Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? As a power of 2 */
  47int page_cluster;
  48const int page_cluster_max = 31;
  49
  50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
  51struct lru_rotate {
  52	local_lock_t lock;
  53	struct folio_batch fbatch;
  54};
  55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  56	.lock = INIT_LOCAL_LOCK(lock),
  57};
  58
  59/*
  60 * The following folio batches are grouped together because they are protected
  61 * by disabling preemption (and interrupts remain enabled).
  62 */
  63struct cpu_fbatches {
  64	local_lock_t lock;
  65	struct folio_batch lru_add;
  66	struct folio_batch lru_deactivate_file;
  67	struct folio_batch lru_deactivate;
  68	struct folio_batch lru_lazyfree;
  69#ifdef CONFIG_SMP
  70	struct folio_batch activate;
  71#endif
  72};
  73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
  74	.lock = INIT_LOCAL_LOCK(lock),
  75};
  76
  77/*
  78 * This path almost never happens for VM activity - pages are normally freed
  79 * via pagevecs.  But it gets used by networking - and for compound pages.
  80 */
  81static void __page_cache_release(struct folio *folio)
  82{
  83	if (folio_test_lru(folio)) {
  84		struct lruvec *lruvec;
  85		unsigned long flags;
  86
  87		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
  88		lruvec_del_folio(lruvec, folio);
  89		__folio_clear_lru_flags(folio);
  90		unlock_page_lruvec_irqrestore(lruvec, flags);
  91	}
  92	/* See comment on folio_test_mlocked in release_pages() */
  93	if (unlikely(folio_test_mlocked(folio))) {
  94		long nr_pages = folio_nr_pages(folio);
  95
  96		__folio_clear_mlocked(folio);
  97		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
  98		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  99	}
 100}
 101
 102static void __folio_put_small(struct folio *folio)
 103{
 104	__page_cache_release(folio);
 105	mem_cgroup_uncharge(folio);
 106	free_unref_page(&folio->page, 0);
 107}
 108
 109static void __folio_put_large(struct folio *folio)
 110{
 111	/*
 112	 * __page_cache_release() is supposed to be called for thp, not for
 113	 * hugetlb. This is because hugetlb page does never have PageLRU set
 114	 * (it's never listed to any LRU lists) and no memcg routines should
 115	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 116	 */
 117	if (!folio_test_hugetlb(folio))
 118		__page_cache_release(folio);
 119	destroy_large_folio(folio);
 120}
 121
 122void __folio_put(struct folio *folio)
 123{
 124	if (unlikely(folio_is_zone_device(folio)))
 125		free_zone_device_page(&folio->page);
 126	else if (unlikely(folio_test_large(folio)))
 127		__folio_put_large(folio);
 
 
 
 
 
 
 
 
 128	else
 129		__folio_put_small(folio);
 130}
 131EXPORT_SYMBOL(__folio_put);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.
 
 138 */
 139void put_pages_list(struct list_head *pages)
 140{
 141	struct folio *folio, *next;
 
 142
 143	list_for_each_entry_safe(folio, next, pages, lru) {
 144		if (!folio_put_testzero(folio)) {
 145			list_del(&folio->lru);
 146			continue;
 147		}
 148		if (folio_test_large(folio)) {
 149			list_del(&folio->lru);
 150			__folio_put_large(folio);
 151			continue;
 152		}
 153		/* LRU flag must be clear because it's passed using the lru */
 154	}
 155
 156	free_unref_page_list(pages);
 157	INIT_LIST_HEAD(pages);
 158}
 159EXPORT_SYMBOL(put_pages_list);
 160
 161/*
 162 * get_kernel_pages() - pin kernel pages in memory
 163 * @kiov:	An array of struct kvec structures
 164 * @nr_segs:	number of segments to pin
 165 * @write:	pinning for read/write, currently ignored
 166 * @pages:	array that receives pointers to the pages pinned.
 167 *		Should be at least nr_segs long.
 168 *
 169 * Returns number of pages pinned. This may be fewer than the number requested.
 170 * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
 171 * Each page returned must be released with a put_page() call when it is
 172 * finished with.
 173 */
 174int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 175		struct page **pages)
 176{
 177	int seg;
 178
 179	for (seg = 0; seg < nr_segs; seg++) {
 180		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 181			return seg;
 182
 183		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 184		get_page(pages[seg]);
 185	}
 186
 187	return seg;
 188}
 189EXPORT_SYMBOL_GPL(get_kernel_pages);
 190
 191typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
 192
 193static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
 
 
 
 
 
 
 
 
 
 194{
 195	int was_unevictable = folio_test_clear_unevictable(folio);
 196	long nr_pages = folio_nr_pages(folio);
 
 
 197
 198	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 199
 200	/*
 201	 * Is an smp_mb__after_atomic() still required here, before
 202	 * folio_evictable() tests the mlocked flag, to rule out the possibility
 203	 * of stranding an evictable folio on an unevictable LRU?  I think
 204	 * not, because __munlock_page() only clears the mlocked flag
 205	 * while the LRU lock is held.
 206	 *
 207	 * (That is not true of __page_cache_release(), and not necessarily
 208	 * true of release_pages(): but those only clear the mlocked flag after
 209	 * folio_put_testzero() has excluded any other users of the folio.)
 210	 */
 211	if (folio_evictable(folio)) {
 212		if (was_unevictable)
 213			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
 214	} else {
 215		folio_clear_active(folio);
 216		folio_set_unevictable(folio);
 217		/*
 218		 * folio->mlock_count = !!folio_test_mlocked(folio)?
 219		 * But that leaves __mlock_page() in doubt whether another
 220		 * actor has already counted the mlock or not.  Err on the
 221		 * safe side, underestimate, let page reclaim fix it, rather
 222		 * than leaving a page on the unevictable LRU indefinitely.
 223		 */
 224		folio->mlock_count = 0;
 225		if (!was_unevictable)
 226			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
 227	}
 228
 229	lruvec_add_folio(lruvec, folio);
 230	trace_mm_lru_insertion(folio);
 231}
 
 232
 233static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
 
 234{
 235	int i;
 236	struct lruvec *lruvec = NULL;
 237	unsigned long flags = 0;
 238
 239	for (i = 0; i < folio_batch_count(fbatch); i++) {
 240		struct folio *folio = fbatch->folios[i];
 241
 242		/* block memcg migration while the folio moves between lru */
 243		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
 244			continue;
 245
 246		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
 247		move_fn(lruvec, folio);
 248
 249		folio_set_lru(folio);
 250	}
 251
 252	if (lruvec)
 253		unlock_page_lruvec_irqrestore(lruvec, flags);
 254	folios_put(fbatch->folios, folio_batch_count(fbatch));
 255	folio_batch_init(fbatch);
 256}
 257
 258static void folio_batch_add_and_move(struct folio_batch *fbatch,
 259		struct folio *folio, move_fn_t move_fn)
 260{
 261	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
 262	    !lru_cache_disabled())
 263		return;
 264	folio_batch_move_lru(fbatch, move_fn);
 
 
 265}
 266
 267static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
 
 268{
 269	if (!folio_test_unevictable(folio)) {
 270		lruvec_del_folio(lruvec, folio);
 271		folio_clear_active(folio);
 272		lruvec_add_folio_tail(lruvec, folio);
 273		__count_vm_events(PGROTATED, folio_nr_pages(folio));
 274	}
 
 275}
 276
 277/*
 278 * Writeback is about to end against a folio which has been marked for
 279 * immediate reclaim.  If it still appears to be reclaimable, move it
 280 * to the tail of the inactive list.
 281 *
 282 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 283 */
 284void folio_rotate_reclaimable(struct folio *folio)
 285{
 286	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
 287	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
 288		struct folio_batch *fbatch;
 289		unsigned long flags;
 290
 291		folio_get(folio);
 292		local_lock_irqsave(&lru_rotate.lock, flags);
 293		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
 294		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
 
