Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/lockdep.c
   4 *
   5 * Runtime locking correctness validator
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  11 *
  12 * this code maps all the lock dependencies as they occur in a live kernel
  13 * and will warn about the following classes of locking bugs:
  14 *
  15 * - lock inversion scenarios
  16 * - circular lock dependencies
  17 * - hardirq/softirq safe/unsafe locking bugs
  18 *
  19 * Bugs are reported even if the current locking scenario does not cause
  20 * any deadlock at this point.
  21 *
  22 * I.e. if anytime in the past two locks were taken in a different order,
  23 * even if it happened for another task, even if those were different
  24 * locks (but of the same class as this lock), this code will detect it.
  25 *
  26 * Thanks to Arjan van de Ven for coming up with the initial idea of
  27 * mapping lock dependencies runtime.
  28 */
  29#define DISABLE_BRANCH_PROFILING
  30#include <linux/mutex.h>
  31#include <linux/sched.h>
  32#include <linux/sched/clock.h>
  33#include <linux/sched/task.h>
  34#include <linux/sched/mm.h>
  35#include <linux/delay.h>
  36#include <linux/module.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/stacktrace.h>
  43#include <linux/debug_locks.h>
  44#include <linux/irqflags.h>
  45#include <linux/utsname.h>
  46#include <linux/hash.h>
  47#include <linux/ftrace.h>
  48#include <linux/stringify.h>
  49#include <linux/bitmap.h>
  50#include <linux/bitops.h>
  51#include <linux/gfp.h>
  52#include <linux/random.h>
  53#include <linux/jhash.h>
  54#include <linux/nmi.h>
  55#include <linux/rcupdate.h>
  56#include <linux/kprobes.h>
  57#include <linux/lockdep.h>
  58
  59#include <asm/sections.h>
  60
  61#include "lockdep_internals.h"
  62
 
  63#include <trace/events/lock.h>
  64
  65#ifdef CONFIG_PROVE_LOCKING
  66static int prove_locking = 1;
  67module_param(prove_locking, int, 0644);
  68#else
  69#define prove_locking 0
  70#endif
  71
  72#ifdef CONFIG_LOCK_STAT
  73static int lock_stat = 1;
  74module_param(lock_stat, int, 0644);
  75#else
  76#define lock_stat 0
  77#endif
  78
  79#ifdef CONFIG_SYSCTL
  80static struct ctl_table kern_lockdep_table[] = {
  81#ifdef CONFIG_PROVE_LOCKING
  82	{
  83		.procname       = "prove_locking",
  84		.data           = &prove_locking,
  85		.maxlen         = sizeof(int),
  86		.mode           = 0644,
  87		.proc_handler   = proc_dointvec,
  88	},
  89#endif /* CONFIG_PROVE_LOCKING */
  90#ifdef CONFIG_LOCK_STAT
  91	{
  92		.procname       = "lock_stat",
  93		.data           = &lock_stat,
  94		.maxlen         = sizeof(int),
  95		.mode           = 0644,
  96		.proc_handler   = proc_dointvec,
  97	},
  98#endif /* CONFIG_LOCK_STAT */
  99	{ }
 100};
 101
 102static __init int kernel_lockdep_sysctls_init(void)
 103{
 104	register_sysctl_init("kernel", kern_lockdep_table);
 105	return 0;
 106}
 107late_initcall(kernel_lockdep_sysctls_init);
 108#endif /* CONFIG_SYSCTL */
 109
 110DEFINE_PER_CPU(unsigned int, lockdep_recursion);
 111EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
 112
 113static __always_inline bool lockdep_enabled(void)
 114{
 115	if (!debug_locks)
 116		return false;
 117
 118	if (this_cpu_read(lockdep_recursion))
 119		return false;
 120
 121	if (current->lockdep_recursion)
 122		return false;
 123
 124	return true;
 125}
 126
 127/*
 128 * lockdep_lock: protects the lockdep graph, the hashes and the
 129 *               class/list/hash allocators.
 130 *
 131 * This is one of the rare exceptions where it's justified
 132 * to use a raw spinlock - we really dont want the spinlock
 133 * code to recurse back into the lockdep code...
 134 */
 135static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 136static struct task_struct *__owner;
 137
 138static inline void lockdep_lock(void)
 139{
 140	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 141
 142	__this_cpu_inc(lockdep_recursion);
 143	arch_spin_lock(&__lock);
 144	__owner = current;
 145}
 146
 147static inline void lockdep_unlock(void)
 148{
 149	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 150
 151	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
 152		return;
 153
 154	__owner = NULL;
 155	arch_spin_unlock(&__lock);
 156	__this_cpu_dec(lockdep_recursion);
 157}
 158
 159static inline bool lockdep_assert_locked(void)
 160{
 161	return DEBUG_LOCKS_WARN_ON(__owner != current);
 162}
 163
 164static struct task_struct *lockdep_selftest_task_struct;
 165
 166
 167static int graph_lock(void)
 168{
 169	lockdep_lock();
 170	/*
 171	 * Make sure that if another CPU detected a bug while
 172	 * walking the graph we dont change it (while the other
 173	 * CPU is busy printing out stuff with the graph lock
 174	 * dropped already)
 175	 */
 176	if (!debug_locks) {
 177		lockdep_unlock();
 178		return 0;
 179	}
 180	return 1;
 181}
 182
 183static inline void graph_unlock(void)
 184{
 185	lockdep_unlock();
 186}
 187
 188/*
 189 * Turn lock debugging off and return with 0 if it was off already,
 190 * and also release the graph lock:
 191 */
 192static inline int debug_locks_off_graph_unlock(void)
 193{
 194	int ret = debug_locks_off();
 195
 196	lockdep_unlock();
 197
 198	return ret;
 199}
 200
 201unsigned long nr_list_entries;
 202static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 203static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 204
 205/*
 206 * All data structures here are protected by the global debug_lock.
 207 *
 208 * nr_lock_classes is the number of elements of lock_classes[] that is
 209 * in use.
 210 */
 211#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 212#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 213static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 214unsigned long nr_lock_classes;
 215unsigned long nr_zapped_classes;
 216unsigned long max_lock_class_idx;
 
 
 217struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 218DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 219
 220static inline struct lock_class *hlock_class(struct held_lock *hlock)
 221{
 222	unsigned int class_idx = hlock->class_idx;
 223
 224	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 225	barrier();
 226
 227	if (!test_bit(class_idx, lock_classes_in_use)) {
 228		/*
 229		 * Someone passed in garbage, we give up.
 230		 */
 231		DEBUG_LOCKS_WARN_ON(1);
 232		return NULL;
 233	}
 234
 235	/*
 236	 * At this point, if the passed hlock->class_idx is still garbage,
 237	 * we just have to live with it
 238	 */
 239	return lock_classes + class_idx;
 240}
 241
 242#ifdef CONFIG_LOCK_STAT
 243static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 244
 245static inline u64 lockstat_clock(void)
 246{
 247	return local_clock();
 248}
 249
 250static int lock_point(unsigned long points[], unsigned long ip)
 251{
 252	int i;
 253
 254	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 255		if (points[i] == 0) {
 256			points[i] = ip;
 257			break;
 258		}
 259		if (points[i] == ip)
 260			break;
 261	}
 262
 263	return i;
 264}
 265
 266static void lock_time_inc(struct lock_time *lt, u64 time)
 267{
 268	if (time > lt->max)
 269		lt->max = time;
 270
 271	if (time < lt->min || !lt->nr)
 272		lt->min = time;
 273
 274	lt->total += time;
 275	lt->nr++;
 276}
 277
 278static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 279{
 280	if (!src->nr)
 281		return;
 282
 283	if (src->max > dst->max)
 284		dst->max = src->max;
 285
 286	if (src->min < dst->min || !dst->nr)
 287		dst->min = src->min;
 288
 289	dst->total += src->total;
 290	dst->nr += src->nr;
 291}
 292
 293struct lock_class_stats lock_stats(struct lock_class *class)
 294{
 295	struct lock_class_stats stats;
 296	int cpu, i;
 297
 298	memset(&stats, 0, sizeof(struct lock_class_stats));
 299	for_each_possible_cpu(cpu) {
 300		struct lock_class_stats *pcs =
 301			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 302
 303		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 304			stats.contention_point[i] += pcs->contention_point[i];
 305
 306		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 307			stats.contending_point[i] += pcs->contending_point[i];
 308
 309		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 310		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 311
 312		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 313		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 314
 315		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 316			stats.bounces[i] += pcs->bounces[i];
 317	}
 318
 319	return stats;
 320}
 321
 322void clear_lock_stats(struct lock_class *class)
 323{
 324	int cpu;
 325
 326	for_each_possible_cpu(cpu) {
 327		struct lock_class_stats *cpu_stats =
 328			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 329
 330		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 331	}
 332	memset(class->contention_point, 0, sizeof(class->contention_point));
 333	memset(class->contending_point, 0, sizeof(class->contending_point));
 334}
 335
 336static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 337{
 338	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 339}
 340
 341static void lock_release_holdtime(struct held_lock *hlock)
 342{
 343	struct lock_class_stats *stats;
 344	u64 holdtime;
 345
 346	if (!lock_stat)
 347		return;
 348
 349	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 350
 351	stats = get_lock_stats(hlock_class(hlock));
 352	if (hlock->read)
 353		lock_time_inc(&stats->read_holdtime, holdtime);
 354	else
 355		lock_time_inc(&stats->write_holdtime, holdtime);
 356}
 357#else
 358static inline void lock_release_holdtime(struct held_lock *hlock)
 359{
 360}
 361#endif
 362
 363/*
 364 * We keep a global list of all lock classes. The list is only accessed with
 365 * the lockdep spinlock lock held. free_lock_classes is a list with free
 366 * elements. These elements are linked together by the lock_entry member in
 367 * struct lock_class.
 368 */
 369static LIST_HEAD(all_lock_classes);
 370static LIST_HEAD(free_lock_classes);
 371
 372/**
 373 * struct pending_free - information about data structures about to be freed
 374 * @zapped: Head of a list with struct lock_class elements.
 375 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 376 *	are about to be freed.
 377 */
 378struct pending_free {
 379	struct list_head zapped;
 380	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 381};
 382
 383/**
 384 * struct delayed_free - data structures used for delayed freeing
 385 *
 386 * A data structure for delayed freeing of data structures that may be
 387 * accessed by RCU readers at the time these were freed.
 388 *
 389 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 390 * @index:     Index of @pf to which freed data structures are added.
 391 * @scheduled: Whether or not an RCU callback has been scheduled.
 392 * @pf:        Array with information about data structures about to be freed.
 393 */
 394static struct delayed_free {
 395	struct rcu_head		rcu_head;
 396	int			index;
 397	int			scheduled;
 398	struct pending_free	pf[2];
 399} delayed_free;
 400
 401/*
 402 * The lockdep classes are in a hash-table as well, for fast lookup:
 403 */
 404#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 405#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 406#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 407#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 408
 409static struct hlist_head classhash_table[CLASSHASH_SIZE];
 410
 411/*
 412 * We put the lock dependency chains into a hash-table as well, to cache
 413 * their existence:
 414 */
 415#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 416#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 417#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 418#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 419
 420static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 421
 422/*
 423 * the id of held_lock
 424 */
 425static inline u16 hlock_id(struct held_lock *hlock)
 426{
 427	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
 428
 429	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
 430}
 431
 432static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
 433{
 434	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
 435}
 436
 437/*
 438 * The hash key of the lock dependency chains is a hash itself too:
 439 * it's a hash of all locks taken up to that lock, including that lock.
 440 * It's a 64-bit hash, because it's important for the keys to be
 441 * unique.
 442 */
 443static inline u64 iterate_chain_key(u64 key, u32 idx)
 444{
 445	u32 k0 = key, k1 = key >> 32;
 446
 447	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 448
 449	return k0 | (u64)k1 << 32;
 450}
 451
 452void lockdep_init_task(struct task_struct *task)
 453{
 454	task->lockdep_depth = 0; /* no locks held yet */
 455	task->curr_chain_key = INITIAL_CHAIN_KEY;
 456	task->lockdep_recursion = 0;
 457}
 458
 459static __always_inline void lockdep_recursion_inc(void)
 460{
 461	__this_cpu_inc(lockdep_recursion);
 462}
 463
 464static __always_inline void lockdep_recursion_finish(void)
 465{
 466	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
 467		__this_cpu_write(lockdep_recursion, 0);
 468}
 469
 470void lockdep_set_selftest_task(struct task_struct *task)
 471{
 472	lockdep_selftest_task_struct = task;
 473}
 474
 475/*
 476 * Debugging switches:
 477 */
 478
 479#define VERBOSE			0
 480#define VERY_VERBOSE		0
 481
 482#if VERBOSE
 483# define HARDIRQ_VERBOSE	1
 484# define SOFTIRQ_VERBOSE	1
 485#else
 486# define HARDIRQ_VERBOSE	0
 487# define SOFTIRQ_VERBOSE	0
 488#endif
 489
 490#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 491/*
 492 * Quick filtering for interesting events:
 493 */
 494static int class_filter(struct lock_class *class)
 495{
 496#if 0
 497	/* Example */
 498	if (class->name_version == 1 &&
 499			!strcmp(class->name, "lockname"))
 500		return 1;
 501	if (class->name_version == 1 &&
 502			!strcmp(class->name, "&struct->lockfield"))
 503		return 1;
 504#endif
 505	/* Filter everything else. 1 would be to allow everything else */
 506	return 0;
 507}
 508#endif
 509
 510static int verbose(struct lock_class *class)
 511{
 512#if VERBOSE
 513	return class_filter(class);
 514#endif
 515	return 0;
 516}
 517
 518static void print_lockdep_off(const char *bug_msg)
 519{
 520	printk(KERN_DEBUG "%s\n", bug_msg);
 521	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 522#ifdef CONFIG_LOCK_STAT
 523	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 524#endif
 525}
 526
 527unsigned long nr_stack_trace_entries;
 528
 529#ifdef CONFIG_PROVE_LOCKING
 530/**
 531 * struct lock_trace - single stack backtrace
 532 * @hash_entry:	Entry in a stack_trace_hash[] list.
 533 * @hash:	jhash() of @entries.
 534 * @nr_entries:	Number of entries in @entries.
 535 * @entries:	Actual stack backtrace.
 536 */
 537struct lock_trace {
 538	struct hlist_node	hash_entry;
 539	u32			hash;
 540	u32			nr_entries;
 541	unsigned long		entries[] __aligned(sizeof(unsigned long));
 542};
 543#define LOCK_TRACE_SIZE_IN_LONGS				\
 544	(sizeof(struct lock_trace) / sizeof(unsigned long))
 545/*
 546 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 547 */
 548static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 549static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 550
 551static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 552{
 553	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 554		memcmp(t1->entries, t2->entries,
 555		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 556}
 557
 558static struct lock_trace *save_trace(void)
 559{
 560	struct lock_trace *trace, *t2;
 561	struct hlist_head *hash_head;
 562	u32 hash;
 563	int max_entries;
 564
 565	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 566	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 567
 568	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 569	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 570		LOCK_TRACE_SIZE_IN_LONGS;
 571
 572	if (max_entries <= 0) {
 573		if (!debug_locks_off_graph_unlock())
 574			return NULL;
 575
 576		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 577		dump_stack();
 578
 579		return NULL;
 580	}
 581	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 582
 583	hash = jhash(trace->entries, trace->nr_entries *
 584		     sizeof(trace->entries[0]), 0);
 585	trace->hash = hash;
 586	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 587	hlist_for_each_entry(t2, hash_head, hash_entry) {
 588		if (traces_identical(trace, t2))
 589			return t2;
 590	}
 591	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 592	hlist_add_head(&trace->hash_entry, hash_head);
 593
 594	return trace;
 595}
 596
 597/* Return the number of stack traces in the stack_trace[] array. */
 598u64 lockdep_stack_trace_count(void)
 599{
 600	struct lock_trace *trace;
 601	u64 c = 0;
 602	int i;
 603
 604	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 605		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 606			c++;
 607		}
 608	}
 609
 610	return c;
 611}
 612
 613/* Return the number of stack hash chains that have at least one stack trace. */
 614u64 lockdep_stack_hash_count(void)
 615{
 616	u64 c = 0;
 617	int i;
 618
 619	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 620		if (!hlist_empty(&stack_trace_hash[i]))
 621			c++;
 622
 623	return c;
 624}
 625#endif
 626
 627unsigned int nr_hardirq_chains;
 628unsigned int nr_softirq_chains;
 629unsigned int nr_process_chains;
 630unsigned int max_lockdep_depth;
 631
 632#ifdef CONFIG_DEBUG_LOCKDEP
 633/*
 634 * Various lockdep statistics:
 635 */
 636DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 637#endif
 638
 639#ifdef CONFIG_PROVE_LOCKING
 640/*
 641 * Locking printouts:
 642 */
 643
 644#define __USAGE(__STATE)						\
 645	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 646	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 647	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 648	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 649
 650static const char *usage_str[] =
 651{
 652#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 653#include "lockdep_states.h"
 654#undef LOCKDEP_STATE
 655	[LOCK_USED] = "INITIAL USE",
 656	[LOCK_USED_READ] = "INITIAL READ USE",
 657	/* abused as string storage for verify_lock_unused() */
 658	[LOCK_USAGE_STATES] = "IN-NMI",
 659};
 660#endif
 661
 662const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 663{
 664	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 665}
 666
 667static inline unsigned long lock_flag(enum lock_usage_bit bit)
 668{
 669	return 1UL << bit;
 670}
 671
 672static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 673{
 674	/*
 675	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 676	 * irq context), which is the safest usage category.
 677	 */
 678	char c = '.';
 679
 680	/*
 681	 * The order of the following usage checks matters, which will
 682	 * result in the outcome character as follows:
 683	 *
 684	 * - '+': irq is enabled and not in irq context
 685	 * - '-': in irq context and irq is disabled
 686	 * - '?': in irq context and irq is enabled
 687	 */
 688	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 689		c = '+';
 690		if (class->usage_mask & lock_flag(bit))
 691			c = '?';
 692	} else if (class->usage_mask & lock_flag(bit))
 693		c = '-';
 694
 695	return c;
 696}
 697
 698void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 699{
 700	int i = 0;
 701
 702#define LOCKDEP_STATE(__STATE) 						\
 703	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 704	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 705#include "lockdep_states.h"
 706#undef LOCKDEP_STATE
 707
 708	usage[i] = '\0';
 709}
 710
 711static void __print_lock_name(struct lock_class *class)
 712{
 713	char str[KSYM_NAME_LEN];
 714	const char *name;
 715
 716	name = class->name;
 717	if (!name) {
 718		name = __get_key_name(class->key, str);
 719		printk(KERN_CONT "%s", name);
 720	} else {
 721		printk(KERN_CONT "%s", name);
 722		if (class->name_version > 1)
 723			printk(KERN_CONT "#%d", class->name_version);
 724		if (class->subclass)
 725			printk(KERN_CONT "/%d", class->subclass);
 726	}
 727}
 728
 729static void print_lock_name(struct lock_class *class)
 730{
 731	char usage[LOCK_USAGE_CHARS];
 732
 733	get_usage_chars(class, usage);
 734
 735	printk(KERN_CONT " (");
 736	__print_lock_name(class);
 737	printk(KERN_CONT "){%s}-{%d:%d}", usage,
 738			class->wait_type_outer ?: class->wait_type_inner,
 739			class->wait_type_inner);
 740}
 741
 742static void print_lockdep_cache(struct lockdep_map *lock)
 743{
 744	const char *name;
 745	char str[KSYM_NAME_LEN];
 746
 747	name = lock->name;
 748	if (!name)
 749		name = __get_key_name(lock->key->subkeys, str);
 750
 751	printk(KERN_CONT "%s", name);
 752}
 753
 754static void print_lock(struct held_lock *hlock)
 755{
 756	/*
 757	 * We can be called locklessly through debug_show_all_locks() so be
 758	 * extra careful, the hlock might have been released and cleared.
 759	 *
 760	 * If this indeed happens, lets pretend it does not hurt to continue
 761	 * to print the lock unless the hlock class_idx does not point to a
 762	 * registered class. The rationale here is: since we don't attempt
 763	 * to distinguish whether we are in this situation, if it just
 764	 * happened we can't count on class_idx to tell either.
 765	 */
 766	struct lock_class *lock = hlock_class(hlock);
 767
 768	if (!lock) {
 769		printk(KERN_CONT "<RELEASED>\n");
 770		return;
 771	}
 772
 773	printk(KERN_CONT "%px", hlock->instance);
 774	print_lock_name(lock);
 775	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 776}
 777
 778static void lockdep_print_held_locks(struct task_struct *p)
 779{
 780	int i, depth = READ_ONCE(p->lockdep_depth);
 781
 782	if (!depth)
 783		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 784	else
 785		printk("%d lock%s held by %s/%d:\n", depth,
 786		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 787	/*
 788	 * It's not reliable to print a task's held locks if it's not sleeping
 789	 * and it's not the current task.
 790	 */
 791	if (p != current && task_is_running(p))
 792		return;
 793	for (i = 0; i < depth; i++) {
 794		printk(" #%d: ", i);
 795		print_lock(p->held_locks + i);
 796	}
 797}
 798
 799static void print_kernel_ident(void)
 800{
 801	printk("%s %.*s %s\n", init_utsname()->release,
 802		(int)strcspn(init_utsname()->version, " "),
 803		init_utsname()->version,
 804		print_tainted());
 805}
 806
 807static int very_verbose(struct lock_class *class)
 808{
 809#if VERY_VERBOSE
 810	return class_filter(class);
 811#endif
 812	return 0;
 813}
 814
 815/*
 816 * Is this the address of a static object:
 817 */
 818#ifdef __KERNEL__
 819/*
 820 * Check if an address is part of freed initmem. After initmem is freed,
 821 * memory can be allocated from it, and such allocations would then have
 822 * addresses within the range [_stext, _end].
 823 */
 824#ifndef arch_is_kernel_initmem_freed
 825static int arch_is_kernel_initmem_freed(unsigned long addr)
 826{
 827	if (system_state < SYSTEM_FREEING_INITMEM)
 828		return 0;
 829
 830	return init_section_contains((void *)addr, 1);
 831}
 832#endif
 833
 834static int static_obj(const void *obj)
 835{
 836	unsigned long start = (unsigned long) &_stext,
 837		      end   = (unsigned long) &_end,
 838		      addr  = (unsigned long) obj;
 839
 840	if (arch_is_kernel_initmem_freed(addr))
 841		return 0;
 842
 843	/*
 844	 * static variable?
 845	 */
 846	if ((addr >= start) && (addr < end))
 847		return 1;
 848
 
 
 
