Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale eSDHC controller driver.
   4 *
   5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
   6 * Copyright (c) 2009 MontaVista Software, Inc.
   7 * Copyright 2020 NXP
   8 *
   9 * Authors: Xiaobo Xie <X.Xie@freescale.com>
  10 *	    Anton Vorontsov <avorontsov@ru.mvista.com>
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/of.h>
  16#include <linux/of_address.h>
  17#include <linux/delay.h>
  18#include <linux/module.h>
  19#include <linux/sys_soc.h>
  20#include <linux/clk.h>
  21#include <linux/ktime.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/iopoll.h>
  24#include <linux/mmc/host.h>
  25#include <linux/mmc/mmc.h>
  26#include "sdhci-pltfm.h"
  27#include "sdhci-esdhc.h"
  28
  29#define VENDOR_V_22	0x12
  30#define VENDOR_V_23	0x13
  31
  32#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
  33
  34struct esdhc_clk_fixup {
  35	const unsigned int sd_dflt_max_clk;
  36	const unsigned int max_clk[MMC_TIMING_NUM];
  37};
  38
  39static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
  40	.sd_dflt_max_clk = 25000000,
  41	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
  42	.max_clk[MMC_TIMING_SD_HS] = 46500000,
  43};
  44
  45static const struct esdhc_clk_fixup ls1043a_esdhc_clk = {
  46	.sd_dflt_max_clk = 25000000,
  47	.max_clk[MMC_TIMING_UHS_SDR104] = 116700000,
  48	.max_clk[MMC_TIMING_MMC_HS200] = 116700000,
  49};
  50
  51static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
  52	.sd_dflt_max_clk = 25000000,
  53	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
  54	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
  55};
  56
  57static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
  58	.sd_dflt_max_clk = 25000000,
  59	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
  60	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
  61};
  62
  63static const struct esdhc_clk_fixup p1010_esdhc_clk = {
  64	.sd_dflt_max_clk = 20000000,
  65	.max_clk[MMC_TIMING_LEGACY] = 20000000,
  66	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
  67	.max_clk[MMC_TIMING_SD_HS] = 40000000,
  68};
  69
  70static const struct of_device_id sdhci_esdhc_of_match[] = {
  71	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
  72	{ .compatible = "fsl,ls1043a-esdhc", .data = &ls1043a_esdhc_clk},
  73	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
  74	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
  75	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
  76	{ .compatible = "fsl,mpc8379-esdhc" },
  77	{ .compatible = "fsl,mpc8536-esdhc" },
  78	{ .compatible = "fsl,esdhc" },
  79	{ }
  80};
  81MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
  82
  83struct sdhci_esdhc {
  84	u8 vendor_ver;
  85	u8 spec_ver;
  86	bool quirk_incorrect_hostver;
  87	bool quirk_limited_clk_division;
  88	bool quirk_unreliable_pulse_detection;
  89	bool quirk_tuning_erratum_type1;
  90	bool quirk_tuning_erratum_type2;
  91	bool quirk_ignore_data_inhibit;
  92	bool quirk_delay_before_data_reset;
  93	bool quirk_trans_complete_erratum;
  94	bool in_sw_tuning;
  95	unsigned int peripheral_clock;
  96	const struct esdhc_clk_fixup *clk_fixup;
  97	u32 div_ratio;
  98};
  99
 100/**
 101 * esdhc_readl_fixup - Fixup the value read from incompatible eSDHC register
 102 *		       to make it compatible with SD spec.
 103 *
 104 * @host: pointer to sdhci_host
 105 * @spec_reg: SD spec register address
 106 * @value: 32bit eSDHC register value on spec_reg address
 107 *
 108 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
 109 * registers are 32 bits. There are differences in register size, register
 110 * address, register function, bit position and function between eSDHC spec
 111 * and SD spec.
 112 *
 113 * Return a fixed up register value
 114 */
 115static u32 esdhc_readl_fixup(struct sdhci_host *host,
 116				     int spec_reg, u32 value)
 117{
 118	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 119	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 120	u32 ret;
 121
 122	/*
 123	 * The bit of ADMA flag in eSDHC is not compatible with standard
 124	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
 125	 * supported by eSDHC.
 126	 * And for many FSL eSDHC controller, the reset value of field
 127	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
 128	 * only these vendor version is greater than 2.2/0x12 support ADMA.
 129	 */
 130	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
 131		if (esdhc->vendor_ver > VENDOR_V_22) {
 132			ret = value | SDHCI_CAN_DO_ADMA2;
 133			return ret;
 134		}
 135	}
 136	/*
 137	 * The DAT[3:0] line signal levels and the CMD line signal level are
 138	 * not compatible with standard SDHC register. The line signal levels
 139	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
 140	 * bit 23. All other bits are the same as in the standard SDHC
 141	 * register.
 142	 */
 143	if (spec_reg == SDHCI_PRESENT_STATE) {
 144		ret = value & 0x000fffff;
 145		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
 146		ret |= (value << 1) & SDHCI_CMD_LVL;
 147		return ret;
 148	}
 149
 150	/*
 151	 * DTS properties of mmc host are used to enable each speed mode
 152	 * according to soc and board capability. So clean up
 153	 * SDR50/SDR104/DDR50 support bits here.
 154	 */
 155	if (spec_reg == SDHCI_CAPABILITIES_1) {
 156		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
 157				SDHCI_SUPPORT_DDR50);
 158		return ret;
 159	}
 160
 161	/*
 162	 * Some controllers have unreliable Data Line Active
 163	 * bit for commands with busy signal. This affects
 164	 * Command Inhibit (data) bit. Just ignore it since
 165	 * MMC core driver has already polled card status
 166	 * with CMD13 after any command with busy siganl.
 167	 */
 168	if ((spec_reg == SDHCI_PRESENT_STATE) &&
 169	(esdhc->quirk_ignore_data_inhibit == true)) {
 170		ret = value & ~SDHCI_DATA_INHIBIT;
 171		return ret;
 172	}
 173
 174	ret = value;
 175	return ret;
 176}
 177
 178static u16 esdhc_readw_fixup(struct sdhci_host *host,
 179				     int spec_reg, u32 value)
 180{
 181	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 182	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 183	u16 ret;
 184	int shift = (spec_reg & 0x2) * 8;
 185
 186	if (spec_reg == SDHCI_TRANSFER_MODE)
 187		return pltfm_host->xfer_mode_shadow;
 188
 189	if (spec_reg == SDHCI_HOST_VERSION)
 190		ret = value & 0xffff;
 191	else
 192		ret = (value >> shift) & 0xffff;
 193	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
 194	 * vendor version and spec version information.
 195	 */
 196	if ((spec_reg == SDHCI_HOST_VERSION) &&
 197	    (esdhc->quirk_incorrect_hostver))
 198		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
 199	return ret;
 200}
 201
 202static u8 esdhc_readb_fixup(struct sdhci_host *host,
 203				     int spec_reg, u32 value)
 204{
 205	u8 ret;
 206	u8 dma_bits;
 207	int shift = (spec_reg & 0x3) * 8;
 208
 209	ret = (value >> shift) & 0xff;
 210
 211	/*
 212	 * "DMA select" locates at offset 0x28 in SD specification, but on
 213	 * P5020 or P3041, it locates at 0x29.
 214	 */
 215	if (spec_reg == SDHCI_HOST_CONTROL) {
 216		/* DMA select is 22,23 bits in Protocol Control Register */
 217		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
 218		/* fixup the result */
 219		ret &= ~SDHCI_CTRL_DMA_MASK;
 220		ret |= dma_bits;
 221	}
 222	return ret;
 223}
 224
 225/**
 226 * esdhc_writel_fixup - Fixup the SD spec register value so that it could be
 227 *			written into eSDHC register.
 228 *
 229 * @host: pointer to sdhci_host
 230 * @spec_reg: SD spec register address
 231 * @value: 8/16/32bit SD spec register value that would be written
 232 * @old_value: 32bit eSDHC register value on spec_reg address
 233 *
 234 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
 235 * registers are 32 bits. There are differences in register size, register
 236 * address, register function, bit position and function between eSDHC spec
 237 * and SD spec.
 238 *
 239 * Return a fixed up register value
 240 */
 241static u32 esdhc_writel_fixup(struct sdhci_host *host,
 242				     int spec_reg, u32 value, u32 old_value)
 243{
 244	u32 ret;
 245
 246	/*
 247	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
 248	 * when SYSCTL[RSTD] is set for some special operations.
 249	 * No any impact on other operation.
 250	 */
 251	if (spec_reg == SDHCI_INT_ENABLE)
 252		ret = value | SDHCI_INT_BLK_GAP;
 253	else
 254		ret = value;
 255
 256	return ret;
 257}
 258
 259static u32 esdhc_writew_fixup(struct sdhci_host *host,
 260				     int spec_reg, u16 value, u32 old_value)
 261{
 262	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 263	int shift = (spec_reg & 0x2) * 8;
 264	u32 ret;
 265
 266	switch (spec_reg) {
 267	case SDHCI_TRANSFER_MODE:
 268		/*
 269		 * Postpone this write, we must do it together with a
 270		 * command write that is down below. Return old value.
 271		 */
 272		pltfm_host->xfer_mode_shadow = value;
 273		return old_value;
 274	case SDHCI_COMMAND:
 275		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
 276		return ret;
 277	}
 278
 279	ret = old_value & (~(0xffff << shift));
 280	ret |= (value << shift);
 281
 282	if (spec_reg == SDHCI_BLOCK_SIZE) {
 283		/*
 284		 * Two last DMA bits are reserved, and first one is used for
 285		 * non-standard blksz of 4096 bytes that we don't support
 286		 * yet. So clear the DMA boundary bits.
 287		 */
 288		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
 289	}
 290	return ret;
 291}
 292
 293static u32 esdhc_writeb_fixup(struct sdhci_host *host,
 294				     int spec_reg, u8 value, u32 old_value)
 295{
 296	u32 ret;
 297	u32 dma_bits;
 298	u8 tmp;
 299	int shift = (spec_reg & 0x3) * 8;
 300
 301	/*
 302	 * eSDHC doesn't have a standard power control register, so we do
 303	 * nothing here to avoid incorrect operation.
 304	 */
 305	if (spec_reg == SDHCI_POWER_CONTROL)
 306		return old_value;
 307	/*
 308	 * "DMA select" location is offset 0x28 in SD specification, but on
 309	 * P5020 or P3041, it's located at 0x29.
 310	 */
 311	if (spec_reg == SDHCI_HOST_CONTROL) {
 312		/*
 313		 * If host control register is not standard, exit
 314		 * this function
 315		 */
 316		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
 317			return old_value;
 318
 319		/* DMA select is 22,23 bits in Protocol Control Register */
 320		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
 321		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
 322		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
 323		      (old_value & SDHCI_CTRL_DMA_MASK);
 324		ret = (ret & (~0xff)) | tmp;
 325
 326		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
 327		ret &= ~ESDHC_HOST_CONTROL_RES;
 328		return ret;
 329	}
 330
 331	ret = (old_value & (~(0xff << shift))) | (value << shift);
 332	return ret;
 333}
 334
 335static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
 336{
 337	u32 ret;
 338	u32 value;
 339
 340	if (reg == SDHCI_CAPABILITIES_1)
 341		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
 342	else
 343		value = ioread32be(host->ioaddr + reg);
 344
 345	ret = esdhc_readl_fixup(host, reg, value);
 346
 347	return ret;
 348}
 349
 350static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
 351{
 352	u32 ret;
 353	u32 value;
 354
 355	if (reg == SDHCI_CAPABILITIES_1)
 356		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
 357	else
 358		value = ioread32(host->ioaddr + reg);
 359
 360	ret = esdhc_readl_fixup(host, reg, value);
 361
 362	return ret;
 363}
 364
 365static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
 366{
 367	u16 ret;
 368	u32 value;
 369	int base = reg & ~0x3;
 370
 371	value = ioread32be(host->ioaddr + base);
 372	ret = esdhc_readw_fixup(host, reg, value);
 373	return ret;
 374}
 375
 376static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
 377{
 378	u16 ret;
 379	u32 value;
 380	int base = reg & ~0x3;
 381
 382	value = ioread32(host->ioaddr + base);
 383	ret = esdhc_readw_fixup(host, reg, value);
 384	return ret;
 385}
 386
 387static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
 388{
 389	u8 ret;
 390	u32 value;
 391	int base = reg & ~0x3;
 392
 393	value = ioread32be(host->ioaddr + base);
 394	ret = esdhc_readb_fixup(host, reg, value);
 395	return ret;
 396}
 397
 398static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
 399{
 400	u8 ret;
 401	u32 value;
 402	int base = reg & ~0x3;
 403
 404	value = ioread32(host->ioaddr + base);
 405	ret = esdhc_readb_fixup(host, reg, value);
 406	return ret;
 407}
 408
 409static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
 410{
 411	u32 value;
 412
 413	value = esdhc_writel_fixup(host, reg, val, 0);
 414	iowrite32be(value, host->ioaddr + reg);
 415}
 416
 417static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
 418{
 419	u32 value;
 420
 421	value = esdhc_writel_fixup(host, reg, val, 0);
 422	iowrite32(value, host->ioaddr + reg);
 423}
 424
 425static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
 426{
 427	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 428	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 429	int base = reg & ~0x3;
 430	u32 value;
 431	u32 ret;
 432
 433	value = ioread32be(host->ioaddr + base);
 434	ret = esdhc_writew_fixup(host, reg, val, value);
 435	if (reg != SDHCI_TRANSFER_MODE)
 436		iowrite32be(ret, host->ioaddr + base);
 437
 438	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
 439	 * 1us later after ESDHC_EXTN is set.
 440	 */
 441	if (base == ESDHC_SYSTEM_CONTROL_2) {
 442		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
 443		    esdhc->in_sw_tuning) {
 444			udelay(1);
 445			ret |= ESDHC_SMPCLKSEL;
 446			iowrite32be(ret, host->ioaddr + base);
 447		}
 448	}
 449}
 450
 451static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
 452{
 453	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 454	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 455	int base = reg & ~0x3;
 456	u32 value;
 457	u32 ret;
 458
 459	value = ioread32(host->ioaddr + base);
 460	ret = esdhc_writew_fixup(host, reg, val, value);
 461	if (reg != SDHCI_TRANSFER_MODE)
 462		iowrite32(ret, host->ioaddr + base);
 463
 464	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
 465	 * 1us later after ESDHC_EXTN is set.
 466	 */
 467	if (base == ESDHC_SYSTEM_CONTROL_2) {
 468		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
 469		    esdhc->in_sw_tuning) {
 470			udelay(1);
 471			ret |= ESDHC_SMPCLKSEL;
 472			iowrite32(ret, host->ioaddr + base);
 473		}
 474	}
 475}
 476
 477static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
 478{
 479	int base = reg & ~0x3;
 480	u32 value;
 481	u32 ret;
 482
 483	value = ioread32be(host->ioaddr + base);
 484	ret = esdhc_writeb_fixup(host, reg, val, value);
 485	iowrite32be(ret, host->ioaddr + base);
 486}
 487
 488static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
 489{
 490	int base = reg & ~0x3;
 491	u32 value;
 492	u32 ret;
 493
 494	value = ioread32(host->ioaddr + base);
 495	ret = esdhc_writeb_fixup(host, reg, val, value);
 496	iowrite32(ret, host->ioaddr + base);
 497}
 498
 499/*
 500 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
 501 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
 502 * and Block Gap Event(IRQSTAT[BGE]) are also set.
 503 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
 504 * and re-issue the entire read transaction from beginning.
 505 */
 506static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
 507{
 508	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 509	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 510	bool applicable;
 511	dma_addr_t dmastart;
 512	dma_addr_t dmanow;
 513
 514	applicable = (intmask & SDHCI_INT_DATA_END) &&
 515		     (intmask & SDHCI_INT_BLK_GAP) &&
 516		     (esdhc->vendor_ver == VENDOR_V_23);
 517	if (!applicable)
 518		return;
 519
 520	host->data->error = 0;
 521	dmastart = sg_dma_address(host->data->sg);
 522	dmanow = dmastart + host->data->bytes_xfered;
 523	/*
 524	 * Force update to the next DMA block boundary.
 525	 */
 526	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
 527		SDHCI_DEFAULT_BOUNDARY_SIZE;
 528	host->data->bytes_xfered = dmanow - dmastart;
 529	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
 530}
 531
 532static int esdhc_of_enable_dma(struct sdhci_host *host)
 533{
 534	int ret;
 535	u32 value;
 536	struct device *dev = mmc_dev(host->mmc);
 537
 538	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
 539	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) {
 540		ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
 541		if (ret)
 542			return ret;
 543	}
 544
 545	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 546
 547	if (of_dma_is_coherent(dev->of_node))
 548		value |= ESDHC_DMA_SNOOP;
 549	else
 550		value &= ~ESDHC_DMA_SNOOP;
 551
 552	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
 553	return 0;
 554}
 555
 556static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
 557{
 558	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 559	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 560
 561	if (esdhc->peripheral_clock)
 562		return esdhc->peripheral_clock;
 563	else
 564		return pltfm_host->clock;
 565}
 566
 567static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
 568{
 569	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 570	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 571	unsigned int clock;
 572
 573	if (esdhc->peripheral_clock)
 574		clock = esdhc->peripheral_clock;
 575	else
 576		clock = pltfm_host->clock;
 577	return clock / 256 / 16;
 578}
 579
 580static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
 581{
 582	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 583	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 584	ktime_t timeout;
 585	u32 val, clk_en;
 586
 587	clk_en = ESDHC_CLOCK_SDCLKEN;
 588
 589	/*
 590	 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
 591	 * is 2.2 or lower.
 592	 */
 593	if (esdhc->vendor_ver <= VENDOR_V_22)
 594		clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
 595			   ESDHC_CLOCK_PEREN);
 596
 597	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 598
 599	if (enable)
 600		val |= clk_en;
 601	else
 602		val &= ~clk_en;
 603
 604	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
 605
 606	/*
 607	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
 608	 * wait clock stable bit which does not exist.
 609	 */
 610	timeout = ktime_add_ms(ktime_get(), 20);
 611	while (esdhc->vendor_ver > VENDOR_V_22) {
 612		bool timedout = ktime_after(ktime_get(), timeout);
 613
 614		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
 615			break;
 616		if (timedout) {
 617			pr_err("%s: Internal clock never stabilised.\n",
 618				mmc_hostname(host->mmc));
 619			break;
 620		}
 621		usleep_range(10, 20);
 622	}
 623}
 624
 625static void esdhc_flush_async_fifo(struct sdhci_host *host)
 626{
 627	ktime_t timeout;
 628	u32 val;
 629
 630	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 631	val |= ESDHC_FLUSH_ASYNC_FIFO;
 632	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
 633
 634	/* Wait max 20 ms */
 635	timeout = ktime_add_ms(ktime_get(), 20);
 636	while (1) {
 
