			igb_check_swap_media(adapter);
5378			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5379				schedule_work(&adapter->reset_task);
5380				/* return immediately */
5381				return;
5382			}
5383		}
5384	}
5385
5386	spin_lock(&adapter->stats64_lock);
5387	igb_update_stats(adapter);
5388	spin_unlock(&adapter->stats64_lock);
5389
5390	for (i = 0; i < adapter->num_tx_queues; i++) {
5391		struct igb_ring *tx_ring = adapter->tx_ring[i];
5392		if (!netif_carrier_ok(netdev)) {
5393			/* We've lost link, so the controller stops DMA,
5394			 * but we've got queued Tx work that's never going
5395			 * to get done, so reset controller to flush Tx.
5396			 * (Do the reset outside of interrupt context).
5397			 */
5398			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5399				adapter->tx_timeout_count++;
5400				schedule_work(&adapter->reset_task);
5401				/* return immediately since reset is imminent */
5402				return;
5403			}
5404		}
5405
5406		/* Force detection of hung controller every watchdog period */
5407		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5408	}
5409
5410	/* Cause software interrupt to ensure Rx ring is cleaned */
5411	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5412		u32 eics = 0;
5413
5414		for (i = 0; i < adapter->num_q_vectors; i++)
5415			eics |= adapter->q_vector[i]->eims_value;
5416		wr32(E1000_EICS, eics);
5417	} else {
5418		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5419	}
5420
5421	igb_spoof_check(adapter);
5422	igb_ptp_rx_hang(adapter);
5423	igb_ptp_tx_hang(adapter);
5424
5425	/* Check LVMMC register on i350/i354 only */
5426	if ((adapter->hw.mac.type == e1000_i350) ||
5427	    (adapter->hw.mac.type == e1000_i354))
5428		igb_check_lvmmc(adapter);
5429
5430	/* Reset the timer */
5431	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5432		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5433			mod_timer(&adapter->watchdog_timer,
5434				  round_jiffies(jiffies +  HZ));
5435		else
5436			mod_timer(&adapter->watchdog_timer,
5437				  round_jiffies(jiffies + 2 * HZ));
5438	}
5439}
5440
5441enum latency_range {
5442	lowest_latency = 0,
5443	low_latency = 1,
5444	bulk_latency = 2,
5445	latency_invalid = 255
5446};
5447
5448/**
5449 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5450 *  @q_vector: pointer to q_vector
5451 *
5452 *  Stores a new ITR value based on strictly on packet size.  This
5453 *  algorithm is less sophisticated than that used in igb_update_itr,
5454 *  due to the difficulty of synchronizing statistics across multiple
5455 *  receive rings.  The divisors and thresholds used by this function
5456 *  were determined based on theoretical maximum wire speed and testing
5457 *  data, in order to minimize response time while increasing bulk
5458 *  throughput.
5459 *  This functionality is controlled by ethtool's coalescing settings.
5460 *  NOTE:  This function is called only when operating in a multiqueue
5461 *         receive environment.
5462 **/
5463static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5464{
5465	int new_val = q_vector->itr_val;
5466	int avg_wire_size = 0;
5467	struct igb_adapter *adapter = q_vector->adapter;
5468	unsigned int packets;
5469
5470	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5471	 * ints/sec - ITR timer value of 120 ticks.
5472	 */
5473	if (adapter->link_speed != SPEED_1000) {
5474		new_val = IGB_4K_ITR;
5475		goto set_itr_val;
5476	}
5477
5478	packets = q_vector->rx.total_packets;
5479	if (packets)
5480		avg_wire_size = q_vector->rx.total_bytes / packets;
5481
5482	packets = q_vector->tx.total_packets;
5483	if (packets)
5484		avg_wire_size = max_t(u32, avg_wire_size,
5485				      q_vector->tx.total_bytes / packets);
5486
5487	/* if avg_wire_size isn't set no work was done */
5488	if (!avg_wire_size)
5489		goto clear_counts;
5490
5491	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5492	avg_wire_size += 24;
5493
5494	/* Don't starve jumbo frames */
5495	avg_wire_size = min(avg_wire_size, 3000);
5496
5497	/* Give a little boost to mid-size frames */
5498	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5499		new_val = avg_wire_size / 3;
5500	else
5501		new_val = avg_wire_size / 2;
5502
5503	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5504	if (new_val < IGB_20K_ITR &&
5505	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5506	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5507		new_val = IGB_20K_ITR;
5508
5509set_itr_val:
5510	if (new_val != q_vector->itr_val) {
5511		q_vector->itr_val = new_val;
5512		q_vector->set_itr = 1;
5513	}
5514clear_counts:
5515	q_vector->rx.total_bytes = 0;
5516	q_vector->rx.total_packets = 0;
5517	q_vector->tx.total_bytes = 0;
5518	q_vector->tx.total_packets = 0;
5519}
5520
5521/**
5522 *  igb_update_itr - update the dynamic ITR value based on statistics
5523 *  @q_vector: pointer to q_vector
5524 *  @ring_container: ring info to update the itr for
5525 *
5526 *  Stores a new ITR value based on packets and byte
5527 *  counts during the last interrupt.  The advantage of per interrupt
5528 *  computation is faster updates and more accurate ITR for the current
5529 *  traffic pattern.  Constants in this function were computed
5530 *  based on theoretical maximum wire speed and thresholds were set based
5531 *  on testing data as well as attempting to minimize response time
5532 *  while increasing bulk throughput.
5533 *  This functionality is controlled by ethtool's coalescing settings.
5534 *  NOTE:  These calculations are only valid when operating in a single-
5535 *         queue environment.
5536 **/
5537static void igb_update_itr(struct igb_q_vector *q_vector,
5538			   struct igb_ring_container *ring_container)
5539{
5540	unsigned int packets = ring_container->total_packets;
5541	unsigned int bytes = ring_container->total_bytes;
5542	u8 itrval = ring_container->itr;
5543
5544	/* no packets, exit with status unchanged */
5545	if (packets == 0)
5546		return;
5547
5548	switch (itrval) {
5549	case lowest_latency:
5550		/* handle TSO and jumbo frames */
5551		if (bytes/packets > 8000)
5552			itrval = bulk_latency;
5553		else if ((packets < 5) && (bytes > 512))
5554			itrval = low_latency;
5555		break;
5556	case low_latency:  /* 50 usec aka 20000 ints/s */
5557		if (bytes > 10000) {
5558			/* this if handles the TSO accounting */
5559			if (bytes/packets > 8000)
5560				itrval = bulk_latency;
5561			else if ((packets < 10) || ((bytes/packets) > 1200))
5562				itrval = bulk_latency;
5563			else if ((packets > 35))
5564				itrval = lowest_latency;
5565		} else if (bytes/packets > 2000) {
5566			itrval = bulk_latency;
5567		} else if (packets <= 2 && bytes < 512) {
5568			itrval = lowest_latency;
5569		}
5570		break;
5571	case bulk_latency: /* 250 usec aka 4000 ints/s */
5572		if (bytes > 25000) {
5573			if (packets > 35)
5574				itrval = low_latency;
5575		} else if (bytes < 1500) {
5576			itrval = low_latency;
5577		}
5578		break;
5579	}
5580
5581	/* clear work counters since we have the values we need */
5582	ring_container->total_bytes = 0;
5583	ring_container->total_packets = 0;
5584
5585	/* write updated itr to ring container */
5586	ring_container->itr = itrval;
5587}
5588
5589static void igb_set_itr(struct igb_q_vector *q_vector)
5590{
5591	struct igb_adapter *adapter = q_vector->adapter;
5592	u32 new_itr = q_vector->itr_val;
5593	u8 current_itr = 0;
5594
5595	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5596	if (adapter->link_speed != SPEED_1000) {
5597		current_itr = 0;
5598		new_itr = IGB_4K_ITR;
5599		goto set_itr_now;
5600	}
5601
5602	igb_update_itr(q_vector, &q_vector->tx);
5603	igb_update_itr(q_vector, &q_vector->rx);
5604
5605	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5606
5607	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5608	if (current_itr == lowest_latency &&
5609	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5610	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5611		current_itr = low_latency;
5612
5613	switch (current_itr) {
5614	/* counts and packets in update_itr are dependent on these numbers */
5615	case lowest_latency:
5616		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5617		break;
5618	case low_latency:
5619		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5620		break;
5621	case bulk_latency:
5622		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5623		break;
5624	default:
5625		break;
5626	}
5627
5628set_itr_now:
5629	if (new_itr != q_vector->itr_val) {
5630		/* this attempts to bias the interrupt rate towards Bulk
5631		 * by adding intermediate steps when interrupt rate is
5632		 * increasing
5633		 */
5634		new_itr = new_itr > q_vector->itr_val ?
5635			  max((new_itr * q_vector->itr_val) /
5636			  (new_itr + (q_vector->itr_val >> 2)),
5637			  new_itr) : new_itr;
5638		/* Don't write the value here; it resets the adapter's
5639		 * internal timer, and causes us to delay far longer than
5640		 * we should between interrupts.  Instead, we write the ITR
5641		 * value at the beginning of the next interrupt so the timing
5642		 * ends up being correct.
5643		 */
5644		q_vector->itr_val = new_itr;
5645		q_vector->set_itr = 1;
5646	}
5647}
5648
5649static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5650			    struct igb_tx_buffer *first,
5651			    u32 vlan_macip_lens, u32 type_tucmd,
5652			    u32 mss_l4len_idx)
5653{
5654	struct e1000_adv_tx_context_desc *context_desc;
5655	u16 i = tx_ring->next_to_use;
5656	struct timespec64 ts;
5657
5658	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5659
5660	i++;
5661	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5662
5663	/* set bits to identify this as an advanced context descriptor */
5664	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5665
5666	/* For 82575, context index must be unique per ring. */
5667	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5668		mss_l4len_idx |= tx_ring->reg_idx << 4;
5669
5670	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5671	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5672	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5673
5674	/* We assume there is always a valid tx time available. Invalid times
5675	 * should have been handled by the upper layers.
5676	 */
5677	if (tx_ring->launchtime_enable) {
5678		ts = ktime_to_timespec64(first->skb->tstamp);
5679		first->skb->tstamp = ktime_set(0, 0);
5680		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5681	} else {
5682		context_desc->seqnum_seed = 0;
5683	}
5684}
5685
5686static int igb_tso(struct igb_ring *tx_ring,
5687		   struct igb_tx_buffer *first,
5688		   u8 *hdr_len)
5689{
5690	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5691	struct sk_buff *skb = first->skb;
5692	union {
5693		struct iphdr *v4;
5694		struct ipv6hdr *v6;
5695		unsigned char *hdr;
5696	} ip;
5697	union {
5698		struct tcphdr *tcp;
 
5699		unsigned char *hdr;
5700	} l4;
5701	u32 paylen, l4_offset;
5702	int err;
5703
5704	if (skb->ip_summed != CHECKSUM_PARTIAL)
5705		return 0;
5706
5707	if (!skb_is_gso(skb))
5708		return 0;
5709
5710	err = skb_cow_head(skb, 0);
5711	if (err < 0)
5712		return err;
5713
5714	ip.hdr = skb_network_header(skb);
5715	l4.hdr = skb_checksum_start(skb);
5716
5717	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5718	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 
5719
5720	/* initialize outer IP header fields */
5721	if (ip.v4->version == 4) {
5722		unsigned char *csum_start = skb_checksum_start(skb);
5723		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5724
5725		/* IP header will have to cancel out any data that
5726		 * is not a part of the outer IP header
5727		 */
5728		ip.v4->check = csum_fold(csum_partial(trans_start,
5729						      csum_start - trans_start,
5730						      0));
5731		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5732
5733		ip.v4->tot_len = 0;
5734		first->tx_flags |= IGB_TX_FLAGS_TSO |
5735				   IGB_TX_FLAGS_CSUM |
5736				   IGB_TX_FLAGS_IPV4;
5737	} else {
5738		ip.v6->payload_len = 0;
5739		first->tx_flags |= IGB_TX_FLAGS_TSO |
5740				   IGB_TX_FLAGS_CSUM;
5741	}
5742
5743	/* determine offset of inner transport header */
5744	l4_offset = l4.hdr - skb->data;
5745
5746	/* compute length of segmentation header */
5747	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5748
5749	/* remove payload length from inner checksum */
5750	paylen = skb->len - l4_offset;
5751	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
 
 
 
 
 
 
 
 
 