 849	/*
 850	 * in-kernel percpu var?
 851	 */
 852	if (is_kernel_percpu_address(addr))
 853		return 1;
 854
 855	/*
 856	 * module static or percpu var?
 857	 */
 858	return is_module_address(addr) || is_module_percpu_address(addr);
 859}
 860#endif
 861
 862/*
 863 * To make lock name printouts unique, we calculate a unique
 864 * class->name_version generation counter. The caller must hold the graph
 865 * lock.
 866 */
 867static int count_matching_names(struct lock_class *new_class)
 868{
 869	struct lock_class *class;
 870	int count = 0;
 871
 872	if (!new_class->name)
 873		return 0;
 874
 875	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 876		if (new_class->key - new_class->subclass == class->key)
 877			return class->name_version;
 878		if (class->name && !strcmp(class->name, new_class->name))
 879			count = max(count, class->name_version);
 880	}
 881
 882	return count + 1;
 883}
 884
 885/* used from NMI context -- must be lockless */
 886static noinstr struct lock_class *
 887look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 888{
 889	struct lockdep_subclass_key *key;
 890	struct hlist_head *hash_head;
 891	struct lock_class *class;
 892
 893	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 894		instrumentation_begin();
 895		debug_locks_off();
 896		printk(KERN_ERR
 897			"BUG: looking up invalid subclass: %u\n", subclass);
 898		printk(KERN_ERR
 899			"turning off the locking correctness validator.\n");
 900		dump_stack();
 901		instrumentation_end();
 902		return NULL;
 903	}
 904
 905	/*
 906	 * If it is not initialised then it has never been locked,
 907	 * so it won't be present in the hash table.
 908	 */
 909	if (unlikely(!lock->key))
 910		return NULL;
 911
 912	/*
 913	 * NOTE: the class-key must be unique. For dynamic locks, a static
 914	 * lock_class_key variable is passed in through the mutex_init()
 915	 * (or spin_lock_init()) call - which acts as the key. For static
 916	 * locks we use the lock object itself as the key.
 917	 */
 918	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 919			sizeof(struct lockdep_map));
 920
 921	key = lock->key->subkeys + subclass;
 922
 923	hash_head = classhashentry(key);
 924
 925	/*
 926	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 927	 */
 928	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 929		return NULL;
 930
 931	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
 932		if (class->key == key) {
 933			/*
 934			 * Huh! same key, different name? Did someone trample
 935			 * on some memory? We're most confused.
 936			 */
 937			WARN_ONCE(class->name != lock->name &&
 938				  lock->key != &__lockdep_no_validate__,
 939				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
 940				  lock->name, lock->key, class->name);
 941			return class;
 942		}
 943	}
 944
 945	return NULL;
 946}
 947
 948/*
 949 * Static locks do not have their class-keys yet - for them the key is
 950 * the lock object itself. If the lock is in the per cpu area, the
 951 * canonical address of the lock (per cpu offset removed) is used.
 952 */
 953static bool assign_lock_key(struct lockdep_map *lock)
 954{
 955	unsigned long can_addr, addr = (unsigned long)lock;
 956
 957#ifdef __KERNEL__
 958	/*
 959	 * lockdep_free_key_range() assumes that struct lock_class_key
 960	 * objects do not overlap. Since we use the address of lock
 961	 * objects as class key for static objects, check whether the
 962	 * size of lock_class_key objects does not exceed the size of
 963	 * the smallest lock object.
 964	 */
 965	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 966#endif
 967
 968	if (__is_kernel_percpu_address(addr, &can_addr))
 969		lock->key = (void *)can_addr;
 970	else if (__is_module_percpu_address(addr, &can_addr))
 971		lock->key = (void *)can_addr;
 972	else if (static_obj(lock))
 973		lock->key = (void *)lock;
 974	else {
 975		/* Debug-check: all keys must be persistent! */
 976		debug_locks_off();
 977		pr_err("INFO: trying to register non-static key.\n");
 978		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
 979		pr_err("you didn't initialize this object before use?\n");
 980		pr_err("turning off the locking correctness validator.\n");
 981		dump_stack();
 982		return false;
 983	}
 984
 985	return true;
 986}
 987
 988#ifdef CONFIG_DEBUG_LOCKDEP
 989
 990/* Check whether element @e occurs in list @h */
 991static bool in_list(struct list_head *e, struct list_head *h)
 992{
 993	struct list_head *f;
 994
 995	list_for_each(f, h) {
 996		if (e == f)
 997			return true;
 998	}
 999
1000	return false;
1001}
1002
1003/*
1004 * Check whether entry @e occurs in any of the locks_after or locks_before
1005 * lists.
1006 */
1007static bool in_any_class_list(struct list_head *e)
1008{
1009	struct lock_class *class;
1010	int i;
1011
1012	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1013		class = &lock_classes[i];
1014		if (in_list(e, &class->locks_after) ||
1015		    in_list(e, &class->locks_before))
1016			return true;
1017	}
1018	return false;
1019}
1020
1021static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1022{
1023	struct lock_list *e;
1024
1025	list_for_each_entry(e, h, entry) {
1026		if (e->links_to != c) {
1027			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1028			       c->name ? : "(?)",
1029			       (unsigned long)(e - list_entries),
1030			       e->links_to && e->links_to->name ?
1031			       e->links_to->name : "(?)",
1032			       e->class && e->class->name ? e->class->name :
1033			       "(?)");
1034			return false;
1035		}
1036	}
1037	return true;
1038}
1039
1040#ifdef CONFIG_PROVE_LOCKING
1041static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1042#endif
1043
1044static bool check_lock_chain_key(struct lock_chain *chain)
1045{
1046#ifdef CONFIG_PROVE_LOCKING
1047	u64 chain_key = INITIAL_CHAIN_KEY;
1048	int i;
1049
1050	for (i = chain->base; i < chain->base + chain->depth; i++)
1051		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1052	/*
1053	 * The 'unsigned long long' casts avoid that a compiler warning
1054	 * is reported when building tools/lib/lockdep.
1055	 */
1056	if (chain->chain_key != chain_key) {
1057		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1058		       (unsigned long long)(chain - lock_chains),
1059		       (unsigned long long)chain->chain_key,
1060		       (unsigned long long)chain_key);
1061		return false;
1062	}
1063#endif
1064	return true;
1065}
1066
1067static bool in_any_zapped_class_list(struct lock_class *class)
1068{
1069	struct pending_free *pf;
1070	int i;
1071
1072	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1073		if (in_list(&class->lock_entry, &pf->zapped))
1074			return true;
1075	}
1076
1077	return false;
1078}
1079
1080static bool __check_data_structures(void)
1081{
1082	struct lock_class *class;
1083	struct lock_chain *chain;
1084	struct hlist_head *head;
1085	struct lock_list *e;
1086	int i;
1087
1088	/* Check whether all classes occur in a lock list. */
1089	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1090		class = &lock_classes[i];
1091		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1092		    !in_list(&class->lock_entry, &free_lock_classes) &&
1093		    !in_any_zapped_class_list(class)) {
1094			printk(KERN_INFO "class %px/%s is not in any class list\n",
1095			       class, class->name ? : "(?)");
1096			return false;
1097		}
1098	}
1099
1100	/* Check whether all classes have valid lock lists. */
1101	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1102		class = &lock_classes[i];
1103		if (!class_lock_list_valid(class, &class->locks_before))
1104			return false;
1105		if (!class_lock_list_valid(class, &class->locks_after))
1106			return false;
1107	}
1108
1109	/* Check the chain_key of all lock chains. */
1110	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1111		head = chainhash_table + i;
1112		hlist_for_each_entry_rcu(chain, head, entry) {
1113			if (!check_lock_chain_key(chain))
1114				return false;
1115		}
1116	}
1117
1118	/*
1119	 * Check whether all list entries that are in use occur in a class
1120	 * lock list.
1121	 */
1122	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1123		e = list_entries + i;
1124		if (!in_any_class_list(&e->entry)) {
1125			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1126			       (unsigned int)(e - list_entries),
1127			       e->class->name ? : "(?)",
1128			       e->links_to->name ? : "(?)");
1129			return false;
1130		}
1131	}
1132
1133	/*
1134	 * Check whether all list entries that are not in use do not occur in
1135	 * a class lock list.
1136	 */
1137	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1138		e = list_entries + i;
1139		if (in_any_class_list(&e->entry)) {
1140			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1141			       (unsigned int)(e - list_entries),
1142			       e->class && e->class->name ? e->class->name :
1143			       "(?)",
1144			       e->links_to && e->links_to->name ?
1145			       e->links_to->name : "(?)");
1146			return false;
1147		}
1148	}
1149
1150	return true;
1151}
1152
1153int check_consistency = 0;
1154module_param(check_consistency, int, 0644);
1155
1156static void check_data_structures(void)
1157{
1158	static bool once = false;
1159
1160	if (check_consistency && !once) {
1161		if (!__check_data_structures()) {
1162			once = true;
1163			WARN_ON(once);
1164		}
1165	}
1166}
1167
1168#else /* CONFIG_DEBUG_LOCKDEP */
1169
1170static inline void check_data_structures(void) { }
1171
1172#endif /* CONFIG_DEBUG_LOCKDEP */
1173
1174static void init_chain_block_buckets(void);
1175
1176/*
1177 * Initialize the lock_classes[] array elements, the free_lock_classes list
1178 * and also the delayed_free structure.
1179 */
1180static void init_data_structures_once(void)
1181{
1182	static bool __read_mostly ds_initialized, rcu_head_initialized;
1183	int i;
1184
1185	if (likely(rcu_head_initialized))
1186		return;
1187
1188	if (system_state >= SYSTEM_SCHEDULING) {
1189		init_rcu_head(&delayed_free.rcu_head);
1190		rcu_head_initialized = true;
1191	}
1192
1193	if (ds_initialized)
1194		return;
1195
1196	ds_initialized = true;
1197
1198	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1199	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1200
1201	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1202		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1203		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1204		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1205	}
1206	init_chain_block_buckets();
1207}
1208
1209static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1210{
1211	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1212
1213	return lock_keys_hash + hash;
1214}
1215
1216/* Register a dynamically allocated key. */
1217void lockdep_register_key(struct lock_class_key *key)
1218{
1219	struct hlist_head *hash_head;
1220	struct lock_class_key *k;
1221	unsigned long flags;
1222
1223	if (WARN_ON_ONCE(static_obj(key)))
1224		return;
1225	hash_head = keyhashentry(key);
1226
1227	raw_local_irq_save(flags);
1228	if (!graph_lock())
1229		goto restore_irqs;
1230	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1231		if (WARN_ON_ONCE(k == key))
1232			goto out_unlock;
1233	}
1234	hlist_add_head_rcu(&key->hash_entry, hash_head);
1235out_unlock:
1236	graph_unlock();
1237restore_irqs:
1238	raw_local_irq_restore(flags);
1239}
1240EXPORT_SYMBOL_GPL(lockdep_register_key);
1241
1242/* Check whether a key has been registered as a dynamic key. */
1243static bool is_dynamic_key(const struct lock_class_key *key)
1244{
1245	struct hlist_head *hash_head;
1246	struct lock_class_key *k;
1247	bool found = false;
1248
1249	if (WARN_ON_ONCE(static_obj(key)))
1250		return false;
1251
1252	/*
1253	 * If lock debugging is disabled lock_keys_hash[] may contain
1254	 * pointers to memory that has already been freed. Avoid triggering
1255	 * a use-after-free in that case by returning early.
1256	 */
1257	if (!debug_locks)
1258		return true;
1259
1260	hash_head = keyhashentry(key);
1261
1262	rcu_read_lock();
1263	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1264		if (k == key) {
1265			found = true;
1266			break;
1267		}
1268	}
1269	rcu_read_unlock();
1270
1271	return found;
1272}
1273
1274/*
1275 * Register a lock's class in the hash-table, if the class is not present
1276 * yet. Otherwise we look it up. We cache the result in the lock object
1277 * itself, so actual lookup of the hash should be once per lock object.
1278 */
1279static struct lock_class *
1280register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1281{
1282	struct lockdep_subclass_key *key;
1283	struct hlist_head *hash_head;
1284	struct lock_class *class;
1285	int idx;
1286
1287	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1288
1289	class = look_up_lock_class(lock, subclass);
1290	if (likely(class))
1291		goto out_set_class_cache;
1292
1293	if (!lock->key) {
1294		if (!assign_lock_key(lock))
1295			return NULL;
1296	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1297		return NULL;
1298	}
1299
1300	key = lock->key->subkeys + subclass;
1301	hash_head = classhashentry(key);
1302
1303	if (!graph_lock()) {
1304		return NULL;
1305	}
1306	/*
1307	 * We have to do the hash-walk again, to avoid races
1308	 * with another CPU:
1309	 */
1310	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1311		if (class->key == key)
1312			goto out_unlock_set;
1313	}
1314
1315	init_data_structures_once();
1316
1317	/* Allocate a new lock class and add it to the hash. */
1318	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1319					 lock_entry);
1320	if (!class) {
1321		if (!debug_locks_off_graph_unlock()) {
1322			return NULL;
1323		}
1324
1325		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1326		dump_stack();
1327		return NULL;
1328	}
1329	nr_lock_classes++;
1330	__set_bit(class - lock_classes, lock_classes_in_use);
1331	debug_atomic_inc(nr_unused_locks);
1332	class->key = key;
1333	class->name = lock->name;
1334	class->subclass = subclass;
1335	WARN_ON_ONCE(!list_empty(&class->locks_before));
1336	WARN_ON_ONCE(!list_empty(&class->locks_after));
1337	class->name_version = count_matching_names(class);
1338	class->wait_type_inner = lock->wait_type_inner;
1339	class->wait_type_outer = lock->wait_type_outer;
1340	class->lock_type = lock->lock_type;
1341	/*
1342	 * We use RCU's safe list-add method to make
1343	 * parallel walking of the hash-list safe:
1344	 */
1345	hlist_add_head_rcu(&class->hash_entry, hash_head);
1346	/*
1347	 * Remove the class from the free list and add it to the global list
1348	 * of classes.
1349	 */
1350	list_move_tail(&class->lock_entry, &all_lock_classes);
1351	idx = class - lock_classes;
1352	if (idx > max_lock_class_idx)
1353		max_lock_class_idx = idx;
1354
1355	if (verbose(class)) {
1356		graph_unlock();
1357
1358		printk("\nnew class %px: %s", class->key, class->name);
1359		if (class->name_version > 1)
1360			printk(KERN_CONT "#%d", class->name_version);
1361		printk(KERN_CONT "\n");
1362		dump_stack();
1363
1364		if (!graph_lock()) {
1365			return NULL;
1366		}
1367	}
1368out_unlock_set:
1369	graph_unlock();
1370
1371out_set_class_cache:
1372	if (!subclass || force)
1373		lock->class_cache[0] = class;
1374	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1375		lock->class_cache[subclass] = class;
1376
1377	/*
1378	 * Hash collision, did we smoke some? We found a class with a matching
1379	 * hash but the subclass -- which is hashed in -- didn't match.
1380	 */
1381	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1382		return NULL;
1383
1384	return class;
1385}
1386
1387#ifdef CONFIG_PROVE_LOCKING
1388/*
1389 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1390 * with NULL on failure)
1391 */
1392static struct lock_list *alloc_list_entry(void)
1393{
1394	int idx = find_first_zero_bit(list_entries_in_use,
1395				      ARRAY_SIZE(list_entries));
1396
1397	if (idx >= ARRAY_SIZE(list_entries)) {
1398		if (!debug_locks_off_graph_unlock())
1399			return NULL;
1400
1401		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1402		dump_stack();
1403		return NULL;
1404	}
1405	nr_list_entries++;
1406	__set_bit(idx, list_entries_in_use);
1407	return list_entries + idx;
1408}
1409
1410/*
1411 * Add a new dependency to the head of the list:
1412 */
1413static int add_lock_to_list(struct lock_class *this,
1414			    struct lock_class *links_to, struct list_head *head,
1415			    u16 distance, u8 dep,
1416			    const struct lock_trace *trace)
1417{
1418	struct lock_list *entry;
1419	/*
1420	 * Lock not present yet - get a new dependency struct and
1421	 * add it to the list:
1422	 */
1423	entry = alloc_list_entry();
1424	if (!entry)
1425		return 0;
1426
1427	entry->class = this;
1428	entry->links_to = links_to;
1429	entry->dep = dep;
1430	entry->distance = distance;
1431	entry->trace = trace;
1432	/*
1433	 * Both allocation and removal are done under the graph lock; but
1434	 * iteration is under RCU-sched; see look_up_lock_class() and
1435	 * lockdep_free_key_range().
1436	 */
1437	list_add_tail_rcu(&entry->entry, head);
1438
1439	return 1;
1440}
1441
1442/*
1443 * For good efficiency of modular, we use power of 2
1444 */
1445#define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1446#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1447
1448/*
1449 * The circular_queue and helpers are used to implement graph
1450 * breadth-first search (BFS) algorithm, by which we can determine
1451 * whether there is a path from a lock to another. In deadlock checks,
1452 * a path from the next lock to be acquired to a previous held lock
1453 * indicates that adding the <prev> -> <next> lock dependency will
1454 * produce a circle in the graph. Breadth-first search instead of
1455 * depth-first search is used in order to find the shortest (circular)
1456 * path.
1457 */
1458struct circular_queue {
1459	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1460	unsigned int  front, rear;
1461};
1462
1463static struct circular_queue lock_cq;
1464
1465unsigned int max_bfs_queue_depth;
1466
1467static unsigned int lockdep_dependency_gen_id;
1468
1469static inline void __cq_init(struct circular_queue *cq)
1470{
1471	cq->front = cq->rear = 0;
1472	lockdep_dependency_gen_id++;
1473}
1474
1475static inline int __cq_empty(struct circular_queue *cq)
1476{
1477	return (cq->front == cq->rear);
1478}
1479
1480static inline int __cq_full(struct circular_queue *cq)
1481{
1482	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1483}
1484
1485static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1486{
1487	if (__cq_full(cq))
1488		return -1;
1489
1490	cq->element[cq->rear] = elem;
1491	cq->rear = (cq->rear + 1) & CQ_MASK;
1492	return 0;
1493}
1494
1495/*
1496 * Dequeue an element from the circular_queue, return a lock_list if
1497 * the queue is not empty, or NULL if otherwise.
1498 */
1499static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1500{
1501	struct lock_list * lock;
1502
1503	if (__cq_empty(cq))
1504		return NULL;
1505
1506	lock = cq->element[cq->front];
1507	cq->front = (cq->front + 1) & CQ_MASK;
1508
1509	return lock;
1510}
1511
1512static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1513{
1514	return (cq->rear - cq->front) & CQ_MASK;
1515}
1516
1517static inline void mark_lock_accessed(struct lock_list *lock)
1518{
1519	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1520}
1521
1522static inline void visit_lock_entry(struct lock_list *lock,
1523				    struct lock_list *parent)
1524{
1525	lock->parent = parent;
1526}
1527
1528static inline unsigned long lock_accessed(struct lock_list *lock)
1529{
1530	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1531}
1532
1533static inline struct lock_list *get_lock_parent(struct lock_list *child)
1534{
1535	return child->parent;
1536}
1537
1538static inline int get_lock_depth(struct lock_list *child)
1539{
1540	int depth = 0;
1541	struct lock_list *parent;
1542
1543	while ((parent = get_lock_parent(child))) {
1544		child = parent;
1545		depth++;
1546	}
1547	return depth;
1548}
1549
1550/*
1551 * Return the forward or backward dependency list.
1552 *
1553 * @lock:   the lock_list to get its class's dependency list
1554 * @offset: the offset to struct lock_class to determine whether it is
1555 *          locks_after or locks_before
1556 */
1557static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1558{
1559	void *lock_class = lock->class;
1560
1561	return lock_class + offset;
1562}
1563/*
1564 * Return values of a bfs search:
1565 *
1566 * BFS_E* indicates an error
1567 * BFS_R* indicates a result (match or not)
1568 *
1569 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1570 *
1571 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1572 *
1573 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1574 *             *@target_entry.
1575 *
1576 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1577 *               _unchanged_.
1578 */
1579enum bfs_result {
1580	BFS_EINVALIDNODE = -2,
1581	BFS_EQUEUEFULL = -1,
1582	BFS_RMATCH = 0,
1583	BFS_RNOMATCH = 1,
1584};
1585
1586/*
1587 * bfs_result < 0 means error
1588 */
1589static inline bool bfs_error(enum bfs_result res)
1590{
1591	return res < 0;
1592}
1593
1594/*
1595 * DEP_*_BIT in lock_list::dep
1596 *
1597 * For dependency @prev -> @next:
1598 *
1599 *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1600 *       (->read == 2)
1601 *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1602 *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1603 *   EN: @prev is exclusive locker and @next is non-recursive locker
1604 *
1605 * Note that we define the value of DEP_*_BITs so that:
1606 *   bit0 is prev->read == 0
1607 *   bit1 is next->read != 2
1608 */
1609#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1610#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1611#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1612#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1613
1614#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1615#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1616#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1617#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1618
1619static inline unsigned int
1620__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1621{
1622	return (prev->read == 0) + ((next->read != 2) << 1);
1623}
1624
1625static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1626{
1627	return 1U << __calc_dep_bit(prev, next);
1628}
1629
1630/*
1631 * calculate the dep_bit for backwards edges. We care about whether @prev is
1632 * shared and whether @next is recursive.
1633 */
1634static inline unsigned int
1635__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1636{
1637	return (next->read != 2) + ((prev->read == 0) << 1);
1638}
1639
1640static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1641{
1642	return 1U << __calc_dep_bitb(prev, next);
1643}
1644
1645/*
1646 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1647 * search.
1648 */
1649static inline void __bfs_init_root(struct lock_list *lock,
1650				   struct lock_class *class)
1651{
1652	lock->class = class;
1653	lock->parent = NULL;
1654	lock->only_xr = 0;
1655}
1656
1657/*
1658 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1659 * root for a BFS search.
1660 *
1661 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1662 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1663 * and -(S*)->.
1664 */
1665static inline void bfs_init_root(struct lock_list *lock,
1666				 struct held_lock *hlock)
1667{
1668	__bfs_init_root(lock, hlock_class(hlock));
1669	lock->only_xr = (hlock->read == 2);
1670}
1671
1672/*
1673 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1674 *
1675 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1676 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1677 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1678 */
1679static inline void bfs_init_rootb(struct lock_list *lock,
1680				  struct held_lock *hlock)
1681{
1682	__bfs_init_root(lock, hlock_class(hlock));
1683	lock->only_xr = (hlock->read != 0);
1684}
1685
1686static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1687{
1688	if (!lock || !lock->parent)
1689		return NULL;
1690
1691	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1692				     &lock->entry, struct lock_list, entry);
1693}
1694
1695/*
1696 * Breadth-First Search to find a strong path in the dependency graph.
1697 *
1698 * @source_entry: the source of the path we are searching for.
1699 * @data: data used for the second parameter of @match function
1700 * @match: match function for the search
1701 * @target_entry: pointer to the target of a matched path
1702 * @offset: the offset to struct lock_class to determine whether it is
1703 *          locks_after or locks_before
1704 *
1705 * We may have multiple edges (considering different kinds of dependencies,
1706 * e.g. ER and SN) between two nodes in the dependency graph. But
1707 * only the strong dependency path in the graph is relevant to deadlocks. A
1708 * strong dependency path is a dependency path that doesn't have two adjacent
1709 * dependencies as -(*R)-> -(S*)->, please see:
1710 *
1711 *         Documentation/locking/lockdep-design.rst
1712 *
1713 * for more explanation of the definition of strong dependency paths
1714 *
1715 * In __bfs(), we only traverse in the strong dependency path:
1716 *
1717 *     In lock_list::only_xr, we record whether the previous dependency only
1718 *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1719 *     filter out any -(S*)-> in the current dependency and after that, the
1720 *     ->only_xr is set according to whether we only have -(*R)-> left.
1721 */
1722static enum bfs_result __bfs(struct lock_list *source_entry,
1723			     void *data,
1724			     bool (*match)(struct lock_list *entry, void *data),
1725			     bool (*skip)(struct lock_list *entry, void *data),
1726			     struct lock_list **target_entry,
1727			     int offset)
1728{
1729	struct circular_queue *cq = &lock_cq;
1730	struct lock_list *lock = NULL;
1731	struct lock_list *entry;
1732	struct list_head *head;
1733	unsigned int cq_depth;
1734	bool first;
1735
1736	lockdep_assert_locked();
1737
1738	__cq_init(cq);
1739	__cq_enqueue(cq, source_entry);
1740
1741	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1742		if (!lock->class)
1743			return BFS_EINVALIDNODE;
1744
1745		/*
1746		 * Step 1: check whether we already finish on this one.
1747		 *
1748		 * If we have visited all the dependencies from this @lock to
1749		 * others (iow, if we have visited all lock_list entries in
1750		 * @lock->class->locks_{after,before}) we skip, otherwise go
1751		 * and visit all the dependencies in the list and mark this
1752		 * list accessed.
1753		 */
1754		if (lock_accessed(lock))
1755			continue;
1756		else
1757			mark_lock_accessed(lock);
1758
1759		/*
1760		 * Step 2: check whether prev dependency and this form a strong
1761		 *         dependency path.
1762		 */
1763		if (lock->parent) { /* Parent exists, check prev dependency */
1764			u8 dep = lock->dep;
1765			bool prev_only_xr = lock->parent->only_xr;
1766
1767			/*
1768			 * Mask out all -(S*)-> if we only have *R in previous
1769			 * step, because -(*R)-> -(S*)-> don't make up a strong
1770			 * dependency.
1771			 */
1772			if (prev_only_xr)
1773				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1774
1775			/* If nothing left, we skip */
1776			if (!dep)
1777				continue;
1778
1779			/* If there are only -(*R)-> left, set that for the next step */
1780			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1781		}
1782
1783		/*
1784		 * Step 3: we haven't visited this and there is a strong
1785		 *         dependency path to this, so check with @match.
1786		 *         If @skip is provide and returns true, we skip this
1787		 *         lock (and any path this lock is in).
1788		 */
1789		if (skip && skip(lock, data))
1790			continue;
1791
1792		if (match(lock, data)) {
1793			*target_entry = lock;
1794			return BFS_RMATCH;
1795		}
1796
1797		/*
1798		 * Step 4: if not match, expand the path by adding the
1799		 *         forward or backwards dependencies in the search
1800		 *
1801		 */
1802		first = true;
1803		head = get_dep_list(lock, offset);
1804		list_for_each_entry_rcu(entry, head, entry) {
1805			visit_lock_entry(entry, lock);
1806
1807			/*
1808			 * Note we only enqueue the first of the list into the
1809			 * queue, because we can always find a sibling
1810			 * dependency from one (see __bfs_next()), as a result
1811			 * the space of queue is saved.
1812			 */
1813			if (!first)
1814				continue;
1815
1816			first = false;
1817
1818			if (__cq_enqueue(cq, entry))
1819				return BFS_EQUEUEFULL;
1820
1821			cq_depth = __cq_get_elem_count(cq);
1822			if (max_bfs_queue_depth < cq_depth)
1823				max_bfs_queue_depth = cq_depth;
1824		}
1825	}
1826
1827	return BFS_RNOMATCH;
1828}
1829
1830static inline enum bfs_result
1831__bfs_forwards(struct lock_list *src_entry,
1832	       void *data,
1833	       bool (*match)(struct lock_list *entry, void *data),
1834	       bool (*skip)(struct lock_list *entry, void *data),
1835	       struct lock_list **target_entry)
1836{
1837	return __bfs(src_entry, data, match, skip, target_entry,
1838		     offsetof(struct lock_class, locks_after));
1839
1840}
1841
1842static inline enum bfs_result
1843__bfs_backwards(struct lock_list *src_entry,
1844		void *data,
1845		bool (*match)(struct lock_list *entry, void *data),
1846	       bool (*skip)(struct lock_list *entry, void *data),
1847		struct lock_list **target_entry)
1848{
1849	return __bfs(src_entry, data, match, skip, target_entry,
1850		     offsetof(struct lock_class, locks_before));
1851
1852}
1853
1854static void print_lock_trace(const struct lock_trace *trace,
1855			     unsigned int spaces)
1856{
1857	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1858}
1859
1860/*
1861 * Print a dependency chain entry (this is only done when a deadlock
1862 * has been detected):
1863 */
1864static noinline void
1865print_circular_bug_entry(struct lock_list *target, int depth)
1866{
1867	if (debug_locks_silent)
1868		return;
1869	printk("\n-> #%u", depth);
1870	print_lock_name(target->class);
1871	printk(KERN_CONT ":\n");
1872	print_lock_trace(target->trace, 6);
1873}
1874
1875static void
1876print_circular_lock_scenario(struct held_lock *src,
1877			     struct held_lock *tgt,
1878			     struct lock_list *prt)
1879{
1880	struct lock_class *source = hlock_class(src);
1881	struct lock_class *target = hlock_class(tgt);
1882	struct lock_class *parent = prt->class;
1883
1884	/*
1885	 * A direct locking problem where unsafe_class lock is taken
1886	 * directly by safe_class lock, then all we need to show
1887	 * is the deadlock scenario, as it is obvious that the
1888	 * unsafe lock is taken under the safe lock.
1889	 *
1890	 * But if there is a chain instead, where the safe lock takes
1891	 * an intermediate lock (middle_class) where this lock is
1892	 * not the same as the safe lock, then the lock chain is
1893	 * used to describe the problem. Otherwise we would need
1894	 * to show a different CPU case for each link in the chain
1895	 * from the safe_class lock to the unsafe_class lock.
1896	 */
1897	if (parent != source) {
1898		printk("Chain exists of:\n  ");
1899		__print_lock_name(source);
1900		printk(KERN_CONT " --> ");
1901		__print_lock_name(parent);
1902		printk(KERN_CONT " --> ");
1903		__print_lock_name(target);
1904		printk(KERN_CONT "\n\n");
1905	}
1906
1907	printk(" Possible unsafe locking scenario:\n\n");
1908	printk("       CPU0                    CPU1\n");
1909	printk("       ----                    ----\n");
1910	printk("  lock(");
1911	__print_lock_name(target);
1912	printk(KERN_CONT ");\n");
1913	printk("                               lock(");
1914	__print_lock_name(parent);
1915	printk(KERN_CONT ");\n");
1916	printk("                               lock(");
1917	__print_lock_name(target);
1918	printk(KERN_CONT ");\n");
1919	printk("  lock(");
1920	__print_lock_name(source);
1921	printk(KERN_CONT ");\n");
1922	printk("\n *** DEADLOCK ***\n\n");
1923}
1924
1925/*
1926 * When a circular dependency is detected, print the
1927 * header first:
1928 */
1929static noinline void
1930print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1931			struct held_lock *check_src,
1932			struct held_lock *check_tgt)
1933{
1934	struct task_struct *curr = current;
1935
1936	if (debug_locks_silent)
1937		return;
1938
1939	pr_warn("\n");
1940	pr_warn("======================================================\n");
1941	pr_warn("WARNING: possible circular locking dependency detected\n");
1942	print_kernel_ident();
1943	pr_warn("------------------------------------------------------\n");
1944	pr_warn("%s/%d is trying to acquire lock:\n",
1945		curr->comm, task_pid_nr(curr));
1946	print_lock(check_src);
1947
1948	pr_warn("\nbut task is already holding lock:\n");
1949
1950	print_lock(check_tgt);
1951	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1952	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1953
1954	print_circular_bug_entry(entry, depth);
1955}
1956
1957/*
1958 * We are about to add A -> B into the dependency graph, and in __bfs() a
1959 * strong dependency path A -> .. -> B is found: hlock_class equals
1960 * entry->class.
1961 *
1962 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1963 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1964 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1965 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1966 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1967 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1968 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1969 *
1970 * We need to make sure both the start and the end of A -> .. -> B is not
1971 * weaker than A -> B. For the start part, please see the comment in
1972 * check_redundant(). For the end part, we need:
1973 *
1974 * Either
1975 *
1976 *     a) A -> B is -(*R)-> (everything is not weaker than that)
1977 *
1978 * or
1979 *
1980 *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1981 *
1982 */
1983static inline bool hlock_equal(struct lock_list *entry, void *data)
1984{
1985	struct held_lock *hlock = (struct held_lock *)data;
1986
1987	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1988	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1989		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1990}
1991
1992/*
1993 * We are about to add B -> A into the dependency graph, and in __bfs() a
1994 * strong dependency path A -> .. -> B is found: hlock_class equals
1995 * entry->class.
1996 *
1997 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1998 * dependency cycle, that means:
1999 *
2000 * Either
2001 *
2002 *     a) B -> A is -(E*)->
2003 *
2004 * or
2005 *
2006 *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2007 *
2008 * as then we don't have -(*R)-> -(S*)-> in the cycle.
2009 */
2010static inline bool hlock_conflict(struct lock_list *entry, void *data)
2011{
2012	struct held_lock *hlock = (struct held_lock *)data;
2013
2014	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2015	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2016		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2017}
2018
2019static noinline void print_circular_bug(struct lock_list *this,
2020				struct lock_list *target,
2021				struct held_lock *check_src,
2022				struct held_lock *check_tgt)
2023{
2024	struct task_struct *curr = current;
2025	struct lock_list *parent;
2026	struct lock_list *first_parent;
2027	int depth;
2028
2029	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2030		return;
2031
2032	this->trace = save_trace();
2033	if (!this->trace)
2034		return;
2035
2036	depth = get_lock_depth(target);
2037
2038	print_circular_bug_header(target, depth, check_src, check_tgt);
2039
2040	parent = get_lock_parent(target);
2041	first_parent = parent;
2042
2043	while (parent) {
2044		print_circular_bug_entry(parent, --depth);
2045		parent = get_lock_parent(parent);
2046	}
2047
2048	printk("\nother info that might help us debug this:\n\n");
2049	print_circular_lock_scenario(check_src, check_tgt,
2050				     first_parent);
2051
2052	lockdep_print_held_locks(curr);
2053
2054	printk("\nstack backtrace:\n");
2055	dump_stack();
2056}
2057
2058static noinline void print_bfs_bug(int ret)
2059{
2060	if (!debug_locks_off_graph_unlock())
2061		return;
2062
2063	/*
2064	 * Breadth-first-search failed, graph got corrupted?
2065	 */
2066	WARN(1, "lockdep bfs error:%d\n", ret);
2067}
2068
2069static bool noop_count(struct lock_list *entry, void *data)
2070{
2071	(*(unsigned long *)data)++;
2072	return false;
2073}
2074
2075static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2076{
2077	unsigned long  count = 0;
2078	struct lock_list *target_entry;
2079
2080	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2081
2082	return count;
2083}
2084unsigned long lockdep_count_forward_deps(struct lock_class *class)
2085{
2086	unsigned long ret, flags;
2087	struct lock_list this;
2088
2089	__bfs_init_root(&this, class);
2090
2091	raw_local_irq_save(flags);
2092	lockdep_lock();
2093	ret = __lockdep_count_forward_deps(&this);
2094	lockdep_unlock();
2095	raw_local_irq_restore(flags);
2096
2097	return ret;
2098}
2099
2100static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2101{
2102	unsigned long  count = 0;
2103	struct lock_list *target_entry;
2104
2105	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2106
2107	return count;
2108}
2109
2110unsigned long lockdep_count_backward_deps(struct lock_class *class)
2111{
2112	unsigned long ret, flags;
2113	struct lock_list this;
2114
2115	__bfs_init_root(&this, class);
2116
2117	raw_local_irq_save(flags);
2118	lockdep_lock();
2119	ret = __lockdep_count_backward_deps(&this);
2120	lockdep_unlock();
2121	raw_local_irq_restore(flags);
2122
2123	return ret;
2124}
2125
2126/*
2127 * Check that the dependency graph starting at <src> can lead to
2128 * <target> or not.
2129 */
2130static noinline enum bfs_result
2131check_path(struct held_lock *target, struct lock_list *src_entry,
2132	   bool (*match)(struct lock_list *entry, void *data),
2133	   bool (*skip)(struct lock_list *entry, void *data),
2134	   struct lock_list **target_entry)
2135{
2136	enum bfs_result ret;
2137
2138	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2139
2140	if (unlikely(bfs_error(ret)))
2141		print_bfs_bug(ret);
2142
2143	return ret;
2144}
2145
2146/*
2147 * Prove that the dependency graph starting at <src> can not
2148 * lead to <target>. If it can, there is a circle when adding
2149 * <target> -> <src> dependency.
2150 *
2151 * Print an error and return BFS_RMATCH if it does.
2152 */
2153static noinline enum bfs_result
2154check_noncircular(struct held_lock *src, struct held_lock *target,
2155		  struct lock_trace **const trace)
2156{
2157	enum bfs_result ret;
2158	struct lock_list *target_entry;
2159	struct lock_list src_entry;
2160
2161	bfs_init_root(&src_entry, src);
2162
2163	debug_atomic_inc(nr_cyclic_checks);
2164
2165	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2166
2167	if (unlikely(ret == BFS_RMATCH)) {
2168		if (!*trace) {
2169			/*
2170			 * If save_trace fails here, the printing might
2171			 * trigger a WARN but because of the !nr_entries it
2172			 * should not do bad things.
2173			 */
2174			*trace = save_trace();
2175		}
2176
2177		print_circular_bug(&src_entry, target_entry, src, target);
2178	}
2179
2180	return ret;
2181}
2182
2183#ifdef CONFIG_TRACE_IRQFLAGS
2184
2185/*
2186 * Forwards and backwards subgraph searching, for the purposes of
2187 * proving that two subgraphs can be connected by a new dependency
2188 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2189 *
2190 * A irq safe->unsafe deadlock happens with the following conditions:
2191 *
2192 * 1) We have a strong dependency path A -> ... -> B
2193 *
2194 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2195 *    irq can create a new dependency B -> A (consider the case that a holder
2196 *    of B gets interrupted by an irq whose handler will try to acquire A).
2197 *
2198 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2199 *    strong circle:
2200 *
2201 *      For the usage bits of B:
2202 *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2203 *           ENABLED_IRQ usage suffices.
2204 *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2205 *           ENABLED_IRQ_*_READ usage suffices.
2206 *
2207 *      For the usage bits of A:
2208 *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2209 *           USED_IN_IRQ usage suffices.
2210 *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2211 *           USED_IN_IRQ_*_READ usage suffices.
2212 */
2213
2214/*
2215 * There is a strong dependency path in the dependency graph: A -> B, and now
2216 * we need to decide which usage bit of A should be accumulated to detect
2217 * safe->unsafe bugs.
2218 *
2219 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2220 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2221 *
2222 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2223 * path, any usage of A should be considered. Otherwise, we should only
2224 * consider _READ usage.
2225 */
2226static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2227{
2228	if (!entry->only_xr)
2229		*(unsigned long *)mask |= entry->class->usage_mask;
2230	else /* Mask out _READ usage bits */
2231		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2232
2233	return false;
2234}
2235
2236/*
2237 * There is a strong dependency path in the dependency graph: A -> B, and now
2238 * we need to decide which usage bit of B conflicts with the usage bits of A,
2239 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2240 *
2241 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2242 * path, any usage of B should be considered. Otherwise, we should only
2243 * consider _READ usage.
2244 */
2245static inline bool usage_match(struct lock_list *entry, void *mask)
2246{
2247	if (!entry->only_xr)
2248		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2249	else /* Mask out _READ usage bits */
2250		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2251}
2252
2253static inline bool usage_skip(struct lock_list *entry, void *mask)
2254{
2255	/*
2256	 * Skip local_lock() for irq inversion detection.
2257	 *
2258	 * For !RT, local_lock() is not a real lock, so it won't carry any
2259	 * dependency.
2260	 *
2261	 * For RT, an irq inversion happens when we have lock A and B, and on
2262	 * some CPU we can have:
2263	 *
2264	 *	lock(A);
2265	 *	<interrupted>
2266	 *	  lock(B);
2267	 *
2268	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2269	 *
2270	 * Now we prove local_lock() cannot exist in that dependency. First we
2271	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2272	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2273	 * wait context check will complain. And since B is not a sleep lock,
2274	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2275	 * local_lock() is 3, which is greater than 2, therefore there is no
2276	 * way the local_lock() exists in the dependency B -> ... -> A.
2277	 *
2278	 * As a result, we will skip local_lock(), when we search for irq
2279	 * inversion bugs.
2280	 */
2281	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2282		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2283			return false;
2284
2285		return true;
2286	}
2287
2288	return false;
2289}
2290
2291/*
2292 * Find a node in the forwards-direction dependency sub-graph starting
2293 * at @root->class that matches @bit.
2294 *
2295 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2296 * into *@target_entry.
2297 */
2298static enum bfs_result
2299find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2300			struct lock_list **target_entry)
2301{
2302	enum bfs_result result;
2303
2304	debug_atomic_inc(nr_find_usage_forwards_checks);
2305
2306	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2307
2308	return result;
2309}
2310
2311/*
2312 * Find a node in the backwards-direction dependency sub-graph starting
2313 * at @root->class that matches @bit.
2314 */
2315static enum bfs_result
2316find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2317			struct lock_list **target_entry)
2318{
2319	enum bfs_result result;
2320
2321	debug_atomic_inc(nr_find_usage_backwards_checks);
2322
2323	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2324
2325	return result;
2326}
2327
2328static void print_lock_class_header(struct lock_class *class, int depth)
2329{
2330	int bit;
2331
2332	printk("%*s->", depth, "");
2333	print_lock_name(class);
2334#ifdef CONFIG_DEBUG_LOCKDEP
2335	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2336#endif
2337	printk(KERN_CONT " {\n");
2338
2339	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2340		if (class->usage_mask & (1 << bit)) {
2341			int len = depth;
2342
2343			len += printk("%*s   %s", depth, "", usage_str[bit]);
2344			len += printk(KERN_CONT " at:\n");
2345			print_lock_trace(class->usage_traces[bit], len);
2346		}
2347	}
2348	printk("%*s }\n", depth, "");
2349
2350	printk("%*s ... key      at: [<%px>] %pS\n",
2351		depth, "", class->key, class->key);
2352}
2353
2354/*
2355 * Dependency path printing:
2356 *
2357 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2358 * printing out each lock in the dependency path will help on understanding how
2359 * the deadlock could happen. Here are some details about dependency path
2360 * printing:
2361 *
2362 * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2363 * 	for a lock dependency A -> B, there are two lock_lists:
2364 *
2365 * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2366 * 		->links_to is A. In this case, we can say the lock_list is
2367 * 		"A -> B" (forwards case).
2368 *
2369 * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2370 * 		and ->links_to is B. In this case, we can say the lock_list is
2371 * 		"B <- A" (bacwards case).
2372 *
2373 * 	The ->trace of both a) and b) point to the call trace where B was
2374 * 	acquired with A held.
2375 *
2376 * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2377 * 	represent a certain lock dependency, it only provides an initial entry
2378 * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2379 * 	->class is A, as a result BFS will search all dependencies starting with
2380 * 	A, e.g. A -> B or A -> C.
2381 *
2382 * 	The notation of a forwards helper lock_list is like "-> A", which means
2383 * 	we should search the forwards dependencies starting with "A", e.g A -> B
2384 * 	or A -> C.
2385 *
2386 * 	The notation of a bacwards helper lock_list is like "<- B", which means
2387 * 	we should search the backwards dependencies ending with "B", e.g.
2388 * 	B <- A or B <- C.
2389 */
2390
2391/*
2392 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2393 *
2394 * We have a lock dependency path as follow:
2395 *
2396 *    @root                                                                 @leaf
2397 *      |                                                                     |
2398 *      V                                                                     V
2399 *	          ->parent                                   ->parent
2400 * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2401 * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2402 *
2403 * , so it's natural that we start from @leaf and print every ->class and
2404 * ->trace until we reach the @root.
2405 */
2406static void __used
2407print_shortest_lock_dependencies(struct lock_list *leaf,
2408				 struct lock_list *root)
2409{
2410	struct lock_list *entry = leaf;
2411	int depth;
2412
2413	/*compute depth from generated tree by BFS*/
2414	depth = get_lock_depth(leaf);
2415
2416	do {
2417		print_lock_class_header(entry->class, depth);
2418		printk("%*s ... acquired at:\n", depth, "");
2419		print_lock_trace(entry->trace, 2);
2420		printk("\n");
2421
2422		if (depth == 0 && (entry != root)) {
2423			printk("lockdep:%s bad path found in chain graph\n", __func__);
2424			break;
2425		}
2426
2427		entry = get_lock_parent(entry);
2428		depth--;
2429	} while (entry && (depth >= 0));
2430}
2431
2432/*
2433 * printk the shortest lock dependencies from @leaf to @root.
2434 *
2435 * We have a lock dependency path (from a backwards search) as follow:
2436 *
2437 *    @leaf                                                                 @root
2438 *      |                                                                     |
2439 *      V                                                                     V
2440 *	          ->parent                                   ->parent
2441 * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2442 * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2443 *
2444 * , so when we iterate from @leaf to @root, we actually print the lock
2445 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2446 *
2447 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2448 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2449 * trace of L1 in the dependency path, which is alright, because most of the
2450 * time we can figure out where L1 is held from the call trace of L2.
2451 */
2452static void __used
2453print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2454					   struct lock_list *root)
2455{
2456	struct lock_list *entry = leaf;
2457	const struct lock_trace *trace = NULL;
2458	int depth;
2459
2460	/*compute depth from generated tree by BFS*/
2461	depth = get_lock_depth(leaf);
2462
2463	do {
2464		print_lock_class_header(entry->class, depth);
2465		if (trace) {
2466			printk("%*s ... acquired at:\n", depth, "");
2467			print_lock_trace(trace, 2);
2468			printk("\n");
2469		}
2470
2471		/*
2472		 * Record the pointer to the trace for the next lock_list
2473		 * entry, see the comments for the function.
2474		 */
2475		trace = entry->trace;
2476
2477		if (depth == 0 && (entry != root)) {
2478			printk("lockdep:%s bad path found in chain graph\n", __func__);
2479			break;
2480		}
2481
2482		entry = get_lock_parent(entry);
2483		depth--;
2484	} while (entry && (depth >= 0));
2485}
2486
2487static void
2488print_irq_lock_scenario(struct lock_list *safe_entry,
2489			struct lock_list *unsafe_entry,
2490			struct lock_class *prev_class,
2491			struct lock_class *next_class)
2492{
2493	struct lock_class *safe_class = safe_entry->class;
2494	struct lock_class *unsafe_class = unsafe_entry->class;
2495	struct lock_class *middle_class = prev_class;
2496
2497	if (middle_class == safe_class)
2498		middle_class = next_class;
2499
2500	/*
2501	 * A direct locking problem where unsafe_class lock is taken
2502	 * directly by safe_class lock, then all we need to show
2503	 * is the deadlock scenario, as it is obvious that the
2504	 * unsafe lock is taken under the safe lock.
2505	 *
2506	 * But if there is a chain instead, where the safe lock takes
2507	 * an intermediate lock (middle_class) where this lock is
2508	 * not the same as the safe lock, then the lock chain is
2509	 * used to describe the problem. Otherwise we would need
2510	 * to show a different CPU case for each link in the chain
2511	 * from the safe_class lock to the unsafe_class lock.
2512	 */
2513	if (middle_class != unsafe_class) {
2514		printk("Chain exists of:\n  ");
2515		__print_lock_name(safe_class);
2516		printk(KERN_CONT " --> ");
2517		__print_lock_name(middle_class);
2518		printk(KERN_CONT " --> ");
2519		__print_lock_name(unsafe_class);
2520		printk(KERN_CONT "\n\n");
2521	}
2522
2523	printk(" Possible interrupt unsafe locking scenario:\n\n");
2524	printk("       CPU0                    CPU1\n");
2525	printk("       ----                    ----\n");
2526	printk("  lock(");
2527	__print_lock_name(unsafe_class);
2528	printk(KERN_CONT ");\n");
2529	printk("                               local_irq_disable();\n");
2530	printk("                               lock(");
2531	__print_lock_name(safe_class);
2532	printk(KERN_CONT ");\n");
2533	printk("                               lock(");
2534	__print_lock_name(middle_class);
2535	printk(KERN_CONT ");\n");
2536	printk("  <Interrupt>\n");
2537	printk("    lock(");
2538	__print_lock_name(safe_class);
2539	printk(KERN_CONT ");\n");
2540	printk("\n *** DEADLOCK ***\n\n");
2541}
2542
2543static void
2544print_bad_irq_dependency(struct task_struct *curr,
2545			 struct lock_list *prev_root,
2546			 struct lock_list *next_root,
2547			 struct lock_list *backwards_entry,
2548			 struct lock_list *forwards_entry,
2549			 struct held_lock *prev,
2550			 struct held_lock *next,
2551			 enum lock_usage_bit bit1,
2552			 enum lock_usage_bit bit2,
2553			 const char *irqclass)
2554{
2555	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2556		return;
2557
2558	pr_warn("\n");
2559	pr_warn("=====================================================\n");
2560	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2561		irqclass, irqclass);
2562	print_kernel_ident();
2563	pr_warn("-----------------------------------------------------\n");
2564	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2565		curr->comm, task_pid_nr(curr),
2566		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2567		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2568		lockdep_hardirqs_enabled(),
2569		curr->softirqs_enabled);
2570	print_lock(next);
2571
2572	pr_warn("\nand this task is already holding:\n");
2573	print_lock(prev);
2574	pr_warn("which would create a new lock dependency:\n");
2575	print_lock_name(hlock_class(prev));
2576	pr_cont(" ->");
2577	print_lock_name(hlock_class(next));
2578	pr_cont("\n");
2579
2580	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2581		irqclass);
2582	print_lock_name(backwards_entry->class);
2583	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2584
2585	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2586
2587	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2588	print_lock_name(forwards_entry->class);
2589	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2590	pr_warn("...");
2591
2592	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2593
2594	pr_warn("\nother info that might help us debug this:\n\n");
2595	print_irq_lock_scenario(backwards_entry, forwards_entry,
2596				hlock_class(prev), hlock_class(next));
2597
2598	lockdep_print_held_locks(curr);
2599
2600	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2601	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2602
2603	pr_warn("\nthe dependencies between the lock to be acquired");
2604	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2605	next_root->trace = save_trace();
2606	if (!next_root->trace)
2607		return;
2608	print_shortest_lock_dependencies(forwards_entry, next_root);
2609
2610	pr_warn("\nstack backtrace:\n");
2611	dump_stack();
2612}
2613
2614static const char *state_names[] = {
2615#define LOCKDEP_STATE(__STATE) \
2616	__stringify(__STATE),
2617#include "lockdep_states.h"
2618#undef LOCKDEP_STATE
2619};
2620
2621static const char *state_rnames[] = {
2622#define LOCKDEP_STATE(__STATE) \
2623	__stringify(__STATE)"-READ",
2624#include "lockdep_states.h"
2625#undef LOCKDEP_STATE
2626};
2627
2628static inline const char *state_name(enum lock_usage_bit bit)
2629{
2630	if (bit & LOCK_USAGE_READ_MASK)
2631		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2632	else
2633		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2634}
2635
2636/*
2637 * The bit number is encoded like:
2638 *
2639 *  bit0: 0 exclusive, 1 read lock
2640 *  bit1: 0 used in irq, 1 irq enabled
2641 *  bit2-n: state
2642 */
2643static int exclusive_bit(int new_bit)
2644{
2645	int state = new_bit & LOCK_USAGE_STATE_MASK;
2646	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2647
2648	/*
2649	 * keep state, bit flip the direction and strip read.
2650	 */
2651	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2652}
2653
2654/*
2655 * Observe that when given a bitmask where each bitnr is encoded as above, a
2656 * right shift of the mask transforms the individual bitnrs as -1 and
2657 * conversely, a left shift transforms into +1 for the individual bitnrs.
2658 *
2659 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2660 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2661 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2662 *
2663 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2664 *
2665 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2666 * all bits set) and recompose with bitnr1 flipped.
2667 */
2668static unsigned long invert_dir_mask(unsigned long mask)
2669{
2670	unsigned long excl = 0;
2671
2672	/* Invert dir */
2673	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2674	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2675
2676	return excl;
2677}
2678
2679/*
2680 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2681 * usage may cause deadlock too, for example:
2682 *
2683 * P1				P2
2684 * <irq disabled>
2685 * write_lock(l1);		<irq enabled>
2686 *				read_lock(l2);
2687 * write_lock(l2);
2688 * 				<in irq>
2689 * 				read_lock(l1);
2690 *
2691 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2692 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2693 * deadlock.
2694 *
2695 * In fact, all of the following cases may cause deadlocks:
2696 *
2697 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2698 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2699 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2700 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2701 *
2702 * As a result, to calculate the "exclusive mask", first we invert the
2703 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2704 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2705 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2706 */
2707static unsigned long exclusive_mask(unsigned long mask)
2708{
2709	unsigned long excl = invert_dir_mask(mask);
2710
2711	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2712	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2713
2714	return excl;
2715}
2716
2717/*
2718 * Retrieve the _possible_ original mask to which @mask is
2719 * exclusive. Ie: this is the opposite of exclusive_mask().
2720 * Note that 2 possible original bits can match an exclusive
2721 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2722 * cleared. So both are returned for each exclusive bit.
2723 */
2724static unsigned long original_mask(unsigned long mask)
2725{
2726	unsigned long excl = invert_dir_mask(mask);
2727
2728	/* Include read in existing usages */
2729	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2730	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2731
2732	return excl;
2733}
2734
2735/*
2736 * Find the first pair of bit match between an original
2737 * usage mask and an exclusive usage mask.
2738 */
2739static int find_exclusive_match(unsigned long mask,
2740				unsigned long excl_mask,
2741				enum lock_usage_bit *bitp,
2742				enum lock_usage_bit *excl_bitp)
2743{
2744	int bit, excl, excl_read;
2745
2746	for_each_set_bit(bit, &mask, LOCK_USED) {
2747		/*
2748		 * exclusive_bit() strips the read bit, however,
2749		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2750		 * to search excl | LOCK_USAGE_READ_MASK as well.
2751		 */
2752		excl = exclusive_bit(bit);
2753		excl_read = excl | LOCK_USAGE_READ_MASK;
2754		if (excl_mask & lock_flag(excl)) {
2755			*bitp = bit;
2756			*excl_bitp = excl;
2757			return 0;
2758		} else if (excl_mask & lock_flag(excl_read)) {
2759			*bitp = bit;
2760			*excl_bitp = excl_read;
2761			return 0;
2762		}
2763	}
2764	return -1;
2765}
2766
2767/*
2768 * Prove that the new dependency does not connect a hardirq-safe(-read)
2769 * lock with a hardirq-unsafe lock - to achieve this we search
2770 * the backwards-subgraph starting at <prev>, and the
2771 * forwards-subgraph starting at <next>:
2772 */
2773static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2774			   struct held_lock *next)
2775{
2776	unsigned long usage_mask = 0, forward_mask, backward_mask;
2777	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2778	struct lock_list *target_entry1;
2779	struct lock_list *target_entry;
2780	struct lock_list this, that;
2781	enum bfs_result ret;
2782
2783	/*
2784	 * Step 1: gather all hard/soft IRQs usages backward in an
2785	 * accumulated usage mask.
2786	 */
2787	bfs_init_rootb(&this, prev);
2788
2789	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2790	if (bfs_error(ret)) {
2791		print_bfs_bug(ret);
2792		return 0;
2793	}
2794
2795	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2796	if (!usage_mask)
2797		return 1;
2798
2799	/*
2800	 * Step 2: find exclusive uses forward that match the previous
2801	 * backward accumulated mask.
2802	 */
2803	forward_mask = exclusive_mask(usage_mask);
2804
2805	bfs_init_root(&that, next);
2806
2807	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2808	if (bfs_error(ret)) {
2809		print_bfs_bug(ret);
2810		return 0;
2811	}
2812	if (ret == BFS_RNOMATCH)
2813		return 1;
2814
2815	/*
2816	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2817	 * list whose usage mask matches the exclusive usage mask from the
2818	 * lock found on the forward list.
2819	 *
2820	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2821	 * the follow case:
2822	 *
2823	 * When trying to add A -> B to the graph, we find that there is a
2824	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2825	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2826	 * invert bits of M's usage_mask, we will find another lock N that is
2827	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2828	 * cause a inversion deadlock.
2829	 */
2830	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2831
2832	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2833	if (bfs_error(ret)) {
2834		print_bfs_bug(ret);
2835		return 0;
2836	}
2837	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2838		return 1;
2839
2840	/*
2841	 * Step 4: narrow down to a pair of incompatible usage bits
2842	 * and report it.
2843	 */
2844	ret = find_exclusive_match(target_entry->class->usage_mask,
2845				   target_entry1->class->usage_mask,
2846				   &backward_bit, &forward_bit);
2847	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2848		return 1;
2849
2850	print_bad_irq_dependency(curr, &this, &that,
2851				 target_entry, target_entry1,
2852				 prev, next,
2853				 backward_bit, forward_bit,
2854				 state_name(backward_bit));
2855
2856	return 0;
2857}
2858
2859#else
2860
2861static inline int check_irq_usage(struct task_struct *curr,
2862				  struct held_lock *prev, struct held_lock *next)
2863{
2864	return 1;
2865}
2866
2867static inline bool usage_skip(struct lock_list *entry, void *mask)
2868{
2869	return false;
2870}
2871
2872#endif /* CONFIG_TRACE_IRQFLAGS */
2873
2874#ifdef CONFIG_LOCKDEP_SMALL
2875/*
2876 * Check that the dependency graph starting at <src> can lead to
2877 * <target> or not. If it can, <src> -> <target> dependency is already
2878 * in the graph.
2879 *
2880 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2881 * any error appears in the bfs search.
2882 */
2883static noinline enum bfs_result
2884check_redundant(struct held_lock *src, struct held_lock *target)
2885{
2886	enum bfs_result ret;
2887	struct lock_list *target_entry;
2888	struct lock_list src_entry;
2889
2890	bfs_init_root(&src_entry, src);
2891	/*
2892	 * Special setup for check_redundant().
2893	 *
2894	 * To report redundant, we need to find a strong dependency path that
2895	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2896	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2897	 * we achieve this by setting the initial node's ->only_xr to true in
2898	 * that case. And if <prev> is S, we set initial ->only_xr to false
2899	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2900	 */
2901	src_entry.only_xr = src->read == 0;
2902
2903	debug_atomic_inc(nr_redundant_checks);
2904
2905	/*
2906	 * Note: we skip local_lock() for redundant check, because as the
2907	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2908	 * the same.
2909	 */
2910	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2911
2912	if (ret == BFS_RMATCH)
2913		debug_atomic_inc(nr_redundant);
2914
2915	return ret;
2916}
2917
2918#else
2919
2920static inline enum bfs_result
2921check_redundant(struct held_lock *src, struct held_lock *target)
2922{
2923	return BFS_RNOMATCH;
2924}
2925
2926#endif
2927
2928static void inc_chains(int irq_context)
2929{
2930	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2931		nr_hardirq_chains++;
2932	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2933		nr_softirq_chains++;
2934	else
2935		nr_process_chains++;
2936}
2937
2938static void dec_chains(int irq_context)
2939{
2940	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2941		nr_hardirq_chains--;
2942	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2943		nr_softirq_chains--;
2944	else
2945		nr_process_chains--;
2946}
2947
2948static void
2949print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2950{
2951	struct lock_class *next = hlock_class(nxt);
2952	struct lock_class *prev = hlock_class(prv);
2953
2954	printk(" Possible unsafe locking scenario:\n\n");
2955	printk("       CPU0\n");
2956	printk("       ----\n");
2957	printk("  lock(");
2958	__print_lock_name(prev);
2959	printk(KERN_CONT ");\n");
2960	printk("  lock(");
2961	__print_lock_name(next);
2962	printk(KERN_CONT ");\n");
2963	printk("\n *** DEADLOCK ***\n\n");
2964	printk(" May be due to missing lock nesting notation\n\n");
2965}
2966
2967static void
2968print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2969		   struct held_lock *next)
2970{
2971	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2972		return;
2973
2974	pr_warn("\n");
2975	pr_warn("============================================\n");
2976	pr_warn("WARNING: possible recursive locking detected\n");
2977	print_kernel_ident();
2978	pr_warn("--------------------------------------------\n");
2979	pr_warn("%s/%d is trying to acquire lock:\n",
2980		curr->comm, task_pid_nr(curr));
2981	print_lock(next);
2982	pr_warn("\nbut task is already holding lock:\n");
2983	print_lock(prev);
2984
2985	pr_warn("\nother info that might help us debug this:\n");
2986	print_deadlock_scenario(next, prev);
2987	lockdep_print_held_locks(curr);
2988
2989	pr_warn("\nstack backtrace:\n");
2990	dump_stack();
2991}
2992
2993/*
2994 * Check whether we are holding such a class already.
2995 *
2996 * (Note that this has to be done separately, because the graph cannot
2997 * detect such classes of deadlocks.)
2998 *
2999 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3000 * lock class is held but nest_lock is also held, i.e. we rely on the
3001 * nest_lock to avoid the deadlock.
3002 */
3003static int
3004check_deadlock(struct task_struct *curr, struct held_lock *next)
3005{
3006	struct held_lock *prev;
3007	struct held_lock *nest = NULL;
3008	int i;
3009
3010	for (i = 0; i < curr->lockdep_depth; i++) {
3011		prev = curr->held_locks + i;
3012
3013		if (prev->instance == next->nest_lock)
3014			nest = prev;
3015
3016		if (hlock_class(prev) != hlock_class(next))
3017			continue;
3018
3019		/*
3020		 * Allow read-after-read recursion of the same
3021		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3022		 */
3023		if ((next->read == 2) && prev->read)
3024			continue;
3025
3026		/*
3027		 * We're holding the nest_lock, which serializes this lock's
3028		 * nesting behaviour.
3029		 */
3030		if (nest)
3031			return 2;
3032
3033		print_deadlock_bug(curr, prev, next);
3034		return 0;
3035	}
3036	return 1;
3037}
3038
3039/*
3040 * There was a chain-cache miss, and we are about to add a new dependency
3041 * to a previous lock. We validate the following rules:
3042 *
3043 *  - would the adding of the <prev> -> <next> dependency create a
3044 *    circular dependency in the graph? [== circular deadlock]
3045 *
3046 *  - does the new prev->next dependency connect any hardirq-safe lock
3047 *    (in the full backwards-subgraph starting at <prev>) with any
3048 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3049 *    <next>)? [== illegal lock inversion with hardirq contexts]
3050 *
3051 *  - does the new prev->next dependency connect any softirq-safe lock
3052 *    (in the full backwards-subgraph starting at <prev>) with any
3053 *    softirq-unsafe lock (in the full forwards-subgraph starting at
3054 *    <next>)? [== illegal lock inversion with softirq contexts]
3055 *
3056 * any of these scenarios could lead to a deadlock.
3057 *
3058 * Then if all the validations pass, we add the forwards and backwards
3059 * dependency.
3060 */
3061static int
3062check_prev_add(struct task_struct *curr, struct held_lock *prev,
3063	       struct held_lock *next, u16 distance,
3064	       struct lock_trace **const trace)
3065{
3066	struct lock_list *entry;
3067	enum bfs_result ret;
3068
3069	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3070		/*
3071		 * The warning statements below may trigger a use-after-free
3072		 * of the class name. It is better to trigger a use-after free
3073		 * and to have the class name most of the time instead of not
3074		 * having the class name available.
3075		 */
3076		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3077			  "Detected use-after-free of lock class %px/%s\n",
3078			  hlock_class(prev),
3079			  hlock_class(prev)->name);
3080		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3081			  "Detected use-after-free of lock class %px/%s\n",
3082			  hlock_class(next),
3083			  hlock_class(next)->name);
3084		return 2;
3085	}
3086
3087	/*
3088	 * Prove that the new <prev> -> <next> dependency would not
3089	 * create a circular dependency in the graph. (We do this by
3090	 * a breadth-first search into the graph starting at <next>,
3091	 * and check whether we can reach <prev>.)
3092	 *
3093	 * The search is limited by the size of the circular queue (i.e.,
3094	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3095	 * in the graph whose neighbours are to be checked.
3096	 */
3097	ret = check_noncircular(next, prev, trace);
3098	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3099		return 0;
3100
3101	if (!check_irq_usage(curr, prev, next))
3102		return 0;
3103
3104	/*
3105	 * Is the <prev> -> <next> dependency already present?
3106	 *
3107	 * (this may occur even though this is a new chain: consider
3108	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3109	 *  chains - the second one will be new, but L1 already has
3110	 *  L2 added to its dependency list, due to the first chain.)
3111	 */
3112	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3113		if (entry->class == hlock_class(next)) {
3114			if (distance == 1)
3115				entry->distance = 1;
3116			entry->dep |= calc_dep(prev, next);
3117
3118			/*
3119			 * Also, update the reverse dependency in @next's
3120			 * ->locks_before list.
3121			 *
3122			 *  Here we reuse @entry as the cursor, which is fine
3123			 *  because we won't go to the next iteration of the
3124			 *  outer loop:
3125			 *
3126			 *  For normal cases, we return in the inner loop.
3127			 *
3128			 *  If we fail to return, we have inconsistency, i.e.
3129			 *  <prev>::locks_after contains <next> while
3130			 *  <next>::locks_before doesn't contain <prev>. In
3131			 *  that case, we return after the inner and indicate
3132			 *  something is wrong.
3133			 */
3134			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3135				if (entry->class == hlock_class(prev)) {
3136					if (distance == 1)
3137						entry->distance = 1;
3138					entry->dep |= calc_depb(prev, next);
3139					return 1;
3140				}
3141			}
3142
3143			/* <prev> is not found in <next>::locks_before */
3144			return 0;
3145		}
3146	}
3147
3148	/*
3149	 * Is the <prev> -> <next> link redundant?
3150	 */
3151	ret = check_redundant(prev, next);
3152	if (bfs_error(ret))
3153		return 0;
3154	else if (ret == BFS_RMATCH)
3155		return 2;
3156
3157	if (!*trace) {
3158		*trace = save_trace();
3159		if (!*trace)
3160			return 0;
3161	}
3162
3163	/*
3164	 * Ok, all validations passed, add the new lock
3165	 * to the previous lock's dependency list:
3166	 */
3167	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3168			       &hlock_class(prev)->locks_after, distance,
3169			       calc_dep(prev, next), *trace);
 