 295		local_unlock_irqrestore(&lru_rotate.lock, flags);
 296	}
 297}
 298
 299void lru_note_cost(struct lruvec *lruvec, bool file,
 300		   unsigned int nr_io, unsigned int nr_rotated)
 301{
 302	unsigned long cost;
 303
 304	/*
 305	 * Reflect the relative cost of incurring IO and spending CPU
 306	 * time on rotations. This doesn't attempt to make a precise
 307	 * comparison, it just says: if reloads are about comparable
 308	 * between the LRU lists, or rotations are overwhelmingly
 309	 * different between them, adjust scan balance for CPU work.
 310	 */
 311	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
 312
 313	do {
 314		unsigned long lrusize;
 315
 316		/*
 317		 * Hold lruvec->lru_lock is safe here, since
 318		 * 1) The pinned lruvec in reclaim, or
 319		 * 2) From a pre-LRU page during refault (which also holds the
 320		 *    rcu lock, so would be safe even if the page was on the LRU
 321		 *    and could move simultaneously to a new lruvec).
 322		 */
 323		spin_lock_irq(&lruvec->lru_lock);
 324		/* Record cost event */
 325		if (file)
 326			lruvec->file_cost += cost;
 327		else
 328			lruvec->anon_cost += cost;
 329
 330		/*
 331		 * Decay previous events
 332		 *
 333		 * Because workloads change over time (and to avoid
 334		 * overflow) we keep these statistics as a floating
 335		 * average, which ends up weighing recent refaults
 336		 * more than old ones.
 337		 */
 338		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 339			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 340			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 341			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 342
 343		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 344			lruvec->file_cost /= 2;
 345			lruvec->anon_cost /= 2;
 346		}
 347		spin_unlock_irq(&lruvec->lru_lock);
 348	} while ((lruvec = parent_lruvec(lruvec)));
 349}
 350
 351void lru_note_cost_refault(struct folio *folio)
 352{
 353	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 354		      folio_nr_pages(folio), 0);
 355}
 356
 357static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
 358{
 359	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
 360		long nr_pages = folio_nr_pages(folio);
 361
 362		lruvec_del_folio(lruvec, folio);
 363		folio_set_active(folio);
 364		lruvec_add_folio(lruvec, folio);
 365		trace_mm_lru_activate(folio);
 366
 367		__count_vm_events(PGACTIVATE, nr_pages);
 368		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 369				     nr_pages);
 370	}
 371}
 372
 373#ifdef CONFIG_SMP
 374static void folio_activate_drain(int cpu)
 375{
 376	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
 
 
 
 
 377
 378	if (folio_batch_count(fbatch))
 379		folio_batch_move_lru(fbatch, folio_activate_fn);
 
 380}
 381
 382void folio_activate(struct folio *folio)
 383{
 384	if (folio_test_lru(folio) && !folio_test_active(folio) &&
 385	    !folio_test_unevictable(folio)) {
 386		struct folio_batch *fbatch;
 387
 388		folio_get(folio);
 389		local_lock(&cpu_fbatches.lock);
 390		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
 391		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
 392		local_unlock(&cpu_fbatches.lock);
 
 393	}
 394}
 395
 396#else
 397static inline void folio_activate_drain(int cpu)
 398{
 399}
 400
 401void folio_activate(struct folio *folio)
 402{
 403	struct lruvec *lruvec;
 404
 405	if (folio_test_clear_lru(folio)) {
 406		lruvec = folio_lruvec_lock_irq(folio);
 407		folio_activate_fn(lruvec, folio);
 
 408		unlock_page_lruvec_irq(lruvec);
 409		folio_set_lru(folio);
 410	}
 411}
 412#endif
 413
 414static void __lru_cache_activate_folio(struct folio *folio)
 415{
 416	struct folio_batch *fbatch;
 417	int i;
 418
 419	local_lock(&cpu_fbatches.lock);
 420	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 421
 422	/*
 423	 * Search backwards on the optimistic assumption that the folio being
 424	 * activated has just been added to this batch. Note that only
 425	 * the local batch is examined as a !LRU folio could be in the
 426	 * process of being released, reclaimed, migrated or on a remote
 427	 * batch that is currently being drained. Furthermore, marking
 428	 * a remote batch's folio active potentially hits a race where
 429	 * a folio is marked active just after it is added to the inactive
 430	 * list causing accounting errors and BUG_ON checks to trigger.
 431	 */
 432	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
 433		struct folio *batch_folio = fbatch->folios[i];
 434
 435		if (batch_folio == folio) {
 436			folio_set_active(folio);
 437			break;
 438		}
 439	}
 440
 441	local_unlock(&cpu_fbatches.lock);
 442}
 443
 444#ifdef CONFIG_LRU_GEN
 445static void folio_inc_refs(struct folio *folio)
 446{
 447	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 448
 449	if (folio_test_unevictable(folio))
 450		return;
 451
 452	if (!folio_test_referenced(folio)) {
 453		folio_set_referenced(folio);
 454		return;
 455	}
 456
 457	if (!folio_test_workingset(folio)) {
 458		folio_set_workingset(folio);
 459		return;
 460	}
 461
 462	/* see the comment on MAX_NR_TIERS */
 463	do {
 464		new_flags = old_flags & LRU_REFS_MASK;
 465		if (new_flags == LRU_REFS_MASK)
 466			break;
 467
 468		new_flags += BIT(LRU_REFS_PGOFF);
 469		new_flags |= old_flags & ~LRU_REFS_MASK;
 470	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 471}
 472#else
 473static void folio_inc_refs(struct folio *folio)
 474{
 475}
 476#endif /* CONFIG_LRU_GEN */
 477
 478/*
 479 * Mark a page as having seen activity.
 480 *
 481 * inactive,unreferenced	->	inactive,referenced
 482 * inactive,referenced		->	active,unreferenced
 483 * active,unreferenced		->	active,referenced
 484 *
 485 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 486 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 487 */
 488void folio_mark_accessed(struct folio *folio)
 489{
 490	if (lru_gen_enabled()) {
 491		folio_inc_refs(folio);
 492		return;
 493	}
 494
 495	if (!folio_test_referenced(folio)) {
 496		folio_set_referenced(folio);
 497	} else if (folio_test_unevictable(folio)) {
 498		/*
 499		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 500		 * this list is never rotated or maintained, so marking an
 501		 * unevictable page accessed has no effect.
 502		 */
 503	} else if (!folio_test_active(folio)) {
 504		/*
 505		 * If the folio is on the LRU, queue it for activation via
 506		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
 507		 * folio_batch, mark it active and it'll be moved to the active
 508		 * LRU on the next drain.
 509		 */
 510		if (folio_test_lru(folio))
 511			folio_activate(folio);
 512		else
 513			__lru_cache_activate_folio(folio);
 514		folio_clear_referenced(folio);
 515		workingset_activation(folio);
 516	}
 517	if (folio_test_idle(folio))
 518		folio_clear_idle(folio);
 519}
 520EXPORT_SYMBOL(folio_mark_accessed);
 521
 522/**
 523 * folio_add_lru - Add a folio to an LRU list.
 524 * @folio: The folio to be added to the LRU.
 525 *
 526 * Queue the folio for addition to the LRU. The decision on whether
 527 * to add the page to the [in]active [file|anon] list is deferred until the
 528 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
 529 * have the folio added to the active list using folio_mark_accessed().
 530 */
 531void folio_add_lru(struct folio *folio)
 532{
 533	struct folio_batch *fbatch;
 534
 535	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
 536			folio_test_unevictable(folio), folio);
 537	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 538
 539	/* see the comment in lru_gen_add_folio() */
 540	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
 541	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
 542		folio_set_active(folio);
 543
 544	folio_get(folio);
 545	local_lock(&cpu_fbatches.lock);
 546	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 547	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
 548	local_unlock(&cpu_fbatches.lock);
 
 549}
 550EXPORT_SYMBOL(folio_add_lru);
 551
 552/**
 553 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
 554 * @folio: The folio to be added to the LRU.
 555 * @vma: VMA in which the folio is mapped.
 556 *
 557 * If the VMA is mlocked, @folio is added to the unevictable list.
 558 * Otherwise, it is treated the same way as folio_add_lru().
 559 */
 560void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
 
 561{
 562	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 563
 564	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 565		mlock_new_page(&folio->page);
 566	else
 567		folio_add_lru(folio);
 
 
 
 
 
 
 
 
 