 
5752
5753	/* update gso size and bytecount with header size */
5754	first->gso_segs = skb_shinfo(skb)->gso_segs;
5755	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5756
5757	/* MSS L4LEN IDX */
5758	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5759	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5760
5761	/* VLAN MACLEN IPLEN */
5762	vlan_macip_lens = l4.hdr - ip.hdr;
5763	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5764	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5765
5766	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5767			type_tucmd, mss_l4len_idx);
5768
5769	return 1;
5770}
5771
5772static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5773{
5774	unsigned int offset = 0;
5775
5776	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5777
5778	return offset == skb_checksum_start_offset(skb);
5779}
5780
5781static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5782{
5783	struct sk_buff *skb = first->skb;
5784	u32 vlan_macip_lens = 0;
5785	u32 type_tucmd = 0;
5786
5787	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5788csum_failed:
5789		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5790		    !tx_ring->launchtime_enable)
5791			return;
5792		goto no_csum;
5793	}
5794
5795	switch (skb->csum_offset) {
5796	case offsetof(struct tcphdr, check):
5797		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5798		/* fall through */
5799	case offsetof(struct udphdr, check):
5800		break;
5801	case offsetof(struct sctphdr, checksum):
5802		/* validate that this is actually an SCTP request */
5803		if (((first->protocol == htons(ETH_P_IP)) &&
5804		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5805		    ((first->protocol == htons(ETH_P_IPV6)) &&
5806		     igb_ipv6_csum_is_sctp(skb))) {
5807			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5808			break;
5809		}
5810		/* fall through */
5811	default:
5812		skb_checksum_help(skb);
5813		goto csum_failed;
5814	}
5815
5816	/* update TX checksum flag */
5817	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5818	vlan_macip_lens = skb_checksum_start_offset(skb) -
5819			  skb_network_offset(skb);
5820no_csum:
5821	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5822	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5823
5824	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5825}
5826
5827#define IGB_SET_FLAG(_input, _flag, _result) \
5828	((_flag <= _result) ? \
5829	 ((u32)(_input & _flag) * (_result / _flag)) : \
5830	 ((u32)(_input & _flag) / (_flag / _result)))
5831
5832static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5833{
5834	/* set type for advanced descriptor with frame checksum insertion */
5835	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5836		       E1000_ADVTXD_DCMD_DEXT |
5837		       E1000_ADVTXD_DCMD_IFCS;
5838
5839	/* set HW vlan bit if vlan is present */
5840	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5841				 (E1000_ADVTXD_DCMD_VLE));
5842
5843	/* set segmentation bits for TSO */
5844	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5845				 (E1000_ADVTXD_DCMD_TSE));
5846
5847	/* set timestamp bit if present */
5848	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5849				 (E1000_ADVTXD_MAC_TSTAMP));
5850
5851	/* insert frame checksum */
5852	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5853
5854	return cmd_type;
5855}
5856
5857static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5858				 union e1000_adv_tx_desc *tx_desc,
5859				 u32 tx_flags, unsigned int paylen)
5860{
5861	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5862
5863	/* 82575 requires a unique index per ring */
5864	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5865		olinfo_status |= tx_ring->reg_idx << 4;
5866
5867	/* insert L4 checksum */
5868	olinfo_status |= IGB_SET_FLAG(tx_flags,
5869				      IGB_TX_FLAGS_CSUM,
5870				      (E1000_TXD_POPTS_TXSM << 8));
5871
5872	/* insert IPv4 checksum */
5873	olinfo_status |= IGB_SET_FLAG(tx_flags,
5874				      IGB_TX_FLAGS_IPV4,
5875				      (E1000_TXD_POPTS_IXSM << 8));
5876
5877	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5878}
5879
5880static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5881{
5882	struct net_device *netdev = tx_ring->netdev;
5883
5884	netif_stop_subqueue(netdev, tx_ring->queue_index);
5885
5886	/* Herbert's original patch had:
5887	 *  smp_mb__after_netif_stop_queue();
5888	 * but since that doesn't exist yet, just open code it.
5889	 */
5890	smp_mb();
5891
5892	/* We need to check again in a case another CPU has just
5893	 * made room available.
5894	 */
5895	if (igb_desc_unused(tx_ring) < size)
5896		return -EBUSY;
5897
5898	/* A reprieve! */
5899	netif_wake_subqueue(netdev, tx_ring->queue_index);
5900
5901	u64_stats_update_begin(&tx_ring->tx_syncp2);
5902	tx_ring->tx_stats.restart_queue2++;
5903	u64_stats_update_end(&tx_ring->tx_syncp2);
5904
5905	return 0;
5906}
5907
5908static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5909{
5910	if (igb_desc_unused(tx_ring) >= size)
5911		return 0;
5912	return __igb_maybe_stop_tx(tx_ring, size);
5913}
5914
5915static int igb_tx_map(struct igb_ring *tx_ring,
5916		      struct igb_tx_buffer *first,
5917		      const u8 hdr_len)
5918{
5919	struct sk_buff *skb = first->skb;
5920	struct igb_tx_buffer *tx_buffer;
5921	union e1000_adv_tx_desc *tx_desc;
5922	skb_frag_t *frag;
5923	dma_addr_t dma;
5924	unsigned int data_len, size;
5925	u32 tx_flags = first->tx_flags;
5926	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5927	u16 i = tx_ring->next_to_use;
5928
5929	tx_desc = IGB_TX_DESC(tx_ring, i);
5930
5931	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5932
5933	size = skb_headlen(skb);
5934	data_len = skb->data_len;
5935
5936	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5937
5938	tx_buffer = first;
5939
5940	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5941		if (dma_mapping_error(tx_ring->dev, dma))
5942			goto dma_error;
5943
5944		/* record length, and DMA address */
5945		dma_unmap_len_set(tx_buffer, len, size);
5946		dma_unmap_addr_set(tx_buffer, dma, dma);
5947
5948		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5949
5950		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5951			tx_desc->read.cmd_type_len =
5952				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5953
5954			i++;
5955			tx_desc++;
5956			if (i == tx_ring->count) {
5957				tx_desc = IGB_TX_DESC(tx_ring, 0);
5958				i = 0;
5959			}
5960			tx_desc->read.olinfo_status = 0;
5961
5962			dma += IGB_MAX_DATA_PER_TXD;
5963			size -= IGB_MAX_DATA_PER_TXD;
5964
5965			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5966		}
5967
5968		if (likely(!data_len))
5969			break;
5970
5971		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5972
5973		i++;
5974		tx_desc++;
5975		if (i == tx_ring->count) {
5976			tx_desc = IGB_TX_DESC(tx_ring, 0);
5977			i = 0;
5978		}
5979		tx_desc->read.olinfo_status = 0;
5980
5981		size = skb_frag_size(frag);
5982		data_len -= size;
5983
5984		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5985				       size, DMA_TO_DEVICE);
5986
5987		tx_buffer = &tx_ring->tx_buffer_info[i];
5988	}
5989
5990	/* write last descriptor with RS and EOP bits */
5991	cmd_type |= size | IGB_TXD_DCMD;
5992	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5993
5994	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5995
5996	/* set the timestamp */
5997	first->time_stamp = jiffies;
5998
5999	skb_tx_timestamp(skb);
6000
6001	/* Force memory writes to complete before letting h/w know there
6002	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6003	 * memory model archs, such as IA-64).
6004	 *
6005	 * We also need this memory barrier to make certain all of the
6006	 * status bits have been updated before next_to_watch is written.
6007	 */
6008	dma_wmb();
6009
6010	/* set next_to_watch value indicating a packet is present */
6011	first->next_to_watch = tx_desc;
6012
6013	i++;
6014	if (i == tx_ring->count)
6015		i = 0;
6016
6017	tx_ring->next_to_use = i;
6018
6019	/* Make sure there is space in the ring for the next send. */
6020	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6021
6022	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6023		writel(i, tx_ring->tail);
6024	}
6025	return 0;
6026
6027dma_error:
6028	dev_err(tx_ring->dev, "TX DMA map failed\n");
6029	tx_buffer = &tx_ring->tx_buffer_info[i];
6030
6031	/* clear dma mappings for failed tx_buffer_info map */
6032	while (tx_buffer != first) {
6033		if (dma_unmap_len(tx_buffer, len))
6034			dma_unmap_page(tx_ring->dev,
6035				       dma_unmap_addr(tx_buffer, dma),
6036				       dma_unmap_len(tx_buffer, len),
6037				       DMA_TO_DEVICE);
6038		dma_unmap_len_set(tx_buffer, len, 0);
6039
6040		if (i-- == 0)
6041			i += tx_ring->count;
6042		tx_buffer = &tx_ring->tx_buffer_info[i];
6043	}
6044
6045	if (dma_unmap_len(tx_buffer, len))
6046		dma_unmap_single(tx_ring->dev,
6047				 dma_unmap_addr(tx_buffer, dma),
6048				 dma_unmap_len(tx_buffer, len),
6049				 DMA_TO_DEVICE);
6050	dma_unmap_len_set(tx_buffer, len, 0);
6051
6052	dev_kfree_skb_any(tx_buffer->skb);
6053	tx_buffer->skb = NULL;
6054
6055	tx_ring->next_to_use = i;
6056
6057	return -1;
6058}
6059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6060netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6061				struct igb_ring *tx_ring)
6062{
6063	struct igb_tx_buffer *first;
6064	int tso;
6065	u32 tx_flags = 0;
6066	unsigned short f;
6067	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6068	__be16 protocol = vlan_get_protocol(skb);
6069	u8 hdr_len = 0;
6070
6071	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6072	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6073	 *       + 2 desc gap to keep tail from touching head,
6074	 *       + 1 desc for context descriptor,
6075	 * otherwise try next time
6076	 */
6077	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6078		count += TXD_USE_COUNT(skb_frag_size(
6079						&skb_shinfo(skb)->frags[f]));
6080
6081	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6082		/* this is a hard error */
6083		return NETDEV_TX_BUSY;
6084	}
6085
6086	/* record the location of the first descriptor for this packet */
6087	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 
6088	first->skb = skb;
6089	first->bytecount = skb->len;
6090	first->gso_segs = 1;
6091
6092	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6093		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6094
6095		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6096		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6097					   &adapter->state)) {
6098			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6099			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6100
6101			adapter->ptp_tx_skb = skb_get(skb);
6102			adapter->ptp_tx_start = jiffies;
6103			if (adapter->hw.mac.type == e1000_82576)
6104				schedule_work(&adapter->ptp_tx_work);
6105		} else {
6106			adapter->tx_hwtstamp_skipped++;
6107		}
6108	}
6109
6110	if (skb_vlan_tag_present(skb)) {
6111		tx_flags |= IGB_TX_FLAGS_VLAN;
6112		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6113	}
6114
6115	/* record initial flags and protocol */
6116	first->tx_flags = tx_flags;
6117	first->protocol = protocol;
6118
6119	tso = igb_tso(tx_ring, first, &hdr_len);
6120	if (tso < 0)
6121		goto out_drop;
6122	else if (!tso)
6123		igb_tx_csum(tx_ring, first);
6124
6125	if (igb_tx_map(tx_ring, first, hdr_len))
6126		goto cleanup_tx_tstamp;
6127
6128	return NETDEV_TX_OK;
6129
6130out_drop:
6131	dev_kfree_skb_any(first->skb);
6132	first->skb = NULL;
6133cleanup_tx_tstamp:
6134	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6135		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6136
6137		dev_kfree_skb_any(adapter->ptp_tx_skb);
6138		adapter->ptp_tx_skb = NULL;
6139		if (adapter->hw.mac.type == e1000_82576)
6140			cancel_work_sync(&adapter->ptp_tx_work);
6141		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6142	}
6143
6144	return NETDEV_TX_OK;
6145}
6146
6147static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6148						    struct sk_buff *skb)
6149{
6150	unsigned int r_idx = skb->queue_mapping;
6151
6152	if (r_idx >= adapter->num_tx_queues)
6153		r_idx = r_idx % adapter->num_tx_queues;
6154
6155	return adapter->tx_ring[r_idx];
6156}
6157
6158static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6159				  struct net_device *netdev)
6160{
6161	struct igb_adapter *adapter = netdev_priv(netdev);
6162
6163	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6164	 * in order to meet this minimum size requirement.
6165	 */
6166	if (skb_put_padto(skb, 17))
6167		return NETDEV_TX_OK;
6168
6169	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6170}
6171
6172/**
6173 *  igb_tx_timeout - Respond to a Tx Hang
6174 *  @netdev: network interface device structure
 
6175 **/
6176static void igb_tx_timeout(struct net_device *netdev)
6177{
6178	struct igb_adapter *adapter = netdev_priv(netdev);
6179	struct e1000_hw *hw = &adapter->hw;
6180
6181	/* Do the reset outside of interrupt context */
6182	adapter->tx_timeout_count++;
6183
6184	if (hw->mac.type >= e1000_82580)
6185		hw->dev_spec._82575.global_device_reset = true;
6186
6187	schedule_work(&adapter->reset_task);
6188	wr32(E1000_EICS,
6189	     (adapter->eims_enable_mask & ~adapter->eims_other));
6190}
6191
6192static void igb_reset_task(struct work_struct *work)
6193{
6194	struct igb_adapter *adapter;
6195	adapter = container_of(work, struct igb_adapter, reset_task);
6196
 
 
 
 
 
 
 
 
6197	igb_dump(adapter);
6198	netdev_err(adapter->netdev, "Reset adapter\n");
6199	igb_reinit_locked(adapter);
 
6200}
6201
6202/**
6203 *  igb_get_stats64 - Get System Network Statistics
6204 *  @netdev: network interface device structure
6205 *  @stats: rtnl_link_stats64 pointer
6206 **/
6207static void igb_get_stats64(struct net_device *netdev,
6208			    struct rtnl_link_stats64 *stats)
6209{
6210	struct igb_adapter *adapter = netdev_priv(netdev);
6211
6212	spin_lock(&adapter->stats64_lock);
6213	igb_update_stats(adapter);
6214	memcpy(stats, &adapter->stats64, sizeof(*stats));
6215	spin_unlock(&adapter->stats64_lock);
6216}
6217
6218/**
6219 *  igb_change_mtu - Change the Maximum Transfer Unit
6220 *  @netdev: network interface device structure
6221 *  @new_mtu: new value for maximum frame size
6222 *
6223 *  Returns 0 on success, negative on failure
6224 **/
6225static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6226{
6227	struct igb_adapter *adapter = netdev_priv(netdev);
6228	struct pci_dev *pdev = adapter->pdev;
6229	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6230
6231	/* adjust max frame to be at least the size of a standard frame */
6232	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6233		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6234
6235	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6236		usleep_range(1000, 2000);
6237
6238	/* igb_down has a dependency on max_frame_size */
6239	adapter->max_frame_size = max_frame;
6240
6241	if (netif_running(netdev))
6242		igb_down(adapter);
6243
6244	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6245		 netdev->mtu, new_mtu);
6246	netdev->mtu = new_mtu;
6247
6248	if (netif_running(netdev))
6249		igb_up(adapter);
6250	else
6251		igb_reset(adapter);
6252
6253	clear_bit(__IGB_RESETTING, &adapter->state);
6254
6255	return 0;
6256}
6257
6258/**
6259 *  igb_update_stats - Update the board statistics counters
6260 *  @adapter: board private structure
6261 **/
6262void igb_update_stats(struct igb_adapter *adapter)
6263{
6264	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6265	struct e1000_hw *hw = &adapter->hw;
6266	struct pci_dev *pdev = adapter->pdev;
6267	u32 reg, mpc;
6268	int i;
6269	u64 bytes, packets;
6270	unsigned int start;
6271	u64 _bytes, _packets;
6272
6273	/* Prevent stats update while adapter is being reset, or if the pci
6274	 * connection is down.
6275	 */
6276	if (adapter->link_speed == 0)
6277		return;
6278	if (pci_channel_offline(pdev))
6279		return;
6280
6281	bytes = 0;
6282	packets = 0;
6283
6284	rcu_read_lock();
6285	for (i = 0; i < adapter->num_rx_queues; i++) {
6286		struct igb_ring *ring = adapter->rx_ring[i];
6287		u32 rqdpc = rd32(E1000_RQDPC(i));
6288		if (hw->mac.type >= e1000_i210)
6289			wr32(E1000_RQDPC(i), 0);
6290
6291		if (rqdpc) {
6292			ring->rx_stats.drops += rqdpc;
6293			net_stats->rx_fifo_errors += rqdpc;
6294		}
6295
6296		do {
6297			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6298			_bytes = ring->rx_stats.bytes;
6299			_packets = ring->rx_stats.packets;
6300		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6301		bytes += _bytes;
6302		packets += _packets;
6303	}
6304
6305	net_stats->rx_bytes = bytes;
6306	net_stats->rx_packets = packets;
6307
6308	bytes = 0;
6309	packets = 0;
6310	for (i = 0; i < adapter->num_tx_queues; i++) {
6311		struct igb_ring *ring = adapter->tx_ring[i];
6312		do {
6313			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6314			_bytes = ring->tx_stats.bytes;
6315			_packets = ring->tx_stats.packets;
6316		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6317		bytes += _bytes;
6318		packets += _packets;
6319	}
6320	net_stats->tx_bytes = bytes;
6321	net_stats->tx_packets = packets;
6322	rcu_read_unlock();
6323
6324	/* read stats registers */
6325	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6326	adapter->stats.gprc += rd32(E1000_GPRC);
6327	adapter->stats.gorc += rd32(E1000_GORCL);
6328	rd32(E1000_GORCH); /* clear GORCL */
6329	adapter->stats.bprc += rd32(E1000_BPRC);
6330	adapter->stats.mprc += rd32(E1000_MPRC);
6331	adapter->stats.roc += rd32(E1000_ROC);
6332
6333	adapter->stats.prc64 += rd32(E1000_PRC64);
6334	adapter->stats.prc127 += rd32(E1000_PRC127);
6335	adapter->stats.prc255 += rd32(E1000_PRC255);
6336	adapter->stats.prc511 += rd32(E1000_PRC511);
6337	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6338	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6339	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6340	adapter->stats.sec += rd32(E1000_SEC);
6341
6342	mpc = rd32(E1000_MPC);
6343	adapter->stats.mpc += mpc;
6344	net_stats->rx_fifo_errors += mpc;
6345	adapter->stats.scc += rd32(E1000_SCC);
6346	adapter->stats.ecol += rd32(E1000_ECOL);
6347	adapter->stats.mcc += rd32(E1000_MCC);
6348	adapter->stats.latecol += rd32(E1000_LATECOL);
6349	adapter->stats.dc += rd32(E1000_DC);
6350	adapter->stats.rlec += rd32(E1000_RLEC);
6351	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6352	adapter->stats.xontxc += rd32(E1000_XONTXC);
6353	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6354	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6355	adapter->stats.fcruc += rd32(E1000_FCRUC);
6356	adapter->stats.gptc += rd32(E1000_GPTC);
6357	adapter->stats.gotc += rd32(E1000_GOTCL);
6358	rd32(E1000_GOTCH); /* clear GOTCL */
6359	adapter->stats.rnbc += rd32(E1000_RNBC);
6360	adapter->stats.ruc += rd32(E1000_RUC);
6361	adapter->stats.rfc += rd32(E1000_RFC);
6362	adapter->stats.rjc += rd32(E1000_RJC);
6363	adapter->stats.tor += rd32(E1000_TORH);
6364	adapter->stats.tot += rd32(E1000_TOTH);
6365	adapter->stats.tpr += rd32(E1000_TPR);
6366
6367	adapter->stats.ptc64 += rd32(E1000_PTC64);
6368	adapter->stats.ptc127 += rd32(E1000_PTC127);
6369	adapter->stats.ptc255 += rd32(E1000_PTC255);
6370	adapter->stats.ptc511 += rd32(E1000_PTC511);
6371	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6372	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6373
6374	adapter->stats.mptc += rd32(E1000_MPTC);
6375	adapter->stats.bptc += rd32(E1000_BPTC);
6376
6377	adapter->stats.tpt += rd32(E1000_TPT);
6378	adapter->stats.colc += rd32(E1000_COLC);
6379
6380	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6381	/* read internal phy specific stats */
6382	reg = rd32(E1000_CTRL_EXT);
6383	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6384		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6385
6386		/* this stat has invalid values on i210/i211 */
6387		if ((hw->mac.type != e1000_i210) &&
6388		    (hw->mac.type != e1000_i211))
6389			adapter->stats.tncrs += rd32(E1000_TNCRS);
6390	}
6391
6392	adapter->stats.tsctc += rd32(E1000_TSCTC);
6393	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6394
6395	adapter->stats.iac += rd32(E1000_IAC);
6396	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6397	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6398	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6399	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6400	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6401	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6402	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6403	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6404
6405	/* Fill out the OS statistics structure */
6406	net_stats->multicast = adapter->stats.mprc;
6407	net_stats->collisions = adapter->stats.colc;
6408
6409	/* Rx Errors */
6410
6411	/* RLEC on some newer hardware can be incorrect so build
6412	 * our own version based on RUC and ROC
6413	 */
6414	net_stats->rx_errors = adapter->stats.rxerrc +
6415		adapter->stats.crcerrs + adapter->stats.algnerrc +
6416		adapter->stats.ruc + adapter->stats.roc +
6417		adapter->stats.cexterr;
6418	net_stats->rx_length_errors = adapter->stats.ruc +
6419				      adapter->stats.roc;
6420	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6421	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6422	net_stats->rx_missed_errors = adapter->stats.mpc;
6423
6424	/* Tx Errors */
6425	net_stats->tx_errors = adapter->stats.ecol +
6426			       adapter->stats.latecol;
6427	net_stats->tx_aborted_errors = adapter->stats.ecol;
6428	net_stats->tx_window_errors = adapter->stats.latecol;
6429	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6430
6431	/* Tx Dropped needs to be maintained elsewhere */
6432
6433	/* Management Stats */
6434	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6435	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6436	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6437
6438	/* OS2BMC Stats */
6439	reg = rd32(E1000_MANC);
6440	if (reg & E1000_MANC_EN_BMC2OS) {
6441		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6442		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6443		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6444		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6445	}
6446}
6447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6448static void igb_tsync_interrupt(struct igb_adapter *adapter)
6449{
6450	struct e1000_hw *hw = &adapter->hw;
 
