Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2#define pr_fmt(fmt) "efi: " fmt
  3
  4#include <linux/init.h>
  5#include <linux/kernel.h>
  6#include <linux/string.h>
  7#include <linux/time.h>
  8#include <linux/types.h>
  9#include <linux/efi.h>
 10#include <linux/slab.h>
 11#include <linux/memblock.h>
 12#include <linux/acpi.h>
 13#include <linux/dmi.h>
 14
 15#include <asm/e820/api.h>
 16#include <asm/efi.h>
 17#include <asm/uv/uv.h>
 18#include <asm/cpu_device_id.h>
 19#include <asm/realmode.h>
 20#include <asm/reboot.h>
 21
 22#define EFI_MIN_RESERVE 5120
 23
 24#define EFI_DUMMY_GUID \
 25	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
 26
 27#define QUARK_CSH_SIGNATURE		0x5f435348	/* _CSH */
 28#define QUARK_SECURITY_HEADER_SIZE	0x400
 29
 30/*
 31 * Header prepended to the standard EFI capsule on Quark systems the are based
 32 * on Intel firmware BSP.
 33 * @csh_signature:	Unique identifier to sanity check signed module
 34 * 			presence ("_CSH").
 35 * @version:		Current version of CSH used. Should be one for Quark A0.
 36 * @modulesize:		Size of the entire module including the module header
 37 * 			and payload.
 38 * @security_version_number_index: Index of SVN to use for validation of signed
 39 * 			module.
 40 * @security_version_number: Used to prevent against roll back of modules.
 41 * @rsvd_module_id:	Currently unused for Clanton (Quark).
 42 * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
 43 * 			0x00008086.
 44 * @rsvd_date:		BCD representation of build date as yyyymmdd, where
 45 * 			yyyy=4 digit year, mm=1-12, dd=1-31.
 46 * @headersize:		Total length of the header including including any
 47 * 			padding optionally added by the signing tool.
 48 * @hash_algo:		What Hash is used in the module signing.
 49 * @cryp_algo:		What Crypto is used in the module signing.
 50 * @keysize:		Total length of the key data including including any
 51 * 			padding optionally added by the signing tool.
 52 * @signaturesize:	Total length of the signature including including any
 53 * 			padding optionally added by the signing tool.
 54 * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
 55 * 			chain, if there is a next header.
 56 * @rsvd:		Reserved, padding structure to required size.
 57 *
 58 * See also QuartSecurityHeader_t in
 59 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
 60 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
 61 */
 62struct quark_security_header {
 63	u32 csh_signature;
 64	u32 version;
 65	u32 modulesize;
 66	u32 security_version_number_index;
 67	u32 security_version_number;
 68	u32 rsvd_module_id;
 69	u32 rsvd_module_vendor;
 70	u32 rsvd_date;
 71	u32 headersize;
 72	u32 hash_algo;
 73	u32 cryp_algo;
 74	u32 keysize;
 75	u32 signaturesize;
 76	u32 rsvd_next_header;
 77	u32 rsvd[2];
 78};
 79
 80static const efi_char16_t efi_dummy_name[] = L"DUMMY";
 81
 82static bool efi_no_storage_paranoia;
 83
 84/*
 85 * Some firmware implementations refuse to boot if there's insufficient
 86 * space in the variable store. The implementation of garbage collection
 87 * in some FW versions causes stale (deleted) variables to take up space
 88 * longer than intended and space is only freed once the store becomes
 89 * almost completely full.
 90 *
 91 * Enabling this option disables the space checks in
 92 * efi_query_variable_store() and forces garbage collection.
 93 *
 94 * Only enable this option if deleting EFI variables does not free up
 95 * space in your variable store, e.g. if despite deleting variables
 96 * you're unable to create new ones.
 97 */
 98static int __init setup_storage_paranoia(char *arg)
 99{
100	efi_no_storage_paranoia = true;
101	return 0;
102}
103early_param("efi_no_storage_paranoia", setup_storage_paranoia);
104
105/*
106 * Deleting the dummy variable which kicks off garbage collection
107*/
108void efi_delete_dummy_variable(void)
109{
110	efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
111				     &EFI_DUMMY_GUID,
112				     EFI_VARIABLE_NON_VOLATILE |
113				     EFI_VARIABLE_BOOTSERVICE_ACCESS |
114				     EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
115}
116
117/*
118 * In the nonblocking case we do not attempt to perform garbage
119 * collection if we do not have enough free space. Rather, we do the
120 * bare minimum check and give up immediately if the available space
121 * is below EFI_MIN_RESERVE.
122 *
123 * This function is intended to be small and simple because it is
124 * invoked from crash handler paths.
125 */
126static efi_status_t
127query_variable_store_nonblocking(u32 attributes, unsigned long size)
128{
129	efi_status_t status;
130	u64 storage_size, remaining_size, max_size;
131
132	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
133						     &remaining_size,
134						     &max_size);
135	if (status != EFI_SUCCESS)
136		return status;
137
138	if (remaining_size - size < EFI_MIN_RESERVE)
139		return EFI_OUT_OF_RESOURCES;
140
141	return EFI_SUCCESS;
142}
143
144/*
145 * Some firmware implementations refuse to boot if there's insufficient space
146 * in the variable store. Ensure that we never use more than a safe limit.
147 *
148 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
149 * store.
150 */
151efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
152				      bool nonblocking)
153{
154	efi_status_t status;
155	u64 storage_size, remaining_size, max_size;
156
157	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
158		return 0;
159
160	if (nonblocking)
161		return query_variable_store_nonblocking(attributes, size);
162
163	status = efi.query_variable_info(attributes, &storage_size,
164					 &remaining_size, &max_size);
165	if (status != EFI_SUCCESS)
166		return status;
167
168	/*
169	 * We account for that by refusing the write if permitting it would
170	 * reduce the available space to under 5KB. This figure was provided by
171	 * Samsung, so should be safe.
172	 */
173	if ((remaining_size - size < EFI_MIN_RESERVE) &&
174		!efi_no_storage_paranoia) {
175
176		/*
177		 * Triggering garbage collection may require that the firmware
178		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
179		 * that by attempting to use more space than is available.
180		 */
181		unsigned long dummy_size = remaining_size + 1024;
182		void *dummy = kzalloc(dummy_size, GFP_KERNEL);
183
184		if (!dummy)
185			return EFI_OUT_OF_RESOURCES;
186
187		status = efi.set_variable((efi_char16_t *)efi_dummy_name,
188					  &EFI_DUMMY_GUID,
189					  EFI_VARIABLE_NON_VOLATILE |
190					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
191					  EFI_VARIABLE_RUNTIME_ACCESS,
192					  dummy_size, dummy);
193
194		if (status == EFI_SUCCESS) {
195			/*
196			 * This should have failed, so if it didn't make sure
197			 * that we delete it...
198			 */
199			efi_delete_dummy_variable();
200		}
201
202		kfree(dummy);
203
204		/*
205		 * The runtime code may now have triggered a garbage collection
206		 * run, so check the variable info again
207		 */
208		status = efi.query_variable_info(attributes, &storage_size,
209						 &remaining_size, &max_size);
210
211		if (status != EFI_SUCCESS)
212			return status;
213
214		/*
215		 * There still isn't enough room, so return an error
216		 */
217		if (remaining_size - size < EFI_MIN_RESERVE)
218			return EFI_OUT_OF_RESOURCES;
219	}
220
221	return EFI_SUCCESS;
222}
223EXPORT_SYMBOL_GPL(efi_query_variable_store);
224
225/*
226 * The UEFI specification makes it clear that the operating system is
227 * free to do whatever it wants with boot services code after
228 * ExitBootServices() has been called. Ignoring this recommendation a
229 * significant bunch of EFI implementations continue calling into boot
230 * services code (SetVirtualAddressMap). In order to work around such
231 * buggy implementations we reserve boot services region during EFI
232 * init and make sure it stays executable. Then, after
233 * SetVirtualAddressMap(), it is discarded.
234 *
235 * However, some boot services regions contain data that is required
236 * by drivers, so we need to track which memory ranges can never be
237 * freed. This is done by tagging those regions with the
238 * EFI_MEMORY_RUNTIME attribute.
239 *
240 * Any driver that wants to mark a region as reserved must use
241 * efi_mem_reserve() which will insert a new EFI memory descriptor
242 * into efi.memmap (splitting existing regions if necessary) and tag
243 * it with EFI_MEMORY_RUNTIME.
244 */
245void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
246{
247	struct efi_memory_map_data data = { 0 };
248	struct efi_mem_range mr;
249	efi_memory_desc_t md;
250	int num_entries;
251	void *new;
252
253	if (efi_mem_desc_lookup(addr, &md) ||
254	    md.type != EFI_BOOT_SERVICES_DATA) {
255		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
256		return;
257	}
258
259	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
260		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
261		return;
262	}
263
 