 637		bool timedout = ktime_after(ktime_get(), timeout);
 638
 639		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
 640		      ESDHC_FLUSH_ASYNC_FIFO))
 641			break;
 642		if (timedout) {
 643			pr_err("%s: flushing asynchronous FIFO timeout.\n",
 644				mmc_hostname(host->mmc));
 645			break;
 646		}
 647		usleep_range(10, 20);
 648	}
 649}
 650
 651static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
 652{
 653	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 654	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 655	unsigned int pre_div = 1, div = 1;
 656	unsigned int clock_fixup = 0;
 
 657	ktime_t timeout;
 
 658	u32 temp;
 659
 
 
 660	if (clock == 0) {
 661		host->mmc->actual_clock = 0;
 662		esdhc_clock_enable(host, false);
 663		return;
 664	}
 665
 666	/* Start pre_div at 2 for vendor version < 2.3. */
 667	if (esdhc->vendor_ver < VENDOR_V_23)
 668		pre_div = 2;
 669
 670	/* Fix clock value. */
 671	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
 672	    esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
 673		clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
 674	else if (esdhc->clk_fixup)
 675		clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
 676
 677	if (clock_fixup == 0 || clock < clock_fixup)
 678		clock_fixup = clock;
 679
 680	/* Calculate pre_div and div. */
 681	while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
 
 
 
 
 682		pre_div *= 2;
 683
 684	while (host->max_clk / pre_div / div > clock_fixup && div < 16)
 685		div++;
 686
 687	esdhc->div_ratio = pre_div * div;
 688
 689	/* Limit clock division for HS400 200MHz clock for quirk. */
 690	if (esdhc->quirk_limited_clk_division &&
 691	    clock == MMC_HS200_MAX_DTR &&
 692	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
 693	     host->flags & SDHCI_HS400_TUNING)) {
 694		if (esdhc->div_ratio <= 4) {
 
