Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/dma-fence-chain.h>
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
31#include <linux/sched/signal.h>
32#include <linux/sched/mm.h>
33
34#include "gem/i915_gem_context.h"
35#include "gt/intel_breadcrumbs.h"
36#include "gt/intel_context.h"
37#include "gt/intel_engine.h"
38#include "gt/intel_engine_heartbeat.h"
39#include "gt/intel_engine_regs.h"
40#include "gt/intel_gpu_commands.h"
41#include "gt/intel_reset.h"
42#include "gt/intel_ring.h"
43#include "gt/intel_rps.h"
44
45#include "i915_active.h"
46#include "i915_deps.h"
47#include "i915_driver.h"
48#include "i915_drv.h"
49#include "i915_trace.h"
50#include "intel_pm.h"
51
52struct execute_cb {
53 struct irq_work work;
54 struct i915_sw_fence *fence;
55 struct i915_request *signal;
56};
57
58static struct kmem_cache *slab_requests;
59static struct kmem_cache *slab_execute_cbs;
60
61static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62{
63 return dev_name(to_request(fence)->i915->drm.dev);
64}
65
66static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67{
68 const struct i915_gem_context *ctx;
69
70 /*
71 * The timeline struct (as part of the ppgtt underneath a context)
72 * may be freed when the request is no longer in use by the GPU.
73 * We could extend the life of a context to beyond that of all
74 * fences, possibly keeping the hw resource around indefinitely,
75 * or we just give them a false name. Since
76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 * lie seems justifiable.
78 */
79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80 return "signaled";
81
82 ctx = i915_request_gem_context(to_request(fence));
83 if (!ctx)
84 return "[" DRIVER_NAME "]";
85
86 return ctx->name;
87}
88
89static bool i915_fence_signaled(struct dma_fence *fence)
90{
91 return i915_request_completed(to_request(fence));
92}
93
94static bool i915_fence_enable_signaling(struct dma_fence *fence)
95{
96 return i915_request_enable_breadcrumb(to_request(fence));
97}
98
99static signed long i915_fence_wait(struct dma_fence *fence,
100 bool interruptible,
101 signed long timeout)
102{
103 return i915_request_wait_timeout(to_request(fence),
104 interruptible | I915_WAIT_PRIORITY,
105 timeout);
106}
107
108struct kmem_cache *i915_request_slab_cache(void)
109{
110 return slab_requests;
111}
112
113static void i915_fence_release(struct dma_fence *fence)
114{
115 struct i915_request *rq = to_request(fence);
116
117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
118 rq->guc_prio != GUC_PRIO_FINI);
119
120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
121 if (rq->batch_res) {
122 i915_vma_resource_put(rq->batch_res);
123 rq->batch_res = NULL;
124 }
125
126 /*
127 * The request is put onto a RCU freelist (i.e. the address
128 * is immediately reused), mark the fences as being freed now.
129 * Otherwise the debugobjects for the fences are only marked as
130 * freed when the slab cache itself is freed, and so we would get
131 * caught trying to reuse dead objects.
132 */
133 i915_sw_fence_fini(&rq->submit);
134 i915_sw_fence_fini(&rq->semaphore);
135
136 /*
137 * Keep one request on each engine for reserved use under mempressure
138 * do not use with virtual engines as this really is only needed for
139 * kernel contexts.
140 *
141 * We do not hold a reference to the engine here and so have to be
142 * very careful in what rq->engine we poke. The virtual engine is
143 * referenced via the rq->context and we released that ref during
144 * i915_request_retire(), ergo we must not dereference a virtual
145 * engine here. Not that we would want to, as the only consumer of
146 * the reserved engine->request_pool is the power management parking,
147 * which must-not-fail, and that is only run on the physical engines.
148 *
149 * Since the request must have been executed to be have completed,
150 * we know that it will have been processed by the HW and will
151 * not be unsubmitted again, so rq->engine and rq->execution_mask
152 * at this point is stable. rq->execution_mask will be a single
153 * bit if the last and _only_ engine it could execution on was a
154 * physical engine, if it's multiple bits then it started on and
155 * could still be on a virtual engine. Thus if the mask is not a
156 * power-of-two we assume that rq->engine may still be a virtual
157 * engine and so a dangling invalid pointer that we cannot dereference
158 *
159 * For example, consider the flow of a bonded request through a virtual
160 * engine. The request is created with a wide engine mask (all engines
161 * that we might execute on). On processing the bond, the request mask
162 * is reduced to one or more engines. If the request is subsequently
163 * bound to a single engine, it will then be constrained to only
164 * execute on that engine and never returned to the virtual engine
165 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
166 * know that if the rq->execution_mask is a single bit, rq->engine
167 * can be a physical engine with the exact corresponding mask.
168 */
169 if (!intel_engine_is_virtual(rq->engine) &&
170 is_power_of_2(rq->execution_mask) &&
171 !cmpxchg(&rq->engine->request_pool, NULL, rq))
172 return;
173
174 kmem_cache_free(slab_requests, rq);
175}
176
177const struct dma_fence_ops i915_fence_ops = {
178 .get_driver_name = i915_fence_get_driver_name,
179 .get_timeline_name = i915_fence_get_timeline_name,
180 .enable_signaling = i915_fence_enable_signaling,
181 .signaled = i915_fence_signaled,
182 .wait = i915_fence_wait,
183 .release = i915_fence_release,
184};
185
186static void irq_execute_cb(struct irq_work *wrk)
187{
188 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
189
190 i915_sw_fence_complete(cb->fence);
191 kmem_cache_free(slab_execute_cbs, cb);
192}
193
194static __always_inline void
195__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
196{
197 struct execute_cb *cb, *cn;
198
199 if (llist_empty(&rq->execute_cb))
200 return;
201
202 llist_for_each_entry_safe(cb, cn,
203 llist_del_all(&rq->execute_cb),
204 work.node.llist)
205 fn(&cb->work);
206}
207
208static void __notify_execute_cb_irq(struct i915_request *rq)
209{
210 __notify_execute_cb(rq, irq_work_queue);
211}
212
213static bool irq_work_imm(struct irq_work *wrk)
214{
215 wrk->func(wrk);
216 return false;
217}
218
219void i915_request_notify_execute_cb_imm(struct i915_request *rq)
220{
221 __notify_execute_cb(rq, irq_work_imm);
222}
223
224static void __i915_request_fill(struct i915_request *rq, u8 val)
225{
226 void *vaddr = rq->ring->vaddr;
227 u32 head;
228
229 head = rq->infix;
230 if (rq->postfix < head) {
231 memset(vaddr + head, val, rq->ring->size - head);
232 head = 0;
233 }
234 memset(vaddr + head, val, rq->postfix - head);
235}
236
237/**
238 * i915_request_active_engine
239 * @rq: request to inspect
240 * @active: pointer in which to return the active engine
241 *
242 * Fills the currently active engine to the @active pointer if the request
243 * is active and still not completed.
244 *
245 * Returns true if request was active or false otherwise.
246 */
247bool
248i915_request_active_engine(struct i915_request *rq,
249 struct intel_engine_cs **active)
250{
251 struct intel_engine_cs *engine, *locked;
252 bool ret = false;
253
254 /*
255 * Serialise with __i915_request_submit() so that it sees
256 * is-banned?, or we know the request is already inflight.
257 *
258 * Note that rq->engine is unstable, and so we double
259 * check that we have acquired the lock on the final engine.
260 */
261 locked = READ_ONCE(rq->engine);
262 spin_lock_irq(&locked->sched_engine->lock);
263 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
264 spin_unlock(&locked->sched_engine->lock);
265 locked = engine;
266 spin_lock(&locked->sched_engine->lock);
267 }
268
269 if (i915_request_is_active(rq)) {
270 if (!__i915_request_is_complete(rq))
271 *active = locked;
272 ret = true;
273 }
274
275 spin_unlock_irq(&locked->sched_engine->lock);
276
277 return ret;
278}
279
280static void __rq_init_watchdog(struct i915_request *rq)
281{
282 rq->watchdog.timer.function = NULL;
283}
284
285static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
286{
287 struct i915_request *rq =
288 container_of(hrtimer, struct i915_request, watchdog.timer);
289 struct intel_gt *gt = rq->engine->gt;
290
291 if (!i915_request_completed(rq)) {
292 if (llist_add(&rq->watchdog.link, >->watchdog.list))
293 schedule_work(>->watchdog.work);
294 } else {
295 i915_request_put(rq);
296 }
297
298 return HRTIMER_NORESTART;
299}
300
301static void __rq_arm_watchdog(struct i915_request *rq)
302{
303 struct i915_request_watchdog *wdg = &rq->watchdog;
304 struct intel_context *ce = rq->context;
305
306 if (!ce->watchdog.timeout_us)
307 return;
308
309 i915_request_get(rq);
310
311 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
312 wdg->timer.function = __rq_watchdog_expired;
313 hrtimer_start_range_ns(&wdg->timer,
314 ns_to_ktime(ce->watchdog.timeout_us *
315 NSEC_PER_USEC),
316 NSEC_PER_MSEC,
317 HRTIMER_MODE_REL);
318}
319
320static void __rq_cancel_watchdog(struct i915_request *rq)
321{
322 struct i915_request_watchdog *wdg = &rq->watchdog;
323
324 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
325 i915_request_put(rq);
326}
327
328#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
329
330/**
331 * i915_request_free_capture_list - Free a capture list
332 * @capture: Pointer to the first list item or NULL
333 *
334 */
335void i915_request_free_capture_list(struct i915_capture_list *capture)
336{
337 while (capture) {
338 struct i915_capture_list *next = capture->next;
339
340 i915_vma_resource_put(capture->vma_res);
341 kfree(capture);
342 capture = next;
343 }
344}
345
346#define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
347
348#define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
349
350#else
351
352#define i915_request_free_capture_list(_a) do {} while (0)
353
354#define assert_capture_list_is_null(_a) do {} while (0)
355
356#define clear_capture_list(_rq) do {} while (0)
357
358#endif
359
360bool i915_request_retire(struct i915_request *rq)
361{
362 if (!__i915_request_is_complete(rq))
363 return false;
364
365 RQ_TRACE(rq, "\n");
366
367 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
368 trace_i915_request_retire(rq);
369 i915_request_mark_complete(rq);
370
371 __rq_cancel_watchdog(rq);
372
373 /*
374 * We know the GPU must have read the request to have
375 * sent us the seqno + interrupt, so use the position
376 * of tail of the request to update the last known position
377 * of the GPU head.
378 *
379 * Note this requires that we are always called in request
380 * completion order.
381 */
382 GEM_BUG_ON(!list_is_first(&rq->link,
383 &i915_request_timeline(rq)->requests));
384 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
385 /* Poison before we release our space in the ring */
386 __i915_request_fill(rq, POISON_FREE);
387 rq->ring->head = rq->postfix;
388
389 if (!i915_request_signaled(rq)) {
390 spin_lock_irq(&rq->lock);
391 dma_fence_signal_locked(&rq->fence);
392 spin_unlock_irq(&rq->lock);
393 }
394
395 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
396 intel_rps_dec_waiters(&rq->engine->gt->rps);
397
398 /*
399 * We only loosely track inflight requests across preemption,
400 * and so we may find ourselves attempting to retire a _completed_
401 * request that we have removed from the HW and put back on a run
402 * queue.
403 *
404 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
405 * after removing the breadcrumb and signaling it, so that we do not
406 * inadvertently attach the breadcrumb to a completed request.
407 */
408 rq->engine->remove_active_request(rq);
409 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
410
411 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
412
413 intel_context_exit(rq->context);
414 intel_context_unpin(rq->context);
415
416 i915_sched_node_fini(&rq->sched);
417 i915_request_put(rq);
418
419 return true;
420}
421
422void i915_request_retire_upto(struct i915_request *rq)
423{
424 struct intel_timeline * const tl = i915_request_timeline(rq);
425 struct i915_request *tmp;
426
427 RQ_TRACE(rq, "\n");
428 GEM_BUG_ON(!__i915_request_is_complete(rq));
429
430 do {
431 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
432 GEM_BUG_ON(!i915_request_completed(tmp));
433 } while (i915_request_retire(tmp) && tmp != rq);
434}
435
436static struct i915_request * const *
437__engine_active(struct intel_engine_cs *engine)
438{
439 return READ_ONCE(engine->execlists.active);
440}
441
442static bool __request_in_flight(const struct i915_request *signal)
443{
444 struct i915_request * const *port, *rq;
445 bool inflight = false;
446
447 if (!i915_request_is_ready(signal))
448 return false;
449
450 /*
451 * Even if we have unwound the request, it may still be on
452 * the GPU (preempt-to-busy). If that request is inside an
453 * unpreemptible critical section, it will not be removed. Some
454 * GPU functions may even be stuck waiting for the paired request
455 * (__await_execution) to be submitted and cannot be preempted
456 * until the bond is executing.
457 *
458 * As we know that there are always preemption points between
459 * requests, we know that only the currently executing request
460 * may be still active even though we have cleared the flag.
461 * However, we can't rely on our tracking of ELSP[0] to know
462 * which request is currently active and so maybe stuck, as
463 * the tracking maybe an event behind. Instead assume that
464 * if the context is still inflight, then it is still active
465 * even if the active flag has been cleared.
466 *
467 * To further complicate matters, if there a pending promotion, the HW
468 * may either perform a context switch to the second inflight execlists,
469 * or it may switch to the pending set of execlists. In the case of the
470 * latter, it may send the ACK and we process the event copying the
471 * pending[] over top of inflight[], _overwriting_ our *active. Since
472 * this implies the HW is arbitrating and not struck in *active, we do
473 * not worry about complete accuracy, but we do require no read/write
474 * tearing of the pointer [the read of the pointer must be valid, even
475 * as the array is being overwritten, for which we require the writes
476 * to avoid tearing.]
477 *
478 * Note that the read of *execlists->active may race with the promotion
479 * of execlists->pending[] to execlists->inflight[], overwritting
480 * the value at *execlists->active. This is fine. The promotion implies
481 * that we received an ACK from the HW, and so the context is not
482 * stuck -- if we do not see ourselves in *active, the inflight status
483 * is valid. If instead we see ourselves being copied into *active,
484 * we are inflight and may signal the callback.
485 */
486 if (!intel_context_inflight(signal->context))
487 return false;
488
489 rcu_read_lock();
490 for (port = __engine_active(signal->engine);
491 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
492 port++) {
493 if (rq->context == signal->context) {
494 inflight = i915_seqno_passed(rq->fence.seqno,
495 signal->fence.seqno);
496 break;
497 }
498 }
499 rcu_read_unlock();
500
501 return inflight;
502}
503
504static int
505__await_execution(struct i915_request *rq,
506 struct i915_request *signal,
507 gfp_t gfp)
508{
509 struct execute_cb *cb;
510
511 if (i915_request_is_active(signal))
512 return 0;
513
514 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
515 if (!cb)
516 return -ENOMEM;
517
518 cb->fence = &rq->submit;
519 i915_sw_fence_await(cb->fence);
520 init_irq_work(&cb->work, irq_execute_cb);
521
522 /*
523 * Register the callback first, then see if the signaler is already
524 * active. This ensures that if we race with the
525 * __notify_execute_cb from i915_request_submit() and we are not
526 * included in that list, we get a second bite of the cherry and
527 * execute it ourselves. After this point, a future
528 * i915_request_submit() will notify us.