 
 
 
264	size += addr % EFI_PAGE_SIZE;
265	size = round_up(size, EFI_PAGE_SIZE);
266	addr = round_down(addr, EFI_PAGE_SIZE);
267
268	mr.range.start = addr;
269	mr.range.end = addr + size - 1;
270	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
271
272	num_entries = efi_memmap_split_count(&md, &mr.range);
273	num_entries += efi.memmap.nr_map;
274
275	if (efi_memmap_alloc(num_entries, &data) != 0) {
 
 
 
276		pr_err("Could not allocate boot services memmap\n");
277		return;
278	}
279
280	new = early_memremap_prot(data.phys_map, data.size,
281				  pgprot_val(pgprot_encrypted(FIXMAP_PAGE_NORMAL)));
282	if (!new) {
283		pr_err("Failed to map new boot services memmap\n");
284		return;
285	}
286
287	efi_memmap_insert(&efi.memmap, new, &mr);
288	early_memunmap(new, data.size);
289
290	efi_memmap_install(&data);
291	e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
292	e820__update_table(e820_table);
293}
294
295/*
296 * Helper function for efi_reserve_boot_services() to figure out if we
297 * can free regions in efi_free_boot_services().
298 *
299 * Use this function to ensure we do not free regions owned by somebody
300 * else. We must only reserve (and then free) regions:
301 *
302 * - Not within any part of the kernel
303 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
304 */
305static __init bool can_free_region(u64 start, u64 size)
306{
307	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
308		return false;
309
310	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
311		return false;
312
313	return true;
314}
315
316void __init efi_reserve_boot_services(void)
317{
318	efi_memory_desc_t *md;
319
320	if (!efi_enabled(EFI_MEMMAP))
321		return;
322
323	for_each_efi_memory_desc(md) {
324		u64 start = md->phys_addr;
325		u64 size = md->num_pages << EFI_PAGE_SHIFT;
326		bool already_reserved;
327
328		if (md->type != EFI_BOOT_SERVICES_CODE &&
329		    md->type != EFI_BOOT_SERVICES_DATA)
330			continue;
331
332		already_reserved = memblock_is_region_reserved(start, size);
333
334		/*
335		 * Because the following memblock_reserve() is paired
336		 * with memblock_free_late() for this region in
337		 * efi_free_boot_services(), we must be extremely
338		 * careful not to reserve, and subsequently free,
339		 * critical regions of memory (like the kernel image) or
340		 * those regions that somebody else has already
341		 * reserved.
342		 *
343		 * A good example of a critical region that must not be
344		 * freed is page zero (first 4Kb of memory), which may
345		 * contain boot services code/data but is marked
346		 * E820_TYPE_RESERVED by trim_bios_range().
347		 */
348		if (!already_reserved) {
349			memblock_reserve(start, size);
350
351			/*
352			 * If we are the first to reserve the region, no
353			 * one else cares about it. We own it and can
354			 * free it later.
355			 */
356			if (can_free_region(start, size))
357				continue;
358		}
359
360		/*
361		 * We don't own the region. We must not free it.
362		 *
363		 * Setting this bit for a boot services region really
364		 * doesn't make sense as far as the firmware is
365		 * concerned, but it does provide us with a way to tag
366		 * those regions that must not be paired with
367		 * memblock_free_late().
368		 */
369		md->attribute |= EFI_MEMORY_RUNTIME;
370	}
371}
372
373/*
374 * Apart from having VA mappings for EFI boot services code/data regions,
375 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
376 * unmap both 1:1 and VA mappings.
377 */
378static void __init efi_unmap_pages(efi_memory_desc_t *md)
379{
380	pgd_t *pgd = efi_mm.pgd;
381	u64 pa = md->phys_addr;
382	u64 va = md->virt_addr;
383
384	/*
 