 
3170
3171	if (!ret)
3172		return 0;
3173
3174	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3175			       &hlock_class(next)->locks_before, distance,
3176			       calc_depb(prev, next), *trace);
 
 
3177	if (!ret)
3178		return 0;
3179
3180	return 2;
3181}
3182
3183/*
3184 * Add the dependency to all directly-previous locks that are 'relevant'.
3185 * The ones that are relevant are (in increasing distance from curr):
3186 * all consecutive trylock entries and the final non-trylock entry - or
3187 * the end of this context's lock-chain - whichever comes first.
3188 */
3189static int
3190check_prevs_add(struct task_struct *curr, struct held_lock *next)
3191{
3192	struct lock_trace *trace = NULL;
3193	int depth = curr->lockdep_depth;
3194	struct held_lock *hlock;
3195
3196	/*
3197	 * Debugging checks.
3198	 *
3199	 * Depth must not be zero for a non-head lock:
3200	 */
3201	if (!depth)
3202		goto out_bug;
3203	/*
3204	 * At least two relevant locks must exist for this
3205	 * to be a head:
3206	 */
3207	if (curr->held_locks[depth].irq_context !=
3208			curr->held_locks[depth-1].irq_context)
3209		goto out_bug;
3210
3211	for (;;) {
3212		u16 distance = curr->lockdep_depth - depth + 1;
3213		hlock = curr->held_locks + depth - 1;
3214
3215		if (hlock->check) {
3216			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3217			if (!ret)
3218				return 0;
3219
3220			/*
3221			 * Stop after the first non-trylock entry,
3222			 * as non-trylock entries have added their
3223			 * own direct dependencies already, so this
3224			 * lock is connected to them indirectly:
3225			 */
3226			if (!hlock->trylock)
3227				break;
3228		}
3229
3230		depth--;
3231		/*
3232		 * End of lock-stack?
3233		 */
3234		if (!depth)
3235			break;
3236		/*
3237		 * Stop the search if we cross into another context:
3238		 */
3239		if (curr->held_locks[depth].irq_context !=
3240				curr->held_locks[depth-1].irq_context)
3241			break;
3242	}
3243	return 1;
3244out_bug:
3245	if (!debug_locks_off_graph_unlock())
3246		return 0;
3247
3248	/*
3249	 * Clearly we all shouldn't be here, but since we made it we
3250	 * can reliable say we messed up our state. See the above two
3251	 * gotos for reasons why we could possibly end up here.
3252	 */
3253	WARN_ON(1);
3254
3255	return 0;
3256}
3257
3258struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3259static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3260static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3261unsigned long nr_zapped_lock_chains;
3262unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3263unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3264unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3265
3266/*
3267 * The first 2 chain_hlocks entries in the chain block in the bucket
3268 * list contains the following meta data:
3269 *
3270 *   entry[0]:
3271 *     Bit    15 - always set to 1 (it is not a class index)
3272 *     Bits 0-14 - upper 15 bits of the next block index
3273 *   entry[1]    - lower 16 bits of next block index
3274 *
3275 * A next block index of all 1 bits means it is the end of the list.
3276 *
3277 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3278 * the chain block size:
3279 *
3280 *   entry[2] - upper 16 bits of the chain block size
3281 *   entry[3] - lower 16 bits of the chain block size
3282 */
3283#define MAX_CHAIN_BUCKETS	16
3284#define CHAIN_BLK_FLAG		(1U << 15)
3285#define CHAIN_BLK_LIST_END	0xFFFFU
3286
3287static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3288
3289static inline int size_to_bucket(int size)
3290{
3291	if (size > MAX_CHAIN_BUCKETS)
3292		return 0;
3293
3294	return size - 1;
3295}
3296
3297/*
3298 * Iterate all the chain blocks in a bucket.
3299 */
3300#define for_each_chain_block(bucket, prev, curr)		\
3301	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3302	     (curr) >= 0;					\
3303	     (prev) = (curr), (curr) = chain_block_next(curr))
3304
3305/*
3306 * next block or -1
3307 */
3308static inline int chain_block_next(int offset)
3309{
3310	int next = chain_hlocks[offset];
3311
3312	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3313
3314	if (next == CHAIN_BLK_LIST_END)
3315		return -1;
3316
3317	next &= ~CHAIN_BLK_FLAG;
3318	next <<= 16;
3319	next |= chain_hlocks[offset + 1];
3320
3321	return next;
3322}
3323
3324/*
3325 * bucket-0 only
3326 */
3327static inline int chain_block_size(int offset)
3328{
3329	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3330}
3331
3332static inline void init_chain_block(int offset, int next, int bucket, int size)
3333{
3334	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3335	chain_hlocks[offset + 1] = (u16)next;
3336
3337	if (size && !bucket) {
3338		chain_hlocks[offset + 2] = size >> 16;
3339		chain_hlocks[offset + 3] = (u16)size;
3340	}
3341}
3342
3343static inline void add_chain_block(int offset, int size)
3344{
3345	int bucket = size_to_bucket(size);
3346	int next = chain_block_buckets[bucket];
3347	int prev, curr;
3348
3349	if (unlikely(size < 2)) {
3350		/*
3351		 * We can't store single entries on the freelist. Leak them.
3352		 *
3353		 * One possible way out would be to uniquely mark them, other
3354		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3355		 * the block before it is re-added.
3356		 */
3357		if (size)
3358			nr_lost_chain_hlocks++;
3359		return;
3360	}
3361
3362	nr_free_chain_hlocks += size;
3363	if (!bucket) {
3364		nr_large_chain_blocks++;
3365
3366		/*
3367		 * Variable sized, sort large to small.
3368		 */
3369		for_each_chain_block(0, prev, curr) {
3370			if (size >= chain_block_size(curr))
3371				break;
3372		}
3373		init_chain_block(offset, curr, 0, size);
3374		if (prev < 0)
3375			chain_block_buckets[0] = offset;
3376		else
3377			init_chain_block(prev, offset, 0, 0);
3378		return;
3379	}
3380	/*
3381	 * Fixed size, add to head.
3382	 */
3383	init_chain_block(offset, next, bucket, size);
3384	chain_block_buckets[bucket] = offset;
3385}
3386
3387/*
3388 * Only the first block in the list can be deleted.
3389 *
3390 * For the variable size bucket[0], the first block (the largest one) is
3391 * returned, broken up and put back into the pool. So if a chain block of
3392 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3393 * queued up after the primordial chain block and never be used until the
3394 * hlock entries in the primordial chain block is almost used up. That
3395 * causes fragmentation and reduce allocation efficiency. That can be
3396 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3397 */
3398static inline void del_chain_block(int bucket, int size, int next)
3399{
3400	nr_free_chain_hlocks -= size;
3401	chain_block_buckets[bucket] = next;
3402
3403	if (!bucket)
3404		nr_large_chain_blocks--;
3405}
3406
3407static void init_chain_block_buckets(void)
3408{
3409	int i;
3410
3411	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3412		chain_block_buckets[i] = -1;
3413
3414	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3415}
3416
3417/*
3418 * Return offset of a chain block of the right size or -1 if not found.
3419 *
3420 * Fairly simple worst-fit allocator with the addition of a number of size
3421 * specific free lists.
3422 */
3423static int alloc_chain_hlocks(int req)
3424{
3425	int bucket, curr, size;
3426
3427	/*
3428	 * We rely on the MSB to act as an escape bit to denote freelist
3429	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3430	 */
3431	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3432
3433	init_data_structures_once();
3434
3435	if (nr_free_chain_hlocks < req)
3436		return -1;
3437
3438	/*
3439	 * We require a minimum of 2 (u16) entries to encode a freelist
3440	 * 'pointer'.
3441	 */
3442	req = max(req, 2);
3443	bucket = size_to_bucket(req);
3444	curr = chain_block_buckets[bucket];
3445
3446	if (bucket) {
3447		if (curr >= 0) {
3448			del_chain_block(bucket, req, chain_block_next(curr));
3449			return curr;
3450		}
3451		/* Try bucket 0 */
3452		curr = chain_block_buckets[0];
3453	}
3454
3455	/*
3456	 * The variable sized freelist is sorted by size; the first entry is
3457	 * the largest. Use it if it fits.
3458	 */
3459	if (curr >= 0) {
3460		size = chain_block_size(curr);
3461		if (likely(size >= req)) {
3462			del_chain_block(0, size, chain_block_next(curr));
3463			add_chain_block(curr + req, size - req);
3464			return curr;
3465		}
3466	}
3467
3468	/*
3469	 * Last resort, split a block in a larger sized bucket.
3470	 */
3471	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3472		bucket = size_to_bucket(size);
3473		curr = chain_block_buckets[bucket];
3474		if (curr < 0)
3475			continue;
3476
3477		del_chain_block(bucket, size, chain_block_next(curr));
3478		add_chain_block(curr + req, size - req);
3479		return curr;
3480	}
3481
3482	return -1;
3483}
3484
3485static inline void free_chain_hlocks(int base, int size)
3486{
3487	add_chain_block(base, max(size, 2));
3488}
3489
3490struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3491{
3492	u16 chain_hlock = chain_hlocks[chain->base + i];
3493	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3494
3495	return lock_classes + class_idx;
3496}
3497
3498/*
3499 * Returns the index of the first held_lock of the current chain
3500 */
3501static inline int get_first_held_lock(struct task_struct *curr,
3502					struct held_lock *hlock)
3503{
3504	int i;
3505	struct held_lock *hlock_curr;
3506
3507	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3508		hlock_curr = curr->held_locks + i;
3509		if (hlock_curr->irq_context != hlock->irq_context)
3510			break;
3511
3512	}
3513
3514	return ++i;
3515}
3516
3517#ifdef CONFIG_DEBUG_LOCKDEP
3518/*
3519 * Returns the next chain_key iteration
3520 */
3521static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3522{
3523	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3524
3525	printk(" hlock_id:%d -> chain_key:%016Lx",
3526		(unsigned int)hlock_id,
3527		(unsigned long long)new_chain_key);
3528	return new_chain_key;
3529}
3530
3531static void
3532print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3533{
3534	struct held_lock *hlock;
3535	u64 chain_key = INITIAL_CHAIN_KEY;
3536	int depth = curr->lockdep_depth;
3537	int i = get_first_held_lock(curr, hlock_next);
3538
3539	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3540		hlock_next->irq_context);
3541	for (; i < depth; i++) {
3542		hlock = curr->held_locks + i;
3543		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3544
3545		print_lock(hlock);
3546	}
3547
3548	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3549	print_lock(hlock_next);
3550}
3551
3552static void print_chain_keys_chain(struct lock_chain *chain)
3553{
3554	int i;
3555	u64 chain_key = INITIAL_CHAIN_KEY;
3556	u16 hlock_id;
3557
3558	printk("depth: %u\n", chain->depth);
3559	for (i = 0; i < chain->depth; i++) {
3560		hlock_id = chain_hlocks[chain->base + i];
3561		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3562
3563		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3564		printk("\n");
3565	}
3566}
3567
3568static void print_collision(struct task_struct *curr,
3569			struct held_lock *hlock_next,
3570			struct lock_chain *chain)
3571{
3572	pr_warn("\n");
3573	pr_warn("============================\n");
3574	pr_warn("WARNING: chain_key collision\n");
3575	print_kernel_ident();
3576	pr_warn("----------------------------\n");
3577	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3578	pr_warn("Hash chain already cached but the contents don't match!\n");
3579
3580	pr_warn("Held locks:");
3581	print_chain_keys_held_locks(curr, hlock_next);
3582
3583	pr_warn("Locks in cached chain:");
3584	print_chain_keys_chain(chain);
3585
3586	pr_warn("\nstack backtrace:\n");
3587	dump_stack();
3588}
3589#endif
3590
3591/*
3592 * Checks whether the chain and the current held locks are consistent
3593 * in depth and also in content. If they are not it most likely means
3594 * that there was a collision during the calculation of the chain_key.
3595 * Returns: 0 not passed, 1 passed
3596 */
3597static int check_no_collision(struct task_struct *curr,
3598			struct held_lock *hlock,
3599			struct lock_chain *chain)
3600{
3601#ifdef CONFIG_DEBUG_LOCKDEP
3602	int i, j, id;
3603
3604	i = get_first_held_lock(curr, hlock);
3605
3606	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3607		print_collision(curr, hlock, chain);
3608		return 0;
3609	}
3610
3611	for (j = 0; j < chain->depth - 1; j++, i++) {
3612		id = hlock_id(&curr->held_locks[i]);
3613
3614		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3615			print_collision(curr, hlock, chain);
3616			return 0;
3617		}
3618	}
3619#endif
3620	return 1;
3621}
3622
3623/*
3624 * Given an index that is >= -1, return the index of the next lock chain.
3625 * Return -2 if there is no next lock chain.
3626 */
3627long lockdep_next_lockchain(long i)
3628{
3629	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3630	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3631}
3632
3633unsigned long lock_chain_count(void)
3634{
3635	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3636}
3637
3638/* Must be called with the graph lock held. */
3639static struct lock_chain *alloc_lock_chain(void)
3640{
3641	int idx = find_first_zero_bit(lock_chains_in_use,
3642				      ARRAY_SIZE(lock_chains));
3643
3644	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3645		return NULL;
3646	__set_bit(idx, lock_chains_in_use);
3647	return lock_chains + idx;
3648}
3649
3650/*
3651 * Adds a dependency chain into chain hashtable. And must be called with
3652 * graph_lock held.
3653 *
3654 * Return 0 if fail, and graph_lock is released.
3655 * Return 1 if succeed, with graph_lock held.
3656 */
3657static inline int add_chain_cache(struct task_struct *curr,
3658				  struct held_lock *hlock,
3659				  u64 chain_key)
3660{
3661	struct hlist_head *hash_head = chainhashentry(chain_key);
3662	struct lock_chain *chain;
3663	int i, j;
3664
3665	/*
3666	 * The caller must hold the graph lock, ensure we've got IRQs
3667	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3668	 * lockdep won't complain about its own locking errors.
3669	 */
3670	if (lockdep_assert_locked())
3671		return 0;
3672
3673	chain = alloc_lock_chain();
3674	if (!chain) {
3675		if (!debug_locks_off_graph_unlock())
3676			return 0;
3677
3678		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3679		dump_stack();
3680		return 0;
3681	}
3682	chain->chain_key = chain_key;
3683	chain->irq_context = hlock->irq_context;
3684	i = get_first_held_lock(curr, hlock);
3685	chain->depth = curr->lockdep_depth + 1 - i;
3686
3687	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3688	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3689	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3690
3691	j = alloc_chain_hlocks(chain->depth);
3692	if (j < 0) {
3693		if (!debug_locks_off_graph_unlock())
3694			return 0;
3695
3696		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3697		dump_stack();
3698		return 0;
3699	}
3700
3701	chain->base = j;
3702	for (j = 0; j < chain->depth - 1; j++, i++) {
3703		int lock_id = hlock_id(curr->held_locks + i);
3704
3705		chain_hlocks[chain->base + j] = lock_id;
3706	}
3707	chain_hlocks[chain->base + j] = hlock_id(hlock);
3708	hlist_add_head_rcu(&chain->entry, hash_head);
3709	debug_atomic_inc(chain_lookup_misses);
3710	inc_chains(chain->irq_context);
3711
3712	return 1;
3713}
3714
3715/*
3716 * Look up a dependency chain. Must be called with either the graph lock or
3717 * the RCU read lock held.
3718 */
3719static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3720{
3721	struct hlist_head *hash_head = chainhashentry(chain_key);
3722	struct lock_chain *chain;
3723
3724	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3725		if (READ_ONCE(chain->chain_key) == chain_key) {
3726			debug_atomic_inc(chain_lookup_hits);
3727			return chain;
3728		}
3729	}
3730	return NULL;
3731}
3732
3733/*
3734 * If the key is not present yet in dependency chain cache then
3735 * add it and return 1 - in this case the new dependency chain is
3736 * validated. If the key is already hashed, return 0.
3737 * (On return with 1 graph_lock is held.)
3738 */
3739static inline int lookup_chain_cache_add(struct task_struct *curr,
3740					 struct held_lock *hlock,
3741					 u64 chain_key)
3742{
3743	struct lock_class *class = hlock_class(hlock);
3744	struct lock_chain *chain = lookup_chain_cache(chain_key);
3745
3746	if (chain) {
3747cache_hit:
3748		if (!check_no_collision(curr, hlock, chain))
3749			return 0;
3750
3751		if (very_verbose(class)) {
3752			printk("\nhash chain already cached, key: "
3753					"%016Lx tail class: [%px] %s\n",
3754					(unsigned long long)chain_key,
3755					class->key, class->name);
3756		}
3757
3758		return 0;
3759	}
3760
3761	if (very_verbose(class)) {
3762		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3763			(unsigned long long)chain_key, class->key, class->name);
3764	}
3765
3766	if (!graph_lock())
3767		return 0;
3768
3769	/*
3770	 * We have to walk the chain again locked - to avoid duplicates:
3771	 */
3772	chain = lookup_chain_cache(chain_key);
3773	if (chain) {
3774		graph_unlock();
3775		goto cache_hit;
3776	}
3777
3778	if (!add_chain_cache(curr, hlock, chain_key))
3779		return 0;
3780
3781	return 1;
3782}
3783
3784static int validate_chain(struct task_struct *curr,
3785			  struct held_lock *hlock,
3786			  int chain_head, u64 chain_key)
3787{
3788	/*
3789	 * Trylock needs to maintain the stack of held locks, but it
3790	 * does not add new dependencies, because trylock can be done
3791	 * in any order.
3792	 *
3793	 * We look up the chain_key and do the O(N^2) check and update of
3794	 * the dependencies only if this is a new dependency chain.
3795	 * (If lookup_chain_cache_add() return with 1 it acquires
3796	 * graph_lock for us)
3797	 */
3798	if (!hlock->trylock && hlock->check &&
3799	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3800		/*
3801		 * Check whether last held lock:
3802		 *
3803		 * - is irq-safe, if this lock is irq-unsafe
3804		 * - is softirq-safe, if this lock is hardirq-unsafe
3805		 *
3806		 * And check whether the new lock's dependency graph
3807		 * could lead back to the previous lock:
3808		 *
3809		 * - within the current held-lock stack
3810		 * - across our accumulated lock dependency records
3811		 *
3812		 * any of these scenarios could lead to a deadlock.
3813		 */
3814		/*
3815		 * The simple case: does the current hold the same lock
3816		 * already?
3817		 */
3818		int ret = check_deadlock(curr, hlock);
3819
3820		if (!ret)
3821			return 0;
3822		/*
3823		 * Add dependency only if this lock is not the head
3824		 * of the chain, and if the new lock introduces no more
3825		 * lock dependency (because we already hold a lock with the
3826		 * same lock class) nor deadlock (because the nest_lock
3827		 * serializes nesting locks), see the comments for
3828		 * check_deadlock().
3829		 */
3830		if (!chain_head && ret != 2) {
3831			if (!check_prevs_add(curr, hlock))
3832				return 0;
3833		}
3834
3835		graph_unlock();
3836	} else {
3837		/* after lookup_chain_cache_add(): */
3838		if (unlikely(!debug_locks))
3839			return 0;
3840	}
3841
3842	return 1;
3843}
3844#else
3845static inline int validate_chain(struct task_struct *curr,
3846				 struct held_lock *hlock,
3847				 int chain_head, u64 chain_key)
3848{
3849	return 1;
3850}
3851
3852static void init_chain_block_buckets(void)	{ }
3853#endif /* CONFIG_PROVE_LOCKING */
3854
3855/*
3856 * We are building curr_chain_key incrementally, so double-check
3857 * it from scratch, to make sure that it's done correctly:
3858 */
3859static void check_chain_key(struct task_struct *curr)
3860{
3861#ifdef CONFIG_DEBUG_LOCKDEP
3862	struct held_lock *hlock, *prev_hlock = NULL;
3863	unsigned int i;
3864	u64 chain_key = INITIAL_CHAIN_KEY;
3865
3866	for (i = 0; i < curr->lockdep_depth; i++) {
3867		hlock = curr->held_locks + i;
3868		if (chain_key != hlock->prev_chain_key) {
3869			debug_locks_off();
3870			/*
3871			 * We got mighty confused, our chain keys don't match
3872			 * with what we expect, someone trample on our task state?
3873			 */
3874			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3875				curr->lockdep_depth, i,
3876				(unsigned long long)chain_key,
3877				(unsigned long long)hlock->prev_chain_key);
3878			return;
3879		}
3880
3881		/*
3882		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3883		 * it registered lock class index?
3884		 */
3885		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3886			return;
3887
3888		if (prev_hlock && (prev_hlock->irq_context !=
3889							hlock->irq_context))
3890			chain_key = INITIAL_CHAIN_KEY;
3891		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3892		prev_hlock = hlock;
3893	}
3894	if (chain_key != curr->curr_chain_key) {
3895		debug_locks_off();
3896		/*
3897		 * More smoking hash instead of calculating it, damn see these
3898		 * numbers float.. I bet that a pink elephant stepped on my memory.
3899		 */
3900		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3901			curr->lockdep_depth, i,
3902			(unsigned long long)chain_key,
3903			(unsigned long long)curr->curr_chain_key);
3904	}
3905#endif
3906}
3907
3908#ifdef CONFIG_PROVE_LOCKING
3909static int mark_lock(struct task_struct *curr, struct held_lock *this,
3910		     enum lock_usage_bit new_bit);
3911
3912static void print_usage_bug_scenario(struct held_lock *lock)
3913{
3914	struct lock_class *class = hlock_class(lock);
3915
3916	printk(" Possible unsafe locking scenario:\n\n");
3917	printk("       CPU0\n");
3918	printk("       ----\n");
3919	printk("  lock(");
3920	__print_lock_name(class);
3921	printk(KERN_CONT ");\n");
3922	printk("  <Interrupt>\n");
3923	printk("    lock(");
3924	__print_lock_name(class);
3925	printk(KERN_CONT ");\n");
3926	printk("\n *** DEADLOCK ***\n\n");
3927}
3928
3929static void
3930print_usage_bug(struct task_struct *curr, struct held_lock *this,
3931		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3932{
3933	if (!debug_locks_off() || debug_locks_silent)
3934		return;
3935
3936	pr_warn("\n");
3937	pr_warn("================================\n");
3938	pr_warn("WARNING: inconsistent lock state\n");
3939	print_kernel_ident();
3940	pr_warn("--------------------------------\n");
3941
3942	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3943		usage_str[prev_bit], usage_str[new_bit]);
3944
3945	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3946		curr->comm, task_pid_nr(curr),
3947		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3948		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3949		lockdep_hardirqs_enabled(),
3950		lockdep_softirqs_enabled(curr));
3951	print_lock(this);
3952
3953	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3954	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3955
3956	print_irqtrace_events(curr);
3957	pr_warn("\nother info that might help us debug this:\n");
3958	print_usage_bug_scenario(this);
3959
3960	lockdep_print_held_locks(curr);
3961
3962	pr_warn("\nstack backtrace:\n");
3963	dump_stack();
3964}
3965
3966/*
3967 * Print out an error if an invalid bit is set:
3968 */
3969static inline int
3970valid_state(struct task_struct *curr, struct held_lock *this,
3971	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3972{
3973	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3974		graph_unlock();
3975		print_usage_bug(curr, this, bad_bit, new_bit);
3976		return 0;
3977	}
3978	return 1;
3979}
3980
3981
3982/*
3983 * print irq inversion bug:
3984 */
3985static void
3986print_irq_inversion_bug(struct task_struct *curr,
3987			struct lock_list *root, struct lock_list *other,
3988			struct held_lock *this, int forwards,
3989			const char *irqclass)
3990{
3991	struct lock_list *entry = other;
3992	struct lock_list *middle = NULL;
3993	int depth;
3994
3995	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3996		return;
3997
3998	pr_warn("\n");
3999	pr_warn("========================================================\n");
4000	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4001	print_kernel_ident();
4002	pr_warn("--------------------------------------------------------\n");
4003	pr_warn("%s/%d just changed the state of lock:\n",
4004		curr->comm, task_pid_nr(curr));
4005	print_lock(this);
4006	if (forwards)
4007		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4008	else
4009		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4010	print_lock_name(other->class);
4011	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4012
4013	pr_warn("\nother info that might help us debug this:\n");
4014
4015	/* Find a middle lock (if one exists) */
4016	depth = get_lock_depth(other);
4017	do {
4018		if (depth == 0 && (entry != root)) {
4019			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4020			break;
4021		}
4022		middle = entry;
4023		entry = get_lock_parent(entry);
4024		depth--;
4025	} while (entry && entry != root && (depth >= 0));
4026	if (forwards)
4027		print_irq_lock_scenario(root, other,
4028			middle ? middle->class : root->class, other->class);
4029	else
4030		print_irq_lock_scenario(other, root,
4031			middle ? middle->class : other->class, root->class);
4032
4033	lockdep_print_held_locks(curr);
4034
4035	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4036	root->trace = save_trace();
4037	if (!root->trace)
4038		return;
4039	print_shortest_lock_dependencies(other, root);
4040
4041	pr_warn("\nstack backtrace:\n");
4042	dump_stack();
4043}
4044
4045/*
4046 * Prove that in the forwards-direction subgraph starting at <this>
4047 * there is no lock matching <mask>:
4048 */
4049static int
4050check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4051		     enum lock_usage_bit bit)
4052{
4053	enum bfs_result ret;
4054	struct lock_list root;
4055	struct lock_list *target_entry;
4056	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4057	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4058
4059	bfs_init_root(&root, this);
4060	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4061	if (bfs_error(ret)) {
4062		print_bfs_bug(ret);
4063		return 0;
4064	}
4065	if (ret == BFS_RNOMATCH)
4066		return 1;
4067
4068	/* Check whether write or read usage is the match */
4069	if (target_entry->class->usage_mask & lock_flag(bit)) {
4070		print_irq_inversion_bug(curr, &root, target_entry,
4071					this, 1, state_name(bit));
4072	} else {
4073		print_irq_inversion_bug(curr, &root, target_entry,
4074					this, 1, state_name(read_bit));
4075	}
4076
4077	return 0;
4078}
4079
4080/*
4081 * Prove that in the backwards-direction subgraph starting at <this>
4082 * there is no lock matching <mask>:
4083 */
4084static int
4085check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4086		      enum lock_usage_bit bit)
4087{
4088	enum bfs_result ret;
4089	struct lock_list root;
4090	struct lock_list *target_entry;
4091	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4092	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4093
4094	bfs_init_rootb(&root, this);
4095	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4096	if (bfs_error(ret)) {
4097		print_bfs_bug(ret);
4098		return 0;
4099	}
4100	if (ret == BFS_RNOMATCH)
4101		return 1;
4102
4103	/* Check whether write or read usage is the match */
4104	if (target_entry->class->usage_mask & lock_flag(bit)) {
4105		print_irq_inversion_bug(curr, &root, target_entry,
4106					this, 0, state_name(bit));
4107	} else {
4108		print_irq_inversion_bug(curr, &root, target_entry,
4109					this, 0, state_name(read_bit));
4110	}
4111
4112	return 0;
4113}
4114
4115void print_irqtrace_events(struct task_struct *curr)
4116{
4117	const struct irqtrace_events *trace = &curr->irqtrace;
4118
4119	printk("irq event stamp: %u\n", trace->irq_events);
4120	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4121		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4122		(void *)trace->hardirq_enable_ip);
4123	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4124		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4125		(void *)trace->hardirq_disable_ip);
4126	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4127		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4128		(void *)trace->softirq_enable_ip);
4129	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4130		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4131		(void *)trace->softirq_disable_ip);
4132}
4133
4134static int HARDIRQ_verbose(struct lock_class *class)
4135{
4136#if HARDIRQ_VERBOSE
4137	return class_filter(class);
4138#endif
4139	return 0;
4140}
4141
4142static int SOFTIRQ_verbose(struct lock_class *class)
4143{
4144#if SOFTIRQ_VERBOSE
4145	return class_filter(class);
4146#endif
4147	return 0;
4148}
4149
4150static int (*state_verbose_f[])(struct lock_class *class) = {
4151#define LOCKDEP_STATE(__STATE) \
4152	__STATE##_verbose,
4153#include "lockdep_states.h"
4154#undef LOCKDEP_STATE
4155};
4156
4157static inline int state_verbose(enum lock_usage_bit bit,
4158				struct lock_class *class)
4159{
4160	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4161}
4162
4163typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4164			     enum lock_usage_bit bit, const char *name);
4165
4166static int
4167mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4168		enum lock_usage_bit new_bit)
4169{
4170	int excl_bit = exclusive_bit(new_bit);
4171	int read = new_bit & LOCK_USAGE_READ_MASK;
4172	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4173
4174	/*
4175	 * Validate that this particular lock does not have conflicting
4176	 * usage states.
4177	 */
4178	if (!valid_state(curr, this, new_bit, excl_bit))
4179		return 0;
4180
4181	/*
4182	 * Check for read in write conflicts
4183	 */
4184	if (!read && !valid_state(curr, this, new_bit,
4185				  excl_bit + LOCK_USAGE_READ_MASK))
4186		return 0;
4187
4188
4189	/*
4190	 * Validate that the lock dependencies don't have conflicting usage
4191	 * states.
4192	 */
4193	if (dir) {
4194		/*
4195		 * mark ENABLED has to look backwards -- to ensure no dependee
4196		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4197		 */
4198		if (!check_usage_backwards(curr, this, excl_bit))
4199			return 0;
4200	} else {
4201		/*
4202		 * mark USED_IN has to look forwards -- to ensure no dependency
4203		 * has ENABLED state, which would allow recursion deadlocks.
4204		 */
4205		if (!check_usage_forwards(curr, this, excl_bit))
4206			return 0;
4207	}
4208
4209	if (state_verbose(new_bit, hlock_class(this)))
4210		return 2;
4211
4212	return 1;
4213}
4214
4215/*
4216 * Mark all held locks with a usage bit:
4217 */
4218static int
4219mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4220{
4221	struct held_lock *hlock;
4222	int i;
4223
4224	for (i = 0; i < curr->lockdep_depth; i++) {
4225		enum lock_usage_bit hlock_bit = base_bit;
4226		hlock = curr->held_locks + i;
4227
4228		if (hlock->read)
4229			hlock_bit += LOCK_USAGE_READ_MASK;
4230
4231		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4232
4233		if (!hlock->check)
4234			continue;
4235
4236		if (!mark_lock(curr, hlock, hlock_bit))
4237			return 0;
4238	}
4239
4240	return 1;
4241}
4242
4243/*
4244 * Hardirqs will be enabled:
4245 */
4246static void __trace_hardirqs_on_caller(void)
4247{
4248	struct task_struct *curr = current;
4249
4250	/*
4251	 * We are going to turn hardirqs on, so set the
4252	 * usage bit for all held locks:
4253	 */
4254	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4255		return;
4256	/*
4257	 * If we have softirqs enabled, then set the usage
4258	 * bit for all held locks. (disabled hardirqs prevented
4259	 * this bit from being set before)
4260	 */
4261	if (curr->softirqs_enabled)
4262		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4263}
4264
4265/**
4266 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
 