6451	struct ptp_clock_event event;
6452	struct timespec64 ts;
6453	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6454
6455	if (tsicr & TSINTR_SYS_WRAP) {
6456		event.type = PTP_CLOCK_PPS;
6457		if (adapter->ptp_caps.pps)
6458			ptp_clock_event(adapter->ptp_clock, &event);
6459		ack |= TSINTR_SYS_WRAP;
6460	}
6461
6462	if (tsicr & E1000_TSICR_TXTS) {
6463		/* retrieve hardware timestamp */
6464		schedule_work(&adapter->ptp_tx_work);
6465		ack |= E1000_TSICR_TXTS;
6466	}
6467
6468	if (tsicr & TSINTR_TT0) {
6469		spin_lock(&adapter->tmreg_lock);
6470		ts = timespec64_add(adapter->perout[0].start,
6471				    adapter->perout[0].period);
6472		/* u32 conversion of tv_sec is safe until y2106 */
6473		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6474		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6475		tsauxc = rd32(E1000_TSAUXC);
6476		tsauxc |= TSAUXC_EN_TT0;
6477		wr32(E1000_TSAUXC, tsauxc);
6478		adapter->perout[0].start = ts;
6479		spin_unlock(&adapter->tmreg_lock);
6480		ack |= TSINTR_TT0;
6481	}
6482
6483	if (tsicr & TSINTR_TT1) {
6484		spin_lock(&adapter->tmreg_lock);
6485		ts = timespec64_add(adapter->perout[1].start,
6486				    adapter->perout[1].period);
6487		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6488		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6489		tsauxc = rd32(E1000_TSAUXC);
6490		tsauxc |= TSAUXC_EN_TT1;
6491		wr32(E1000_TSAUXC, tsauxc);
6492		adapter->perout[1].start = ts;
6493		spin_unlock(&adapter->tmreg_lock);
6494		ack |= TSINTR_TT1;
6495	}
6496
6497	if (tsicr & TSINTR_AUTT0) {
6498		nsec = rd32(E1000_AUXSTMPL0);
6499		sec  = rd32(E1000_AUXSTMPH0);
6500		event.type = PTP_CLOCK_EXTTS;
6501		event.index = 0;
6502		event.timestamp = sec * 1000000000ULL + nsec;
6503		ptp_clock_event(adapter->ptp_clock, &event);
6504		ack |= TSINTR_AUTT0;
6505	}
6506
6507	if (tsicr & TSINTR_AUTT1) {
6508		nsec = rd32(E1000_AUXSTMPL1);
6509		sec  = rd32(E1000_AUXSTMPH1);
6510		event.type = PTP_CLOCK_EXTTS;
6511		event.index = 1;
6512		event.timestamp = sec * 1000000000ULL + nsec;
6513		ptp_clock_event(adapter->ptp_clock, &event);
6514		ack |= TSINTR_AUTT1;
6515	}
6516
6517	/* acknowledge the interrupts */
6518	wr32(E1000_TSICR, ack);
6519}
6520
6521static irqreturn_t igb_msix_other(int irq, void *data)
6522{
6523	struct igb_adapter *adapter = data;
6524	struct e1000_hw *hw = &adapter->hw;
6525	u32 icr = rd32(E1000_ICR);
6526	/* reading ICR causes bit 31 of EICR to be cleared */
6527
6528	if (icr & E1000_ICR_DRSTA)
6529		schedule_work(&adapter->reset_task);
6530
6531	if (icr & E1000_ICR_DOUTSYNC) {
6532		/* HW is reporting DMA is out of sync */
6533		adapter->stats.doosync++;
6534		/* The DMA Out of Sync is also indication of a spoof event
6535		 * in IOV mode. Check the Wrong VM Behavior register to
6536		 * see if it is really a spoof event.
6537		 */
6538		igb_check_wvbr(adapter);
6539	}
6540
6541	/* Check for a mailbox event */
6542	if (icr & E1000_ICR_VMMB)
6543		igb_msg_task(adapter);
6544
6545	if (icr & E1000_ICR_LSC) {
6546		hw->mac.get_link_status = 1;
6547		/* guard against interrupt when we're going down */
6548		if (!test_bit(__IGB_DOWN, &adapter->state))
6549			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6550	}
6551
6552	if (icr & E1000_ICR_TS)
6553		igb_tsync_interrupt(adapter);
6554
6555	wr32(E1000_EIMS, adapter->eims_other);
6556
6557	return IRQ_HANDLED;
6558}
6559
6560static void igb_write_itr(struct igb_q_vector *q_vector)
6561{
6562	struct igb_adapter *adapter = q_vector->adapter;
6563	u32 itr_val = q_vector->itr_val & 0x7FFC;
6564
6565	if (!q_vector->set_itr)
6566		return;
6567
6568	if (!itr_val)
6569		itr_val = 0x4;
6570
6571	if (adapter->hw.mac.type == e1000_82575)
6572		itr_val |= itr_val << 16;
6573	else
6574		itr_val |= E1000_EITR_CNT_IGNR;
6575
6576	writel(itr_val, q_vector->itr_register);
6577	q_vector->set_itr = 0;
6578}
6579
6580static irqreturn_t igb_msix_ring(int irq, void *data)
6581{
6582	struct igb_q_vector *q_vector = data;
6583
6584	/* Write the ITR value calculated from the previous interrupt. */
6585	igb_write_itr(q_vector);
6586
6587	napi_schedule(&q_vector->napi);
6588
6589	return IRQ_HANDLED;
6590}
6591
6592#ifdef CONFIG_IGB_DCA
6593static void igb_update_tx_dca(struct igb_adapter *adapter,
6594			      struct igb_ring *tx_ring,
6595			      int cpu)
6596{
6597	struct e1000_hw *hw = &adapter->hw;
6598	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6599
6600	if (hw->mac.type != e1000_82575)
6601		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6602
6603	/* We can enable relaxed ordering for reads, but not writes when
6604	 * DCA is enabled.  This is due to a known issue in some chipsets
6605	 * which will cause the DCA tag to be cleared.
6606	 */
6607	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6608		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6609		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6610
6611	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6612}
6613
6614static void igb_update_rx_dca(struct igb_adapter *adapter,
6615			      struct igb_ring *rx_ring,
6616			      int cpu)
6617{
6618	struct e1000_hw *hw = &adapter->hw;
6619	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6620
6621	if (hw->mac.type != e1000_82575)
6622		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6623
6624	/* We can enable relaxed ordering for reads, but not writes when
6625	 * DCA is enabled.  This is due to a known issue in some chipsets
6626	 * which will cause the DCA tag to be cleared.
6627	 */
6628	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6629		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6630
6631	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6632}
6633
6634static void igb_update_dca(struct igb_q_vector *q_vector)
6635{
6636	struct igb_adapter *adapter = q_vector->adapter;
6637	int cpu = get_cpu();
6638
6639	if (q_vector->cpu == cpu)
6640		goto out_no_update;
6641
6642	if (q_vector->tx.ring)
6643		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6644
6645	if (q_vector->rx.ring)
6646		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6647
6648	q_vector->cpu = cpu;
6649out_no_update:
6650	put_cpu();
6651}
6652
6653static void igb_setup_dca(struct igb_adapter *adapter)
6654{
6655	struct e1000_hw *hw = &adapter->hw;
6656	int i;
6657
6658	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6659		return;
6660
6661	/* Always use CB2 mode, difference is masked in the CB driver. */
6662	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6663
6664	for (i = 0; i < adapter->num_q_vectors; i++) {
6665		adapter->q_vector[i]->cpu = -1;
6666		igb_update_dca(adapter->q_vector[i]);
6667	}
6668}
6669
6670static int __igb_notify_dca(struct device *dev, void *data)
6671{
6672	struct net_device *netdev = dev_get_drvdata(dev);
6673	struct igb_adapter *adapter = netdev_priv(netdev);
6674	struct pci_dev *pdev = adapter->pdev;
6675	struct e1000_hw *hw = &adapter->hw;
6676	unsigned long event = *(unsigned long *)data;
6677
6678	switch (event) {
6679	case DCA_PROVIDER_ADD:
6680		/* if already enabled, don't do it again */
6681		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6682			break;
6683		if (dca_add_requester(dev) == 0) {
6684			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6685			dev_info(&pdev->dev, "DCA enabled\n");
6686			igb_setup_dca(adapter);
6687			break;
6688		}
6689		/* Fall Through - since DCA is disabled. */
6690	case DCA_PROVIDER_REMOVE:
6691		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6692			/* without this a class_device is left
6693			 * hanging around in the sysfs model
6694			 */
6695			dca_remove_requester(dev);
6696			dev_info(&pdev->dev, "DCA disabled\n");
6697			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6698			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6699		}
6700		break;
6701	}
6702
6703	return 0;
6704}
6705
6706static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6707			  void *p)
6708{
6709	int ret_val;
6710
6711	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6712					 __igb_notify_dca);
6713
6714	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6715}
6716#endif /* CONFIG_IGB_DCA */
6717
6718#ifdef CONFIG_PCI_IOV
6719static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6720{
6721	unsigned char mac_addr[ETH_ALEN];
6722
6723	eth_zero_addr(mac_addr);
6724	igb_set_vf_mac(adapter, vf, mac_addr);
6725
6726	/* By default spoof check is enabled for all VFs */
6727	adapter->vf_data[vf].spoofchk_enabled = true;
6728
6729	/* By default VFs are not trusted */
6730	adapter->vf_data[vf].trusted = false;
6731
6732	return 0;
6733}
6734
6735#endif
6736static void igb_ping_all_vfs(struct igb_adapter *adapter)
6737{
6738	struct e1000_hw *hw = &adapter->hw;
6739	u32 ping;
6740	int i;
6741
6742	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6743		ping = E1000_PF_CONTROL_MSG;
6744		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6745			ping |= E1000_VT_MSGTYPE_CTS;
6746		igb_write_mbx(hw, &ping, 1, i);
6747	}
6748}
6749
6750static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6751{
6752	struct e1000_hw *hw = &adapter->hw;
6753	u32 vmolr = rd32(E1000_VMOLR(vf));
6754	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6755
6756	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6757			    IGB_VF_FLAG_MULTI_PROMISC);
6758	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6759
6760	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6761		vmolr |= E1000_VMOLR_MPME;
6762		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6763		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6764	} else {
6765		/* if we have hashes and we are clearing a multicast promisc
6766		 * flag we need to write the hashes to the MTA as this step
6767		 * was previously skipped
6768		 */
6769		if (vf_data->num_vf_mc_hashes > 30) {
6770			vmolr |= E1000_VMOLR_MPME;
6771		} else if (vf_data->num_vf_mc_hashes) {
6772			int j;
6773
6774			vmolr |= E1000_VMOLR_ROMPE;
6775			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6776				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6777		}
6778	}
6779
6780	wr32(E1000_VMOLR(vf), vmolr);
6781
6782	/* there are flags left unprocessed, likely not supported */
6783	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6784		return -EINVAL;
6785
6786	return 0;
6787}
6788
6789static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6790				  u32 *msgbuf, u32 vf)
6791{
6792	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6793	u16 *hash_list = (u16 *)&msgbuf[1];
6794	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6795	int i;
6796
6797	/* salt away the number of multicast addresses assigned
6798	 * to this VF for later use to restore when the PF multi cast
6799	 * list changes
6800	 */
6801	vf_data->num_vf_mc_hashes = n;
6802
6803	/* only up to 30 hash values supported */
6804	if (n > 30)
6805		n = 30;
6806
6807	/* store the hashes for later use */
6808	for (i = 0; i < n; i++)
6809		vf_data->vf_mc_hashes[i] = hash_list[i];
6810
6811	/* Flush and reset the mta with the new values */
6812	igb_set_rx_mode(adapter->netdev);
6813
6814	return 0;
6815}
6816
6817static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6818{
6819	struct e1000_hw *hw = &adapter->hw;
6820	struct vf_data_storage *vf_data;
6821	int i, j;
6822
6823	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6824		u32 vmolr = rd32(E1000_VMOLR(i));
6825
6826		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6827
6828		vf_data = &adapter->vf_data[i];
6829
6830		if ((vf_data->num_vf_mc_hashes > 30) ||
6831		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6832			vmolr |= E1000_VMOLR_MPME;
6833		} else if (vf_data->num_vf_mc_hashes) {
6834			vmolr |= E1000_VMOLR_ROMPE;
6835			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6836				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6837		}
6838		wr32(E1000_VMOLR(i), vmolr);
6839	}
6840}
6841
6842static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6843{
6844	struct e1000_hw *hw = &adapter->hw;
6845	u32 pool_mask, vlvf_mask, i;
6846
6847	/* create mask for VF and other pools */
6848	pool_mask = E1000_VLVF_POOLSEL_MASK;
6849	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6850
6851	/* drop PF from pool bits */
6852	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6853			     adapter->vfs_allocated_count);
6854
6855	/* Find the vlan filter for this id */
6856	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6857		u32 vlvf = rd32(E1000_VLVF(i));
6858		u32 vfta_mask, vid, vfta;
6859
6860		/* remove the vf from the pool */
6861		if (!(vlvf & vlvf_mask))
6862			continue;
6863
6864		/* clear out bit from VLVF */
6865		vlvf ^= vlvf_mask;
6866
6867		/* if other pools are present, just remove ourselves */
6868		if (vlvf & pool_mask)
6869			goto update_vlvfb;
6870
6871		/* if PF is present, leave VFTA */
6872		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6873			goto update_vlvf;
6874
6875		vid = vlvf & E1000_VLVF_VLANID_MASK;
6876		vfta_mask = BIT(vid % 32);
6877
6878		/* clear bit from VFTA */
6879		vfta = adapter->shadow_vfta[vid / 32];
6880		if (vfta & vfta_mask)
6881			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6882update_vlvf:
6883		/* clear pool selection enable */
6884		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6885			vlvf &= E1000_VLVF_POOLSEL_MASK;
6886		else
6887			vlvf = 0;
6888update_vlvfb:
6889		/* clear pool bits */
6890		wr32(E1000_VLVF(i), vlvf);
6891	}
6892}
6893
6894static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6895{
6896	u32 vlvf;
6897	int idx;
6898
6899	/* short cut the special case */
6900	if (vlan == 0)
6901		return 0;
6902
6903	/* Search for the VLAN id in the VLVF entries */
6904	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6905		vlvf = rd32(E1000_VLVF(idx));
6906		if ((vlvf & VLAN_VID_MASK) == vlan)
6907			break;
6908	}
6909
6910	return idx;
6911}
6912
6913static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6914{
6915	struct e1000_hw *hw = &adapter->hw;
6916	u32 bits, pf_id;
6917	int idx;
6918
6919	idx = igb_find_vlvf_entry(hw, vid);
6920	if (!idx)
6921		return;
6922
6923	/* See if any other pools are set for this VLAN filter
6924	 * entry other than the PF.
6925	 */
6926	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6927	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6928	bits &= rd32(E1000_VLVF(idx));
6929
6930	/* Disable the filter so this falls into the default pool. */
6931	if (!bits) {
6932		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6933			wr32(E1000_VLVF(idx), BIT(pf_id));
6934		else
6935			wr32(E1000_VLVF(idx), 0);
6936	}
6937}
6938
6939static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6940			   bool add, u32 vf)
6941{
6942	int pf_id = adapter->vfs_allocated_count;
6943	struct e1000_hw *hw = &adapter->hw;
6944	int err;
6945
6946	/* If VLAN overlaps with one the PF is currently monitoring make
6947	 * sure that we are able to allocate a VLVF entry.  This may be
6948	 * redundant but it guarantees PF will maintain visibility to
6949	 * the VLAN.
6950	 */
6951	if (add && test_bit(vid, adapter->active_vlans)) {
6952		err = igb_vfta_set(hw, vid, pf_id, true, false);
6953		if (err)
6954			return err;
6955	}
6956
6957	err = igb_vfta_set(hw, vid, vf, add, false);
6958
6959	if (add && !err)
6960		return err;
6961
6962	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6963	 * we may need to drop the PF pool bit in order to allow us to free
6964	 * up the VLVF resources.
6965	 */
6966	if (test_bit(vid, adapter->active_vlans) ||
6967	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6968		igb_update_pf_vlvf(adapter, vid);
6969
6970	return err;
6971}
6972
6973static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6974{
6975	struct e1000_hw *hw = &adapter->hw;
6976
6977	if (vid)
6978		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6979	else
6980		wr32(E1000_VMVIR(vf), 0);
6981}
6982
6983static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6984				u16 vlan, u8 qos)
6985{
6986	int err;
6987
6988	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6989	if (err)
6990		return err;
6991
6992	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6993	igb_set_vmolr(adapter, vf, !vlan);
6994
6995	/* revoke access to previous VLAN */
6996	if (vlan != adapter->vf_data[vf].pf_vlan)
6997		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6998				false, vf);
6999
7000	adapter->vf_data[vf].pf_vlan = vlan;
7001	adapter->vf_data[vf].pf_qos = qos;
7002	igb_set_vf_vlan_strip(adapter, vf, true);
7003	dev_info(&adapter->pdev->dev,
7004		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7005	if (test_bit(__IGB_DOWN, &adapter->state)) {
7006		dev_warn(&adapter->pdev->dev,