 
 568}
 569
 570/*
 571 * If the folio cannot be invalidated, it is moved to the
 572 * inactive list to speed up its reclaim.  It is moved to the
 573 * head of the list, rather than the tail, to give the flusher
 574 * threads some time to write it out, as this is much more
 575 * effective than the single-page writeout from reclaim.
 576 *
 577 * If the folio isn't mapped and dirty/writeback, the folio
 578 * could be reclaimed asap using the reclaim flag.
 579 *
 580 * 1. active, mapped folio -> none
 581 * 2. active, dirty/writeback folio -> inactive, head, reclaim
 582 * 3. inactive, mapped folio -> none
 583 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
 584 * 5. inactive, clean -> inactive, tail
 585 * 6. Others -> none
 586 *
 587 * In 4, it moves to the head of the inactive list so the folio is
 588 * written out by flusher threads as this is much more efficient
 589 * than the single-page writeout from reclaim.
 590 */
 591static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
 592{
 593	bool active = folio_test_active(folio);
 594	long nr_pages = folio_nr_pages(folio);
 595
 596	if (folio_test_unevictable(folio))
 597		return;
 598
 599	/* Some processes are using the folio */
 600	if (folio_mapped(folio))
 601		return;
 602
 603	lruvec_del_folio(lruvec, folio);
 604	folio_clear_active(folio);
 605	folio_clear_referenced(folio);
 606
 607	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
 608		/*
 609		 * Setting the reclaim flag could race with
 610		 * folio_end_writeback() and confuse readahead.  But the
 611		 * race window is _really_ small and  it's not a critical
 612		 * problem.
 613		 */
 614		lruvec_add_folio(lruvec, folio);
 615		folio_set_reclaim(folio);
 616	} else {
 617		/*
 618		 * The folio's writeback ended while it was in the batch.
 619		 * We move that folio to the tail of the inactive list.
 620		 */
 621		lruvec_add_folio_tail(lruvec, folio);
 622		__count_vm_events(PGROTATED, nr_pages);
 623	}
 624
 625	if (active) {
 626		__count_vm_events(PGDEACTIVATE, nr_pages);
 627		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 628				     nr_pages);
 629	}
 630}
 631
 632static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
 633{
 634	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
 635		long nr_pages = folio_nr_pages(folio);
 636
 637		lruvec_del_folio(lruvec, folio);
 638		folio_clear_active(folio);
 639		folio_clear_referenced(folio);
 640		lruvec_add_folio(lruvec, folio);
 641
 642		__count_vm_events(PGDEACTIVATE, nr_pages);
 643		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 644				     nr_pages);
 645	}
 646}
 647
 648static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
 649{
 650	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 651	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
 652		long nr_pages = folio_nr_pages(folio);
 653
 654		lruvec_del_folio(lruvec, folio);
 655		folio_clear_active(folio);
 656		folio_clear_referenced(folio);
 657		/*
 658		 * Lazyfree folios are clean anonymous folios.  They have
 659		 * the swapbacked flag cleared, to distinguish them from normal
 660		 * anonymous folios
 661		 */
 662		folio_clear_swapbacked(folio);
 663		lruvec_add_folio(lruvec, folio);
 664
 665		__count_vm_events(PGLAZYFREE, nr_pages);
 666		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 667				     nr_pages);
 668	}
 669}
 670
 671/*
 672 * Drain pages out of the cpu's folio_batch.
 673 * Either "cpu" is the current CPU, and preemption has already been
 674 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 675 */
 676void lru_add_drain_cpu(int cpu)
 677{
 678	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 679	struct folio_batch *fbatch = &fbatches->lru_add;
 680
 681	if (folio_batch_count(fbatch))
 682		folio_batch_move_lru(fbatch, lru_add_fn);
 683
 684	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
 685	/* Disabling interrupts below acts as a compiler barrier. */
 686	if (data_race(folio_batch_count(fbatch))) {
 687		unsigned long flags;
 688
 689		/* No harm done if a racing interrupt already did this */
 690		local_lock_irqsave(&lru_rotate.lock, flags);
 691		folio_batch_move_lru(fbatch, lru_move_tail_fn);
 692		local_unlock_irqrestore(&lru_rotate.lock, flags);
 693	}
 694
 695	fbatch = &fbatches->lru_deactivate_file;
 696	if (folio_batch_count(fbatch))
 697		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
 698
 699	fbatch = &fbatches->lru_deactivate;
 700	if (folio_batch_count(fbatch))
 701		folio_batch_move_lru(fbatch, lru_deactivate_fn);
 702
 703	fbatch = &fbatches->lru_lazyfree;
 704	if (folio_batch_count(fbatch))
 705		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
 706
 707	folio_activate_drain(cpu);
 
 708}
 709
 710/**
 711 * deactivate_file_folio() - Deactivate a file folio.
 712 * @folio: Folio to deactivate.
 713 *
 714 * This function hints to the VM that @folio is a good reclaim candidate,
 715 * for example if its invalidation fails due to the folio being dirty
 716 * or under writeback.
 717 *
 718 * Context: Caller holds a reference on the folio.
 719 */
 720void deactivate_file_folio(struct folio *folio)
 721{
 722	struct folio_batch *fbatch;
 723
 724	/* Deactivating an unevictable folio will not accelerate reclaim */
 725	if (folio_test_unevictable(folio))
 
 726		return;
 727
 728	folio_get(folio);
 729	local_lock(&cpu_fbatches.lock);
 730	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
 731	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
 732	local_unlock(&cpu_fbatches.lock);
 
 
 
 
 
 733}
 734
 735/*
 736 * deactivate_page - deactivate a page
 737 * @page: page to deactivate
 738 *
 739 * deactivate_page() moves @page to the inactive list if @page was on the active
 740 * list and was not an unevictable page.  This is done to accelerate the reclaim
 741 * of @page.
 742 */
 743void deactivate_page(struct page *page)
 744{
 745	struct folio *folio = page_folio(page);
 
 746
 747	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
 748	    (folio_test_active(folio) || lru_gen_enabled())) {
 749		struct folio_batch *fbatch;
 750
 751		folio_get(folio);
 752		local_lock(&cpu_fbatches.lock);
 753		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
 754		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
 755		local_unlock(&cpu_fbatches.lock);
 756	}
 757}
 758
 759/**
 760 * mark_page_lazyfree - make an anon page lazyfree
 761 * @page: page to deactivate
 762 *
 763 * mark_page_lazyfree() moves @page to the inactive file list.
 764 * This is done to accelerate the reclaim of @page.
 765 */
 766void mark_page_lazyfree(struct page *page)
 767{
 768	struct folio *folio = page_folio(page);
 769
 770	if (folio_test_lru(folio) && folio_test_anon(folio) &&
 771	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
 772	    !folio_test_unevictable(folio)) {
 773		struct folio_batch *fbatch;
 774
 775		folio_get(folio);
 776		local_lock(&cpu_fbatches.lock);
 777		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
 778		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
 779		local_unlock(&cpu_fbatches.lock);
 780	}
 781}
 782
 783void lru_add_drain(void)
 784{
 785	local_lock(&cpu_fbatches.lock);
 786	lru_add_drain_cpu(smp_processor_id());
 787	local_unlock(&cpu_fbatches.lock);
 788	mlock_page_drain_local();
 789}
 790
 791/*
 792 * It's called from per-cpu workqueue context in SMP case so
 793 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 794 * the same cpu. It shouldn't be a problem in !SMP case since
 795 * the core is only one and the locks will disable preemption.
 796 */
 797static void lru_add_and_bh_lrus_drain(void)
 798{
 799	local_lock(&cpu_fbatches.lock);
 800	lru_add_drain_cpu(smp_processor_id());
 801	local_unlock(&cpu_fbatches.lock);
 802	invalidate_bh_lrus_cpu();
 803	mlock_page_drain_local();
 804}
 805
 806void lru_add_drain_cpu_zone(struct zone *zone)
 807{
 808	local_lock(&cpu_fbatches.lock);
 809	lru_add_drain_cpu(smp_processor_id());
 810	drain_local_pages(zone);
 811	local_unlock(&cpu_fbatches.lock);
 812	mlock_page_drain_local();
 813}
 814
 815#ifdef CONFIG_SMP
 816
 817static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 818
 819static void lru_add_drain_per_cpu(struct work_struct *dummy)
 820{
 821	lru_add_and_bh_lrus_drain();
 822}
 823
 824static bool cpu_needs_drain(unsigned int cpu)
 825{
 826	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 827
 828	/* Check these in order of likelihood that they're not zero */
 829	return folio_batch_count(&fbatches->lru_add) ||
 830		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
 831		folio_batch_count(&fbatches->lru_deactivate_file) ||
 832		folio_batch_count(&fbatches->lru_deactivate) ||
 833		folio_batch_count(&fbatches->lru_lazyfree) ||
 834		folio_batch_count(&fbatches->activate) ||
 835		need_mlock_page_drain(cpu) ||
 836		has_bh_in_lru(cpu, NULL);
 837}
 838
 839/*
 840 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 841 * kworkers being shut down before our page_alloc_cpu_dead callback is
 842 * executed on the offlined cpu.
 843 * Calling this function with cpu hotplug locks held can actually lead
 844 * to obscure indirect dependencies via WQ context.
 845 */
 846static inline void __lru_add_drain_all(bool force_all_cpus)
 847{
 848	/*
 849	 * lru_drain_gen - Global pages generation number
 850	 *
 851	 * (A) Definition: global lru_drain_gen = x implies that all generations
 852	 *     0 < n <= x are already *scheduled* for draining.
 853	 *
 854	 * This is an optimization for the highly-contended use case where a
 855	 * user space workload keeps constantly generating a flow of pages for
 856	 * each CPU.
 857	 */
 858	static unsigned int lru_drain_gen;
 859	static struct cpumask has_work;
 860	static DEFINE_MUTEX(lock);
 861	unsigned cpu, this_gen;
 862
 863	/*
 864	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 865	 * initialized.
 866	 */
 867	if (WARN_ON(!mm_percpu_wq))
 868		return;
 869
 870	/*
 871	 * Guarantee folio_batch counter stores visible by this CPU
 872	 * are visible to other CPUs before loading the current drain
 873	 * generation.
 874	 */
 875	smp_mb();
 876
 877	/*
 878	 * (B) Locally cache global LRU draining generation number
 879	 *
 880	 * The read barrier ensures that the counter is loaded before the mutex
 881	 * is taken. It pairs with smp_mb() inside the mutex critical section
 882	 * at (D).
 883	 */
 884	this_gen = smp_load_acquire(&lru_drain_gen);
 885
 886	mutex_lock(&lock);
 887
 888	/*
 889	 * (C) Exit the draining operation if a newer generation, from another
 890	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 891	 */
 892	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 893		goto done;
 894
 895	/*
 896	 * (D) Increment global generation number
 897	 *
 898	 * Pairs with smp_load_acquire() at (B), outside of the critical
 899	 * section. Use a full memory barrier to guarantee that the
 900	 * new global drain generation number is stored before loading
 901	 * folio_batch counters.
 902	 *
 903	 * This pairing must be done here, before the for_each_online_cpu loop
 904	 * below which drains the page vectors.
 905	 *
 906	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 907	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 908	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 909	 * along, adds some pages to its per-cpu vectors, then calls
 910	 * lru_add_drain_all().
 911	 *
 912	 * If the paired barrier is done at any later step, e.g. after the
 913	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 914	 * added pages.
 915	 */
 916	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 917	smp_mb();
 918
 919	cpumask_clear(&has_work);
 920	for_each_online_cpu(cpu) {
 921		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 922
 923		if (cpu_needs_drain(cpu)) {
 