 
 
 
 
 
 
 
385	 * EFI mixed mode has all RAM mapped to access arguments while making
386	 * EFI runtime calls, hence don't unmap EFI boot services code/data
387	 * regions.
388	 */
389	if (efi_is_mixed())
390		return;
391
392	if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
393		pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
394
395	if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
396		pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
397}
398
399void __init efi_free_boot_services(void)
400{
401	struct efi_memory_map_data data = { 0 };
402	efi_memory_desc_t *md;
403	int num_entries = 0;
404	void *new, *new_md;
405
406	/* Keep all regions for /sys/kernel/debug/efi */
407	if (efi_enabled(EFI_DBG))
408		return;
409
410	for_each_efi_memory_desc(md) {
411		unsigned long long start = md->phys_addr;
412		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
413		size_t rm_size;
414
415		if (md->type != EFI_BOOT_SERVICES_CODE &&
416		    md->type != EFI_BOOT_SERVICES_DATA) {
417			num_entries++;
418			continue;
419		}
420
421		/* Do not free, someone else owns it: */
422		if (md->attribute & EFI_MEMORY_RUNTIME) {
423			num_entries++;
424			continue;
425		}
426
427		/*
428		 * Before calling set_virtual_address_map(), EFI boot services
429		 * code/data regions were mapped as a quirk for buggy firmware.
430		 * Unmap them from efi_pgd before freeing them up.
431		 */
432		efi_unmap_pages(md);
433
434		/*
435		 * Nasty quirk: if all sub-1MB memory is used for boot
436		 * services, we can get here without having allocated the
437		 * real mode trampoline.  It's too late to hand boot services
438		 * memory back to the memblock allocator, so instead
439		 * try to manually allocate the trampoline if needed.
440		 *
441		 * I've seen this on a Dell XPS 13 9350 with firmware
442		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
443		 * grub2-efi on a hard disk.  (And no, I don't know why
444		 * this happened, but Linux should still try to boot rather
445		 * panicking early.)
446		 */
447		rm_size = real_mode_size_needed();
448		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
449			set_real_mode_mem(start);
450			start += rm_size;
451			size -= rm_size;
452		}
453
454		/*
455		 * Don't free memory under 1M for two reasons:
456		 * - BIOS might clobber it
457		 * - Crash kernel needs it to be reserved
458		 */
459		if (start + size < SZ_1M)
460			continue;
461		if (start < SZ_1M) {
462			size -= (SZ_1M - start);
463			start = SZ_1M;
464		}
465
466		memblock_free_late(start, size);
467	}
468
469	if (!num_entries)
470		return;
471
472	if (efi_memmap_alloc(num_entries, &data) != 0) {
 
 
473		pr_err("Failed to allocate new EFI memmap\n");
474		return;
475	}
476
477	new = memremap(data.phys_map, data.size, MEMREMAP_WB);
478	if (!new) {
479		pr_err("Failed to map new EFI memmap\n");
480		return;
481	}
482
483	/*
484	 * Build a new EFI memmap that excludes any boot services
485	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
486	 * regions have now been freed.
487	 */
488	new_md = new;
489	for_each_efi_memory_desc(md) {
490		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
491		    (md->type == EFI_BOOT_SERVICES_CODE ||
492		     md->type == EFI_BOOT_SERVICES_DATA))
493			continue;
494
495		memcpy(new_md, md, efi.memmap.desc_size);
496		new_md += efi.memmap.desc_size;
497	}
498
499	memunmap(new);
500
501	if (efi_memmap_install(&data) != 0) {
502		pr_err("Could not install new EFI memmap\n");
503		return;
504	}
505}
506
507/*
508 * A number of config table entries get remapped to virtual addresses
509 * after entering EFI virtual mode. However, the kexec kernel requires
510 * their physical addresses therefore we pass them via setup_data and
511 * correct those entries to their respective physical addresses here.
512 *
513 * Currently only handles smbios which is necessary for some firmware
514 * implementation.
515 */
516int __init efi_reuse_config(u64 tables, int nr_tables)
517{
518	int i, sz, ret = 0;
519	void *p, *tablep;
520	struct efi_setup_data *data;
521
522	if (nr_tables == 0)
523		return 0;
524
525	if (!efi_setup)
526		return 0;
527
528	if (!efi_enabled(EFI_64BIT))
529		return 0;
530
531	data = early_memremap(efi_setup, sizeof(*data));
532	if (!data) {
533		ret = -ENOMEM;
534		goto out;
535	}
536
537	if (!data->smbios)
538		goto out_memremap;
539
540	sz = sizeof(efi_config_table_64_t);
541
542	p = tablep = early_memremap(tables, nr_tables * sz);
543	if (!p) {
544		pr_err("Could not map Configuration table!\n");
545		ret = -ENOMEM;
546		goto out_memremap;
547	}
548
549	for (i = 0; i < nr_tables; i++) {
550		efi_guid_t guid;
551
552		guid = ((efi_config_table_64_t *)p)->guid;
553
554		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
555			((efi_config_table_64_t *)p)->table = data->smbios;
556		p += sz;
557	}
558	early_memunmap(tablep, nr_tables * sz);
559
560out_memremap:
561	early_memunmap(data, sizeof(*data));
562out:
563	return ret;
564}
565
 
 
 
 
 
 
 
 
 
 
566void __init efi_apply_memmap_quirks(void)
567{
568	/*
569	 * Once setup is done earlier, unmap the EFI memory map on mismatched
570	 * firmware/kernel architectures since there is no support for runtime
571	 * services.
572	 */
573	if (!efi_runtime_supported()) {
574		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
575		efi_memmap_unmap();
576	}
 