7007			 "The VF VLAN has been set, but the PF device is not up.\n");
7008		dev_warn(&adapter->pdev->dev,
7009			 "Bring the PF device up before attempting to use the VF device.\n");
7010	}
7011
7012	return err;
7013}
7014
7015static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7016{
7017	/* Restore tagless access via VLAN 0 */
7018	igb_set_vf_vlan(adapter, 0, true, vf);
7019
7020	igb_set_vmvir(adapter, 0, vf);
7021	igb_set_vmolr(adapter, vf, true);
7022
7023	/* Remove any PF assigned VLAN */
7024	if (adapter->vf_data[vf].pf_vlan)
7025		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026				false, vf);
7027
7028	adapter->vf_data[vf].pf_vlan = 0;
7029	adapter->vf_data[vf].pf_qos = 0;
7030	igb_set_vf_vlan_strip(adapter, vf, false);
7031
7032	return 0;
7033}
7034
7035static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7036			       u16 vlan, u8 qos, __be16 vlan_proto)
7037{
7038	struct igb_adapter *adapter = netdev_priv(netdev);
7039
7040	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7041		return -EINVAL;
7042
7043	if (vlan_proto != htons(ETH_P_8021Q))
7044		return -EPROTONOSUPPORT;
7045
7046	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7047			       igb_disable_port_vlan(adapter, vf);
7048}
7049
7050static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7051{
7052	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7053	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7054	int ret;
7055
7056	if (adapter->vf_data[vf].pf_vlan)
7057		return -1;
7058
7059	/* VLAN 0 is a special case, don't allow it to be removed */
7060	if (!vid && !add)
7061		return 0;
7062
7063	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7064	if (!ret)
7065		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7066	return ret;
7067}
7068
7069static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7070{
7071	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072
7073	/* clear flags - except flag that indicates PF has set the MAC */
7074	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7075	vf_data->last_nack = jiffies;
7076
7077	/* reset vlans for device */
7078	igb_clear_vf_vfta(adapter, vf);
7079	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7080	igb_set_vmvir(adapter, vf_data->pf_vlan |
7081			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7082	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7083	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7084
7085	/* reset multicast table array for vf */
7086	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7087
7088	/* Flush and reset the mta with the new values */
7089	igb_set_rx_mode(adapter->netdev);
7090}
7091
7092static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7093{
7094	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7095
7096	/* clear mac address as we were hotplug removed/added */
7097	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7098		eth_zero_addr(vf_mac);
7099
7100	/* process remaining reset events */
7101	igb_vf_reset(adapter, vf);
7102}
7103
7104static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7105{
7106	struct e1000_hw *hw = &adapter->hw;
7107	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7108	u32 reg, msgbuf[3];
7109	u8 *addr = (u8 *)(&msgbuf[1]);
7110
7111	/* process all the same items cleared in a function level reset */
7112	igb_vf_reset(adapter, vf);
7113
7114	/* set vf mac address */
7115	igb_set_vf_mac(adapter, vf, vf_mac);
7116
7117	/* enable transmit and receive for vf */
7118	reg = rd32(E1000_VFTE);
7119	wr32(E1000_VFTE, reg | BIT(vf));
7120	reg = rd32(E1000_VFRE);
7121	wr32(E1000_VFRE, reg | BIT(vf));
7122
7123	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7124
7125	/* reply to reset with ack and vf mac address */
7126	if (!is_zero_ether_addr(vf_mac)) {
7127		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7128		memcpy(addr, vf_mac, ETH_ALEN);
7129	} else {
7130		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7131	}
7132	igb_write_mbx(hw, msgbuf, 3, vf);
7133}
7134
7135static void igb_flush_mac_table(struct igb_adapter *adapter)
7136{
7137	struct e1000_hw *hw = &adapter->hw;
7138	int i;
7139
7140	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7141		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7142		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7143		adapter->mac_table[i].queue = 0;
7144		igb_rar_set_index(adapter, i);
7145	}
7146}
7147
7148static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7149{
7150	struct e1000_hw *hw = &adapter->hw;
7151	/* do not count rar entries reserved for VFs MAC addresses */
7152	int rar_entries = hw->mac.rar_entry_count -
7153			  adapter->vfs_allocated_count;
7154	int i, count = 0;
7155
7156	for (i = 0; i < rar_entries; i++) {
7157		/* do not count default entries */
7158		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7159			continue;
7160
7161		/* do not count "in use" entries for different queues */
7162		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7163		    (adapter->mac_table[i].queue != queue))
7164			continue;
7165
7166		count++;
7167	}
7168
7169	return count;
7170}
7171
7172/* Set default MAC address for the PF in the first RAR entry */
7173static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7174{
7175	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7176
7177	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7178	mac_table->queue = adapter->vfs_allocated_count;
7179	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7180
7181	igb_rar_set_index(adapter, 0);
7182}
7183
7184/* If the filter to be added and an already existing filter express
7185 * the same address and address type, it should be possible to only
7186 * override the other configurations, for example the queue to steer
7187 * traffic.
7188 */
7189static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7190				      const u8 *addr, const u8 flags)
7191{
7192	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7193		return true;
7194
7195	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7196	    (flags & IGB_MAC_STATE_SRC_ADDR))
7197		return false;
7198
7199	if (!ether_addr_equal(addr, entry->addr))
7200		return false;
7201
7202	return true;
7203}
7204
7205/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7206 * 'flags' is used to indicate what kind of match is made, match is by
7207 * default for the destination address, if matching by source address
7208 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7209 */
7210static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7211				    const u8 *addr, const u8 queue,
7212				    const u8 flags)
7213{
7214	struct e1000_hw *hw = &adapter->hw;
7215	int rar_entries = hw->mac.rar_entry_count -
7216			  adapter->vfs_allocated_count;
7217	int i;
7218
7219	if (is_zero_ether_addr(addr))
7220		return -EINVAL;
7221
7222	/* Search for the first empty entry in the MAC table.
7223	 * Do not touch entries at the end of the table reserved for the VF MAC
7224	 * addresses.
7225	 */
7226	for (i = 0; i < rar_entries; i++) {
7227		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7228					       addr, flags))
7229			continue;
7230
7231		ether_addr_copy(adapter->mac_table[i].addr, addr);
7232		adapter->mac_table[i].queue = queue;
7233		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7234
7235		igb_rar_set_index(adapter, i);
7236		return i;
7237	}
7238
7239	return -ENOSPC;
7240}
7241
7242static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7243			      const u8 queue)
7244{
7245	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7246}
7247
7248/* Remove a MAC filter for 'addr' directing matching traffic to
7249 * 'queue', 'flags' is used to indicate what kind of match need to be
7250 * removed, match is by default for the destination address, if
7251 * matching by source address is to be removed the flag
7252 * IGB_MAC_STATE_SRC_ADDR can be used.
7253 */
7254static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7255				    const u8 *addr, const u8 queue,
7256				    const u8 flags)
7257{
7258	struct e1000_hw *hw = &adapter->hw;
7259	int rar_entries = hw->mac.rar_entry_count -
7260			  adapter->vfs_allocated_count;
7261	int i;
7262
7263	if (is_zero_ether_addr(addr))
7264		return -EINVAL;
7265
7266	/* Search for matching entry in the MAC table based on given address
7267	 * and queue. Do not touch entries at the end of the table reserved
7268	 * for the VF MAC addresses.
7269	 */
7270	for (i = 0; i < rar_entries; i++) {
7271		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7272			continue;
7273		if ((adapter->mac_table[i].state & flags) != flags)
7274			continue;
7275		if (adapter->mac_table[i].queue != queue)
7276			continue;
7277		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7278			continue;
7279
7280		/* When a filter for the default address is "deleted",
7281		 * we return it to its initial configuration
7282		 */
7283		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7284			adapter->mac_table[i].state =
7285				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7286			adapter->mac_table[i].queue =
7287				adapter->vfs_allocated_count;
7288		} else {
7289			adapter->mac_table[i].state = 0;
7290			adapter->mac_table[i].queue = 0;
7291			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7292		}
7293
7294		igb_rar_set_index(adapter, i);
7295		return 0;
7296	}
7297
7298	return -ENOENT;
7299}
7300
7301static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7302			      const u8 queue)
7303{
7304	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7305}
7306
7307int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7308				const u8 *addr, u8 queue, u8 flags)
7309{
7310	struct e1000_hw *hw = &adapter->hw;
7311
7312	/* In theory, this should be supported on 82575 as well, but
7313	 * that part wasn't easily accessible during development.
7314	 */
7315	if (hw->mac.type != e1000_i210)
7316		return -EOPNOTSUPP;
7317
7318	return igb_add_mac_filter_flags(adapter, addr, queue,
7319					IGB_MAC_STATE_QUEUE_STEERING | flags);
7320}
7321
7322int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7323				const u8 *addr, u8 queue, u8 flags)
7324{
7325	return igb_del_mac_filter_flags(adapter, addr, queue,
7326					IGB_MAC_STATE_QUEUE_STEERING | flags);
7327}
7328
7329static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7330{
7331	struct igb_adapter *adapter = netdev_priv(netdev);
7332	int ret;
7333
7334	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7335
7336	return min_t(int, ret, 0);
7337}
7338
7339static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7340{
7341	struct igb_adapter *adapter = netdev_priv(netdev);
7342
7343	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7344
7345	return 0;
7346}
7347
7348static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7349				 const u32 info, const u8 *addr)
7350{
7351	struct pci_dev *pdev = adapter->pdev;
7352	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7353	struct list_head *pos;
7354	struct vf_mac_filter *entry = NULL;
7355	int ret = 0;
7356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7357	switch (info) {
7358	case E1000_VF_MAC_FILTER_CLR:
7359		/* remove all unicast MAC filters related to the current VF */
7360		list_for_each(pos, &adapter->vf_macs.l) {
7361			entry = list_entry(pos, struct vf_mac_filter, l);
7362			if (entry->vf == vf) {
7363				entry->vf = -1;
7364				entry->free = true;
7365				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7366			}
7367		}
7368		break;
7369	case E1000_VF_MAC_FILTER_ADD:
7370		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7371		    !vf_data->trusted) {
7372			dev_warn(&pdev->dev,
7373				 "VF %d requested MAC filter but is administratively denied\n",
7374				 vf);
7375			return -EINVAL;
7376		}
7377		if (!is_valid_ether_addr(addr)) {
7378			dev_warn(&pdev->dev,
7379				 "VF %d attempted to set invalid MAC filter\n",
7380				 vf);
7381			return -EINVAL;
7382		}
7383
7384		/* try to find empty slot in the list */
7385		list_for_each(pos, &adapter->vf_macs.l) {
7386			entry = list_entry(pos, struct vf_mac_filter, l);
7387			if (entry->free)
7388				break;
7389		}
7390
7391		if (entry && entry->free) {
7392			entry->free = false;
7393			entry->vf = vf;
7394			ether_addr_copy(entry->vf_mac, addr);
7395
7396			ret = igb_add_mac_filter(adapter, addr, vf);
7397			ret = min_t(int, ret, 0);
7398		} else {
7399			ret = -ENOSPC;
7400		}
7401
7402		if (ret == -ENOSPC)
7403			dev_warn(&pdev->dev,
7404				 "VF %d has requested MAC filter but there is no space for it\n",
7405				 vf);
7406		break;
7407	default:
7408		ret = -EINVAL;
7409		break;
7410	}
7411
7412	return ret;
7413}
7414
7415static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7416{
7417	struct pci_dev *pdev = adapter->pdev;
7418	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7419	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7420
7421	/* The VF MAC Address is stored in a packed array of bytes
7422	 * starting at the second 32 bit word of the msg array
7423	 */
7424	unsigned char *addr = (unsigned char *)&msg[1];
7425	int ret = 0;
7426
7427	if (!info) {
7428		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7429		    !vf_data->trusted) {
7430			dev_warn(&pdev->dev,
7431				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7432				 vf);
7433			return -EINVAL;
7434		}
7435
7436		if (!is_valid_ether_addr(addr)) {
7437			dev_warn(&pdev->dev,
7438				 "VF %d attempted to set invalid MAC\n",
7439				 vf);
7440			return -EINVAL;
7441		}
7442
7443		ret = igb_set_vf_mac(adapter, vf, addr);
7444	} else {
7445		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7446	}
7447
7448	return ret;
7449}
7450
7451static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7452{
7453	struct e1000_hw *hw = &adapter->hw;
7454	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7455	u32 msg = E1000_VT_MSGTYPE_NACK;
7456
7457	/* if device isn't clear to send it shouldn't be reading either */
7458	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7459	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7460		igb_write_mbx(hw, &msg, 1, vf);
7461		vf_data->last_nack = jiffies;
7462	}
7463}
7464
7465static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7466{
7467	struct pci_dev *pdev = adapter->pdev;
7468	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7469	struct e1000_hw *hw = &adapter->hw;
7470	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7471	s32 retval;
7472
7473	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7474
7475	if (retval) {
7476		/* if receive failed revoke VF CTS stats and restart init */
7477		dev_err(&pdev->dev, "Error receiving message from VF\n");
7478		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7479		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7480			goto unlock;
7481		goto out;
7482	}
7483
7484	/* this is a message we already processed, do nothing */
7485	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7486		goto unlock;
7487
7488	/* until the vf completes a reset it should not be
7489	 * allowed to start any configuration.
7490	 */
7491	if (msgbuf[0] == E1000_VF_RESET) {
7492		/* unlocks mailbox */
7493		igb_vf_reset_msg(adapter, vf);
7494		return;
7495	}
7496
7497	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7498		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7499			goto unlock;
7500		retval = -1;
7501		goto out;
7502	}
7503
7504	switch ((msgbuf[0] & 0xFFFF)) {
7505	case E1000_VF_SET_MAC_ADDR:
7506		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7507		break;
7508	case E1000_VF_SET_PROMISC:
7509		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7510		break;
7511	case E1000_VF_SET_MULTICAST:
7512		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7513		break;
7514	case E1000_VF_SET_LPE:
7515		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7516		break;
7517	case E1000_VF_SET_VLAN:
7518		retval = -1;
7519		if (vf_data->pf_vlan)
7520			dev_warn(&pdev->dev,
7521				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7522				 vf);
7523		else
7524			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7525		break;
7526	default:
7527		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7528		retval = -1;
7529		break;
7530	}
7531
7532	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7533out:
7534	/* notify the VF of the results of what it sent us */
7535	if (retval)
7536		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7537	else
7538		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7539
7540	/* unlocks mailbox */
7541	igb_write_mbx(hw, msgbuf, 1, vf);
7542	return;
7543
7544unlock:
7545	igb_unlock_mbx(hw, vf);
7546}
7547
7548static void igb_msg_task(struct igb_adapter *adapter)
7549{
7550	struct e1000_hw *hw = &adapter->hw;
 