 
 
 
 
 
 
 924			INIT_WORK(work, lru_add_drain_per_cpu);
 925			queue_work_on(cpu, mm_percpu_wq, work);
 926			__cpumask_set_cpu(cpu, &has_work);
 927		}
 928	}
 929
 930	for_each_cpu(cpu, &has_work)
 931		flush_work(&per_cpu(lru_add_drain_work, cpu));
 932
 933done:
 934	mutex_unlock(&lock);
 935}
 936
 937void lru_add_drain_all(void)
 938{
 939	__lru_add_drain_all(false);
 940}
 941#else
 942void lru_add_drain_all(void)
 943{
 944	lru_add_drain();
 945}
 946#endif /* CONFIG_SMP */
 947
 948atomic_t lru_disable_count = ATOMIC_INIT(0);
 949
 950/*
 951 * lru_cache_disable() needs to be called before we start compiling
 952 * a list of pages to be migrated using isolate_lru_page().
 953 * It drains pages on LRU cache and then disable on all cpus until
 954 * lru_cache_enable is called.
 955 *
 956 * Must be paired with a call to lru_cache_enable().
 957 */
 958void lru_cache_disable(void)
 959{
 960	atomic_inc(&lru_disable_count);
 
 961	/*
 962	 * Readers of lru_disable_count are protected by either disabling
 963	 * preemption or rcu_read_lock:
 964	 *
 965	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
 966	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
 967	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
 968	 *
 969	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 970	 * preempt_disable() regions of code. So any CPU which sees
 971	 * lru_disable_count = 0 will have exited the critical
 972	 * section when synchronize_rcu() returns.
 973	 */
 974	synchronize_rcu_expedited();
 975#ifdef CONFIG_SMP
 976	__lru_add_drain_all(true);
 977#else
 978	lru_add_and_bh_lrus_drain();
 979#endif
 980}
 981
 982/**
 983 * release_pages - batched put_page()
 984 * @arg: array of pages to release
 985 * @nr: number of pages
 986 *
 987 * Decrement the reference count on all the pages in @arg.  If it
 988 * fell to zero, remove the page from the LRU and free it.
 989 *
 990 * Note that the argument can be an array of pages, encoded pages,
 991 * or folio pointers. We ignore any encoded bits, and turn any of
 992 * them into just a folio that gets free'd.
 993 */
 994void release_pages(release_pages_arg arg, int nr)
 995{
 996	int i;
 997	struct encoded_page **encoded = arg.encoded_pages;
 998	LIST_HEAD(pages_to_free);
 999	struct lruvec *lruvec = NULL;
1000	unsigned long flags = 0;
1001	unsigned int lock_batch;
1002
1003	for (i = 0; i < nr; i++) {
1004		struct folio *folio;
1005
1006		/* Turn any of the argument types into a folio */
1007		folio = page_folio(encoded_page_ptr(encoded[i]));
1008
1009		/*
1010		 * Make sure the IRQ-safe lock-holding time does not get
1011		 * excessive with a continuous string of pages from the
1012		 * same lruvec. The lock is held only if lruvec != NULL.
1013		 */
1014		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
1015			unlock_page_lruvec_irqrestore(lruvec, flags);
1016			lruvec = NULL;
1017		}
1018
1019		if (is_huge_zero_page(&folio->page))
 
1020			continue;
1021
1022		if (folio_is_zone_device(folio)) {
1023			if (lruvec) {
1024				unlock_page_lruvec_irqrestore(lruvec, flags);
1025				lruvec = NULL;
1026			}
1027			if (put_devmap_managed_page(&folio->page))
 
 
 
 
 
 
 
1028				continue;
1029			if (folio_put_testzero(folio))
1030				free_zone_device_page(&folio->page);
 
1031			continue;
1032		}
1033
1034		if (!folio_put_testzero(folio))
1035			continue;
1036
1037		if (folio_test_large(folio)) {
1038			if (lruvec) {
1039				unlock_page_lruvec_irqrestore(lruvec, flags);
1040				lruvec = NULL;
1041			}
1042			__folio_put_large(folio);
1043			continue;
1044		}
1045
1046		if (folio_test_lru(folio)) {
1047			struct lruvec *prev_lruvec = lruvec;
1048
1049			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1050									&flags);
1051			if (prev_lruvec != lruvec)
1052				lock_batch = 0;
1053
1054			lruvec_del_folio(lruvec, folio);
1055			__folio_clear_lru_flags(folio);
1056		}
1057
1058		/*
1059		 * In rare cases, when truncation or holepunching raced with
1060		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1061		 * found set here.  This does not indicate a problem, unless
1062		 * "unevictable_pgs_cleared" appears worryingly large.
1063		 */
1064		if (unlikely(folio_test_mlocked(folio))) {
1065			__folio_clear_mlocked(folio);
1066			zone_stat_sub_folio(folio, NR_MLOCK);
1067			count_vm_event(UNEVICTABLE_PGCLEARED);
1068		}
1069
1070		list_add(&folio->lru, &pages_to_free);
1071	}
1072	if (lruvec)
1073		unlock_page_lruvec_irqrestore(lruvec, flags);
1074
1075	mem_cgroup_uncharge_list(&pages_to_free);
1076	free_unref_page_list(&pages_to_free);
1077}
1078EXPORT_SYMBOL(release_pages);
1079
1080/*
1081 * The pages which we're about to release may be in the deferred lru-addition
1082 * queues.  That would prevent them from really being freed right now.  That's
1083 * OK from a correctness point of view but is inefficient - those pages may be
1084 * cache-warm and we want to give them back to the page allocator ASAP.
1085 *
1086 * So __pagevec_release() will drain those queues here.
1087 * folio_batch_move_lru() calls folios_put() directly to avoid
1088 * mutual recursion.
1089 */
1090void __pagevec_release(struct pagevec *pvec)
1091{
1092	if (!pvec->percpu_pvec_drained) {
1093		lru_add_drain();
1094		pvec->percpu_pvec_drained = true;
1095	}
1096	release_pages(pvec->pages, pagevec_count(pvec));
1097	pagevec_reinit(pvec);
1098}
1099EXPORT_SYMBOL(__pagevec_release);
1100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101/**
1102 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1103 * @fbatch: The batch to prune
1104 *
1105 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1106 * entries.  This function prunes all the non-folio entries from @fbatch
1107 * without leaving holes, so that it can be passed on to folio-only batch
1108 * operations.
1109 */
1110void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1111{
1112	unsigned int i, j;
1113
1114	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1115		struct folio *folio = fbatch->folios[i];
1116		if (!xa_is_value(folio))
1117			fbatch->folios[j++] = folio;
1118	}
1119	fbatch->nr = j;
1120}
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1123		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1124		xa_mark_t tag)
1125{
1126	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1127					PAGEVEC_SIZE, pvec->pages);
1128	return pagevec_count(pvec);
1129}
1130EXPORT_SYMBOL(pagevec_lookup_range_tag);
1131
1132/*
1133 * Perform any setup for the swap system
1134 */
1135void __init swap_setup(void)
1136{
1137	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1138
1139	/* Use a smaller cluster for small-memory machines */
1140	if (megs < 16)
1141		page_cluster = 2;
1142	else
1143		page_cluster = 3;
1144	/*
1145	 * Right now other parts of the system means that we
1146	 * _really_ don't want to cluster much more
1147	 */
1148}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? */
  47int page_cluster;
 