 695			pre_div = 4;
 696			div = 1;
 697		} else if (esdhc->div_ratio <= 8) {
 698			pre_div = 4;
 699			div = 2;
 700		} else if (esdhc->div_ratio <= 12) {
 701			pre_div = 4;
 702			div = 3;
 703		} else {
 704			pr_warn("%s: using unsupported clock division.\n",
 705				mmc_hostname(host->mmc));
 706		}
 707		esdhc->div_ratio = pre_div * div;
 708	}
 709
 710	host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
 711
 712	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
 713		clock, host->mmc->actual_clock);
 714
 715	/* Set clock division into register. */
 716	pre_div >>= 1;
 717	div--;
 718
 719	esdhc_clock_enable(host, false);
 720
 721	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 722	temp &= ~ESDHC_CLOCK_MASK;
 723	temp |= ((div << ESDHC_DIVIDER_SHIFT) |
 724		(pre_div << ESDHC_PREDIV_SHIFT));
 725	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 726
 727	/*
 728	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
 729	 * wait clock stable bit which does not exist.
 730	 */
 731	timeout = ktime_add_ms(ktime_get(), 20);
 732	while (esdhc->vendor_ver > VENDOR_V_22) {
 733		bool timedout = ktime_after(ktime_get(), timeout);
 734
 735		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
 736			break;
 737		if (timedout) {
 738			pr_err("%s: Internal clock never stabilised.\n",
 739				mmc_hostname(host->mmc));
 740			break;
 741		}
 742		usleep_range(10, 20);
 743	}
 744
 745	/* Additional setting for HS400. */
 746	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
 747	    clock == MMC_HS200_MAX_DTR) {
 748		temp = sdhci_readl(host, ESDHC_TBCTL);
 749		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
 750		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
 751		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
 752		esdhc_clock_enable(host, true);
 753
 754		temp = sdhci_readl(host, ESDHC_DLLCFG0);
 755		temp |= ESDHC_DLL_ENABLE;
 756		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
 757			temp |= ESDHC_DLL_FREQ_SEL;
 758		sdhci_writel(host, temp, ESDHC_DLLCFG0);
 759
 760		temp |= ESDHC_DLL_RESET;
 761		sdhci_writel(host, temp, ESDHC_DLLCFG0);
 762		udelay(1);
 763		temp &= ~ESDHC_DLL_RESET;
 764		sdhci_writel(host, temp, ESDHC_DLLCFG0);
 765
 766		/* Wait max 20 ms */
 767		if (read_poll_timeout(sdhci_readl, temp,
 768				      temp & ESDHC_DLL_STS_SLV_LOCK,
 769				      10, 20000, false,
 770				      host, ESDHC_DLLSTAT0))
 771			pr_err("%s: timeout for delay chain lock.\n",
 772			       mmc_hostname(host->mmc));
 773
 774		temp = sdhci_readl(host, ESDHC_TBCTL);
 775		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
 776
 777		esdhc_clock_enable(host, false);
 778		esdhc_flush_async_fifo(host);
 
 
 779	}
 780	esdhc_clock_enable(host, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781}
 782
 783static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
 784{
 785	u32 ctrl;
 786
 787	ctrl = sdhci_readl(host, ESDHC_PROCTL);
 788	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
 789	switch (width) {
 790	case MMC_BUS_WIDTH_8:
 791		ctrl |= ESDHC_CTRL_8BITBUS;
 792		break;
 793
 794	case MMC_BUS_WIDTH_4:
 795		ctrl |= ESDHC_CTRL_4BITBUS;
 796		break;
 797
 798	default:
 799		break;
 800	}
 801
 802	sdhci_writel(host, ctrl, ESDHC_PROCTL);
 803}
 804
 805static void esdhc_reset(struct sdhci_host *host, u8 mask)
 806{
 807	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 808	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 809	u32 val, bus_width = 0;
 810
 811	/*
 812	 * Add delay to make sure all the DMA transfers are finished
 813	 * for quirk.
 814	 */
 815	if (esdhc->quirk_delay_before_data_reset &&
 816	    (mask & SDHCI_RESET_DATA) &&
 817	    (host->flags & SDHCI_REQ_USE_DMA))
 818		mdelay(5);
 819
 820	/*
 821	 * Save bus-width for eSDHC whose vendor version is 2.2
 822	 * or lower for data reset.
 823	 */
 824	if ((mask & SDHCI_RESET_DATA) &&
 825	    (esdhc->vendor_ver <= VENDOR_V_22)) {
 826		val = sdhci_readl(host, ESDHC_PROCTL);
 827		bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
 828	}
 829
 830	sdhci_reset(host, mask);
 831
 832	/*
 833	 * Restore bus-width setting and interrupt registers for eSDHC
 834	 * whose vendor version is 2.2 or lower for data reset.
 835	 */
 836	if ((mask & SDHCI_RESET_DATA) &&
 837	    (esdhc->vendor_ver <= VENDOR_V_22)) {
 838		val = sdhci_readl(host, ESDHC_PROCTL);
 839		val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
 840		val |= bus_width;
 841		sdhci_writel(host, val, ESDHC_PROCTL);
 842
 843		sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
 844		sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
 845	}
 846
 847	/*
 848	 * Some bits have to be cleaned manually for eSDHC whose spec
 849	 * version is higher than 3.0 for all reset.
 850	 */
 851	if ((mask & SDHCI_RESET_ALL) &&
 852	    (esdhc->spec_ver >= SDHCI_SPEC_300)) {
 853		val = sdhci_readl(host, ESDHC_TBCTL);
 854		val &= ~ESDHC_TB_EN;
 855		sdhci_writel(host, val, ESDHC_TBCTL);
 856
 857		/*
 858		 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
 859		 * 0 for quirk.
 860		 */
 861		if (esdhc->quirk_unreliable_pulse_detection) {
 862			val = sdhci_readl(host, ESDHC_DLLCFG1);
 863			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
 864			sdhci_writel(host, val, ESDHC_DLLCFG1);
 865		}
 866	}
 867}
 868
 869/* The SCFG, Supplemental Configuration Unit, provides SoC specific
 870 * configuration and status registers for the device. There is a
 871 * SDHC IO VSEL control register on SCFG for some platforms. It's
 872 * used to support SDHC IO voltage switching.
 873 */
 874static const struct of_device_id scfg_device_ids[] = {
 875	{ .compatible = "fsl,t1040-scfg", },
 876	{ .compatible = "fsl,ls1012a-scfg", },
 877	{ .compatible = "fsl,ls1046a-scfg", },
 878	{}
 879};
 880
 881/* SDHC IO VSEL control register definition */
 882#define SCFG_SDHCIOVSELCR	0x408
 883#define SDHCIOVSELCR_TGLEN	0x80000000
 884#define SDHCIOVSELCR_VSELVAL	0x60000000
 885#define SDHCIOVSELCR_SDHC_VS	0x00000001
 886
 887static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
 888				       struct mmc_ios *ios)
 889{
 890	struct sdhci_host *host = mmc_priv(mmc);
 891	struct device_node *scfg_node;
 892	void __iomem *scfg_base = NULL;
 893	u32 sdhciovselcr;
 894	u32 val;
 895
 896	/*
 897	 * Signal Voltage Switching is only applicable for Host Controllers
 898	 * v3.00 and above.
 899	 */
 900	if (host->version < SDHCI_SPEC_300)
 901		return 0;
 902
 903	val = sdhci_readl(host, ESDHC_PROCTL);
 904
 905	switch (ios->signal_voltage) {
 906	case MMC_SIGNAL_VOLTAGE_330:
 907		val &= ~ESDHC_VOLT_SEL;
 908		sdhci_writel(host, val, ESDHC_PROCTL);
 909		return 0;
 910	case MMC_SIGNAL_VOLTAGE_180:
 911		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
 912		if (scfg_node)
 913			scfg_base = of_iomap(scfg_node, 0);
 914		of_node_put(scfg_node);
 915		if (scfg_base) {
 916			sdhciovselcr = SDHCIOVSELCR_TGLEN |
 917				       SDHCIOVSELCR_VSELVAL;
 918			iowrite32be(sdhciovselcr,
 919				scfg_base + SCFG_SDHCIOVSELCR);
 920
 921			val |= ESDHC_VOLT_SEL;
 922			sdhci_writel(host, val, ESDHC_PROCTL);
 923			mdelay(5);
 924
 925			sdhciovselcr = SDHCIOVSELCR_TGLEN |
 926				       SDHCIOVSELCR_SDHC_VS;
 927			iowrite32be(sdhciovselcr,
 928				scfg_base + SCFG_SDHCIOVSELCR);
 929			iounmap(scfg_base);
 930		} else {
 931			val |= ESDHC_VOLT_SEL;
 932			sdhci_writel(host, val, ESDHC_PROCTL);
 933		}
 934		return 0;
 935	default:
 936		return 0;
 937	}
 938}
 939
 940static struct soc_device_attribute soc_tuning_erratum_type1[] = {
 941	{ .family = "QorIQ T1023", },
 942	{ .family = "QorIQ T1040", },
 943	{ .family = "QorIQ T2080", },
 944	{ .family = "QorIQ LS1021A", },
 945	{ /* sentinel */ }
 946};
 947
 948static struct soc_device_attribute soc_tuning_erratum_type2[] = {
 949	{ .family = "QorIQ LS1012A", },
 950	{ .family = "QorIQ LS1043A", },
 951	{ .family = "QorIQ LS1046A", },
 952	{ .family = "QorIQ LS1080A", },
 953	{ .family = "QorIQ LS2080A", },
 954	{ .family = "QorIQ LA1575A", },
 955	{ /* sentinel */ }
 956};
 957
 958static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
 959{
 960	u32 val;
 961
 962	esdhc_clock_enable(host, false);
 963	esdhc_flush_async_fifo(host);
 
 
 