7551	u32 vf;
7552
 
7553	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7554		/* process any reset requests */
7555		if (!igb_check_for_rst(hw, vf))
7556			igb_vf_reset_event(adapter, vf);
7557
7558		/* process any messages pending */
7559		if (!igb_check_for_msg(hw, vf))
7560			igb_rcv_msg_from_vf(adapter, vf);
7561
7562		/* process any acks */
7563		if (!igb_check_for_ack(hw, vf))
7564			igb_rcv_ack_from_vf(adapter, vf);
7565	}
 
7566}
7567
7568/**
7569 *  igb_set_uta - Set unicast filter table address
7570 *  @adapter: board private structure
7571 *  @set: boolean indicating if we are setting or clearing bits
7572 *
7573 *  The unicast table address is a register array of 32-bit registers.
7574 *  The table is meant to be used in a way similar to how the MTA is used
7575 *  however due to certain limitations in the hardware it is necessary to
7576 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7577 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7578 **/
7579static void igb_set_uta(struct igb_adapter *adapter, bool set)
7580{
7581	struct e1000_hw *hw = &adapter->hw;
7582	u32 uta = set ? ~0 : 0;
7583	int i;
7584
7585	/* we only need to do this if VMDq is enabled */
7586	if (!adapter->vfs_allocated_count)
7587		return;
7588
7589	for (i = hw->mac.uta_reg_count; i--;)
7590		array_wr32(E1000_UTA, i, uta);
7591}
7592
7593/**
7594 *  igb_intr_msi - Interrupt Handler
7595 *  @irq: interrupt number
7596 *  @data: pointer to a network interface device structure
7597 **/
7598static irqreturn_t igb_intr_msi(int irq, void *data)
7599{
7600	struct igb_adapter *adapter = data;
7601	struct igb_q_vector *q_vector = adapter->q_vector[0];
7602	struct e1000_hw *hw = &adapter->hw;
7603	/* read ICR disables interrupts using IAM */
7604	u32 icr = rd32(E1000_ICR);
7605
7606	igb_write_itr(q_vector);
7607
7608	if (icr & E1000_ICR_DRSTA)
7609		schedule_work(&adapter->reset_task);
7610
7611	if (icr & E1000_ICR_DOUTSYNC) {
7612		/* HW is reporting DMA is out of sync */
7613		adapter->stats.doosync++;
7614	}
7615
7616	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7617		hw->mac.get_link_status = 1;
7618		if (!test_bit(__IGB_DOWN, &adapter->state))
7619			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7620	}
7621
7622	if (icr & E1000_ICR_TS)
7623		igb_tsync_interrupt(adapter);
7624
7625	napi_schedule(&q_vector->napi);
7626
7627	return IRQ_HANDLED;
7628}
7629
7630/**
7631 *  igb_intr - Legacy Interrupt Handler
7632 *  @irq: interrupt number
7633 *  @data: pointer to a network interface device structure
7634 **/
7635static irqreturn_t igb_intr(int irq, void *data)
7636{
7637	struct igb_adapter *adapter = data;
7638	struct igb_q_vector *q_vector = adapter->q_vector[0];
7639	struct e1000_hw *hw = &adapter->hw;
7640	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7641	 * need for the IMC write
7642	 */
7643	u32 icr = rd32(E1000_ICR);
7644
7645	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7646	 * not set, then the adapter didn't send an interrupt
7647	 */
7648	if (!(icr & E1000_ICR_INT_ASSERTED))
7649		return IRQ_NONE;
7650
7651	igb_write_itr(q_vector);
7652
7653	if (icr & E1000_ICR_DRSTA)
7654		schedule_work(&adapter->reset_task);
7655
7656	if (icr & E1000_ICR_DOUTSYNC) {
7657		/* HW is reporting DMA is out of sync */
7658		adapter->stats.doosync++;
7659	}
7660
7661	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7662		hw->mac.get_link_status = 1;
7663		/* guard against interrupt when we're going down */
7664		if (!test_bit(__IGB_DOWN, &adapter->state))
7665			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7666	}
7667
7668	if (icr & E1000_ICR_TS)
7669		igb_tsync_interrupt(adapter);
7670
7671	napi_schedule(&q_vector->napi);
7672
7673	return IRQ_HANDLED;
7674}
7675
7676static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7677{
7678	struct igb_adapter *adapter = q_vector->adapter;
7679	struct e1000_hw *hw = &adapter->hw;
7680
7681	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7682	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7683		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7684			igb_set_itr(q_vector);
7685		else
7686			igb_update_ring_itr(q_vector);
7687	}
7688
7689	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7690		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7691			wr32(E1000_EIMS, q_vector->eims_value);
7692		else
7693			igb_irq_enable(adapter);
7694	}
7695}
7696
7697/**
7698 *  igb_poll - NAPI Rx polling callback
7699 *  @napi: napi polling structure
7700 *  @budget: count of how many packets we should handle
7701 **/
7702static int igb_poll(struct napi_struct *napi, int budget)
7703{
7704	struct igb_q_vector *q_vector = container_of(napi,
7705						     struct igb_q_vector,
7706						     napi);
7707	bool clean_complete = true;
7708	int work_done = 0;
7709
7710#ifdef CONFIG_IGB_DCA
7711	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7712		igb_update_dca(q_vector);
7713#endif
7714	if (q_vector->tx.ring)
7715		clean_complete = igb_clean_tx_irq(q_vector, budget);
7716
7717	if (q_vector->rx.ring) {
7718		int cleaned = igb_clean_rx_irq(q_vector, budget);
7719
7720		work_done += cleaned;
7721		if (cleaned >= budget)
7722			clean_complete = false;
7723	}
7724
7725	/* If all work not completed, return budget and keep polling */
7726	if (!clean_complete)
7727		return budget;
7728
7729	/* Exit the polling mode, but don't re-enable interrupts if stack might
7730	 * poll us due to busy-polling
7731	 */
7732	if (likely(napi_complete_done(napi, work_done)))
7733		igb_ring_irq_enable(q_vector);
7734
7735	return min(work_done, budget - 1);
7736}
7737
7738/**
7739 *  igb_clean_tx_irq - Reclaim resources after transmit completes
7740 *  @q_vector: pointer to q_vector containing needed info
7741 *  @napi_budget: Used to determine if we are in netpoll
7742 *
7743 *  returns true if ring is completely cleaned
7744 **/
7745static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7746{
7747	struct igb_adapter *adapter = q_vector->adapter;
7748	struct igb_ring *tx_ring = q_vector->tx.ring;
7749	struct igb_tx_buffer *tx_buffer;
7750	union e1000_adv_tx_desc *tx_desc;
7751	unsigned int total_bytes = 0, total_packets = 0;
7752	unsigned int budget = q_vector->tx.work_limit;
7753	unsigned int i = tx_ring->next_to_clean;
7754
7755	if (test_bit(__IGB_DOWN, &adapter->state))
7756		return true;
7757
7758	tx_buffer = &tx_ring->tx_buffer_info[i];
7759	tx_desc = IGB_TX_DESC(tx_ring, i);
7760	i -= tx_ring->count;
7761
7762	do {
7763		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7764
7765		/* if next_to_watch is not set then there is no work pending */
7766		if (!eop_desc)
7767			break;
7768
7769		/* prevent any other reads prior to eop_desc */
7770		smp_rmb();
7771
7772		/* if DD is not set pending work has not been completed */
7773		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7774			break;
7775
7776		/* clear next_to_watch to prevent false hangs */
7777		tx_buffer->next_to_watch = NULL;
7778
7779		/* update the statistics for this packet */
7780		total_bytes += tx_buffer->bytecount;
7781		total_packets += tx_buffer->gso_segs;
7782
7783		/* free the skb */
7784		napi_consume_skb(tx_buffer->skb, napi_budget);
 
 
 
7785
7786		/* unmap skb header data */
7787		dma_unmap_single(tx_ring->dev,
7788				 dma_unmap_addr(tx_buffer, dma),
7789				 dma_unmap_len(tx_buffer, len),
7790				 DMA_TO_DEVICE);
7791
7792		/* clear tx_buffer data */
7793		dma_unmap_len_set(tx_buffer, len, 0);
7794
7795		/* clear last DMA location and unmap remaining buffers */
7796		while (tx_desc != eop_desc) {
7797			tx_buffer++;
7798			tx_desc++;
7799			i++;
7800			if (unlikely(!i)) {
7801				i -= tx_ring->count;
7802				tx_buffer = tx_ring->tx_buffer_info;
7803				tx_desc = IGB_TX_DESC(tx_ring, 0);
7804			}
7805
7806			/* unmap any remaining paged data */
7807			if (dma_unmap_len(tx_buffer, len)) {
7808				dma_unmap_page(tx_ring->dev,
7809					       dma_unmap_addr(tx_buffer, dma),
7810					       dma_unmap_len(tx_buffer, len),
7811					       DMA_TO_DEVICE);
7812				dma_unmap_len_set(tx_buffer, len, 0);
7813			}
7814		}
7815
7816		/* move us one more past the eop_desc for start of next pkt */
7817		tx_buffer++;
7818		tx_desc++;
7819		i++;
7820		if (unlikely(!i)) {
7821			i -= tx_ring->count;
7822			tx_buffer = tx_ring->tx_buffer_info;
7823			tx_desc = IGB_TX_DESC(tx_ring, 0);
7824		}
7825
7826		/* issue prefetch for next Tx descriptor */
7827		prefetch(tx_desc);
7828
7829		/* update budget accounting */
7830		budget--;
7831	} while (likely(budget));
7832
7833	netdev_tx_completed_queue(txring_txq(tx_ring),
7834				  total_packets, total_bytes);
7835	i += tx_ring->count;
7836	tx_ring->next_to_clean = i;
7837	u64_stats_update_begin(&tx_ring->tx_syncp);
7838	tx_ring->tx_stats.bytes += total_bytes;
7839	tx_ring->tx_stats.packets += total_packets;
7840	u64_stats_update_end(&tx_ring->tx_syncp);
7841	q_vector->tx.total_bytes += total_bytes;
7842	q_vector->tx.total_packets += total_packets;
7843
7844	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7845		struct e1000_hw *hw = &adapter->hw;
7846
7847		/* Detect a transmit hang in hardware, this serializes the
7848		 * check with the clearing of time_stamp and movement of i
7849		 */
7850		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7851		if (tx_buffer->next_to_watch &&
7852		    time_after(jiffies, tx_buffer->time_stamp +
7853			       (adapter->tx_timeout_factor * HZ)) &&
7854		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7855
7856			/* detected Tx unit hang */
7857			dev_err(tx_ring->dev,
7858				"Detected Tx Unit Hang\n"
7859				"  Tx Queue             <%d>\n"
7860				"  TDH                  <%x>\n"
7861				"  TDT                  <%x>\n"
7862				"  next_to_use          <%x>\n"
7863				"  next_to_clean        <%x>\n"
7864				"buffer_info[next_to_clean]\n"
7865				"  time_stamp           <%lx>\n"
7866				"  next_to_watch        <%p>\n"
7867				"  jiffies              <%lx>\n"
7868				"  desc.status          <%x>\n",
7869				tx_ring->queue_index,
7870				rd32(E1000_TDH(tx_ring->reg_idx)),
7871				readl(tx_ring->tail),
7872				tx_ring->next_to_use,
7873				tx_ring->next_to_clean,
7874				tx_buffer->time_stamp,
7875				tx_buffer->next_to_watch,
7876				jiffies,
7877				tx_buffer->next_to_watch->wb.status);
7878			netif_stop_subqueue(tx_ring->netdev,
7879					    tx_ring->queue_index);
7880
7881			/* we are about to reset, no point in enabling stuff */
7882			return true;
7883		}
7884	}
7885
7886#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7887	if (unlikely(total_packets &&
7888	    netif_carrier_ok(tx_ring->netdev) &&
7889	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7890		/* Make sure that anybody stopping the queue after this
7891		 * sees the new next_to_clean.
7892		 */
7893		smp_mb();
7894		if (__netif_subqueue_stopped(tx_ring->netdev,
7895					     tx_ring->queue_index) &&
7896		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7897			netif_wake_subqueue(tx_ring->netdev,
7898					    tx_ring->queue_index);
7899
7900			u64_stats_update_begin(&tx_ring->tx_syncp);
7901			tx_ring->tx_stats.restart_queue++;
7902			u64_stats_update_end(&tx_ring->tx_syncp);
7903		}
7904	}
7905
7906	return !!budget;
7907}
7908
7909/**
7910 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7911 *  @rx_ring: rx descriptor ring to store buffers on
7912 *  @old_buff: donor buffer to have page reused
7913 *
7914 *  Synchronizes page for reuse by the adapter
7915 **/
7916static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7917			      struct igb_rx_buffer *old_buff)
7918{
7919	struct igb_rx_buffer *new_buff;
7920	u16 nta = rx_ring->next_to_alloc;
7921
7922	new_buff = &rx_ring->rx_buffer_info[nta];
7923
7924	/* update, and store next to alloc */
7925	nta++;
7926	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7927
7928	/* Transfer page from old buffer to new buffer.
7929	 * Move each member individually to avoid possible store
7930	 * forwarding stalls.
7931	 */
7932	new_buff->dma		= old_buff->dma;
7933	new_buff->page		= old_buff->page;
7934	new_buff->page_offset	= old_buff->page_offset;
7935	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7936}
7937
7938static inline bool igb_page_is_reserved(struct page *page)
7939{
7940	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7941}
7942
7943static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7944{
7945	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7946	struct page *page = rx_buffer->page;
7947
7948	/* avoid re-using remote pages */
7949	if (unlikely(igb_page_is_reserved(page)))
7950		return false;
7951
7952#if (PAGE_SIZE < 8192)
7953	/* if we are only owner of page we can reuse it */
7954	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7955		return false;
7956#else
7957#define IGB_LAST_OFFSET \
7958	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7959
7960	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7961		return false;
7962#endif
7963
7964	/* If we have drained the page fragment pool we need to update
7965	 * the pagecnt_bias and page count so that we fully restock the
7966	 * number of references the driver holds.
7967	 */
7968	if (unlikely(!pagecnt_bias)) {
7969		page_ref_add(page, USHRT_MAX);
7970		rx_buffer->pagecnt_bias = USHRT_MAX;
7971	}
7972
7973	return true;
7974}
7975
7976/**
7977 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7978 *  @rx_ring: rx descriptor ring to transact packets on
7979 *  @rx_buffer: buffer containing page to add
7980 *  @skb: sk_buff to place the data into
7981 *  @size: size of buffer to be added
7982 *
7983 *  This function will add the data contained in rx_buffer->page to the skb.
7984 **/
7985static void igb_add_rx_frag(struct igb_ring *rx_ring,
7986			    struct igb_rx_buffer *rx_buffer,
7987			    struct sk_buff *skb,
7988			    unsigned int size)
7989{
7990#if (PAGE_SIZE < 8192)
7991	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7992#else
7993	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7994				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7995				SKB_DATA_ALIGN(size);
7996#endif
7997	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7998			rx_buffer->page_offset, size, truesize);
7999#if (PAGE_SIZE < 8192)
8000	rx_buffer->page_offset ^= truesize;
8001#else
8002	rx_buffer->page_offset += truesize;
8003#endif
8004}
8005
8006static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8007					 struct igb_rx_buffer *rx_buffer,
8008					 union e1000_adv_rx_desc *rx_desc,
8009					 unsigned int size)
8010{
8011	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8012#if (PAGE_SIZE < 8192)
8013	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8014#else
8015	unsigned int truesize = SKB_DATA_ALIGN(size);
 