529 *
530 * In i915_request_retire() we set the ACTIVE bit on a completed
531 * request (then flush the execute_cb). So by registering the
532 * callback first, then checking the ACTIVE bit, we serialise with
533 * the completed/retired request.
534 */
535 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
536 if (i915_request_is_active(signal) ||
537 __request_in_flight(signal))
538 i915_request_notify_execute_cb_imm(signal);
539 }
540
541 return 0;
542}
543
544static bool fatal_error(int error)
545{
546 switch (error) {
547 case 0: /* not an error! */
548 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
549 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
550 return false;
551 default:
552 return true;
553 }
554}
555
556void __i915_request_skip(struct i915_request *rq)
557{
558 GEM_BUG_ON(!fatal_error(rq->fence.error));
559
560 if (rq->infix == rq->postfix)
561 return;
562
563 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
564
565 /*
566 * As this request likely depends on state from the lost
567 * context, clear out all the user operations leaving the
568 * breadcrumb at the end (so we get the fence notifications).
569 */
570 __i915_request_fill(rq, 0);
571 rq->infix = rq->postfix;
572}
573
574bool i915_request_set_error_once(struct i915_request *rq, int error)
575{
576 int old;
577
578 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
579
580 if (i915_request_signaled(rq))
581 return false;
582
583 old = READ_ONCE(rq->fence.error);
584 do {
585 if (fatal_error(old))
586 return false;
587 } while (!try_cmpxchg(&rq->fence.error, &old, error));
588
589 return true;
590}
591
592struct i915_request *i915_request_mark_eio(struct i915_request *rq)
593{
594 if (__i915_request_is_complete(rq))
595 return NULL;
596
597 GEM_BUG_ON(i915_request_signaled(rq));
598
599 /* As soon as the request is completed, it may be retired */
600 rq = i915_request_get(rq);
601
602 i915_request_set_error_once(rq, -EIO);
603 i915_request_mark_complete(rq);
604
605 return rq;
606}
607
608bool __i915_request_submit(struct i915_request *request)
609{
610 struct intel_engine_cs *engine = request->engine;
611 bool result = false;
612
613 RQ_TRACE(request, "\n");
614
615 GEM_BUG_ON(!irqs_disabled());
616 lockdep_assert_held(&engine->sched_engine->lock);
617
618 /*
619 * With the advent of preempt-to-busy, we frequently encounter
620 * requests that we have unsubmitted from HW, but left running
621 * until the next ack and so have completed in the meantime. On
622 * resubmission of that completed request, we can skip
623 * updating the payload, and execlists can even skip submitting
624 * the request.
625 *
626 * We must remove the request from the caller's priority queue,
627 * and the caller must only call us when the request is in their
628 * priority queue, under the sched_engine->lock. This ensures that the
629 * request has *not* yet been retired and we can safely move
630 * the request into the engine->active.list where it will be
631 * dropped upon retiring. (Otherwise if resubmit a *retired*
632 * request, this would be a horrible use-after-free.)
633 */
634 if (__i915_request_is_complete(request)) {
635 list_del_init(&request->sched.link);
636 goto active;
637 }
638
639 if (unlikely(!intel_context_is_schedulable(request->context)))
640 i915_request_set_error_once(request, -EIO);
641
642 if (unlikely(fatal_error(request->fence.error)))
643 __i915_request_skip(request);
644
645 /*
646 * Are we using semaphores when the gpu is already saturated?
647 *
648 * Using semaphores incurs a cost in having the GPU poll a
649 * memory location, busywaiting for it to change. The continual
650 * memory reads can have a noticeable impact on the rest of the
651 * system with the extra bus traffic, stalling the cpu as it too
652 * tries to access memory across the bus (perf stat -e bus-cycles).
653 *
654 * If we installed a semaphore on this request and we only submit
655 * the request after the signaler completed, that indicates the
656 * system is overloaded and using semaphores at this time only
657 * increases the amount of work we are doing. If so, we disable
658 * further use of semaphores until we are idle again, whence we
659 * optimistically try again.
660 */
661 if (request->sched.semaphores &&
662 i915_sw_fence_signaled(&request->semaphore))
663 engine->saturated |= request->sched.semaphores;
664
665 engine->emit_fini_breadcrumb(request,
666 request->ring->vaddr + request->postfix);
667
668 trace_i915_request_execute(request);
669 if (engine->bump_serial)
670 engine->bump_serial(engine);
671 else
672 engine->serial++;
673
674 result = true;
675
676 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
677 engine->add_active_request(request);
678active:
679 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
680 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
681
682 /*
683 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
684 *
685 * In the future, perhaps when we have an active time-slicing scheduler,
686 * it will be interesting to unsubmit parallel execution and remove
687 * busywaits from the GPU until their master is restarted. This is
688 * quite hairy, we have to carefully rollback the fence and do a
689 * preempt-to-idle cycle on the target engine, all the while the
690 * master execute_cb may refire.
691 */
692 __notify_execute_cb_irq(request);
693
694 /* We may be recursing from the signal callback of another i915 fence */
695 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
696 i915_request_enable_breadcrumb(request);
697
698 return result;
699}
700
701void i915_request_submit(struct i915_request *request)
702{
703 struct intel_engine_cs *engine = request->engine;
704 unsigned long flags;
705
706 /* Will be called from irq-context when using foreign fences. */
707 spin_lock_irqsave(&engine->sched_engine->lock, flags);
708
709 __i915_request_submit(request);
710
711 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
712}
713
714void __i915_request_unsubmit(struct i915_request *request)
715{
716 struct intel_engine_cs *engine = request->engine;
717
718 /*
719 * Only unwind in reverse order, required so that the per-context list
720 * is kept in seqno/ring order.
721 */
722 RQ_TRACE(request, "\n");
723
724 GEM_BUG_ON(!irqs_disabled());
725 lockdep_assert_held(&engine->sched_engine->lock);
726
727 /*
728 * Before we remove this breadcrumb from the signal list, we have
729 * to ensure that a concurrent dma_fence_enable_signaling() does not
730 * attach itself. We first mark the request as no longer active and
731 * make sure that is visible to other cores, and then remove the
732 * breadcrumb if attached.
733 */
734 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
735 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
736 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
737 i915_request_cancel_breadcrumb(request);
738
739 /* We've already spun, don't charge on resubmitting. */
740 if (request->sched.semaphores && __i915_request_has_started(request))
741 request->sched.semaphores = 0;
742
743 /*
744 * We don't need to wake_up any waiters on request->execute, they
745 * will get woken by any other event or us re-adding this request
746 * to the engine timeline (__i915_request_submit()). The waiters
747 * should be quite adapt at finding that the request now has a new
748 * global_seqno to the one they went to sleep on.
749 */
750}
751
752void i915_request_unsubmit(struct i915_request *request)
753{
754 struct intel_engine_cs *engine = request->engine;
755 unsigned long flags;
756
757 /* Will be called from irq-context when using foreign fences. */
758 spin_lock_irqsave(&engine->sched_engine->lock, flags);
759
760 __i915_request_unsubmit(request);
761
762 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
763}
764
765void i915_request_cancel(struct i915_request *rq, int error)
766{
767 if (!i915_request_set_error_once(rq, error))
768 return;
769
770 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
771
772 intel_context_cancel_request(rq->context, rq);
773}
774
775static int
776submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
777{
778 struct i915_request *request =
779 container_of(fence, typeof(*request), submit);
780
781 switch (state) {
782 case FENCE_COMPLETE:
783 trace_i915_request_submit(request);
784
785 if (unlikely(fence->error))
786 i915_request_set_error_once(request, fence->error);
787 else
788 __rq_arm_watchdog(request);
789
790 /*
791 * We need to serialize use of the submit_request() callback
792 * with its hotplugging performed during an emergency
793 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
794 * critical section in order to force i915_gem_set_wedged() to
795 * wait until the submit_request() is completed before
796 * proceeding.
797 */
798 rcu_read_lock();
799 request->engine->submit_request(request);
800 rcu_read_unlock();
801 break;
802
803 case FENCE_FREE:
804 i915_request_put(request);
805 break;
806 }
807
808 return NOTIFY_DONE;
809}
810
811static int
812semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
813{
814 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
815
816 switch (state) {
817 case FENCE_COMPLETE:
818 break;
819
820 case FENCE_FREE:
821 i915_request_put(rq);
822 break;
823 }
824
825 return NOTIFY_DONE;
826}
827
828static void retire_requests(struct intel_timeline *tl)
829{
830 struct i915_request *rq, *rn;
831
832 list_for_each_entry_safe(rq, rn, &tl->requests, link)
833 if (!i915_request_retire(rq))
834 break;
835}
836
837static noinline struct i915_request *
838request_alloc_slow(struct intel_timeline *tl,
839 struct i915_request **rsvd,
840 gfp_t gfp)
841{
842 struct i915_request *rq;
843
844 /* If we cannot wait, dip into our reserves */
845 if (!gfpflags_allow_blocking(gfp)) {
846 rq = xchg(rsvd, NULL);
847 if (!rq) /* Use the normal failure path for one final WARN */
848 goto out;
849
850 return rq;
851 }
852
853 if (list_empty(&tl->requests))
854 goto out;
855
856 /* Move our oldest request to the slab-cache (if not in use!) */
857 rq = list_first_entry(&tl->requests, typeof(*rq), link);
858 i915_request_retire(rq);
859
860 rq = kmem_cache_alloc(slab_requests,
861 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
862 if (rq)
863 return rq;
864
865 /* Ratelimit ourselves to prevent oom from malicious clients */
866 rq = list_last_entry(&tl->requests, typeof(*rq), link);
867 cond_synchronize_rcu(rq->rcustate);
868
869 /* Retire our old requests in the hope that we free some */
870 retire_requests(tl);
871
872out:
873 return kmem_cache_alloc(slab_requests, gfp);
874}
875
876static void __i915_request_ctor(void *arg)
877{
878 struct i915_request *rq = arg;
879
880 spin_lock_init(&rq->lock);
881 i915_sched_node_init(&rq->sched);
882 i915_sw_fence_init(&rq->submit, submit_notify);
883 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
884
885 clear_capture_list(rq);
886 rq->batch_res = NULL;
887
888 init_llist_head(&rq->execute_cb);
889}
890
891#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
892#define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
893#else
894#define clear_batch_ptr(_a) do {} while (0)
895#endif
896
897struct i915_request *
898__i915_request_create(struct intel_context *ce, gfp_t gfp)
899{
900 struct intel_timeline *tl = ce->timeline;
901 struct i915_request *rq;
902 u32 seqno;
903 int ret;
904
905 might_alloc(gfp);
906
907 /* Check that the caller provided an already pinned context */
908 __intel_context_pin(ce);
909
910 /*
911 * Beware: Dragons be flying overhead.
912 *
913 * We use RCU to look up requests in flight. The lookups may
914 * race with the request being allocated from the slab freelist.
915 * That is the request we are writing to here, may be in the process
916 * of being read by __i915_active_request_get_rcu(). As such,
917 * we have to be very careful when overwriting the contents. During
918 * the RCU lookup, we change chase the request->engine pointer,
919 * read the request->global_seqno and increment the reference count.
920 *
921 * The reference count is incremented atomically. If it is zero,
922 * the lookup knows the request is unallocated and complete. Otherwise,
923 * it is either still in use, or has been reallocated and reset
924 * with dma_fence_init(). This increment is safe for release as we
925 * check that the request we have a reference to and matches the active
926 * request.
927 *
928 * Before we increment the refcount, we chase the request->engine
929 * pointer. We must not call kmem_cache_zalloc() or else we set
930 * that pointer to NULL and cause a crash during the lookup. If
931 * we see the request is completed (based on the value of the
932 * old engine and seqno), the lookup is complete and reports NULL.
933 * If we decide the request is not completed (new engine or seqno),
934 * then we grab a reference and double check that it is still the
935 * active request - which it won't be and restart the lookup.
936 *
937 * Do not use kmem_cache_zalloc() here!
938 */
939 rq = kmem_cache_alloc(slab_requests,
940 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
941 if (unlikely(!rq)) {
942 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
943 if (!rq) {
944 ret = -ENOMEM;
945 goto err_unreserve;
946 }
947 }
948
949 rq->context = ce;
950 rq->engine = ce->engine;
951 rq->ring = ce->ring;
952 rq->execution_mask = ce->engine->mask;
953 rq->i915 = ce->engine->i915;
954
955 ret = intel_timeline_get_seqno(tl, rq, &seqno);
956 if (ret)
957 goto err_free;
958
959 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
960 tl->fence_context, seqno);
961
962 RCU_INIT_POINTER(rq->timeline, tl);
963 rq->hwsp_seqno = tl->hwsp_seqno;
964 GEM_BUG_ON(__i915_request_is_complete(rq));
965
966 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
967
968 rq->guc_prio = GUC_PRIO_INIT;
969
970 /* We bump the ref for the fence chain */
971 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
972 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
973
974 i915_sched_node_reinit(&rq->sched);
975
976 /* No zalloc, everything must be cleared after use */
977 clear_batch_ptr(rq);
978 __rq_init_watchdog(rq);
979 assert_capture_list_is_null(rq);
980 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
981 GEM_BUG_ON(rq->batch_res);
982
983 /*
984 * Reserve space in the ring buffer for all the commands required to
985 * eventually emit this request. This is to guarantee that the
986 * i915_request_add() call can't fail. Note that the reserve may need
987 * to be redone if the request is not actually submitted straight
988 * away, e.g. because a GPU scheduler has deferred it.
989 *
990 * Note that due to how we add reserved_space to intel_ring_begin()
991 * we need to double our request to ensure that if we need to wrap
992 * around inside i915_request_add() there is sufficient space at
993 * the beginning of the ring as well.
994 */
995 rq->reserved_space =
996 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
997
998 /*
999 * Record the position of the start of the request so that
1000 * should we detect the updated seqno part-way through the
1001 * GPU processing the request, we never over-estimate the
1002 * position of the head.