 
 
 
577}
578
579/*
580 * For most modern platforms the preferred method of powering off is via
581 * ACPI. However, there are some that are known to require the use of
582 * EFI runtime services and for which ACPI does not work at all.
583 *
584 * Using EFI is a last resort, to be used only if no other option
585 * exists.
586 */
587bool efi_reboot_required(void)
588{
589	if (!acpi_gbl_reduced_hardware)
590		return false;
591
592	efi_reboot_quirk_mode = EFI_RESET_WARM;
593	return true;
594}
595
596bool efi_poweroff_required(void)
597{
598	return acpi_gbl_reduced_hardware || acpi_no_s5;
599}
600
601#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
602
603static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
604				  size_t hdr_bytes)
605{
606	struct quark_security_header *csh = *pkbuff;
607
608	/* Only process data block that is larger than the security header */
609	if (hdr_bytes < sizeof(struct quark_security_header))
610		return 0;
611
612	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
613	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
614		return 1;
615
616	/* Only process data block if EFI header is included */
617	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
618			sizeof(efi_capsule_header_t))
619		return 0;
620
621	pr_debug("Quark security header detected\n");
622
623	if (csh->rsvd_next_header != 0) {
624		pr_err("multiple Quark security headers not supported\n");
625		return -EINVAL;
626	}
627
628	*pkbuff += csh->headersize;
629	cap_info->total_size = csh->headersize;
630
631	/*
632	 * Update the first page pointer to skip over the CSH header.
633	 */
634	cap_info->phys[0] += csh->headersize;
635
636	/*
637	 * cap_info->capsule should point at a virtual mapping of the entire
638	 * capsule, starting at the capsule header. Our image has the Quark
639	 * security header prepended, so we cannot rely on the default vmap()
640	 * mapping created by the generic capsule code.
641	 * Given that the Quark firmware does not appear to care about the
642	 * virtual mapping, let's just point cap_info->capsule at our copy
643	 * of the capsule header.
644	 */
645	cap_info->capsule = &cap_info->header;
646
647	return 1;
648}
649
 
 
 
 
650static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
651	X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000,
652				   &qrk_capsule_setup_info),
653	{ }
654};
655
656int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
657			   size_t hdr_bytes)
658{
659	int (*quirk_handler)(struct capsule_info *, void **, size_t);
660	const struct x86_cpu_id *id;
661	int ret;
662
663	if (hdr_bytes < sizeof(efi_capsule_header_t))
664		return 0;
665
666	cap_info->total_size = 0;
667
668	id = x86_match_cpu(efi_capsule_quirk_ids);
669	if (id) {
670		/*
671		 * The quirk handler is supposed to return
672		 *  - a value > 0 if the setup should continue, after advancing
673		 *    kbuff as needed
674		 *  - 0 if not enough hdr_bytes are available yet
675		 *  - a negative error code otherwise
676		 */
677		quirk_handler = (typeof(quirk_handler))id->driver_data;
678		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
679		if (ret <= 0)
680			return ret;
681	}
682
683	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
684
685	cap_info->total_size += cap_info->header.imagesize;
686
687	return __efi_capsule_setup_info(cap_info);
688}
689
690#endif
691
692/*
693 * If any access by any efi runtime service causes a page fault, then,
694 * 1. If it's efi_reset_system(), reboot through BIOS.
695 * 2. If any other efi runtime service, then
696 *    a. Return error status to the efi caller process.
697 *    b. Disable EFI Runtime Services forever and
698 *    c. Freeze efi_rts_wq and schedule new process.
699 *
700 * @return: Returns, if the page fault is not handled. This function
701 * will never return if the page fault is handled successfully.
702 */
703void efi_crash_gracefully_on_page_fault(unsigned long phys_addr)
704{
705	if (!IS_ENABLED(CONFIG_X86_64))
706		return;
707
708	/*
709	 * If we get an interrupt/NMI while processing an EFI runtime service
710	 * then this is a regular OOPS, not an EFI failure.
711	 */
712	if (in_interrupt())
713		return;
714
715	/*
716	 * Make sure that an efi runtime service caused the page fault.
717	 * READ_ONCE() because we might be OOPSing in a different thread,
718	 * and we don't want to trip KTSAN while trying to OOPS.
719	 */
720	if (READ_ONCE(efi_rts_work.efi_rts_id) == EFI_NONE ||
721	    current_work() != &efi_rts_work.work)
722		return;
723
724	/*
725	 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
726	 * page faulting on these addresses isn't expected.
727	 */
728	if (phys_addr <= 0x0fff)
729		return;
730
731	/*
732	 * Print stack trace as it might be useful to know which EFI Runtime
733	 * Service is buggy.
734	 */
735	WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
736	     phys_addr);
737
738	/*
739	 * Buggy efi_reset_system() is handled differently from other EFI
740	 * Runtime Services as it doesn't use efi_rts_wq. Although,
741	 * native_machine_emergency_restart() says that machine_real_restart()
742	 * could fail, it's better not to complicate this fault handler
743	 * because this case occurs *very* rarely and hence could be improved
744	 * on a need by basis.
745	 */
746	if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
747		pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
748		machine_real_restart(MRR_BIOS);
749		return;
750	}
751
752	/*
753	 * Before calling EFI Runtime Service, the kernel has switched the
754	 * calling process to efi_mm. Hence, switch back to task_mm.
755	 */
756	arch_efi_call_virt_teardown();
757
758	/* Signal error status to the efi caller process */
759	efi_rts_work.status = EFI_ABORTED;
760	complete(&efi_rts_work.efi_rts_comp);
761
762	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
763	pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
764
765	/*
766	 * Call schedule() in an infinite loop, so that any spurious wake ups
767	 * will never run efi_rts_wq again.
768	 */
769	for (;;) {
770		set_current_state(TASK_IDLE);
771		schedule();
772	}
 