8016#endif
 
8017	unsigned int headlen;
8018	struct sk_buff *skb;
8019
8020	/* prefetch first cache line of first page */
8021	prefetch(va);
8022#if L1_CACHE_BYTES < 128
8023	prefetch(va + L1_CACHE_BYTES);
8024#endif
8025
8026	/* allocate a skb to store the frags */
8027	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8028	if (unlikely(!skb))
8029		return NULL;
8030
8031	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8032		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8033		va += IGB_TS_HDR_LEN;
8034		size -= IGB_TS_HDR_LEN;
8035	}
8036
8037	/* Determine available headroom for copy */
8038	headlen = size;
8039	if (headlen > IGB_RX_HDR_LEN)
8040		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8041
8042	/* align pull length to size of long to optimize memcpy performance */
8043	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8044
8045	/* update all of the pointers */
8046	size -= headlen;
8047	if (size) {
8048		skb_add_rx_frag(skb, 0, rx_buffer->page,
8049				(va + headlen) - page_address(rx_buffer->page),
8050				size, truesize);
8051#if (PAGE_SIZE < 8192)
8052		rx_buffer->page_offset ^= truesize;
8053#else
8054		rx_buffer->page_offset += truesize;
8055#endif
8056	} else {
8057		rx_buffer->pagecnt_bias++;
8058	}
8059
8060	return skb;
8061}
8062
8063static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8064				     struct igb_rx_buffer *rx_buffer,
8065				     union e1000_adv_rx_desc *rx_desc,
8066				     unsigned int size)
8067{
8068	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8069#if (PAGE_SIZE < 8192)
8070	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8071#else
8072	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8073				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
 
8074#endif
 
8075	struct sk_buff *skb;
8076
8077	/* prefetch first cache line of first page */
8078	prefetch(va);
8079#if L1_CACHE_BYTES < 128
8080	prefetch(va + L1_CACHE_BYTES);
8081#endif
8082
8083	/* build an skb around the page buffer */
8084	skb = build_skb(va - IGB_SKB_PAD, truesize);
8085	if (unlikely(!skb))
8086		return NULL;
8087
8088	/* update pointers within the skb to store the data */
8089	skb_reserve(skb, IGB_SKB_PAD);
8090	__skb_put(skb, size);
 
 
 
8091
8092	/* pull timestamp out of packet data */
8093	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8094		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8095		__skb_pull(skb, IGB_TS_HDR_LEN);
8096	}
8097
8098	/* update buffer offset */
8099#if (PAGE_SIZE < 8192)
8100	rx_buffer->page_offset ^= truesize;
8101#else
8102	rx_buffer->page_offset += truesize;
8103#endif
8104
8105	return skb;
8106}
8107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8108static inline void igb_rx_checksum(struct igb_ring *ring,
8109				   union e1000_adv_rx_desc *rx_desc,
8110				   struct sk_buff *skb)
8111{
8112	skb_checksum_none_assert(skb);
8113
8114	/* Ignore Checksum bit is set */
8115	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8116		return;
8117
8118	/* Rx checksum disabled via ethtool */
8119	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8120		return;
8121
8122	/* TCP/UDP checksum error bit is set */
8123	if (igb_test_staterr(rx_desc,
8124			     E1000_RXDEXT_STATERR_TCPE |
8125			     E1000_RXDEXT_STATERR_IPE)) {
8126		/* work around errata with sctp packets where the TCPE aka
8127		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8128		 * packets, (aka let the stack check the crc32c)
8129		 */
8130		if (!((skb->len == 60) &&
8131		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8132			u64_stats_update_begin(&ring->rx_syncp);
8133			ring->rx_stats.csum_err++;
8134			u64_stats_update_end(&ring->rx_syncp);
8135		}
8136		/* let the stack verify checksum errors */
8137		return;
8138	}
8139	/* It must be a TCP or UDP packet with a valid checksum */
8140	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8141				      E1000_RXD_STAT_UDPCS))
8142		skb->ip_summed = CHECKSUM_UNNECESSARY;
8143
8144	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8145		le32_to_cpu(rx_desc->wb.upper.status_error));
8146}
8147
8148static inline void igb_rx_hash(struct igb_ring *ring,
8149			       union e1000_adv_rx_desc *rx_desc,
8150			       struct sk_buff *skb)
8151{
8152	if (ring->netdev->features & NETIF_F_RXHASH)
8153		skb_set_hash(skb,
8154			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8155			     PKT_HASH_TYPE_L3);
8156}
8157
8158/**
8159 *  igb_is_non_eop - process handling of non-EOP buffers
8160 *  @rx_ring: Rx ring being processed
8161 *  @rx_desc: Rx descriptor for current buffer
8162 *  @skb: current socket buffer containing buffer in progress
8163 *
8164 *  This function updates next to clean.  If the buffer is an EOP buffer
8165 *  this function exits returning false, otherwise it will place the
8166 *  sk_buff in the next buffer to be chained and return true indicating
8167 *  that this is in fact a non-EOP buffer.
8168 **/
8169static bool igb_is_non_eop(struct igb_ring *rx_ring,
8170			   union e1000_adv_rx_desc *rx_desc)
8171{
8172	u32 ntc = rx_ring->next_to_clean + 1;
8173
8174	/* fetch, update, and store next to clean */
8175	ntc = (ntc < rx_ring->count) ? ntc : 0;
8176	rx_ring->next_to_clean = ntc;
8177
8178	prefetch(IGB_RX_DESC(rx_ring, ntc));
8179
8180	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8181		return false;
8182
8183	return true;
8184}
8185
8186/**
8187 *  igb_cleanup_headers - Correct corrupted or empty headers
8188 *  @rx_ring: rx descriptor ring packet is being transacted on
8189 *  @rx_desc: pointer to the EOP Rx descriptor
8190 *  @skb: pointer to current skb being fixed
8191 *
8192 *  Address the case where we are pulling data in on pages only
8193 *  and as such no data is present in the skb header.
8194 *
8195 *  In addition if skb is not at least 60 bytes we need to pad it so that
8196 *  it is large enough to qualify as a valid Ethernet frame.
8197 *
8198 *  Returns true if an error was encountered and skb was freed.
8199 **/
8200static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8201				union e1000_adv_rx_desc *rx_desc,
8202				struct sk_buff *skb)
8203{
 
 
 
 
8204	if (unlikely((igb_test_staterr(rx_desc,
8205				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8206		struct net_device *netdev = rx_ring->netdev;
8207		if (!(netdev->features & NETIF_F_RXALL)) {
8208			dev_kfree_skb_any(skb);
8209			return true;
8210		}
8211	}
8212
8213	/* if eth_skb_pad returns an error the skb was freed */
8214	if (eth_skb_pad(skb))
8215		return true;
8216
8217	return false;
8218}
8219
8220/**
8221 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8222 *  @rx_ring: rx descriptor ring packet is being transacted on
8223 *  @rx_desc: pointer to the EOP Rx descriptor
8224 *  @skb: pointer to current skb being populated
8225 *
8226 *  This function checks the ring, descriptor, and packet information in
8227 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8228 *  other fields within the skb.
8229 **/
8230static void igb_process_skb_fields(struct igb_ring *rx_ring,
8231				   union e1000_adv_rx_desc *rx_desc,
8232				   struct sk_buff *skb)
8233{
8234	struct net_device *dev = rx_ring->netdev;
8235
8236	igb_rx_hash(rx_ring, rx_desc, skb);
8237
8238	igb_rx_checksum(rx_ring, rx_desc, skb);
8239
8240	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8241	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8242		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8243
8244	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8245	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8246		u16 vid;
8247
8248		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8249		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8250			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8251		else
8252			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8253
8254		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8255	}
8256
8257	skb_record_rx_queue(skb, rx_ring->queue_index);
8258
8259	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8260}
8261
 
 
 
 
 
8262static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8263					       const unsigned int size)
8264{
8265	struct igb_rx_buffer *rx_buffer;
8266
8267	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 
 
 
 
 
 
8268	prefetchw(rx_buffer->page);
8269
8270	/* we are reusing so sync this buffer for CPU use */
8271	dma_sync_single_range_for_cpu(rx_ring->dev,
8272				      rx_buffer->dma,
8273				      rx_buffer->page_offset,
8274				      size,
8275				      DMA_FROM_DEVICE);
8276
8277	rx_buffer->pagecnt_bias--;
8278
8279	return rx_buffer;
8280}
8281
8282static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8283			      struct igb_rx_buffer *rx_buffer)
8284{
8285	if (igb_can_reuse_rx_page(rx_buffer)) {
8286		/* hand second half of page back to the ring */
8287		igb_reuse_rx_page(rx_ring, rx_buffer);
8288	} else {
8289		/* We are not reusing the buffer so unmap it and free
8290		 * any references we are holding to it
8291		 */
8292		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8293				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8294				     IGB_RX_DMA_ATTR);
8295		__page_frag_cache_drain(rx_buffer->page,
8296					rx_buffer->pagecnt_bias);
8297	}
8298
8299	/* clear contents of rx_buffer */
8300	rx_buffer->page = NULL;
8301}
8302
8303static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8304{
 
8305	struct igb_ring *rx_ring = q_vector->rx.ring;
8306	struct sk_buff *skb = rx_ring->skb;
8307	unsigned int total_bytes = 0, total_packets = 0;
8308	u16 cleaned_count = igb_desc_unused(rx_ring);
 
 
 
 
 
 
 
 
 
 
8309
8310	while (likely(total_packets < budget)) {
8311		union e1000_adv_rx_desc *rx_desc;
8312		struct igb_rx_buffer *rx_buffer;
 
 
8313		unsigned int size;
 
8314
8315		/* return some buffers to hardware, one at a time is too slow */
8316		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8317			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8318			cleaned_count = 0;
8319		}
8320
8321		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8322		size = le16_to_cpu(rx_desc->wb.upper.length);
8323		if (!size)
8324			break;
8325
8326		/* This memory barrier is needed to keep us from reading
8327		 * any other fields out of the rx_desc until we know the
8328		 * descriptor has been written back
8329		 */
8330		dma_rmb();
8331
8332		rx_buffer = igb_get_rx_buffer(rx_ring, size);
 
 
 
 
 
 
 
 
 
 
 
 
8333
8334		/* retrieve a buffer from the ring */
8335		if (skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8336			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8337		else if (ring_uses_build_skb(rx_ring))
8338			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
 
8339		else
8340			skb = igb_construct_skb(rx_ring, rx_buffer,
8341						rx_desc, size);
8342
8343		/* exit if we failed to retrieve a buffer */
8344		if (!skb) {
8345			rx_ring->rx_stats.alloc_failed++;
8346			rx_buffer->pagecnt_bias++;
8347			break;
8348		}
8349
8350		igb_put_rx_buffer(rx_ring, rx_buffer);
8351		cleaned_count++;
8352
8353		/* fetch next buffer in frame if non-eop */
8354		if (igb_is_non_eop(rx_ring, rx_desc))
8355			continue;
8356
8357		/* verify the packet layout is correct */
8358		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8359			skb = NULL;
8360			continue;
8361		}
8362
8363		/* probably a little skewed due to removing CRC */
8364		total_bytes += skb->len;
8365
8366		/* populate checksum, timestamp, VLAN, and protocol */
8367		igb_process_skb_fields(rx_ring, rx_desc, skb);
8368
8369		napi_gro_receive(&q_vector->napi, skb);
8370
8371		/* reset skb pointer */
8372		skb = NULL;
8373
8374		/* update budget accounting */
8375		total_packets++;
8376	}
8377
8378	/* place incomplete frames back on ring for completion */
8379	rx_ring->skb = skb;
8380
 
 
 
 
 
 
 
 
 
8381	u64_stats_update_begin(&rx_ring->rx_syncp);
8382	rx_ring->rx_stats.packets += total_packets;
8383	rx_ring->rx_stats.bytes += total_bytes;
8384	u64_stats_update_end(&rx_ring->rx_syncp);
8385	q_vector->rx.total_packets += total_packets;
8386	q_vector->rx.total_bytes += total_bytes;
8387
8388	if (cleaned_count)
8389		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8390
8391	return total_packets;
8392}
8393
8394static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8395{
8396	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8397}
8398
8399static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8400				  struct igb_rx_buffer *bi)
8401{
8402	struct page *page = bi->page;
8403	dma_addr_t dma;
8404
8405	/* since we are recycling buffers we should seldom need to alloc */
8406	if (likely(page))
8407		return true;
8408
8409	/* alloc new page for storage */
8410	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8411	if (unlikely(!page)) {
8412		rx_ring->rx_stats.alloc_failed++;
8413		return false;
8414	}
8415
8416	/* map page for use */
8417	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8418				 igb_rx_pg_size(rx_ring),
8419				 DMA_FROM_DEVICE,
8420				 IGB_RX_DMA_ATTR);
8421
8422	/* if mapping failed free memory back to system since
8423	 * there isn't much point in holding memory we can't use
8424	 */
8425	if (dma_mapping_error(rx_ring->dev, dma)) {
8426		__free_pages(page, igb_rx_pg_order(rx_ring));
8427
8428		rx_ring->rx_stats.alloc_failed++;
8429		return false;
8430	}
8431
8432	bi->dma = dma;
8433	bi->page = page;
8434	bi->page_offset = igb_rx_offset(rx_ring);
8435	bi->pagecnt_bias = 1;
 
8436
8437	return true;
8438}
8439
8440/**
8441 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8442 *  @adapter: address of board private structure
 