1003 */
1004 rq->head = rq->ring->emit;
1005
1006 ret = rq->engine->request_alloc(rq);
1007 if (ret)
1008 goto err_unwind;
1009
1010 rq->infix = rq->ring->emit; /* end of header; start of user payload */
1011
1012 intel_context_mark_active(ce);
1013 list_add_tail_rcu(&rq->link, &tl->requests);
1014
1015 return rq;
1016
1017err_unwind:
1018 ce->ring->emit = rq->head;
1019
1020 /* Make sure we didn't add ourselves to external state before freeing */
1021 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1022 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1023
1024err_free:
1025 kmem_cache_free(slab_requests, rq);
1026err_unreserve:
1027 intel_context_unpin(ce);
1028 return ERR_PTR(ret);
1029}
1030
1031struct i915_request *
1032i915_request_create(struct intel_context *ce)
1033{
1034 struct i915_request *rq;
1035 struct intel_timeline *tl;
1036
1037 tl = intel_context_timeline_lock(ce);
1038 if (IS_ERR(tl))
1039 return ERR_CAST(tl);
1040
1041 /* Move our oldest request to the slab-cache (if not in use!) */
1042 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1043 if (!list_is_last(&rq->link, &tl->requests))
1044 i915_request_retire(rq);
1045
1046 intel_context_enter(ce);
1047 rq = __i915_request_create(ce, GFP_KERNEL);
1048 intel_context_exit(ce); /* active reference transferred to request */
1049 if (IS_ERR(rq))
1050 goto err_unlock;
1051
1052 /* Check that we do not interrupt ourselves with a new request */
1053 rq->cookie = lockdep_pin_lock(&tl->mutex);
1054
1055 return rq;
1056
1057err_unlock:
1058 intel_context_timeline_unlock(tl);
1059 return rq;
1060}
1061
1062static int
1063i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1064{
1065 struct dma_fence *fence;
1066 int err;
1067
1068 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1069 return 0;
1070
1071 if (i915_request_started(signal))
1072 return 0;
1073
1074 /*
1075 * The caller holds a reference on @signal, but we do not serialise
1076 * against it being retired and removed from the lists.
1077 *
1078 * We do not hold a reference to the request before @signal, and
1079 * so must be very careful to ensure that it is not _recycled_ as
1080 * we follow the link backwards.
1081 */
1082 fence = NULL;
1083 rcu_read_lock();
1084 do {
1085 struct list_head *pos = READ_ONCE(signal->link.prev);
1086 struct i915_request *prev;
1087
1088 /* Confirm signal has not been retired, the link is valid */
1089 if (unlikely(__i915_request_has_started(signal)))
1090 break;
1091
1092 /* Is signal the earliest request on its timeline? */
1093 if (pos == &rcu_dereference(signal->timeline)->requests)
1094 break;
1095
1096 /*
1097 * Peek at the request before us in the timeline. That
1098 * request will only be valid before it is retired, so
1099 * after acquiring a reference to it, confirm that it is
1100 * still part of the signaler's timeline.
1101 */
1102 prev = list_entry(pos, typeof(*prev), link);
1103 if (!i915_request_get_rcu(prev))
1104 break;
1105
1106 /* After the strong barrier, confirm prev is still attached */
1107 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1108 i915_request_put(prev);
1109 break;
1110 }
1111
1112 fence = &prev->fence;
1113 } while (0);
1114 rcu_read_unlock();
1115 if (!fence)
1116 return 0;
1117
1118 err = 0;
1119 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1120 err = i915_sw_fence_await_dma_fence(&rq->submit,
1121 fence, 0,
1122 I915_FENCE_GFP);
1123 dma_fence_put(fence);
1124
1125 return err;
1126}
1127
1128static intel_engine_mask_t
1129already_busywaiting(struct i915_request *rq)
1130{
1131 /*
1132 * Polling a semaphore causes bus traffic, delaying other users of
1133 * both the GPU and CPU. We want to limit the impact on others,
1134 * while taking advantage of early submission to reduce GPU
1135 * latency. Therefore we restrict ourselves to not using more
1136 * than one semaphore from each source, and not using a semaphore
1137 * if we have detected the engine is saturated (i.e. would not be
1138 * submitted early and cause bus traffic reading an already passed
1139 * semaphore).
1140 *
1141 * See the are-we-too-late? check in __i915_request_submit().
1142 */
1143 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1144}
1145
1146static int
1147__emit_semaphore_wait(struct i915_request *to,
1148 struct i915_request *from,
1149 u32 seqno)
1150{
1151 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1152 u32 hwsp_offset;
1153 int len, err;
1154 u32 *cs;
1155
1156 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1157 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1158
1159 /* We need to pin the signaler's HWSP until we are finished reading. */
1160 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1161 if (err)
1162 return err;
1163
1164 len = 4;
1165 if (has_token)
1166 len += 2;
1167
1168 cs = intel_ring_begin(to, len);
1169 if (IS_ERR(cs))
1170 return PTR_ERR(cs);
1171
1172 /*
1173 * Using greater-than-or-equal here means we have to worry
1174 * about seqno wraparound. To side step that issue, we swap
1175 * the timeline HWSP upon wrapping, so that everyone listening
1176 * for the old (pre-wrap) values do not see the much smaller
1177 * (post-wrap) values than they were expecting (and so wait
1178 * forever).
1179 */
1180 *cs++ = (MI_SEMAPHORE_WAIT |
1181 MI_SEMAPHORE_GLOBAL_GTT |
1182 MI_SEMAPHORE_POLL |
1183 MI_SEMAPHORE_SAD_GTE_SDD) +
1184 has_token;
1185 *cs++ = seqno;
1186 *cs++ = hwsp_offset;
1187 *cs++ = 0;
1188 if (has_token) {
1189 *cs++ = 0;
1190 *cs++ = MI_NOOP;
1191 }
1192
1193 intel_ring_advance(to, cs);
1194 return 0;
1195}
1196
1197static bool
1198can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1199{
1200 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1201}
1202
1203static int
1204emit_semaphore_wait(struct i915_request *to,
1205 struct i915_request *from,
1206 gfp_t gfp)
1207{
1208 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1209 struct i915_sw_fence *wait = &to->submit;
1210
1211 if (!can_use_semaphore_wait(to, from))
1212 goto await_fence;
1213
1214 if (!intel_context_use_semaphores(to->context))
1215 goto await_fence;
1216
1217 if (i915_request_has_initial_breadcrumb(to))
1218 goto await_fence;
1219
1220 /*
1221 * If this or its dependents are waiting on an external fence
1222 * that may fail catastrophically, then we want to avoid using
1223 * sempahores as they bypass the fence signaling metadata, and we
1224 * lose the fence->error propagation.
1225 */
1226 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1227 goto await_fence;
1228
1229 /* Just emit the first semaphore we see as request space is limited. */
1230 if (already_busywaiting(to) & mask)
1231 goto await_fence;
1232
1233 if (i915_request_await_start(to, from) < 0)
1234 goto await_fence;
1235
1236 /* Only submit our spinner after the signaler is running! */
1237 if (__await_execution(to, from, gfp))
1238 goto await_fence;
1239
1240 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1241 goto await_fence;
1242
1243 to->sched.semaphores |= mask;
1244 wait = &to->semaphore;
1245
1246await_fence:
1247 return i915_sw_fence_await_dma_fence(wait,
1248 &from->fence, 0,
1249 I915_FENCE_GFP);
1250}
1251
1252static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1253 struct dma_fence *fence)
1254{
1255 return __intel_timeline_sync_is_later(tl,
1256 fence->context,
1257 fence->seqno - 1);
1258}
1259
1260static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1261 const struct dma_fence *fence)
1262{
1263 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1264}
1265
1266static int
1267__i915_request_await_execution(struct i915_request *to,
1268 struct i915_request *from)
1269{
1270 int err;
1271
1272 GEM_BUG_ON(intel_context_is_barrier(from->context));
1273
1274 /* Submit both requests at the same time */
1275 err = __await_execution(to, from, I915_FENCE_GFP);
1276 if (err)
1277 return err;
1278
1279 /* Squash repeated depenendices to the same timelines */
1280 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1281 &from->fence))
1282 return 0;
1283
1284 /*
1285 * Wait until the start of this request.
1286 *
1287 * The execution cb fires when we submit the request to HW. But in
1288 * many cases this may be long before the request itself is ready to
1289 * run (consider that we submit 2 requests for the same context, where
1290 * the request of interest is behind an indefinite spinner). So we hook
1291 * up to both to reduce our queues and keep the execution lag minimised
1292 * in the worst case, though we hope that the await_start is elided.
1293 */
1294 err = i915_request_await_start(to, from);
1295 if (err < 0)
1296 return err;
1297
1298 /*
1299 * Ensure both start together [after all semaphores in signal]
1300 *
1301 * Now that we are queued to the HW at roughly the same time (thanks
1302 * to the execute cb) and are ready to run at roughly the same time
1303 * (thanks to the await start), our signaler may still be indefinitely
1304 * delayed by waiting on a semaphore from a remote engine. If our
1305 * signaler depends on a semaphore, so indirectly do we, and we do not
1306 * want to start our payload until our signaler also starts theirs.
1307 * So we wait.
1308 *
1309 * However, there is also a second condition for which we need to wait
1310 * for the precise start of the signaler. Consider that the signaler
1311 * was submitted in a chain of requests following another context
1312 * (with just an ordinary intra-engine fence dependency between the
1313 * two). In this case the signaler is queued to HW, but not for
1314 * immediate execution, and so we must wait until it reaches the
1315 * active slot.
1316 */
1317 if (can_use_semaphore_wait(to, from) &&
1318 intel_engine_has_semaphores(to->engine) &&
1319 !i915_request_has_initial_breadcrumb(to)) {
1320 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1321 if (err < 0)
1322 return err;
1323 }
1324
1325 /* Couple the dependency tree for PI on this exposed to->fence */
1326 if (to->engine->sched_engine->schedule) {
1327 err = i915_sched_node_add_dependency(&to->sched,
1328 &from->sched,
1329 I915_DEPENDENCY_WEAK);
1330 if (err < 0)
1331 return err;
1332 }
1333
1334 return intel_timeline_sync_set_start(i915_request_timeline(to),
1335 &from->fence);
1336}
1337
1338static void mark_external(struct i915_request *rq)
1339{
1340 /*
1341 * The downside of using semaphores is that we lose metadata passing
1342 * along the signaling chain. This is particularly nasty when we
1343 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1344 * fatal errors we want to scrub the request before it is executed,
1345 * which means that we cannot preload the request onto HW and have
1346 * it wait upon a semaphore.
1347 */
1348 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1349}
1350
1351static int
1352__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1353{
1354 mark_external(rq);
1355 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1356 i915_fence_context_timeout(rq->engine->i915,
1357 fence->context),
1358 I915_FENCE_GFP);
1359}
1360
1361static int
1362i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1363{
1364 struct dma_fence *iter;
1365 int err = 0;
1366
1367 if (!to_dma_fence_chain(fence))
1368 return __i915_request_await_external(rq, fence);
1369
1370 dma_fence_chain_for_each(iter, fence) {
1371 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1372
1373 if (!dma_fence_is_i915(chain->fence)) {
1374 err = __i915_request_await_external(rq, iter);
1375 break;
1376 }
1377
1378 err = i915_request_await_dma_fence(rq, chain->fence);
1379 if (err < 0)
1380 break;
1381 }
1382
1383 dma_fence_put(iter);
1384 return err;
1385}
1386
1387static inline bool is_parallel_rq(struct i915_request *rq)
1388{
1389 return intel_context_is_parallel(rq->context);
1390}
1391
1392static inline struct intel_context *request_to_parent(struct i915_request *rq)
1393{
1394 return intel_context_to_parent(rq->context);
1395}
1396
1397static bool is_same_parallel_context(struct i915_request *to,
1398 struct i915_request *from)
1399{
1400 if (is_parallel_rq(to))
1401 return request_to_parent(to) == request_to_parent(from);
1402
1403 return false;
1404}
1405
1406int
1407i915_request_await_execution(struct i915_request *rq,
1408 struct dma_fence *fence)
1409{
1410 struct dma_fence **child = &fence;
1411 unsigned int nchild = 1;
1412 int ret;
1413
1414 if (dma_fence_is_array(fence)) {
1415 struct dma_fence_array *array = to_dma_fence_array(fence);
1416
1417 /* XXX Error for signal-on-any fence arrays */
1418
1419 child = array->fences;
1420 nchild = array->num_fences;
1421 GEM_BUG_ON(!nchild);
1422 }
1423
1424 do {
1425 fence = *child++;
1426 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1427 continue;
1428
1429 if (fence->context == rq->fence.context)
1430 continue;
1431
1432 /*
1433 * We don't squash repeated fence dependencies here as we
1434 * want to run our callback in all cases.
1435 */
1436
1437 if (dma_fence_is_i915(fence)) {
1438 if (is_same_parallel_context(rq, to_request(fence)))
1439 continue;
1440 ret = __i915_request_await_execution(rq,
1441 to_request(fence));
1442 } else {
1443 ret = i915_request_await_external(rq, fence);
1444 }
1445 if (ret < 0)
1446 return ret;
1447 } while (--nchild);
1448
1449 return 0;
1450}
1451
1452static int
1453await_request_submit(struct i915_request *to, struct i915_request *from)
1454{
1455 /*
1456 * If we are waiting on a virtual engine, then it may be
1457 * constrained to execute on a single engine *prior* to submission.
1458 * When it is submitted, it will be first submitted to the virtual
1459 * engine and then passed to the physical engine. We cannot allow
1460 * the waiter to be submitted immediately to the physical engine
1461 * as it may then bypass the virtual request.
1462 */
1463 if (to->engine == READ_ONCE(from->engine))
1464 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1465 &from->submit,
1466 I915_FENCE_GFP);
1467 else
1468 return __i915_request_await_execution(to, from);
1469}
1470
1471static int
1472i915_request_await_request(struct i915_request *to, struct i915_request *from)
1473{
1474 int ret;
1475
1476 GEM_BUG_ON(to == from);
1477 GEM_BUG_ON(to->timeline == from->timeline);
1478
1479 if (i915_request_completed(from)) {
1480 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1481 return 0;
1482 }
1483
1484 if (to->engine->sched_engine->schedule) {
1485 ret = i915_sched_node_add_dependency(&to->sched,
1486 &from->sched,
1487 I915_DEPENDENCY_EXTERNAL);
1488 if (ret < 0)
1489 return ret;
1490 }
1491
1492 if (!intel_engine_uses_guc(to->engine) &&
1493 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1494 ret = await_request_submit(to, from);
1495 else
1496 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1497 if (ret < 0)
1498 return ret;
1499
1500 return 0;
1501}
1502
1503int
1504i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1505{
1506 struct dma_fence **child = &fence;
1507 unsigned int nchild = 1;
1508 int ret;
1509
1510 /*
1511 * Note that if the fence-array was created in signal-on-any mode,
1512 * we should *not* decompose it into its individual fences. However,
1513 * we don't currently store which mode the fence-array is operating
1514 * in. Fortunately, the only user of signal-on-any is private to
1515 * amdgpu and we should not see any incoming fence-array from
1516 * sync-file being in signal-on-any mode.