 
773}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2#define pr_fmt(fmt) "efi: " fmt
  3
  4#include <linux/init.h>
  5#include <linux/kernel.h>
  6#include <linux/string.h>
  7#include <linux/time.h>
  8#include <linux/types.h>
  9#include <linux/efi.h>
 10#include <linux/slab.h>
 11#include <linux/memblock.h>
 12#include <linux/acpi.h>
 13#include <linux/dmi.h>
 14
 15#include <asm/e820/api.h>
 16#include <asm/efi.h>
 17#include <asm/uv/uv.h>
 18#include <asm/cpu_device_id.h>
 
 19#include <asm/reboot.h>
 20
 21#define EFI_MIN_RESERVE 5120
 22
 23#define EFI_DUMMY_GUID \
 24	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
 25
 26#define QUARK_CSH_SIGNATURE		0x5f435348	/* _CSH */
 27#define QUARK_SECURITY_HEADER_SIZE	0x400
 28
 29/*
 30 * Header prepended to the standard EFI capsule on Quark systems the are based
 31 * on Intel firmware BSP.
 32 * @csh_signature:	Unique identifier to sanity check signed module
 33 * 			presence ("_CSH").
 34 * @version:		Current version of CSH used. Should be one for Quark A0.
 35 * @modulesize:		Size of the entire module including the module header
 36 * 			and payload.
 37 * @security_version_number_index: Index of SVN to use for validation of signed
 38 * 			module.
 39 * @security_version_number: Used to prevent against roll back of modules.
 40 * @rsvd_module_id:	Currently unused for Clanton (Quark).
 41 * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
 42 * 			0x00008086.
 43 * @rsvd_date:		BCD representation of build date as yyyymmdd, where
 44 * 			yyyy=4 digit year, mm=1-12, dd=1-31.
 45 * @headersize:		Total length of the header including including any
 46 * 			padding optionally added by the signing tool.
 47 * @hash_algo:		What Hash is used in the module signing.
 48 * @cryp_algo:		What Crypto is used in the module signing.
 49 * @keysize:		Total length of the key data including including any
 50 * 			padding optionally added by the signing tool.
 51 * @signaturesize:	Total length of the signature including including any
 52 * 			padding optionally added by the signing tool.
 53 * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
 54 * 			chain, if there is a next header.
 55 * @rsvd:		Reserved, padding structure to required size.
 56 *
 57 * See also QuartSecurityHeader_t in
 58 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
 59 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
 60 */
 61struct quark_security_header {
 62	u32 csh_signature;
 63	u32 version;
 64	u32 modulesize;
 65	u32 security_version_number_index;
 66	u32 security_version_number;
 67	u32 rsvd_module_id;
 68	u32 rsvd_module_vendor;
 69	u32 rsvd_date;
 70	u32 headersize;
 71	u32 hash_algo;
 72	u32 cryp_algo;
 73	u32 keysize;
 74	u32 signaturesize;
 75	u32 rsvd_next_header;
 76	u32 rsvd[2];
 77};
 78
 79static const efi_char16_t efi_dummy_name[] = L"DUMMY";
 80
 81static bool efi_no_storage_paranoia;
 82
 83/*
 84 * Some firmware implementations refuse to boot if there's insufficient
 85 * space in the variable store. The implementation of garbage collection
 86 * in some FW versions causes stale (deleted) variables to take up space
 87 * longer than intended and space is only freed once the store becomes
 88 * almost completely full.
 89 *
 90 * Enabling this option disables the space checks in
 91 * efi_query_variable_store() and forces garbage collection.
 92 *
 93 * Only enable this option if deleting EFI variables does not free up
 94 * space in your variable store, e.g. if despite deleting variables
 95 * you're unable to create new ones.
 96 */
 97static int __init setup_storage_paranoia(char *arg)
 98{
 99	efi_no_storage_paranoia = true;
100	return 0;
101}
102early_param("efi_no_storage_paranoia", setup_storage_paranoia);
103
104/*
105 * Deleting the dummy variable which kicks off garbage collection
106*/
107void efi_delete_dummy_variable(void)
108{
109	efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
110				     &EFI_DUMMY_GUID,
111				     EFI_VARIABLE_NON_VOLATILE |
112				     EFI_VARIABLE_BOOTSERVICE_ACCESS |
113				     EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
114}
115
116/*
117 * In the nonblocking case we do not attempt to perform garbage
118 * collection if we do not have enough free space. Rather, we do the
119 * bare minimum check and give up immediately if the available space
120 * is below EFI_MIN_RESERVE.
121 *
122 * This function is intended to be small and simple because it is
123 * invoked from crash handler paths.
124 */
125static efi_status_t
126query_variable_store_nonblocking(u32 attributes, unsigned long size)
127{
128	efi_status_t status;
129	u64 storage_size, remaining_size, max_size;
130
131	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
132						     &remaining_size,
133						     &max_size);
134	if (status != EFI_SUCCESS)
135		return status;
136
137	if (remaining_size - size < EFI_MIN_RESERVE)
138		return EFI_OUT_OF_RESOURCES;
139
140	return EFI_SUCCESS;
141}
142
143/*
144 * Some firmware implementations refuse to boot if there's insufficient space
145 * in the variable store. Ensure that we never use more than a safe limit.
146 *
147 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
148 * store.
149 */
150efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
151				      bool nonblocking)
152{
153	efi_status_t status;
154	u64 storage_size, remaining_size, max_size;
155
156	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
157		return 0;
158
159	if (nonblocking)
160		return query_variable_store_nonblocking(attributes, size);
161
162	status = efi.query_variable_info(attributes, &storage_size,
163					 &remaining_size, &max_size);
164	if (status != EFI_SUCCESS)
165		return status;
166
167	/*
168	 * We account for that by refusing the write if permitting it would
169	 * reduce the available space to under 5KB. This figure was provided by
170	 * Samsung, so should be safe.
171	 */
172	if ((remaining_size - size < EFI_MIN_RESERVE) &&
173		!efi_no_storage_paranoia) {
174
175		/*
176		 * Triggering garbage collection may require that the firmware
177		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
178		 * that by attempting to use more space than is available.
179		 */
180		unsigned long dummy_size = remaining_size + 1024;
181		void *dummy = kzalloc(dummy_size, GFP_KERNEL);
182
183		if (!dummy)
184			return EFI_OUT_OF_RESOURCES;
185
186		status = efi.set_variable((efi_char16_t *)efi_dummy_name,
187					  &EFI_DUMMY_GUID,
188					  EFI_VARIABLE_NON_VOLATILE |
189					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
190					  EFI_VARIABLE_RUNTIME_ACCESS,
191					  dummy_size, dummy);
192
193		if (status == EFI_SUCCESS) {
194			/*
195			 * This should have failed, so if it didn't make sure
196			 * that we delete it...
197			 */
198			efi_delete_dummy_variable();
199		}
200
201		kfree(dummy);
202
203		/*
204		 * The runtime code may now have triggered a garbage collection
205		 * run, so check the variable info again
206		 */
207		status = efi.query_variable_info(attributes, &storage_size,
208						 &remaining_size, &max_size);
209
210		if (status != EFI_SUCCESS)
211			return status;
212
213		/*
214		 * There still isn't enough room, so return an error
215		 */
216		if (remaining_size - size < EFI_MIN_RESERVE)
217			return EFI_OUT_OF_RESOURCES;
218	}
219
220	return EFI_SUCCESS;
221}
222EXPORT_SYMBOL_GPL(efi_query_variable_store);
223
224/*
225 * The UEFI specification makes it clear that the operating system is
226 * free to do whatever it wants with boot services code after
227 * ExitBootServices() has been called. Ignoring this recommendation a
228 * significant bunch of EFI implementations continue calling into boot
229 * services code (SetVirtualAddressMap). In order to work around such
230 * buggy implementations we reserve boot services region during EFI
231 * init and make sure it stays executable. Then, after
232 * SetVirtualAddressMap(), it is discarded.
233 *
234 * However, some boot services regions contain data that is required
235 * by drivers, so we need to track which memory ranges can never be
236 * freed. This is done by tagging those regions with the
237 * EFI_MEMORY_RUNTIME attribute.
238 *
239 * Any driver that wants to mark a region as reserved must use
240 * efi_mem_reserve() which will insert a new EFI memory descriptor
241 * into efi.memmap (splitting existing regions if necessary) and tag
242 * it with EFI_MEMORY_RUNTIME.
243 */
244void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
245{
246	phys_addr_t new_phys, new_size;
247	struct efi_mem_range mr;
248	efi_memory_desc_t md;
249	int num_entries;
250	void *new;
251
252	if (efi_mem_desc_lookup(addr, &md) ||
253	    md.type != EFI_BOOT_SERVICES_DATA) {
254		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
255		return;
256	}
257
258	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
259		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
260		return;
261	}
262
263	/* No need to reserve regions that will never be freed. */
264	if (md.attribute & EFI_MEMORY_RUNTIME)
265		return;
266
267	size += addr % EFI_PAGE_SIZE;
268	size = round_up(size, EFI_PAGE_SIZE);
269	addr = round_down(addr, EFI_PAGE_SIZE);
270
271	mr.range.start = addr;
272	mr.range.end = addr + size - 1;
273	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
274
275	num_entries = efi_memmap_split_count(&md, &mr.range);
276	num_entries += efi.memmap.nr_map;
277
278	new_size = efi.memmap.desc_size * num_entries;
279
280	new_phys = efi_memmap_alloc(num_entries);
281	if (!new_phys) {
282		pr_err("Could not allocate boot services memmap\n");
283		return;
284	}
285
286	new = early_memremap(new_phys, new_size);
 