4267 *
4268 * Invoked before a possible transition to RCU idle from exit to user or
4269 * guest mode. This ensures that all RCU operations are done before RCU
4270 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4271 * invoked to set the final state.
4272 */
4273void lockdep_hardirqs_on_prepare(void)
4274{
4275	if (unlikely(!debug_locks))
4276		return;
4277
4278	/*
4279	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4280	 */
4281	if (unlikely(in_nmi()))
4282		return;
4283
4284	if (unlikely(this_cpu_read(lockdep_recursion)))
4285		return;
4286
4287	if (unlikely(lockdep_hardirqs_enabled())) {
4288		/*
4289		 * Neither irq nor preemption are disabled here
4290		 * so this is racy by nature but losing one hit
4291		 * in a stat is not a big deal.
4292		 */
4293		__debug_atomic_inc(redundant_hardirqs_on);
4294		return;
4295	}
4296
4297	/*
4298	 * We're enabling irqs and according to our state above irqs weren't
4299	 * already enabled, yet we find the hardware thinks they are in fact
4300	 * enabled.. someone messed up their IRQ state tracing.
4301	 */
4302	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4303		return;
4304
4305	/*
4306	 * See the fine text that goes along with this variable definition.
4307	 */
4308	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4309		return;
4310
4311	/*
4312	 * Can't allow enabling interrupts while in an interrupt handler,
4313	 * that's general bad form and such. Recursion, limited stack etc..
4314	 */
4315	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4316		return;
4317
4318	current->hardirq_chain_key = current->curr_chain_key;
4319
4320	lockdep_recursion_inc();
4321	__trace_hardirqs_on_caller();
4322	lockdep_recursion_finish();
4323}
4324EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4325
4326void noinstr lockdep_hardirqs_on(unsigned long ip)
4327{
4328	struct irqtrace_events *trace = &current->irqtrace;
4329
4330	if (unlikely(!debug_locks))
4331		return;
4332
4333	/*
4334	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4335	 * tracking state and hardware state are out of sync.
4336	 *
4337	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4338	 * and not rely on hardware state like normal interrupts.
4339	 */
4340	if (unlikely(in_nmi())) {
4341		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4342			return;
4343
4344		/*
4345		 * Skip:
4346		 *  - recursion check, because NMI can hit lockdep;
4347		 *  - hardware state check, because above;
4348		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4349		 */
4350		goto skip_checks;
4351	}
4352
4353	if (unlikely(this_cpu_read(lockdep_recursion)))
4354		return;
4355
4356	if (lockdep_hardirqs_enabled()) {
4357		/*
4358		 * Neither irq nor preemption are disabled here
4359		 * so this is racy by nature but losing one hit
4360		 * in a stat is not a big deal.
4361		 */
4362		__debug_atomic_inc(redundant_hardirqs_on);
4363		return;
4364	}
4365
4366	/*
4367	 * We're enabling irqs and according to our state above irqs weren't
4368	 * already enabled, yet we find the hardware thinks they are in fact
4369	 * enabled.. someone messed up their IRQ state tracing.
4370	 */
4371	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4372		return;
4373
4374	/*
4375	 * Ensure the lock stack remained unchanged between
4376	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4377	 */
4378	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4379			    current->curr_chain_key);
4380
4381skip_checks:
4382	/* we'll do an OFF -> ON transition: */
4383	__this_cpu_write(hardirqs_enabled, 1);
4384	trace->hardirq_enable_ip = ip;
4385	trace->hardirq_enable_event = ++trace->irq_events;
4386	debug_atomic_inc(hardirqs_on_events);
4387}
4388EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4389
4390/*
4391 * Hardirqs were disabled:
4392 */
4393void noinstr lockdep_hardirqs_off(unsigned long ip)
4394{
4395	if (unlikely(!debug_locks))
4396		return;
4397
4398	/*
4399	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4400	 * they will restore the software state. This ensures the software
4401	 * state is consistent inside NMIs as well.
4402	 */
4403	if (in_nmi()) {
4404		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4405			return;
4406	} else if (__this_cpu_read(lockdep_recursion))
4407		return;
4408
4409	/*
4410	 * So we're supposed to get called after you mask local IRQs, but for
4411	 * some reason the hardware doesn't quite think you did a proper job.
4412	 */
4413	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4414		return;
4415
4416	if (lockdep_hardirqs_enabled()) {
4417		struct irqtrace_events *trace = &current->irqtrace;
4418
4419		/*
4420		 * We have done an ON -> OFF transition:
4421		 */
4422		__this_cpu_write(hardirqs_enabled, 0);
4423		trace->hardirq_disable_ip = ip;
4424		trace->hardirq_disable_event = ++trace->irq_events;
4425		debug_atomic_inc(hardirqs_off_events);
4426	} else {
4427		debug_atomic_inc(redundant_hardirqs_off);
4428	}
4429}
4430EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4431
4432/*
4433 * Softirqs will be enabled:
4434 */
4435void lockdep_softirqs_on(unsigned long ip)
4436{
4437	struct irqtrace_events *trace = &current->irqtrace;
4438
4439	if (unlikely(!lockdep_enabled()))
4440		return;
4441
4442	/*
4443	 * We fancy IRQs being disabled here, see softirq.c, avoids
4444	 * funny state and nesting things.
4445	 */
4446	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4447		return;
4448
4449	if (current->softirqs_enabled) {
4450		debug_atomic_inc(redundant_softirqs_on);
4451		return;
4452	}
4453
4454	lockdep_recursion_inc();
4455	/*
4456	 * We'll do an OFF -> ON transition:
4457	 */
4458	current->softirqs_enabled = 1;
4459	trace->softirq_enable_ip = ip;
4460	trace->softirq_enable_event = ++trace->irq_events;
4461	debug_atomic_inc(softirqs_on_events);
4462	/*
4463	 * We are going to turn softirqs on, so set the
4464	 * usage bit for all held locks, if hardirqs are
4465	 * enabled too:
4466	 */
4467	if (lockdep_hardirqs_enabled())
4468		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4469	lockdep_recursion_finish();
4470}
4471
4472/*
4473 * Softirqs were disabled:
4474 */
4475void lockdep_softirqs_off(unsigned long ip)
4476{
4477	if (unlikely(!lockdep_enabled()))
4478		return;
4479
4480	/*
4481	 * We fancy IRQs being disabled here, see softirq.c
4482	 */
4483	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4484		return;
4485
4486	if (current->softirqs_enabled) {
4487		struct irqtrace_events *trace = &current->irqtrace;
4488
4489		/*
4490		 * We have done an ON -> OFF transition:
4491		 */
4492		current->softirqs_enabled = 0;
4493		trace->softirq_disable_ip = ip;
4494		trace->softirq_disable_event = ++trace->irq_events;
4495		debug_atomic_inc(softirqs_off_events);
4496		/*
4497		 * Whoops, we wanted softirqs off, so why aren't they?
4498		 */
4499		DEBUG_LOCKS_WARN_ON(!softirq_count());
4500	} else
4501		debug_atomic_inc(redundant_softirqs_off);
4502}
4503
4504static int
4505mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4506{
4507	if (!check)
4508		goto lock_used;
4509
4510	/*
4511	 * If non-trylock use in a hardirq or softirq context, then
4512	 * mark the lock as used in these contexts:
4513	 */
4514	if (!hlock->trylock) {
4515		if (hlock->read) {
4516			if (lockdep_hardirq_context())
4517				if (!mark_lock(curr, hlock,
4518						LOCK_USED_IN_HARDIRQ_READ))
4519					return 0;
4520			if (curr->softirq_context)
4521				if (!mark_lock(curr, hlock,
4522						LOCK_USED_IN_SOFTIRQ_READ))
4523					return 0;
4524		} else {
4525			if (lockdep_hardirq_context())
4526				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4527					return 0;
4528			if (curr->softirq_context)
4529				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4530					return 0;
4531		}
4532	}
4533	if (!hlock->hardirqs_off) {
4534		if (hlock->read) {
4535			if (!mark_lock(curr, hlock,
4536					LOCK_ENABLED_HARDIRQ_READ))
4537				return 0;
4538			if (curr->softirqs_enabled)
4539				if (!mark_lock(curr, hlock,
4540						LOCK_ENABLED_SOFTIRQ_READ))
4541					return 0;
4542		} else {
4543			if (!mark_lock(curr, hlock,
4544					LOCK_ENABLED_HARDIRQ))
4545				return 0;
4546			if (curr->softirqs_enabled)
4547				if (!mark_lock(curr, hlock,
4548						LOCK_ENABLED_SOFTIRQ))
4549					return 0;
4550		}
4551	}
4552
4553lock_used:
4554	/* mark it as used: */
4555	if (!mark_lock(curr, hlock, LOCK_USED))
4556		return 0;
4557
4558	return 1;
4559}
4560
4561static inline unsigned int task_irq_context(struct task_struct *task)
4562{
4563	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4564	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4565}
4566
4567static int separate_irq_context(struct task_struct *curr,
4568		struct held_lock *hlock)
4569{
4570	unsigned int depth = curr->lockdep_depth;
4571
4572	/*
4573	 * Keep track of points where we cross into an interrupt context:
4574	 */
4575	if (depth) {
4576		struct held_lock *prev_hlock;
4577
4578		prev_hlock = curr->held_locks + depth-1;
4579		/*
4580		 * If we cross into another context, reset the
4581		 * hash key (this also prevents the checking and the
4582		 * adding of the dependency to 'prev'):
4583		 */
4584		if (prev_hlock->irq_context != hlock->irq_context)
4585			return 1;
4586	}
4587	return 0;
4588}
4589
4590/*
4591 * Mark a lock with a usage bit, and validate the state transition:
4592 */
4593static int mark_lock(struct task_struct *curr, struct held_lock *this,
4594			     enum lock_usage_bit new_bit)
4595{
4596	unsigned int new_mask, ret = 1;
4597
4598	if (new_bit >= LOCK_USAGE_STATES) {
4599		DEBUG_LOCKS_WARN_ON(1);
4600		return 0;
4601	}
4602
4603	if (new_bit == LOCK_USED && this->read)
4604		new_bit = LOCK_USED_READ;
4605
4606	new_mask = 1 << new_bit;
4607
4608	/*
4609	 * If already set then do not dirty the cacheline,
4610	 * nor do any checks:
4611	 */
4612	if (likely(hlock_class(this)->usage_mask & new_mask))
4613		return 1;
4614
4615	if (!graph_lock())
4616		return 0;
4617	/*
4618	 * Make sure we didn't race:
4619	 */
4620	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4621		goto unlock;
4622
4623	if (!hlock_class(this)->usage_mask)
4624		debug_atomic_dec(nr_unused_locks);
4625
4626	hlock_class(this)->usage_mask |= new_mask;
4627
4628	if (new_bit < LOCK_TRACE_STATES) {
4629		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4630			return 0;
4631	}
4632
4633	if (new_bit < LOCK_USED) {
4634		ret = mark_lock_irq(curr, this, new_bit);
4635		if (!ret)
4636			return 0;
4637	}
4638
4639unlock:
4640	graph_unlock();
4641
4642	/*
4643	 * We must printk outside of the graph_lock:
4644	 */
4645	if (ret == 2) {
4646		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4647		print_lock(this);
4648		print_irqtrace_events(curr);
4649		dump_stack();
4650	}
4651
4652	return ret;
4653}
4654
4655static inline short task_wait_context(struct task_struct *curr)
4656{
4657	/*
4658	 * Set appropriate wait type for the context; for IRQs we have to take
4659	 * into account force_irqthread as that is implied by PREEMPT_RT.
4660	 */
4661	if (lockdep_hardirq_context()) {
4662		/*
4663		 * Check if force_irqthreads will run us threaded.
4664		 */
4665		if (curr->hardirq_threaded || curr->irq_config)
4666			return LD_WAIT_CONFIG;
4667
4668		return LD_WAIT_SPIN;
4669	} else if (curr->softirq_context) {
4670		/*
4671		 * Softirqs are always threaded.
4672		 */
4673		return LD_WAIT_CONFIG;
4674	}
4675
4676	return LD_WAIT_MAX;
4677}
4678
4679static int
4680print_lock_invalid_wait_context(struct task_struct *curr,
4681				struct held_lock *hlock)
4682{
4683	short curr_inner;
4684
4685	if (!debug_locks_off())
4686		return 0;
4687	if (debug_locks_silent)
4688		return 0;
4689
4690	pr_warn("\n");
4691	pr_warn("=============================\n");
4692	pr_warn("[ BUG: Invalid wait context ]\n");
4693	print_kernel_ident();
4694	pr_warn("-----------------------------\n");
4695
4696	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4697	print_lock(hlock);
4698
4699	pr_warn("other info that might help us debug this:\n");
4700
4701	curr_inner = task_wait_context(curr);
4702	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4703
4704	lockdep_print_held_locks(curr);
4705
4706	pr_warn("stack backtrace:\n");
4707	dump_stack();
4708
4709	return 0;
4710}
4711
4712/*
4713 * Verify the wait_type context.
4714 *
4715 * This check validates we take locks in the right wait-type order; that is it
4716 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4717 * acquire spinlocks inside raw_spinlocks and the sort.
4718 *
4719 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4720 * can be taken from (pretty much) any context but also has constraints.
4721 * However when taken in a stricter environment the RCU lock does not loosen
4722 * the constraints.
4723 *
4724 * Therefore we must look for the strictest environment in the lock stack and
4725 * compare that to the lock we're trying to acquire.
4726 */
4727static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4728{
4729	u8 next_inner = hlock_class(next)->wait_type_inner;
4730	u8 next_outer = hlock_class(next)->wait_type_outer;
4731	u8 curr_inner;
4732	int depth;
4733
4734	if (!next_inner || next->trylock)
4735		return 0;
4736
4737	if (!next_outer)
4738		next_outer = next_inner;
4739
4740	/*
4741	 * Find start of current irq_context..
4742	 */
4743	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4744		struct held_lock *prev = curr->held_locks + depth;
4745		if (prev->irq_context != next->irq_context)
4746			break;
4747	}
4748	depth++;
4749
4750	curr_inner = task_wait_context(curr);
4751
4752	for (; depth < curr->lockdep_depth; depth++) {
4753		struct held_lock *prev = curr->held_locks + depth;
4754		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4755
4756		if (prev_inner) {
4757			/*
4758			 * We can have a bigger inner than a previous one
4759			 * when outer is smaller than inner, as with RCU.
4760			 *
4761			 * Also due to trylocks.
4762			 */
4763			curr_inner = min(curr_inner, prev_inner);
4764		}
4765	}
4766
4767	if (next_outer > curr_inner)
4768		return print_lock_invalid_wait_context(curr, next);
4769
4770	return 0;
4771}
4772
4773#else /* CONFIG_PROVE_LOCKING */
4774
4775static inline int
4776mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4777{
4778	return 1;
4779}
4780
4781static inline unsigned int task_irq_context(struct task_struct *task)
4782{
4783	return 0;
4784}
4785
4786static inline int separate_irq_context(struct task_struct *curr,
4787		struct held_lock *hlock)
4788{
4789	return 0;
4790}
4791
4792static inline int check_wait_context(struct task_struct *curr,
4793				     struct held_lock *next)
4794{
4795	return 0;
4796}
4797
4798#endif /* CONFIG_PROVE_LOCKING */
4799
4800/*
4801 * Initialize a lock instance's lock-class mapping info:
4802 */
4803void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4804			    struct lock_class_key *key, int subclass,
4805			    u8 inner, u8 outer, u8 lock_type)
4806{
4807	int i;
4808
4809	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4810		lock->class_cache[i] = NULL;
4811
4812#ifdef CONFIG_LOCK_STAT
4813	lock->cpu = raw_smp_processor_id();
4814#endif
4815
4816	/*
4817	 * Can't be having no nameless bastards around this place!
4818	 */
4819	if (DEBUG_LOCKS_WARN_ON(!name)) {
4820		lock->name = "NULL";
4821		return;
4822	}
4823
4824	lock->name = name;
4825
4826	lock->wait_type_outer = outer;
4827	lock->wait_type_inner = inner;
4828	lock->lock_type = lock_type;
4829
4830	/*
4831	 * No key, no joy, we need to hash something.
4832	 */
4833	if (DEBUG_LOCKS_WARN_ON(!key))
4834		return;
4835	/*
4836	 * Sanity check, the lock-class key must either have been allocated
4837	 * statically or must have been registered as a dynamic key.
4838	 */
4839	if (!static_obj(key) && !is_dynamic_key(key)) {
4840		if (debug_locks)
4841			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4842		DEBUG_LOCKS_WARN_ON(1);
4843		return;
4844	}
4845	lock->key = key;
4846
4847	if (unlikely(!debug_locks))
4848		return;
4849
4850	if (subclass) {
4851		unsigned long flags;
4852
4853		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4854			return;
4855
4856		raw_local_irq_save(flags);
4857		lockdep_recursion_inc();
4858		register_lock_class(lock, subclass, 1);
4859		lockdep_recursion_finish();
4860		raw_local_irq_restore(flags);
4861	}
4862}
4863EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4864
4865struct lock_class_key __lockdep_no_validate__;
4866EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4867
4868static void
4869print_lock_nested_lock_not_held(struct task_struct *curr,
4870				struct held_lock *hlock)
 
4871{
4872	if (!debug_locks_off())
4873		return;
4874	if (debug_locks_silent)
4875		return;
4876
4877	pr_warn("\n");
4878	pr_warn("==================================\n");
4879	pr_warn("WARNING: Nested lock was not taken\n");
4880	print_kernel_ident();
4881	pr_warn("----------------------------------\n");
4882
4883	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4884	print_lock(hlock);
4885
4886	pr_warn("\nbut this task is not holding:\n");
4887	pr_warn("%s\n", hlock->nest_lock->name);
4888
4889	pr_warn("\nstack backtrace:\n");
4890	dump_stack();
4891
4892	pr_warn("\nother info that might help us debug this:\n");
4893	lockdep_print_held_locks(curr);
4894
4895	pr_warn("\nstack backtrace:\n");
4896	dump_stack();
4897}
4898
4899static int __lock_is_held(const struct lockdep_map *lock, int read);
4900
4901/*
4902 * This gets called for every mutex_lock*()/spin_lock*() operation.
4903 * We maintain the dependency maps and validate the locking attempt:
4904 *
4905 * The callers must make sure that IRQs are disabled before calling it,
4906 * otherwise we could get an interrupt which would want to take locks,
4907 * which would end up in lockdep again.
4908 */
4909static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4910			  int trylock, int read, int check, int hardirqs_off,
4911			  struct lockdep_map *nest_lock, unsigned long ip,
4912			  int references, int pin_count)
4913{
4914	struct task_struct *curr = current;
4915	struct lock_class *class = NULL;
4916	struct held_lock *hlock;
4917	unsigned int depth;
4918	int chain_head = 0;
4919	int class_idx;
4920	u64 chain_key;
4921
4922	if (unlikely(!debug_locks))
4923		return 0;
4924
4925	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4926		check = 0;
4927
4928	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4929		class = lock->class_cache[subclass];
4930	/*
4931	 * Not cached?
4932	 */
4933	if (unlikely(!class)) {
4934		class = register_lock_class(lock, subclass, 0);
4935		if (!class)
4936			return 0;
4937	}
4938
4939	debug_class_ops_inc(class);
4940
4941	if (very_verbose(class)) {
4942		printk("\nacquire class [%px] %s", class->key, class->name);
4943		if (class->name_version > 1)
4944			printk(KERN_CONT "#%d", class->name_version);
4945		printk(KERN_CONT "\n");
4946		dump_stack();
4947	}
4948
4949	/*
4950	 * Add the lock to the list of currently held locks.
4951	 * (we dont increase the depth just yet, up until the
4952	 * dependency checks are done)
4953	 */
4954	depth = curr->lockdep_depth;
4955	/*
4956	 * Ran out of static storage for our per-task lock stack again have we?
4957	 */
4958	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4959		return 0;
4960
4961	class_idx = class - lock_classes;
4962
4963	if (depth) { /* we're holding locks */
4964		hlock = curr->held_locks + depth - 1;
4965		if (hlock->class_idx == class_idx && nest_lock) {
4966			if (!references)
4967				references++;
4968
4969			if (!hlock->references)
4970				hlock->references++;
4971
4972			hlock->references += references;
4973
4974			/* Overflow */
4975			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4976				return 0;
4977
4978			return 2;
4979		}
4980	}
4981
4982	hlock = curr->held_locks + depth;
4983	/*
4984	 * Plain impossible, we just registered it and checked it weren't no
4985	 * NULL like.. I bet this mushroom I ate was good!
4986	 */
4987	if (DEBUG_LOCKS_WARN_ON(!class))
4988		return 0;
4989	hlock->class_idx = class_idx;
4990	hlock->acquire_ip = ip;
4991	hlock->instance = lock;
4992	hlock->nest_lock = nest_lock;
4993	hlock->irq_context = task_irq_context(curr);
4994	hlock->trylock = trylock;
4995	hlock->read = read;
4996	hlock->check = check;
4997	hlock->hardirqs_off = !!hardirqs_off;
4998	hlock->references = references;
4999#ifdef CONFIG_LOCK_STAT
5000	hlock->waittime_stamp = 0;
5001	hlock->holdtime_stamp = lockstat_clock();
5002#endif
5003	hlock->pin_count = pin_count;
5004
5005	if (check_wait_context(curr, hlock))
5006		return 0;
5007
5008	/* Initialize the lock usage bit */
5009	if (!mark_usage(curr, hlock, check))
5010		return 0;
5011
5012	/*
5013	 * Calculate the chain hash: it's the combined hash of all the
5014	 * lock keys along the dependency chain. We save the hash value
5015	 * at every step so that we can get the current hash easily
5016	 * after unlock. The chain hash is then used to cache dependency
5017	 * results.
5018	 *
5019	 * The 'key ID' is what is the most compact key value to drive
5020	 * the hash, not class->key.
5021	 */
5022	/*
5023	 * Whoops, we did it again.. class_idx is invalid.
5024	 */
5025	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5026		return 0;
5027
5028	chain_key = curr->curr_chain_key;
5029	if (!depth) {
5030		/*
5031		 * How can we have a chain hash when we ain't got no keys?!
5032		 */
5033		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5034			return 0;
5035		chain_head = 1;
5036	}
5037
5038	hlock->prev_chain_key = chain_key;
5039	if (separate_irq_context(curr, hlock)) {
5040		chain_key = INITIAL_CHAIN_KEY;
5041		chain_head = 1;
5042	}
5043	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5044
5045	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5046		print_lock_nested_lock_not_held(curr, hlock);
5047		return 0;
5048	}
5049
5050	if (!debug_locks_silent) {
5051		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5052		WARN_ON_ONCE(!hlock_class(hlock)->key);
5053	}
5054
5055	if (!validate_chain(curr, hlock, chain_head, chain_key))
5056		return 0;
5057
5058	curr->curr_chain_key = chain_key;
5059	curr->lockdep_depth++;
5060	check_chain_key(curr);
5061#ifdef CONFIG_DEBUG_LOCKDEP
5062	if (unlikely(!debug_locks))
5063		return 0;
5064#endif
5065	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5066		debug_locks_off();
5067		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5068		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5069		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5070
5071		lockdep_print_held_locks(current);
5072		debug_show_all_locks();
5073		dump_stack();
5074
5075		return 0;
5076	}
5077
5078	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5079		max_lockdep_depth = curr->lockdep_depth;
5080
5081	return 1;
5082}
5083
5084static void print_unlock_imbalance_bug(struct task_struct *curr,
5085				       struct lockdep_map *lock,
5086				       unsigned long ip)
5087{
5088	if (!debug_locks_off())
5089		return;
5090	if (debug_locks_silent)
5091		return;
5092
5093	pr_warn("\n");
5094	pr_warn("=====================================\n");
5095	pr_warn("WARNING: bad unlock balance detected!\n");
5096	print_kernel_ident();
5097	pr_warn("-------------------------------------\n");
5098	pr_warn("%s/%d is trying to release lock (",
5099		curr->comm, task_pid_nr(curr));
5100	print_lockdep_cache(lock);
5101	pr_cont(") at:\n");
5102	print_ip_sym(KERN_WARNING, ip);
5103	pr_warn("but there are no more locks to release!\n");
5104	pr_warn("\nother info that might help us debug this:\n");
5105	lockdep_print_held_locks(curr);
5106
5107	pr_warn("\nstack backtrace:\n");
5108	dump_stack();
5109}
5110
5111static noinstr int match_held_lock(const struct held_lock *hlock,
5112				   const struct lockdep_map *lock)
5113{
5114	if (hlock->instance == lock)
5115		return 1;
5116
5117	if (hlock->references) {
5118		const struct lock_class *class = lock->class_cache[0];
5119
5120		if (!class)
5121			class = look_up_lock_class(lock, 0);
5122
5123		/*
5124		 * If look_up_lock_class() failed to find a class, we're trying
5125		 * to test if we hold a lock that has never yet been acquired.
5126		 * Clearly if the lock hasn't been acquired _ever_, we're not
5127		 * holding it either, so report failure.
5128		 */
5129		if (!class)
5130			return 0;
5131
5132		/*
5133		 * References, but not a lock we're actually ref-counting?
5134		 * State got messed up, follow the sites that change ->references
5135		 * and try to make sense of it.
5136		 */
5137		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5138			return 0;
5139
5140		if (hlock->class_idx == class - lock_classes)
5141			return 1;
5142	}
5143
5144	return 0;
5145}
5146
5147/* @depth must not be zero */
5148static struct held_lock *find_held_lock(struct task_struct *curr,
5149					struct lockdep_map *lock,
5150					unsigned int depth, int *idx)
5151{
5152	struct held_lock *ret, *hlock, *prev_hlock;
5153	int i;
5154
5155	i = depth - 1;
5156	hlock = curr->held_locks + i;
5157	ret = hlock;
5158	if (match_held_lock(hlock, lock))
5159		goto out;
5160
5161	ret = NULL;
5162	for (i--, prev_hlock = hlock--;
5163	     i >= 0;
5164	     i--, prev_hlock = hlock--) {
5165		/*
5166		 * We must not cross into another context:
5167		 */
5168		if (prev_hlock->irq_context != hlock->irq_context) {
5169			ret = NULL;
5170			break;
5171		}
5172		if (match_held_lock(hlock, lock)) {
5173			ret = hlock;
5174			break;
5175		}
5176	}
5177
5178out:
5179	*idx = i;
5180	return ret;
5181}
5182
5183static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5184				int idx, unsigned int *merged)
5185{
5186	struct held_lock *hlock;
5187	int first_idx = idx;
5188
5189	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5190		return 0;
5191
5192	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5193		switch (__lock_acquire(hlock->instance,
5194				    hlock_class(hlock)->subclass,
5195				    hlock->trylock,
5196				    hlock->read, hlock->check,
5197				    hlock->hardirqs_off,
5198				    hlock->nest_lock, hlock->acquire_ip,
5199				    hlock->references, hlock->pin_count)) {
5200		case 0:
5201			return 1;
5202		case 1:
5203			break;
5204		case 2:
5205			*merged += (idx == first_idx);
5206			break;
5207		default:
5208			WARN_ON(1);
5209			return 0;
5210		}
5211	}
5212	return 0;
5213}
5214
5215static int
5216__lock_set_class(struct lockdep_map *lock, const char *name,
5217		 struct lock_class_key *key, unsigned int subclass,
5218		 unsigned long ip)
5219{
5220	struct task_struct *curr = current;
5221	unsigned int depth, merged = 0;
5222	struct held_lock *hlock;
5223	struct lock_class *class;
5224	int i;
5225
5226	if (unlikely(!debug_locks))
5227		return 0;
5228
5229	depth = curr->lockdep_depth;
5230	/*
5231	 * This function is about (re)setting the class of a held lock,
5232	 * yet we're not actually holding any locks. Naughty user!
5233	 */
5234	if (DEBUG_LOCKS_WARN_ON(!depth))
5235		return 0;
5236
5237	hlock = find_held_lock(curr, lock, depth, &i);
5238	if (!hlock) {
5239		print_unlock_imbalance_bug(curr, lock, ip);
5240		return 0;
5241	}
5242
5243	lockdep_init_map_type(lock, name, key, 0,
5244			      lock->wait_type_inner,
5245			      lock->wait_type_outer,
5246			      lock->lock_type);
5247	class = register_lock_class(lock, subclass, 0);
5248	hlock->class_idx = class - lock_classes;
5249
5250	curr->lockdep_depth = i;
5251	curr->curr_chain_key = hlock->prev_chain_key;
5252
5253	if (reacquire_held_locks(curr, depth, i, &merged))
5254		return 0;
5255
5256	/*
5257	 * I took it apart and put it back together again, except now I have
5258	 * these 'spare' parts.. where shall I put them.
5259	 */
5260	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5261		return 0;
5262	return 1;
5263}
5264
5265static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5266{
5267	struct task_struct *curr = current;
5268	unsigned int depth, merged = 0;
5269	struct held_lock *hlock;
5270	int i;
5271
5272	if (unlikely(!debug_locks))
5273		return 0;
5274
5275	depth = curr->lockdep_depth;
5276	/*
5277	 * This function is about (re)setting the class of a held lock,
5278	 * yet we're not actually holding any locks. Naughty user!
5279	 */
5280	if (DEBUG_LOCKS_WARN_ON(!depth))
5281		return 0;
5282
5283	hlock = find_held_lock(curr, lock, depth, &i);
5284	if (!hlock) {
5285		print_unlock_imbalance_bug(curr, lock, ip);
5286		return 0;
5287	}
5288
5289	curr->lockdep_depth = i;
5290	curr->curr_chain_key = hlock->prev_chain_key;
5291
5292	WARN(hlock->read, "downgrading a read lock");
5293	hlock->read = 1;
5294	hlock->acquire_ip = ip;
5295
5296	if (reacquire_held_locks(curr, depth, i, &merged))
5297		return 0;
5298
5299	/* Merging can't happen with unchanged classes.. */
5300	if (DEBUG_LOCKS_WARN_ON(merged))
5301		return 0;
5302
5303	/*
5304	 * I took it apart and put it back together again, except now I have
5305	 * these 'spare' parts.. where shall I put them.
5306	 */
5307	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5308		return 0;
5309
5310	return 1;
5311}
5312
5313/*
5314 * Remove the lock from the list of currently held locks - this gets
5315 * called on mutex_unlock()/spin_unlock*() (or on a failed
5316 * mutex_lock_interruptible()).
5317 */
5318static int
5319__lock_release(struct lockdep_map *lock, unsigned long ip)
5320{
5321	struct task_struct *curr = current;
5322	unsigned int depth, merged = 1;
5323	struct held_lock *hlock;
5324	int i;
5325
5326	if (unlikely(!debug_locks))
5327		return 0;
5328
5329	depth = curr->lockdep_depth;
5330	/*
5331	 * So we're all set to release this lock.. wait what lock? We don't
5332	 * own any locks, you've been drinking again?
5333	 */
5334	if (depth <= 0) {
5335		print_unlock_imbalance_bug(curr, lock, ip);
5336		return 0;
5337	}
5338
5339	/*
5340	 * Check whether the lock exists in the current stack
5341	 * of held locks:
5342	 */
5343	hlock = find_held_lock(curr, lock, depth, &i);
5344	if (!hlock) {
5345		print_unlock_imbalance_bug(curr, lock, ip);
5346		return 0;
5347	}
5348
5349	if (hlock->instance == lock)
5350		lock_release_holdtime(hlock);
5351
5352	WARN(hlock->pin_count, "releasing a pinned lock\n");
5353
5354	if (hlock->references) {
5355		hlock->references--;
5356		if (hlock->references) {
5357			/*
5358			 * We had, and after removing one, still have
5359			 * references, the current lock stack is still
5360			 * valid. We're done!
5361			 */
5362			return 1;
5363		}
5364	}
5365
5366	/*
5367	 * We have the right lock to unlock, 'hlock' points to it.
5368	 * Now we remove it from the stack, and add back the other
5369	 * entries (if any), recalculating the hash along the way:
5370	 */
5371
5372	curr->lockdep_depth = i;
5373	curr->curr_chain_key = hlock->prev_chain_key;
5374
5375	/*
5376	 * The most likely case is when the unlock is on the innermost
5377	 * lock. In this case, we are done!
5378	 */
5379	if (i == depth-1)
5380		return 1;
5381
5382	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5383		return 0;
5384
5385	/*
5386	 * We had N bottles of beer on the wall, we drank one, but now
5387	 * there's not N-1 bottles of beer left on the wall...
5388	 * Pouring two of the bottles together is acceptable.
5389	 */
5390	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5391
5392	/*
5393	 * Since reacquire_held_locks() would have called check_chain_key()
5394	 * indirectly via __lock_acquire(), we don't need to do it again
5395	 * on return.
5396	 */
5397	return 0;
5398}
5399
5400static __always_inline
5401int __lock_is_held(const struct lockdep_map *lock, int read)
5402{
5403	struct task_struct *curr = current;
5404	int i;
5405
5406	for (i = 0; i < curr->lockdep_depth; i++) {
5407		struct held_lock *hlock = curr->held_locks + i;
5408
5409		if (match_held_lock(hlock, lock)) {
5410			if (read == -1 || !!hlock->read == read)
5411				return LOCK_STATE_HELD;
5412
5413			return LOCK_STATE_NOT_HELD;
5414		}
5415	}
5416
5417	return LOCK_STATE_NOT_HELD;
5418}
5419
5420static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5421{
5422	struct pin_cookie cookie = NIL_COOKIE;
5423	struct task_struct *curr = current;
5424	int i;
5425
5426	if (unlikely(!debug_locks))
5427		return cookie;
5428
5429	for (i = 0; i < curr->lockdep_depth; i++) {
5430		struct held_lock *hlock = curr->held_locks + i;
5431
5432		if (match_held_lock(hlock, lock)) {
5433			/*
5434			 * Grab 16bits of randomness; this is sufficient to not
5435			 * be guessable and still allows some pin nesting in
5436			 * our u32 pin_count.
5437			 */
5438			cookie.val = 1 + (sched_clock() & 0xffff);
5439			hlock->pin_count += cookie.val;
5440			return cookie;
5441		}
5442	}
5443
5444	WARN(1, "pinning an unheld lock\n");
5445	return cookie;
5446}
5447
5448static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5449{
5450	struct task_struct *curr = current;
5451	int i;
5452
5453	if (unlikely(!debug_locks))
5454		return;
5455
5456	for (i = 0; i < curr->lockdep_depth; i++) {
5457		struct held_lock *hlock = curr->held_locks + i;
5458
5459		if (match_held_lock(hlock, lock)) {
5460			hlock->pin_count += cookie.val;
5461			return;
5462		}
5463	}
5464
5465	WARN(1, "pinning an unheld lock\n");
5466}
5467
5468static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5469{
5470	struct task_struct *curr = current;
5471	int i;
5472
5473	if (unlikely(!debug_locks))
5474		return;
5475
5476	for (i = 0; i < curr->lockdep_depth; i++) {
5477		struct held_lock *hlock = curr->held_locks + i;
5478
5479		if (match_held_lock(hlock, lock)) {
5480			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5481				return;
5482
5483			hlock->pin_count -= cookie.val;
5484
5485			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5486				hlock->pin_count = 0;
5487
5488			return;
5489		}
5490	}
5491
5492	WARN(1, "unpinning an unheld lock\n");
5493}
5494
5495/*
5496 * Check whether we follow the irq-flags state precisely:
5497 */
5498static noinstr void check_flags(unsigned long flags)
5499{
5500#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5501	if (!debug_locks)
5502		return;
5503
5504	/* Get the warning out..  */
5505	instrumentation_begin();
5506
5507	if (irqs_disabled_flags(flags)) {
5508		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5509			printk("possible reason: unannotated irqs-off.\n");
5510		}
5511	} else {
5512		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5513			printk("possible reason: unannotated irqs-on.\n");
5514		}
5515	}
5516
5517#ifndef CONFIG_PREEMPT_RT
5518	/*
5519	 * We dont accurately track softirq state in e.g.
5520	 * hardirq contexts (such as on 4KSTACKS), so only
5521	 * check if not in hardirq contexts:
5522	 */
5523	if (!hardirq_count()) {
5524		if (softirq_count()) {
5525			/* like the above, but with softirqs */
5526			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5527		} else {
5528			/* lick the above, does it taste good? */
5529			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5530		}
5531	}
5532#endif
5533
5534	if (!debug_locks)
5535		print_irqtrace_events(current);
5536
5537	instrumentation_end();
5538#endif
5539}
5540
5541void lock_set_class(struct lockdep_map *lock, const char *name,
5542		    struct lock_class_key *key, unsigned int subclass,
5543		    unsigned long ip)
5544{
5545	unsigned long flags;
5546
5547	if (unlikely(!lockdep_enabled()))
5548		return;
5549
5550	raw_local_irq_save(flags);
5551	lockdep_recursion_inc();
5552	check_flags(flags);
5553	if (__lock_set_class(lock, name, key, subclass, ip))
5554		check_chain_key(current);
5555	lockdep_recursion_finish();
5556	raw_local_irq_restore(flags);
5557}
5558EXPORT_SYMBOL_GPL(lock_set_class);
5559
5560void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5561{
5562	unsigned long flags;
5563
5564	if (unlikely(!lockdep_enabled()))
5565		return;
5566
5567	raw_local_irq_save(flags);
5568	lockdep_recursion_inc();
5569	check_flags(flags);
5570	if (__lock_downgrade(lock, ip))
5571		check_chain_key(current);
5572	lockdep_recursion_finish();
5573	raw_local_irq_restore(flags);
5574}
5575EXPORT_SYMBOL_GPL(lock_downgrade);
5576
5577/* NMI context !!! */
5578static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5579{
5580#ifdef CONFIG_PROVE_LOCKING
5581	struct lock_class *class = look_up_lock_class(lock, subclass);
5582	unsigned long mask = LOCKF_USED;
5583
5584	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5585	if (!class)
5586		return;
5587
5588	/*
5589	 * READ locks only conflict with USED, such that if we only ever use
5590	 * READ locks, there is no deadlock possible -- RCU.
5591	 */
5592	if (!hlock->read)
5593		mask |= LOCKF_USED_READ;
5594
5595	if (!(class->usage_mask & mask))
5596		return;
5597
5598	hlock->class_idx = class - lock_classes;
5599
5600	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5601#endif
5602}
5603
5604static bool lockdep_nmi(void)
5605{
5606	if (raw_cpu_read(lockdep_recursion))
5607		return false;
5608
5609	if (!in_nmi())
5610		return false;
5611
5612	return true;
5613}
5614
5615/*
5616 * read_lock() is recursive if:
5617 * 1. We force lockdep think this way in selftests or
5618 * 2. The implementation is not queued read/write lock or
5619 * 3. The locker is at an in_interrupt() context.
5620 */
5621bool read_lock_is_recursive(void)
5622{
5623	return force_read_lock_recursive ||
5624	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5625	       in_interrupt();
5626}
5627EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5628
5629/*
5630 * We are not always called with irqs disabled - do that here,
5631 * and also avoid lockdep recursion:
5632 */
5633void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5634			  int trylock, int read, int check,
5635			  struct lockdep_map *nest_lock, unsigned long ip)
5636{
5637	unsigned long flags;
5638
5639	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5640
5641	if (!debug_locks)
5642		return;
5643
5644	if (unlikely(!lockdep_enabled())) {
5645		/* XXX allow trylock from NMI ?!? */
5646		if (lockdep_nmi() && !trylock) {
5647			struct held_lock hlock;
5648
5649			hlock.acquire_ip = ip;
5650			hlock.instance = lock;
5651			hlock.nest_lock = nest_lock;
5652			hlock.irq_context = 2; // XXX
5653			hlock.trylock = trylock;
5654			hlock.read = read;
5655			hlock.check = check;
5656			hlock.hardirqs_off = true;
5657			hlock.references = 0;
5658
5659			verify_lock_unused(lock, &hlock, subclass);
5660		}
5661		return;
5662	}
5663
5664	raw_local_irq_save(flags);
5665	check_flags(flags);
5666
5667	lockdep_recursion_inc();
5668	__lock_acquire(lock, subclass, trylock, read, check,
5669		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5670	lockdep_recursion_finish();
5671	raw_local_irq_restore(flags);
5672}
5673EXPORT_SYMBOL_GPL(lock_acquire);
5674
5675void lock_release(struct lockdep_map *lock, unsigned long ip)
5676{
5677	unsigned long flags;
5678
5679	trace_lock_release(lock, ip);
5680
5681	if (unlikely(!lockdep_enabled()))
5682		return;
5683
5684	raw_local_irq_save(flags);
5685	check_flags(flags);
5686
5687	lockdep_recursion_inc();
5688	if (__lock_release(lock, ip))
5689		check_chain_key(current);
5690	lockdep_recursion_finish();
5691	raw_local_irq_restore(flags);
5692}
5693EXPORT_SYMBOL_GPL(lock_release);
5694
5695noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5696{
5697	unsigned long flags;
5698	int ret = LOCK_STATE_NOT_HELD;
5699
5700	/*
5701	 * Avoid false negative lockdep_assert_held() and
5702	 * lockdep_assert_not_held().
5703	 */
5704	if (unlikely(!lockdep_enabled()))
5705		return LOCK_STATE_UNKNOWN;
5706
5707	raw_local_irq_save(flags);
5708	check_flags(flags);
5709
5710	lockdep_recursion_inc();
5711	ret = __lock_is_held(lock, read);
5712	lockdep_recursion_finish();
5713	raw_local_irq_restore(flags);
5714
5715	return ret;
5716}
5717EXPORT_SYMBOL_GPL(lock_is_held_type);
5718NOKPROBE_SYMBOL(lock_is_held_type);
5719
5720struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5721{
5722	struct pin_cookie cookie = NIL_COOKIE;
5723	unsigned long flags;
5724
5725	if (unlikely(!lockdep_enabled()))
5726		return cookie;
5727
5728	raw_local_irq_save(flags);
5729	check_flags(flags);
5730
5731	lockdep_recursion_inc();
5732	cookie = __lock_pin_lock(lock);
5733	lockdep_recursion_finish();
5734	raw_local_irq_restore(flags);
5735
5736	return cookie;
5737}
5738EXPORT_SYMBOL_GPL(lock_pin_lock);
5739
5740void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5741{
5742	unsigned long flags;
5743
5744	if (unlikely(!lockdep_enabled()))
5745		return;
5746
5747	raw_local_irq_save(flags);
5748	check_flags(flags);
5749
5750	lockdep_recursion_inc();
5751	__lock_repin_lock(lock, cookie);
5752	lockdep_recursion_finish();
5753	raw_local_irq_restore(flags);
5754}
5755EXPORT_SYMBOL_GPL(lock_repin_lock);
5756
5757void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5758{
5759	unsigned long flags;
5760
5761	if (unlikely(!lockdep_enabled()))
5762		return;
5763
5764	raw_local_irq_save(flags);
5765	check_flags(flags);
5766
5767	lockdep_recursion_inc();
5768	__lock_unpin_lock(lock, cookie);
5769	lockdep_recursion_finish();
5770	raw_local_irq_restore(flags);
5771}
5772EXPORT_SYMBOL_GPL(lock_unpin_lock);
5773
5774#ifdef CONFIG_LOCK_STAT
5775static void print_lock_contention_bug(struct task_struct *curr,
5776				      struct lockdep_map *lock,
5777				      unsigned long ip)
5778{
5779	if (!debug_locks_off())
5780		return;
5781	if (debug_locks_silent)
5782		return;
5783
5784	pr_warn("\n");
5785	pr_warn("=================================\n");
5786	pr_warn("WARNING: bad contention detected!\n");
5787	print_kernel_ident();
5788	pr_warn("---------------------------------\n");
5789	pr_warn("%s/%d is trying to contend lock (",
5790		curr->comm, task_pid_nr(curr));
5791	print_lockdep_cache(lock);
5792	pr_cont(") at:\n");
5793	print_ip_sym(KERN_WARNING, ip);
5794	pr_warn("but there are no locks held!\n");
5795	pr_warn("\nother info that might help us debug this:\n");
5796	lockdep_print_held_locks(curr);
5797
5798	pr_warn("\nstack backtrace:\n");
5799	dump_stack();
5800}
5801
5802static void
5803__lock_contended(struct lockdep_map *lock, unsigned long ip)
5804{
5805	struct task_struct *curr = current;
5806	struct held_lock *hlock;
5807	struct lock_class_stats *stats;
5808	unsigned int depth;
5809	int i, contention_point, contending_point;
5810
5811	depth = curr->lockdep_depth;
5812	/*
5813	 * Whee, we contended on this lock, except it seems we're not
5814	 * actually trying to acquire anything much at all..
5815	 */
5816	if (DEBUG_LOCKS_WARN_ON(!depth))
5817		return;
5818
5819	hlock = find_held_lock(curr, lock, depth, &i);
5820	if (!hlock) {
5821		print_lock_contention_bug(curr, lock, ip);
5822		return;
5823	}
5824
5825	if (hlock->instance != lock)
5826		return;
5827
5828	hlock->waittime_stamp = lockstat_clock();
5829
5830	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5831	contending_point = lock_point(hlock_class(hlock)->contending_point,
5832				      lock->ip);
5833
5834	stats = get_lock_stats(hlock_class(hlock));
5835	if (contention_point < LOCKSTAT_POINTS)
5836		stats->contention_point[contention_point]++;
5837	if (contending_point < LOCKSTAT_POINTS)
5838		stats->contending_point[contending_point]++;
5839	if (lock->cpu != smp_processor_id())
5840		stats->bounces[bounce_contended + !!hlock->read]++;
5841}
5842
5843static void
5844__lock_acquired(struct lockdep_map *lock, unsigned long ip)
5845{
5846	struct task_struct *curr = current;
5847	struct held_lock *hlock;
5848	struct lock_class_stats *stats;
5849	unsigned int depth;
5850	u64 now, waittime = 0;
5851	int i, cpu;
5852
5853	depth = curr->lockdep_depth;
5854	/*
5855	 * Yay, we acquired ownership of this lock we didn't try to
5856	 * acquire, how the heck did that happen?
5857	 */
5858	if (DEBUG_LOCKS_WARN_ON(!depth))
5859		return;
5860
5861	hlock = find_held_lock(curr, lock, depth, &i);
5862	if (!hlock) {
5863		print_lock_contention_bug(curr, lock, _RET_IP_);
5864		return;
5865	}
5866
5867	if (hlock->instance != lock)
5868		return;
5869
5870	cpu = smp_processor_id();
5871	if (hlock->waittime_stamp) {
5872		now = lockstat_clock();
5873		waittime = now - hlock->waittime_stamp;
5874		hlock->holdtime_stamp = now;
5875	}
5876
5877	stats = get_lock_stats(hlock_class(hlock));
5878	if (waittime) {
5879		if (hlock->read)
5880			lock_time_inc(&stats->read_waittime, waittime);
5881		else
5882			lock_time_inc(&stats->write_waittime, waittime);
5883	}
5884	if (lock->cpu != cpu)
5885		stats->bounces[bounce_acquired + !!hlock->read]++;
5886
5887	lock->cpu = cpu;
5888	lock->ip = ip;
5889}
5890
5891void lock_contended(struct lockdep_map *lock, unsigned long ip)
5892{
5893	unsigned long flags;
5894
5895	trace_lock_contended(lock, ip);
5896
5897	if (unlikely(!lock_stat || !lockdep_enabled()))
5898		return;
5899
5900	raw_local_irq_save(flags);
5901	check_flags(flags);
5902	lockdep_recursion_inc();
5903	__lock_contended(lock, ip);
5904	lockdep_recursion_finish();
5905	raw_local_irq_restore(flags);
5906}
5907EXPORT_SYMBOL_GPL(lock_contended);
5908
5909void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5910{
5911	unsigned long flags;
5912
5913	trace_lock_acquired(lock, ip);
5914
5915	if (unlikely(!lock_stat || !lockdep_enabled()))
5916		return;
5917
5918	raw_local_irq_save(flags);
5919	check_flags(flags);
5920	lockdep_recursion_inc();
5921	__lock_acquired(lock, ip);
5922	lockdep_recursion_finish();
5923	raw_local_irq_restore(flags);
5924}
5925EXPORT_SYMBOL_GPL(lock_acquired);
5926#endif
5927
5928/*
5929 * Used by the testsuite, sanitize the validator state
5930 * after a simulated failure:
5931 */
5932
5933void lockdep_reset(void)
5934{
5935	unsigned long flags;
5936	int i;
5937
5938	raw_local_irq_save(flags);
5939	lockdep_init_task(current);
5940	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5941	nr_hardirq_chains = 0;
5942	nr_softirq_chains = 0;
5943	nr_process_chains = 0;
5944	debug_locks = 1;
5945	for (i = 0; i < CHAINHASH_SIZE; i++)
5946		INIT_HLIST_HEAD(chainhash_table + i);
5947	raw_local_irq_restore(flags);
5948}
5949
5950/* Remove a class from a lock chain. Must be called with the graph lock held. */
5951static void remove_class_from_lock_chain(struct pending_free *pf,
5952					 struct lock_chain *chain,
5953					 struct lock_class *class)
5954{
5955#ifdef CONFIG_PROVE_LOCKING
5956	int i;
5957
5958	for (i = chain->base; i < chain->base + chain->depth; i++) {
5959		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5960			continue;
5961		/*
5962		 * Each lock class occurs at most once in a lock chain so once
5963		 * we found a match we can break out of this loop.
5964		 */
5965		goto free_lock_chain;
5966	}
5967	/* Since the chain has not been modified, return. */
5968	return;
5969
5970free_lock_chain:
5971	free_chain_hlocks(chain->base, chain->depth);
5972	/* Overwrite the chain key for concurrent RCU readers. */
5973	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5974	dec_chains(chain->irq_context);
5975
5976	/*
5977	 * Note: calling hlist_del_rcu() from inside a
5978	 * hlist_for_each_entry_rcu() loop is safe.
5979	 */
5980	hlist_del_rcu(&chain->entry);
5981	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5982	nr_zapped_lock_chains++;
5983#endif
5984}
5985
5986/* Must be called with the graph lock held. */
5987static void remove_class_from_lock_chains(struct pending_free *pf,
5988					  struct lock_class *class)
5989{
5990	struct lock_chain *chain;
5991	struct hlist_head *head;
5992	int i;
5993
5994	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5995		head = chainhash_table + i;
5996		hlist_for_each_entry_rcu(chain, head, entry) {
5997			remove_class_from_lock_chain(pf, chain, class);
5998		}
5999	}
6000}
6001
6002/*
6003 * Remove all references to a lock class. The caller must hold the graph lock.
6004 */
6005static void zap_class(struct pending_free *pf, struct lock_class *class)
6006{
6007	struct lock_list *entry;
6008	int i;
6009
6010	WARN_ON_ONCE(!class->key);
6011
6012	/*
6013	 * Remove all dependencies this lock is
6014	 * involved in:
6015	 */
6016	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6017		entry = list_entries + i;
6018		if (entry->class != class && entry->links_to != class)
6019			continue;
6020		__clear_bit(i, list_entries_in_use);
6021		nr_list_entries--;
6022		list_del_rcu(&entry->entry);
6023	}
6024	if (list_empty(&class->locks_after) &&
6025	    list_empty(&class->locks_before)) {
6026		list_move_tail(&class->lock_entry, &pf->zapped);
6027		hlist_del_rcu(&class->hash_entry);
6028		WRITE_ONCE(class->key, NULL);
6029		WRITE_ONCE(class->name, NULL);
6030		nr_lock_classes--;
6031		__clear_bit(class - lock_classes, lock_classes_in_use);
6032		if (class - lock_classes == max_lock_class_idx)
6033			max_lock_class_idx--;
6034	} else {
6035		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6036			  class->name);
6037	}
6038
6039	remove_class_from_lock_chains(pf, class);
6040	nr_zapped_classes++;
6041}
6042
6043static void reinit_class(struct lock_class *class)
6044{
 