 964
 965	val = sdhci_readl(host, ESDHC_TBCTL);
 966	if (enable)
 967		val |= ESDHC_TB_EN;
 968	else
 969		val &= ~ESDHC_TB_EN;
 970	sdhci_writel(host, val, ESDHC_TBCTL);
 971
 972	esdhc_clock_enable(host, true);
 973}
 974
 975static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
 976				    u8 *window_end)
 977{
 978	u32 val;
 979
 980	/* Write TBCTL[11:8]=4'h8 */
 981	val = sdhci_readl(host, ESDHC_TBCTL);
 982	val &= ~(0xf << 8);
 983	val |= 8 << 8;
 984	sdhci_writel(host, val, ESDHC_TBCTL);
 985
 986	mdelay(1);
 987
 988	/* Read TBCTL[31:0] register and rewrite again */
 989	val = sdhci_readl(host, ESDHC_TBCTL);
 990	sdhci_writel(host, val, ESDHC_TBCTL);
 991
 992	mdelay(1);
 993
 994	/* Read the TBSTAT[31:0] register twice */
 995	val = sdhci_readl(host, ESDHC_TBSTAT);
 996	val = sdhci_readl(host, ESDHC_TBSTAT);
 997
 998	*window_end = val & 0xff;
 999	*window_start = (val >> 8) & 0xff;
1000}
1001
1002static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
1003				    u8 *window_end)
1004{
1005	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1006	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1007	u8 start_ptr, end_ptr;
1008
1009	if (esdhc->quirk_tuning_erratum_type1) {
1010		*window_start = 5 * esdhc->div_ratio;
1011		*window_end = 3 * esdhc->div_ratio;
1012		return;
1013	}
1014
1015	esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
1016
1017	/* Reset data lines by setting ESDHCCTL[RSTD] */
1018	sdhci_reset(host, SDHCI_RESET_DATA);
1019	/* Write 32'hFFFF_FFFF to IRQSTAT register */
1020	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
1021
1022	/* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
1023	 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
1024	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
1025	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
1026	 */
1027
1028	if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1029		*window_start = 8 * esdhc->div_ratio;
1030		*window_end = 4 * esdhc->div_ratio;
1031	} else {
1032		*window_start = 5 * esdhc->div_ratio;
1033		*window_end = 3 * esdhc->div_ratio;
1034	}
1035}
1036
1037static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1038				   u8 window_start, u8 window_end)
1039{
1040	struct sdhci_host *host = mmc_priv(mmc);
1041	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1042	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1043	u32 val;
1044	int ret;
1045
1046	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1047	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1048	      ESDHC_WNDW_STRT_PTR_MASK;
1049	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1050	sdhci_writel(host, val, ESDHC_TBPTR);
1051
1052	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1053	val = sdhci_readl(host, ESDHC_TBCTL);
1054	val &= ~ESDHC_TB_MODE_MASK;
1055	val |= ESDHC_TB_MODE_SW;
1056	sdhci_writel(host, val, ESDHC_TBCTL);
1057
1058	esdhc->in_sw_tuning = true;
1059	ret = sdhci_execute_tuning(mmc, opcode);
1060	esdhc->in_sw_tuning = false;
1061	return ret;
1062}
1063
1064static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1065{
1066	struct sdhci_host *host = mmc_priv(mmc);
1067	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1068	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1069	u8 window_start, window_end;
1070	int ret, retries = 1;
1071	bool hs400_tuning;
1072	unsigned int clk;
1073	u32 val;
 
1074
1075	/* For tuning mode, the sd clock divisor value
1076	 * must be larger than 3 according to reference manual.
1077	 */
1078	clk = esdhc->peripheral_clock / 3;
1079	if (host->clock > clk)
1080		esdhc_of_set_clock(host, clk);
1081
1082	esdhc_tuning_block_enable(host, true);
 
 
1083
1084	/*
1085	 * The eSDHC controller takes the data timeout value into account
1086	 * during tuning. If the SD card is too slow sending the response, the
1087	 * timer will expire and a "Buffer Read Ready" interrupt without data
1088	 * is triggered. This leads to tuning errors.
1089	 *
1090	 * Just set the timeout to the maximum value because the core will
1091	 * already take care of it in sdhci_send_tuning().
1092	 */
1093	sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
1094
1095	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
 
1096
1097	do {
1098		if (esdhc->quirk_limited_clk_division &&
1099		    hs400_tuning)
1100			esdhc_of_set_clock(host, host->clock);
1101
1102		/* Do HW tuning */
1103		val = sdhci_readl(host, ESDHC_TBCTL);
1104		val &= ~ESDHC_TB_MODE_MASK;
1105		val |= ESDHC_TB_MODE_3;
1106		sdhci_writel(host, val, ESDHC_TBCTL);
1107
1108		ret = sdhci_execute_tuning(mmc, opcode);
1109		if (ret)
1110			break;
1111
1112		/* For type2 affected platforms of the tuning erratum,
1113		 * tuning may succeed although eSDHC might not have
1114		 * tuned properly. Need to check tuning window.
1115		 */
1116		if (esdhc->quirk_tuning_erratum_type2 &&
1117		    !host->tuning_err) {
1118			esdhc_tuning_window_ptr(host, &window_start,
1119						&window_end);
1120			if (abs(window_start - window_end) >
1121			    (4 * esdhc->div_ratio + 2))
1122				host->tuning_err = -EAGAIN;
1123		}
1124
1125		/* If HW tuning fails and triggers erratum,
1126		 * try workaround.
1127		 */
1128		ret = host->tuning_err;
1129		if (ret == -EAGAIN &&
1130		    (esdhc->quirk_tuning_erratum_type1 ||
1131		     esdhc->quirk_tuning_erratum_type2)) {
1132			/* Recover HS400 tuning flag */
1133			if (hs400_tuning)
1134				host->flags |= SDHCI_HS400_TUNING;
1135			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1136				mmc_hostname(mmc));
1137			/* Do SW tuning */
1138			esdhc_prepare_sw_tuning(host, &window_start,
1139						&window_end);
1140			ret = esdhc_execute_sw_tuning(mmc, opcode,
1141						      window_start,
1142						      window_end);
1143			if (ret)
1144				break;
1145
1146			/* Retry both HW/SW tuning with reduced clock. */
1147			ret = host->tuning_err;
1148			if (ret == -EAGAIN && retries) {
1149				/* Recover HS400 tuning flag */
1150				if (hs400_tuning)
1151					host->flags |= SDHCI_HS400_TUNING;
1152
1153				clk = host->max_clk / (esdhc->div_ratio + 1);
1154				esdhc_of_set_clock(host, clk);
1155				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1156					mmc_hostname(mmc));
1157			} else {
1158				break;
1159			}
1160		} else {
1161			break;
1162		}
1163	} while (retries--);
1164
1165	if (ret) {
1166		esdhc_tuning_block_enable(host, false);
1167	} else if (hs400_tuning) {
1168		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1169		val |= ESDHC_FLW_CTL_BG;
1170		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1171	}
1172
1173	return ret;
1174}
1175
1176static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1177				   unsigned int timing)
1178{
1179	u32 val;
1180
1181	/*
1182	 * There are specific registers setting for HS400 mode.
1183	 * Clean all of them if controller is in HS400 mode to
1184	 * exit HS400 mode before re-setting any speed mode.
1185	 */
1186	val = sdhci_readl(host, ESDHC_TBCTL);
1187	if (val & ESDHC_HS400_MODE) {
1188		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1189		val &= ~ESDHC_FLW_CTL_BG;
1190		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1191
1192		val = sdhci_readl(host, ESDHC_SDCLKCTL);
1193		val &= ~ESDHC_CMD_CLK_CTL;
1194		sdhci_writel(host, val, ESDHC_SDCLKCTL);
1195
1196		esdhc_clock_enable(host, false);
1197		val = sdhci_readl(host, ESDHC_TBCTL);
1198		val &= ~ESDHC_HS400_MODE;
1199		sdhci_writel(host, val, ESDHC_TBCTL);
1200		esdhc_clock_enable(host, true);
1201
1202		val = sdhci_readl(host, ESDHC_DLLCFG0);
1203		val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1204		sdhci_writel(host, val, ESDHC_DLLCFG0);
1205
1206		val = sdhci_readl(host, ESDHC_TBCTL);
1207		val &= ~ESDHC_HS400_WNDW_ADJUST;
1208		sdhci_writel(host, val, ESDHC_TBCTL);
1209
1210		esdhc_tuning_block_enable(host, false);
1211	}
1212
1213	if (timing == MMC_TIMING_MMC_HS400)
1214		esdhc_tuning_block_enable(host, true);
1215	else
1216		sdhci_set_uhs_signaling(host, timing);
1217}
1218
1219static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1220{
1221	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1222	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1223	u32 command;
1224
1225	if (esdhc->quirk_trans_complete_erratum) {
 