1517 */
1518 if (dma_fence_is_array(fence)) {
1519 struct dma_fence_array *array = to_dma_fence_array(fence);
1520
1521 child = array->fences;
1522 nchild = array->num_fences;
1523 GEM_BUG_ON(!nchild);
1524 }
1525
1526 do {
1527 fence = *child++;
1528 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1529 continue;
1530
1531 /*
1532 * Requests on the same timeline are explicitly ordered, along
1533 * with their dependencies, by i915_request_add() which ensures
1534 * that requests are submitted in-order through each ring.
1535 */
1536 if (fence->context == rq->fence.context)
1537 continue;
1538
1539 /* Squash repeated waits to the same timelines */
1540 if (fence->context &&
1541 intel_timeline_sync_is_later(i915_request_timeline(rq),
1542 fence))
1543 continue;
1544
1545 if (dma_fence_is_i915(fence)) {
1546 if (is_same_parallel_context(rq, to_request(fence)))
1547 continue;
1548 ret = i915_request_await_request(rq, to_request(fence));
1549 } else {
1550 ret = i915_request_await_external(rq, fence);
1551 }
1552 if (ret < 0)
1553 return ret;
1554
1555 /* Record the latest fence used against each timeline */
1556 if (fence->context)
1557 intel_timeline_sync_set(i915_request_timeline(rq),
1558 fence);
1559 } while (--nchild);
1560
1561 return 0;
1562}
1563
1564/**
1565 * i915_request_await_deps - set this request to (async) wait upon a struct
1566 * i915_deps dma_fence collection
1567 * @rq: request we are wishing to use
1568 * @deps: The struct i915_deps containing the dependencies.
1569 *
1570 * Returns 0 if successful, negative error code on error.
1571 */
1572int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1573{
1574 int i, err;
1575
1576 for (i = 0; i < deps->num_deps; ++i) {
1577 err = i915_request_await_dma_fence(rq, deps->fences[i]);
1578 if (err)
1579 return err;
1580 }
1581
1582 return 0;
1583}
1584
1585/**
1586 * i915_request_await_object - set this request to (async) wait upon a bo
1587 * @to: request we are wishing to use
1588 * @obj: object which may be in use on another ring.
1589 * @write: whether the wait is on behalf of a writer
1590 *
1591 * This code is meant to abstract object synchronization with the GPU.
1592 * Conceptually we serialise writes between engines inside the GPU.
1593 * We only allow one engine to write into a buffer at any time, but
1594 * multiple readers. To ensure each has a coherent view of memory, we must:
1595 *
1596 * - If there is an outstanding write request to the object, the new
1597 * request must wait for it to complete (either CPU or in hw, requests
1598 * on the same ring will be naturally ordered).
1599 *
1600 * - If we are a write request (pending_write_domain is set), the new
1601 * request must wait for outstanding read requests to complete.
1602 *
1603 * Returns 0 if successful, else propagates up the lower layer error.
1604 */
1605int
1606i915_request_await_object(struct i915_request *to,
1607 struct drm_i915_gem_object *obj,
1608 bool write)
1609{
1610 struct dma_resv_iter cursor;
1611 struct dma_fence *fence;
1612 int ret = 0;
1613
1614 dma_resv_for_each_fence(&cursor, obj->base.resv,
1615 dma_resv_usage_rw(write), fence) {
1616 ret = i915_request_await_dma_fence(to, fence);
1617 if (ret)
1618 break;
1619 }
1620
1621 return ret;
1622}
1623
1624static void i915_request_await_huc(struct i915_request *rq)
1625{
1626 struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1627
1628 /* don't stall kernel submissions! */
1629 if (!rcu_access_pointer(rq->context->gem_context))
1630 return;
1631
1632 if (intel_huc_wait_required(huc))
1633 i915_sw_fence_await_sw_fence(&rq->submit,
1634 &huc->delayed_load.fence,
1635 &rq->hucq);
1636}
1637
1638static struct i915_request *
1639__i915_request_ensure_parallel_ordering(struct i915_request *rq,
1640 struct intel_timeline *timeline)
1641{
1642 struct i915_request *prev;
1643
1644 GEM_BUG_ON(!is_parallel_rq(rq));
1645
1646 prev = request_to_parent(rq)->parallel.last_rq;
1647 if (prev) {
1648 if (!__i915_request_is_complete(prev)) {
1649 i915_sw_fence_await_sw_fence(&rq->submit,
1650 &prev->submit,
1651 &rq->submitq);
1652
1653 if (rq->engine->sched_engine->schedule)
1654 __i915_sched_node_add_dependency(&rq->sched,
1655 &prev->sched,
1656 &rq->dep,
1657 0);
1658 }
1659 i915_request_put(prev);
1660 }
1661
1662 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1663
1664 return to_request(__i915_active_fence_set(&timeline->last_request,
1665 &rq->fence));
1666}
1667
1668static struct i915_request *
1669__i915_request_ensure_ordering(struct i915_request *rq,
1670 struct intel_timeline *timeline)
1671{
1672 struct i915_request *prev;
1673
1674 GEM_BUG_ON(is_parallel_rq(rq));
1675
1676 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1677 &rq->fence));
1678
1679 if (prev && !__i915_request_is_complete(prev)) {
1680 bool uses_guc = intel_engine_uses_guc(rq->engine);
1681 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1682 rq->engine->mask);
1683 bool same_context = prev->context == rq->context;
1684
1685 /*
1686 * The requests are supposed to be kept in order. However,
1687 * we need to be wary in case the timeline->last_request
1688 * is used as a barrier for external modification to this
1689 * context.
1690 */
1691 GEM_BUG_ON(same_context &&
1692 i915_seqno_passed(prev->fence.seqno,
1693 rq->fence.seqno));
1694
1695 if ((same_context && uses_guc) || (!uses_guc && pow2))
1696 i915_sw_fence_await_sw_fence(&rq->submit,
1697 &prev->submit,
1698 &rq->submitq);
1699 else
1700 __i915_sw_fence_await_dma_fence(&rq->submit,
1701 &prev->fence,
1702 &rq->dmaq);
1703 if (rq->engine->sched_engine->schedule)
1704 __i915_sched_node_add_dependency(&rq->sched,
1705 &prev->sched,
1706 &rq->dep,
1707 0);
1708 }
1709
1710 return prev;
1711}
1712
1713static struct i915_request *
1714__i915_request_add_to_timeline(struct i915_request *rq)
1715{
1716 struct intel_timeline *timeline = i915_request_timeline(rq);
1717 struct i915_request *prev;
1718
1719 /*
1720 * Media workloads may require HuC, so stall them until HuC loading is
1721 * complete. Note that HuC not being loaded when a user submission
1722 * arrives can only happen when HuC is loaded via GSC and in that case
1723 * we still expect the window between us starting to accept submissions
1724 * and HuC loading completion to be small (a few hundred ms).
1725 */
1726 if (rq->engine->class == VIDEO_DECODE_CLASS)
1727 i915_request_await_huc(rq);
1728
1729 /*
1730 * Dependency tracking and request ordering along the timeline
1731 * is special cased so that we can eliminate redundant ordering
1732 * operations while building the request (we know that the timeline
1733 * itself is ordered, and here we guarantee it).
1734 *
1735 * As we know we will need to emit tracking along the timeline,
1736 * we embed the hooks into our request struct -- at the cost of
1737 * having to have specialised no-allocation interfaces (which will
1738 * be beneficial elsewhere).
1739 *
1740 * A second benefit to open-coding i915_request_await_request is
1741 * that we can apply a slight variant of the rules specialised
1742 * for timelines that jump between engines (such as virtual engines).
1743 * If we consider the case of virtual engine, we must emit a dma-fence
1744 * to prevent scheduling of the second request until the first is
1745 * complete (to maximise our greedy late load balancing) and this
1746 * precludes optimising to use semaphores serialisation of a single
1747 * timeline across engines.
1748 *
1749 * We do not order parallel submission requests on the timeline as each
1750 * parallel submission context has its own timeline and the ordering
1751 * rules for parallel requests are that they must be submitted in the
1752 * order received from the execbuf IOCTL. So rather than using the
1753 * timeline we store a pointer to last request submitted in the
1754 * relationship in the gem context and insert a submission fence
1755 * between that request and request passed into this function or
1756 * alternatively we use completion fence if gem context has a single
1757 * timeline and this is the first submission of an execbuf IOCTL.
1758 */
1759 if (likely(!is_parallel_rq(rq)))
1760 prev = __i915_request_ensure_ordering(rq, timeline);
1761 else
1762 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1763
1764 /*
1765 * Make sure that no request gazumped us - if it was allocated after
1766 * our i915_request_alloc() and called __i915_request_add() before
1767 * us, the timeline will hold its seqno which is later than ours.
1768 */
1769 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1770
1771 return prev;
1772}
1773
1774/*
1775 * NB: This function is not allowed to fail. Doing so would mean the the
1776 * request is not being tracked for completion but the work itself is
1777 * going to happen on the hardware. This would be a Bad Thing(tm).
1778 */
1779struct i915_request *__i915_request_commit(struct i915_request *rq)
1780{
1781 struct intel_engine_cs *engine = rq->engine;
1782 struct intel_ring *ring = rq->ring;
1783 u32 *cs;
1784
1785 RQ_TRACE(rq, "\n");
1786
1787 /*
1788 * To ensure that this call will not fail, space for its emissions
1789 * should already have been reserved in the ring buffer. Let the ring
1790 * know that it is time to use that space up.
1791 */
1792 GEM_BUG_ON(rq->reserved_space > ring->space);
1793 rq->reserved_space = 0;
1794 rq->emitted_jiffies = jiffies;
1795
1796 /*
1797 * Record the position of the start of the breadcrumb so that
1798 * should we detect the updated seqno part-way through the
1799 * GPU processing the request, we never over-estimate the
1800 * position of the ring's HEAD.
1801 */
1802 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1803 GEM_BUG_ON(IS_ERR(cs));
1804 rq->postfix = intel_ring_offset(rq, cs);
1805
1806 return __i915_request_add_to_timeline(rq);
1807}
1808
1809void __i915_request_queue_bh(struct i915_request *rq)
1810{
1811 i915_sw_fence_commit(&rq->semaphore);
1812 i915_sw_fence_commit(&rq->submit);
1813}
1814
1815void __i915_request_queue(struct i915_request *rq,
1816 const struct i915_sched_attr *attr)
1817{
1818 /*
1819 * Let the backend know a new request has arrived that may need
1820 * to adjust the existing execution schedule due to a high priority
1821 * request - i.e. we may want to preempt the current request in order
1822 * to run a high priority dependency chain *before* we can execute this
1823 * request.
1824 *
1825 * This is called before the request is ready to run so that we can
1826 * decide whether to preempt the entire chain so that it is ready to
1827 * run at the earliest possible convenience.
1828 */
1829 if (attr && rq->engine->sched_engine->schedule)
1830 rq->engine->sched_engine->schedule(rq, attr);
1831
1832 local_bh_disable();
1833 __i915_request_queue_bh(rq);
1834 local_bh_enable(); /* kick tasklets */
1835}
1836
1837void i915_request_add(struct i915_request *rq)
1838{
1839 struct intel_timeline * const tl = i915_request_timeline(rq);
1840 struct i915_sched_attr attr = {};
1841 struct i915_gem_context *ctx;
1842
1843 lockdep_assert_held(&tl->mutex);
1844 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1845
1846 trace_i915_request_add(rq);
1847 __i915_request_commit(rq);
1848
1849 /* XXX placeholder for selftests */
1850 rcu_read_lock();
1851 ctx = rcu_dereference(rq->context->gem_context);
1852 if (ctx)
1853 attr = ctx->sched;
1854 rcu_read_unlock();
1855
1856 __i915_request_queue(rq, &attr);
1857
1858 mutex_unlock(&tl->mutex);
1859}
1860
1861static unsigned long local_clock_ns(unsigned int *cpu)
1862{
1863 unsigned long t;
1864
1865 /*
1866 * Cheaply and approximately convert from nanoseconds to microseconds.
1867 * The result and subsequent calculations are also defined in the same
1868 * approximate microseconds units. The principal source of timing
1869 * error here is from the simple truncation.
1870 *
1871 * Note that local_clock() is only defined wrt to the current CPU;
1872 * the comparisons are no longer valid if we switch CPUs. Instead of
1873 * blocking preemption for the entire busywait, we can detect the CPU
1874 * switch and use that as indicator of system load and a reason to
1875 * stop busywaiting, see busywait_stop().
1876 */
1877 *cpu = get_cpu();
1878 t = local_clock();
1879 put_cpu();
1880
1881 return t;
1882}
1883
1884static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1885{
1886 unsigned int this_cpu;
1887
1888 if (time_after(local_clock_ns(&this_cpu), timeout))
1889 return true;
1890
1891 return this_cpu != cpu;
1892}
1893
1894static bool __i915_spin_request(struct i915_request * const rq, int state)
1895{
1896 unsigned long timeout_ns;
1897 unsigned int cpu;
1898
1899 /*
1900 * Only wait for the request if we know it is likely to complete.
1901 *
1902 * We don't track the timestamps around requests, nor the average
1903 * request length, so we do not have a good indicator that this
1904 * request will complete within the timeout. What we do know is the
1905 * order in which requests are executed by the context and so we can
1906 * tell if the request has been started. If the request is not even
1907 * running yet, it is a fair assumption that it will not complete
1908 * within our relatively short timeout.
1909 */
1910 if (!i915_request_is_running(rq))
1911 return false;
1912
1913 /*
1914 * When waiting for high frequency requests, e.g. during synchronous
1915 * rendering split between the CPU and GPU, the finite amount of time
1916 * required to set up the irq and wait upon it limits the response
1917 * rate. By busywaiting on the request completion for a short while we
1918 * can service the high frequency waits as quick as possible. However,
1919 * if it is a slow request, we want to sleep as quickly as possible.
1920 * The tradeoff between waiting and sleeping is roughly the time it
1921 * takes to sleep on a request, on the order of a microsecond.
1922 */
1923
1924 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1925 timeout_ns += local_clock_ns(&cpu);
1926 do {
1927 if (dma_fence_is_signaled(&rq->fence))
1928 return true;
1929
1930 if (signal_pending_state(state, current))
1931 break;
1932
1933 if (busywait_stop(timeout_ns, cpu))
1934 break;
1935
1936 cpu_relax();
1937 } while (!need_resched());
1938
1939 return false;
1940}
1941
1942struct request_wait {
1943 struct dma_fence_cb cb;
1944 struct task_struct *tsk;
1945};
1946
1947static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1948{
1949 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1950
1951 wake_up_process(fetch_and_zero(&wait->tsk));
1952}
1953
1954/**
1955 * i915_request_wait_timeout - wait until execution of request has finished
1956 * @rq: the request to wait upon
1957 * @flags: how to wait
1958 * @timeout: how long to wait in jiffies
1959 *
1960 * i915_request_wait_timeout() waits for the request to be completed, for a
1961 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1962 * unbounded wait).