 
 
6045	WARN_ON_ONCE(!class->lock_entry.next);
6046	WARN_ON_ONCE(!list_empty(&class->locks_after));
6047	WARN_ON_ONCE(!list_empty(&class->locks_before));
6048	memset_startat(class, 0, key);
6049	WARN_ON_ONCE(!class->lock_entry.next);
6050	WARN_ON_ONCE(!list_empty(&class->locks_after));
6051	WARN_ON_ONCE(!list_empty(&class->locks_before));
6052}
6053
6054static inline int within(const void *addr, void *start, unsigned long size)
6055{
6056	return addr >= start && addr < start + size;
6057}
6058
6059static bool inside_selftest(void)
6060{
6061	return current == lockdep_selftest_task_struct;
6062}
6063
6064/* The caller must hold the graph lock. */
6065static struct pending_free *get_pending_free(void)
6066{
6067	return delayed_free.pf + delayed_free.index;
6068}
6069
6070static void free_zapped_rcu(struct rcu_head *cb);
6071
6072/*
6073 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6074 * the graph lock held.
6075 */
6076static void call_rcu_zapped(struct pending_free *pf)
6077{
6078	WARN_ON_ONCE(inside_selftest());
6079
6080	if (list_empty(&pf->zapped))
6081		return;
6082
6083	if (delayed_free.scheduled)
6084		return;
6085
6086	delayed_free.scheduled = true;
6087
6088	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6089	delayed_free.index ^= 1;
6090
6091	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6092}
6093
6094/* The caller must hold the graph lock. May be called from RCU context. */
6095static void __free_zapped_classes(struct pending_free *pf)
6096{
6097	struct lock_class *class;
6098
6099	check_data_structures();
6100
6101	list_for_each_entry(class, &pf->zapped, lock_entry)
6102		reinit_class(class);
6103
6104	list_splice_init(&pf->zapped, &free_lock_classes);
6105
6106#ifdef CONFIG_PROVE_LOCKING
6107	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6108		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6109	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6110#endif
6111}
6112
6113static void free_zapped_rcu(struct rcu_head *ch)
6114{
6115	struct pending_free *pf;
6116	unsigned long flags;
6117
6118	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6119		return;
6120
6121	raw_local_irq_save(flags);
6122	lockdep_lock();
6123
6124	/* closed head */
6125	pf = delayed_free.pf + (delayed_free.index ^ 1);
6126	__free_zapped_classes(pf);
6127	delayed_free.scheduled = false;
6128
6129	/*
6130	 * If there's anything on the open list, close and start a new callback.
6131	 */
6132	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6133
6134	lockdep_unlock();
6135	raw_local_irq_restore(flags);
6136}
6137
6138/*
6139 * Remove all lock classes from the class hash table and from the
6140 * all_lock_classes list whose key or name is in the address range [start,
6141 * start + size). Move these lock classes to the zapped_classes list. Must
6142 * be called with the graph lock held.
6143 */
6144static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6145				     unsigned long size)
6146{
6147	struct lock_class *class;
6148	struct hlist_head *head;
6149	int i;
6150
6151	/* Unhash all classes that were created by a module. */
6152	for (i = 0; i < CLASSHASH_SIZE; i++) {
6153		head = classhash_table + i;
6154		hlist_for_each_entry_rcu(class, head, hash_entry) {
6155			if (!within(class->key, start, size) &&
6156			    !within(class->name, start, size))
6157				continue;
6158			zap_class(pf, class);
6159		}
6160	}
6161}
6162
6163/*
6164 * Used in module.c to remove lock classes from memory that is going to be
6165 * freed; and possibly re-used by other modules.
6166 *
6167 * We will have had one synchronize_rcu() before getting here, so we're
6168 * guaranteed nobody will look up these exact classes -- they're properly dead
6169 * but still allocated.
6170 */
6171static void lockdep_free_key_range_reg(void *start, unsigned long size)
6172{
6173	struct pending_free *pf;
6174	unsigned long flags;
6175
6176	init_data_structures_once();
6177
6178	raw_local_irq_save(flags);
6179	lockdep_lock();
6180	pf = get_pending_free();
6181	__lockdep_free_key_range(pf, start, size);
6182	call_rcu_zapped(pf);
6183	lockdep_unlock();
6184	raw_local_irq_restore(flags);
6185
6186	/*
6187	 * Wait for any possible iterators from look_up_lock_class() to pass
6188	 * before continuing to free the memory they refer to.
6189	 */
6190	synchronize_rcu();
6191}
6192
6193/*
6194 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6195 * Ignores debug_locks. Must only be used by the lockdep selftests.
6196 */
6197static void lockdep_free_key_range_imm(void *start, unsigned long size)
6198{
6199	struct pending_free *pf = delayed_free.pf;
6200	unsigned long flags;
6201
6202	init_data_structures_once();
6203
6204	raw_local_irq_save(flags);
6205	lockdep_lock();
6206	__lockdep_free_key_range(pf, start, size);
6207	__free_zapped_classes(pf);
6208	lockdep_unlock();
6209	raw_local_irq_restore(flags);
6210}
6211
6212void lockdep_free_key_range(void *start, unsigned long size)
6213{
6214	init_data_structures_once();
6215
6216	if (inside_selftest())
6217		lockdep_free_key_range_imm(start, size);
6218	else
6219		lockdep_free_key_range_reg(start, size);
6220}
6221
6222/*
6223 * Check whether any element of the @lock->class_cache[] array refers to a
6224 * registered lock class. The caller must hold either the graph lock or the
6225 * RCU read lock.
6226 */
6227static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6228{
6229	struct lock_class *class;
6230	struct hlist_head *head;
6231	int i, j;
6232
6233	for (i = 0; i < CLASSHASH_SIZE; i++) {
6234		head = classhash_table + i;
6235		hlist_for_each_entry_rcu(class, head, hash_entry) {
6236			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6237				if (lock->class_cache[j] == class)
6238					return true;
6239		}
6240	}
6241	return false;
6242}
6243
6244/* The caller must hold the graph lock. Does not sleep. */
6245static void __lockdep_reset_lock(struct pending_free *pf,
6246				 struct lockdep_map *lock)
6247{
6248	struct lock_class *class;
6249	int j;
6250
6251	/*
6252	 * Remove all classes this lock might have:
6253	 */
6254	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6255		/*
6256		 * If the class exists we look it up and zap it:
6257		 */
6258		class = look_up_lock_class(lock, j);
6259		if (class)
6260			zap_class(pf, class);
6261	}
6262	/*
6263	 * Debug check: in the end all mapped classes should
6264	 * be gone.
6265	 */
6266	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6267		debug_locks_off();
6268}
6269
6270/*
6271 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6272 * released data structures from RCU context.
6273 */
6274static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6275{
6276	struct pending_free *pf;
6277	unsigned long flags;
6278	int locked;
6279
6280	raw_local_irq_save(flags);
6281	locked = graph_lock();
6282	if (!locked)
6283		goto out_irq;
6284
6285	pf = get_pending_free();
6286	__lockdep_reset_lock(pf, lock);
6287	call_rcu_zapped(pf);
6288
6289	graph_unlock();
6290out_irq:
6291	raw_local_irq_restore(flags);
6292}
6293
6294/*
6295 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6296 * lockdep selftests.
6297 */
6298static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6299{
6300	struct pending_free *pf = delayed_free.pf;
6301	unsigned long flags;
6302
6303	raw_local_irq_save(flags);
6304	lockdep_lock();
6305	__lockdep_reset_lock(pf, lock);
6306	__free_zapped_classes(pf);
6307	lockdep_unlock();
6308	raw_local_irq_restore(flags);
6309}
6310
6311void lockdep_reset_lock(struct lockdep_map *lock)
6312{
6313	init_data_structures_once();
6314
6315	if (inside_selftest())
6316		lockdep_reset_lock_imm(lock);
6317	else
6318		lockdep_reset_lock_reg(lock);
6319}
6320
6321/*
6322 * Unregister a dynamically allocated key.
6323 *
6324 * Unlike lockdep_register_key(), a search is always done to find a matching
6325 * key irrespective of debug_locks to avoid potential invalid access to freed
6326 * memory in lock_class entry.
6327 */
6328void lockdep_unregister_key(struct lock_class_key *key)
6329{
6330	struct hlist_head *hash_head = keyhashentry(key);
6331	struct lock_class_key *k;
6332	struct pending_free *pf;
6333	unsigned long flags;
6334	bool found = false;
6335
6336	might_sleep();
6337
6338	if (WARN_ON_ONCE(static_obj(key)))
6339		return;
6340
6341	raw_local_irq_save(flags);
6342	lockdep_lock();
 
6343
 
6344	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6345		if (k == key) {
6346			hlist_del_rcu(&k->hash_entry);
6347			found = true;
6348			break;
6349		}
6350	}
6351	WARN_ON_ONCE(!found && debug_locks);
6352	if (found) {
6353		pf = get_pending_free();
6354		__lockdep_free_key_range(pf, key, 1);
6355		call_rcu_zapped(pf);
6356	}
6357	lockdep_unlock();
6358	raw_local_irq_restore(flags);
6359
6360	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6361	synchronize_rcu();
6362}
6363EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6364
6365void __init lockdep_init(void)
6366{
6367	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6368
6369	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6370	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6371	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6372	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6373	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6374	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6375	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6376
6377	printk(" memory used by lock dependency info: %zu kB\n",
6378	       (sizeof(lock_classes) +
6379		sizeof(lock_classes_in_use) +
6380		sizeof(classhash_table) +
6381		sizeof(list_entries) +
6382		sizeof(list_entries_in_use) +
6383		sizeof(chainhash_table) +
6384		sizeof(delayed_free)
6385#ifdef CONFIG_PROVE_LOCKING
6386		+ sizeof(lock_cq)
6387		+ sizeof(lock_chains)
6388		+ sizeof(lock_chains_in_use)
6389		+ sizeof(chain_hlocks)
6390#endif
6391		) / 1024
6392		);
6393
6394#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6395	printk(" memory used for stack traces: %zu kB\n",
6396	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6397	       );
6398#endif
6399
6400	printk(" per task-struct memory footprint: %zu bytes\n",
6401	       sizeof(((struct task_struct *)NULL)->held_locks));
6402}
6403
6404static void
6405print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6406		     const void *mem_to, struct held_lock *hlock)
6407{
6408	if (!debug_locks_off())
6409		return;
6410	if (debug_locks_silent)
6411		return;
6412
6413	pr_warn("\n");
6414	pr_warn("=========================\n");
6415	pr_warn("WARNING: held lock freed!\n");
6416	print_kernel_ident();
6417	pr_warn("-------------------------\n");
6418	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6419		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6420	print_lock(hlock);
6421	lockdep_print_held_locks(curr);
6422
6423	pr_warn("\nstack backtrace:\n");
6424	dump_stack();
6425}
6426
6427static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6428				const void* lock_from, unsigned long lock_len)
6429{
6430	return lock_from + lock_len <= mem_from ||
6431		mem_from + mem_len <= lock_from;
6432}
6433
6434/*
6435 * Called when kernel memory is freed (or unmapped), or if a lock
6436 * is destroyed or reinitialized - this code checks whether there is
6437 * any held lock in the memory range of <from> to <to>:
6438 */
6439void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6440{
6441	struct task_struct *curr = current;
6442	struct held_lock *hlock;
6443	unsigned long flags;
6444	int i;
6445
6446	if (unlikely(!debug_locks))
6447		return;
6448
6449	raw_local_irq_save(flags);
6450	for (i = 0; i < curr->lockdep_depth; i++) {
6451		hlock = curr->held_locks + i;
6452
6453		if (not_in_range(mem_from, mem_len, hlock->instance,
6454					sizeof(*hlock->instance)))
6455			continue;
6456
6457		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6458		break;
6459	}
6460	raw_local_irq_restore(flags);
6461}
6462EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6463
6464static void print_held_locks_bug(void)
6465{
6466	if (!debug_locks_off())
6467		return;
6468	if (debug_locks_silent)
6469		return;
6470
6471	pr_warn("\n");
6472	pr_warn("====================================\n");
6473	pr_warn("WARNING: %s/%d still has locks held!\n",
6474	       current->comm, task_pid_nr(current));
6475	print_kernel_ident();
6476	pr_warn("------------------------------------\n");
6477	lockdep_print_held_locks(current);
6478	pr_warn("\nstack backtrace:\n");
6479	dump_stack();
6480}
6481
6482void debug_check_no_locks_held(void)
6483{
6484	if (unlikely(current->lockdep_depth > 0))
6485		print_held_locks_bug();
6486}
6487EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6488
6489#ifdef __KERNEL__
6490void debug_show_all_locks(void)
6491{
6492	struct task_struct *g, *p;
6493
6494	if (unlikely(!debug_locks)) {
6495		pr_warn("INFO: lockdep is turned off.\n");
6496		return;
6497	}
6498	pr_warn("\nShowing all locks held in the system:\n");
6499
6500	rcu_read_lock();
6501	for_each_process_thread(g, p) {
6502		if (!p->lockdep_depth)
6503			continue;
6504		lockdep_print_held_locks(p);
6505		touch_nmi_watchdog();
6506		touch_all_softlockup_watchdogs();
6507	}
6508	rcu_read_unlock();
6509
6510	pr_warn("\n");
6511	pr_warn("=============================================\n\n");
6512}
6513EXPORT_SYMBOL_GPL(debug_show_all_locks);
6514#endif
6515
6516/*
6517 * Careful: only use this function if you are sure that
6518 * the task cannot run in parallel!
6519 */
6520void debug_show_held_locks(struct task_struct *task)
6521{
6522	if (unlikely(!debug_locks)) {
6523		printk("INFO: lockdep is turned off.\n");
6524		return;
6525	}
6526	lockdep_print_held_locks(task);
6527}
6528EXPORT_SYMBOL_GPL(debug_show_held_locks);
6529
6530asmlinkage __visible void lockdep_sys_exit(void)
6531{
6532	struct task_struct *curr = current;
6533
6534	if (unlikely(curr->lockdep_depth)) {
6535		if (!debug_locks_off())
6536			return;
6537		pr_warn("\n");
6538		pr_warn("================================================\n");
6539		pr_warn("WARNING: lock held when returning to user space!\n");
6540		print_kernel_ident();
6541		pr_warn("------------------------------------------------\n");
6542		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6543				curr->comm, curr->pid);
6544		lockdep_print_held_locks(curr);
6545	}
6546
6547	/*
6548	 * The lock history for each syscall should be independent. So wipe the
6549	 * slate clean on return to userspace.
6550	 */
6551	lockdep_invariant_state(false);
6552}
6553
6554void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6555{
6556	struct task_struct *curr = current;
6557	int dl = READ_ONCE(debug_locks);
6558
6559	/* Note: the following can be executed concurrently, so be careful. */
6560	pr_warn("\n");
6561	pr_warn("=============================\n");
6562	pr_warn("WARNING: suspicious RCU usage\n");
6563	print_kernel_ident();
6564	pr_warn("-----------------------------\n");
6565	pr_warn("%s:%d %s!\n", file, line, s);
6566	pr_warn("\nother info that might help us debug this:\n\n");
6567	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6568	       !rcu_lockdep_current_cpu_online()
6569			? "RCU used illegally from offline CPU!\n"
6570			: "",
6571	       rcu_scheduler_active, dl,
6572	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6573
6574	/*
6575	 * If a CPU is in the RCU-free window in idle (ie: in the section
6576	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6577	 * considers that CPU to be in an "extended quiescent state",
6578	 * which means that RCU will be completely ignoring that CPU.
6579	 * Therefore, rcu_read_lock() and friends have absolutely no
6580	 * effect on a CPU running in that state. In other words, even if
6581	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6582	 * delete data structures out from under it.  RCU really has no
6583	 * choice here: we need to keep an RCU-free window in idle where
6584	 * the CPU may possibly enter into low power mode. This way we can
6585	 * notice an extended quiescent state to other CPUs that started a grace
6586	 * period. Otherwise we would delay any grace period as long as we run
6587	 * in the idle task.
6588	 *
6589	 * So complain bitterly if someone does call rcu_read_lock(),
6590	 * rcu_read_lock_bh() and so on from extended quiescent states.
6591	 */
6592	if (!rcu_is_watching())
6593		pr_warn("RCU used illegally from extended quiescent state!\n");
6594
6595	lockdep_print_held_locks(curr);
6596	pr_warn("\nstack backtrace:\n");
6597	dump_stack();
6598}
6599EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/lockdep.c
   4 *
   5 * Runtime locking correctness validator
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  11 *
  12 * this code maps all the lock dependencies as they occur in a live kernel
  13 * and will warn about the following classes of locking bugs:
  14 *
  15 * - lock inversion scenarios
  16 * - circular lock dependencies
  17 * - hardirq/softirq safe/unsafe locking bugs
  18 *
  19 * Bugs are reported even if the current locking scenario does not cause
  20 * any deadlock at this point.
  21 *
  22 * I.e. if anytime in the past two locks were taken in a different order,
  23 * even if it happened for another task, even if those were different
  24 * locks (but of the same class as this lock), this code will detect it.
  25 *
  26 * Thanks to Arjan van de Ven for coming up with the initial idea of
  27 * mapping lock dependencies runtime.
  28 */
  29#define DISABLE_BRANCH_PROFILING
  30#include <linux/mutex.h>
  31#include <linux/sched.h>
  32#include <linux/sched/clock.h>
  33#include <linux/sched/task.h>
  34#include <linux/sched/mm.h>
  35#include <linux/delay.h>
  36#include <linux/module.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/stacktrace.h>
  43#include <linux/debug_locks.h>
  44#include <linux/irqflags.h>
  45#include <linux/utsname.h>
  46#include <linux/hash.h>
  47#include <linux/ftrace.h>
  48#include <linux/stringify.h>
  49#include <linux/bitmap.h>
  50#include <linux/bitops.h>
  51#include <linux/gfp.h>
  52#include <linux/random.h>
  53#include <linux/jhash.h>
  54#include <linux/nmi.h>
  55#include <linux/rcupdate.h>
  56#include <linux/kprobes.h>
  57#include <linux/lockdep.h>
  58
  59#include <asm/sections.h>
  60
  61#include "lockdep_internals.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/lock.h>
  65
  66#ifdef CONFIG_PROVE_LOCKING
  67int prove_locking = 1;
  68module_param(prove_locking, int, 0644);
  69#else
  70#define prove_locking 0
  71#endif
  72
  73#ifdef CONFIG_LOCK_STAT
  74int lock_stat = 1;
  75module_param(lock_stat, int, 0644);
  76#else
  77#define lock_stat 0
  78#endif
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80DEFINE_PER_CPU(unsigned int, lockdep_recursion);
  81EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
  82
  83static __always_inline bool lockdep_enabled(void)
  84{
  85	if (!debug_locks)
  86		return false;
  87
  88	if (this_cpu_read(lockdep_recursion))
  89		return false;
  90
  91	if (current->lockdep_recursion)
  92		return false;
  93
  94	return true;
  95}
  96
  97/*
  98 * lockdep_lock: protects the lockdep graph, the hashes and the
  99 *               class/list/hash allocators.
 100 *
 101 * This is one of the rare exceptions where it's justified
 102 * to use a raw spinlock - we really dont want the spinlock
 103 * code to recurse back into the lockdep code...
 104 */
 105static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 106static struct task_struct *__owner;
 107
 108static inline void lockdep_lock(void)
 109{
 110	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 111
 112	__this_cpu_inc(lockdep_recursion);
 113	arch_spin_lock(&__lock);
 114	__owner = current;
 115}
 116
 117static inline void lockdep_unlock(void)
 118{
 119	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 120
 121	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
 122		return;
 123
 124	__owner = NULL;
 125	arch_spin_unlock(&__lock);
 126	__this_cpu_dec(lockdep_recursion);
 127}
 128
 129static inline bool lockdep_assert_locked(void)
 130{
 131	return DEBUG_LOCKS_WARN_ON(__owner != current);
 132}
 133
 134static struct task_struct *lockdep_selftest_task_struct;
 135
 136
 137static int graph_lock(void)
 138{
 139	lockdep_lock();
 140	/*
 141	 * Make sure that if another CPU detected a bug while
 142	 * walking the graph we dont change it (while the other
 143	 * CPU is busy printing out stuff with the graph lock
 144	 * dropped already)
 145	 */
 146	if (!debug_locks) {
 147		lockdep_unlock();
 148		return 0;
 149	}
 150	return 1;
 151}
 152
 153static inline void graph_unlock(void)
 154{
 155	lockdep_unlock();
 156}
 157
 158/*
 159 * Turn lock debugging off and return with 0 if it was off already,
 160 * and also release the graph lock:
 161 */
 162static inline int debug_locks_off_graph_unlock(void)
 163{
 164	int ret = debug_locks_off();
 165
 166	lockdep_unlock();
 167
 168	return ret;
 169}
 170
 171unsigned long nr_list_entries;
 172static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 173static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 174
 175/*
 176 * All data structures here are protected by the global debug_lock.
 177 *
 178 * nr_lock_classes is the number of elements of lock_classes[] that is
 179 * in use.
 180 */
 181#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 182#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 183static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 184unsigned long nr_lock_classes;
 185unsigned long nr_zapped_classes;
 186#ifndef CONFIG_DEBUG_LOCKDEP
 187static
 188#endif
 189struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 190static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 191
 192static inline struct lock_class *hlock_class(struct held_lock *hlock)
 193{
 194	unsigned int class_idx = hlock->class_idx;
 195
 196	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 197	barrier();
 198
 199	if (!test_bit(class_idx, lock_classes_in_use)) {
 200		/*
 201		 * Someone passed in garbage, we give up.
 202		 */
 203		DEBUG_LOCKS_WARN_ON(1);
 204		return NULL;
 205	}
 206
 207	/*
 208	 * At this point, if the passed hlock->class_idx is still garbage,
 209	 * we just have to live with it
 210	 */
 211	return lock_classes + class_idx;
 212}
 213
 214#ifdef CONFIG_LOCK_STAT
 215static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 216
 217static inline u64 lockstat_clock(void)
 218{
 219	return local_clock();
 220}
 221
 222static int lock_point(unsigned long points[], unsigned long ip)
 223{
 224	int i;
 225
 226	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 227		if (points[i] == 0) {
 228			points[i] = ip;
 229			break;
 230		}
 231		if (points[i] == ip)
 232			break;
 233	}
 234
 235	return i;
 236}
 237
 238static void lock_time_inc(struct lock_time *lt, u64 time)
 239{
 240	if (time > lt->max)
 241		lt->max = time;
 242
 243	if (time < lt->min || !lt->nr)
 244		lt->min = time;
 245
 246	lt->total += time;
 247	lt->nr++;
 248}
 249
 250static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 251{
 252	if (!src->nr)
 253		return;
 254
 255	if (src->max > dst->max)
 256		dst->max = src->max;
 257
 258	if (src->min < dst->min || !dst->nr)
 259		dst->min = src->min;
 260
 261	dst->total += src->total;
 262	dst->nr += src->nr;
 263}
 264
 265struct lock_class_stats lock_stats(struct lock_class *class)
 266{
 267	struct lock_class_stats stats;
 268	int cpu, i;
 269
 270	memset(&stats, 0, sizeof(struct lock_class_stats));
 271	for_each_possible_cpu(cpu) {
 272		struct lock_class_stats *pcs =
 273			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 274
 275		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 276			stats.contention_point[i] += pcs->contention_point[i];
 277
 278		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 279			stats.contending_point[i] += pcs->contending_point[i];
 280
 281		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 282		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 283
 284		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 285		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 286
 287		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 288			stats.bounces[i] += pcs->bounces[i];
 289	}
 290
 291	return stats;
 292}
 293
 294void clear_lock_stats(struct lock_class *class)
 295{
 296	int cpu;
 297
 298	for_each_possible_cpu(cpu) {
 299		struct lock_class_stats *cpu_stats =
 300			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 301
 302		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 303	}
 304	memset(class->contention_point, 0, sizeof(class->contention_point));
 305	memset(class->contending_point, 0, sizeof(class->contending_point));
 306}
 307
 308static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 309{
 310	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 311}
 312
 313static void lock_release_holdtime(struct held_lock *hlock)
 314{
 315	struct lock_class_stats *stats;
 316	u64 holdtime;
 317
 318	if (!lock_stat)
 319		return;
 320
 321	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 322
 323	stats = get_lock_stats(hlock_class(hlock));
 324	if (hlock->read)
 325		lock_time_inc(&stats->read_holdtime, holdtime);
 326	else
 327		lock_time_inc(&stats->write_holdtime, holdtime);
 328}
 329#else
 330static inline void lock_release_holdtime(struct held_lock *hlock)
 331{
 332}
 333#endif
 334
 335/*
 336 * We keep a global list of all lock classes. The list is only accessed with
 337 * the lockdep spinlock lock held. free_lock_classes is a list with free
 338 * elements. These elements are linked together by the lock_entry member in
 339 * struct lock_class.
 340 */
 341LIST_HEAD(all_lock_classes);
 342static LIST_HEAD(free_lock_classes);
 343
 344/**
 345 * struct pending_free - information about data structures about to be freed
 346 * @zapped: Head of a list with struct lock_class elements.
 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 348 *	are about to be freed.
 349 */
 350struct pending_free {
 351	struct list_head zapped;
 352	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 353};
 354
 355/**
 356 * struct delayed_free - data structures used for delayed freeing
 357 *
 358 * A data structure for delayed freeing of data structures that may be
 359 * accessed by RCU readers at the time these were freed.
 360 *
 361 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 362 * @index:     Index of @pf to which freed data structures are added.
 363 * @scheduled: Whether or not an RCU callback has been scheduled.
 364 * @pf:        Array with information about data structures about to be freed.
 365 */
 366static struct delayed_free {
 367	struct rcu_head		rcu_head;
 368	int			index;
 369	int			scheduled;
 370	struct pending_free	pf[2];
 371} delayed_free;
 372
 373/*
 374 * The lockdep classes are in a hash-table as well, for fast lookup:
 375 */
 376#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 377#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 378#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 379#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 380
 381static struct hlist_head classhash_table[CLASSHASH_SIZE];
 382
 383/*
 384 * We put the lock dependency chains into a hash-table as well, to cache
 385 * their existence:
 386 */
 387#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 388#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 389#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 390#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 391
 392static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 393
 394/*
 395 * the id of held_lock
 396 */
 397static inline u16 hlock_id(struct held_lock *hlock)
 398{
 399	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
 400
 401	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
 402}
 403
 404static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
 405{
 406	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
 407}
 408
 409/*
 410 * The hash key of the lock dependency chains is a hash itself too:
 411 * it's a hash of all locks taken up to that lock, including that lock.
 412 * It's a 64-bit hash, because it's important for the keys to be
 413 * unique.
 414 */
 415static inline u64 iterate_chain_key(u64 key, u32 idx)
 416{
 417	u32 k0 = key, k1 = key >> 32;
 418
 419	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 420
 421	return k0 | (u64)k1 << 32;
 422}
 423
 424void lockdep_init_task(struct task_struct *task)
 425{
 426	task->lockdep_depth = 0; /* no locks held yet */
 427	task->curr_chain_key = INITIAL_CHAIN_KEY;
 428	task->lockdep_recursion = 0;
 429}
 430
 431static __always_inline void lockdep_recursion_inc(void)
 432{
 433	__this_cpu_inc(lockdep_recursion);
 434}
 435
 436static __always_inline void lockdep_recursion_finish(void)
 437{
 438	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
 439		__this_cpu_write(lockdep_recursion, 0);
 440}
 441
 442void lockdep_set_selftest_task(struct task_struct *task)
 443{
 444	lockdep_selftest_task_struct = task;
 445}
 446
 447/*
 448 * Debugging switches:
 449 */
 450
 451#define VERBOSE			0
 452#define VERY_VERBOSE		0
 453
 454#if VERBOSE
 455# define HARDIRQ_VERBOSE	1
 456# define SOFTIRQ_VERBOSE	1
 457#else
 458# define HARDIRQ_VERBOSE	0
 459# define SOFTIRQ_VERBOSE	0
 460#endif
 461
 462#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 463/*
 464 * Quick filtering for interesting events:
 465 */
 466static int class_filter(struct lock_class *class)
 467{
 468#if 0
 469	/* Example */
 470	if (class->name_version == 1 &&
 471			!strcmp(class->name, "lockname"))
 472		return 1;
 473	if (class->name_version == 1 &&
 474			!strcmp(class->name, "&struct->lockfield"))
 475		return 1;
 476#endif
 477	/* Filter everything else. 1 would be to allow everything else */
 478	return 0;
 479}
 480#endif
 481
 482static int verbose(struct lock_class *class)
 483{
 484#if VERBOSE
 485	return class_filter(class);
 486#endif
 487	return 0;
 488}
 489
 490static void print_lockdep_off(const char *bug_msg)
 491{
 492	printk(KERN_DEBUG "%s\n", bug_msg);
 493	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 494#ifdef CONFIG_LOCK_STAT
 495	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 496#endif
 497}
 498
 499unsigned long nr_stack_trace_entries;
 500
 501#ifdef CONFIG_PROVE_LOCKING
 502/**
 503 * struct lock_trace - single stack backtrace
 504 * @hash_entry:	Entry in a stack_trace_hash[] list.
 505 * @hash:	jhash() of @entries.
 506 * @nr_entries:	Number of entries in @entries.
 507 * @entries:	Actual stack backtrace.
 508 */
 509struct lock_trace {
 510	struct hlist_node	hash_entry;
 511	u32			hash;
 512	u32			nr_entries;
 513	unsigned long		entries[] __aligned(sizeof(unsigned long));
 514};
 515#define LOCK_TRACE_SIZE_IN_LONGS				\
 516	(sizeof(struct lock_trace) / sizeof(unsigned long))
 517/*
 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 519 */
 520static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 521static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 522
 523static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 524{
 525	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 526		memcmp(t1->entries, t2->entries,
 527		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 528}
 529
 530static struct lock_trace *save_trace(void)
 531{
 532	struct lock_trace *trace, *t2;
 533	struct hlist_head *hash_head;
 534	u32 hash;
 535	int max_entries;
 536
 537	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 538	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 539
 540	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 541	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 542		LOCK_TRACE_SIZE_IN_LONGS;
 543
 544	if (max_entries <= 0) {
 545		if (!debug_locks_off_graph_unlock())
 546			return NULL;
 547
 548		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 549		dump_stack();
 550
 551		return NULL;
 552	}
 553	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 554
 555	hash = jhash(trace->entries, trace->nr_entries *
 556		     sizeof(trace->entries[0]), 0);
 557	trace->hash = hash;
 558	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 559	hlist_for_each_entry(t2, hash_head, hash_entry) {
 560		if (traces_identical(trace, t2))
 561			return t2;
 562	}
 563	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 564	hlist_add_head(&trace->hash_entry, hash_head);
 565
 566	return trace;
 567}
 568
 569/* Return the number of stack traces in the stack_trace[] array. */
 570u64 lockdep_stack_trace_count(void)
 571{
 572	struct lock_trace *trace;
 573	u64 c = 0;
 574	int i;
 575
 576	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 577		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 578			c++;
 579		}
 580	}
 581
 582	return c;
 583}
 584
 585/* Return the number of stack hash chains that have at least one stack trace. */
 586u64 lockdep_stack_hash_count(void)
 587{
 588	u64 c = 0;
 589	int i;
 590
 591	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 592		if (!hlist_empty(&stack_trace_hash[i]))
 593			c++;
 594
 595	return c;
 596}
 597#endif
 598
 599unsigned int nr_hardirq_chains;
 600unsigned int nr_softirq_chains;
 601unsigned int nr_process_chains;
 602unsigned int max_lockdep_depth;
 603
 604#ifdef CONFIG_DEBUG_LOCKDEP
 605/*
 606 * Various lockdep statistics:
 607 */
 608DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 609#endif
 610
 611#ifdef CONFIG_PROVE_LOCKING
 612/*
 613 * Locking printouts:
 614 */
 615
 616#define __USAGE(__STATE)						\
 617	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 618	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 619	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 620	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 621
 622static const char *usage_str[] =
 623{
 624#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 625#include "lockdep_states.h"
 626#undef LOCKDEP_STATE
 627	[LOCK_USED] = "INITIAL USE",
 628	[LOCK_USED_READ] = "INITIAL READ USE",
 629	/* abused as string storage for verify_lock_unused() */
 630	[LOCK_USAGE_STATES] = "IN-NMI",
 631};
 632#endif
 633
 634const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 635{
 636	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 637}
 638
 639static inline unsigned long lock_flag(enum lock_usage_bit bit)
 640{
 641	return 1UL << bit;
 642}
 643
 644static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 645{
 646	/*
 647	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 648	 * irq context), which is the safest usage category.
 649	 */
 650	char c = '.';
 651
 652	/*
 653	 * The order of the following usage checks matters, which will
 654	 * result in the outcome character as follows:
 655	 *
 656	 * - '+': irq is enabled and not in irq context
 657	 * - '-': in irq context and irq is disabled
 658	 * - '?': in irq context and irq is enabled
 659	 */
 660	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 661		c = '+';
 662		if (class->usage_mask & lock_flag(bit))
 663			c = '?';
 664	} else if (class->usage_mask & lock_flag(bit))
 665		c = '-';
 666
 667	return c;
 668}
 669
 670void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 671{
 672	int i = 0;
 673
 674#define LOCKDEP_STATE(__STATE) 						\
 675	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 676	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 677#include "lockdep_states.h"
 678#undef LOCKDEP_STATE
 679
 680	usage[i] = '\0';
 681}
 682
 683static void __print_lock_name(struct lock_class *class)
 684{
 685	char str[KSYM_NAME_LEN];
 686	const char *name;
 687
 688	name = class->name;
 689	if (!name) {
 690		name = __get_key_name(class->key, str);
 691		printk(KERN_CONT "%s", name);
 692	} else {
 693		printk(KERN_CONT "%s", name);
 694		if (class->name_version > 1)
 695			printk(KERN_CONT "#%d", class->name_version);
 696		if (class->subclass)
 697			printk(KERN_CONT "/%d", class->subclass);
 698	}
 699}
 700
 701static void print_lock_name(struct lock_class *class)
 702{
 703	char usage[LOCK_USAGE_CHARS];
 704
 705	get_usage_chars(class, usage);
 706
 707	printk(KERN_CONT " (");
 708	__print_lock_name(class);
 709	printk(KERN_CONT "){%s}-{%d:%d}", usage,
 710			class->wait_type_outer ?: class->wait_type_inner,
 711			class->wait_type_inner);
 712}
 713
 714static void print_lockdep_cache(struct lockdep_map *lock)
 715{
 716	const char *name;
 717	char str[KSYM_NAME_LEN];
 718
 719	name = lock->name;
 720	if (!name)
 721		name = __get_key_name(lock->key->subkeys, str);
 722
 723	printk(KERN_CONT "%s", name);
 724}
 725
 726static void print_lock(struct held_lock *hlock)
 727{
 728	/*
 729	 * We can be called locklessly through debug_show_all_locks() so be
 730	 * extra careful, the hlock might have been released and cleared.
 731	 *
 732	 * If this indeed happens, lets pretend it does not hurt to continue
 733	 * to print the lock unless the hlock class_idx does not point to a
 734	 * registered class. The rationale here is: since we don't attempt
 735	 * to distinguish whether we are in this situation, if it just
 736	 * happened we can't count on class_idx to tell either.
 737	 */
 738	struct lock_class *lock = hlock_class(hlock);
 739
 740	if (!lock) {
 741		printk(KERN_CONT "<RELEASED>\n");
 742		return;
 743	}
 744
 745	printk(KERN_CONT "%px", hlock->instance);
 746	print_lock_name(lock);
 747	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 748}
 749
 750static void lockdep_print_held_locks(struct task_struct *p)
 751{
 752	int i, depth = READ_ONCE(p->lockdep_depth);
 753
 754	if (!depth)
 755		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 756	else
 757		printk("%d lock%s held by %s/%d:\n", depth,
 758		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 759	/*
 760	 * It's not reliable to print a task's held locks if it's not sleeping
 761	 * and it's not the current task.
 762	 */
 763	if (p != current && task_is_running(p))
 764		return;
 765	for (i = 0; i < depth; i++) {
 766		printk(" #%d: ", i);
 767		print_lock(p->held_locks + i);
 768	}
 769}
 770
 771static void print_kernel_ident(void)
 772{
 773	printk("%s %.*s %s\n", init_utsname()->release,
 774		(int)strcspn(init_utsname()->version, " "),
 775		init_utsname()->version,
 776		print_tainted());
 777}
 778
 779static int very_verbose(struct lock_class *class)
 780{
 781#if VERY_VERBOSE
 782	return class_filter(class);
 783#endif
 784	return 0;
 785}
 786
 787/*
 788 * Is this the address of a static object:
 789 */
 790#ifdef __KERNEL__
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791static int static_obj(const void *obj)
 792{
 793	unsigned long start = (unsigned long) &_stext,
 794		      end   = (unsigned long) &_end,
 795		      addr  = (unsigned long) obj;
 796
 797	if (arch_is_kernel_initmem_freed(addr))
 798		return 0;
 799
 800	/*
 801	 * static variable?
 802	 */
 803	if ((addr >= start) && (addr < end))
 804		return 1;
 805
 806	if (arch_is_kernel_data(addr))
 807		return 1;
 808
 809	/*
 810	 * in-kernel percpu var?
 811	 */
 812	if (is_kernel_percpu_address(addr))
 813		return 1;
 814
 815	/*
 816	 * module static or percpu var?
 817	 */
 818	return is_module_address(addr) || is_module_percpu_address(addr);
 819}
 820#endif
 821
 822/*
 823 * To make lock name printouts unique, we calculate a unique
 824 * class->name_version generation counter. The caller must hold the graph
 825 * lock.
 826 */
 827static int count_matching_names(struct lock_class *new_class)
 828{
 829	struct lock_class *class;
 830	int count = 0;
 831
 832	if (!new_class->name)
 833		return 0;
 834
 835	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 836		if (new_class->key - new_class->subclass == class->key)
 837			return class->name_version;
 838		if (class->name && !strcmp(class->name, new_class->name))
 839			count = max(count, class->name_version);
 840	}
 841
 842	return count + 1;
 843}
 844
 845/* used from NMI context -- must be lockless */
 846static noinstr struct lock_class *
 847look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 848{
 849	struct lockdep_subclass_key *key;
 850	struct hlist_head *hash_head;
 851	struct lock_class *class;
 852
 853	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 854		instrumentation_begin();
 855		debug_locks_off();
 856		printk(KERN_ERR
 857			"BUG: looking up invalid subclass: %u\n", subclass);
 858		printk(KERN_ERR
 859			"turning off the locking correctness validator.\n");
 860		dump_stack();
 861		instrumentation_end();
 862		return NULL;
 863	}
 864
 865	/*
 866	 * If it is not initialised then it has never been locked,
 867	 * so it won't be present in the hash table.
 868	 */
 869	if (unlikely(!lock->key))
 870		return NULL;
 871
 872	/*
 873	 * NOTE: the class-key must be unique. For dynamic locks, a static
 874	 * lock_class_key variable is passed in through the mutex_init()
 875	 * (or spin_lock_init()) call - which acts as the key. For static
 876	 * locks we use the lock object itself as the key.
 877	 */
 878	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 879			sizeof(struct lockdep_map));
 880
 881	key = lock->key->subkeys + subclass;
 882
 883	hash_head = classhashentry(key);
 884
 885	/*
 886	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 887	 */
 888	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 889		return NULL;
 890
 891	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 892		if (class->key == key) {
 893			/*
 894			 * Huh! same key, different name? Did someone trample
 895			 * on some memory? We're most confused.
 896			 */
 897			WARN_ON_ONCE(class->name != lock->name &&
 898				     lock->key != &__lockdep_no_validate__);
 