1226		command = SDHCI_GET_CMD(sdhci_readw(host,
1227					SDHCI_COMMAND));
1228		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1229				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1230				intmask & SDHCI_INT_DATA_END) {
1231			intmask &= ~SDHCI_INT_DATA_END;
1232			sdhci_writel(host, SDHCI_INT_DATA_END,
1233					SDHCI_INT_STATUS);
1234		}
1235	}
1236	return intmask;
1237}
1238
1239#ifdef CONFIG_PM_SLEEP
1240static u32 esdhc_proctl;
1241static int esdhc_of_suspend(struct device *dev)
1242{
1243	struct sdhci_host *host = dev_get_drvdata(dev);
1244
1245	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1246
1247	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1248		mmc_retune_needed(host->mmc);
1249
1250	return sdhci_suspend_host(host);
1251}
1252
1253static int esdhc_of_resume(struct device *dev)
1254{
1255	struct sdhci_host *host = dev_get_drvdata(dev);
1256	int ret = sdhci_resume_host(host);
1257
1258	if (ret == 0) {
1259		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1260		esdhc_of_enable_dma(host);
1261		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1262	}
1263	return ret;
1264}
1265#endif
1266
1267static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1268			esdhc_of_suspend,
1269			esdhc_of_resume);
1270
1271static const struct sdhci_ops sdhci_esdhc_be_ops = {
1272	.read_l = esdhc_be_readl,
1273	.read_w = esdhc_be_readw,
1274	.read_b = esdhc_be_readb,
1275	.write_l = esdhc_be_writel,
1276	.write_w = esdhc_be_writew,
1277	.write_b = esdhc_be_writeb,
1278	.set_clock = esdhc_of_set_clock,
1279	.enable_dma = esdhc_of_enable_dma,
1280	.get_max_clock = esdhc_of_get_max_clock,
1281	.get_min_clock = esdhc_of_get_min_clock,
1282	.adma_workaround = esdhc_of_adma_workaround,
1283	.set_bus_width = esdhc_pltfm_set_bus_width,
1284	.reset = esdhc_reset,
1285	.set_uhs_signaling = esdhc_set_uhs_signaling,
1286	.irq = esdhc_irq,
1287};
1288
1289static const struct sdhci_ops sdhci_esdhc_le_ops = {
1290	.read_l = esdhc_le_readl,
1291	.read_w = esdhc_le_readw,
1292	.read_b = esdhc_le_readb,
1293	.write_l = esdhc_le_writel,
1294	.write_w = esdhc_le_writew,
1295	.write_b = esdhc_le_writeb,
1296	.set_clock = esdhc_of_set_clock,
1297	.enable_dma = esdhc_of_enable_dma,
1298	.get_max_clock = esdhc_of_get_max_clock,
1299	.get_min_clock = esdhc_of_get_min_clock,
1300	.adma_workaround = esdhc_of_adma_workaround,
1301	.set_bus_width = esdhc_pltfm_set_bus_width,
1302	.reset = esdhc_reset,
1303	.set_uhs_signaling = esdhc_set_uhs_signaling,
1304	.irq = esdhc_irq,
1305};
1306
1307static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1308	.quirks = ESDHC_DEFAULT_QUIRKS |
1309#ifdef CONFIG_PPC
1310		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1311#endif
1312		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1313		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1314	.ops = &sdhci_esdhc_be_ops,
1315};
1316
1317static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1318	.quirks = ESDHC_DEFAULT_QUIRKS |
1319		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1320		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1321	.ops = &sdhci_esdhc_le_ops,
1322};
1323
1324static struct soc_device_attribute soc_incorrect_hostver[] = {
1325	{ .family = "QorIQ T4240", .revision = "1.0", },
1326	{ .family = "QorIQ T4240", .revision = "2.0", },
1327	{ /* sentinel */ }
1328};
1329
1330static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1331	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1332	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1333	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1334	{ /* sentinel */ }
1335};
1336
1337static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1338	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1339	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1340	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1341	{ /* sentinel */ }
1342};
1343
1344static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1345{
1346	const struct of_device_id *match;
1347	struct sdhci_pltfm_host *pltfm_host;
1348	struct sdhci_esdhc *esdhc;
1349	struct device_node *np;
1350	struct clk *clk;
1351	u32 val;
1352	u16 host_ver;
1353
1354	pltfm_host = sdhci_priv(host);
1355	esdhc = sdhci_pltfm_priv(pltfm_host);
1356
1357	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1358	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1359			     SDHCI_VENDOR_VER_SHIFT;
1360	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1361	if (soc_device_match(soc_incorrect_hostver))
1362		esdhc->quirk_incorrect_hostver = true;
1363	else
1364		esdhc->quirk_incorrect_hostver = false;
1365
1366	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1367		esdhc->quirk_limited_clk_division = true;
1368	else
1369		esdhc->quirk_limited_clk_division = false;
1370
1371	if (soc_device_match(soc_unreliable_pulse_detection))
1372		esdhc->quirk_unreliable_pulse_detection = true;
1373	else
1374		esdhc->quirk_unreliable_pulse_detection = false;
1375
1376	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1377	if (match)
1378		esdhc->clk_fixup = match->data;
1379	np = pdev->dev.of_node;
1380
1381	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1382		esdhc->quirk_delay_before_data_reset = true;
1383		esdhc->quirk_trans_complete_erratum = true;
1384	}
1385
1386	clk = of_clk_get(np, 0);
1387	if (!IS_ERR(clk)) {
1388		/*
1389		 * esdhc->peripheral_clock would be assigned with a value
1390		 * which is eSDHC base clock when use periperal clock.
1391		 * For some platforms, the clock value got by common clk
1392		 * API is peripheral clock while the eSDHC base clock is
1393		 * 1/2 peripheral clock.
1394		 */
1395		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1396		    of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1397		    of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1398			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1399		else
1400			esdhc->peripheral_clock = clk_get_rate(clk);
1401
1402		clk_put(clk);
1403	}
1404
1405	esdhc_clock_enable(host, false);
1406	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1407	/*
1408	 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1409	 * initialize it as 1 or 0 once, to override the different value
1410	 * which may be configured in bootloader.
1411	 */
1412	if (esdhc->peripheral_clock)
1413		val |= ESDHC_PERIPHERAL_CLK_SEL;
1414	else
1415		val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1416	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1417	esdhc_clock_enable(host, true);
1418}
1419
1420static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1421{
1422	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1423	return 0;
1424}
1425
1426static int sdhci_esdhc_probe(struct platform_device *pdev)
1427{
1428	struct sdhci_host *host;
1429	struct device_node *np, *tp;
1430	struct sdhci_pltfm_host *pltfm_host;
1431	struct sdhci_esdhc *esdhc;
1432	int ret;
1433
1434	np = pdev->dev.of_node;
1435
1436	if (of_property_read_bool(np, "little-endian"))
1437		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1438					sizeof(struct sdhci_esdhc));
1439	else
1440		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1441					sizeof(struct sdhci_esdhc));
1442
1443	if (IS_ERR(host))
1444		return PTR_ERR(host);
1445
1446	host->mmc_host_ops.start_signal_voltage_switch =
1447		esdhc_signal_voltage_switch;
1448	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1449	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1450	host->tuning_delay = 1;
1451
1452	esdhc_init(pdev, host);
1453
1454	sdhci_get_of_property(pdev);
1455
1456	pltfm_host = sdhci_priv(host);
1457	esdhc = sdhci_pltfm_priv(pltfm_host);
1458	if (soc_device_match(soc_tuning_erratum_type1))
1459		esdhc->quirk_tuning_erratum_type1 = true;
1460	else
1461		esdhc->quirk_tuning_erratum_type1 = false;
1462
1463	if (soc_device_match(soc_tuning_erratum_type2))
1464		esdhc->quirk_tuning_erratum_type2 = true;
1465	else
1466		esdhc->quirk_tuning_erratum_type2 = false;
1467
1468	if (esdhc->vendor_ver == VENDOR_V_22)
1469		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1470
1471	if (esdhc->vendor_ver > VENDOR_V_22)
1472		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1473
1474	tp = of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc");
1475	if (tp) {
1476		of_node_put(tp);
1477		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1478		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1479	}
1480
1481	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1482	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1483	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1484	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1485	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1486		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1487
1488	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1489		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1490
1491	esdhc->quirk_ignore_data_inhibit = false;
1492	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1493		/*
1494		 * Freescale messed up with P2020 as it has a non-standard
1495		 * host control register
1496		 */
1497		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1498		esdhc->quirk_ignore_data_inhibit = true;
1499	}
1500
1501	/* call to generic mmc_of_parse to support additional capabilities */
1502	ret = mmc_of_parse(host->mmc);
1503	if (ret)
1504		goto err;
1505
1506	mmc_of_parse_voltage(host->mmc, &host->ocr_mask);
1507
1508	ret = sdhci_add_host(host);
1509	if (ret)
1510		goto err;
1511
1512	return 0;
1513 err:
1514	sdhci_pltfm_free(pdev);
1515	return ret;
1516}
1517
1518static struct platform_driver sdhci_esdhc_driver = {
1519	.driver = {
1520		.name = "sdhci-esdhc",
1521		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1522		.of_match_table = sdhci_esdhc_of_match,
1523		.pm = &esdhc_of_dev_pm_ops,
1524	},
1525	.probe = sdhci_esdhc_probe,
1526	.remove = sdhci_pltfm_unregister,
1527};
1528
1529module_platform_driver(sdhci_esdhc_driver);
1530
1531MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1532MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1533	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1534MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale eSDHC controller driver.
   4 *
   5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
   6 * Copyright (c) 2009 MontaVista Software, Inc.
 
   7 *
   8 * Authors: Xiaobo Xie <X.Xie@freescale.com>
   9 *	    Anton Vorontsov <avorontsov@ru.mvista.com>
  10 */
  11
  12#include <linux/err.h>
  13#include <linux/io.h>
  14#include <linux/of.h>
  15#include <linux/of_address.h>
  16#include <linux/delay.h>
  17#include <linux/module.h>
  18#include <linux/sys_soc.h>
  19#include <linux/clk.h>
  20#include <linux/ktime.h>
  21#include <linux/dma-mapping.h>
 
  22#include <linux/mmc/host.h>
  23#include <linux/mmc/mmc.h>
  24#include "sdhci-pltfm.h"
  25#include "sdhci-esdhc.h"
  26
  27#define VENDOR_V_22	0x12
  28#define VENDOR_V_23	0x13
  29
  30#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
  31
  32struct esdhc_clk_fixup {
  33	const unsigned int sd_dflt_max_clk;
  34	const unsigned int max_clk[MMC_TIMING_NUM];
  35};
  36
  37static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
  38	.sd_dflt_max_clk = 25000000,
  39	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
  40	.max_clk[MMC_TIMING_SD_HS] = 46500000,
  41};
  42
 
 
 
 
 
 
  43static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
  44	.sd_dflt_max_clk = 25000000,
  45	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
  46	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
  47};
  48
  49static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
  50	.sd_dflt_max_clk = 25000000,
  51	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
  52	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
  53};
  54
  55static const struct esdhc_clk_fixup p1010_esdhc_clk = {
  56	.sd_dflt_max_clk = 20000000,
  57	.max_clk[MMC_TIMING_LEGACY] = 20000000,
  58	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
  59	.max_clk[MMC_TIMING_SD_HS] = 40000000,
  60};
  61
  62static const struct of_device_id sdhci_esdhc_of_match[] = {
  63	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
 
  64	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
  65	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
  66	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
  67	{ .compatible = "fsl,mpc8379-esdhc" },
  68	{ .compatible = "fsl,mpc8536-esdhc" },
  69	{ .compatible = "fsl,esdhc" },
  70	{ }
  71};
  72MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
  73
  74struct sdhci_esdhc {
  75	u8 vendor_ver;
  76	u8 spec_ver;
  77	bool quirk_incorrect_hostver;
  78	bool quirk_limited_clk_division;
  79	bool quirk_unreliable_pulse_detection;
  80	bool quirk_fixup_tuning;
 
  81	bool quirk_ignore_data_inhibit;
 
 
 
  82	unsigned int peripheral_clock;
  83	const struct esdhc_clk_fixup *clk_fixup;
  84	u32 div_ratio;
  85};
  86
  87/**
  88 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
  89 *		       to make it compatible with SD spec.
  90 *
  91 * @host: pointer to sdhci_host
  92 * @spec_reg: SD spec register address
  93 * @value: 32bit eSDHC register value on spec_reg address
  94 *
  95 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
  96 * registers are 32 bits. There are differences in register size, register
  97 * address, register function, bit position and function between eSDHC spec
  98 * and SD spec.
  99 *
 100 * Return a fixed up register value
 101 */
 102static u32 esdhc_readl_fixup(struct sdhci_host *host,
 103				     int spec_reg, u32 value)
 104{
 105	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 106	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 107	u32 ret;
 108
 109	/*
 110	 * The bit of ADMA flag in eSDHC is not compatible with standard
 111	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
 112	 * supported by eSDHC.
 113	 * And for many FSL eSDHC controller, the reset value of field
 114	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
 115	 * only these vendor version is greater than 2.2/0x12 support ADMA.
 116	 */
 117	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
 118		if (esdhc->vendor_ver > VENDOR_V_22) {
 119			ret = value | SDHCI_CAN_DO_ADMA2;
 120			return ret;
 121		}
 122	}
 123	/*
 124	 * The DAT[3:0] line signal levels and the CMD line signal level are
 125	 * not compatible with standard SDHC register. The line signal levels
 126	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
 127	 * bit 23. All other bits are the same as in the standard SDHC
 128	 * register.
 129	 */
 130	if (spec_reg == SDHCI_PRESENT_STATE) {
 131		ret = value & 0x000fffff;
 132		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
 133		ret |= (value << 1) & SDHCI_CMD_LVL;
 134		return ret;
 135	}
 136
 137	/*
 138	 * DTS properties of mmc host are used to enable each speed mode
 139	 * according to soc and board capability. So clean up
 140	 * SDR50/SDR104/DDR50 support bits here.
 141	 */
 142	if (spec_reg == SDHCI_CAPABILITIES_1) {
 143		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
 144				SDHCI_SUPPORT_DDR50);
 145		return ret;
 146	}
 147
 148	/*
 149	 * Some controllers have unreliable Data Line Active
 150	 * bit for commands with busy signal. This affects
 151	 * Command Inhibit (data) bit. Just ignore it since
 152	 * MMC core driver has already polled card status
 153	 * with CMD13 after any command with busy siganl.
 154	 */
 155	if ((spec_reg == SDHCI_PRESENT_STATE) &&
 156	(esdhc->quirk_ignore_data_inhibit == true)) {
 157		ret = value & ~SDHCI_DATA_INHIBIT;
 158		return ret;
 159	}
 160
 161	ret = value;
 162	return ret;
 163}
 164
 165static u16 esdhc_readw_fixup(struct sdhci_host *host,
 166				     int spec_reg, u32 value)
 167{
 168	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 169	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 170	u16 ret;
 171	int shift = (spec_reg & 0x2) * 8;
 172
 