287	if (!new) {
288		pr_err("Failed to map new boot services memmap\n");
289		return;
290	}
291
292	efi_memmap_insert(&efi.memmap, new, &mr);
293	early_memunmap(new, new_size);
294
295	efi_memmap_install(new_phys, num_entries);
 
 
296}
297
298/*
299 * Helper function for efi_reserve_boot_services() to figure out if we
300 * can free regions in efi_free_boot_services().
301 *
302 * Use this function to ensure we do not free regions owned by somebody
303 * else. We must only reserve (and then free) regions:
304 *
305 * - Not within any part of the kernel
306 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
307 */
308static __init bool can_free_region(u64 start, u64 size)
309{
310	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
311		return false;
312
313	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
314		return false;
315
316	return true;
317}
318
319void __init efi_reserve_boot_services(void)
320{
321	efi_memory_desc_t *md;
322
 
 
 
323	for_each_efi_memory_desc(md) {
324		u64 start = md->phys_addr;
325		u64 size = md->num_pages << EFI_PAGE_SHIFT;
326		bool already_reserved;
327
328		if (md->type != EFI_BOOT_SERVICES_CODE &&
329		    md->type != EFI_BOOT_SERVICES_DATA)
330			continue;
331
332		already_reserved = memblock_is_region_reserved(start, size);
333
334		/*
335		 * Because the following memblock_reserve() is paired
336		 * with memblock_free_late() for this region in
337		 * efi_free_boot_services(), we must be extremely
338		 * careful not to reserve, and subsequently free,
339		 * critical regions of memory (like the kernel image) or
340		 * those regions that somebody else has already
341		 * reserved.
342		 *
343		 * A good example of a critical region that must not be
344		 * freed is page zero (first 4Kb of memory), which may
345		 * contain boot services code/data but is marked
346		 * E820_TYPE_RESERVED by trim_bios_range().
347		 */
348		if (!already_reserved) {
349			memblock_reserve(start, size);
350
351			/*
352			 * If we are the first to reserve the region, no
353			 * one else cares about it. We own it and can
354			 * free it later.
355			 */
356			if (can_free_region(start, size))
357				continue;
358		}
359
360		/*
361		 * We don't own the region. We must not free it.
362		 *
363		 * Setting this bit for a boot services region really
364		 * doesn't make sense as far as the firmware is
365		 * concerned, but it does provide us with a way to tag
366		 * those regions that must not be paired with
367		 * memblock_free_late().
368		 */
369		md->attribute |= EFI_MEMORY_RUNTIME;
370	}
371}
372
373/*
374 * Apart from having VA mappings for EFI boot services code/data regions,
375 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
376 * unmap both 1:1 and VA mappings.
377 */
378static void __init efi_unmap_pages(efi_memory_desc_t *md)
379{
380	pgd_t *pgd = efi_mm.pgd;
381	u64 pa = md->phys_addr;
382	u64 va = md->virt_addr;
383
384	/*
385	 * To Do: Remove this check after adding functionality to unmap EFI boot
386	 * services code/data regions from direct mapping area because
387	 * "efi=old_map" maps EFI regions in swapper_pg_dir.
388	 */
389	if (efi_enabled(EFI_OLD_MEMMAP))
390		return;
391
392	/*
393	 * EFI mixed mode has all RAM mapped to access arguments while making
394	 * EFI runtime calls, hence don't unmap EFI boot services code/data
395	 * regions.
396	 */
397	if (!efi_is_native())
398		return;
399
400	if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
401		pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
402
403	if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
404		pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
405}
406
407void __init efi_free_boot_services(void)
408{
409	phys_addr_t new_phys, new_size;
410	efi_memory_desc_t *md;
411	int num_entries = 0;
412	void *new, *new_md;
413
 