 
 899			return class;
 900		}
 901	}
 902
 903	return NULL;
 904}
 905
 906/*
 907 * Static locks do not have their class-keys yet - for them the key is
 908 * the lock object itself. If the lock is in the per cpu area, the
 909 * canonical address of the lock (per cpu offset removed) is used.
 910 */
 911static bool assign_lock_key(struct lockdep_map *lock)
 912{
 913	unsigned long can_addr, addr = (unsigned long)lock;
 914
 915#ifdef __KERNEL__
 916	/*
 917	 * lockdep_free_key_range() assumes that struct lock_class_key
 918	 * objects do not overlap. Since we use the address of lock
 919	 * objects as class key for static objects, check whether the
 920	 * size of lock_class_key objects does not exceed the size of
 921	 * the smallest lock object.
 922	 */
 923	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 924#endif
 925
 926	if (__is_kernel_percpu_address(addr, &can_addr))
 927		lock->key = (void *)can_addr;
 928	else if (__is_module_percpu_address(addr, &can_addr))
 929		lock->key = (void *)can_addr;
 930	else if (static_obj(lock))
 931		lock->key = (void *)lock;
 932	else {
 933		/* Debug-check: all keys must be persistent! */
 934		debug_locks_off();
 935		pr_err("INFO: trying to register non-static key.\n");
 936		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
 937		pr_err("you didn't initialize this object before use?\n");
 938		pr_err("turning off the locking correctness validator.\n");
 939		dump_stack();
 940		return false;
 941	}
 942
 943	return true;
 944}
 945
 946#ifdef CONFIG_DEBUG_LOCKDEP
 947
 948/* Check whether element @e occurs in list @h */
 949static bool in_list(struct list_head *e, struct list_head *h)
 950{
 951	struct list_head *f;
 952
 953	list_for_each(f, h) {
 954		if (e == f)
 955			return true;
 956	}
 957
 958	return false;
 959}
 960
 961/*
 962 * Check whether entry @e occurs in any of the locks_after or locks_before
 963 * lists.
 964 */
 965static bool in_any_class_list(struct list_head *e)
 966{
 967	struct lock_class *class;
 968	int i;
 969
 970	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 971		class = &lock_classes[i];
 972		if (in_list(e, &class->locks_after) ||
 973		    in_list(e, &class->locks_before))
 974			return true;
 975	}
 976	return false;
 977}
 978
 979static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
 980{
 981	struct lock_list *e;
 982
 983	list_for_each_entry(e, h, entry) {
 984		if (e->links_to != c) {
 985			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
 986			       c->name ? : "(?)",
 987			       (unsigned long)(e - list_entries),
 988			       e->links_to && e->links_to->name ?
 989			       e->links_to->name : "(?)",
 990			       e->class && e->class->name ? e->class->name :
 991			       "(?)");
 992			return false;
 993		}
 994	}
 995	return true;
 996}
 997
 998#ifdef CONFIG_PROVE_LOCKING
 999static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000#endif
1001
1002static bool check_lock_chain_key(struct lock_chain *chain)
1003{
1004#ifdef CONFIG_PROVE_LOCKING
1005	u64 chain_key = INITIAL_CHAIN_KEY;
1006	int i;
1007
1008	for (i = chain->base; i < chain->base + chain->depth; i++)
1009		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010	/*
1011	 * The 'unsigned long long' casts avoid that a compiler warning
1012	 * is reported when building tools/lib/lockdep.
1013	 */
1014	if (chain->chain_key != chain_key) {
1015		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016		       (unsigned long long)(chain - lock_chains),
1017		       (unsigned long long)chain->chain_key,
1018		       (unsigned long long)chain_key);
1019		return false;
1020	}
1021#endif
1022	return true;
1023}
1024
1025static bool in_any_zapped_class_list(struct lock_class *class)
1026{
1027	struct pending_free *pf;
1028	int i;
1029
1030	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031		if (in_list(&class->lock_entry, &pf->zapped))
1032			return true;
1033	}
1034
1035	return false;
1036}
1037
1038static bool __check_data_structures(void)
1039{
1040	struct lock_class *class;
1041	struct lock_chain *chain;
1042	struct hlist_head *head;
1043	struct lock_list *e;
1044	int i;
1045
1046	/* Check whether all classes occur in a lock list. */
1047	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048		class = &lock_classes[i];
1049		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050		    !in_list(&class->lock_entry, &free_lock_classes) &&
1051		    !in_any_zapped_class_list(class)) {
1052			printk(KERN_INFO "class %px/%s is not in any class list\n",
1053			       class, class->name ? : "(?)");
1054			return false;
1055		}
1056	}
1057
1058	/* Check whether all classes have valid lock lists. */
1059	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060		class = &lock_classes[i];
1061		if (!class_lock_list_valid(class, &class->locks_before))
1062			return false;
1063		if (!class_lock_list_valid(class, &class->locks_after))
1064			return false;
1065	}
1066
1067	/* Check the chain_key of all lock chains. */
1068	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069		head = chainhash_table + i;
1070		hlist_for_each_entry_rcu(chain, head, entry) {
1071			if (!check_lock_chain_key(chain))
1072				return false;
1073		}
1074	}
1075
1076	/*
1077	 * Check whether all list entries that are in use occur in a class
1078	 * lock list.
1079	 */
1080	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081		e = list_entries + i;
1082		if (!in_any_class_list(&e->entry)) {
1083			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084			       (unsigned int)(e - list_entries),
1085			       e->class->name ? : "(?)",
1086			       e->links_to->name ? : "(?)");
1087			return false;
1088		}
1089	}
1090
1091	/*
1092	 * Check whether all list entries that are not in use do not occur in
1093	 * a class lock list.
1094	 */
1095	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096		e = list_entries + i;
1097		if (in_any_class_list(&e->entry)) {
1098			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099			       (unsigned int)(e - list_entries),
1100			       e->class && e->class->name ? e->class->name :
1101			       "(?)",
1102			       e->links_to && e->links_to->name ?
1103			       e->links_to->name : "(?)");
1104			return false;
1105		}
1106	}
1107
1108	return true;
1109}
1110
1111int check_consistency = 0;
1112module_param(check_consistency, int, 0644);
1113
1114static void check_data_structures(void)
1115{
1116	static bool once = false;
1117
1118	if (check_consistency && !once) {
1119		if (!__check_data_structures()) {
1120			once = true;
1121			WARN_ON(once);
1122		}
1123	}
1124}
1125
1126#else /* CONFIG_DEBUG_LOCKDEP */
1127
1128static inline void check_data_structures(void) { }
1129
1130#endif /* CONFIG_DEBUG_LOCKDEP */
1131
1132static void init_chain_block_buckets(void);
1133
1134/*
1135 * Initialize the lock_classes[] array elements, the free_lock_classes list
1136 * and also the delayed_free structure.
1137 */
1138static void init_data_structures_once(void)
1139{
1140	static bool __read_mostly ds_initialized, rcu_head_initialized;
1141	int i;
1142
1143	if (likely(rcu_head_initialized))
1144		return;
1145
1146	if (system_state >= SYSTEM_SCHEDULING) {
1147		init_rcu_head(&delayed_free.rcu_head);
1148		rcu_head_initialized = true;
1149	}
1150
1151	if (ds_initialized)
1152		return;
1153
1154	ds_initialized = true;
1155
1156	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158
1159	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163	}
1164	init_chain_block_buckets();
1165}
1166
1167static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168{
1169	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170
1171	return lock_keys_hash + hash;
1172}
1173
1174/* Register a dynamically allocated key. */
1175void lockdep_register_key(struct lock_class_key *key)
1176{
1177	struct hlist_head *hash_head;
1178	struct lock_class_key *k;
1179	unsigned long flags;
1180
1181	if (WARN_ON_ONCE(static_obj(key)))
1182		return;
1183	hash_head = keyhashentry(key);
1184
1185	raw_local_irq_save(flags);
1186	if (!graph_lock())
1187		goto restore_irqs;
1188	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189		if (WARN_ON_ONCE(k == key))
1190			goto out_unlock;
1191	}
1192	hlist_add_head_rcu(&key->hash_entry, hash_head);
1193out_unlock:
1194	graph_unlock();
1195restore_irqs:
1196	raw_local_irq_restore(flags);
1197}
1198EXPORT_SYMBOL_GPL(lockdep_register_key);
1199
1200/* Check whether a key has been registered as a dynamic key. */
1201static bool is_dynamic_key(const struct lock_class_key *key)
1202{
1203	struct hlist_head *hash_head;
1204	struct lock_class_key *k;
1205	bool found = false;
1206
1207	if (WARN_ON_ONCE(static_obj(key)))
1208		return false;
1209
1210	/*
1211	 * If lock debugging is disabled lock_keys_hash[] may contain
1212	 * pointers to memory that has already been freed. Avoid triggering
1213	 * a use-after-free in that case by returning early.
1214	 */
1215	if (!debug_locks)
1216		return true;
1217
1218	hash_head = keyhashentry(key);
1219
1220	rcu_read_lock();
1221	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222		if (k == key) {
1223			found = true;
1224			break;
1225		}
1226	}
1227	rcu_read_unlock();
1228
1229	return found;
1230}
1231
1232/*
1233 * Register a lock's class in the hash-table, if the class is not present
1234 * yet. Otherwise we look it up. We cache the result in the lock object
1235 * itself, so actual lookup of the hash should be once per lock object.
1236 */
1237static struct lock_class *
1238register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239{
1240	struct lockdep_subclass_key *key;
1241	struct hlist_head *hash_head;
1242	struct lock_class *class;
 
1243
1244	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245
1246	class = look_up_lock_class(lock, subclass);
1247	if (likely(class))
1248		goto out_set_class_cache;
1249
1250	if (!lock->key) {
1251		if (!assign_lock_key(lock))
1252			return NULL;
1253	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1254		return NULL;
1255	}
1256
1257	key = lock->key->subkeys + subclass;
1258	hash_head = classhashentry(key);
1259
1260	if (!graph_lock()) {
1261		return NULL;
1262	}
1263	/*
1264	 * We have to do the hash-walk again, to avoid races
1265	 * with another CPU:
1266	 */
1267	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268		if (class->key == key)
1269			goto out_unlock_set;
1270	}
1271
1272	init_data_structures_once();
1273
1274	/* Allocate a new lock class and add it to the hash. */
1275	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276					 lock_entry);
1277	if (!class) {
1278		if (!debug_locks_off_graph_unlock()) {
1279			return NULL;
1280		}
1281
1282		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283		dump_stack();
1284		return NULL;
1285	}
1286	nr_lock_classes++;
1287	__set_bit(class - lock_classes, lock_classes_in_use);
1288	debug_atomic_inc(nr_unused_locks);
1289	class->key = key;
1290	class->name = lock->name;
1291	class->subclass = subclass;
1292	WARN_ON_ONCE(!list_empty(&class->locks_before));
1293	WARN_ON_ONCE(!list_empty(&class->locks_after));
1294	class->name_version = count_matching_names(class);
1295	class->wait_type_inner = lock->wait_type_inner;
1296	class->wait_type_outer = lock->wait_type_outer;
1297	class->lock_type = lock->lock_type;
1298	/*
1299	 * We use RCU's safe list-add method to make
1300	 * parallel walking of the hash-list safe:
1301	 */
1302	hlist_add_head_rcu(&class->hash_entry, hash_head);
1303	/*
1304	 * Remove the class from the free list and add it to the global list
1305	 * of classes.
1306	 */
1307	list_move_tail(&class->lock_entry, &all_lock_classes);
 
 
 