8443 **/
8444void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8445{
8446	union e1000_adv_rx_desc *rx_desc;
8447	struct igb_rx_buffer *bi;
8448	u16 i = rx_ring->next_to_use;
8449	u16 bufsz;
8450
8451	/* nothing to do */
8452	if (!cleaned_count)
8453		return;
8454
8455	rx_desc = IGB_RX_DESC(rx_ring, i);
8456	bi = &rx_ring->rx_buffer_info[i];
8457	i -= rx_ring->count;
8458
8459	bufsz = igb_rx_bufsz(rx_ring);
8460
8461	do {
8462		if (!igb_alloc_mapped_page(rx_ring, bi))
8463			break;
8464
8465		/* sync the buffer for use by the device */
8466		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8467						 bi->page_offset, bufsz,
8468						 DMA_FROM_DEVICE);
8469
8470		/* Refresh the desc even if buffer_addrs didn't change
8471		 * because each write-back erases this info.
8472		 */
8473		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8474
8475		rx_desc++;
8476		bi++;
8477		i++;
8478		if (unlikely(!i)) {
8479			rx_desc = IGB_RX_DESC(rx_ring, 0);
8480			bi = rx_ring->rx_buffer_info;
8481			i -= rx_ring->count;
8482		}
8483
8484		/* clear the length for the next_to_use descriptor */
8485		rx_desc->wb.upper.length = 0;
8486
8487		cleaned_count--;
8488	} while (cleaned_count);
8489
8490	i += rx_ring->count;
8491
8492	if (rx_ring->next_to_use != i) {
8493		/* record the next descriptor to use */
8494		rx_ring->next_to_use = i;
8495
8496		/* update next to alloc since we have filled the ring */
8497		rx_ring->next_to_alloc = i;
8498
8499		/* Force memory writes to complete before letting h/w
8500		 * know there are new descriptors to fetch.  (Only
8501		 * applicable for weak-ordered memory model archs,
8502		 * such as IA-64).
8503		 */
8504		dma_wmb();
8505		writel(i, rx_ring->tail);
8506	}
8507}
8508
8509/**
8510 * igb_mii_ioctl -
8511 * @netdev:
8512 * @ifreq:
8513 * @cmd:
8514 **/
8515static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8516{
8517	struct igb_adapter *adapter = netdev_priv(netdev);
8518	struct mii_ioctl_data *data = if_mii(ifr);
8519
8520	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8521		return -EOPNOTSUPP;
8522
8523	switch (cmd) {
8524	case SIOCGMIIPHY:
8525		data->phy_id = adapter->hw.phy.addr;
8526		break;
8527	case SIOCGMIIREG:
8528		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8529				     &data->val_out))
8530			return -EIO;
8531		break;
8532	case SIOCSMIIREG:
8533	default:
8534		return -EOPNOTSUPP;
8535	}
8536	return 0;
8537}
8538
8539/**
8540 * igb_ioctl -
8541 * @netdev:
8542 * @ifreq:
8543 * @cmd:
8544 **/
8545static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8546{
8547	switch (cmd) {
8548	case SIOCGMIIPHY:
8549	case SIOCGMIIREG:
8550	case SIOCSMIIREG:
8551		return igb_mii_ioctl(netdev, ifr, cmd);
8552	case SIOCGHWTSTAMP:
8553		return igb_ptp_get_ts_config(netdev, ifr);
8554	case SIOCSHWTSTAMP:
8555		return igb_ptp_set_ts_config(netdev, ifr);
8556	default:
8557		return -EOPNOTSUPP;
8558	}
8559}
8560
8561void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8562{
8563	struct igb_adapter *adapter = hw->back;
8564
8565	pci_read_config_word(adapter->pdev, reg, value);
8566}
8567
8568void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8569{
8570	struct igb_adapter *adapter = hw->back;
8571
8572	pci_write_config_word(adapter->pdev, reg, *value);
8573}
8574
8575s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8576{
8577	struct igb_adapter *adapter = hw->back;
8578
8579	if (pcie_capability_read_word(adapter->pdev, reg, value))
8580		return -E1000_ERR_CONFIG;
8581
8582	return 0;
8583}
8584
8585s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8586{
8587	struct igb_adapter *adapter = hw->back;
8588
8589	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8590		return -E1000_ERR_CONFIG;
8591
8592	return 0;
8593}
8594
8595static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8596{
8597	struct igb_adapter *adapter = netdev_priv(netdev);
8598	struct e1000_hw *hw = &adapter->hw;
8599	u32 ctrl, rctl;
8600	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8601
8602	if (enable) {
8603		/* enable VLAN tag insert/strip */
8604		ctrl = rd32(E1000_CTRL);
8605		ctrl |= E1000_CTRL_VME;
8606		wr32(E1000_CTRL, ctrl);
8607
8608		/* Disable CFI check */
8609		rctl = rd32(E1000_RCTL);
8610		rctl &= ~E1000_RCTL_CFIEN;
8611		wr32(E1000_RCTL, rctl);
8612	} else {
8613		/* disable VLAN tag insert/strip */
8614		ctrl = rd32(E1000_CTRL);
8615		ctrl &= ~E1000_CTRL_VME;
8616		wr32(E1000_CTRL, ctrl);
8617	}
8618
8619	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8620}
8621
8622static int igb_vlan_rx_add_vid(struct net_device *netdev,
8623			       __be16 proto, u16 vid)
8624{
8625	struct igb_adapter *adapter = netdev_priv(netdev);
8626	struct e1000_hw *hw = &adapter->hw;
8627	int pf_id = adapter->vfs_allocated_count;
8628
8629	/* add the filter since PF can receive vlans w/o entry in vlvf */
8630	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8631		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8632
8633	set_bit(vid, adapter->active_vlans);
8634
8635	return 0;
8636}
8637
8638static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8639				__be16 proto, u16 vid)
8640{
8641	struct igb_adapter *adapter = netdev_priv(netdev);
8642	int pf_id = adapter->vfs_allocated_count;
8643	struct e1000_hw *hw = &adapter->hw;
8644
8645	/* remove VID from filter table */
8646	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8647		igb_vfta_set(hw, vid, pf_id, false, true);
8648
8649	clear_bit(vid, adapter->active_vlans);
8650
8651	return 0;
8652}
8653
8654static void igb_restore_vlan(struct igb_adapter *adapter)
8655{
8656	u16 vid = 1;
8657
8658	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8659	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8660
8661	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8662		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8663}
8664
8665int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8666{
8667	struct pci_dev *pdev = adapter->pdev;
8668	struct e1000_mac_info *mac = &adapter->hw.mac;
8669
8670	mac->autoneg = 0;
8671
8672	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8673	 * for the switch() below to work
8674	 */
8675	if ((spd & 1) || (dplx & ~1))
8676		goto err_inval;
8677
8678	/* Fiber NIC's only allow 1000 gbps Full duplex
8679	 * and 100Mbps Full duplex for 100baseFx sfp
8680	 */
8681	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8682		switch (spd + dplx) {
8683		case SPEED_10 + DUPLEX_HALF:
8684		case SPEED_10 + DUPLEX_FULL:
8685		case SPEED_100 + DUPLEX_HALF:
8686			goto err_inval;
8687		default:
8688			break;
8689		}
8690	}
8691
8692	switch (spd + dplx) {
8693	case SPEED_10 + DUPLEX_HALF:
8694		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8695		break;
8696	case SPEED_10 + DUPLEX_FULL:
8697		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8698		break;
8699	case SPEED_100 + DUPLEX_HALF:
8700		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8701		break;
8702	case SPEED_100 + DUPLEX_FULL:
8703		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8704		break;
8705	case SPEED_1000 + DUPLEX_FULL:
8706		mac->autoneg = 1;
8707		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8708		break;
8709	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8710	default:
8711		goto err_inval;
8712	}
8713
8714	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8715	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8716
8717	return 0;
8718
8719err_inval:
8720	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8721	return -EINVAL;
8722}
8723
8724static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8725			  bool runtime)
8726{
8727	struct net_device *netdev = pci_get_drvdata(pdev);
8728	struct igb_adapter *adapter = netdev_priv(netdev);
8729	struct e1000_hw *hw = &adapter->hw;
8730	u32 ctrl, rctl, status;
8731	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8732	bool wake;
8733
8734	rtnl_lock();
8735	netif_device_detach(netdev);
8736
8737	if (netif_running(netdev))
8738		__igb_close(netdev, true);
8739
8740	igb_ptp_suspend(adapter);
8741
8742	igb_clear_interrupt_scheme(adapter);
8743	rtnl_unlock();
8744
8745	status = rd32(E1000_STATUS);
8746	if (status & E1000_STATUS_LU)
8747		wufc &= ~E1000_WUFC_LNKC;
8748
8749	if (wufc) {
8750		igb_setup_rctl(adapter);
8751		igb_set_rx_mode(netdev);
8752
8753		/* turn on all-multi mode if wake on multicast is enabled */
8754		if (wufc & E1000_WUFC_MC) {
8755			rctl = rd32(E1000_RCTL);
8756			rctl |= E1000_RCTL_MPE;
8757			wr32(E1000_RCTL, rctl);
8758		}
8759
8760		ctrl = rd32(E1000_CTRL);
8761		ctrl |= E1000_CTRL_ADVD3WUC;
8762		wr32(E1000_CTRL, ctrl);
8763
8764		/* Allow time for pending master requests to run */
8765		igb_disable_pcie_master(hw);
8766
8767		wr32(E1000_WUC, E1000_WUC_PME_EN);
8768		wr32(E1000_WUFC, wufc);
8769	} else {
8770		wr32(E1000_WUC, 0);
8771		wr32(E1000_WUFC, 0);
8772	}
8773
8774	wake = wufc || adapter->en_mng_pt;
8775	if (!wake)
8776		igb_power_down_link(adapter);
8777	else
8778		igb_power_up_link(adapter);
8779
8780	if (enable_wake)
8781		*enable_wake = wake;
8782
8783	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8784	 * would have already happened in close and is redundant.
8785	 */
8786	igb_release_hw_control(adapter);
8787
8788	pci_disable_device(pdev);
8789
8790	return 0;
8791}
8792
8793static void igb_deliver_wake_packet(struct net_device *netdev)
8794{
8795	struct igb_adapter *adapter = netdev_priv(netdev);
8796	struct e1000_hw *hw = &adapter->hw;
8797	struct sk_buff *skb;
8798	u32 wupl;
8799
8800	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8801
8802	/* WUPM stores only the first 128 bytes of the wake packet.
8803	 * Read the packet only if we have the whole thing.
8804	 */
8805	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8806		return;
8807
8808	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8809	if (!skb)
8810		return;
8811
8812	skb_put(skb, wupl);
8813
8814	/* Ensure reads are 32-bit aligned */
8815	wupl = roundup(wupl, 4);
8816
8817	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8818
8819	skb->protocol = eth_type_trans(skb, netdev);
8820	netif_rx(skb);
8821}
8822
8823static int __maybe_unused igb_suspend(struct device *dev)
8824{
8825	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8826}
8827
8828static int __maybe_unused igb_resume(struct device *dev)
8829{
8830	struct pci_dev *pdev = to_pci_dev(dev);
8831	struct net_device *netdev = pci_get_drvdata(pdev);
8832	struct igb_adapter *adapter = netdev_priv(netdev);
8833	struct e1000_hw *hw = &adapter->hw;
8834	u32 err, val;
8835
8836	pci_set_power_state(pdev, PCI_D0);
8837	pci_restore_state(pdev);
8838	pci_save_state(pdev);
8839
8840	if (!pci_device_is_present(pdev))
8841		return -ENODEV;
8842	err = pci_enable_device_mem(pdev);
8843	if (err) {
8844		dev_err(&pdev->dev,
8845			"igb: Cannot enable PCI device from suspend\n");
8846		return err;
8847	}
8848	pci_set_master(pdev);
8849
8850	pci_enable_wake(pdev, PCI_D3hot, 0);
8851	pci_enable_wake(pdev, PCI_D3cold, 0);
8852
8853	if (igb_init_interrupt_scheme(adapter, true)) {
8854		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8855		return -ENOMEM;
8856	}
8857
8858	igb_reset(adapter);
8859
8860	/* let the f/w know that the h/w is now under the control of the
8861	 * driver.
8862	 */
8863	igb_get_hw_control(adapter);
8864
8865	val = rd32(E1000_WUS);
8866	if (val & WAKE_PKT_WUS)
8867		igb_deliver_wake_packet(netdev);
8868
8869	wr32(E1000_WUS, ~0);
8870
8871	rtnl_lock();
 
8872	if (!err && netif_running(netdev))
8873		err = __igb_open(netdev, true);
8874
8875	if (!err)
8876		netif_device_attach(netdev);
8877	rtnl_unlock();
 
8878
8879	return err;
8880}
8881
 
 
 
 
 