  48
  49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  50struct lru_rotate {
  51	local_lock_t lock;
  52	struct pagevec pvec;
  53};
  54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  55	.lock = INIT_LOCAL_LOCK(lock),
  56};
  57
  58/*
  59 * The following struct pagevec are grouped together because they are protected
  60 * by disabling preemption (and interrupts remain enabled).
  61 */
  62struct lru_pvecs {
  63	local_lock_t lock;
  64	struct pagevec lru_add;
  65	struct pagevec lru_deactivate_file;
  66	struct pagevec lru_deactivate;
  67	struct pagevec lru_lazyfree;
  68#ifdef CONFIG_SMP
  69	struct pagevec activate_page;
  70#endif
  71};
  72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  73	.lock = INIT_LOCAL_LOCK(lock),
  74};
  75
  76/*
  77 * This path almost never happens for VM activity - pages are normally
  78 * freed via pagevecs.  But it gets used by networking.
  79 */
  80static void __page_cache_release(struct page *page)
  81{
  82	if (PageLRU(page)) {
  83		struct lruvec *lruvec;
  84		unsigned long flags;
  85
  86		lruvec = lock_page_lruvec_irqsave(page, &flags);
  87		del_page_from_lru_list(page, lruvec);
  88		__clear_page_lru_flags(page);
  89		unlock_page_lruvec_irqrestore(lruvec, flags);
  90	}
  91	__ClearPageWaiters(page);
 
 
 
 
 
 
 
  92}
  93
  94static void __put_single_page(struct page *page)
  95{
  96	__page_cache_release(page);
  97	mem_cgroup_uncharge(page);
  98	free_unref_page(page, 0);
  99}
 100
 101static void __put_compound_page(struct page *page)
 102{
 103	/*
 104	 * __page_cache_release() is supposed to be called for thp, not for
 105	 * hugetlb. This is because hugetlb page does never have PageLRU set
 106	 * (it's never listed to any LRU lists) and no memcg routines should
 107	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 108	 */
 109	if (!PageHuge(page))
 110		__page_cache_release(page);
 111	destroy_compound_page(page);
 112}
 113
 114void __put_page(struct page *page)
 115{
 116	if (is_zone_device_page(page)) {
 117		put_dev_pagemap(page->pgmap);
 118
 119		/*
 120		 * The page belongs to the device that created pgmap. Do
 121		 * not return it to page allocator.
 122		 */
 123		return;
 124	}
 125
 126	if (unlikely(PageCompound(page)))
 127		__put_compound_page(page);
 128	else
 129		__put_single_page(page);
 130}
 131EXPORT_SYMBOL(__put_page);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.  Currently
 138 * used by read_cache_pages() and related error recovery code.
 139 */
 140void put_pages_list(struct list_head *pages)
 141{
 142	while (!list_empty(pages)) {
 143		struct page *victim;
 144
 145		victim = lru_to_page(pages);
 146		list_del(&victim->lru);
 147		put_page(victim);
 
 
 
 
 
 
 
 
 148	}
 
 
 
 149}
 150EXPORT_SYMBOL(put_pages_list);
 151
 152/*
 153 * get_kernel_pages() - pin kernel pages in memory
 154 * @kiov:	An array of struct kvec structures
 155 * @nr_segs:	number of segments to pin
 156 * @write:	pinning for read/write, currently ignored
 157 * @pages:	array that receives pointers to the pages pinned.
 158 *		Should be at least nr_segs long.
 159 *
 160 * Returns number of pages pinned. This may be fewer than the number
 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 162 * were pinned, returns -errno. Each page returned must be released
 163 * with a put_page() call when it is finished with.
 164 */
 165int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 166		struct page **pages)
 167{
 168	int seg;
 169
 170	for (seg = 0; seg < nr_segs; seg++) {
 171		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 172			return seg;
 173
 174		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 175		get_page(pages[seg]);
 176	}
 177
 178	return seg;
 179}
 180EXPORT_SYMBOL_GPL(get_kernel_pages);
 181
 182/*
 183 * get_kernel_page() - pin a kernel page in memory
 184 * @start:	starting kernel address
 185 * @write:	pinning for read/write, currently ignored
 186 * @pages:	array that receives pointer to the page pinned.
 187 *		Must be at least nr_segs long.
 188 *
 189 * Returns 1 if page is pinned. If the page was not pinned, returns
 190 * -errno. The page returned must be released with a put_page() call
 191 * when it is finished with.
 192 */
 193int get_kernel_page(unsigned long start, int write, struct page **pages)
 194{
 195	const struct kvec kiov = {
 196		.iov_base = (void *)start,
 197		.iov_len = PAGE_SIZE
 198	};
 199
 200	return get_kernel_pages(&kiov, 1, write, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201}
 202EXPORT_SYMBOL_GPL(get_kernel_page);
 203
 204static void pagevec_lru_move_fn(struct pagevec *pvec,
 205	void (*move_fn)(struct page *page, struct lruvec *lruvec))
 206{
 207	int i;
 208	struct lruvec *lruvec = NULL;
 209	unsigned long flags = 0;
 210
 211	for (i = 0; i < pagevec_count(pvec); i++) {
 212		struct page *page = pvec->pages[i];
 213
 214		/* block memcg migration during page moving between lru */
 215		if (!TestClearPageLRU(page))
 216			continue;
 217
 218		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
 219		(*move_fn)(page, lruvec);
 220
 221		SetPageLRU(page);
 222	}
 
 223	if (lruvec)
 224		unlock_page_lruvec_irqrestore(lruvec, flags);
 225	release_pages(pvec->pages, pvec->nr);
 226	pagevec_reinit(pvec);
 227}
 228
 229static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
 
 230{
 231	if (!PageUnevictable(page)) {
 232		del_page_from_lru_list(page, lruvec);
 233		ClearPageActive(page);
 234		add_page_to_lru_list_tail(page, lruvec);
 235		__count_vm_events(PGROTATED, thp_nr_pages(page));
 236	}
 237}
 238
 239/* return true if pagevec needs to drain */
 240static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
 241{
 242	bool ret = false;
 243
 244	if (!pagevec_add(pvec, page) || PageCompound(page) ||
 245			lru_cache_disabled())
 246		ret = true;
 247
 248	return ret;
 249}
 250
 251/*
 252 * Writeback is about to end against a page which has been marked for immediate
 253 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 254 * inactive list.
 255 *
 256 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
 257 */
 258void rotate_reclaimable_page(struct page *page)
 259{
 260	if (!PageLocked(page) && !PageDirty(page) &&
 261	    !PageUnevictable(page) && PageLRU(page)) {
 262		struct pagevec *pvec;
 263		unsigned long flags;
 264
 265		get_page(page);
 266		local_lock_irqsave(&lru_rotate.lock, flags);
 267		pvec = this_cpu_ptr(&lru_rotate.pvec);
 268		if (pagevec_add_and_need_flush(pvec, page))
 269			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 270		local_unlock_irqrestore(&lru_rotate.lock, flags);
 271	}
 272}
 273
 274void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 
 275{
 
 
 
 
 
 
 
 
 
 
 