1308
1309	if (verbose(class)) {
1310		graph_unlock();
1311
1312		printk("\nnew class %px: %s", class->key, class->name);
1313		if (class->name_version > 1)
1314			printk(KERN_CONT "#%d", class->name_version);
1315		printk(KERN_CONT "\n");
1316		dump_stack();
1317
1318		if (!graph_lock()) {
1319			return NULL;
1320		}
1321	}
1322out_unlock_set:
1323	graph_unlock();
1324
1325out_set_class_cache:
1326	if (!subclass || force)
1327		lock->class_cache[0] = class;
1328	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329		lock->class_cache[subclass] = class;
1330
1331	/*
1332	 * Hash collision, did we smoke some? We found a class with a matching
1333	 * hash but the subclass -- which is hashed in -- didn't match.
1334	 */
1335	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336		return NULL;
1337
1338	return class;
1339}
1340
1341#ifdef CONFIG_PROVE_LOCKING
1342/*
1343 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344 * with NULL on failure)
1345 */
1346static struct lock_list *alloc_list_entry(void)
1347{
1348	int idx = find_first_zero_bit(list_entries_in_use,
1349				      ARRAY_SIZE(list_entries));
1350
1351	if (idx >= ARRAY_SIZE(list_entries)) {
1352		if (!debug_locks_off_graph_unlock())
1353			return NULL;
1354
1355		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356		dump_stack();
1357		return NULL;
1358	}
1359	nr_list_entries++;
1360	__set_bit(idx, list_entries_in_use);
1361	return list_entries + idx;
1362}
1363
1364/*
1365 * Add a new dependency to the head of the list:
1366 */
1367static int add_lock_to_list(struct lock_class *this,
1368			    struct lock_class *links_to, struct list_head *head,
1369			    unsigned long ip, u16 distance, u8 dep,
1370			    const struct lock_trace *trace)
1371{
1372	struct lock_list *entry;
1373	/*
1374	 * Lock not present yet - get a new dependency struct and
1375	 * add it to the list:
1376	 */
1377	entry = alloc_list_entry();
1378	if (!entry)
1379		return 0;
1380
1381	entry->class = this;
1382	entry->links_to = links_to;
1383	entry->dep = dep;
1384	entry->distance = distance;
1385	entry->trace = trace;
1386	/*
1387	 * Both allocation and removal are done under the graph lock; but
1388	 * iteration is under RCU-sched; see look_up_lock_class() and
1389	 * lockdep_free_key_range().
1390	 */
1391	list_add_tail_rcu(&entry->entry, head);
1392
1393	return 1;
1394}
1395
1396/*
1397 * For good efficiency of modular, we use power of 2
1398 */
1399#define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1401
1402/*
1403 * The circular_queue and helpers are used to implement graph
1404 * breadth-first search (BFS) algorithm, by which we can determine
1405 * whether there is a path from a lock to another. In deadlock checks,
1406 * a path from the next lock to be acquired to a previous held lock
1407 * indicates that adding the <prev> -> <next> lock dependency will
1408 * produce a circle in the graph. Breadth-first search instead of
1409 * depth-first search is used in order to find the shortest (circular)
1410 * path.
1411 */
1412struct circular_queue {
1413	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414	unsigned int  front, rear;
1415};
1416
1417static struct circular_queue lock_cq;
1418
1419unsigned int max_bfs_queue_depth;
1420
1421static unsigned int lockdep_dependency_gen_id;
1422
1423static inline void __cq_init(struct circular_queue *cq)
1424{
1425	cq->front = cq->rear = 0;
1426	lockdep_dependency_gen_id++;
1427}
1428
1429static inline int __cq_empty(struct circular_queue *cq)
1430{
1431	return (cq->front == cq->rear);
1432}
1433
1434static inline int __cq_full(struct circular_queue *cq)
1435{
1436	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437}
1438
1439static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440{
1441	if (__cq_full(cq))
1442		return -1;
1443
1444	cq->element[cq->rear] = elem;
1445	cq->rear = (cq->rear + 1) & CQ_MASK;
1446	return 0;
1447}
1448
1449/*
1450 * Dequeue an element from the circular_queue, return a lock_list if
1451 * the queue is not empty, or NULL if otherwise.
1452 */
1453static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454{
1455	struct lock_list * lock;
1456
1457	if (__cq_empty(cq))
1458		return NULL;
1459
1460	lock = cq->element[cq->front];
1461	cq->front = (cq->front + 1) & CQ_MASK;
1462
1463	return lock;
1464}
1465
1466static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467{
1468	return (cq->rear - cq->front) & CQ_MASK;
1469}
1470
1471static inline void mark_lock_accessed(struct lock_list *lock)
1472{
1473	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474}
1475
1476static inline void visit_lock_entry(struct lock_list *lock,
1477				    struct lock_list *parent)
1478{
1479	lock->parent = parent;
1480}
1481
1482static inline unsigned long lock_accessed(struct lock_list *lock)
1483{
1484	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485}
1486
1487static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488{
1489	return child->parent;
1490}
1491
1492static inline int get_lock_depth(struct lock_list *child)
1493{
1494	int depth = 0;
1495	struct lock_list *parent;
1496
1497	while ((parent = get_lock_parent(child))) {
1498		child = parent;
1499		depth++;
1500	}
1501	return depth;
1502}
1503
1504/*
1505 * Return the forward or backward dependency list.
1506 *
1507 * @lock:   the lock_list to get its class's dependency list
1508 * @offset: the offset to struct lock_class to determine whether it is
1509 *          locks_after or locks_before
1510 */
1511static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512{
1513	void *lock_class = lock->class;
1514
1515	return lock_class + offset;
1516}
1517/*
1518 * Return values of a bfs search:
1519 *
1520 * BFS_E* indicates an error
1521 * BFS_R* indicates a result (match or not)
1522 *
1523 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524 *
1525 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526 *
1527 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528 *             *@target_entry.
1529 *
1530 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531 *               _unchanged_.
1532 */
1533enum bfs_result {
1534	BFS_EINVALIDNODE = -2,
1535	BFS_EQUEUEFULL = -1,
1536	BFS_RMATCH = 0,
1537	BFS_RNOMATCH = 1,
1538};
1539
1540/*
1541 * bfs_result < 0 means error
1542 */
1543static inline bool bfs_error(enum bfs_result res)
1544{
1545	return res < 0;
1546}
1547
1548/*
1549 * DEP_*_BIT in lock_list::dep
1550 *
1551 * For dependency @prev -> @next:
1552 *
1553 *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554 *       (->read == 2)
1555 *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556 *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557 *   EN: @prev is exclusive locker and @next is non-recursive locker
1558 *
1559 * Note that we define the value of DEP_*_BITs so that:
1560 *   bit0 is prev->read == 0
1561 *   bit1 is next->read != 2
1562 */
1563#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567
1568#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572
1573static inline unsigned int
1574__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575{
1576	return (prev->read == 0) + ((next->read != 2) << 1);
1577}
1578
1579static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580{
1581	return 1U << __calc_dep_bit(prev, next);
1582}
1583
1584/*
1585 * calculate the dep_bit for backwards edges. We care about whether @prev is
1586 * shared and whether @next is recursive.
1587 */
1588static inline unsigned int
1589__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590{
1591	return (next->read != 2) + ((prev->read == 0) << 1);
1592}
1593
1594static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595{
1596	return 1U << __calc_dep_bitb(prev, next);
1597}
1598
1599/*
1600 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601 * search.
1602 */
1603static inline void __bfs_init_root(struct lock_list *lock,
1604				   struct lock_class *class)
1605{
1606	lock->class = class;
1607	lock->parent = NULL;
1608	lock->only_xr = 0;
1609}
1610
1611/*
1612 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613 * root for a BFS search.
1614 *
1615 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617 * and -(S*)->.
1618 */
1619static inline void bfs_init_root(struct lock_list *lock,
1620				 struct held_lock *hlock)
1621{
1622	__bfs_init_root(lock, hlock_class(hlock));
1623	lock->only_xr = (hlock->read == 2);
1624}
1625
1626/*
1627 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628 *
1629 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632 */
1633static inline void bfs_init_rootb(struct lock_list *lock,
1634				  struct held_lock *hlock)
1635{
1636	__bfs_init_root(lock, hlock_class(hlock));
1637	lock->only_xr = (hlock->read != 0);
1638}
1639
1640static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641{
1642	if (!lock || !lock->parent)
1643		return NULL;
1644
1645	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646				     &lock->entry, struct lock_list, entry);
1647}
1648
1649/*
1650 * Breadth-First Search to find a strong path in the dependency graph.
1651 *
1652 * @source_entry: the source of the path we are searching for.
1653 * @data: data used for the second parameter of @match function
1654 * @match: match function for the search
1655 * @target_entry: pointer to the target of a matched path
1656 * @offset: the offset to struct lock_class to determine whether it is
1657 *          locks_after or locks_before
1658 *
1659 * We may have multiple edges (considering different kinds of dependencies,
1660 * e.g. ER and SN) between two nodes in the dependency graph. But
1661 * only the strong dependency path in the graph is relevant to deadlocks. A
1662 * strong dependency path is a dependency path that doesn't have two adjacent
1663 * dependencies as -(*R)-> -(S*)->, please see:
1664 *
1665 *         Documentation/locking/lockdep-design.rst
1666 *
1667 * for more explanation of the definition of strong dependency paths
1668 *
1669 * In __bfs(), we only traverse in the strong dependency path:
1670 *
1671 *     In lock_list::only_xr, we record whether the previous dependency only
1672 *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673 *     filter out any -(S*)-> in the current dependency and after that, the
1674 *     ->only_xr is set according to whether we only have -(*R)-> left.
1675 */
1676static enum bfs_result __bfs(struct lock_list *source_entry,
1677			     void *data,
1678			     bool (*match)(struct lock_list *entry, void *data),
1679			     bool (*skip)(struct lock_list *entry, void *data),
1680			     struct lock_list **target_entry,
1681			     int offset)
1682{
1683	struct circular_queue *cq = &lock_cq;
1684	struct lock_list *lock = NULL;
1685	struct lock_list *entry;
1686	struct list_head *head;
1687	unsigned int cq_depth;
1688	bool first;
1689
1690	lockdep_assert_locked();
1691
1692	__cq_init(cq);
1693	__cq_enqueue(cq, source_entry);
1694
1695	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696		if (!lock->class)
1697			return BFS_EINVALIDNODE;
1698
1699		/*
1700		 * Step 1: check whether we already finish on this one.
1701		 *
1702		 * If we have visited all the dependencies from this @lock to
1703		 * others (iow, if we have visited all lock_list entries in
1704		 * @lock->class->locks_{after,before}) we skip, otherwise go
1705		 * and visit all the dependencies in the list and mark this
1706		 * list accessed.
1707		 */
1708		if (lock_accessed(lock))
1709			continue;
1710		else
1711			mark_lock_accessed(lock);
1712
1713		/*
1714		 * Step 2: check whether prev dependency and this form a strong
1715		 *         dependency path.
1716		 */
1717		if (lock->parent) { /* Parent exists, check prev dependency */
1718			u8 dep = lock->dep;
1719			bool prev_only_xr = lock->parent->only_xr;
1720
1721			/*
1722			 * Mask out all -(S*)-> if we only have *R in previous
1723			 * step, because -(*R)-> -(S*)-> don't make up a strong
1724			 * dependency.
1725			 */
1726			if (prev_only_xr)
1727				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729			/* If nothing left, we skip */
1730			if (!dep)
1731				continue;
1732
1733			/* If there are only -(*R)-> left, set that for the next step */
1734			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735		}
1736
1737		/*
1738		 * Step 3: we haven't visited this and there is a strong
1739		 *         dependency path to this, so check with @match.
1740		 *         If @skip is provide and returns true, we skip this
1741		 *         lock (and any path this lock is in).
1742		 */
1743		if (skip && skip(lock, data))
1744			continue;
1745
1746		if (match(lock, data)) {
1747			*target_entry = lock;
1748			return BFS_RMATCH;
1749		}
1750
1751		/*
1752		 * Step 4: if not match, expand the path by adding the
1753		 *         forward or backwards dependencies in the search
1754		 *
1755		 */
1756		first = true;
1757		head = get_dep_list(lock, offset);
1758		list_for_each_entry_rcu(entry, head, entry) {
1759			visit_lock_entry(entry, lock);
1760
1761			/*
1762			 * Note we only enqueue the first of the list into the
1763			 * queue, because we can always find a sibling
1764			 * dependency from one (see __bfs_next()), as a result
1765			 * the space of queue is saved.
1766			 */
1767			if (!first)
1768				continue;
1769
1770			first = false;
1771
1772			if (__cq_enqueue(cq, entry))
1773				return BFS_EQUEUEFULL;
1774
1775			cq_depth = __cq_get_elem_count(cq);
1776			if (max_bfs_queue_depth < cq_depth)
1777				max_bfs_queue_depth = cq_depth;
1778		}
1779	}
1780
1781	return BFS_RNOMATCH;
1782}
1783
1784static inline enum bfs_result
1785__bfs_forwards(struct lock_list *src_entry,
1786	       void *data,
1787	       bool (*match)(struct lock_list *entry, void *data),
1788	       bool (*skip)(struct lock_list *entry, void *data),
1789	       struct lock_list **target_entry)
1790{
1791	return __bfs(src_entry, data, match, skip, target_entry,
1792		     offsetof(struct lock_class, locks_after));
1793
1794}
1795
1796static inline enum bfs_result
1797__bfs_backwards(struct lock_list *src_entry,
1798		void *data,
1799		bool (*match)(struct lock_list *entry, void *data),
1800	       bool (*skip)(struct lock_list *entry, void *data),
1801		struct lock_list **target_entry)
1802{
1803	return __bfs(src_entry, data, match, skip, target_entry,
1804		     offsetof(struct lock_class, locks_before));
1805
1806}
1807
1808static void print_lock_trace(const struct lock_trace *trace,
1809			     unsigned int spaces)
1810{
1811	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812}
1813
1814/*
1815 * Print a dependency chain entry (this is only done when a deadlock
1816 * has been detected):
1817 */
1818static noinline void
1819print_circular_bug_entry(struct lock_list *target, int depth)
1820{
1821	if (debug_locks_silent)
1822		return;
1823	printk("\n-> #%u", depth);
1824	print_lock_name(target->class);
1825	printk(KERN_CONT ":\n");
1826	print_lock_trace(target->trace, 6);
1827}
1828
1829static void
1830print_circular_lock_scenario(struct held_lock *src,
1831			     struct held_lock *tgt,
1832			     struct lock_list *prt)
1833{
1834	struct lock_class *source = hlock_class(src);
1835	struct lock_class *target = hlock_class(tgt);
1836	struct lock_class *parent = prt->class;
1837
1838	/*
1839	 * A direct locking problem where unsafe_class lock is taken
1840	 * directly by safe_class lock, then all we need to show
1841	 * is the deadlock scenario, as it is obvious that the
1842	 * unsafe lock is taken under the safe lock.
1843	 *
1844	 * But if there is a chain instead, where the safe lock takes
1845	 * an intermediate lock (middle_class) where this lock is
1846	 * not the same as the safe lock, then the lock chain is
1847	 * used to describe the problem. Otherwise we would need
1848	 * to show a different CPU case for each link in the chain
1849	 * from the safe_class lock to the unsafe_class lock.
1850	 */
1851	if (parent != source) {
1852		printk("Chain exists of:\n  ");
1853		__print_lock_name(source);
1854		printk(KERN_CONT " --> ");
1855		__print_lock_name(parent);
1856		printk(KERN_CONT " --> ");
1857		__print_lock_name(target);
1858		printk(KERN_CONT "\n\n");
1859	}
1860
1861	printk(" Possible unsafe locking scenario:\n\n");
1862	printk("       CPU0                    CPU1\n");
1863	printk("       ----                    ----\n");
1864	printk("  lock(");
1865	__print_lock_name(target);
1866	printk(KERN_CONT ");\n");
1867	printk("                               lock(");
1868	__print_lock_name(parent);
1869	printk(KERN_CONT ");\n");
1870	printk("                               lock(");
1871	__print_lock_name(target);
1872	printk(KERN_CONT ");\n");
1873	printk("  lock(");
1874	__print_lock_name(source);
1875	printk(KERN_CONT ");\n");
1876	printk("\n *** DEADLOCK ***\n\n");
1877}
1878
1879/*
1880 * When a circular dependency is detected, print the
1881 * header first:
1882 */
1883static noinline void
1884print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885			struct held_lock *check_src,
1886			struct held_lock *check_tgt)
1887{
1888	struct task_struct *curr = current;
1889
1890	if (debug_locks_silent)
1891		return;
1892
1893	pr_warn("\n");
1894	pr_warn("======================================================\n");
1895	pr_warn("WARNING: possible circular locking dependency detected\n");
1896	print_kernel_ident();
1897	pr_warn("------------------------------------------------------\n");
1898	pr_warn("%s/%d is trying to acquire lock:\n",
1899		curr->comm, task_pid_nr(curr));
1900	print_lock(check_src);
1901
1902	pr_warn("\nbut task is already holding lock:\n");
1903
1904	print_lock(check_tgt);
1905	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907
1908	print_circular_bug_entry(entry, depth);
1909}
1910
1911/*
1912 * We are about to add A -> B into the dependency graph, and in __bfs() a
1913 * strong dependency path A -> .. -> B is found: hlock_class equals
1914 * entry->class.
1915 *
1916 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923 *
1924 * We need to make sure both the start and the end of A -> .. -> B is not
1925 * weaker than A -> B. For the start part, please see the comment in
1926 * check_redundant(). For the end part, we need:
1927 *
1928 * Either
1929 *
1930 *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931 *
1932 * or
1933 *
1934 *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935 *
1936 */
1937static inline bool hlock_equal(struct lock_list *entry, void *data)
1938{
1939	struct held_lock *hlock = (struct held_lock *)data;
1940
1941	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944}
1945
1946/*
1947 * We are about to add B -> A into the dependency graph, and in __bfs() a
1948 * strong dependency path A -> .. -> B is found: hlock_class equals
1949 * entry->class.
1950 *
1951 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952 * dependency cycle, that means:
1953 *
1954 * Either
1955 *
1956 *     a) B -> A is -(E*)->
1957 *
1958 * or
1959 *
1960 *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961 *
1962 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963 */
1964static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965{
1966	struct held_lock *hlock = (struct held_lock *)data;
1967
1968	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1970		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971}
1972
1973static noinline void print_circular_bug(struct lock_list *this,
1974				struct lock_list *target,
1975				struct held_lock *check_src,
1976				struct held_lock *check_tgt)
1977{
1978	struct task_struct *curr = current;
1979	struct lock_list *parent;
1980	struct lock_list *first_parent;
1981	int depth;
1982
1983	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984		return;
1985
1986	this->trace = save_trace();
1987	if (!this->trace)
1988		return;
1989
1990	depth = get_lock_depth(target);
1991
1992	print_circular_bug_header(target, depth, check_src, check_tgt);
1993
1994	parent = get_lock_parent(target);
1995	first_parent = parent;
1996
1997	while (parent) {
1998		print_circular_bug_entry(parent, --depth);
1999		parent = get_lock_parent(parent);
2000	}
2001
2002	printk("\nother info that might help us debug this:\n\n");
2003	print_circular_lock_scenario(check_src, check_tgt,
2004				     first_parent);
2005
2006	lockdep_print_held_locks(curr);
2007
2008	printk("\nstack backtrace:\n");
2009	dump_stack();
2010}
2011
2012static noinline void print_bfs_bug(int ret)
2013{
2014	if (!debug_locks_off_graph_unlock())
2015		return;
2016
2017	/*
2018	 * Breadth-first-search failed, graph got corrupted?
2019	 */
2020	WARN(1, "lockdep bfs error:%d\n", ret);
2021}
2022
2023static bool noop_count(struct lock_list *entry, void *data)
2024{
2025	(*(unsigned long *)data)++;
2026	return false;
2027}
2028
2029static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030{
2031	unsigned long  count = 0;
2032	struct lock_list *target_entry;
2033
2034	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035
2036	return count;
2037}
2038unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039{
2040	unsigned long ret, flags;
2041	struct lock_list this;
2042
2043	__bfs_init_root(&this, class);
2044
2045	raw_local_irq_save(flags);
2046	lockdep_lock();
2047	ret = __lockdep_count_forward_deps(&this);
2048	lockdep_unlock();
2049	raw_local_irq_restore(flags);
2050
2051	return ret;
2052}
2053
2054static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055{
2056	unsigned long  count = 0;
2057	struct lock_list *target_entry;
2058
2059	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060
2061	return count;
2062}
2063
2064unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065{
2066	unsigned long ret, flags;
2067	struct lock_list this;
2068
2069	__bfs_init_root(&this, class);
2070
2071	raw_local_irq_save(flags);
2072	lockdep_lock();
2073	ret = __lockdep_count_backward_deps(&this);
2074	lockdep_unlock();
2075	raw_local_irq_restore(flags);
2076
2077	return ret;
2078}
2079
2080/*
2081 * Check that the dependency graph starting at <src> can lead to
2082 * <target> or not.
2083 */
2084static noinline enum bfs_result
2085check_path(struct held_lock *target, struct lock_list *src_entry,
2086	   bool (*match)(struct lock_list *entry, void *data),
2087	   bool (*skip)(struct lock_list *entry, void *data),
2088	   struct lock_list **target_entry)
2089{
2090	enum bfs_result ret;
2091
2092	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093
2094	if (unlikely(bfs_error(ret)))
2095		print_bfs_bug(ret);
2096
2097	return ret;
2098}
2099
2100/*
2101 * Prove that the dependency graph starting at <src> can not
2102 * lead to <target>. If it can, there is a circle when adding
2103 * <target> -> <src> dependency.
2104 *
2105 * Print an error and return BFS_RMATCH if it does.
2106 */
2107static noinline enum bfs_result
2108check_noncircular(struct held_lock *src, struct held_lock *target,
2109		  struct lock_trace **const trace)
2110{
2111	enum bfs_result ret;
2112	struct lock_list *target_entry;
2113	struct lock_list src_entry;
2114
2115	bfs_init_root(&src_entry, src);
2116
2117	debug_atomic_inc(nr_cyclic_checks);
2118
2119	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120
2121	if (unlikely(ret == BFS_RMATCH)) {
2122		if (!*trace) {
2123			/*
2124			 * If save_trace fails here, the printing might
2125			 * trigger a WARN but because of the !nr_entries it
2126			 * should not do bad things.
2127			 */
2128			*trace = save_trace();
2129		}
2130
2131		print_circular_bug(&src_entry, target_entry, src, target);
2132	}
2133
2134	return ret;
2135}
2136
2137#ifdef CONFIG_TRACE_IRQFLAGS
2138
2139/*
2140 * Forwards and backwards subgraph searching, for the purposes of
2141 * proving that two subgraphs can be connected by a new dependency
2142 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143 *
2144 * A irq safe->unsafe deadlock happens with the following conditions:
2145 *
2146 * 1) We have a strong dependency path A -> ... -> B
2147 *
2148 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149 *    irq can create a new dependency B -> A (consider the case that a holder
2150 *    of B gets interrupted by an irq whose handler will try to acquire A).
2151 *
2152 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153 *    strong circle:
2154 *
2155 *      For the usage bits of B:
2156 *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157 *           ENABLED_IRQ usage suffices.
2158 *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159 *           ENABLED_IRQ_*_READ usage suffices.
2160 *
2161 *      For the usage bits of A:
2162 *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163 *           USED_IN_IRQ usage suffices.
2164 *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165 *           USED_IN_IRQ_*_READ usage suffices.
2166 */
2167
2168/*
2169 * There is a strong dependency path in the dependency graph: A -> B, and now
2170 * we need to decide which usage bit of A should be accumulated to detect
2171 * safe->unsafe bugs.
2172 *
2173 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175 *
2176 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177 * path, any usage of A should be considered. Otherwise, we should only
2178 * consider _READ usage.
2179 */
2180static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181{
2182	if (!entry->only_xr)
2183		*(unsigned long *)mask |= entry->class->usage_mask;
2184	else /* Mask out _READ usage bits */
2185		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186
2187	return false;
2188}
2189
2190/*
2191 * There is a strong dependency path in the dependency graph: A -> B, and now
2192 * we need to decide which usage bit of B conflicts with the usage bits of A,
2193 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194 *
2195 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196 * path, any usage of B should be considered. Otherwise, we should only
2197 * consider _READ usage.
2198 */
2199static inline bool usage_match(struct lock_list *entry, void *mask)
2200{
2201	if (!entry->only_xr)
2202		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203	else /* Mask out _READ usage bits */
2204		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205}
2206
2207static inline bool usage_skip(struct lock_list *entry, void *mask)
2208{
2209	/*
2210	 * Skip local_lock() for irq inversion detection.
2211	 *
2212	 * For !RT, local_lock() is not a real lock, so it won't carry any
2213	 * dependency.
2214	 *
2215	 * For RT, an irq inversion happens when we have lock A and B, and on
2216	 * some CPU we can have:
2217	 *
2218	 *	lock(A);
2219	 *	<interrupted>
2220	 *	  lock(B);
2221	 *
2222	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223	 *
2224	 * Now we prove local_lock() cannot exist in that dependency. First we
2225	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2226	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227	 * wait context check will complain. And since B is not a sleep lock,
2228	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229	 * local_lock() is 3, which is greater than 2, therefore there is no
2230	 * way the local_lock() exists in the dependency B -> ... -> A.
2231	 *
2232	 * As a result, we will skip local_lock(), when we search for irq
2233	 * inversion bugs.
2234	 */
2235	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237			return false;
2238
2239		return true;
2240	}
2241
2242	return false;
2243}
2244
2245/*
2246 * Find a node in the forwards-direction dependency sub-graph starting
2247 * at @root->class that matches @bit.
2248 *
2249 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250 * into *@target_entry.
2251 */
2252static enum bfs_result
2253find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254			struct lock_list **target_entry)
2255{
2256	enum bfs_result result;
2257
2258	debug_atomic_inc(nr_find_usage_forwards_checks);
2259
2260	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261
2262	return result;
2263}
2264
2265/*
2266 * Find a node in the backwards-direction dependency sub-graph starting
2267 * at @root->class that matches @bit.
2268 */
2269static enum bfs_result
2270find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271			struct lock_list **target_entry)
2272{
2273	enum bfs_result result;
2274
2275	debug_atomic_inc(nr_find_usage_backwards_checks);
2276
2277	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278
2279	return result;
2280}
2281
2282static void print_lock_class_header(struct lock_class *class, int depth)
2283{
2284	int bit;
2285
2286	printk("%*s->", depth, "");
2287	print_lock_name(class);
2288#ifdef CONFIG_DEBUG_LOCKDEP
2289	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290#endif
2291	printk(KERN_CONT " {\n");
2292
2293	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294		if (class->usage_mask & (1 << bit)) {
2295			int len = depth;
2296
2297			len += printk("%*s   %s", depth, "", usage_str[bit]);
2298			len += printk(KERN_CONT " at:\n");
2299			print_lock_trace(class->usage_traces[bit], len);
2300		}
2301	}
2302	printk("%*s }\n", depth, "");
2303
2304	printk("%*s ... key      at: [<%px>] %pS\n",
2305		depth, "", class->key, class->key);
2306}
2307
2308/*
2309 * Dependency path printing:
2310 *
2311 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2312 * printing out each lock in the dependency path will help on understanding how
2313 * the deadlock could happen. Here are some details about dependency path
2314 * printing:
2315 *
2316 * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2317 * 	for a lock dependency A -> B, there are two lock_lists:
2318 *
2319 * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2320 * 		->links_to is A. In this case, we can say the lock_list is
2321 * 		"A -> B" (forwards case).
2322 *
2323 * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2324 * 		and ->links_to is B. In this case, we can say the lock_list is
2325 * 		"B <- A" (bacwards case).
2326 *
2327 * 	The ->trace of both a) and b) point to the call trace where B was
2328 * 	acquired with A held.
2329 *
2330 * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2331 * 	represent a certain lock dependency, it only provides an initial entry
2332 * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2333 * 	->class is A, as a result BFS will search all dependencies starting with
2334 * 	A, e.g. A -> B or A -> C.
2335 *
2336 * 	The notation of a forwards helper lock_list is like "-> A", which means
2337 * 	we should search the forwards dependencies starting with "A", e.g A -> B
2338 * 	or A -> C.
2339 *
2340 * 	The notation of a bacwards helper lock_list is like "<- B", which means
2341 * 	we should search the backwards dependencies ending with "B", e.g.
2342 * 	B <- A or B <- C.
2343 */
2344
2345/*
2346 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2347 *
2348 * We have a lock dependency path as follow:
2349 *
2350 *    @root                                                                 @leaf
2351 *      |                                                                     |
2352 *      V                                                                     V
2353 *	          ->parent                                   ->parent
2354 * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2355 * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2356 *
2357 * , so it's natural that we start from @leaf and print every ->class and
2358 * ->trace until we reach the @root.
2359 */
2360static void __used
2361print_shortest_lock_dependencies(struct lock_list *leaf,
2362				 struct lock_list *root)
2363{
2364	struct lock_list *entry = leaf;
2365	int depth;
2366
2367	/*compute depth from generated tree by BFS*/
2368	depth = get_lock_depth(leaf);
2369
2370	do {
2371		print_lock_class_header(entry->class, depth);
2372		printk("%*s ... acquired at:\n", depth, "");
2373		print_lock_trace(entry->trace, 2);
2374		printk("\n");
2375
2376		if (depth == 0 && (entry != root)) {
2377			printk("lockdep:%s bad path found in chain graph\n", __func__);
2378			break;
2379		}
2380
2381		entry = get_lock_parent(entry);
2382		depth--;
2383	} while (entry && (depth >= 0));
2384}
2385
2386/*
2387 * printk the shortest lock dependencies from @leaf to @root.
2388 *
2389 * We have a lock dependency path (from a backwards search) as follow:
2390 *
2391 *    @leaf                                                                 @root
2392 *      |                                                                     |
2393 *      V                                                                     V
2394 *	          ->parent                                   ->parent
2395 * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2396 * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2397 *
2398 * , so when we iterate from @leaf to @root, we actually print the lock
2399 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2400 *
2401 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2402 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2403 * trace of L1 in the dependency path, which is alright, because most of the
2404 * time we can figure out where L1 is held from the call trace of L2.
2405 */
2406static void __used
2407print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2408					   struct lock_list *root)
2409{
2410	struct lock_list *entry = leaf;
2411	const struct lock_trace *trace = NULL;
2412	int depth;
2413
2414	/*compute depth from generated tree by BFS*/
2415	depth = get_lock_depth(leaf);
2416
2417	do {
2418		print_lock_class_header(entry->class, depth);
2419		if (trace) {
2420			printk("%*s ... acquired at:\n", depth, "");
2421			print_lock_trace(trace, 2);
2422			printk("\n");
2423		}
2424
2425		/*
2426		 * Record the pointer to the trace for the next lock_list
2427		 * entry, see the comments for the function.
2428		 */
2429		trace = entry->trace;
2430
2431		if (depth == 0 && (entry != root)) {
2432			printk("lockdep:%s bad path found in chain graph\n", __func__);
2433			break;
2434		}
2435
2436		entry = get_lock_parent(entry);
2437		depth--;
2438	} while (entry && (depth >= 0));
2439}
2440
2441static void
2442print_irq_lock_scenario(struct lock_list *safe_entry,
2443			struct lock_list *unsafe_entry,
2444			struct lock_class *prev_class,
2445			struct lock_class *next_class)
2446{
2447	struct lock_class *safe_class = safe_entry->class;
2448	struct lock_class *unsafe_class = unsafe_entry->class;
2449	struct lock_class *middle_class = prev_class;
2450
2451	if (middle_class == safe_class)
2452		middle_class = next_class;
2453
2454	/*
2455	 * A direct locking problem where unsafe_class lock is taken
2456	 * directly by safe_class lock, then all we need to show
2457	 * is the deadlock scenario, as it is obvious that the
2458	 * unsafe lock is taken under the safe lock.
2459	 *
2460	 * But if there is a chain instead, where the safe lock takes
2461	 * an intermediate lock (middle_class) where this lock is
2462	 * not the same as the safe lock, then the lock chain is
2463	 * used to describe the problem. Otherwise we would need
2464	 * to show a different CPU case for each link in the chain
2465	 * from the safe_class lock to the unsafe_class lock.
2466	 */
2467	if (middle_class != unsafe_class) {
2468		printk("Chain exists of:\n  ");
2469		__print_lock_name(safe_class);
2470		printk(KERN_CONT " --> ");
2471		__print_lock_name(middle_class);
2472		printk(KERN_CONT " --> ");
2473		__print_lock_name(unsafe_class);
2474		printk(KERN_CONT "\n\n");
2475	}
2476
2477	printk(" Possible interrupt unsafe locking scenario:\n\n");
2478	printk("       CPU0                    CPU1\n");
2479	printk("       ----                    ----\n");
2480	printk("  lock(");
2481	__print_lock_name(unsafe_class);
2482	printk(KERN_CONT ");\n");
2483	printk("                               local_irq_disable();\n");
2484	printk("                               lock(");
2485	__print_lock_name(safe_class);
2486	printk(KERN_CONT ");\n");
2487	printk("                               lock(");
2488	__print_lock_name(middle_class);
2489	printk(KERN_CONT ");\n");
2490	printk("  <Interrupt>\n");
2491	printk("    lock(");
2492	__print_lock_name(safe_class);
2493	printk(KERN_CONT ");\n");
2494	printk("\n *** DEADLOCK ***\n\n");
2495}
2496
2497static void
2498print_bad_irq_dependency(struct task_struct *curr,
2499			 struct lock_list *prev_root,
2500			 struct lock_list *next_root,
2501			 struct lock_list *backwards_entry,
2502			 struct lock_list *forwards_entry,
2503			 struct held_lock *prev,
2504			 struct held_lock *next,
2505			 enum lock_usage_bit bit1,
2506			 enum lock_usage_bit bit2,
2507			 const char *irqclass)
2508{
2509	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2510		return;
2511
2512	pr_warn("\n");
2513	pr_warn("=====================================================\n");
2514	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2515		irqclass, irqclass);
2516	print_kernel_ident();
2517	pr_warn("-----------------------------------------------------\n");
2518	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2519		curr->comm, task_pid_nr(curr),
2520		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2521		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2522		lockdep_hardirqs_enabled(),
2523		curr->softirqs_enabled);
2524	print_lock(next);
2525
2526	pr_warn("\nand this task is already holding:\n");
2527	print_lock(prev);
2528	pr_warn("which would create a new lock dependency:\n");
2529	print_lock_name(hlock_class(prev));
2530	pr_cont(" ->");
2531	print_lock_name(hlock_class(next));
2532	pr_cont("\n");
2533
2534	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2535		irqclass);
2536	print_lock_name(backwards_entry->class);
2537	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2538
2539	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2540
2541	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2542	print_lock_name(forwards_entry->class);
2543	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2544	pr_warn("...");
2545
2546	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2547
2548	pr_warn("\nother info that might help us debug this:\n\n");
2549	print_irq_lock_scenario(backwards_entry, forwards_entry,
2550				hlock_class(prev), hlock_class(next));
2551
2552	lockdep_print_held_locks(curr);
2553
2554	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2555	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2556
2557	pr_warn("\nthe dependencies between the lock to be acquired");
2558	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2559	next_root->trace = save_trace();
2560	if (!next_root->trace)
2561		return;
2562	print_shortest_lock_dependencies(forwards_entry, next_root);
2563
2564	pr_warn("\nstack backtrace:\n");
2565	dump_stack();
2566}
2567
2568static const char *state_names[] = {
2569#define LOCKDEP_STATE(__STATE) \
2570	__stringify(__STATE),
2571#include "lockdep_states.h"
2572#undef LOCKDEP_STATE
2573};
2574
2575static const char *state_rnames[] = {
2576#define LOCKDEP_STATE(__STATE) \
2577	__stringify(__STATE)"-READ",
2578#include "lockdep_states.h"
2579#undef LOCKDEP_STATE
2580};
2581
2582static inline const char *state_name(enum lock_usage_bit bit)
2583{
2584	if (bit & LOCK_USAGE_READ_MASK)
2585		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2586	else
2587		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2588}
2589
2590/*
2591 * The bit number is encoded like:
2592 *
2593 *  bit0: 0 exclusive, 1 read lock
2594 *  bit1: 0 used in irq, 1 irq enabled
2595 *  bit2-n: state
2596 */
2597static int exclusive_bit(int new_bit)
2598{
2599	int state = new_bit & LOCK_USAGE_STATE_MASK;
2600	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2601
2602	/*
2603	 * keep state, bit flip the direction and strip read.
2604	 */
2605	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2606}
2607
2608/*
2609 * Observe that when given a bitmask where each bitnr is encoded as above, a
2610 * right shift of the mask transforms the individual bitnrs as -1 and
2611 * conversely, a left shift transforms into +1 for the individual bitnrs.
2612 *
2613 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2614 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2615 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2616 *
2617 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2618 *
2619 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2620 * all bits set) and recompose with bitnr1 flipped.
2621 */
2622static unsigned long invert_dir_mask(unsigned long mask)
2623{
2624	unsigned long excl = 0;
2625
2626	/* Invert dir */
2627	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2628	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2629
2630	return excl;
2631}
2632
2633/*
2634 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2635 * usage may cause deadlock too, for example:
2636 *
2637 * P1				P2
2638 * <irq disabled>
2639 * write_lock(l1);		<irq enabled>
2640 *				read_lock(l2);
2641 * write_lock(l2);
2642 * 				<in irq>
2643 * 				read_lock(l1);
2644 *
2645 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2646 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2647 * deadlock.
2648 *
2649 * In fact, all of the following cases may cause deadlocks:
2650 *
2651 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2652 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2653 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2654 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2655 *
2656 * As a result, to calculate the "exclusive mask", first we invert the
2657 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2658 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2659 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2660 */
2661static unsigned long exclusive_mask(unsigned long mask)
2662{
2663	unsigned long excl = invert_dir_mask(mask);
2664
2665	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2666	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2667
2668	return excl;
2669}
2670
2671/*
2672 * Retrieve the _possible_ original mask to which @mask is
2673 * exclusive. Ie: this is the opposite of exclusive_mask().
2674 * Note that 2 possible original bits can match an exclusive
2675 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2676 * cleared. So both are returned for each exclusive bit.
2677 */
2678static unsigned long original_mask(unsigned long mask)
2679{
2680	unsigned long excl = invert_dir_mask(mask);
2681
2682	/* Include read in existing usages */
2683	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2684	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2685
2686	return excl;
2687}
2688
2689/*
2690 * Find the first pair of bit match between an original
2691 * usage mask and an exclusive usage mask.
2692 */
2693static int find_exclusive_match(unsigned long mask,
2694				unsigned long excl_mask,
2695				enum lock_usage_bit *bitp,
2696				enum lock_usage_bit *excl_bitp)
2697{
2698	int bit, excl, excl_read;
2699
2700	for_each_set_bit(bit, &mask, LOCK_USED) {
2701		/*
2702		 * exclusive_bit() strips the read bit, however,
2703		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2704		 * to search excl | LOCK_USAGE_READ_MASK as well.
2705		 */
2706		excl = exclusive_bit(bit);
2707		excl_read = excl | LOCK_USAGE_READ_MASK;
2708		if (excl_mask & lock_flag(excl)) {
2709			*bitp = bit;
2710			*excl_bitp = excl;
2711			return 0;
2712		} else if (excl_mask & lock_flag(excl_read)) {
2713			*bitp = bit;
2714			*excl_bitp = excl_read;
2715			return 0;
2716		}
2717	}
2718	return -1;
2719}
2720
2721/*
2722 * Prove that the new dependency does not connect a hardirq-safe(-read)
2723 * lock with a hardirq-unsafe lock - to achieve this we search
2724 * the backwards-subgraph starting at <prev>, and the
2725 * forwards-subgraph starting at <next>:
2726 */
2727static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2728			   struct held_lock *next)
2729{
2730	unsigned long usage_mask = 0, forward_mask, backward_mask;
2731	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2732	struct lock_list *target_entry1;
2733	struct lock_list *target_entry;
2734	struct lock_list this, that;
2735	enum bfs_result ret;
2736
2737	/*
2738	 * Step 1: gather all hard/soft IRQs usages backward in an
2739	 * accumulated usage mask.
2740	 */
2741	bfs_init_rootb(&this, prev);
2742
2743	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2744	if (bfs_error(ret)) {
2745		print_bfs_bug(ret);
2746		return 0;
2747	}
2748
2749	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2750	if (!usage_mask)
2751		return 1;
2752
2753	/*
2754	 * Step 2: find exclusive uses forward that match the previous
2755	 * backward accumulated mask.
2756	 */
2757	forward_mask = exclusive_mask(usage_mask);
2758
2759	bfs_init_root(&that, next);
2760
2761	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2762	if (bfs_error(ret)) {
2763		print_bfs_bug(ret);
2764		return 0;
2765	}
2766	if (ret == BFS_RNOMATCH)
2767		return 1;
2768
2769	/*
2770	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2771	 * list whose usage mask matches the exclusive usage mask from the
2772	 * lock found on the forward list.
2773	 *
2774	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2775	 * the follow case:
2776	 *
2777	 * When trying to add A -> B to the graph, we find that there is a
2778	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2779	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2780	 * invert bits of M's usage_mask, we will find another lock N that is
2781	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2782	 * cause a inversion deadlock.
2783	 */
2784	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2785
2786	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2787	if (bfs_error(ret)) {
2788		print_bfs_bug(ret);
2789		return 0;
2790	}
2791	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2792		return 1;
2793
2794	/*
2795	 * Step 4: narrow down to a pair of incompatible usage bits
2796	 * and report it.
2797	 */
2798	ret = find_exclusive_match(target_entry->class->usage_mask,
2799				   target_entry1->class->usage_mask,
2800				   &backward_bit, &forward_bit);
2801	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2802		return 1;
2803
2804	print_bad_irq_dependency(curr, &this, &that,
2805				 target_entry, target_entry1,
2806				 prev, next,
2807				 backward_bit, forward_bit,
2808				 state_name(backward_bit));
2809
2810	return 0;
2811}
2812
2813#else
2814
2815static inline int check_irq_usage(struct task_struct *curr,
2816				  struct held_lock *prev, struct held_lock *next)
2817{
2818	return 1;
2819}
2820
2821static inline bool usage_skip(struct lock_list *entry, void *mask)
2822{
2823	return false;
2824}
2825
2826#endif /* CONFIG_TRACE_IRQFLAGS */
2827
2828#ifdef CONFIG_LOCKDEP_SMALL
2829/*
2830 * Check that the dependency graph starting at <src> can lead to
2831 * <target> or not. If it can, <src> -> <target> dependency is already
2832 * in the graph.
2833 *
2834 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2835 * any error appears in the bfs search.
2836 */
2837static noinline enum bfs_result
2838check_redundant(struct held_lock *src, struct held_lock *target)
2839{
2840	enum bfs_result ret;
2841	struct lock_list *target_entry;
2842	struct lock_list src_entry;
2843
2844	bfs_init_root(&src_entry, src);
2845	/*
2846	 * Special setup for check_redundant().
2847	 *
2848	 * To report redundant, we need to find a strong dependency path that
2849	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2850	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2851	 * we achieve this by setting the initial node's ->only_xr to true in
2852	 * that case. And if <prev> is S, we set initial ->only_xr to false
2853	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2854	 */
2855	src_entry.only_xr = src->read == 0;
2856
2857	debug_atomic_inc(nr_redundant_checks);
2858
2859	/*
2860	 * Note: we skip local_lock() for redundant check, because as the
2861	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2862	 * the same.
2863	 */
2864	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2865
2866	if (ret == BFS_RMATCH)
2867		debug_atomic_inc(nr_redundant);
2868
2869	return ret;
2870}
2871
2872#else
2873
2874static inline enum bfs_result
2875check_redundant(struct held_lock *src, struct held_lock *target)
2876{
2877	return BFS_RNOMATCH;
2878}
2879
2880#endif
2881
2882static void inc_chains(int irq_context)
2883{
2884	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2885		nr_hardirq_chains++;
2886	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2887		nr_softirq_chains++;
2888	else
2889		nr_process_chains++;
2890}
2891
2892static void dec_chains(int irq_context)
2893{
2894	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2895		nr_hardirq_chains--;
2896	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2897		nr_softirq_chains--;
2898	else
2899		nr_process_chains--;
2900}
2901
2902static void
2903print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2904{
2905	struct lock_class *next = hlock_class(nxt);
2906	struct lock_class *prev = hlock_class(prv);
2907
2908	printk(" Possible unsafe locking scenario:\n\n");
2909	printk("       CPU0\n");
2910	printk("       ----\n");
2911	printk("  lock(");
2912	__print_lock_name(prev);
2913	printk(KERN_CONT ");\n");
2914	printk("  lock(");
2915	__print_lock_name(next);
2916	printk(KERN_CONT ");\n");
2917	printk("\n *** DEADLOCK ***\n\n");
2918	printk(" May be due to missing lock nesting notation\n\n");
2919}
2920
2921static void
2922print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2923		   struct held_lock *next)
2924{
2925	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2926		return;
2927
2928	pr_warn("\n");
2929	pr_warn("============================================\n");
2930	pr_warn("WARNING: possible recursive locking detected\n");
2931	print_kernel_ident();
2932	pr_warn("--------------------------------------------\n");
2933	pr_warn("%s/%d is trying to acquire lock:\n",
2934		curr->comm, task_pid_nr(curr));
2935	print_lock(next);
2936	pr_warn("\nbut task is already holding lock:\n");
2937	print_lock(prev);
2938
2939	pr_warn("\nother info that might help us debug this:\n");
2940	print_deadlock_scenario(next, prev);
2941	lockdep_print_held_locks(curr);
2942
2943	pr_warn("\nstack backtrace:\n");
2944	dump_stack();
2945}
2946
2947/*
2948 * Check whether we are holding such a class already.
2949 *
2950 * (Note that this has to be done separately, because the graph cannot
2951 * detect such classes of deadlocks.)
2952 *
2953 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2954 * lock class is held but nest_lock is also held, i.e. we rely on the
2955 * nest_lock to avoid the deadlock.
2956 */
2957static int
2958check_deadlock(struct task_struct *curr, struct held_lock *next)
2959{
2960	struct held_lock *prev;
2961	struct held_lock *nest = NULL;
2962	int i;
2963
2964	for (i = 0; i < curr->lockdep_depth; i++) {
2965		prev = curr->held_locks + i;
2966
2967		if (prev->instance == next->nest_lock)
2968			nest = prev;
2969
2970		if (hlock_class(prev) != hlock_class(next))
2971			continue;
2972
2973		/*
2974		 * Allow read-after-read recursion of the same
2975		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2976		 */
2977		if ((next->read == 2) && prev->read)
2978			continue;
2979
2980		/*
2981		 * We're holding the nest_lock, which serializes this lock's
2982		 * nesting behaviour.
2983		 */
2984		if (nest)
2985			return 2;
2986
2987		print_deadlock_bug(curr, prev, next);
2988		return 0;
2989	}
2990	return 1;
2991}
2992
2993/*
2994 * There was a chain-cache miss, and we are about to add a new dependency
2995 * to a previous lock. We validate the following rules:
2996 *
2997 *  - would the adding of the <prev> -> <next> dependency create a
2998 *    circular dependency in the graph? [== circular deadlock]
2999 *
3000 *  - does the new prev->next dependency connect any hardirq-safe lock
3001 *    (in the full backwards-subgraph starting at <prev>) with any
3002 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3003 *    <next>)? [== illegal lock inversion with hardirq contexts]
3004 *
3005 *  - does the new prev->next dependency connect any softirq-safe lock
3006 *    (in the full backwards-subgraph starting at <prev>) with any
3007 *    softirq-unsafe lock (in the full forwards-subgraph starting at
3008 *    <next>)? [== illegal lock inversion with softirq contexts]
3009 *
3010 * any of these scenarios could lead to a deadlock.
3011 *
3012 * Then if all the validations pass, we add the forwards and backwards
3013 * dependency.
3014 */
3015static int
3016check_prev_add(struct task_struct *curr, struct held_lock *prev,
3017	       struct held_lock *next, u16 distance,
3018	       struct lock_trace **const trace)
3019{
3020	struct lock_list *entry;
3021	enum bfs_result ret;
3022
3023	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3024		/*
3025		 * The warning statements below may trigger a use-after-free
3026		 * of the class name. It is better to trigger a use-after free
3027		 * and to have the class name most of the time instead of not
3028		 * having the class name available.
3029		 */
3030		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3031			  "Detected use-after-free of lock class %px/%s\n",
3032			  hlock_class(prev),
3033			  hlock_class(prev)->name);
3034		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3035			  "Detected use-after-free of lock class %px/%s\n",
3036			  hlock_class(next),
3037			  hlock_class(next)->name);
3038		return 2;
3039	}
3040
3041	/*
3042	 * Prove that the new <prev> -> <next> dependency would not
3043	 * create a circular dependency in the graph. (We do this by
3044	 * a breadth-first search into the graph starting at <next>,
3045	 * and check whether we can reach <prev>.)
3046	 *
3047	 * The search is limited by the size of the circular queue (i.e.,
3048	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3049	 * in the graph whose neighbours are to be checked.
3050	 */
3051	ret = check_noncircular(next, prev, trace);
3052	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3053		return 0;
3054
3055	if (!check_irq_usage(curr, prev, next))
3056		return 0;
3057
3058	/*
3059	 * Is the <prev> -> <next> dependency already present?
3060	 *
3061	 * (this may occur even though this is a new chain: consider
3062	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3063	 *  chains - the second one will be new, but L1 already has
3064	 *  L2 added to its dependency list, due to the first chain.)
3065	 */
3066	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3067		if (entry->class == hlock_class(next)) {
3068			if (distance == 1)
3069				entry->distance = 1;
3070			entry->dep |= calc_dep(prev, next);
3071
3072			/*
3073			 * Also, update the reverse dependency in @next's
3074			 * ->locks_before list.
3075			 *
3076			 *  Here we reuse @entry as the cursor, which is fine
3077			 *  because we won't go to the next iteration of the
3078			 *  outer loop:
3079			 *
3080			 *  For normal cases, we return in the inner loop.
3081			 *
3082			 *  If we fail to return, we have inconsistency, i.e.
3083			 *  <prev>::locks_after contains <next> while
3084			 *  <next>::locks_before doesn't contain <prev>. In
3085			 *  that case, we return after the inner and indicate
3086			 *  something is wrong.
3087			 */
3088			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3089				if (entry->class == hlock_class(prev)) {
3090					if (distance == 1)
3091						entry->distance = 1;
3092					entry->dep |= calc_depb(prev, next);
3093					return 1;
3094				}
3095			}
3096
3097			/* <prev> is not found in <next>::locks_before */
3098			return 0;
3099		}
3100	}
3101
3102	/*
3103	 * Is the <prev> -> <next> link redundant?
3104	 */
3105	ret = check_redundant(prev, next);
3106	if (bfs_error(ret))
3107		return 0;
3108	else if (ret == BFS_RMATCH)
3109		return 2;
3110
3111	if (!*trace) {
3112		*trace = save_trace();
3113		if (!*trace)
3114			return 0;
3115	}
3116
3117	/*
3118	 * Ok, all validations passed, add the new lock
3119	 * to the previous lock's dependency list:
3120	 */
3121	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3122			       &hlock_class(prev)->locks_after,
3123			       next->acquire_ip, distance,
3124			       calc_dep(prev, next),
3125			       *trace);
3126
3127	if (!ret)
3128		return 0;
3129
3130	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131			       &hlock_class(next)->locks_before,
3132			       next->acquire_ip, distance,
3133			       calc_depb(prev, next),
3134			       *trace);
3135	if (!ret)
3136		return 0;
3137
3138	return 2;
3139}
3140
3141/*
3142 * Add the dependency to all directly-previous locks that are 'relevant'.
3143 * The ones that are relevant are (in increasing distance from curr):
3144 * all consecutive trylock entries and the final non-trylock entry - or
3145 * the end of this context's lock-chain - whichever comes first.
3146 */
3147static int
3148check_prevs_add(struct task_struct *curr, struct held_lock *next)
3149{
3150	struct lock_trace *trace = NULL;
3151	int depth = curr->lockdep_depth;
3152	struct held_lock *hlock;
3153
3154	/*
3155	 * Debugging checks.
3156	 *
3157	 * Depth must not be zero for a non-head lock:
3158	 */
3159	if (!depth)
3160		goto out_bug;
3161	/*
3162	 * At least two relevant locks must exist for this
3163	 * to be a head:
3164	 */
3165	if (curr->held_locks[depth].irq_context !=
3166			curr->held_locks[depth-1].irq_context)
3167		goto out_bug;
3168
3169	for (;;) {
3170		u16 distance = curr->lockdep_depth - depth + 1;
3171		hlock = curr->held_locks + depth - 1;
3172
3173		if (hlock->check) {
3174			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3175			if (!ret)
3176				return 0;
3177
3178			/*
3179			 * Stop after the first non-trylock entry,
3180			 * as non-trylock entries have added their
3181			 * own direct dependencies already, so this
3182			 * lock is connected to them indirectly:
3183			 */
3184			if (!hlock->trylock)
3185				break;
3186		}
3187
3188		depth--;
3189		/*
3190		 * End of lock-stack?
3191		 */
3192		if (!depth)
3193			break;
3194		/*
3195		 * Stop the search if we cross into another context:
3196		 */
3197		if (curr->held_locks[depth].irq_context !=