 
 
 173	if (spec_reg == SDHCI_HOST_VERSION)
 174		ret = value & 0xffff;
 175	else
 176		ret = (value >> shift) & 0xffff;
 177	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
 178	 * vendor version and spec version information.
 179	 */
 180	if ((spec_reg == SDHCI_HOST_VERSION) &&
 181	    (esdhc->quirk_incorrect_hostver))
 182		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
 183	return ret;
 184}
 185
 186static u8 esdhc_readb_fixup(struct sdhci_host *host,
 187				     int spec_reg, u32 value)
 188{
 189	u8 ret;
 190	u8 dma_bits;
 191	int shift = (spec_reg & 0x3) * 8;
 192
 193	ret = (value >> shift) & 0xff;
 194
 195	/*
 196	 * "DMA select" locates at offset 0x28 in SD specification, but on
 197	 * P5020 or P3041, it locates at 0x29.
 198	 */
 199	if (spec_reg == SDHCI_HOST_CONTROL) {
 200		/* DMA select is 22,23 bits in Protocol Control Register */
 201		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
 202		/* fixup the result */
 203		ret &= ~SDHCI_CTRL_DMA_MASK;
 204		ret |= dma_bits;
 205	}
 206	return ret;
 207}
 208
 209/**
 210 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
 211 *			written into eSDHC register.
 212 *
 213 * @host: pointer to sdhci_host
 214 * @spec_reg: SD spec register address
 215 * @value: 8/16/32bit SD spec register value that would be written
 216 * @old_value: 32bit eSDHC register value on spec_reg address
 217 *
 218 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
 219 * registers are 32 bits. There are differences in register size, register
 220 * address, register function, bit position and function between eSDHC spec
 221 * and SD spec.
 222 *
 223 * Return a fixed up register value
 224 */
 225static u32 esdhc_writel_fixup(struct sdhci_host *host,
 226				     int spec_reg, u32 value, u32 old_value)
 227{
 228	u32 ret;
 229
 230	/*
 231	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
 232	 * when SYSCTL[RSTD] is set for some special operations.
 233	 * No any impact on other operation.
 234	 */
 235	if (spec_reg == SDHCI_INT_ENABLE)
 236		ret = value | SDHCI_INT_BLK_GAP;
 237	else
 238		ret = value;
 239
 240	return ret;
 241}
 242
 243static u32 esdhc_writew_fixup(struct sdhci_host *host,
 244				     int spec_reg, u16 value, u32 old_value)
 245{
 246	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 247	int shift = (spec_reg & 0x2) * 8;
 248	u32 ret;
 249
 250	switch (spec_reg) {
 251	case SDHCI_TRANSFER_MODE:
 252		/*
 253		 * Postpone this write, we must do it together with a
 254		 * command write that is down below. Return old value.
 255		 */
 256		pltfm_host->xfer_mode_shadow = value;
 257		return old_value;
 258	case SDHCI_COMMAND:
 259		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
 260		return ret;
 261	}
 262
 263	ret = old_value & (~(0xffff << shift));
 264	ret |= (value << shift);
 265
 266	if (spec_reg == SDHCI_BLOCK_SIZE) {
 267		/*
 268		 * Two last DMA bits are reserved, and first one is used for
 269		 * non-standard blksz of 4096 bytes that we don't support
 270		 * yet. So clear the DMA boundary bits.
 271		 */
 272		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
 273	}
 274	return ret;
 275}
 276
 277static u32 esdhc_writeb_fixup(struct sdhci_host *host,
 278				     int spec_reg, u8 value, u32 old_value)
 279{
 280	u32 ret;
 281	u32 dma_bits;
 282	u8 tmp;
 283	int shift = (spec_reg & 0x3) * 8;
 284
 285	/*
 286	 * eSDHC doesn't have a standard power control register, so we do
 287	 * nothing here to avoid incorrect operation.
 288	 */
 289	if (spec_reg == SDHCI_POWER_CONTROL)
 290		return old_value;
 291	/*
 292	 * "DMA select" location is offset 0x28 in SD specification, but on
 293	 * P5020 or P3041, it's located at 0x29.
 294	 */
 295	if (spec_reg == SDHCI_HOST_CONTROL) {
 296		/*
 297		 * If host control register is not standard, exit
 298		 * this function
 299		 */
 300		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
 301			return old_value;
 302
 303		/* DMA select is 22,23 bits in Protocol Control Register */
 304		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
 305		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
 306		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
 307		      (old_value & SDHCI_CTRL_DMA_MASK);
 308		ret = (ret & (~0xff)) | tmp;
 309
 310		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
 311		ret &= ~ESDHC_HOST_CONTROL_RES;
 312		return ret;
 313	}
 314
 315	ret = (old_value & (~(0xff << shift))) | (value << shift);
 316	return ret;
 317}
 318
 319static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
 320{
 321	u32 ret;
 322	u32 value;
 323
 324	if (reg == SDHCI_CAPABILITIES_1)
 325		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
 326	else
 327		value = ioread32be(host->ioaddr + reg);
 328
 329	ret = esdhc_readl_fixup(host, reg, value);
 330
 331	return ret;
 332}
 333
 334static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
 335{
 336	u32 ret;
 337	u32 value;
 338
 339	if (reg == SDHCI_CAPABILITIES_1)
 340		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
 341	else
 342		value = ioread32(host->ioaddr + reg);
 343
 344	ret = esdhc_readl_fixup(host, reg, value);
 345
 346	return ret;
 347}
 348
 349static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
 350{
 351	u16 ret;
 352	u32 value;
 353	int base = reg & ~0x3;
 354
 355	value = ioread32be(host->ioaddr + base);
 356	ret = esdhc_readw_fixup(host, reg, value);
 357	return ret;
 358}
 359
 360static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
 361{
 362	u16 ret;
 363	u32 value;
 364	int base = reg & ~0x3;
 365
 366	value = ioread32(host->ioaddr + base);
 367	ret = esdhc_readw_fixup(host, reg, value);
 368	return ret;
 369}
 370
 371static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
 372{
 373	u8 ret;
 374	u32 value;
 375	int base = reg & ~0x3;
 376
 377	value = ioread32be(host->ioaddr + base);
 378	ret = esdhc_readb_fixup(host, reg, value);
 379	return ret;
 380}
 381
 382static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
 383{
 384	u8 ret;
 385	u32 value;
 386	int base = reg & ~0x3;
 387
 388	value = ioread32(host->ioaddr + base);
 389	ret = esdhc_readb_fixup(host, reg, value);
 390	return ret;
 391}
 392
 393static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
 394{
 395	u32 value;
 396
 397	value = esdhc_writel_fixup(host, reg, val, 0);
 398	iowrite32be(value, host->ioaddr + reg);
 399}
 400
 401static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
 402{
 403	u32 value;
 404
 405	value = esdhc_writel_fixup(host, reg, val, 0);
 406	iowrite32(value, host->ioaddr + reg);
 407}
 408
 409static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
 410{
 
 
 411	int base = reg & ~0x3;
 412	u32 value;
 413	u32 ret;
 414
 415	value = ioread32be(host->ioaddr + base);
 416	ret = esdhc_writew_fixup(host, reg, val, value);
 417	if (reg != SDHCI_TRANSFER_MODE)
 418		iowrite32be(ret, host->ioaddr + base);
 
 
 
 
 
 
 
 
 
 
 
 
 419}
 420
 421static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
 422{
 
 
 423	int base = reg & ~0x3;
 424	u32 value;
 425	u32 ret;
 426
 427	value = ioread32(host->ioaddr + base);
 428	ret = esdhc_writew_fixup(host, reg, val, value);
 429	if (reg != SDHCI_TRANSFER_MODE)
 430		iowrite32(ret, host->ioaddr + base);
 
 
 
 
 
 
 
 
 
 
 
 
 431}
 432
 433static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
 434{
 435	int base = reg & ~0x3;
 436	u32 value;
 437	u32 ret;
 438
 439	value = ioread32be(host->ioaddr + base);
 440	ret = esdhc_writeb_fixup(host, reg, val, value);
 441	iowrite32be(ret, host->ioaddr + base);
 442}
 443
 444static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
 445{
 446	int base = reg & ~0x3;
 447	u32 value;
 448	u32 ret;
 449
 450	value = ioread32(host->ioaddr + base);
 451	ret = esdhc_writeb_fixup(host, reg, val, value);
 452	iowrite32(ret, host->ioaddr + base);
 453}
 454
 455/*
 456 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
 457 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
 458 * and Block Gap Event(IRQSTAT[BGE]) are also set.
 459 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
 460 * and re-issue the entire read transaction from beginning.
 461 */
 462static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
 463{
 464	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 465	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 466	bool applicable;
 467	dma_addr_t dmastart;
 468	dma_addr_t dmanow;
 469
 470	applicable = (intmask & SDHCI_INT_DATA_END) &&
 471		     (intmask & SDHCI_INT_BLK_GAP) &&
 472		     (esdhc->vendor_ver == VENDOR_V_23);
 473	if (!applicable)
 474		return;
 475
 476	host->data->error = 0;
 477	dmastart = sg_dma_address(host->data->sg);
 478	dmanow = dmastart + host->data->bytes_xfered;
 479	/*
 480	 * Force update to the next DMA block boundary.
 481	 */
 482	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
 483		SDHCI_DEFAULT_BOUNDARY_SIZE;
 484	host->data->bytes_xfered = dmanow - dmastart;
 485	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
 486}
 487
 488static int esdhc_of_enable_dma(struct sdhci_host *host)
 489{
 
 490	u32 value;
 491	struct device *dev = mmc_dev(host->mmc);
 492
 493	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
 494	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
 495		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
 
 
 
 496
 497	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 498
 499	if (of_dma_is_coherent(dev->of_node))
 500		value |= ESDHC_DMA_SNOOP;
 501	else
 502		value &= ~ESDHC_DMA_SNOOP;
 503
 504	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
 505	return 0;
 506}
 507
 508static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
 509{
 510	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 511	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 512
 513	if (esdhc->peripheral_clock)
 514		return esdhc->peripheral_clock;
 515	else
 516		return pltfm_host->clock;
 517}
 518
 519static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
 520{
 521	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 522	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 523	unsigned int clock;
 524
 525	if (esdhc->peripheral_clock)
 526		clock = esdhc->peripheral_clock;
 527	else
 528		clock = pltfm_host->clock;
 529	return clock / 256 / 16;
 530}
 531
 532static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
 533{
 534	u32 val;
 