 276	do {
 277		unsigned long lrusize;
 278
 279		/*
 280		 * Hold lruvec->lru_lock is safe here, since
 281		 * 1) The pinned lruvec in reclaim, or
 282		 * 2) From a pre-LRU page during refault (which also holds the
 283		 *    rcu lock, so would be safe even if the page was on the LRU
 284		 *    and could move simultaneously to a new lruvec).
 285		 */
 286		spin_lock_irq(&lruvec->lru_lock);
 287		/* Record cost event */
 288		if (file)
 289			lruvec->file_cost += nr_pages;
 290		else
 291			lruvec->anon_cost += nr_pages;
 292
 293		/*
 294		 * Decay previous events
 295		 *
 296		 * Because workloads change over time (and to avoid
 297		 * overflow) we keep these statistics as a floating
 298		 * average, which ends up weighing recent refaults
 299		 * more than old ones.
 300		 */
 301		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 302			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 303			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 304			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 305
 306		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 307			lruvec->file_cost /= 2;
 308			lruvec->anon_cost /= 2;
 309		}
 310		spin_unlock_irq(&lruvec->lru_lock);
 311	} while ((lruvec = parent_lruvec(lruvec)));
 312}
 313
 314void lru_note_cost_page(struct page *page)
 315{
 316	lru_note_cost(mem_cgroup_page_lruvec(page),
 317		      page_is_file_lru(page), thp_nr_pages(page));
 318}
 319
 320static void __activate_page(struct page *page, struct lruvec *lruvec)
 321{
 322	if (!PageActive(page) && !PageUnevictable(page)) {
 323		int nr_pages = thp_nr_pages(page);
 324
 325		del_page_from_lru_list(page, lruvec);
 326		SetPageActive(page);
 327		add_page_to_lru_list(page, lruvec);
 328		trace_mm_lru_activate(page);
 329
 330		__count_vm_events(PGACTIVATE, nr_pages);
 331		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 332				     nr_pages);
 333	}
 334}
 335
 336#ifdef CONFIG_SMP
 337static void activate_page_drain(int cpu)
 338{
 339	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 340
 341	if (pagevec_count(pvec))
 342		pagevec_lru_move_fn(pvec, __activate_page);
 343}
 344
 345static bool need_activate_page_drain(int cpu)
 346{
 347	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 348}
 349
 350static void activate_page(struct page *page)
 351{
 352	page = compound_head(page);
 353	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 354		struct pagevec *pvec;
 355
 356		local_lock(&lru_pvecs.lock);
 357		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 358		get_page(page);
 359		if (pagevec_add_and_need_flush(pvec, page))
 360			pagevec_lru_move_fn(pvec, __activate_page);
 361		local_unlock(&lru_pvecs.lock);
 362	}
 363}
 364
 365#else
 366static inline void activate_page_drain(int cpu)
 367{
 368}
 369
 370static void activate_page(struct page *page)
 371{
 372	struct lruvec *lruvec;
 373
 374	page = compound_head(page);
 375	if (TestClearPageLRU(page)) {
 376		lruvec = lock_page_lruvec_irq(page);
 377		__activate_page(page, lruvec);
 378		unlock_page_lruvec_irq(lruvec);
 379		SetPageLRU(page);
 380	}
 381}
 382#endif
 383
 384static void __lru_cache_activate_page(struct page *page)
 385{
 386	struct pagevec *pvec;
 387	int i;
 388
 389	local_lock(&lru_pvecs.lock);
 390	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 391
 392	/*
 393	 * Search backwards on the optimistic assumption that the page being
 394	 * activated has just been added to this pagevec. Note that only
 395	 * the local pagevec is examined as a !PageLRU page could be in the
 396	 * process of being released, reclaimed, migrated or on a remote
 397	 * pagevec that is currently being drained. Furthermore, marking
 398	 * a remote pagevec's page PageActive potentially hits a race where
 399	 * a page is marked PageActive just after it is added to the inactive
 400	 * list causing accounting errors and BUG_ON checks to trigger.
 401	 */
 402	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 403		struct page *pagevec_page = pvec->pages[i];
 404
 405		if (pagevec_page == page) {
 406			SetPageActive(page);
 407			break;
 408		}
 409	}
 410
 411	local_unlock(&lru_pvecs.lock);
 412}
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414/*
 415 * Mark a page as having seen activity.
 416 *
 417 * inactive,unreferenced	->	inactive,referenced
 418 * inactive,referenced		->	active,unreferenced
 419 * active,unreferenced		->	active,referenced
 420 *
 421 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 422 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 423 */
 424void mark_page_accessed(struct page *page)
 425{
 426	page = compound_head(page);
 
 
 
 427
 428	if (!PageReferenced(page)) {
 429		SetPageReferenced(page);
 430	} else if (PageUnevictable(page)) {
 431		/*
 432		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 433		 * this list is never rotated or maintained, so marking an
 434		 * evictable page accessed has no effect.
 435		 */
 436	} else if (!PageActive(page)) {
 437		/*
 438		 * If the page is on the LRU, queue it for activation via
 439		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 440		 * pagevec, mark it active and it'll be moved to the active
 441		 * LRU on the next drain.
 442		 */
 443		if (PageLRU(page))
 444			activate_page(page);
 445		else
 446			__lru_cache_activate_page(page);
 447		ClearPageReferenced(page);
 448		workingset_activation(page);
 449	}
 450	if (page_is_idle(page))
 451		clear_page_idle(page);
 452}
 453EXPORT_SYMBOL(mark_page_accessed);
 454
 455/**
 456 * lru_cache_add - add a page to a page list
 457 * @page: the page to be added to the LRU.
 458 *
 459 * Queue the page for addition to the LRU via pagevec. The decision on whether
 460 * to add the page to the [in]active [file|anon] list is deferred until the
 461 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 462 * have the page added to the active list using mark_page_accessed().
 463 */
 464void lru_cache_add(struct page *page)
 465{
 466	struct pagevec *pvec;
 
 
 
 
 467
 468	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 469	VM_BUG_ON_PAGE(PageLRU(page), page);
 
 
 470
 471	get_page(page);
 472	local_lock(&lru_pvecs.lock);
 473	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 474	if (pagevec_add_and_need_flush(pvec, page))
 475		__pagevec_lru_add(pvec);
 476	local_unlock(&lru_pvecs.lock);
 477}
 478EXPORT_SYMBOL(lru_cache_add);
 479
 480/**
 481 * lru_cache_add_inactive_or_unevictable
 482 * @page:  the page to be added to LRU
 483 * @vma:   vma in which page is mapped for determining reclaimability
 484 *
 485 * Place @page on the inactive or unevictable LRU list, depending on its
 486 * evictability.
 487 */
 488void lru_cache_add_inactive_or_unevictable(struct page *page,
 489					 struct vm_area_struct *vma)
 490{
 491	bool unevictable;
 492
 493	VM_BUG_ON_PAGE(PageLRU(page), page);
 494
 495	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 496	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 497		int nr_pages = thp_nr_pages(page);
 498		/*
 499		 * We use the irq-unsafe __mod_zone_page_state because this
 500		 * counter is not modified from interrupt context, and the pte
 501		 * lock is held(spinlock), which implies preemption disabled.
 502		 */
 503		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 504		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 505	}
 506	lru_cache_add(page);
 507}
 508
 509/*
 510 * If the page can not be invalidated, it is moved to the
 511 * inactive list to speed up its reclaim.  It is moved to the
 512 * head of the list, rather than the tail, to give the flusher
 513 * threads some time to write it out, as this is much more
 514 * effective than the single-page writeout from reclaim.
 515 *
 516 * If the page isn't page_mapped and dirty/writeback, the page
 517 * could reclaim asap using PG_reclaim.
 518 *
 519 * 1. active, mapped page -> none
 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 521 * 3. inactive, mapped page -> none
 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 523 * 5. inactive, clean -> inactive, tail
 524 * 6. Others -> none
 525 *
 526 * In 4, why it moves inactive's head, the VM expects the page would
 527 * be write it out by flusher threads as this is much more effective
 528 * than the single-page writeout from reclaim.
 529 */
 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
 531{
 532	bool active = PageActive(page);
 533	int nr_pages = thp_nr_pages(page);
 534
 535	if (PageUnevictable(page))
 536		return;
 537
 538	/* Some processes are using the page */
 539	if (page_mapped(page))
 540		return;
 541
 542	del_page_from_lru_list(page, lruvec);
 543	ClearPageActive(page);
 544	ClearPageReferenced(page);
 545
 546	if (PageWriteback(page) || PageDirty(page)) {
 547		/*
 548		 * PG_reclaim could be raced with end_page_writeback
 549		 * It can make readahead confusing.  But race window
 550		 * is _really_ small and  it's non-critical problem.
 
 551		 */
 552		add_page_to_lru_list(page, lruvec);
 553		SetPageReclaim(page);
 554	} else {
 555		/*
 556		 * The page's writeback ends up during pagevec
 557		 * We move that page into tail of inactive.
 558		 */
 559		add_page_to_lru_list_tail(page, lruvec);
 560		__count_vm_events(PGROTATED, nr_pages);
 561	}
 562
 563	if (active) {
 564		__count_vm_events(PGDEACTIVATE, nr_pages);
 565		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 566				     nr_pages);
 567	}
 568}
 569
 570static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
 571{
 572	if (PageActive(page) && !PageUnevictable(page)) {
 573		int nr_pages = thp_nr_pages(page);
 574
 575		del_page_from_lru_list(page, lruvec);
 576		ClearPageActive(page);
 577		ClearPageReferenced(page);
 578		add_page_to_lru_list(page, lruvec);
 579
 580		__count_vm_events(PGDEACTIVATE, nr_pages);
 581		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 582				     nr_pages);
 583	}
 584}
 585
 586static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
 587{
 588	if (PageAnon(page) && PageSwapBacked(page) &&
 589	    !PageSwapCache(page) && !PageUnevictable(page)) {
 590		int nr_pages = thp_nr_pages(page);
 591
 592		del_page_from_lru_list(page, lruvec);
 593		ClearPageActive(page);
 594		ClearPageReferenced(page);
 595		/*
 596		 * Lazyfree pages are clean anonymous pages.  They have
 597		 * PG_swapbacked flag cleared, to distinguish them from normal
 598		 * anonymous pages
 599		 */
 600		ClearPageSwapBacked(page);
 601		add_page_to_lru_list(page, lruvec);
 602
 603		__count_vm_events(PGLAZYFREE, nr_pages);
 604		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 605				     nr_pages);
 606	}
 607}
 608
 609/*
 610 * Drain pages out of the cpu's pagevecs.
 611 * Either "cpu" is the current CPU, and preemption has already been
 612 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 613 */
 614void lru_add_drain_cpu(int cpu)
 615{
 616	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 
 617
 618	if (pagevec_count(pvec))
 619		__pagevec_lru_add(pvec);
 620
 621	pvec = &per_cpu(lru_rotate.pvec, cpu);
 622	/* Disabling interrupts below acts as a compiler barrier. */
 623	if (data_race(pagevec_count(pvec))) {
 624		unsigned long flags;
 625
 626		/* No harm done if a racing interrupt already did this */
 627		local_lock_irqsave(&lru_rotate.lock, flags);
 628		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 629		local_unlock_irqrestore(&lru_rotate.lock, flags);
 630	}
 631
 632	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 633	if (pagevec_count(pvec))
 634		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 635
 636	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 637	if (pagevec_count(pvec))
 638		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 639
 640	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 641	if (pagevec_count(pvec))
 642		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 643
 644	activate_page_drain(cpu);
 645	invalidate_bh_lrus_cpu(cpu);
 646}
 647
 648/**
 649 * deactivate_file_page - forcefully deactivate a file page
 650 * @page: page to deactivate
 651 *
 652 * This function hints the VM that @page is a good reclaim candidate,
 653 * for example if its invalidation fails due to the page being dirty
 654 * or under writeback.
 