1963 *
1964 * Returns the remaining time (in jiffies) if the request completed, which may
1965 * be zero if the request is unfinished after the timeout expires.
1966 * If the timeout is 0, it will return 1 if the fence is signaled.
1967 *
1968 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1969 * pending before the request completes.
1970 *
1971 * NOTE: This function has the same wait semantics as dma-fence.
1972 */
1973long i915_request_wait_timeout(struct i915_request *rq,
1974 unsigned int flags,
1975 long timeout)
1976{
1977 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1978 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1979 struct request_wait wait;
1980
1981 might_sleep();
1982 GEM_BUG_ON(timeout < 0);
1983
1984 if (dma_fence_is_signaled(&rq->fence))
1985 return timeout ?: 1;
1986
1987 if (!timeout)
1988 return -ETIME;
1989
1990 trace_i915_request_wait_begin(rq, flags);
1991
1992 /*
1993 * We must never wait on the GPU while holding a lock as we
1994 * may need to perform a GPU reset. So while we don't need to
1995 * serialise wait/reset with an explicit lock, we do want
1996 * lockdep to detect potential dependency cycles.
1997 */
1998 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1999
2000 /*
2001 * Optimistic spin before touching IRQs.
2002 *
2003 * We may use a rather large value here to offset the penalty of
2004 * switching away from the active task. Frequently, the client will
2005 * wait upon an old swapbuffer to throttle itself to remain within a
2006 * frame of the gpu. If the client is running in lockstep with the gpu,
2007 * then it should not be waiting long at all, and a sleep now will incur
2008 * extra scheduler latency in producing the next frame. To try to
2009 * avoid adding the cost of enabling/disabling the interrupt to the
2010 * short wait, we first spin to see if the request would have completed
2011 * in the time taken to setup the interrupt.
2012 *
2013 * We need upto 5us to enable the irq, and upto 20us to hide the
2014 * scheduler latency of a context switch, ignoring the secondary
2015 * impacts from a context switch such as cache eviction.
2016 *
2017 * The scheme used for low-latency IO is called "hybrid interrupt
2018 * polling". The suggestion there is to sleep until just before you
2019 * expect to be woken by the device interrupt and then poll for its
2020 * completion. That requires having a good predictor for the request
2021 * duration, which we currently lack.
2022 */
2023 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2024 __i915_spin_request(rq, state))
2025 goto out;
2026
2027 /*
2028 * This client is about to stall waiting for the GPU. In many cases
2029 * this is undesirable and limits the throughput of the system, as
2030 * many clients cannot continue processing user input/output whilst
2031 * blocked. RPS autotuning may take tens of milliseconds to respond
2032 * to the GPU load and thus incurs additional latency for the client.
2033 * We can circumvent that by promoting the GPU frequency to maximum
2034 * before we sleep. This makes the GPU throttle up much more quickly
2035 * (good for benchmarks and user experience, e.g. window animations),
2036 * but at a cost of spending more power processing the workload
2037 * (bad for battery).
2038 */
2039 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2040 intel_rps_boost(rq);
2041
2042 wait.tsk = current;
2043 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2044 goto out;
2045
2046 /*
2047 * Flush the submission tasklet, but only if it may help this request.
2048 *
2049 * We sometimes experience some latency between the HW interrupts and
2050 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2051 * be due to lazy CS events), so lets run the tasklet manually if there
2052 * is a chance it may submit this request. If the request is not ready
2053 * to run, as it is waiting for other fences to be signaled, flushing
2054 * the tasklet is busy work without any advantage for this client.
2055 *
2056 * If the HW is being lazy, this is the last chance before we go to
2057 * sleep to catch any pending events. We will check periodically in
2058 * the heartbeat to flush the submission tasklets as a last resort
2059 * for unhappy HW.
2060 */
2061 if (i915_request_is_ready(rq))
2062 __intel_engine_flush_submission(rq->engine, false);
2063
2064 for (;;) {
2065 set_current_state(state);
2066
2067 if (dma_fence_is_signaled(&rq->fence))
2068 break;
2069
2070 if (signal_pending_state(state, current)) {
2071 timeout = -ERESTARTSYS;
2072 break;
2073 }
2074
2075 if (!timeout) {
2076 timeout = -ETIME;
2077 break;
2078 }
2079
2080 timeout = io_schedule_timeout(timeout);
2081 }
2082 __set_current_state(TASK_RUNNING);
2083
2084 if (READ_ONCE(wait.tsk))
2085 dma_fence_remove_callback(&rq->fence, &wait.cb);
2086 GEM_BUG_ON(!list_empty(&wait.cb.node));
2087
2088out:
2089 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2090 trace_i915_request_wait_end(rq);
2091 return timeout;
2092}
2093
2094/**
2095 * i915_request_wait - wait until execution of request has finished
2096 * @rq: the request to wait upon
2097 * @flags: how to wait
2098 * @timeout: how long to wait in jiffies
2099 *
2100 * i915_request_wait() waits for the request to be completed, for a
2101 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2102 * unbounded wait).
2103 *
2104 * Returns the remaining time (in jiffies) if the request completed, which may
2105 * be zero or -ETIME if the request is unfinished after the timeout expires.
2106 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2107 * pending before the request completes.
2108 *
2109 * NOTE: This function behaves differently from dma-fence wait semantics for
2110 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2111 */
2112long i915_request_wait(struct i915_request *rq,
2113 unsigned int flags,
2114 long timeout)
2115{
2116 long ret = i915_request_wait_timeout(rq, flags, timeout);
2117
2118 if (!ret)
2119 return -ETIME;
2120
2121 if (ret > 0 && !timeout)
2122 return 0;
2123
2124 return ret;
2125}
2126
2127static int print_sched_attr(const struct i915_sched_attr *attr,
2128 char *buf, int x, int len)
2129{
2130 if (attr->priority == I915_PRIORITY_INVALID)
2131 return x;
2132
2133 x += snprintf(buf + x, len - x,
2134 " prio=%d", attr->priority);
2135
2136 return x;
2137}
2138
2139static char queue_status(const struct i915_request *rq)
2140{
2141 if (i915_request_is_active(rq))
2142 return 'E';
2143
2144 if (i915_request_is_ready(rq))
2145 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2146
2147 return 'U';
2148}
2149
2150static const char *run_status(const struct i915_request *rq)
2151{
2152 if (__i915_request_is_complete(rq))
2153 return "!";
2154
2155 if (__i915_request_has_started(rq))
2156 return "*";
2157
2158 if (!i915_sw_fence_signaled(&rq->semaphore))
2159 return "&";
2160
2161 return "";
2162}
2163
2164static const char *fence_status(const struct i915_request *rq)
2165{
2166 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2167 return "+";
2168
2169 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2170 return "-";
2171
2172 return "";
2173}
2174
2175void i915_request_show(struct drm_printer *m,
2176 const struct i915_request *rq,
2177 const char *prefix,
2178 int indent)
2179{
2180 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2181 char buf[80] = "";
2182 int x = 0;
2183
2184 /*
2185 * The prefix is used to show the queue status, for which we use
2186 * the following flags:
2187 *
2188 * U [Unready]
2189 * - initial status upon being submitted by the user
2190 *
2191 * - the request is not ready for execution as it is waiting
2192 * for external fences
2193 *
2194 * R [Ready]
2195 * - all fences the request was waiting on have been signaled,
2196 * and the request is now ready for execution and will be
2197 * in a backend queue
2198 *
2199 * - a ready request may still need to wait on semaphores
2200 * [internal fences]
2201 *
2202 * V [Ready/virtual]
2203 * - same as ready, but queued over multiple backends
2204 *
2205 * E [Executing]
2206 * - the request has been transferred from the backend queue and
2207 * submitted for execution on HW
2208 *
2209 * - a completed request may still be regarded as executing, its
2210 * status may not be updated until it is retired and removed
2211 * from the lists
2212 */
2213
2214 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2215
2216 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2217 prefix, indent, " ",
2218 queue_status(rq),
2219 rq->fence.context, rq->fence.seqno,
2220 run_status(rq),
2221 fence_status(rq),
2222 buf,
2223 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2224 name);
2225}
2226
2227static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2228{
2229 u32 ring = ENGINE_READ(engine, RING_START);
2230
2231 return ring == i915_ggtt_offset(rq->ring->vma);
2232}
2233
2234static bool match_ring(struct i915_request *rq)
2235{
2236 struct intel_engine_cs *engine;
2237 bool found;
2238 int i;
2239
2240 if (!intel_engine_is_virtual(rq->engine))
2241 return engine_match_ring(rq->engine, rq);
2242
2243 found = false;
2244 i = 0;
2245 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2246 found = engine_match_ring(engine, rq);
2247 if (found)
2248 break;
2249 }
2250
2251 return found;
2252}
2253
2254enum i915_request_state i915_test_request_state(struct i915_request *rq)
2255{
2256 if (i915_request_completed(rq))
2257 return I915_REQUEST_COMPLETE;
2258
2259 if (!i915_request_started(rq))
2260 return I915_REQUEST_PENDING;
2261
2262 if (match_ring(rq))
2263 return I915_REQUEST_ACTIVE;
2264
2265 return I915_REQUEST_QUEUED;
2266}
2267
2268#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2269#include "selftests/mock_request.c"
2270#include "selftests/i915_request.c"
2271#endif
2272
2273void i915_request_module_exit(void)
2274{
2275 kmem_cache_destroy(slab_execute_cbs);
2276 kmem_cache_destroy(slab_requests);
2277}
2278
2279int __init i915_request_module_init(void)
2280{
2281 slab_requests =
2282 kmem_cache_create("i915_request",
2283 sizeof(struct i915_request),
2284 __alignof__(struct i915_request),
2285 SLAB_HWCACHE_ALIGN |
2286 SLAB_RECLAIM_ACCOUNT |
2287 SLAB_TYPESAFE_BY_RCU,
2288 __i915_request_ctor);
2289 if (!slab_requests)
2290 return -ENOMEM;
2291
2292 slab_execute_cbs = KMEM_CACHE(execute_cb,
2293 SLAB_HWCACHE_ALIGN |
2294 SLAB_RECLAIM_ACCOUNT |
2295 SLAB_TYPESAFE_BY_RCU);
2296 if (!slab_execute_cbs)
2297 goto err_requests;
2298
2299 return 0;
2300
2301err_requests:
2302 kmem_cache_destroy(slab_requests);
2303 return -ENOMEM;
2304}
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
30#include <linux/sched/signal.h>
31
32#include "gem/i915_gem_context.h"
33#include "gt/intel_context.h"
34
35#include "i915_active.h"
36#include "i915_drv.h"
37#include "i915_globals.h"
38#include "i915_trace.h"
39#include "intel_pm.h"
40
41struct execute_cb {
42 struct list_head link;
43 struct irq_work work;
44 struct i915_sw_fence *fence;
45 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46 struct i915_request *signal;
47};
48
49static struct i915_global_request {
50 struct i915_global base;
51 struct kmem_cache *slab_requests;
52 struct kmem_cache *slab_dependencies;
53 struct kmem_cache *slab_execute_cbs;
54} global;
55
56static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57{
58 return "i915";
59}
60
61static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62{
63 /*
64 * The timeline struct (as part of the ppgtt underneath a context)
65 * may be freed when the request is no longer in use by the GPU.
66 * We could extend the life of a context to beyond that of all
67 * fences, possibly keeping the hw resource around indefinitely,
68 * or we just give them a false name. Since
69 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70 * lie seems justifiable.
71 */
72 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73 return "signaled";
74
75 return to_request(fence)->gem_context->name ?: "[i915]";
76}
77
78static bool i915_fence_signaled(struct dma_fence *fence)
79{
80 return i915_request_completed(to_request(fence));
81}
82
83static bool i915_fence_enable_signaling(struct dma_fence *fence)
84{
85 return i915_request_enable_breadcrumb(to_request(fence));
86}
87
88static signed long i915_fence_wait(struct dma_fence *fence,
89 bool interruptible,
90 signed long timeout)
91{
92 return i915_request_wait(to_request(fence),
93 interruptible | I915_WAIT_PRIORITY,
94 timeout);
95}
96
97static void i915_fence_release(struct dma_fence *fence)
98{
99 struct i915_request *rq = to_request(fence);
100
101 /*
102 * The request is put onto a RCU freelist (i.e. the address
103 * is immediately reused), mark the fences as being freed now.
104 * Otherwise the debugobjects for the fences are only marked as
105 * freed when the slab cache itself is freed, and so we would get
106 * caught trying to reuse dead objects.
107 */
108 i915_sw_fence_fini(&rq->submit);
109 i915_sw_fence_fini(&rq->semaphore);
110
111 kmem_cache_free(global.slab_requests, rq);
112}
113
114const struct dma_fence_ops i915_fence_ops = {
115 .get_driver_name = i915_fence_get_driver_name,
116 .get_timeline_name = i915_fence_get_timeline_name,
117 .enable_signaling = i915_fence_enable_signaling,
118 .signaled = i915_fence_signaled,
119 .wait = i915_fence_wait,
120 .release = i915_fence_release,
121};
122
123static void irq_execute_cb(struct irq_work *wrk)
124{
125 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126
127 i915_sw_fence_complete(cb->fence);
128 kmem_cache_free(global.slab_execute_cbs, cb);
129}
130
131static void irq_execute_cb_hook(struct irq_work *wrk)
132{
133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135 cb->hook(container_of(cb->fence, struct i915_request, submit),
136 &cb->signal->fence);
137 i915_request_put(cb->signal);
138
139 irq_execute_cb(wrk);
140}
141
142static void __notify_execute_cb(struct i915_request *rq)
143{
144 struct execute_cb *cb;
145
146 lockdep_assert_held(&rq->lock);
147
148 if (list_empty(&rq->execute_cb))
149 return;
150
151 list_for_each_entry(cb, &rq->execute_cb, link)
152 irq_work_queue(&cb->work);
153
154 /*
155 * XXX Rollback on __i915_request_unsubmit()
156 *
157 * In the future, perhaps when we have an active time-slicing scheduler,
158 * it will be interesting to unsubmit parallel execution and remove
159 * busywaits from the GPU until their master is restarted. This is
160 * quite hairy, we have to carefully rollback the fence and do a
161 * preempt-to-idle cycle on the target engine, all the while the
162 * master execute_cb may refire.