 535	ktime_t timeout;
 
 
 
 
 
 
 
 
 
 
 
 536
 537	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 538
 539	if (enable)
 540		val |= ESDHC_CLOCK_SDCLKEN;
 541	else
 542		val &= ~ESDHC_CLOCK_SDCLKEN;
 543
 544	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
 545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546	/* Wait max 20 ms */
 547	timeout = ktime_add_ms(ktime_get(), 20);
 548	val = ESDHC_CLOCK_STABLE;
 549	while  (1) {
 550		bool timedout = ktime_after(ktime_get(), timeout);
 551
 552		if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
 
 553			break;
 554		if (timedout) {
 555			pr_err("%s: Internal clock never stabilised.\n",
 556				mmc_hostname(host->mmc));
 557			break;
 558		}
 559		udelay(10);
 560	}
 561}
 562
 563static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
 564{
 565	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 566	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 567	int pre_div = 1;
 568	int div = 1;
 569	int division;
 570	ktime_t timeout;
 571	long fixup = 0;
 572	u32 temp;
 573
 574	host->mmc->actual_clock = 0;
 575
 576	if (clock == 0) {
 
 577		esdhc_clock_enable(host, false);
 578		return;
 579	}
 580
 581	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
 582	if (esdhc->vendor_ver < VENDOR_V_23)
 583		pre_div = 2;
 584
 
 585	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
 586		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
 587		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
 588	else if (esdhc->clk_fixup)
 589		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
 590
 591	if (fixup && clock > fixup)
 592		clock = fixup;
 593
 594	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 595	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
 596		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
 597	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 598
 599	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
 600		pre_div *= 2;
 601
 602	while (host->max_clk / pre_div / div > clock && div < 16)
 603		div++;
 604
 
 
 
 605	if (esdhc->quirk_limited_clk_division &&
 606	    clock == MMC_HS200_MAX_DTR &&
 607	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
 608	     host->flags & SDHCI_HS400_TUNING)) {
 609		division = pre_div * div;
 610		if (division <= 4) {
 611			pre_div = 4;
 612			div = 1;
 613		} else if (division <= 8) {
 614			pre_div = 4;
 615			div = 2;
 616		} else if (division <= 12) {
 617			pre_div = 4;
 618			div = 3;
 619		} else {
 620			pr_warn("%s: using unsupported clock division.\n",
 621				mmc_hostname(host->mmc));
 622		}
 
 623	}
 624
 
 
 625	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
 626		clock, host->max_clk / pre_div / div);
 627	host->mmc->actual_clock = host->max_clk / pre_div / div;
 628	esdhc->div_ratio = pre_div * div;
 629	pre_div >>= 1;
 630	div--;
 631
 
 
 632	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 633	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
 634		| (div << ESDHC_DIVIDER_SHIFT)
 635		| (pre_div << ESDHC_PREDIV_SHIFT));
 636	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
 639	    clock == MMC_HS200_MAX_DTR) {
 640		temp = sdhci_readl(host, ESDHC_TBCTL);
 641		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
 642		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
 643		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
 644		esdhc_clock_enable(host, true);
 645
 646		temp = sdhci_readl(host, ESDHC_DLLCFG0);
 647		temp |= ESDHC_DLL_ENABLE;
 648		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
 649			temp |= ESDHC_DLL_FREQ_SEL;
 650		sdhci_writel(host, temp, ESDHC_DLLCFG0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651		temp = sdhci_readl(host, ESDHC_TBCTL);
 652		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
 653
 654		esdhc_clock_enable(host, false);
 655		temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 656		temp |= ESDHC_FLUSH_ASYNC_FIFO;
 657		sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
 658	}
 659
 660	/* Wait max 20 ms */
 661	timeout = ktime_add_ms(ktime_get(), 20);
 662	while (1) {
 663		bool timedout = ktime_after(ktime_get(), timeout);
 664
 665		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
 666			break;
 667		if (timedout) {
 668			pr_err("%s: Internal clock never stabilised.\n",
 669				mmc_hostname(host->mmc));
 670			return;
 671		}
 672		udelay(10);
 673	}
 674
 675	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
 676	temp |= ESDHC_CLOCK_SDCLKEN;
 677	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
 678}
 679
 680static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
 681{
 682	u32 ctrl;
 683
 684	ctrl = sdhci_readl(host, ESDHC_PROCTL);
 685	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
 686	switch (width) {
 687	case MMC_BUS_WIDTH_8:
 688		ctrl |= ESDHC_CTRL_8BITBUS;
 689		break;
 690
 691	case MMC_BUS_WIDTH_4:
 692		ctrl |= ESDHC_CTRL_4BITBUS;
 693		break;
 694
 695	default:
 696		break;
 697	}
 698
 699	sdhci_writel(host, ctrl, ESDHC_PROCTL);
 700}
 701
 702static void esdhc_reset(struct sdhci_host *host, u8 mask)
 703{
 704	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 705	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 706	u32 val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707
 708	sdhci_reset(host, mask);
 709
 710	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
 711	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
 
 
 
 
 
 
 
 
 712
 713	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc"))
 714		mdelay(5);
 
 715
 716	if (mask & SDHCI_RESET_ALL) {
 
 
 
 
 
 717		val = sdhci_readl(host, ESDHC_TBCTL);
 718		val &= ~ESDHC_TB_EN;
 719		sdhci_writel(host, val, ESDHC_TBCTL);
 720
 
 
 
 
 721		if (esdhc->quirk_unreliable_pulse_detection) {
 722			val = sdhci_readl(host, ESDHC_DLLCFG1);
 723			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
 724			sdhci_writel(host, val, ESDHC_DLLCFG1);
 725		}
 726	}
 727}
 728
 729/* The SCFG, Supplemental Configuration Unit, provides SoC specific
 730 * configuration and status registers for the device. There is a
 731 * SDHC IO VSEL control register on SCFG for some platforms. It's
 732 * used to support SDHC IO voltage switching.
 733 */
 734static const struct of_device_id scfg_device_ids[] = {
 735	{ .compatible = "fsl,t1040-scfg", },
 736	{ .compatible = "fsl,ls1012a-scfg", },
 737	{ .compatible = "fsl,ls1046a-scfg", },
 738	{}
 739};
 740
 741/* SDHC IO VSEL control register definition */
 742#define SCFG_SDHCIOVSELCR	0x408
 743#define SDHCIOVSELCR_TGLEN	0x80000000
 744#define SDHCIOVSELCR_VSELVAL	0x60000000
 745#define SDHCIOVSELCR_SDHC_VS	0x00000001
 746
 747static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
 748				       struct mmc_ios *ios)
 749{
 750	struct sdhci_host *host = mmc_priv(mmc);
 751	struct device_node *scfg_node;
 752	void __iomem *scfg_base = NULL;
 753	u32 sdhciovselcr;
 754	u32 val;
 755
 756	/*
 757	 * Signal Voltage Switching is only applicable for Host Controllers
 758	 * v3.00 and above.
 759	 */
 760	if (host->version < SDHCI_SPEC_300)
 761		return 0;
 762
 763	val = sdhci_readl(host, ESDHC_PROCTL);
 764
 765	switch (ios->signal_voltage) {
 766	case MMC_SIGNAL_VOLTAGE_330:
 767		val &= ~ESDHC_VOLT_SEL;
 768		sdhci_writel(host, val, ESDHC_PROCTL);
 769		return 0;
 770	case MMC_SIGNAL_VOLTAGE_180:
 771		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
 772		if (scfg_node)
 773			scfg_base = of_iomap(scfg_node, 0);
 
 774		if (scfg_base) {
 775			sdhciovselcr = SDHCIOVSELCR_TGLEN |
 776				       SDHCIOVSELCR_VSELVAL;
 777			iowrite32be(sdhciovselcr,
 778				scfg_base + SCFG_SDHCIOVSELCR);
 779
 780			val |= ESDHC_VOLT_SEL;
 781			sdhci_writel(host, val, ESDHC_PROCTL);
 782			mdelay(5);
 783
 784			sdhciovselcr = SDHCIOVSELCR_TGLEN |
 785				       SDHCIOVSELCR_SDHC_VS;
 786			iowrite32be(sdhciovselcr,
 787				scfg_base + SCFG_SDHCIOVSELCR);
 788			iounmap(scfg_base);
 789		} else {
 790			val |= ESDHC_VOLT_SEL;
 791			sdhci_writel(host, val, ESDHC_PROCTL);
 792		}
 793		return 0;
 794	default:
 795		return 0;
 796	}
 797}
 798
 799static struct soc_device_attribute soc_fixup_tuning[] = {
 800	{ .family = "QorIQ T1040", .revision = "1.0", },
 801	{ .family = "QorIQ T2080", .revision = "1.0", },
 802	{ .family = "QorIQ T1023", .revision = "1.0", },
 803	{ .family = "QorIQ LS1021A", .revision = "1.0", },
 804	{ .family = "QorIQ LS1080A", .revision = "1.0", },
 805	{ .family = "QorIQ LS2080A", .revision = "1.0", },
 806	{ .family = "QorIQ LS1012A", .revision = "1.0", },
 807	{ .family = "QorIQ LS1043A", .revision = "1.*", },
 808	{ .family = "QorIQ LS1046A", .revision = "1.0", },
 809	{ },
 
 
 
 
 
 810};
 811
 812static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
 813{
 814	u32 val;
 815
 816	esdhc_clock_enable(host, false);
 817
 818	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 819	val |= ESDHC_FLUSH_ASYNC_FIFO;
 820	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
 821
 822	val = sdhci_readl(host, ESDHC_TBCTL);
 823	if (enable)
 824		val |= ESDHC_TB_EN;
 825	else
 826		val &= ~ESDHC_TB_EN;
 827	sdhci_writel(host, val, ESDHC_TBCTL);
 828
 829	esdhc_clock_enable(host, true);
 830}
 831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
 833{
 834	struct sdhci_host *host = mmc_priv(mmc);
 835	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 836	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
 
 
 837	bool hs400_tuning;
 838	unsigned int clk;
 839	u32 val;
 840	int ret;
 841
 842	/* For tuning mode, the sd clock divisor value
 843	 * must be larger than 3 according to reference manual.
 844	 */
 845	clk = esdhc->peripheral_clock / 3;
 846	if (host->clock > clk)
 847		esdhc_of_set_clock(host, clk);
 848
 849	if (esdhc->quirk_limited_clk_division &&
 850	    host->flags & SDHCI_HS400_TUNING)
 851		esdhc_of_set_clock(host, host->clock);
 852
 853	esdhc_tuning_block_enable(host, true);
 