 
 655 */
 656void deactivate_file_page(struct page *page)
 657{
 658	/*
 659	 * In a workload with many unevictable page such as mprotect,
 660	 * unevictable page deactivation for accelerating reclaim is pointless.
 661	 */
 662	if (PageUnevictable(page))
 663		return;
 664
 665	if (likely(get_page_unless_zero(page))) {
 666		struct pagevec *pvec;
 667
 668		local_lock(&lru_pvecs.lock);
 669		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 670
 671		if (pagevec_add_and_need_flush(pvec, page))
 672			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 673		local_unlock(&lru_pvecs.lock);
 674	}
 675}
 676
 677/*
 678 * deactivate_page - deactivate a page
 679 * @page: page to deactivate
 680 *
 681 * deactivate_page() moves @page to the inactive list if @page was on the active
 682 * list and was not an unevictable page.  This is done to accelerate the reclaim
 683 * of @page.
 684 */
 685void deactivate_page(struct page *page)
 686{
 687	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 688		struct pagevec *pvec;
 689
 690		local_lock(&lru_pvecs.lock);
 691		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 692		get_page(page);
 693		if (pagevec_add_and_need_flush(pvec, page))
 694			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 695		local_unlock(&lru_pvecs.lock);
 
 
 
 696	}
 697}
 698
 699/**
 700 * mark_page_lazyfree - make an anon page lazyfree
 701 * @page: page to deactivate
 702 *
 703 * mark_page_lazyfree() moves @page to the inactive file list.
 704 * This is done to accelerate the reclaim of @page.
 705 */
 706void mark_page_lazyfree(struct page *page)
 707{
 708	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 709	    !PageSwapCache(page) && !PageUnevictable(page)) {
 710		struct pagevec *pvec;
 711
 712		local_lock(&lru_pvecs.lock);
 713		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 714		get_page(page);
 715		if (pagevec_add_and_need_flush(pvec, page))
 716			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 717		local_unlock(&lru_pvecs.lock);
 
 
 718	}
 719}
 720
 721void lru_add_drain(void)
 722{
 723	local_lock(&lru_pvecs.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724	lru_add_drain_cpu(smp_processor_id());
 725	local_unlock(&lru_pvecs.lock);
 
 
 726}
 727
 728void lru_add_drain_cpu_zone(struct zone *zone)
 729{
 730	local_lock(&lru_pvecs.lock);
 731	lru_add_drain_cpu(smp_processor_id());
 732	drain_local_pages(zone);
 733	local_unlock(&lru_pvecs.lock);
 
 734}
 735
 736#ifdef CONFIG_SMP
 737
 738static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 739
 740static void lru_add_drain_per_cpu(struct work_struct *dummy)
 741{
 742	lru_add_drain();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743}
 744
 745/*
 746 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 747 * kworkers being shut down before our page_alloc_cpu_dead callback is
 748 * executed on the offlined cpu.
 749 * Calling this function with cpu hotplug locks held can actually lead
 750 * to obscure indirect dependencies via WQ context.
 751 */
 752inline void __lru_add_drain_all(bool force_all_cpus)
 753{
 754	/*
 755	 * lru_drain_gen - Global pages generation number
 756	 *
 757	 * (A) Definition: global lru_drain_gen = x implies that all generations
 758	 *     0 < n <= x are already *scheduled* for draining.
 759	 *
 760	 * This is an optimization for the highly-contended use case where a
 761	 * user space workload keeps constantly generating a flow of pages for
 762	 * each CPU.
 763	 */
 764	static unsigned int lru_drain_gen;
 765	static struct cpumask has_work;
 766	static DEFINE_MUTEX(lock);
 767	unsigned cpu, this_gen;
 768
 769	/*
 770	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 771	 * initialized.
 772	 */
 773	if (WARN_ON(!mm_percpu_wq))
 774		return;
 775
 776	/*
 777	 * Guarantee pagevec counter stores visible by this CPU are visible to
 778	 * other CPUs before loading the current drain generation.
 
 779	 */
 780	smp_mb();
 781
 782	/*
 783	 * (B) Locally cache global LRU draining generation number
 784	 *
 785	 * The read barrier ensures that the counter is loaded before the mutex
 786	 * is taken. It pairs with smp_mb() inside the mutex critical section
 787	 * at (D).
 788	 */
 789	this_gen = smp_load_acquire(&lru_drain_gen);
 790
 791	mutex_lock(&lock);
 792
 793	/*
 794	 * (C) Exit the draining operation if a newer generation, from another
 795	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 796	 */
 797	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 798		goto done;
 799
 800	/*
 801	 * (D) Increment global generation number
 802	 *
 803	 * Pairs with smp_load_acquire() at (B), outside of the critical
 804	 * section. Use a full memory barrier to guarantee that the new global
 805	 * drain generation number is stored before loading pagevec counters.
 
 806	 *
 807	 * This pairing must be done here, before the for_each_online_cpu loop
 808	 * below which drains the page vectors.
 809	 *
 810	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 811	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 812	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 813	 * along, adds some pages to its per-cpu vectors, then calls
 814	 * lru_add_drain_all().
 815	 *
 816	 * If the paired barrier is done at any later step, e.g. after the
 817	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 818	 * added pages.
 819	 */
 820	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 821	smp_mb();
 822
 823	cpumask_clear(&has_work);
 824	for_each_online_cpu(cpu) {
 825		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 826
 827		if (force_all_cpus ||
 828		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 829		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 830		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 831		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 832		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 833		    need_activate_page_drain(cpu) ||
 834		    has_bh_in_lru(cpu, NULL)) {
 835			INIT_WORK(work, lru_add_drain_per_cpu);
 836			queue_work_on(cpu, mm_percpu_wq, work);
 837			__cpumask_set_cpu(cpu, &has_work);
 838		}
 839	}
 840
 841	for_each_cpu(cpu, &has_work)
 842		flush_work(&per_cpu(lru_add_drain_work, cpu));
 843
 844done:
 845	mutex_unlock(&lock);
 846}
 847
 848void lru_add_drain_all(void)
 849{
 850	__lru_add_drain_all(false);
 851}
 852#else
 853void lru_add_drain_all(void)
 854{
 855	lru_add_drain();
 856}
 857#endif /* CONFIG_SMP */
 858
 859atomic_t lru_disable_count = ATOMIC_INIT(0);
 860
 861/*
 862 * lru_cache_disable() needs to be called before we start compiling
 863 * a list of pages to be migrated using isolate_lru_page().
 864 * It drains pages on LRU cache and then disable on all cpus until
 865 * lru_cache_enable is called.
 866 *
 867 * Must be paired with a call to lru_cache_enable().
 868 */
 869void lru_cache_disable(void)
 870{
 871	atomic_inc(&lru_disable_count);
 872#ifdef CONFIG_SMP
 873	/*
 874	 * lru_add_drain_all in the force mode will schedule draining on
 875	 * all online CPUs so any calls of lru_cache_disabled wrapped by
 876	 * local_lock or preemption disabled would be ordered by that.
 877	 * The atomic operation doesn't need to have stronger ordering
 878	 * requirements because that is enforeced by the scheduling
 879	 * guarantees.
 
 
 
 
 
 880	 */
 
 
 881	__lru_add_drain_all(true);
 882#else
 883	lru_add_drain();
 884#endif
 885}
 886
 887/**
 888 * release_pages - batched put_page()
 889 * @pages: array of pages to release
 890 * @nr: number of pages
 891 *
 892 * Decrement the reference count on all the pages in @pages.  If it
 893 * fell to zero, remove the page from the LRU and free it.
 