8882static int __maybe_unused igb_runtime_idle(struct device *dev)
8883{
8884	struct net_device *netdev = dev_get_drvdata(dev);
8885	struct igb_adapter *adapter = netdev_priv(netdev);
8886
8887	if (!igb_has_link(adapter))
8888		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8889
8890	return -EBUSY;
8891}
8892
8893static int __maybe_unused igb_runtime_suspend(struct device *dev)
8894{
8895	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8896}
8897
8898static int __maybe_unused igb_runtime_resume(struct device *dev)
8899{
8900	return igb_resume(dev);
8901}
8902
8903static void igb_shutdown(struct pci_dev *pdev)
8904{
8905	bool wake;
8906
8907	__igb_shutdown(pdev, &wake, 0);
8908
8909	if (system_state == SYSTEM_POWER_OFF) {
8910		pci_wake_from_d3(pdev, wake);
8911		pci_set_power_state(pdev, PCI_D3hot);
8912	}
8913}
8914
8915#ifdef CONFIG_PCI_IOV
8916static int igb_sriov_reinit(struct pci_dev *dev)
8917{
8918	struct net_device *netdev = pci_get_drvdata(dev);
8919	struct igb_adapter *adapter = netdev_priv(netdev);
8920	struct pci_dev *pdev = adapter->pdev;
8921
8922	rtnl_lock();
8923
8924	if (netif_running(netdev))
8925		igb_close(netdev);
8926	else
8927		igb_reset(adapter);
8928
8929	igb_clear_interrupt_scheme(adapter);
8930
8931	igb_init_queue_configuration(adapter);
8932
8933	if (igb_init_interrupt_scheme(adapter, true)) {
8934		rtnl_unlock();
8935		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8936		return -ENOMEM;
8937	}
8938
8939	if (netif_running(netdev))
8940		igb_open(netdev);
8941
8942	rtnl_unlock();
8943
8944	return 0;
8945}
8946
8947static int igb_pci_disable_sriov(struct pci_dev *dev)
8948{
8949	int err = igb_disable_sriov(dev);
8950
8951	if (!err)
8952		err = igb_sriov_reinit(dev);
8953
8954	return err;
8955}
8956
8957static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8958{
8959	int err = igb_enable_sriov(dev, num_vfs);
8960
8961	if (err)
8962		goto out;
8963
8964	err = igb_sriov_reinit(dev);
8965	if (!err)
8966		return num_vfs;
8967
8968out:
8969	return err;
8970}
8971
8972#endif
8973static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8974{
8975#ifdef CONFIG_PCI_IOV
8976	if (num_vfs == 0)
8977		return igb_pci_disable_sriov(dev);
8978	else
8979		return igb_pci_enable_sriov(dev, num_vfs);
8980#endif
8981	return 0;
8982}
8983
8984/**
8985 *  igb_io_error_detected - called when PCI error is detected
8986 *  @pdev: Pointer to PCI device
8987 *  @state: The current pci connection state
8988 *
8989 *  This function is called after a PCI bus error affecting
8990 *  this device has been detected.
8991 **/
8992static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8993					      pci_channel_state_t state)
8994{
8995	struct net_device *netdev = pci_get_drvdata(pdev);
8996	struct igb_adapter *adapter = netdev_priv(netdev);
8997
8998	netif_device_detach(netdev);
8999
9000	if (state == pci_channel_io_perm_failure)
9001		return PCI_ERS_RESULT_DISCONNECT;
9002
9003	if (netif_running(netdev))
9004		igb_down(adapter);
9005	pci_disable_device(pdev);
9006
9007	/* Request a slot slot reset. */
9008	return PCI_ERS_RESULT_NEED_RESET;
9009}
9010
9011/**
9012 *  igb_io_slot_reset - called after the pci bus has been reset.
9013 *  @pdev: Pointer to PCI device
9014 *
9015 *  Restart the card from scratch, as if from a cold-boot. Implementation
9016 *  resembles the first-half of the igb_resume routine.
9017 **/
9018static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9019{
9020	struct net_device *netdev = pci_get_drvdata(pdev);
9021	struct igb_adapter *adapter = netdev_priv(netdev);
9022	struct e1000_hw *hw = &adapter->hw;
9023	pci_ers_result_t result;
9024
9025	if (pci_enable_device_mem(pdev)) {
9026		dev_err(&pdev->dev,
9027			"Cannot re-enable PCI device after reset.\n");
9028		result = PCI_ERS_RESULT_DISCONNECT;
9029	} else {
9030		pci_set_master(pdev);
9031		pci_restore_state(pdev);
9032		pci_save_state(pdev);
9033
9034		pci_enable_wake(pdev, PCI_D3hot, 0);
9035		pci_enable_wake(pdev, PCI_D3cold, 0);
9036
9037		/* In case of PCI error, adapter lose its HW address
9038		 * so we should re-assign it here.
9039		 */
9040		hw->hw_addr = adapter->io_addr;
9041
9042		igb_reset(adapter);
9043		wr32(E1000_WUS, ~0);
9044		result = PCI_ERS_RESULT_RECOVERED;
9045	}
9046
9047	return result;
9048}
9049
9050/**
9051 *  igb_io_resume - called when traffic can start flowing again.
9052 *  @pdev: Pointer to PCI device
9053 *
9054 *  This callback is called when the error recovery driver tells us that
9055 *  its OK to resume normal operation. Implementation resembles the
9056 *  second-half of the igb_resume routine.
9057 */
9058static void igb_io_resume(struct pci_dev *pdev)
9059{
9060	struct net_device *netdev = pci_get_drvdata(pdev);
9061	struct igb_adapter *adapter = netdev_priv(netdev);
9062
9063	if (netif_running(netdev)) {
9064		if (igb_up(adapter)) {
9065			dev_err(&pdev->dev, "igb_up failed after reset\n");
9066			return;
9067		}
9068	}
9069
9070	netif_device_attach(netdev);
9071
9072	/* let the f/w know that the h/w is now under the control of the
9073	 * driver.
9074	 */
9075	igb_get_hw_control(adapter);
9076}
9077
9078/**
9079 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9080 *  @adapter: Pointer to adapter structure
9081 *  @index: Index of the RAR entry which need to be synced with MAC table
9082 **/
9083static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9084{
9085	struct e1000_hw *hw = &adapter->hw;
9086	u32 rar_low, rar_high;
9087	u8 *addr = adapter->mac_table[index].addr;
9088
9089	/* HW expects these to be in network order when they are plugged
9090	 * into the registers which are little endian.  In order to guarantee
9091	 * that ordering we need to do an leXX_to_cpup here in order to be
9092	 * ready for the byteswap that occurs with writel
9093	 */
9094	rar_low = le32_to_cpup((__le32 *)(addr));
9095	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9096
9097	/* Indicate to hardware the Address is Valid. */
9098	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9099		if (is_valid_ether_addr(addr))
9100			rar_high |= E1000_RAH_AV;
9101
9102		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9103			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9104
9105		switch (hw->mac.type) {
9106		case e1000_82575:
9107		case e1000_i210:
9108			if (adapter->mac_table[index].state &
9109			    IGB_MAC_STATE_QUEUE_STEERING)
9110				rar_high |= E1000_RAH_QSEL_ENABLE;
9111
9112			rar_high |= E1000_RAH_POOL_1 *
9113				    adapter->mac_table[index].queue;
9114			break;
9115		default:
9116			rar_high |= E1000_RAH_POOL_1 <<
9117				    adapter->mac_table[index].queue;
9118			break;
9119		}
9120	}
9121
9122	wr32(E1000_RAL(index), rar_low);
9123	wrfl();
9124	wr32(E1000_RAH(index), rar_high);
9125	wrfl();
9126}
9127
9128static int igb_set_vf_mac(struct igb_adapter *adapter,
9129			  int vf, unsigned char *mac_addr)
9130{
9131	struct e1000_hw *hw = &adapter->hw;
9132	/* VF MAC addresses start at end of receive addresses and moves
9133	 * towards the first, as a result a collision should not be possible
9134	 */
9135	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9136	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9137
9138	ether_addr_copy(vf_mac_addr, mac_addr);
9139	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9140	adapter->mac_table[rar_entry].queue = vf;
9141	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9142	igb_rar_set_index(adapter, rar_entry);
9143
9144	return 0;
9145}
9146
9147static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9148{
9149	struct igb_adapter *adapter = netdev_priv(netdev);
9150
9151	if (vf >= adapter->vfs_allocated_count)
9152		return -EINVAL;
9153
9154	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9155	 * flag and allows to overwrite the MAC via VF netdev.  This
9156	 * is necessary to allow libvirt a way to restore the original
9157	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9158	 * down a VM.
9159	 */
9160	if (is_zero_ether_addr(mac)) {
9161		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9162		dev_info(&adapter->pdev->dev,
9163			 "remove administratively set MAC on VF %d\n",
9164			 vf);
9165	} else if (is_valid_ether_addr(mac)) {
9166		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9167		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9168			 mac, vf);
9169		dev_info(&adapter->pdev->dev,
9170			 "Reload the VF driver to make this change effective.");
9171		/* Generate additional warning if PF is down */
9172		if (test_bit(__IGB_DOWN, &adapter->state)) {
9173			dev_warn(&adapter->pdev->dev,
9174				 "The VF MAC address has been set, but the PF device is not up.\n");
9175			dev_warn(&adapter->pdev->dev,
9176				 "Bring the PF device up before attempting to use the VF device.\n");
9177		}
9178	} else {
9179		return -EINVAL;
9180	}
9181	return igb_set_vf_mac(adapter, vf, mac);
9182}
9183
9184static int igb_link_mbps(int internal_link_speed)
9185{
9186	switch (internal_link_speed) {
9187	case SPEED_100:
9188		return 100;
9189	case SPEED_1000:
9190		return 1000;
9191	default:
9192		return 0;
9193	}
9194}
9195
9196static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9197				  int link_speed)
9198{
9199	int rf_dec, rf_int;
9200	u32 bcnrc_val;
9201
9202	if (tx_rate != 0) {
9203		/* Calculate the rate factor values to set */
9204		rf_int = link_speed / tx_rate;
9205		rf_dec = (link_speed - (rf_int * tx_rate));
9206		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9207			 tx_rate;
9208
9209		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9210		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9211			      E1000_RTTBCNRC_RF_INT_MASK);
9212		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9213	} else {
9214		bcnrc_val = 0;
9215	}
9216
9217	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9218	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9219	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9220	 */
9221	wr32(E1000_RTTBCNRM, 0x14);
9222	wr32(E1000_RTTBCNRC, bcnrc_val);
9223}
9224
9225static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9226{
9227	int actual_link_speed, i;
9228	bool reset_rate = false;
9229
9230	/* VF TX rate limit was not set or not supported */
9231	if ((adapter->vf_rate_link_speed == 0) ||
9232	    (adapter->hw.mac.type != e1000_82576))
9233		return;
9234
9235	actual_link_speed = igb_link_mbps(adapter->link_speed);
9236	if (actual_link_speed != adapter->vf_rate_link_speed) {
9237		reset_rate = true;
9238		adapter->vf_rate_link_speed = 0;
9239		dev_info(&adapter->pdev->dev,
9240			 "Link speed has been changed. VF Transmit rate is disabled\n");
9241	}
9242
9243	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9244		if (reset_rate)
9245			adapter->vf_data[i].tx_rate = 0;
9246
9247		igb_set_vf_rate_limit(&adapter->hw, i,
9248				      adapter->vf_data[i].tx_rate,
9249				      actual_link_speed);
9250	}
9251}
9252
9253static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9254			     int min_tx_rate, int max_tx_rate)
9255{
9256	struct igb_adapter *adapter = netdev_priv(netdev);
9257	struct e1000_hw *hw = &adapter->hw;
9258	int actual_link_speed;
9259
9260	if (hw->mac.type != e1000_82576)
9261		return -EOPNOTSUPP;
9262
9263	if (min_tx_rate)
9264		return -EINVAL;
9265
9266	actual_link_speed = igb_link_mbps(adapter->link_speed);
9267	if ((vf >= adapter->vfs_allocated_count) ||
9268	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9269	    (max_tx_rate < 0) ||
9270	    (max_tx_rate > actual_link_speed))
9271		return -EINVAL;
9272
9273	adapter->vf_rate_link_speed = actual_link_speed;
9274	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9275	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9276
9277	return 0;
9278}
9279
9280static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9281				   bool setting)
9282{
9283	struct igb_adapter *adapter = netdev_priv(netdev);
9284	struct e1000_hw *hw = &adapter->hw;
9285	u32 reg_val, reg_offset;
9286
9287	if (!adapter->vfs_allocated_count)
9288		return -EOPNOTSUPP;
9289
9290	if (vf >= adapter->vfs_allocated_count)
9291		return -EINVAL;
9292
9293	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9294	reg_val = rd32(reg_offset);
9295	if (setting)
9296		reg_val |= (BIT(vf) |
9297			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9298	else
9299		reg_val &= ~(BIT(vf) |
9300			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9301	wr32(reg_offset, reg_val);
9302
9303	adapter->vf_data[vf].spoofchk_enabled = setting;
9304	return 0;
9305}
9306
9307static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9308{
9309	struct igb_adapter *adapter = netdev_priv(netdev);
9310
9311	if (vf >= adapter->vfs_allocated_count)
9312		return -EINVAL;
9313	if (adapter->vf_data[vf].trusted == setting)
9314		return 0;
9315
9316	adapter->vf_data[vf].trusted = setting;
9317
9318	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9319		 vf, setting ? "" : "not ");
9320	return 0;
9321}
9322
9323static int igb_ndo_get_vf_config(struct net_device *netdev,
9324				 int vf, struct ifla_vf_info *ivi)
9325{
9326	struct igb_adapter *adapter = netdev_priv(netdev);
9327	if (vf >= adapter->vfs_allocated_count)
9328		return -EINVAL;
9329	ivi->vf = vf;
9330	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9331	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9332	ivi->min_tx_rate = 0;
9333	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9334	ivi->qos = adapter->vf_data[vf].pf_qos;
9335	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9336	ivi->trusted = adapter->vf_data[vf].trusted;
9337	return 0;
9338}
9339
9340static void igb_vmm_control(struct igb_adapter *adapter)
9341{
9342	struct e1000_hw *hw = &adapter->hw;
9343	u32 reg;
9344
9345	switch (hw->mac.type) {
9346	case e1000_82575:
9347	case e1000_i210:
9348	case e1000_i211:
9349	case e1000_i354:
9350	default:
9351		/* replication is not supported for 82575 */
9352		return;
9353	case e1000_82576:
9354		/* notify HW that the MAC is adding vlan tags */
9355		reg = rd32(E1000_DTXCTL);
9356		reg |= E1000_DTXCTL_VLAN_ADDED;
9357		wr32(E1000_DTXCTL, reg);
9358		/* Fall through */
9359	case e1000_82580:
9360		/* enable replication vlan tag stripping */
9361		reg = rd32(E1000_RPLOLR);
9362		reg |= E1000_RPLOLR_STRVLAN;
9363		wr32(E1000_RPLOLR, reg);
9364		/* Fall through */
9365	case e1000_i350:
9366		/* none of the above registers are supported by i350 */
9367		break;
9368	}
9369
9370	if (adapter->vfs_allocated_count) {
9371		igb_vmdq_set_loopback_pf(hw, true);
9372		igb_vmdq_set_replication_pf(hw, true);
9373		igb_vmdq_set_anti_spoofing_pf(hw, true,
9374					      adapter->vfs_allocated_count);
9375	} else {
9376		igb_vmdq_set_loopback_pf(hw, false);
9377		igb_vmdq_set_replication_pf(hw, false);
9378	}
9379}
9380
9381static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9382{
9383	struct e1000_hw *hw = &adapter->hw;
9384	u32 dmac_thr;
9385	u16 hwm;
 
9386
9387	if (hw->mac.type > e1000_82580) {
9388		if (adapter->flags & IGB_FLAG_DMAC) {
9389			u32 reg;
9390
9391			/* force threshold to 0. */
9392			wr32(E1000_DMCTXTH, 0);
9393
9394			/* DMA Coalescing high water mark needs to be greater
9395			 * than the Rx threshold. Set hwm to PBA - max frame
9396			 * size in 16B units, capping it at PBA - 6KB.
9397			 */
9398			hwm = 64 * (pba - 6);
9399			reg = rd32(E1000_FCRTC);
9400			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9401			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9402				& E1000_FCRTC_RTH_COAL_MASK);
9403			wr32(E1000_FCRTC, reg);
9404
9405			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9406			 * frame size, capping it at PBA - 10KB.
9407			 */
9408			dmac_thr = pba - 10;
9409			reg = rd32(E1000_DMACR);
9410			reg &= ~E1000_DMACR_DMACTHR_MASK;
9411			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9412				& E1000_DMACR_DMACTHR_MASK);
9413
9414			/* transition to L0x or L1 if available..*/
9415			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9416
9417			/* watchdog timer= +-1000 usec in 32usec intervals */
9418			reg |= (1000 >> 5);
9419
9420			/* Disable BMC-to-OS Watchdog Enable */
9421			if (hw->mac.type != e1000_i354)
9422				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9423
9424			wr32(E1000_DMACR, reg);
9425
9426			/* no lower threshold to disable
9427			 * coalescing(smart fifb)-UTRESH=0
9428			 */
9429			wr32(E1000_DMCRTRH, 0);
9430
9431			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9432
9433			wr32(E1000_DMCTLX, reg);
9434
9435			/* free space in tx packet buffer to wake from
9436			 * DMA coal
9437			 */
9438			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9439			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
 
9440
9441			/* make low power state decision controlled
9442			 * by DMA coal
9443			 */
9444			reg = rd32(E1000_PCIEMISC);
9445			reg &= ~E1000_PCIEMISC_LX_DECISION;
9446			wr32(E1000_PCIEMISC, reg);
9447		} /* endif adapter->dmac is not disabled */
9448	} else if (hw->mac.type == e1000_82580) {
9449		u32 reg = rd32(E1000_PCIEMISC);
9450
9451		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9452		wr32(E1000_DMACR, 0);
9453	}
9454}
9455
9456/**
9457 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9458 *  @hw: pointer to hardware structure
9459 *  @byte_offset: byte offset to read
9460 *  @dev_addr: device address
9461 *  @data: value read
9462 *
9463 *  Performs byte read operation over I2C interface at
9464 *  a specified device address.
9465 **/
9466s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9467		      u8 dev_addr, u8 *data)
9468{
9469	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9470	struct i2c_client *this_client = adapter->i2c_client;
9471	s32 status;
9472	u16 swfw_mask = 0;
9473
9474	if (!this_client)
9475		return E1000_ERR_I2C;
9476
9477	swfw_mask = E1000_SWFW_PHY0_SM;
9478
9479	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9480		return E1000_ERR_SWFW_SYNC;
9481
9482	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9483	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9484
9485	if (status < 0)
9486		return E1000_ERR_I2C;
9487	else {
9488		*data = status;
9489		return 0;
9490	}
9491}
9492
9493/**
9494 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9495 *  @hw: pointer to hardware structure
9496 *  @byte_offset: byte offset to write
9497 *  @dev_addr: device address
9498 *  @data: value to write
9499 *
9500 *  Performs byte write operation over I2C interface at
9501 *  a specified device address.
9502 **/
9503s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9504		       u8 dev_addr, u8 data)
9505{
9506	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9507	struct i2c_client *this_client = adapter->i2c_client;
9508	s32 status;
9509	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9510
9511	if (!this_client)
9512		return E1000_ERR_I2C;
9513
9514	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9515		return E1000_ERR_SWFW_SYNC;
9516	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9517	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9518
9519	if (status)
9520		return E1000_ERR_I2C;
9521	else
9522		return 0;
9523
9524}
9525
9526int igb_reinit_queues(struct igb_adapter *adapter)
9527{
9528	struct net_device *netdev = adapter->netdev;
9529	struct pci_dev *pdev = adapter->pdev;
9530	int err = 0;
9531
9532	if (netif_running(netdev))
9533		igb_close(netdev);
9534
9535	igb_reset_interrupt_capability(adapter);
9536
9537	if (igb_init_interrupt_scheme(adapter, true)) {
9538		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9539		return -ENOMEM;
9540	}
9541
9542	if (netif_running(netdev))
9543		err = igb_open(netdev);
9544
9545	return err;
9546}
9547
9548static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9549{
9550	struct igb_nfc_filter *rule;
9551
9552	spin_lock(&adapter->nfc_lock);
9553
9554	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9555		igb_erase_filter(adapter, rule);
9556
9557	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9558		igb_erase_filter(adapter, rule);
9559
9560	spin_unlock(&adapter->nfc_lock);
9561}
9562
9563static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9564{
9565	struct igb_nfc_filter *rule;
9566
9567	spin_lock(&adapter->nfc_lock);
9568
9569	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9570		igb_add_filter(adapter, rule);
9571
9572	spin_unlock(&adapter->nfc_lock);
9573}
9574/* igb_main.c */