 
 
 
414	for_each_efi_memory_desc(md) {
415		unsigned long long start = md->phys_addr;
416		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
417		size_t rm_size;
418
419		if (md->type != EFI_BOOT_SERVICES_CODE &&
420		    md->type != EFI_BOOT_SERVICES_DATA) {
421			num_entries++;
422			continue;
423		}
424
425		/* Do not free, someone else owns it: */
426		if (md->attribute & EFI_MEMORY_RUNTIME) {
427			num_entries++;
428			continue;
429		}
430
431		/*
432		 * Before calling set_virtual_address_map(), EFI boot services
433		 * code/data regions were mapped as a quirk for buggy firmware.
434		 * Unmap them from efi_pgd before freeing them up.
435		 */
436		efi_unmap_pages(md);
437
438		/*
439		 * Nasty quirk: if all sub-1MB memory is used for boot
440		 * services, we can get here without having allocated the
441		 * real mode trampoline.  It's too late to hand boot services
442		 * memory back to the memblock allocator, so instead
443		 * try to manually allocate the trampoline if needed.
444		 *
445		 * I've seen this on a Dell XPS 13 9350 with firmware
446		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
447		 * grub2-efi on a hard disk.  (And no, I don't know why
448		 * this happened, but Linux should still try to boot rather
449		 * panicing early.)
450		 */
451		rm_size = real_mode_size_needed();
452		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
453			set_real_mode_mem(start);
454			start += rm_size;
455			size -= rm_size;
456		}
457
 
 
 
 
 
 
 
 
 
 
 
 
458		memblock_free_late(start, size);
459	}
460
461	if (!num_entries)
462		return;
463
464	new_size = efi.memmap.desc_size * num_entries;
465	new_phys = efi_memmap_alloc(num_entries);
466	if (!new_phys) {
467		pr_err("Failed to allocate new EFI memmap\n");
468		return;
469	}
470
471	new = memremap(new_phys, new_size, MEMREMAP_WB);
472	if (!new) {
473		pr_err("Failed to map new EFI memmap\n");
474		return;
475	}
476
477	/*
478	 * Build a new EFI memmap that excludes any boot services
479	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
480	 * regions have now been freed.
481	 */
482	new_md = new;
483	for_each_efi_memory_desc(md) {
484		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
485		    (md->type == EFI_BOOT_SERVICES_CODE ||
486		     md->type == EFI_BOOT_SERVICES_DATA))
487			continue;
488
489		memcpy(new_md, md, efi.memmap.desc_size);
490		new_md += efi.memmap.desc_size;
491	}
492
493	memunmap(new);
494
495	if (efi_memmap_install(new_phys, num_entries)) {
496		pr_err("Could not install new EFI memmap\n");
497		return;
498	}
499}
500
501/*
502 * A number of config table entries get remapped to virtual addresses
503 * after entering EFI virtual mode. However, the kexec kernel requires
504 * their physical addresses therefore we pass them via setup_data and
505 * correct those entries to their respective physical addresses here.
506 *
507 * Currently only handles smbios which is necessary for some firmware
508 * implementation.
509 */
510int __init efi_reuse_config(u64 tables, int nr_tables)
511{
512	int i, sz, ret = 0;
513	void *p, *tablep;
514	struct efi_setup_data *data;
515
516	if (nr_tables == 0)
517		return 0;
518
519	if (!efi_setup)
520		return 0;
521
522	if (!efi_enabled(EFI_64BIT))
523		return 0;
524
525	data = early_memremap(efi_setup, sizeof(*data));
526	if (!data) {
527		ret = -ENOMEM;
528		goto out;
529	}
530
531	if (!data->smbios)
532		goto out_memremap;
533
534	sz = sizeof(efi_config_table_64_t);
535
536	p = tablep = early_memremap(tables, nr_tables * sz);
537	if (!p) {
538		pr_err("Could not map Configuration table!\n");
539		ret = -ENOMEM;
540		goto out_memremap;
541	}
542
543	for (i = 0; i < efi.systab->nr_tables; i++) {
544		efi_guid_t guid;
545
546		guid = ((efi_config_table_64_t *)p)->guid;
547
548		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
549			((efi_config_table_64_t *)p)->table = data->smbios;
550		p += sz;
551	}
552	early_memunmap(tablep, nr_tables * sz);
553
554out_memremap:
555	early_memunmap(data, sizeof(*data));
556out:
557	return ret;
558}
559
560static const struct dmi_system_id sgi_uv1_dmi[] = {
561	{ NULL, "SGI UV1",
562		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
563			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
564			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
565		}
566	},
567	{ } /* NULL entry stops DMI scanning */
568};
569
570void __init efi_apply_memmap_quirks(void)
571{
572	/*
573	 * Once setup is done earlier, unmap the EFI memory map on mismatched
574	 * firmware/kernel architectures since there is no support for runtime
575	 * services.
576	 */
577	if (!efi_runtime_supported()) {
578		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
579		efi_memmap_unmap();
580	}
581
582	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
583	if (dmi_check_system(sgi_uv1_dmi))
584		set_bit(EFI_OLD_MEMMAP, &efi.flags);
585}
586
587/*
588 * For most modern platforms the preferred method of powering off is via
589 * ACPI. However, there are some that are known to require the use of
590 * EFI runtime services and for which ACPI does not work at all.
591 *
592 * Using EFI is a last resort, to be used only if no other option
593 * exists.
594 */
595bool efi_reboot_required(void)
596{
597	if (!acpi_gbl_reduced_hardware)
598		return false;
599
600	efi_reboot_quirk_mode = EFI_RESET_WARM;
601	return true;
602}
603
604bool efi_poweroff_required(void)
605{
606	return acpi_gbl_reduced_hardware || acpi_no_s5;
607}
608
609#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
610
611static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
612				  size_t hdr_bytes)
613{
614	struct quark_security_header *csh = *pkbuff;
615
616	/* Only process data block that is larger than the security header */
617	if (hdr_bytes < sizeof(struct quark_security_header))
618		return 0;
619
620	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
621	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
622		return 1;
623
624	/* Only process data block if EFI header is included */
625	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
626			sizeof(efi_capsule_header_t))
627		return 0;
628
629	pr_debug("Quark security header detected\n");
630
631	if (csh->rsvd_next_header != 0) {
632		pr_err("multiple Quark security headers not supported\n");
633		return -EINVAL;
634	}
635
636	*pkbuff += csh->headersize;
637	cap_info->total_size = csh->headersize;
638
639	/*
640	 * Update the first page pointer to skip over the CSH header.
641	 */
642	cap_info->phys[0] += csh->headersize;
643
644	/*
645	 * cap_info->capsule should point at a virtual mapping of the entire
646	 * capsule, starting at the capsule header. Our image has the Quark
647	 * security header prepended, so we cannot rely on the default vmap()
648	 * mapping created by the generic capsule code.
649	 * Given that the Quark firmware does not appear to care about the
650	 * virtual mapping, let's just point cap_info->capsule at our copy
651	 * of the capsule header.
652	 */
653	cap_info->capsule = &cap_info->header;
654
655	return 1;
656}
657
658#define ICPU(family, model, quirk_handler) \
659	{ X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
660	  (unsigned long)&quirk_handler }
661
662static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
663	ICPU(5, 9, qrk_capsule_setup_info),	/* Intel Quark X1000 */
 