 
 
 
 894 */
 895void release_pages(struct page **pages, int nr)
 896{
 897	int i;
 
 898	LIST_HEAD(pages_to_free);
 899	struct lruvec *lruvec = NULL;
 900	unsigned long flags;
 901	unsigned int lock_batch;
 902
 903	for (i = 0; i < nr; i++) {
 904		struct page *page = pages[i];
 
 
 
 905
 906		/*
 907		 * Make sure the IRQ-safe lock-holding time does not get
 908		 * excessive with a continuous string of pages from the
 909		 * same lruvec. The lock is held only if lruvec != NULL.
 910		 */
 911		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
 912			unlock_page_lruvec_irqrestore(lruvec, flags);
 913			lruvec = NULL;
 914		}
 915
 916		page = compound_head(page);
 917		if (is_huge_zero_page(page))
 918			continue;
 919
 920		if (is_zone_device_page(page)) {
 921			if (lruvec) {
 922				unlock_page_lruvec_irqrestore(lruvec, flags);
 923				lruvec = NULL;
 924			}
 925			/*
 926			 * ZONE_DEVICE pages that return 'false' from
 927			 * page_is_devmap_managed() do not require special
 928			 * processing, and instead, expect a call to
 929			 * put_page_testzero().
 930			 */
 931			if (page_is_devmap_managed(page)) {
 932				put_devmap_managed_page(page);
 933				continue;
 934			}
 935			if (put_page_testzero(page))
 936				put_dev_pagemap(page->pgmap);
 937			continue;
 938		}
 939
 940		if (!put_page_testzero(page))
 941			continue;
 942
 943		if (PageCompound(page)) {
 944			if (lruvec) {
 945				unlock_page_lruvec_irqrestore(lruvec, flags);
 946				lruvec = NULL;
 947			}
 948			__put_compound_page(page);
 949			continue;
 950		}
 951
 952		if (PageLRU(page)) {
 953			struct lruvec *prev_lruvec = lruvec;
 954
 955			lruvec = relock_page_lruvec_irqsave(page, lruvec,
 956									&flags);
 957			if (prev_lruvec != lruvec)
 958				lock_batch = 0;
 959
 960			del_page_from_lru_list(page, lruvec);
 961			__clear_page_lru_flags(page);
 962		}
 963
 964		__ClearPageWaiters(page);
 
 
 
 
 
 
 
 
 
 
 965
 966		list_add(&page->lru, &pages_to_free);
 967	}
 968	if (lruvec)
 969		unlock_page_lruvec_irqrestore(lruvec, flags);
 970
 971	mem_cgroup_uncharge_list(&pages_to_free);
 972	free_unref_page_list(&pages_to_free);
 973}
 974EXPORT_SYMBOL(release_pages);
 975
 976/*
 977 * The pages which we're about to release may be in the deferred lru-addition
 978 * queues.  That would prevent them from really being freed right now.  That's
 979 * OK from a correctness point of view but is inefficient - those pages may be
 980 * cache-warm and we want to give them back to the page allocator ASAP.
 981 *
 982 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 983 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 984 * mutual recursion.
 985 */
 986void __pagevec_release(struct pagevec *pvec)
 987{
 988	if (!pvec->percpu_pvec_drained) {
 989		lru_add_drain();
 990		pvec->percpu_pvec_drained = true;
 991	}
 992	release_pages(pvec->pages, pagevec_count(pvec));
 993	pagevec_reinit(pvec);
 994}
 995EXPORT_SYMBOL(__pagevec_release);
 996
 997static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
 998{
 999	int was_unevictable = TestClearPageUnevictable(page);
1000	int nr_pages = thp_nr_pages(page);
1001
1002	VM_BUG_ON_PAGE(PageLRU(page), page);
1003
1004	/*
1005	 * Page becomes evictable in two ways:
1006	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1007	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1008	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1009	 *   b) do PageLRU check before lock [clear_page_mlock]
1010	 *
1011	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1012	 * following strict ordering:
1013	 *
1014	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1015	 *
1016	 * SetPageLRU()				TestClearPageMlocked()
1017	 * smp_mb() // explicit ordering	// above provides strict
1018	 *					// ordering
1019	 * PageMlocked()			PageLRU()
1020	 *
1021	 *
1022	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1023	 * isolation, the explicit barrier will make sure that page_evictable
1024	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1025	 * can be reordered after PageMlocked check and can make '#1' to fail
1026	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1027	 * looking at the same page) and the evictable page will be stranded
1028	 * in an unevictable LRU.
1029	 */
1030	SetPageLRU(page);
1031	smp_mb__after_atomic();
1032
1033	if (page_evictable(page)) {
1034		if (was_unevictable)
1035			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1036	} else {
1037		ClearPageActive(page);
1038		SetPageUnevictable(page);
1039		if (!was_unevictable)
1040			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1041	}
1042
1043	add_page_to_lru_list(page, lruvec);
1044	trace_mm_lru_insertion(page);
1045}
1046
1047/*
1048 * Add the passed pages to the LRU, then drop the caller's refcount
1049 * on them.  Reinitialises the caller's pagevec.
1050 */
1051void __pagevec_lru_add(struct pagevec *pvec)
1052{
1053	int i;
1054	struct lruvec *lruvec = NULL;
1055	unsigned long flags = 0;
1056
1057	for (i = 0; i < pagevec_count(pvec); i++) {
1058		struct page *page = pvec->pages[i];
1059
1060		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1061		__pagevec_lru_add_fn(page, lruvec);
1062	}
1063	if (lruvec)
1064		unlock_page_lruvec_irqrestore(lruvec, flags);
1065	release_pages(pvec->pages, pvec->nr);
1066	pagevec_reinit(pvec);
1067}
1068
1069/**
1070 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1071 * @pvec:	The pagevec to prune
1072 *
1073 * find_get_entries() fills both pages and XArray value entries (aka
1074 * exceptional entries) into the pagevec.  This function prunes all
1075 * exceptionals from @pvec without leaving holes, so that it can be
1076 * passed on to page-only pagevec operations.
1077 */
1078void pagevec_remove_exceptionals(struct pagevec *pvec)
1079{
1080	int i, j;
1081
1082	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1083		struct page *page = pvec->pages[i];
1084		if (!xa_is_value(page))
1085			pvec->pages[j++] = page;
1086	}
1087	pvec->nr = j;
1088}
1089
1090/**
1091 * pagevec_lookup_range - gang pagecache lookup
1092 * @pvec:	Where the resulting pages are placed
1093 * @mapping:	The address_space to search
1094 * @start:	The starting page index
1095 * @end:	The final page index
1096 *
1097 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1098 * pages in the mapping starting from index @start and upto index @end
1099 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1100 * reference against the pages in @pvec.
1101 *
1102 * The search returns a group of mapping-contiguous pages with ascending
1103 * indexes.  There may be holes in the indices due to not-present pages. We
1104 * also update @start to index the next page for the traversal.
1105 *
1106 * pagevec_lookup_range() returns the number of pages which were found. If this
1107 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1108 * reached.
1109 */
1110unsigned pagevec_lookup_range(struct pagevec *pvec,
1111		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1112{
1113	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1114					pvec->pages);
1115	return pagevec_count(pvec);
1116}
1117EXPORT_SYMBOL(pagevec_lookup_range);
1118
1119unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1120		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1121		xa_mark_t tag)
1122{
1123	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1124					PAGEVEC_SIZE, pvec->pages);
1125	return pagevec_count(pvec);
1126}
1127EXPORT_SYMBOL(pagevec_lookup_range_tag);
1128
1129/*
1130 * Perform any setup for the swap system
1131 */
1132void __init swap_setup(void)
1133{
1134	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1135
1136	/* Use a smaller cluster for small-memory machines */
1137	if (megs < 16)
1138		page_cluster = 2;
1139	else
1140		page_cluster = 3;
1141	/*
1142	 * Right now other parts of the system means that we
1143	 * _really_ don't want to cluster much more
1144	 */
1145}
1146
1147#ifdef CONFIG_DEV_PAGEMAP_OPS
1148void put_devmap_managed_page(struct page *page)
1149{
1150	int count;
1151
1152	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1153		return;
1154
1155	count = page_ref_dec_return(page);
1156
1157	/*
1158	 * devmap page refcounts are 1-based, rather than 0-based: if
1159	 * refcount is 1, then the page is free and the refcount is
1160	 * stable because nobody holds a reference on the page.
1161	 */
1162	if (count == 1)
1163		free_devmap_managed_page(page);
1164	else if (!count)
1165		__put_page(page);
1166}
1167EXPORT_SYMBOL(put_devmap_managed_page);
1168#endif