163 */
164 INIT_LIST_HEAD(&rq->execute_cb);
165}
166
167static inline void
168remove_from_client(struct i915_request *request)
169{
170 struct drm_i915_file_private *file_priv;
171
172 file_priv = READ_ONCE(request->file_priv);
173 if (!file_priv)
174 return;
175
176 spin_lock(&file_priv->mm.lock);
177 if (request->file_priv) {
178 list_del(&request->client_link);
179 request->file_priv = NULL;
180 }
181 spin_unlock(&file_priv->mm.lock);
182}
183
184static void free_capture_list(struct i915_request *request)
185{
186 struct i915_capture_list *capture;
187
188 capture = request->capture_list;
189 while (capture) {
190 struct i915_capture_list *next = capture->next;
191
192 kfree(capture);
193 capture = next;
194 }
195}
196
197static void remove_from_engine(struct i915_request *rq)
198{
199 struct intel_engine_cs *engine, *locked;
200
201 /*
202 * Virtual engines complicate acquiring the engine timeline lock,
203 * as their rq->engine pointer is not stable until under that
204 * engine lock. The simple ploy we use is to take the lock then
205 * check that the rq still belongs to the newly locked engine.
206 */
207 locked = READ_ONCE(rq->engine);
208 spin_lock(&locked->active.lock);
209 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
210 spin_unlock(&locked->active.lock);
211 spin_lock(&engine->active.lock);
212 locked = engine;
213 }
214 list_del(&rq->sched.link);
215 spin_unlock(&locked->active.lock);
216}
217
218static bool i915_request_retire(struct i915_request *rq)
219{
220 struct i915_active_request *active, *next;
221
222 lockdep_assert_held(&rq->timeline->mutex);
223 if (!i915_request_completed(rq))
224 return false;
225
226 GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 rq->engine->name,
228 rq->fence.context, rq->fence.seqno,
229 hwsp_seqno(rq));
230
231 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 trace_i915_request_retire(rq);
233
234 /*
235 * We know the GPU must have read the request to have
236 * sent us the seqno + interrupt, so use the position
237 * of tail of the request to update the last known position
238 * of the GPU head.
239 *
240 * Note this requires that we are always called in request
241 * completion order.
242 */
243 GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
244 rq->ring->head = rq->postfix;
245
246 /*
247 * Walk through the active list, calling retire on each. This allows
248 * objects to track their GPU activity and mark themselves as idle
249 * when their *last* active request is completed (updating state
250 * tracking lists for eviction, active references for GEM, etc).
251 *
252 * As the ->retire() may free the node, we decouple it first and
253 * pass along the auxiliary information (to avoid dereferencing
254 * the node after the callback).
255 */
256 list_for_each_entry_safe(active, next, &rq->active_list, link) {
257 /*
258 * In microbenchmarks or focusing upon time inside the kernel,
259 * we may spend an inordinate amount of time simply handling
260 * the retirement of requests and processing their callbacks.
261 * Of which, this loop itself is particularly hot due to the
262 * cache misses when jumping around the list of
263 * i915_active_request. So we try to keep this loop as
264 * streamlined as possible and also prefetch the next
265 * i915_active_request to try and hide the likely cache miss.
266 */
267 prefetchw(next);
268
269 INIT_LIST_HEAD(&active->link);
270 RCU_INIT_POINTER(active->request, NULL);
271
272 active->retire(active, rq);
273 }
274
275 local_irq_disable();
276
277 /*
278 * We only loosely track inflight requests across preemption,
279 * and so we may find ourselves attempting to retire a _completed_
280 * request that we have removed from the HW and put back on a run
281 * queue.
282 */
283 remove_from_engine(rq);
284
285 spin_lock(&rq->lock);
286 i915_request_mark_complete(rq);
287 if (!i915_request_signaled(rq))
288 dma_fence_signal_locked(&rq->fence);
289 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290 i915_request_cancel_breadcrumb(rq);
291 if (i915_request_has_waitboost(rq)) {
292 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
293 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
294 }
295 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297 __notify_execute_cb(rq);
298 }
299 GEM_BUG_ON(!list_empty(&rq->execute_cb));
300 spin_unlock(&rq->lock);
301
302 local_irq_enable();
303
304 remove_from_client(rq);
305 list_del(&rq->link);
306
307 intel_context_exit(rq->hw_context);
308 intel_context_unpin(rq->hw_context);
309
310 free_capture_list(rq);
311 i915_sched_node_fini(&rq->sched);
312 i915_request_put(rq);
313
314 return true;
315}
316
317void i915_request_retire_upto(struct i915_request *rq)
318{
319 struct intel_timeline * const tl = rq->timeline;
320 struct i915_request *tmp;
321
322 GEM_TRACE("%s fence %llx:%lld, current %d\n",
323 rq->engine->name,
324 rq->fence.context, rq->fence.seqno,
325 hwsp_seqno(rq));
326
327 lockdep_assert_held(&tl->mutex);
328 GEM_BUG_ON(!i915_request_completed(rq));
329
330 do {
331 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
332 } while (i915_request_retire(tmp) && tmp != rq);
333}
334
335static int
336__i915_request_await_execution(struct i915_request *rq,
337 struct i915_request *signal,
338 void (*hook)(struct i915_request *rq,
339 struct dma_fence *signal),
340 gfp_t gfp)
341{
342 struct execute_cb *cb;
343
344 if (i915_request_is_active(signal)) {
345 if (hook)
346 hook(rq, &signal->fence);
347 return 0;
348 }
349
350 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
351 if (!cb)
352 return -ENOMEM;
353
354 cb->fence = &rq->submit;
355 i915_sw_fence_await(cb->fence);
356 init_irq_work(&cb->work, irq_execute_cb);
357
358 if (hook) {
359 cb->hook = hook;
360 cb->signal = i915_request_get(signal);
361 cb->work.func = irq_execute_cb_hook;
362 }
363
364 spin_lock_irq(&signal->lock);
365 if (i915_request_is_active(signal)) {
366 if (hook) {
367 hook(rq, &signal->fence);
368 i915_request_put(signal);
369 }
370 i915_sw_fence_complete(cb->fence);
371 kmem_cache_free(global.slab_execute_cbs, cb);
372 } else {
373 list_add_tail(&cb->link, &signal->execute_cb);
374 }
375 spin_unlock_irq(&signal->lock);
376
377 return 0;
378}
379
380bool __i915_request_submit(struct i915_request *request)
381{
382 struct intel_engine_cs *engine = request->engine;
383 bool result = false;
384
385 GEM_TRACE("%s fence %llx:%lld, current %d\n",
386 engine->name,
387 request->fence.context, request->fence.seqno,
388 hwsp_seqno(request));
389
390 GEM_BUG_ON(!irqs_disabled());
391 lockdep_assert_held(&engine->active.lock);
392
393 /*
394 * With the advent of preempt-to-busy, we frequently encounter
395 * requests that we have unsubmitted from HW, but left running
396 * until the next ack and so have completed in the meantime. On
397 * resubmission of that completed request, we can skip
398 * updating the payload, and execlists can even skip submitting
399 * the request.
400 *
401 * We must remove the request from the caller's priority queue,
402 * and the caller must only call us when the request is in their
403 * priority queue, under the active.lock. This ensures that the
404 * request has *not* yet been retired and we can safely move
405 * the request into the engine->active.list where it will be
406 * dropped upon retiring. (Otherwise if resubmit a *retired*
407 * request, this would be a horrible use-after-free.)
408 */
409 if (i915_request_completed(request))
410 goto xfer;
411
412 if (i915_gem_context_is_banned(request->gem_context))
413 i915_request_skip(request, -EIO);
414
415 /*
416 * Are we using semaphores when the gpu is already saturated?
417 *
418 * Using semaphores incurs a cost in having the GPU poll a
419 * memory location, busywaiting for it to change. The continual
420 * memory reads can have a noticeable impact on the rest of the
421 * system with the extra bus traffic, stalling the cpu as it too
422 * tries to access memory across the bus (perf stat -e bus-cycles).
423 *
424 * If we installed a semaphore on this request and we only submit
425 * the request after the signaler completed, that indicates the
426 * system is overloaded and using semaphores at this time only
427 * increases the amount of work we are doing. If so, we disable
428 * further use of semaphores until we are idle again, whence we
429 * optimistically try again.
430 */
431 if (request->sched.semaphores &&
432 i915_sw_fence_signaled(&request->semaphore))
433 engine->saturated |= request->sched.semaphores;
434
435 engine->emit_fini_breadcrumb(request,
436 request->ring->vaddr + request->postfix);
437
438 trace_i915_request_execute(request);
439 engine->serial++;
440 result = true;
441
442xfer: /* We may be recursing from the signal callback of another i915 fence */
443 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
444
445 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
446 list_move_tail(&request->sched.link, &engine->active.requests);
447
448 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
449 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
450 !i915_request_enable_breadcrumb(request))
451 intel_engine_queue_breadcrumbs(engine);
452
453 __notify_execute_cb(request);
454
455 spin_unlock(&request->lock);
456
457 return result;
458}
459
460void i915_request_submit(struct i915_request *request)
461{
462 struct intel_engine_cs *engine = request->engine;
463 unsigned long flags;
464
465 /* Will be called from irq-context when using foreign fences. */
466 spin_lock_irqsave(&engine->active.lock, flags);
467
468 __i915_request_submit(request);
469
470 spin_unlock_irqrestore(&engine->active.lock, flags);
471}
472
473void __i915_request_unsubmit(struct i915_request *request)
474{
475 struct intel_engine_cs *engine = request->engine;
476
477 GEM_TRACE("%s fence %llx:%lld, current %d\n",
478 engine->name,
479 request->fence.context, request->fence.seqno,
480 hwsp_seqno(request));
481
482 GEM_BUG_ON(!irqs_disabled());
483 lockdep_assert_held(&engine->active.lock);
484
485 /*
486 * Only unwind in reverse order, required so that the per-context list
487 * is kept in seqno/ring order.
488 */
489
490 /* We may be recursing from the signal callback of another i915 fence */
491 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492
493 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494 i915_request_cancel_breadcrumb(request);
495
496 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
497 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
498
499 spin_unlock(&request->lock);
500
501 /* We've already spun, don't charge on resubmitting. */
502 if (request->sched.semaphores && i915_request_started(request)) {
503 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
504 request->sched.semaphores = 0;
505 }
506
507 /*
508 * We don't need to wake_up any waiters on request->execute, they
509 * will get woken by any other event or us re-adding this request
510 * to the engine timeline (__i915_request_submit()). The waiters
511 * should be quite adapt at finding that the request now has a new
512 * global_seqno to the one they went to sleep on.
513 */
514}
515
516void i915_request_unsubmit(struct i915_request *request)
517{
518 struct intel_engine_cs *engine = request->engine;
519 unsigned long flags;
520
521 /* Will be called from irq-context when using foreign fences. */
522 spin_lock_irqsave(&engine->active.lock, flags);
523
524 __i915_request_unsubmit(request);
525
526 spin_unlock_irqrestore(&engine->active.lock, flags);
527}
528
529static int __i915_sw_fence_call
530submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
531{
532 struct i915_request *request =
533 container_of(fence, typeof(*request), submit);
534
535 switch (state) {
536 case FENCE_COMPLETE:
537 trace_i915_request_submit(request);
538
539 if (unlikely(fence->error))
540 i915_request_skip(request, fence->error);
541
542 /*
543 * We need to serialize use of the submit_request() callback
544 * with its hotplugging performed during an emergency
545 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
546 * critical section in order to force i915_gem_set_wedged() to
547 * wait until the submit_request() is completed before
548 * proceeding.
549 */
550 rcu_read_lock();
551 request->engine->submit_request(request);
552 rcu_read_unlock();
553 break;
554
555 case FENCE_FREE:
556 i915_request_put(request);
557 break;
558 }
559
560 return NOTIFY_DONE;
561}
562
563static int __i915_sw_fence_call
564semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565{
566 struct i915_request *request =
567 container_of(fence, typeof(*request), semaphore);
568
569 switch (state) {
570 case FENCE_COMPLETE:
571 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
572 break;
573
574 case FENCE_FREE:
575 i915_request_put(request);
576 break;
577 }
578
579 return NOTIFY_DONE;
580}
581
582static void retire_requests(struct intel_timeline *tl)
583{
584 struct i915_request *rq, *rn;
585
586 list_for_each_entry_safe(rq, rn, &tl->requests, link)
587 if (!i915_request_retire(rq))
588 break;
589}
590
591static noinline struct i915_request *
592request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
593{
594 struct i915_request *rq;
595
596 if (list_empty(&tl->requests))
597 goto out;
598
599 if (!gfpflags_allow_blocking(gfp))
600 goto out;
601
602 /* Move our oldest request to the slab-cache (if not in use!) */
603 rq = list_first_entry(&tl->requests, typeof(*rq), link);
604 i915_request_retire(rq);
605
606 rq = kmem_cache_alloc(global.slab_requests,
607 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
608 if (rq)
609 return rq;
610
611 /* Ratelimit ourselves to prevent oom from malicious clients */
612 rq = list_last_entry(&tl->requests, typeof(*rq), link);
613 cond_synchronize_rcu(rq->rcustate);
614
615 /* Retire our old requests in the hope that we free some */
616 retire_requests(tl);
617
618out:
619 return kmem_cache_alloc(global.slab_requests, gfp);
620}
621
622struct i915_request *
623__i915_request_create(struct intel_context *ce, gfp_t gfp)
624{
625 struct intel_timeline *tl = ce->timeline;
626 struct i915_request *rq;
627 u32 seqno;
628 int ret;
629
630 might_sleep_if(gfpflags_allow_blocking(gfp));
631
632 /* Check that the caller provided an already pinned context */
633 __intel_context_pin(ce);
634
635 /*
636 * Beware: Dragons be flying overhead.
637 *
638 * We use RCU to look up requests in flight. The lookups may
639 * race with the request being allocated from the slab freelist.
640 * That is the request we are writing to here, may be in the process
641 * of being read by __i915_active_request_get_rcu(). As such,
642 * we have to be very careful when overwriting the contents. During
643 * the RCU lookup, we change chase the request->engine pointer,
644 * read the request->global_seqno and increment the reference count.
645 *
646 * The reference count is incremented atomically. If it is zero,
647 * the lookup knows the request is unallocated and complete. Otherwise,
648 * it is either still in use, or has been reallocated and reset
649 * with dma_fence_init(). This increment is safe for release as we
650 * check that the request we have a reference to and matches the active
651 * request.
652 *
653 * Before we increment the refcount, we chase the request->engine
654 * pointer. We must not call kmem_cache_zalloc() or else we set
655 * that pointer to NULL and cause a crash during the lookup. If
656 * we see the request is completed (based on the value of the
657 * old engine and seqno), the lookup is complete and reports NULL.
658 * If we decide the request is not completed (new engine or seqno),
659 * then we grab a reference and double check that it is still the
660 * active request - which it won't be and restart the lookup.
661 *
662 * Do not use kmem_cache_zalloc() here!