664	{ }
665};
666
667int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
668			   size_t hdr_bytes)
669{
670	int (*quirk_handler)(struct capsule_info *, void **, size_t);
671	const struct x86_cpu_id *id;
672	int ret;
673
674	if (hdr_bytes < sizeof(efi_capsule_header_t))
675		return 0;
676
677	cap_info->total_size = 0;
678
679	id = x86_match_cpu(efi_capsule_quirk_ids);
680	if (id) {
681		/*
682		 * The quirk handler is supposed to return
683		 *  - a value > 0 if the setup should continue, after advancing
684		 *    kbuff as needed
685		 *  - 0 if not enough hdr_bytes are available yet
686		 *  - a negative error code otherwise
687		 */
688		quirk_handler = (typeof(quirk_handler))id->driver_data;
689		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
690		if (ret <= 0)
691			return ret;
692	}
693
694	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
695
696	cap_info->total_size += cap_info->header.imagesize;
697
698	return __efi_capsule_setup_info(cap_info);
699}
700
701#endif
702
703/*
704 * If any access by any efi runtime service causes a page fault, then,
705 * 1. If it's efi_reset_system(), reboot through BIOS.
706 * 2. If any other efi runtime service, then
707 *    a. Return error status to the efi caller process.
708 *    b. Disable EFI Runtime Services forever and
709 *    c. Freeze efi_rts_wq and schedule new process.
710 *
711 * @return: Returns, if the page fault is not handled. This function
712 * will never return if the page fault is handled successfully.
713 */
714void efi_recover_from_page_fault(unsigned long phys_addr)
715{
716	if (!IS_ENABLED(CONFIG_X86_64))
717		return;
718
719	/*
 
 
 
 
 
 
 
720	 * Make sure that an efi runtime service caused the page fault.
721	 * "efi_mm" cannot be used to check if the page fault had occurred
722	 * in the firmware context because efi=old_map doesn't use efi_pgd.
723	 */
724	if (efi_rts_work.efi_rts_id == EFI_NONE)
 
725		return;
726
727	/*
728	 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
729	 * page faulting on these addresses isn't expected.
730	 */
731	if (phys_addr <= 0x0fff)
732		return;
733
734	/*
735	 * Print stack trace as it might be useful to know which EFI Runtime
736	 * Service is buggy.
737	 */
738	WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
739	     phys_addr);
740
741	/*
742	 * Buggy efi_reset_system() is handled differently from other EFI
743	 * Runtime Services as it doesn't use efi_rts_wq. Although,
744	 * native_machine_emergency_restart() says that machine_real_restart()
745	 * could fail, it's better not to compilcate this fault handler
746	 * because this case occurs *very* rarely and hence could be improved
747	 * on a need by basis.
748	 */
749	if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
750		pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
751		machine_real_restart(MRR_BIOS);
752		return;
753	}
754
755	/*
756	 * Before calling EFI Runtime Service, the kernel has switched the
757	 * calling process to efi_mm. Hence, switch back to task_mm.
758	 */
759	arch_efi_call_virt_teardown();
760
761	/* Signal error status to the efi caller process */
762	efi_rts_work.status = EFI_ABORTED;
763	complete(&efi_rts_work.efi_rts_comp);
764
765	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
766	pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
767
768	/*
769	 * Call schedule() in an infinite loop, so that any spurious wake ups
770	 * will never run efi_rts_wq again.
771	 */
772	for (;;) {
773		set_current_state(TASK_IDLE);
774		schedule();
775	}
776
777	return;
778}