 
 
 
 
 
 
 
 
 854
 855	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
 856	ret = sdhci_execute_tuning(mmc, opcode);
 857
 858	if (hs400_tuning) {
 859		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
 860		val |= ESDHC_FLW_CTL_BG;
 861		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
 862	}
 
 
 
 
 
 863
 864	if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) {
 
 
 865
 866		/* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and
 867		 * program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO
 
 868		 */
 869		val = sdhci_readl(host, ESDHC_TBPTR);
 870		val = (val & ~((0x7f << 8) | 0x7f)) |
 871		(3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8);
 872		sdhci_writel(host, val, ESDHC_TBPTR);
 
 
 
 
 873
 874		/* program the software tuning mode by setting
 875		 * TBCTL[TB_MODE]=2'h3
 876		 */
 877		val = sdhci_readl(host, ESDHC_TBCTL);
 878		val |= 0x3;
 879		sdhci_writel(host, val, ESDHC_TBCTL);
 880		sdhci_execute_tuning(mmc, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	}
 
 882	return ret;
 883}
 884
 885static void esdhc_set_uhs_signaling(struct sdhci_host *host,
 886				   unsigned int timing)
 887{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	if (timing == MMC_TIMING_MMC_HS400)
 889		esdhc_tuning_block_enable(host, true);
 890	else
 891		sdhci_set_uhs_signaling(host, timing);
 892}
 893
 894static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
 895{
 
 
 896	u32 command;
 897
 898	if (of_find_compatible_node(NULL, NULL,
 899				"fsl,p2020-esdhc")) {
 900		command = SDHCI_GET_CMD(sdhci_readw(host,
 901					SDHCI_COMMAND));
 902		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
 903				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
 904				intmask & SDHCI_INT_DATA_END) {
 905			intmask &= ~SDHCI_INT_DATA_END;
 906			sdhci_writel(host, SDHCI_INT_DATA_END,
 907					SDHCI_INT_STATUS);
 908		}
 909	}
 910	return intmask;
 911}
 912
 913#ifdef CONFIG_PM_SLEEP
 914static u32 esdhc_proctl;
 915static int esdhc_of_suspend(struct device *dev)
 916{
 917	struct sdhci_host *host = dev_get_drvdata(dev);
 918
 919	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
 920
 921	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
 922		mmc_retune_needed(host->mmc);
 923
 924	return sdhci_suspend_host(host);
 925}
 926
 927static int esdhc_of_resume(struct device *dev)
 928{
 929	struct sdhci_host *host = dev_get_drvdata(dev);
 930	int ret = sdhci_resume_host(host);
 931
 932	if (ret == 0) {
 933		/* Isn't this already done by sdhci_resume_host() ? --rmk */
 934		esdhc_of_enable_dma(host);
 935		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
 936	}
 937	return ret;
 938}
 939#endif
 940
 941static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
 942			esdhc_of_suspend,
 943			esdhc_of_resume);
 944
 945static const struct sdhci_ops sdhci_esdhc_be_ops = {
 946	.read_l = esdhc_be_readl,
 947	.read_w = esdhc_be_readw,
 948	.read_b = esdhc_be_readb,
 949	.write_l = esdhc_be_writel,
 950	.write_w = esdhc_be_writew,
 951	.write_b = esdhc_be_writeb,
 952	.set_clock = esdhc_of_set_clock,
 953	.enable_dma = esdhc_of_enable_dma,
 954	.get_max_clock = esdhc_of_get_max_clock,
 955	.get_min_clock = esdhc_of_get_min_clock,
 956	.adma_workaround = esdhc_of_adma_workaround,
 957	.set_bus_width = esdhc_pltfm_set_bus_width,
 958	.reset = esdhc_reset,
 959	.set_uhs_signaling = esdhc_set_uhs_signaling,
 960	.irq = esdhc_irq,
 961};
 962
 963static const struct sdhci_ops sdhci_esdhc_le_ops = {
 964	.read_l = esdhc_le_readl,
 965	.read_w = esdhc_le_readw,
 966	.read_b = esdhc_le_readb,
 967	.write_l = esdhc_le_writel,
 968	.write_w = esdhc_le_writew,
 969	.write_b = esdhc_le_writeb,
 970	.set_clock = esdhc_of_set_clock,
 971	.enable_dma = esdhc_of_enable_dma,
 972	.get_max_clock = esdhc_of_get_max_clock,
 973	.get_min_clock = esdhc_of_get_min_clock,
 974	.adma_workaround = esdhc_of_adma_workaround,
 975	.set_bus_width = esdhc_pltfm_set_bus_width,
 976	.reset = esdhc_reset,
 977	.set_uhs_signaling = esdhc_set_uhs_signaling,
 978	.irq = esdhc_irq,
 979};
 980
 981static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
 982	.quirks = ESDHC_DEFAULT_QUIRKS |
 983#ifdef CONFIG_PPC
 984		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
 985#endif
 986		  SDHCI_QUIRK_NO_CARD_NO_RESET |
 987		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
 988	.ops = &sdhci_esdhc_be_ops,
 989};
 990
 991static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
 992	.quirks = ESDHC_DEFAULT_QUIRKS |
 993		  SDHCI_QUIRK_NO_CARD_NO_RESET |
 994		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
 995	.ops = &sdhci_esdhc_le_ops,
 996};
 997
 998static struct soc_device_attribute soc_incorrect_hostver[] = {
 999	{ .family = "QorIQ T4240", .revision = "1.0", },
1000	{ .family = "QorIQ T4240", .revision = "2.0", },
1001	{ },
1002};
1003
1004static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1005	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1006	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1007	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1008	{ },
1009};
1010
1011static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1012	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1013	{ },
 
 
1014};
1015
1016static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1017{
1018	const struct of_device_id *match;
1019	struct sdhci_pltfm_host *pltfm_host;
1020	struct sdhci_esdhc *esdhc;
1021	struct device_node *np;
1022	struct clk *clk;
1023	u32 val;
1024	u16 host_ver;
1025
1026	pltfm_host = sdhci_priv(host);
1027	esdhc = sdhci_pltfm_priv(pltfm_host);
1028
1029	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1030	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1031			     SDHCI_VENDOR_VER_SHIFT;
1032	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1033	if (soc_device_match(soc_incorrect_hostver))
1034		esdhc->quirk_incorrect_hostver = true;
1035	else
1036		esdhc->quirk_incorrect_hostver = false;
1037
1038	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1039		esdhc->quirk_limited_clk_division = true;
1040	else
1041		esdhc->quirk_limited_clk_division = false;
1042
1043	if (soc_device_match(soc_unreliable_pulse_detection))
1044		esdhc->quirk_unreliable_pulse_detection = true;
1045	else
1046		esdhc->quirk_unreliable_pulse_detection = false;
1047
1048	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1049	if (match)
1050		esdhc->clk_fixup = match->data;
1051	np = pdev->dev.of_node;
 
 
 
 
 
 
1052	clk = of_clk_get(np, 0);
1053	if (!IS_ERR(clk)) {
1054		/*
1055		 * esdhc->peripheral_clock would be assigned with a value
1056		 * which is eSDHC base clock when use periperal clock.
1057		 * For some platforms, the clock value got by common clk
1058		 * API is peripheral clock while the eSDHC base clock is
1059		 * 1/2 peripheral clock.
1060		 */
1061		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1062		    of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
 
1063			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1064		else
1065			esdhc->peripheral_clock = clk_get_rate(clk);
1066
1067		clk_put(clk);
1068	}
1069
1070	if (esdhc->peripheral_clock) {
1071		esdhc_clock_enable(host, false);
1072		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
 
 
 
 
 
1073		val |= ESDHC_PERIPHERAL_CLK_SEL;
1074		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1075		esdhc_clock_enable(host, true);
1076	}
 
1077}
1078
1079static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1080{
1081	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1082	return 0;
1083}
1084
1085static int sdhci_esdhc_probe(struct platform_device *pdev)
1086{
1087	struct sdhci_host *host;
1088	struct device_node *np;
1089	struct sdhci_pltfm_host *pltfm_host;
1090	struct sdhci_esdhc *esdhc;
1091	int ret;
1092
1093	np = pdev->dev.of_node;
1094
1095	if (of_property_read_bool(np, "little-endian"))
1096		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1097					sizeof(struct sdhci_esdhc));
1098	else
1099		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1100					sizeof(struct sdhci_esdhc));
1101
1102	if (IS_ERR(host))
1103		return PTR_ERR(host);
1104
1105	host->mmc_host_ops.start_signal_voltage_switch =
1106		esdhc_signal_voltage_switch;
1107	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1108	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1109	host->tuning_delay = 1;
1110
1111	esdhc_init(pdev, host);
1112
1113	sdhci_get_of_property(pdev);
1114
1115	pltfm_host = sdhci_priv(host);
1116	esdhc = sdhci_pltfm_priv(pltfm_host);
1117	if (soc_device_match(soc_fixup_tuning))
1118		esdhc->quirk_fixup_tuning = true;
1119	else
1120		esdhc->quirk_fixup_tuning = false;
 
 
 
 
 
1121
1122	if (esdhc->vendor_ver == VENDOR_V_22)
1123		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1124
1125	if (esdhc->vendor_ver > VENDOR_V_22)
1126		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1127
1128	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1129		host->quirks2 |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1130		host->quirks2 |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
 
 
1131	}
1132
1133	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1134	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1135	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1136	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1137	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1138		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1139
1140	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1141		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1142
1143	esdhc->quirk_ignore_data_inhibit = false;
1144	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1145		/*
1146		 * Freescale messed up with P2020 as it has a non-standard
1147		 * host control register
1148		 */
1149		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1150		esdhc->quirk_ignore_data_inhibit = true;
1151	}
1152
1153	/* call to generic mmc_of_parse to support additional capabilities */
1154	ret = mmc_of_parse(host->mmc);
1155	if (ret)
1156		goto err;
1157
1158	mmc_of_parse_voltage(np, &host->ocr_mask);
1159
1160	ret = sdhci_add_host(host);
1161	if (ret)
1162		goto err;
1163
1164	return 0;
1165 err:
1166	sdhci_pltfm_free(pdev);
1167	return ret;
1168}
1169
1170static struct platform_driver sdhci_esdhc_driver = {
1171	.driver = {
1172		.name = "sdhci-esdhc",
 
1173		.of_match_table = sdhci_esdhc_of_match,
1174		.pm = &esdhc_of_dev_pm_ops,
1175	},
1176	.probe = sdhci_esdhc_probe,
1177	.remove = sdhci_pltfm_unregister,
1178};
1179
1180module_platform_driver(sdhci_esdhc_driver);
1181
1182MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1183MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1184	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1185MODULE_LICENSE("GPL v2");