663 */
664 rq = kmem_cache_alloc(global.slab_requests,
665 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
666 if (unlikely(!rq)) {
667 rq = request_alloc_slow(tl, gfp);
668 if (!rq) {
669 ret = -ENOMEM;
670 goto err_unreserve;
671 }
672 }
673
674 ret = intel_timeline_get_seqno(tl, rq, &seqno);
675 if (ret)
676 goto err_free;
677
678 rq->i915 = ce->engine->i915;
679 rq->hw_context = ce;
680 rq->gem_context = ce->gem_context;
681 rq->engine = ce->engine;
682 rq->ring = ce->ring;
683 rq->timeline = tl;
684 rq->hwsp_seqno = tl->hwsp_seqno;
685 rq->hwsp_cacheline = tl->hwsp_cacheline;
686 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
687
688 spin_lock_init(&rq->lock);
689 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
690 tl->fence_context, seqno);
691
692 /* We bump the ref for the fence chain */
693 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
694 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
695
696 i915_sched_node_init(&rq->sched);
697
698 /* No zalloc, must clear what we need by hand */
699 rq->file_priv = NULL;
700 rq->batch = NULL;
701 rq->capture_list = NULL;
702 rq->flags = 0;
703 rq->execution_mask = ALL_ENGINES;
704
705 INIT_LIST_HEAD(&rq->active_list);
706 INIT_LIST_HEAD(&rq->execute_cb);
707
708 /*
709 * Reserve space in the ring buffer for all the commands required to
710 * eventually emit this request. This is to guarantee that the
711 * i915_request_add() call can't fail. Note that the reserve may need
712 * to be redone if the request is not actually submitted straight
713 * away, e.g. because a GPU scheduler has deferred it.
714 *
715 * Note that due to how we add reserved_space to intel_ring_begin()
716 * we need to double our request to ensure that if we need to wrap
717 * around inside i915_request_add() there is sufficient space at
718 * the beginning of the ring as well.
719 */
720 rq->reserved_space =
721 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
722
723 /*
724 * Record the position of the start of the request so that
725 * should we detect the updated seqno part-way through the
726 * GPU processing the request, we never over-estimate the
727 * position of the head.
728 */
729 rq->head = rq->ring->emit;
730
731 ret = rq->engine->request_alloc(rq);
732 if (ret)
733 goto err_unwind;
734
735 rq->infix = rq->ring->emit; /* end of header; start of user payload */
736
737 intel_context_mark_active(ce);
738 return rq;
739
740err_unwind:
741 ce->ring->emit = rq->head;
742
743 /* Make sure we didn't add ourselves to external state before freeing */
744 GEM_BUG_ON(!list_empty(&rq->active_list));
745 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
746 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747
748err_free:
749 kmem_cache_free(global.slab_requests, rq);
750err_unreserve:
751 intel_context_unpin(ce);
752 return ERR_PTR(ret);
753}
754
755struct i915_request *
756i915_request_create(struct intel_context *ce)
757{
758 struct i915_request *rq;
759 struct intel_timeline *tl;
760
761 tl = intel_context_timeline_lock(ce);
762 if (IS_ERR(tl))
763 return ERR_CAST(tl);
764
765 /* Move our oldest request to the slab-cache (if not in use!) */
766 rq = list_first_entry(&tl->requests, typeof(*rq), link);
767 if (!list_is_last(&rq->link, &tl->requests))
768 i915_request_retire(rq);
769
770 intel_context_enter(ce);
771 rq = __i915_request_create(ce, GFP_KERNEL);
772 intel_context_exit(ce); /* active reference transferred to request */
773 if (IS_ERR(rq))
774 goto err_unlock;
775
776 /* Check that we do not interrupt ourselves with a new request */
777 rq->cookie = lockdep_pin_lock(&tl->mutex);
778
779 return rq;
780
781err_unlock:
782 intel_context_timeline_unlock(tl);
783 return rq;
784}
785
786static int
787i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
788{
789 if (list_is_first(&signal->link, &signal->timeline->requests))
790 return 0;
791
792 signal = list_prev_entry(signal, link);
793 if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
794 return 0;
795
796 return i915_sw_fence_await_dma_fence(&rq->submit,
797 &signal->fence, 0,
798 I915_FENCE_GFP);
799}
800
801static intel_engine_mask_t
802already_busywaiting(struct i915_request *rq)
803{
804 /*
805 * Polling a semaphore causes bus traffic, delaying other users of
806 * both the GPU and CPU. We want to limit the impact on others,
807 * while taking advantage of early submission to reduce GPU
808 * latency. Therefore we restrict ourselves to not using more
809 * than one semaphore from each source, and not using a semaphore
810 * if we have detected the engine is saturated (i.e. would not be
811 * submitted early and cause bus traffic reading an already passed
812 * semaphore).
813 *
814 * See the are-we-too-late? check in __i915_request_submit().
815 */
816 return rq->sched.semaphores | rq->engine->saturated;
817}
818
819static int
820emit_semaphore_wait(struct i915_request *to,
821 struct i915_request *from,
822 gfp_t gfp)
823{
824 u32 hwsp_offset;
825 u32 *cs;
826 int err;
827
828 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
829 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
830
831 /* Just emit the first semaphore we see as request space is limited. */
832 if (already_busywaiting(to) & from->engine->mask)
833 return i915_sw_fence_await_dma_fence(&to->submit,
834 &from->fence, 0,
835 I915_FENCE_GFP);
836
837 err = i915_request_await_start(to, from);
838 if (err < 0)
839 return err;
840
841 /* Only submit our spinner after the signaler is running! */
842 err = __i915_request_await_execution(to, from, NULL, gfp);
843 if (err)
844 return err;
845
846 /* We need to pin the signaler's HWSP until we are finished reading. */
847 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
848 if (err)
849 return err;
850
851 cs = intel_ring_begin(to, 4);
852 if (IS_ERR(cs))
853 return PTR_ERR(cs);
854
855 /*
856 * Using greater-than-or-equal here means we have to worry
857 * about seqno wraparound. To side step that issue, we swap
858 * the timeline HWSP upon wrapping, so that everyone listening
859 * for the old (pre-wrap) values do not see the much smaller
860 * (post-wrap) values than they were expecting (and so wait
861 * forever).
862 */
863 *cs++ = MI_SEMAPHORE_WAIT |
864 MI_SEMAPHORE_GLOBAL_GTT |
865 MI_SEMAPHORE_POLL |
866 MI_SEMAPHORE_SAD_GTE_SDD;
867 *cs++ = from->fence.seqno;
868 *cs++ = hwsp_offset;
869 *cs++ = 0;
870
871 intel_ring_advance(to, cs);
872 to->sched.semaphores |= from->engine->mask;
873 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
874 return 0;
875}
876
877static int
878i915_request_await_request(struct i915_request *to, struct i915_request *from)
879{
880 int ret;
881
882 GEM_BUG_ON(to == from);
883 GEM_BUG_ON(to->timeline == from->timeline);
884
885 if (i915_request_completed(from))
886 return 0;
887
888 if (to->engine->schedule) {
889 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
890 if (ret < 0)
891 return ret;
892 }
893
894 if (to->engine == from->engine) {
895 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
896 &from->submit,
897 I915_FENCE_GFP);
898 } else if (intel_engine_has_semaphores(to->engine) &&
899 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
900 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
901 } else {
902 ret = i915_sw_fence_await_dma_fence(&to->submit,
903 &from->fence, 0,
904 I915_FENCE_GFP);
905 }
906 if (ret < 0)
907 return ret;
908
909 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
910 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
911 &from->fence, 0,
912 I915_FENCE_GFP);
913 if (ret < 0)
914 return ret;
915 }
916
917 return 0;
918}
919
920int
921i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
922{
923 struct dma_fence **child = &fence;
924 unsigned int nchild = 1;
925 int ret;
926
927 /*
928 * Note that if the fence-array was created in signal-on-any mode,
929 * we should *not* decompose it into its individual fences. However,
930 * we don't currently store which mode the fence-array is operating
931 * in. Fortunately, the only user of signal-on-any is private to
932 * amdgpu and we should not see any incoming fence-array from
933 * sync-file being in signal-on-any mode.
934 */
935 if (dma_fence_is_array(fence)) {
936 struct dma_fence_array *array = to_dma_fence_array(fence);
937
938 child = array->fences;
939 nchild = array->num_fences;
940 GEM_BUG_ON(!nchild);
941 }
942
943 do {
944 fence = *child++;
945 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
946 continue;
947
948 /*
949 * Requests on the same timeline are explicitly ordered, along
950 * with their dependencies, by i915_request_add() which ensures
951 * that requests are submitted in-order through each ring.
952 */
953 if (fence->context == rq->fence.context)
954 continue;
955
956 /* Squash repeated waits to the same timelines */
957 if (fence->context &&
958 intel_timeline_sync_is_later(rq->timeline, fence))
959 continue;
960
961 if (dma_fence_is_i915(fence))
962 ret = i915_request_await_request(rq, to_request(fence));
963 else
964 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
965 I915_FENCE_TIMEOUT,
966 I915_FENCE_GFP);
967 if (ret < 0)
968 return ret;
969
970 /* Record the latest fence used against each timeline */
971 if (fence->context)
972 intel_timeline_sync_set(rq->timeline, fence);
973 } while (--nchild);
974
975 return 0;
976}
977
978int
979i915_request_await_execution(struct i915_request *rq,
980 struct dma_fence *fence,
981 void (*hook)(struct i915_request *rq,
982 struct dma_fence *signal))
983{
984 struct dma_fence **child = &fence;
985 unsigned int nchild = 1;
986 int ret;
987
988 if (dma_fence_is_array(fence)) {
989 struct dma_fence_array *array = to_dma_fence_array(fence);
990
991 /* XXX Error for signal-on-any fence arrays */
992
993 child = array->fences;
994 nchild = array->num_fences;
995 GEM_BUG_ON(!nchild);
996 }
997
998 do {
999 fence = *child++;
1000 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1001 continue;
1002
1003 /*
1004 * We don't squash repeated fence dependencies here as we
1005 * want to run our callback in all cases.
1006 */
1007
1008 if (dma_fence_is_i915(fence))
1009 ret = __i915_request_await_execution(rq,
1010 to_request(fence),
1011 hook,
1012 I915_FENCE_GFP);
1013 else
1014 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1015 I915_FENCE_TIMEOUT,
1016 GFP_KERNEL);
1017 if (ret < 0)
1018 return ret;
1019 } while (--nchild);
1020
1021 return 0;
1022}
1023
1024/**
1025 * i915_request_await_object - set this request to (async) wait upon a bo
1026 * @to: request we are wishing to use
1027 * @obj: object which may be in use on another ring.
1028 * @write: whether the wait is on behalf of a writer
1029 *
1030 * This code is meant to abstract object synchronization with the GPU.
1031 * Conceptually we serialise writes between engines inside the GPU.
1032 * We only allow one engine to write into a buffer at any time, but
1033 * multiple readers. To ensure each has a coherent view of memory, we must:
1034 *
1035 * - If there is an outstanding write request to the object, the new
1036 * request must wait for it to complete (either CPU or in hw, requests
1037 * on the same ring will be naturally ordered).
1038 *
1039 * - If we are a write request (pending_write_domain is set), the new
1040 * request must wait for outstanding read requests to complete.
1041 *
1042 * Returns 0 if successful, else propagates up the lower layer error.
1043 */
1044int
1045i915_request_await_object(struct i915_request *to,
1046 struct drm_i915_gem_object *obj,
1047 bool write)
1048{
1049 struct dma_fence *excl;
1050 int ret = 0;
1051
1052 if (write) {
1053 struct dma_fence **shared;
1054 unsigned int count, i;
1055
1056 ret = dma_resv_get_fences_rcu(obj->base.resv,
1057 &excl, &count, &shared);
1058 if (ret)
1059 return ret;
1060
1061 for (i = 0; i < count; i++) {
1062 ret = i915_request_await_dma_fence(to, shared[i]);
1063 if (ret)
1064 break;
1065
1066 dma_fence_put(shared[i]);
1067 }
1068
1069 for (; i < count; i++)
1070 dma_fence_put(shared[i]);
1071 kfree(shared);
1072 } else {
1073 excl = dma_resv_get_excl_rcu(obj->base.resv);
1074 }
1075
1076 if (excl) {
1077 if (ret == 0)
1078 ret = i915_request_await_dma_fence(to, excl);
1079
1080 dma_fence_put(excl);
1081 }
1082
1083 return ret;
1084}
1085
1086void i915_request_skip(struct i915_request *rq, int error)
1087{
1088 void *vaddr = rq->ring->vaddr;
1089 u32 head;
1090
1091 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1092 dma_fence_set_error(&rq->fence, error);
1093
1094 if (rq->infix == rq->postfix)
1095 return;
1096
1097 /*
1098 * As this request likely depends on state from the lost
1099 * context, clear out all the user operations leaving the
1100 * breadcrumb at the end (so we get the fence notifications).
1101 */
1102 head = rq->infix;
1103 if (rq->postfix < head) {
1104 memset(vaddr + head, 0, rq->ring->size - head);
1105 head = 0;
1106 }
1107 memset(vaddr + head, 0, rq->postfix - head);
1108 rq->infix = rq->postfix;
1109}
1110
1111static struct i915_request *
1112__i915_request_add_to_timeline(struct i915_request *rq)
1113{
1114 struct intel_timeline *timeline = rq->timeline;
1115 struct i915_request *prev;
1116
1117 /*
1118 * Dependency tracking and request ordering along the timeline
1119 * is special cased so that we can eliminate redundant ordering
1120 * operations while building the request (we know that the timeline
1121 * itself is ordered, and here we guarantee it).
1122 *
1123 * As we know we will need to emit tracking along the timeline,
1124 * we embed the hooks into our request struct -- at the cost of
1125 * having to have specialised no-allocation interfaces (which will
1126 * be beneficial elsewhere).
1127 *
1128 * A second benefit to open-coding i915_request_await_request is
1129 * that we can apply a slight variant of the rules specialised
1130 * for timelines that jump between engines (such as virtual engines).
1131 * If we consider the case of virtual engine, we must emit a dma-fence
1132 * to prevent scheduling of the second request until the first is
1133 * complete (to maximise our greedy late load balancing) and this
1134 * precludes optimising to use semaphores serialisation of a single
1135 * timeline across engines.
1136 */
1137 prev = rcu_dereference_protected(timeline->last_request.request,
1138 lockdep_is_held(&timeline->mutex));
1139 if (prev && !i915_request_completed(prev)) {
1140 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1141 i915_sw_fence_await_sw_fence(&rq->submit,
1142 &prev->submit,
1143 &rq->submitq);
1144 else
1145 __i915_sw_fence_await_dma_fence(&rq->submit,
1146 &prev->fence,
1147 &rq->dmaq);
1148 if (rq->engine->schedule)
1149 __i915_sched_node_add_dependency(&rq->sched,
1150 &prev->sched,
1151 &rq->dep,
1152 0);
1153 }
1154
1155 list_add_tail(&rq->link, &timeline->requests);
1156
1157 /*
1158 * Make sure that no request gazumped us - if it was allocated after
1159 * our i915_request_alloc() and called __i915_request_add() before
1160 * us, the timeline will hold its seqno which is later than ours.
1161 */
1162 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1163 __i915_active_request_set(&timeline->last_request, rq);
1164
1165 return prev;
1166}
1167
1168/*
1169 * NB: This function is not allowed to fail. Doing so would mean the the
1170 * request is not being tracked for completion but the work itself is
1171 * going to happen on the hardware. This would be a Bad Thing(tm).
1172 */
1173struct i915_request *__i915_request_commit(struct i915_request *rq)
1174{
1175 struct intel_engine_cs *engine = rq->engine;
1176 struct intel_ring *ring = rq->ring;
1177 u32 *cs;
1178
1179 GEM_TRACE("%s fence %llx:%lld\n",
1180 engine->name, rq->fence.context, rq->fence.seqno);
1181
1182 /*
1183 * To ensure that this call will not fail, space for its emissions
1184 * should already have been reserved in the ring buffer. Let the ring
1185 * know that it is time to use that space up.
1186 */
1187 GEM_BUG_ON(rq->reserved_space > ring->space);
1188 rq->reserved_space = 0;
1189 rq->emitted_jiffies = jiffies;
1190
1191 /*
1192 * Record the position of the start of the breadcrumb so that
1193 * should we detect the updated seqno part-way through the
1194 * GPU processing the request, we never over-estimate the
1195 * position of the ring's HEAD.
1196 */
1197 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198 GEM_BUG_ON(IS_ERR(cs));
1199 rq->postfix = intel_ring_offset(rq, cs);
1200
1201 return __i915_request_add_to_timeline(rq);
1202}
1203
1204void __i915_request_queue(struct i915_request *rq,
1205 const struct i915_sched_attr *attr)
1206{
1207 /*
1208 * Let the backend know a new request has arrived that may need
1209 * to adjust the existing execution schedule due to a high priority
1210 * request - i.e. we may want to preempt the current request in order
1211 * to run a high priority dependency chain *before* we can execute this
1212 * request.
1213 *
1214 * This is called before the request is ready to run so that we can
1215 * decide whether to preempt the entire chain so that it is ready to
1216 * run at the earliest possible convenience.
1217 */
1218 i915_sw_fence_commit(&rq->semaphore);
1219 if (attr && rq->engine->schedule)
1220 rq->engine->schedule(rq, attr);
1221 i915_sw_fence_commit(&rq->submit);
1222}
1223
1224void i915_request_add(struct i915_request *rq)
1225{
1226 struct i915_sched_attr attr = rq->gem_context->sched;
1227 struct intel_timeline * const tl = rq->timeline;
1228 struct i915_request *prev;
1229
1230 lockdep_assert_held(&tl->mutex);
1231 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232
1233 trace_i915_request_add(rq);
1234
1235 prev = __i915_request_commit(rq);
1236
1237 /*
1238 * Boost actual workloads past semaphores!
1239 *
1240 * With semaphores we spin on one engine waiting for another,
1241 * simply to reduce the latency of starting our work when
1242 * the signaler completes. However, if there is any other
1243 * work that we could be doing on this engine instead, that
1244 * is better utilisation and will reduce the overall duration
1245 * of the current work. To avoid PI boosting a semaphore
1246 * far in the distance past over useful work, we keep a history
1247 * of any semaphore use along our dependency chain.
1248 */
1249 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1250 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1251
1252 /*
1253 * Boost priorities to new clients (new request flows).
1254 *
1255 * Allow interactive/synchronous clients to jump ahead of
1256 * the bulk clients. (FQ_CODEL)
1257 */
1258 if (list_empty(&rq->sched.signalers_list))
1259 attr.priority |= I915_PRIORITY_WAIT;
1260
1261 local_bh_disable();
1262 __i915_request_queue(rq, &attr);
1263 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264
1265 /*
1266 * In typical scenarios, we do not expect the previous request on
1267 * the timeline to be still tracked by timeline->last_request if it
1268 * has been completed. If the completed request is still here, that
1269 * implies that request retirement is a long way behind submission,
1270 * suggesting that we haven't been retiring frequently enough from
1271 * the combination of retire-before-alloc, waiters and the background
1272 * retirement worker. So if the last request on this timeline was
1273 * already completed, do a catch up pass, flushing the retirement queue
1274 * up to this client. Since we have now moved the heaviest operations
1275 * during retirement onto secondary workers, such as freeing objects
1276 * or contexts, retiring a bunch of requests is mostly list management
1277 * (and cache misses), and so we should not be overly penalizing this
1278 * client by performing excess work, though we may still performing
1279 * work on behalf of others -- but instead we should benefit from
1280 * improved resource management. (Well, that's the theory at least.)
1281 */
1282 if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283 i915_request_retire_upto(prev);
1284
1285 mutex_unlock(&tl->mutex);
1286}
1287
1288static unsigned long local_clock_us(unsigned int *cpu)
1289{
1290 unsigned long t;
1291
1292 /*
1293 * Cheaply and approximately convert from nanoseconds to microseconds.
1294 * The result and subsequent calculations are also defined in the same
1295 * approximate microseconds units. The principal source of timing
1296 * error here is from the simple truncation.
1297 *
1298 * Note that local_clock() is only defined wrt to the current CPU;
1299 * the comparisons are no longer valid if we switch CPUs. Instead of
1300 * blocking preemption for the entire busywait, we can detect the CPU
1301 * switch and use that as indicator of system load and a reason to
1302 * stop busywaiting, see busywait_stop().
1303 */
1304 *cpu = get_cpu();
1305 t = local_clock() >> 10;
1306 put_cpu();
1307
1308 return t;
1309}
1310
1311static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1312{
1313 unsigned int this_cpu;
1314
1315 if (time_after(local_clock_us(&this_cpu), timeout))
1316 return true;
1317
1318 return this_cpu != cpu;
1319}
1320
1321static bool __i915_spin_request(const struct i915_request * const rq,
1322 int state, unsigned long timeout_us)
1323{
1324 unsigned int cpu;
1325
1326 /*
1327 * Only wait for the request if we know it is likely to complete.
1328 *
1329 * We don't track the timestamps around requests, nor the average
1330 * request length, so we do not have a good indicator that this
1331 * request will complete within the timeout. What we do know is the
1332 * order in which requests are executed by the context and so we can
1333 * tell if the request has been started. If the request is not even
1334 * running yet, it is a fair assumption that it will not complete
1335 * within our relatively short timeout.
1336 */
1337 if (!i915_request_is_running(rq))
1338 return false;
1339
1340 /*
1341 * When waiting for high frequency requests, e.g. during synchronous
1342 * rendering split between the CPU and GPU, the finite amount of time
1343 * required to set up the irq and wait upon it limits the response
1344 * rate. By busywaiting on the request completion for a short while we
1345 * can service the high frequency waits as quick as possible. However,
1346 * if it is a slow request, we want to sleep as quickly as possible.
1347 * The tradeoff between waiting and sleeping is roughly the time it
1348 * takes to sleep on a request, on the order of a microsecond.
1349 */
1350
1351 timeout_us += local_clock_us(&cpu);
1352 do {
1353 if (i915_request_completed(rq))
1354 return true;
1355
1356 if (signal_pending_state(state, current))
1357 break;
1358
1359 if (busywait_stop(timeout_us, cpu))
1360 break;
1361
1362 cpu_relax();
1363 } while (!need_resched());
1364
1365 return false;
1366}
1367
1368struct request_wait {
1369 struct dma_fence_cb cb;
1370 struct task_struct *tsk;
1371};
1372
1373static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1374{
1375 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1376
1377 wake_up_process(wait->tsk);
1378}
1379
1380/**
1381 * i915_request_wait - wait until execution of request has finished
1382 * @rq: the request to wait upon
1383 * @flags: how to wait
1384 * @timeout: how long to wait in jiffies
1385 *
1386 * i915_request_wait() waits for the request to be completed, for a
1387 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1388 * unbounded wait).
1389 *
1390 * Returns the remaining time (in jiffies) if the request completed, which may
1391 * be zero or -ETIME if the request is unfinished after the timeout expires.
1392 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1393 * pending before the request completes.
1394 */
1395long i915_request_wait(struct i915_request *rq,
1396 unsigned int flags,
1397 long timeout)
1398{
1399 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1400 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401 struct request_wait wait;
1402
1403 might_sleep();
1404 GEM_BUG_ON(timeout < 0);
1405
1406 if (dma_fence_is_signaled(&rq->fence))
1407 return timeout;
1408
1409 if (!timeout)
1410 return -ETIME;
1411
1412 trace_i915_request_wait_begin(rq, flags);
1413
1414 /*
1415 * We must never wait on the GPU while holding a lock as we
1416 * may need to perform a GPU reset. So while we don't need to
1417 * serialise wait/reset with an explicit lock, we do want
1418 * lockdep to detect potential dependency cycles.
1419 */
1420 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421
1422 /*
1423 * Optimistic spin before touching IRQs.
1424 *
1425 * We may use a rather large value here to offset the penalty of
1426 * switching away from the active task. Frequently, the client will
1427 * wait upon an old swapbuffer to throttle itself to remain within a
1428 * frame of the gpu. If the client is running in lockstep with the gpu,
1429 * then it should not be waiting long at all, and a sleep now will incur
1430 * extra scheduler latency in producing the next frame. To try to
1431 * avoid adding the cost of enabling/disabling the interrupt to the
1432 * short wait, we first spin to see if the request would have completed
1433 * in the time taken to setup the interrupt.
1434 *
1435 * We need upto 5us to enable the irq, and upto 20us to hide the
1436 * scheduler latency of a context switch, ignoring the secondary
1437 * impacts from a context switch such as cache eviction.
1438 *
1439 * The scheme used for low-latency IO is called "hybrid interrupt
1440 * polling". The suggestion there is to sleep until just before you
1441 * expect to be woken by the device interrupt and then poll for its
1442 * completion. That requires having a good predictor for the request
1443 * duration, which we currently lack.
1444 */
1445 if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1447 dma_fence_signal(&rq->fence);
1448 goto out;
1449 }
1450
1451 /*
1452 * This client is about to stall waiting for the GPU. In many cases
1453 * this is undesirable and limits the throughput of the system, as
1454 * many clients cannot continue processing user input/output whilst
1455 * blocked. RPS autotuning may take tens of milliseconds to respond
1456 * to the GPU load and thus incurs additional latency for the client.
1457 * We can circumvent that by promoting the GPU frequency to maximum
1458 * before we sleep. This makes the GPU throttle up much more quickly
1459 * (good for benchmarks and user experience, e.g. window animations),
1460 * but at a cost of spending more power processing the workload
1461 * (bad for battery).
1462 */
1463 if (flags & I915_WAIT_PRIORITY) {
1464 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1465 gen6_rps_boost(rq);
1466 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467 }
1468
1469 wait.tsk = current;
1470 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1471 goto out;
1472
1473 for (;;) {
1474 set_current_state(state);
1475
1476 if (i915_request_completed(rq)) {
1477 dma_fence_signal(&rq->fence);
1478 break;
1479 }
1480
1481 if (signal_pending_state(state, current)) {
1482 timeout = -ERESTARTSYS;
1483 break;
1484 }
1485
1486 if (!timeout) {
1487 timeout = -ETIME;
1488 break;
1489 }
1490
1491 timeout = io_schedule_timeout(timeout);
1492 }
1493 __set_current_state(TASK_RUNNING);
1494
1495 dma_fence_remove_callback(&rq->fence, &wait.cb);
1496
1497out:
1498 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1499 trace_i915_request_wait_end(rq);
1500 return timeout;
1501}
1502
1503bool i915_retire_requests(struct drm_i915_private *i915)
1504{
1505 struct intel_gt_timelines *timelines = &i915->gt.timelines;
1506 struct intel_timeline *tl, *tn;
1507 unsigned long flags;
1508 LIST_HEAD(free);
1509
1510 spin_lock_irqsave(&timelines->lock, flags);
1511 list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1512 if (!mutex_trylock(&tl->mutex))
1513 continue;
1514
1515 intel_timeline_get(tl);
1516 GEM_BUG_ON(!tl->active_count);
1517 tl->active_count++; /* pin the list element */
1518 spin_unlock_irqrestore(&timelines->lock, flags);
1519
1520 retire_requests(tl);
1521
1522 spin_lock_irqsave(&timelines->lock, flags);
1523
1524 /* Resume iteration after dropping lock */
1525 list_safe_reset_next(tl, tn, link);
1526 if (!--tl->active_count)
1527 list_del(&tl->link);
1528
1529 mutex_unlock(&tl->mutex);
1530
1531 /* Defer the final release to after the spinlock */
1532 if (refcount_dec_and_test(&tl->kref.refcount)) {
1533 GEM_BUG_ON(tl->active_count);
1534 list_add(&tl->link, &free);
1535 }
1536 }
1537 spin_unlock_irqrestore(&timelines->lock, flags);
1538
1539 list_for_each_entry_safe(tl, tn, &free, link)
1540 __intel_timeline_free(&tl->kref);
1541
1542 return !list_empty(&timelines->active_list);
1543}
1544
1545#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1546#include "selftests/mock_request.c"
1547#include "selftests/i915_request.c"
1548#endif
1549
1550static void i915_global_request_shrink(void)
1551{
1552 kmem_cache_shrink(global.slab_dependencies);
1553 kmem_cache_shrink(global.slab_execute_cbs);
1554 kmem_cache_shrink(global.slab_requests);
1555}
1556
1557static void i915_global_request_exit(void)
1558{
1559 kmem_cache_destroy(global.slab_dependencies);
1560 kmem_cache_destroy(global.slab_execute_cbs);
1561 kmem_cache_destroy(global.slab_requests);
1562}
1563
1564static struct i915_global_request global = { {
1565 .shrink = i915_global_request_shrink,
1566 .exit = i915_global_request_exit,
1567} };
1568
1569int __init i915_global_request_init(void)
1570{
1571 global.slab_requests = KMEM_CACHE(i915_request,
1572 SLAB_HWCACHE_ALIGN |
1573 SLAB_RECLAIM_ACCOUNT |
1574 SLAB_TYPESAFE_BY_RCU);
1575 if (!global.slab_requests)
1576 return -ENOMEM;
1577
1578 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1579 SLAB_HWCACHE_ALIGN |
1580 SLAB_RECLAIM_ACCOUNT |
1581 SLAB_TYPESAFE_BY_RCU);
1582 if (!global.slab_execute_cbs)
1583 goto err_requests;
1584
1585 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1586 SLAB_HWCACHE_ALIGN |
1587 SLAB_RECLAIM_ACCOUNT);
1588 if (!global.slab_dependencies)
1589 goto err_execute_cbs;
1590
1591 i915_global_register(&global.base);
1592 return 0;
1593
1594err_execute_cbs:
1595 kmem_cache_destroy(global.slab_execute_cbs);
1596err_requests:
1597 kmem_cache_destroy(global.slab_requests);
1598 return -ENOMEM;
1599}