3198				curr->held_locks[depth-1].irq_context)
3199			break;
3200	}
3201	return 1;
3202out_bug:
3203	if (!debug_locks_off_graph_unlock())
3204		return 0;
3205
3206	/*
3207	 * Clearly we all shouldn't be here, but since we made it we
3208	 * can reliable say we messed up our state. See the above two
3209	 * gotos for reasons why we could possibly end up here.
3210	 */
3211	WARN_ON(1);
3212
3213	return 0;
3214}
3215
3216struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3217static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3218static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3219unsigned long nr_zapped_lock_chains;
3220unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3221unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3222unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3223
3224/*
3225 * The first 2 chain_hlocks entries in the chain block in the bucket
3226 * list contains the following meta data:
3227 *
3228 *   entry[0]:
3229 *     Bit    15 - always set to 1 (it is not a class index)
3230 *     Bits 0-14 - upper 15 bits of the next block index
3231 *   entry[1]    - lower 16 bits of next block index
3232 *
3233 * A next block index of all 1 bits means it is the end of the list.
3234 *
3235 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3236 * the chain block size:
3237 *
3238 *   entry[2] - upper 16 bits of the chain block size
3239 *   entry[3] - lower 16 bits of the chain block size
3240 */
3241#define MAX_CHAIN_BUCKETS	16
3242#define CHAIN_BLK_FLAG		(1U << 15)
3243#define CHAIN_BLK_LIST_END	0xFFFFU
3244
3245static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3246
3247static inline int size_to_bucket(int size)
3248{
3249	if (size > MAX_CHAIN_BUCKETS)
3250		return 0;
3251
3252	return size - 1;
3253}
3254
3255/*
3256 * Iterate all the chain blocks in a bucket.
3257 */
3258#define for_each_chain_block(bucket, prev, curr)		\
3259	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3260	     (curr) >= 0;					\
3261	     (prev) = (curr), (curr) = chain_block_next(curr))
3262
3263/*
3264 * next block or -1
3265 */
3266static inline int chain_block_next(int offset)
3267{
3268	int next = chain_hlocks[offset];
3269
3270	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3271
3272	if (next == CHAIN_BLK_LIST_END)
3273		return -1;
3274
3275	next &= ~CHAIN_BLK_FLAG;
3276	next <<= 16;
3277	next |= chain_hlocks[offset + 1];
3278
3279	return next;
3280}
3281
3282/*
3283 * bucket-0 only
3284 */
3285static inline int chain_block_size(int offset)
3286{
3287	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3288}
3289
3290static inline void init_chain_block(int offset, int next, int bucket, int size)
3291{
3292	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3293	chain_hlocks[offset + 1] = (u16)next;
3294
3295	if (size && !bucket) {
3296		chain_hlocks[offset + 2] = size >> 16;
3297		chain_hlocks[offset + 3] = (u16)size;
3298	}
3299}
3300
3301static inline void add_chain_block(int offset, int size)
3302{
3303	int bucket = size_to_bucket(size);
3304	int next = chain_block_buckets[bucket];
3305	int prev, curr;
3306
3307	if (unlikely(size < 2)) {
3308		/*
3309		 * We can't store single entries on the freelist. Leak them.
3310		 *
3311		 * One possible way out would be to uniquely mark them, other
3312		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3313		 * the block before it is re-added.
3314		 */
3315		if (size)
3316			nr_lost_chain_hlocks++;
3317		return;
3318	}
3319
3320	nr_free_chain_hlocks += size;
3321	if (!bucket) {
3322		nr_large_chain_blocks++;
3323
3324		/*
3325		 * Variable sized, sort large to small.
3326		 */
3327		for_each_chain_block(0, prev, curr) {
3328			if (size >= chain_block_size(curr))
3329				break;
3330		}
3331		init_chain_block(offset, curr, 0, size);
3332		if (prev < 0)
3333			chain_block_buckets[0] = offset;
3334		else
3335			init_chain_block(prev, offset, 0, 0);
3336		return;
3337	}
3338	/*
3339	 * Fixed size, add to head.
3340	 */
3341	init_chain_block(offset, next, bucket, size);
3342	chain_block_buckets[bucket] = offset;
3343}
3344
3345/*
3346 * Only the first block in the list can be deleted.
3347 *
3348 * For the variable size bucket[0], the first block (the largest one) is
3349 * returned, broken up and put back into the pool. So if a chain block of
3350 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3351 * queued up after the primordial chain block and never be used until the
3352 * hlock entries in the primordial chain block is almost used up. That
3353 * causes fragmentation and reduce allocation efficiency. That can be
3354 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3355 */
3356static inline void del_chain_block(int bucket, int size, int next)
3357{
3358	nr_free_chain_hlocks -= size;
3359	chain_block_buckets[bucket] = next;
3360
3361	if (!bucket)
3362		nr_large_chain_blocks--;
3363}
3364
3365static void init_chain_block_buckets(void)
3366{
3367	int i;
3368
3369	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3370		chain_block_buckets[i] = -1;
3371
3372	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3373}
3374
3375/*
3376 * Return offset of a chain block of the right size or -1 if not found.
3377 *
3378 * Fairly simple worst-fit allocator with the addition of a number of size
3379 * specific free lists.
3380 */
3381static int alloc_chain_hlocks(int req)
3382{
3383	int bucket, curr, size;
3384
3385	/*
3386	 * We rely on the MSB to act as an escape bit to denote freelist
3387	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3388	 */
3389	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3390
3391	init_data_structures_once();
3392
3393	if (nr_free_chain_hlocks < req)
3394		return -1;
3395
3396	/*
3397	 * We require a minimum of 2 (u16) entries to encode a freelist
3398	 * 'pointer'.
3399	 */
3400	req = max(req, 2);
3401	bucket = size_to_bucket(req);
3402	curr = chain_block_buckets[bucket];
3403
3404	if (bucket) {
3405		if (curr >= 0) {
3406			del_chain_block(bucket, req, chain_block_next(curr));
3407			return curr;
3408		}
3409		/* Try bucket 0 */
3410		curr = chain_block_buckets[0];
3411	}
3412
3413	/*
3414	 * The variable sized freelist is sorted by size; the first entry is
3415	 * the largest. Use it if it fits.
3416	 */
3417	if (curr >= 0) {
3418		size = chain_block_size(curr);
3419		if (likely(size >= req)) {
3420			del_chain_block(0, size, chain_block_next(curr));
3421			add_chain_block(curr + req, size - req);
3422			return curr;
3423		}
3424	}
3425
3426	/*
3427	 * Last resort, split a block in a larger sized bucket.
3428	 */
3429	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3430		bucket = size_to_bucket(size);
3431		curr = chain_block_buckets[bucket];
3432		if (curr < 0)
3433			continue;
3434
3435		del_chain_block(bucket, size, chain_block_next(curr));
3436		add_chain_block(curr + req, size - req);
3437		return curr;
3438	}
3439
3440	return -1;
3441}
3442
3443static inline void free_chain_hlocks(int base, int size)
3444{
3445	add_chain_block(base, max(size, 2));
3446}
3447
3448struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3449{
3450	u16 chain_hlock = chain_hlocks[chain->base + i];
3451	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3452
3453	return lock_classes + class_idx - 1;
3454}
3455
3456/*
3457 * Returns the index of the first held_lock of the current chain
3458 */
3459static inline int get_first_held_lock(struct task_struct *curr,
3460					struct held_lock *hlock)
3461{
3462	int i;
3463	struct held_lock *hlock_curr;
3464
3465	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3466		hlock_curr = curr->held_locks + i;
3467		if (hlock_curr->irq_context != hlock->irq_context)
3468			break;
3469
3470	}
3471
3472	return ++i;
3473}
3474
3475#ifdef CONFIG_DEBUG_LOCKDEP
3476/*
3477 * Returns the next chain_key iteration
3478 */
3479static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3480{
3481	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3482
3483	printk(" hlock_id:%d -> chain_key:%016Lx",
3484		(unsigned int)hlock_id,
3485		(unsigned long long)new_chain_key);
3486	return new_chain_key;
3487}
3488
3489static void
3490print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3491{
3492	struct held_lock *hlock;
3493	u64 chain_key = INITIAL_CHAIN_KEY;
3494	int depth = curr->lockdep_depth;
3495	int i = get_first_held_lock(curr, hlock_next);
3496
3497	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3498		hlock_next->irq_context);
3499	for (; i < depth; i++) {
3500		hlock = curr->held_locks + i;
3501		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3502
3503		print_lock(hlock);
3504	}
3505
3506	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3507	print_lock(hlock_next);
3508}
3509
3510static void print_chain_keys_chain(struct lock_chain *chain)
3511{
3512	int i;
3513	u64 chain_key = INITIAL_CHAIN_KEY;
3514	u16 hlock_id;
3515
3516	printk("depth: %u\n", chain->depth);
3517	for (i = 0; i < chain->depth; i++) {
3518		hlock_id = chain_hlocks[chain->base + i];
3519		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3520
3521		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3522		printk("\n");
3523	}
3524}
3525
3526static void print_collision(struct task_struct *curr,
3527			struct held_lock *hlock_next,
3528			struct lock_chain *chain)
3529{
3530	pr_warn("\n");
3531	pr_warn("============================\n");
3532	pr_warn("WARNING: chain_key collision\n");
3533	print_kernel_ident();
3534	pr_warn("----------------------------\n");
3535	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3536	pr_warn("Hash chain already cached but the contents don't match!\n");
3537
3538	pr_warn("Held locks:");
3539	print_chain_keys_held_locks(curr, hlock_next);
3540
3541	pr_warn("Locks in cached chain:");
3542	print_chain_keys_chain(chain);
3543
3544	pr_warn("\nstack backtrace:\n");
3545	dump_stack();
3546}
3547#endif
3548
3549/*
3550 * Checks whether the chain and the current held locks are consistent
3551 * in depth and also in content. If they are not it most likely means
3552 * that there was a collision during the calculation of the chain_key.
3553 * Returns: 0 not passed, 1 passed
3554 */
3555static int check_no_collision(struct task_struct *curr,
3556			struct held_lock *hlock,
3557			struct lock_chain *chain)
3558{
3559#ifdef CONFIG_DEBUG_LOCKDEP
3560	int i, j, id;
3561
3562	i = get_first_held_lock(curr, hlock);
3563
3564	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3565		print_collision(curr, hlock, chain);
3566		return 0;
3567	}
3568
3569	for (j = 0; j < chain->depth - 1; j++, i++) {
3570		id = hlock_id(&curr->held_locks[i]);
3571
3572		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3573			print_collision(curr, hlock, chain);
3574			return 0;
3575		}
3576	}
3577#endif
3578	return 1;
3579}
3580
3581/*
3582 * Given an index that is >= -1, return the index of the next lock chain.
3583 * Return -2 if there is no next lock chain.
3584 */
3585long lockdep_next_lockchain(long i)
3586{
3587	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3588	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3589}
3590
3591unsigned long lock_chain_count(void)
3592{
3593	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3594}
3595
3596/* Must be called with the graph lock held. */
3597static struct lock_chain *alloc_lock_chain(void)
3598{
3599	int idx = find_first_zero_bit(lock_chains_in_use,
3600				      ARRAY_SIZE(lock_chains));
3601
3602	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3603		return NULL;
3604	__set_bit(idx, lock_chains_in_use);
3605	return lock_chains + idx;
3606}
3607
3608/*
3609 * Adds a dependency chain into chain hashtable. And must be called with
3610 * graph_lock held.
3611 *
3612 * Return 0 if fail, and graph_lock is released.
3613 * Return 1 if succeed, with graph_lock held.
3614 */
3615static inline int add_chain_cache(struct task_struct *curr,
3616				  struct held_lock *hlock,
3617				  u64 chain_key)
3618{
3619	struct hlist_head *hash_head = chainhashentry(chain_key);
3620	struct lock_chain *chain;
3621	int i, j;
3622
3623	/*
3624	 * The caller must hold the graph lock, ensure we've got IRQs
3625	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3626	 * lockdep won't complain about its own locking errors.
3627	 */
3628	if (lockdep_assert_locked())
3629		return 0;
3630
3631	chain = alloc_lock_chain();
3632	if (!chain) {
3633		if (!debug_locks_off_graph_unlock())
3634			return 0;
3635
3636		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3637		dump_stack();
3638		return 0;
3639	}
3640	chain->chain_key = chain_key;
3641	chain->irq_context = hlock->irq_context;
3642	i = get_first_held_lock(curr, hlock);
3643	chain->depth = curr->lockdep_depth + 1 - i;
3644
3645	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3646	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3647	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3648
3649	j = alloc_chain_hlocks(chain->depth);
3650	if (j < 0) {
3651		if (!debug_locks_off_graph_unlock())
3652			return 0;
3653
3654		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3655		dump_stack();
3656		return 0;
3657	}
3658
3659	chain->base = j;
3660	for (j = 0; j < chain->depth - 1; j++, i++) {
3661		int lock_id = hlock_id(curr->held_locks + i);
3662
3663		chain_hlocks[chain->base + j] = lock_id;
3664	}
3665	chain_hlocks[chain->base + j] = hlock_id(hlock);
3666	hlist_add_head_rcu(&chain->entry, hash_head);
3667	debug_atomic_inc(chain_lookup_misses);
3668	inc_chains(chain->irq_context);
3669
3670	return 1;
3671}
3672
3673/*
3674 * Look up a dependency chain. Must be called with either the graph lock or
3675 * the RCU read lock held.
3676 */
3677static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3678{
3679	struct hlist_head *hash_head = chainhashentry(chain_key);
3680	struct lock_chain *chain;
3681
3682	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3683		if (READ_ONCE(chain->chain_key) == chain_key) {
3684			debug_atomic_inc(chain_lookup_hits);
3685			return chain;
3686		}
3687	}
3688	return NULL;
3689}
3690
3691/*
3692 * If the key is not present yet in dependency chain cache then
3693 * add it and return 1 - in this case the new dependency chain is
3694 * validated. If the key is already hashed, return 0.
3695 * (On return with 1 graph_lock is held.)
3696 */
3697static inline int lookup_chain_cache_add(struct task_struct *curr,
3698					 struct held_lock *hlock,
3699					 u64 chain_key)
3700{
3701	struct lock_class *class = hlock_class(hlock);
3702	struct lock_chain *chain = lookup_chain_cache(chain_key);
3703
3704	if (chain) {
3705cache_hit:
3706		if (!check_no_collision(curr, hlock, chain))
3707			return 0;
3708
3709		if (very_verbose(class)) {
3710			printk("\nhash chain already cached, key: "
3711					"%016Lx tail class: [%px] %s\n",
3712					(unsigned long long)chain_key,
3713					class->key, class->name);
3714		}
3715
3716		return 0;
3717	}
3718
3719	if (very_verbose(class)) {
3720		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3721			(unsigned long long)chain_key, class->key, class->name);
3722	}
3723
3724	if (!graph_lock())
3725		return 0;
3726
3727	/*
3728	 * We have to walk the chain again locked - to avoid duplicates:
3729	 */
3730	chain = lookup_chain_cache(chain_key);
3731	if (chain) {
3732		graph_unlock();
3733		goto cache_hit;
3734	}
3735
3736	if (!add_chain_cache(curr, hlock, chain_key))
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int validate_chain(struct task_struct *curr,
3743			  struct held_lock *hlock,
3744			  int chain_head, u64 chain_key)
3745{
3746	/*
3747	 * Trylock needs to maintain the stack of held locks, but it
3748	 * does not add new dependencies, because trylock can be done
3749	 * in any order.
3750	 *
3751	 * We look up the chain_key and do the O(N^2) check and update of
3752	 * the dependencies only if this is a new dependency chain.
3753	 * (If lookup_chain_cache_add() return with 1 it acquires
3754	 * graph_lock for us)
3755	 */
3756	if (!hlock->trylock && hlock->check &&
3757	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3758		/*
3759		 * Check whether last held lock:
3760		 *
3761		 * - is irq-safe, if this lock is irq-unsafe
3762		 * - is softirq-safe, if this lock is hardirq-unsafe
3763		 *
3764		 * And check whether the new lock's dependency graph
3765		 * could lead back to the previous lock:
3766		 *
3767		 * - within the current held-lock stack
3768		 * - across our accumulated lock dependency records
3769		 *
3770		 * any of these scenarios could lead to a deadlock.
3771		 */
3772		/*
3773		 * The simple case: does the current hold the same lock
3774		 * already?
3775		 */
3776		int ret = check_deadlock(curr, hlock);
3777
3778		if (!ret)
3779			return 0;
3780		/*
3781		 * Add dependency only if this lock is not the head
3782		 * of the chain, and if the new lock introduces no more
3783		 * lock dependency (because we already hold a lock with the
3784		 * same lock class) nor deadlock (because the nest_lock
3785		 * serializes nesting locks), see the comments for
3786		 * check_deadlock().
3787		 */
3788		if (!chain_head && ret != 2) {
3789			if (!check_prevs_add(curr, hlock))
3790				return 0;
3791		}
3792
3793		graph_unlock();
3794	} else {
3795		/* after lookup_chain_cache_add(): */
3796		if (unlikely(!debug_locks))
3797			return 0;
3798	}
3799
3800	return 1;
3801}
3802#else
3803static inline int validate_chain(struct task_struct *curr,
3804				 struct held_lock *hlock,
3805				 int chain_head, u64 chain_key)
3806{
3807	return 1;
3808}
3809
3810static void init_chain_block_buckets(void)	{ }
3811#endif /* CONFIG_PROVE_LOCKING */
3812
3813/*
3814 * We are building curr_chain_key incrementally, so double-check
3815 * it from scratch, to make sure that it's done correctly:
3816 */
3817static void check_chain_key(struct task_struct *curr)
3818{
3819#ifdef CONFIG_DEBUG_LOCKDEP
3820	struct held_lock *hlock, *prev_hlock = NULL;
3821	unsigned int i;
3822	u64 chain_key = INITIAL_CHAIN_KEY;
3823
3824	for (i = 0; i < curr->lockdep_depth; i++) {
3825		hlock = curr->held_locks + i;
3826		if (chain_key != hlock->prev_chain_key) {
3827			debug_locks_off();
3828			/*
3829			 * We got mighty confused, our chain keys don't match
3830			 * with what we expect, someone trample on our task state?
3831			 */
3832			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3833				curr->lockdep_depth, i,
3834				(unsigned long long)chain_key,
3835				(unsigned long long)hlock->prev_chain_key);
3836			return;
3837		}
3838
3839		/*
3840		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3841		 * it registered lock class index?
3842		 */
3843		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3844			return;
3845
3846		if (prev_hlock && (prev_hlock->irq_context !=
3847							hlock->irq_context))
3848			chain_key = INITIAL_CHAIN_KEY;
3849		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3850		prev_hlock = hlock;
3851	}
3852	if (chain_key != curr->curr_chain_key) {
3853		debug_locks_off();
3854		/*
3855		 * More smoking hash instead of calculating it, damn see these
3856		 * numbers float.. I bet that a pink elephant stepped on my memory.
3857		 */
3858		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3859			curr->lockdep_depth, i,
3860			(unsigned long long)chain_key,
3861			(unsigned long long)curr->curr_chain_key);
3862	}
3863#endif
3864}
3865
3866#ifdef CONFIG_PROVE_LOCKING
3867static int mark_lock(struct task_struct *curr, struct held_lock *this,
3868		     enum lock_usage_bit new_bit);
3869
3870static void print_usage_bug_scenario(struct held_lock *lock)
3871{
3872	struct lock_class *class = hlock_class(lock);
3873
3874	printk(" Possible unsafe locking scenario:\n\n");
3875	printk("       CPU0\n");
3876	printk("       ----\n");
3877	printk("  lock(");
3878	__print_lock_name(class);
3879	printk(KERN_CONT ");\n");
3880	printk("  <Interrupt>\n");
3881	printk("    lock(");
3882	__print_lock_name(class);
3883	printk(KERN_CONT ");\n");
3884	printk("\n *** DEADLOCK ***\n\n");
3885}
3886
3887static void
3888print_usage_bug(struct task_struct *curr, struct held_lock *this,
3889		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3890{
3891	if (!debug_locks_off() || debug_locks_silent)
3892		return;
3893
3894	pr_warn("\n");
3895	pr_warn("================================\n");
3896	pr_warn("WARNING: inconsistent lock state\n");
3897	print_kernel_ident();
3898	pr_warn("--------------------------------\n");
3899
3900	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3901		usage_str[prev_bit], usage_str[new_bit]);
3902
3903	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3904		curr->comm, task_pid_nr(curr),
3905		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3906		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3907		lockdep_hardirqs_enabled(),
3908		lockdep_softirqs_enabled(curr));
3909	print_lock(this);
3910
3911	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3912	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3913
3914	print_irqtrace_events(curr);
3915	pr_warn("\nother info that might help us debug this:\n");
3916	print_usage_bug_scenario(this);
3917
3918	lockdep_print_held_locks(curr);
3919
3920	pr_warn("\nstack backtrace:\n");
3921	dump_stack();
3922}
3923
3924/*
3925 * Print out an error if an invalid bit is set:
3926 */
3927static inline int
3928valid_state(struct task_struct *curr, struct held_lock *this,
3929	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3930{
3931	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3932		graph_unlock();
3933		print_usage_bug(curr, this, bad_bit, new_bit);
3934		return 0;
3935	}
3936	return 1;
3937}
3938
3939
3940/*
3941 * print irq inversion bug:
3942 */
3943static void
3944print_irq_inversion_bug(struct task_struct *curr,
3945			struct lock_list *root, struct lock_list *other,
3946			struct held_lock *this, int forwards,
3947			const char *irqclass)
3948{
3949	struct lock_list *entry = other;
3950	struct lock_list *middle = NULL;
3951	int depth;
3952
3953	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3954		return;
3955
3956	pr_warn("\n");
3957	pr_warn("========================================================\n");
3958	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3959	print_kernel_ident();
3960	pr_warn("--------------------------------------------------------\n");
3961	pr_warn("%s/%d just changed the state of lock:\n",
3962		curr->comm, task_pid_nr(curr));
3963	print_lock(this);
3964	if (forwards)
3965		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3966	else
3967		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3968	print_lock_name(other->class);
3969	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3970
3971	pr_warn("\nother info that might help us debug this:\n");
3972
3973	/* Find a middle lock (if one exists) */
3974	depth = get_lock_depth(other);
3975	do {
3976		if (depth == 0 && (entry != root)) {
3977			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3978			break;
3979		}
3980		middle = entry;
3981		entry = get_lock_parent(entry);
3982		depth--;
3983	} while (entry && entry != root && (depth >= 0));
3984	if (forwards)
3985		print_irq_lock_scenario(root, other,
3986			middle ? middle->class : root->class, other->class);
3987	else
3988		print_irq_lock_scenario(other, root,
3989			middle ? middle->class : other->class, root->class);
3990
3991	lockdep_print_held_locks(curr);
3992
3993	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3994	root->trace = save_trace();
3995	if (!root->trace)
3996		return;
3997	print_shortest_lock_dependencies(other, root);
3998
3999	pr_warn("\nstack backtrace:\n");
4000	dump_stack();
4001}
4002
4003/*
4004 * Prove that in the forwards-direction subgraph starting at <this>
4005 * there is no lock matching <mask>:
4006 */
4007static int
4008check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4009		     enum lock_usage_bit bit)
4010{
4011	enum bfs_result ret;
4012	struct lock_list root;
4013	struct lock_list *target_entry;
4014	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4015	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4016
4017	bfs_init_root(&root, this);
4018	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4019	if (bfs_error(ret)) {
4020		print_bfs_bug(ret);
4021		return 0;
4022	}
4023	if (ret == BFS_RNOMATCH)
4024		return 1;
4025
4026	/* Check whether write or read usage is the match */
4027	if (target_entry->class->usage_mask & lock_flag(bit)) {
4028		print_irq_inversion_bug(curr, &root, target_entry,
4029					this, 1, state_name(bit));
4030	} else {
4031		print_irq_inversion_bug(curr, &root, target_entry,
4032					this, 1, state_name(read_bit));
4033	}
4034
4035	return 0;
4036}
4037
4038/*
4039 * Prove that in the backwards-direction subgraph starting at <this>
4040 * there is no lock matching <mask>:
4041 */
4042static int
4043check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4044		      enum lock_usage_bit bit)
4045{
4046	enum bfs_result ret;
4047	struct lock_list root;
4048	struct lock_list *target_entry;
4049	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4050	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4051
4052	bfs_init_rootb(&root, this);
4053	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4054	if (bfs_error(ret)) {
4055		print_bfs_bug(ret);
4056		return 0;
4057	}
4058	if (ret == BFS_RNOMATCH)
4059		return 1;
4060
4061	/* Check whether write or read usage is the match */
4062	if (target_entry->class->usage_mask & lock_flag(bit)) {
4063		print_irq_inversion_bug(curr, &root, target_entry,
4064					this, 0, state_name(bit));
4065	} else {
4066		print_irq_inversion_bug(curr, &root, target_entry,
4067					this, 0, state_name(read_bit));
4068	}
4069
4070	return 0;
4071}
4072
4073void print_irqtrace_events(struct task_struct *curr)
4074{
4075	const struct irqtrace_events *trace = &curr->irqtrace;
4076
4077	printk("irq event stamp: %u\n", trace->irq_events);
4078	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4079		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4080		(void *)trace->hardirq_enable_ip);
4081	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4082		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4083		(void *)trace->hardirq_disable_ip);
4084	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4085		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4086		(void *)trace->softirq_enable_ip);
4087	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4088		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4089		(void *)trace->softirq_disable_ip);
4090}
4091
4092static int HARDIRQ_verbose(struct lock_class *class)
4093{
4094#if HARDIRQ_VERBOSE
4095	return class_filter(class);
4096#endif
4097	return 0;
4098}
4099
4100static int SOFTIRQ_verbose(struct lock_class *class)
4101{
4102#if SOFTIRQ_VERBOSE
4103	return class_filter(class);
4104#endif
4105	return 0;
4106}
4107
4108static int (*state_verbose_f[])(struct lock_class *class) = {
4109#define LOCKDEP_STATE(__STATE) \
4110	__STATE##_verbose,
4111#include "lockdep_states.h"
4112#undef LOCKDEP_STATE
4113};
4114
4115static inline int state_verbose(enum lock_usage_bit bit,
4116				struct lock_class *class)
4117{
4118	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4119}
4120
4121typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4122			     enum lock_usage_bit bit, const char *name);
4123
4124static int
4125mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4126		enum lock_usage_bit new_bit)
4127{
4128	int excl_bit = exclusive_bit(new_bit);
4129	int read = new_bit & LOCK_USAGE_READ_MASK;
4130	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4131
4132	/*
4133	 * Validate that this particular lock does not have conflicting
4134	 * usage states.
4135	 */
4136	if (!valid_state(curr, this, new_bit, excl_bit))
4137		return 0;
4138
4139	/*
4140	 * Check for read in write conflicts
4141	 */
4142	if (!read && !valid_state(curr, this, new_bit,
4143				  excl_bit + LOCK_USAGE_READ_MASK))
4144		return 0;
4145
4146
4147	/*
4148	 * Validate that the lock dependencies don't have conflicting usage
4149	 * states.
4150	 */
4151	if (dir) {
4152		/*
4153		 * mark ENABLED has to look backwards -- to ensure no dependee
4154		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4155		 */
4156		if (!check_usage_backwards(curr, this, excl_bit))
4157			return 0;
4158	} else {
4159		/*
4160		 * mark USED_IN has to look forwards -- to ensure no dependency
4161		 * has ENABLED state, which would allow recursion deadlocks.
4162		 */
4163		if (!check_usage_forwards(curr, this, excl_bit))
4164			return 0;
4165	}
4166
4167	if (state_verbose(new_bit, hlock_class(this)))
4168		return 2;
4169
4170	return 1;
4171}
4172
4173/*
4174 * Mark all held locks with a usage bit:
4175 */
4176static int
4177mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4178{
4179	struct held_lock *hlock;
4180	int i;
4181
4182	for (i = 0; i < curr->lockdep_depth; i++) {
4183		enum lock_usage_bit hlock_bit = base_bit;
4184		hlock = curr->held_locks + i;
4185
4186		if (hlock->read)
4187			hlock_bit += LOCK_USAGE_READ_MASK;
4188
4189		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4190
4191		if (!hlock->check)
4192			continue;
4193
4194		if (!mark_lock(curr, hlock, hlock_bit))
4195			return 0;
4196	}
4197
4198	return 1;
4199}
4200
4201/*
4202 * Hardirqs will be enabled:
4203 */
4204static void __trace_hardirqs_on_caller(void)
4205{
4206	struct task_struct *curr = current;
4207
4208	/*
4209	 * We are going to turn hardirqs on, so set the
4210	 * usage bit for all held locks:
4211	 */
4212	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4213		return;
4214	/*
4215	 * If we have softirqs enabled, then set the usage
4216	 * bit for all held locks. (disabled hardirqs prevented
4217	 * this bit from being set before)
4218	 */
4219	if (curr->softirqs_enabled)
4220		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4221}
4222
4223/**
4224 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4225 * @ip:		Caller address
4226 *
4227 * Invoked before a possible transition to RCU idle from exit to user or
4228 * guest mode. This ensures that all RCU operations are done before RCU
4229 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4230 * invoked to set the final state.
4231 */
4232void lockdep_hardirqs_on_prepare(unsigned long ip)
4233{
4234	if (unlikely(!debug_locks))
4235		return;
4236
4237	/*
4238	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4239	 */
4240	if (unlikely(in_nmi()))
4241		return;
4242
4243	if (unlikely(this_cpu_read(lockdep_recursion)))
4244		return;
4245
4246	if (unlikely(lockdep_hardirqs_enabled())) {
4247		/*
4248		 * Neither irq nor preemption are disabled here
4249		 * so this is racy by nature but losing one hit
4250		 * in a stat is not a big deal.
4251		 */
4252		__debug_atomic_inc(redundant_hardirqs_on);
4253		return;
4254	}
4255
4256	/*
4257	 * We're enabling irqs and according to our state above irqs weren't
4258	 * already enabled, yet we find the hardware thinks they are in fact
4259	 * enabled.. someone messed up their IRQ state tracing.
4260	 */
4261	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262		return;
4263
4264	/*
4265	 * See the fine text that goes along with this variable definition.
4266	 */
4267	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4268		return;
4269
4270	/*
4271	 * Can't allow enabling interrupts while in an interrupt handler,
4272	 * that's general bad form and such. Recursion, limited stack etc..
4273	 */
4274	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4275		return;
4276
4277	current->hardirq_chain_key = current->curr_chain_key;
4278
4279	lockdep_recursion_inc();
4280	__trace_hardirqs_on_caller();
4281	lockdep_recursion_finish();
4282}
4283EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4284
4285void noinstr lockdep_hardirqs_on(unsigned long ip)
4286{
4287	struct irqtrace_events *trace = &current->irqtrace;
4288
4289	if (unlikely(!debug_locks))
4290		return;
4291
4292	/*
4293	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4294	 * tracking state and hardware state are out of sync.
4295	 *
4296	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4297	 * and not rely on hardware state like normal interrupts.
4298	 */
4299	if (unlikely(in_nmi())) {
4300		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4301			return;
4302
4303		/*
4304		 * Skip:
4305		 *  - recursion check, because NMI can hit lockdep;
4306		 *  - hardware state check, because above;
4307		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4308		 */
4309		goto skip_checks;
4310	}
4311
4312	if (unlikely(this_cpu_read(lockdep_recursion)))
4313		return;
4314
4315	if (lockdep_hardirqs_enabled()) {
4316		/*
4317		 * Neither irq nor preemption are disabled here
4318		 * so this is racy by nature but losing one hit
4319		 * in a stat is not a big deal.
4320		 */
4321		__debug_atomic_inc(redundant_hardirqs_on);
4322		return;
4323	}
4324
4325	/*
4326	 * We're enabling irqs and according to our state above irqs weren't
4327	 * already enabled, yet we find the hardware thinks they are in fact
4328	 * enabled.. someone messed up their IRQ state tracing.
4329	 */
4330	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4331		return;
4332
4333	/*
4334	 * Ensure the lock stack remained unchanged between
4335	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4336	 */
4337	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4338			    current->curr_chain_key);
4339
4340skip_checks:
4341	/* we'll do an OFF -> ON transition: */
4342	__this_cpu_write(hardirqs_enabled, 1);
4343	trace->hardirq_enable_ip = ip;
4344	trace->hardirq_enable_event = ++trace->irq_events;
4345	debug_atomic_inc(hardirqs_on_events);
4346}
4347EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4348
4349/*
4350 * Hardirqs were disabled:
4351 */
4352void noinstr lockdep_hardirqs_off(unsigned long ip)
4353{
4354	if (unlikely(!debug_locks))
4355		return;
4356
4357	/*
4358	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4359	 * they will restore the software state. This ensures the software
4360	 * state is consistent inside NMIs as well.
4361	 */
4362	if (in_nmi()) {
4363		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4364			return;
4365	} else if (__this_cpu_read(lockdep_recursion))
4366		return;
4367
4368	/*
4369	 * So we're supposed to get called after you mask local IRQs, but for
4370	 * some reason the hardware doesn't quite think you did a proper job.
4371	 */
4372	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4373		return;
4374
4375	if (lockdep_hardirqs_enabled()) {
4376		struct irqtrace_events *trace = &current->irqtrace;
4377
4378		/*
4379		 * We have done an ON -> OFF transition:
4380		 */
4381		__this_cpu_write(hardirqs_enabled, 0);
4382		trace->hardirq_disable_ip = ip;
4383		trace->hardirq_disable_event = ++trace->irq_events;
4384		debug_atomic_inc(hardirqs_off_events);
4385	} else {
4386		debug_atomic_inc(redundant_hardirqs_off);
4387	}
4388}
4389EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4390
4391/*
4392 * Softirqs will be enabled:
4393 */
4394void lockdep_softirqs_on(unsigned long ip)
4395{
4396	struct irqtrace_events *trace = &current->irqtrace;
4397
4398	if (unlikely(!lockdep_enabled()))
4399		return;
4400
4401	/*
4402	 * We fancy IRQs being disabled here, see softirq.c, avoids
4403	 * funny state and nesting things.
4404	 */
4405	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4406		return;
4407
4408	if (current->softirqs_enabled) {
4409		debug_atomic_inc(redundant_softirqs_on);
4410		return;
4411	}
4412
4413	lockdep_recursion_inc();
4414	/*
4415	 * We'll do an OFF -> ON transition:
4416	 */
4417	current->softirqs_enabled = 1;
4418	trace->softirq_enable_ip = ip;
4419	trace->softirq_enable_event = ++trace->irq_events;
4420	debug_atomic_inc(softirqs_on_events);
4421	/*
4422	 * We are going to turn softirqs on, so set the
4423	 * usage bit for all held locks, if hardirqs are
4424	 * enabled too:
4425	 */
4426	if (lockdep_hardirqs_enabled())
4427		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4428	lockdep_recursion_finish();
4429}
4430
4431/*
4432 * Softirqs were disabled:
4433 */
4434void lockdep_softirqs_off(unsigned long ip)
4435{
4436	if (unlikely(!lockdep_enabled()))
4437		return;
4438
4439	/*
4440	 * We fancy IRQs being disabled here, see softirq.c
4441	 */
4442	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4443		return;
4444
4445	if (current->softirqs_enabled) {
4446		struct irqtrace_events *trace = &current->irqtrace;
4447
4448		/*
4449		 * We have done an ON -> OFF transition:
4450		 */
4451		current->softirqs_enabled = 0;
4452		trace->softirq_disable_ip = ip;
4453		trace->softirq_disable_event = ++trace->irq_events;
4454		debug_atomic_inc(softirqs_off_events);
4455		/*
4456		 * Whoops, we wanted softirqs off, so why aren't they?
4457		 */
4458		DEBUG_LOCKS_WARN_ON(!softirq_count());
4459	} else
4460		debug_atomic_inc(redundant_softirqs_off);
4461}
4462
4463static int
4464mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4465{
4466	if (!check)
4467		goto lock_used;
4468
4469	/*
4470	 * If non-trylock use in a hardirq or softirq context, then
4471	 * mark the lock as used in these contexts:
4472	 */
4473	if (!hlock->trylock) {
4474		if (hlock->read) {
4475			if (lockdep_hardirq_context())
4476				if (!mark_lock(curr, hlock,
4477						LOCK_USED_IN_HARDIRQ_READ))
4478					return 0;
4479			if (curr->softirq_context)
4480				if (!mark_lock(curr, hlock,
4481						LOCK_USED_IN_SOFTIRQ_READ))
4482					return 0;
4483		} else {
4484			if (lockdep_hardirq_context())
4485				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4486					return 0;
4487			if (curr->softirq_context)
4488				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4489					return 0;
4490		}
4491	}
4492	if (!hlock->hardirqs_off) {
4493		if (hlock->read) {
4494			if (!mark_lock(curr, hlock,
4495					LOCK_ENABLED_HARDIRQ_READ))
4496				return 0;
4497			if (curr->softirqs_enabled)
4498				if (!mark_lock(curr, hlock,
4499						LOCK_ENABLED_SOFTIRQ_READ))
4500					return 0;
4501		} else {
4502			if (!mark_lock(curr, hlock,
4503					LOCK_ENABLED_HARDIRQ))
4504				return 0;
4505			if (curr->softirqs_enabled)
4506				if (!mark_lock(curr, hlock,
4507						LOCK_ENABLED_SOFTIRQ))
4508					return 0;
4509		}
4510	}
4511
4512lock_used:
4513	/* mark it as used: */
4514	if (!mark_lock(curr, hlock, LOCK_USED))
4515		return 0;
4516
4517	return 1;
4518}
4519
4520static inline unsigned int task_irq_context(struct task_struct *task)
4521{
4522	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4523	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4524}
4525
4526static int separate_irq_context(struct task_struct *curr,
4527		struct held_lock *hlock)
4528{
4529	unsigned int depth = curr->lockdep_depth;
4530
4531	/*
4532	 * Keep track of points where we cross into an interrupt context:
4533	 */
4534	if (depth) {
4535		struct held_lock *prev_hlock;
4536
4537		prev_hlock = curr->held_locks + depth-1;
4538		/*
4539		 * If we cross into another context, reset the
4540		 * hash key (this also prevents the checking and the
4541		 * adding of the dependency to 'prev'):
4542		 */
4543		if (prev_hlock->irq_context != hlock->irq_context)
4544			return 1;
4545	}
4546	return 0;
4547}
4548
4549/*
4550 * Mark a lock with a usage bit, and validate the state transition:
4551 */
4552static int mark_lock(struct task_struct *curr, struct held_lock *this,
4553			     enum lock_usage_bit new_bit)
4554{
4555	unsigned int new_mask, ret = 1;
4556
4557	if (new_bit >= LOCK_USAGE_STATES) {
4558		DEBUG_LOCKS_WARN_ON(1);
4559		return 0;
4560	}
4561
4562	if (new_bit == LOCK_USED && this->read)
4563		new_bit = LOCK_USED_READ;
4564
4565	new_mask = 1 << new_bit;
4566
4567	/*
4568	 * If already set then do not dirty the cacheline,
4569	 * nor do any checks:
4570	 */
4571	if (likely(hlock_class(this)->usage_mask & new_mask))
4572		return 1;
4573
4574	if (!graph_lock())
4575		return 0;
4576	/*
4577	 * Make sure we didn't race:
4578	 */
4579	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4580		goto unlock;
4581
4582	if (!hlock_class(this)->usage_mask)
4583		debug_atomic_dec(nr_unused_locks);
4584
4585	hlock_class(this)->usage_mask |= new_mask;
4586
4587	if (new_bit < LOCK_TRACE_STATES) {
4588		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4589			return 0;
4590	}
4591
4592	if (new_bit < LOCK_USED) {
4593		ret = mark_lock_irq(curr, this, new_bit);
4594		if (!ret)
4595			return 0;
4596	}
4597
4598unlock:
4599	graph_unlock();
4600
4601	/*
4602	 * We must printk outside of the graph_lock:
4603	 */
4604	if (ret == 2) {
4605		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4606		print_lock(this);
4607		print_irqtrace_events(curr);
4608		dump_stack();
4609	}
4610
4611	return ret;
4612}
4613
4614static inline short task_wait_context(struct task_struct *curr)
4615{
4616	/*
4617	 * Set appropriate wait type for the context; for IRQs we have to take
4618	 * into account force_irqthread as that is implied by PREEMPT_RT.
4619	 */
4620	if (lockdep_hardirq_context()) {
4621		/*
4622		 * Check if force_irqthreads will run us threaded.
4623		 */
4624		if (curr->hardirq_threaded || curr->irq_config)
4625			return LD_WAIT_CONFIG;
4626
4627		return LD_WAIT_SPIN;
4628	} else if (curr->softirq_context) {
4629		/*
4630		 * Softirqs are always threaded.
4631		 */
4632		return LD_WAIT_CONFIG;
4633	}
4634
4635	return LD_WAIT_MAX;
4636}
4637
4638static int
4639print_lock_invalid_wait_context(struct task_struct *curr,
4640				struct held_lock *hlock)
4641{
4642	short curr_inner;
4643
4644	if (!debug_locks_off())
4645		return 0;
4646	if (debug_locks_silent)
4647		return 0;
4648
4649	pr_warn("\n");
4650	pr_warn("=============================\n");
4651	pr_warn("[ BUG: Invalid wait context ]\n");
4652	print_kernel_ident();
4653	pr_warn("-----------------------------\n");
4654
4655	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4656	print_lock(hlock);
4657
4658	pr_warn("other info that might help us debug this:\n");
4659
4660	curr_inner = task_wait_context(curr);
4661	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4662
4663	lockdep_print_held_locks(curr);
4664
4665	pr_warn("stack backtrace:\n");
4666	dump_stack();
4667
4668	return 0;
4669}
4670
4671/*
4672 * Verify the wait_type context.
4673 *
4674 * This check validates we takes locks in the right wait-type order; that is it
4675 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4676 * acquire spinlocks inside raw_spinlocks and the sort.
4677 *
4678 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4679 * can be taken from (pretty much) any context but also has constraints.
4680 * However when taken in a stricter environment the RCU lock does not loosen
4681 * the constraints.
4682 *
4683 * Therefore we must look for the strictest environment in the lock stack and
4684 * compare that to the lock we're trying to acquire.
4685 */
4686static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4687{
4688	u8 next_inner = hlock_class(next)->wait_type_inner;
4689	u8 next_outer = hlock_class(next)->wait_type_outer;
4690	u8 curr_inner;
4691	int depth;
4692
4693	if (!next_inner || next->trylock)
4694		return 0;
4695
4696	if (!next_outer)
4697		next_outer = next_inner;
4698
4699	/*
4700	 * Find start of current irq_context..
4701	 */
4702	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4703		struct held_lock *prev = curr->held_locks + depth;
4704		if (prev->irq_context != next->irq_context)
4705			break;
4706	}
4707	depth++;
4708
4709	curr_inner = task_wait_context(curr);
4710
4711	for (; depth < curr->lockdep_depth; depth++) {
4712		struct held_lock *prev = curr->held_locks + depth;
4713		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4714
4715		if (prev_inner) {
4716			/*
4717			 * We can have a bigger inner than a previous one
4718			 * when outer is smaller than inner, as with RCU.
4719			 *
4720			 * Also due to trylocks.
4721			 */
4722			curr_inner = min(curr_inner, prev_inner);
4723		}
4724	}
4725
4726	if (next_outer > curr_inner)
4727		return print_lock_invalid_wait_context(curr, next);
4728
4729	return 0;
4730}
4731
4732#else /* CONFIG_PROVE_LOCKING */
4733
4734static inline int
4735mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4736{
4737	return 1;
4738}
4739
4740static inline unsigned int task_irq_context(struct task_struct *task)
4741{
4742	return 0;
4743}
4744
4745static inline int separate_irq_context(struct task_struct *curr,
4746		struct held_lock *hlock)
4747{
4748	return 0;
4749}
4750
4751static inline int check_wait_context(struct task_struct *curr,
4752				     struct held_lock *next)
4753{
4754	return 0;
4755}
4756
4757#endif /* CONFIG_PROVE_LOCKING */
4758
4759/*
4760 * Initialize a lock instance's lock-class mapping info:
4761 */
4762void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4763			    struct lock_class_key *key, int subclass,
4764			    u8 inner, u8 outer, u8 lock_type)
4765{
4766	int i;
4767
4768	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4769		lock->class_cache[i] = NULL;
4770
4771#ifdef CONFIG_LOCK_STAT
4772	lock->cpu = raw_smp_processor_id();
4773#endif
4774
4775	/*
4776	 * Can't be having no nameless bastards around this place!
4777	 */
4778	if (DEBUG_LOCKS_WARN_ON(!name)) {
4779		lock->name = "NULL";
4780		return;
4781	}
4782
4783	lock->name = name;
4784
4785	lock->wait_type_outer = outer;
4786	lock->wait_type_inner = inner;
4787	lock->lock_type = lock_type;
4788
4789	/*
4790	 * No key, no joy, we need to hash something.
4791	 */
4792	if (DEBUG_LOCKS_WARN_ON(!key))
4793		return;
4794	/*
4795	 * Sanity check, the lock-class key must either have been allocated
4796	 * statically or must have been registered as a dynamic key.
4797	 */
4798	if (!static_obj(key) && !is_dynamic_key(key)) {
4799		if (debug_locks)
4800			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4801		DEBUG_LOCKS_WARN_ON(1);
4802		return;
4803	}
4804	lock->key = key;
4805
4806	if (unlikely(!debug_locks))
4807		return;
4808
4809	if (subclass) {
4810		unsigned long flags;
4811
4812		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4813			return;
4814
4815		raw_local_irq_save(flags);
4816		lockdep_recursion_inc();
4817		register_lock_class(lock, subclass, 1);
4818		lockdep_recursion_finish();
4819		raw_local_irq_restore(flags);
4820	}
4821}
4822EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4823
4824struct lock_class_key __lockdep_no_validate__;
4825EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4826
4827static void
4828print_lock_nested_lock_not_held(struct task_struct *curr,
4829				struct held_lock *hlock,
4830				unsigned long ip)
4831{
4832	if (!debug_locks_off())
4833		return;
4834	if (debug_locks_silent)
4835		return;
4836
4837	pr_warn("\n");
4838	pr_warn("==================================\n");
4839	pr_warn("WARNING: Nested lock was not taken\n");
4840	print_kernel_ident();
4841	pr_warn("----------------------------------\n");
4842
4843	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4844	print_lock(hlock);
4845
4846	pr_warn("\nbut this task is not holding:\n");
4847	pr_warn("%s\n", hlock->nest_lock->name);
4848
4849	pr_warn("\nstack backtrace:\n");
4850	dump_stack();
4851
4852	pr_warn("\nother info that might help us debug this:\n");
4853	lockdep_print_held_locks(curr);
4854
4855	pr_warn("\nstack backtrace:\n");
4856	dump_stack();
4857}
4858
4859static int __lock_is_held(const struct lockdep_map *lock, int read);
4860
4861/*
4862 * This gets called for every mutex_lock*()/spin_lock*() operation.
4863 * We maintain the dependency maps and validate the locking attempt:
4864 *
4865 * The callers must make sure that IRQs are disabled before calling it,
4866 * otherwise we could get an interrupt which would want to take locks,
4867 * which would end up in lockdep again.
4868 */
4869static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4870			  int trylock, int read, int check, int hardirqs_off,
4871			  struct lockdep_map *nest_lock, unsigned long ip,
4872			  int references, int pin_count)
4873{
4874	struct task_struct *curr = current;
4875	struct lock_class *class = NULL;
4876	struct held_lock *hlock;
4877	unsigned int depth;
4878	int chain_head = 0;
4879	int class_idx;
4880	u64 chain_key;
4881
4882	if (unlikely(!debug_locks))
4883		return 0;
4884
4885	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4886		check = 0;
4887
4888	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4889		class = lock->class_cache[subclass];
4890	/*
4891	 * Not cached?
4892	 */
4893	if (unlikely(!class)) {
4894		class = register_lock_class(lock, subclass, 0);
4895		if (!class)
4896			return 0;
4897	}
4898
4899	debug_class_ops_inc(class);
4900
4901	if (very_verbose(class)) {
4902		printk("\nacquire class [%px] %s", class->key, class->name);
4903		if (class->name_version > 1)
4904			printk(KERN_CONT "#%d", class->name_version);
4905		printk(KERN_CONT "\n");
4906		dump_stack();
4907	}
4908
4909	/*
4910	 * Add the lock to the list of currently held locks.
4911	 * (we dont increase the depth just yet, up until the
4912	 * dependency checks are done)
4913	 */
4914	depth = curr->lockdep_depth;
4915	/*
4916	 * Ran out of static storage for our per-task lock stack again have we?
4917	 */
4918	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4919		return 0;
4920
4921	class_idx = class - lock_classes;
4922
4923	if (depth) { /* we're holding locks */
4924		hlock = curr->held_locks + depth - 1;
4925		if (hlock->class_idx == class_idx && nest_lock) {
4926			if (!references)
4927				references++;
4928
4929			if (!hlock->references)
4930				hlock->references++;
4931
4932			hlock->references += references;
4933
4934			/* Overflow */
4935			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4936				return 0;
4937
4938			return 2;
4939		}
4940	}
4941
4942	hlock = curr->held_locks + depth;
4943	/*
4944	 * Plain impossible, we just registered it and checked it weren't no
4945	 * NULL like.. I bet this mushroom I ate was good!
4946	 */
4947	if (DEBUG_LOCKS_WARN_ON(!class))
4948		return 0;
4949	hlock->class_idx = class_idx;
4950	hlock->acquire_ip = ip;
4951	hlock->instance = lock;
4952	hlock->nest_lock = nest_lock;
4953	hlock->irq_context = task_irq_context(curr);
4954	hlock->trylock = trylock;
4955	hlock->read = read;
4956	hlock->check = check;
4957	hlock->hardirqs_off = !!hardirqs_off;
4958	hlock->references = references;
4959#ifdef CONFIG_LOCK_STAT
4960	hlock->waittime_stamp = 0;
4961	hlock->holdtime_stamp = lockstat_clock();
4962#endif
4963	hlock->pin_count = pin_count;
4964
4965	if (check_wait_context(curr, hlock))
4966		return 0;
4967
4968	/* Initialize the lock usage bit */
4969	if (!mark_usage(curr, hlock, check))
4970		return 0;
4971
4972	/*
4973	 * Calculate the chain hash: it's the combined hash of all the
4974	 * lock keys along the dependency chain. We save the hash value
4975	 * at every step so that we can get the current hash easily
4976	 * after unlock. The chain hash is then used to cache dependency
4977	 * results.
4978	 *
4979	 * The 'key ID' is what is the most compact key value to drive
4980	 * the hash, not class->key.
4981	 */
4982	/*
4983	 * Whoops, we did it again.. class_idx is invalid.
4984	 */
4985	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4986		return 0;
4987
4988	chain_key = curr->curr_chain_key;
4989	if (!depth) {
4990		/*
4991		 * How can we have a chain hash when we ain't got no keys?!
4992		 */
4993		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4994			return 0;
4995		chain_head = 1;
4996	}
4997
4998	hlock->prev_chain_key = chain_key;
4999	if (separate_irq_context(curr, hlock)) {
5000		chain_key = INITIAL_CHAIN_KEY;
5001		chain_head = 1;
5002	}
5003	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5004
5005	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5006		print_lock_nested_lock_not_held(curr, hlock, ip);
5007		return 0;
5008	}
5009
5010	if (!debug_locks_silent) {
5011		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5012		WARN_ON_ONCE(!hlock_class(hlock)->key);
5013	}
5014
5015	if (!validate_chain(curr, hlock, chain_head, chain_key))
5016		return 0;
5017
5018	curr->curr_chain_key = chain_key;
5019	curr->lockdep_depth++;
5020	check_chain_key(curr);
5021#ifdef CONFIG_DEBUG_LOCKDEP
5022	if (unlikely(!debug_locks))
5023		return 0;
5024#endif
5025	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5026		debug_locks_off();
5027		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5028		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5029		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5030
5031		lockdep_print_held_locks(current);
5032		debug_show_all_locks();
5033		dump_stack();
5034
5035		return 0;
5036	}
5037
5038	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5039		max_lockdep_depth = curr->lockdep_depth;
5040
5041	return 1;
5042}
5043
5044static void print_unlock_imbalance_bug(struct task_struct *curr,
5045				       struct lockdep_map *lock,
5046				       unsigned long ip)
5047{
5048	if (!debug_locks_off())
5049		return;
5050	if (debug_locks_silent)
5051		return;
5052
5053	pr_warn("\n");
5054	pr_warn("=====================================\n");
5055	pr_warn("WARNING: bad unlock balance detected!\n");
5056	print_kernel_ident();
5057	pr_warn("-------------------------------------\n");
5058	pr_warn("%s/%d is trying to release lock (",
5059		curr->comm, task_pid_nr(curr));
5060	print_lockdep_cache(lock);
5061	pr_cont(") at:\n");
5062	print_ip_sym(KERN_WARNING, ip);
5063	pr_warn("but there are no more locks to release!\n");
5064	pr_warn("\nother info that might help us debug this:\n");
5065	lockdep_print_held_locks(curr);
5066
5067	pr_warn("\nstack backtrace:\n");
5068	dump_stack();
5069}
5070
5071static noinstr int match_held_lock(const struct held_lock *hlock,
5072				   const struct lockdep_map *lock)
5073{
5074	if (hlock->instance == lock)
5075		return 1;
5076
5077	if (hlock->references) {
5078		const struct lock_class *class = lock->class_cache[0];
5079
5080		if (!class)
5081			class = look_up_lock_class(lock, 0);
5082
5083		/*
5084		 * If look_up_lock_class() failed to find a class, we're trying
5085		 * to test if we hold a lock that has never yet been acquired.
5086		 * Clearly if the lock hasn't been acquired _ever_, we're not
5087		 * holding it either, so report failure.
5088		 */
5089		if (!class)
5090			return 0;
5091
5092		/*
5093		 * References, but not a lock we're actually ref-counting?
5094		 * State got messed up, follow the sites that change ->references
5095		 * and try to make sense of it.
5096		 */
5097		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5098			return 0;
5099
5100		if (hlock->class_idx == class - lock_classes)
5101			return 1;
5102	}
5103
5104	return 0;
5105}
5106
5107/* @depth must not be zero */
5108static struct held_lock *find_held_lock(struct task_struct *curr,
5109					struct lockdep_map *lock,
5110					unsigned int depth, int *idx)
5111{
5112	struct held_lock *ret, *hlock, *prev_hlock;
5113	int i;
5114
5115	i = depth - 1;
5116	hlock = curr->held_locks + i;
5117	ret = hlock;
5118	if (match_held_lock(hlock, lock))
5119		goto out;
5120
5121	ret = NULL;
5122	for (i--, prev_hlock = hlock--;
5123	     i >= 0;
5124	     i--, prev_hlock = hlock--) {
5125		/*
5126		 * We must not cross into another context:
5127		 */
5128		if (prev_hlock->irq_context != hlock->irq_context) {
5129			ret = NULL;
5130			break;
5131		}
5132		if (match_held_lock(hlock, lock)) {
5133			ret = hlock;
5134			break;
5135		}
5136	}
5137
5138out:
5139	*idx = i;
5140	return ret;
5141}
5142
5143static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5144				int idx, unsigned int *merged)
5145{
5146	struct held_lock *hlock;
5147	int first_idx = idx;
5148
5149	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5150		return 0;
5151
5152	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5153		switch (__lock_acquire(hlock->instance,
5154				    hlock_class(hlock)->subclass,
5155				    hlock->trylock,
5156				    hlock->read, hlock->check,
5157				    hlock->hardirqs_off,
5158				    hlock->nest_lock, hlock->acquire_ip,
5159				    hlock->references, hlock->pin_count)) {
5160		case 0:
5161			return 1;
5162		case 1:
5163			break;
5164		case 2:
5165			*merged += (idx == first_idx);
5166			break;
5167		default:
5168			WARN_ON(1);
5169			return 0;
5170		}
5171	}
5172	return 0;
5173}
5174
5175static int
5176__lock_set_class(struct lockdep_map *lock, const char *name,
5177		 struct lock_class_key *key, unsigned int subclass,
5178		 unsigned long ip)
5179{
5180	struct task_struct *curr = current;
5181	unsigned int depth, merged = 0;
5182	struct held_lock *hlock;
5183	struct lock_class *class;
5184	int i;
5185
5186	if (unlikely(!debug_locks))
5187		return 0;
5188
5189	depth = curr->lockdep_depth;
5190	/*
5191	 * This function is about (re)setting the class of a held lock,
5192	 * yet we're not actually holding any locks. Naughty user!
5193	 */
5194	if (DEBUG_LOCKS_WARN_ON(!depth))
5195		return 0;
5196
5197	hlock = find_held_lock(curr, lock, depth, &i);
5198	if (!hlock) {
5199		print_unlock_imbalance_bug(curr, lock, ip);
5200		return 0;
5201	}
5202
5203	lockdep_init_map_waits(lock, name, key, 0,
5204			       lock->wait_type_inner,
5205			       lock->wait_type_outer);
 
5206	class = register_lock_class(lock, subclass, 0);
5207	hlock->class_idx = class - lock_classes;
5208
5209	curr->lockdep_depth = i;
5210	curr->curr_chain_key = hlock->prev_chain_key;
5211
5212	if (reacquire_held_locks(curr, depth, i, &merged))
5213		return 0;
5214
5215	/*
5216	 * I took it apart and put it back together again, except now I have
5217	 * these 'spare' parts.. where shall I put them.
5218	 */
5219	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5220		return 0;
5221	return 1;
5222}
5223
5224static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5225{
5226	struct task_struct *curr = current;
5227	unsigned int depth, merged = 0;
5228	struct held_lock *hlock;
5229	int i;
5230
5231	if (unlikely(!debug_locks))
5232		return 0;
5233
5234	depth = curr->lockdep_depth;
5235	/*
5236	 * This function is about (re)setting the class of a held lock,
5237	 * yet we're not actually holding any locks. Naughty user!
5238	 */
5239	if (DEBUG_LOCKS_WARN_ON(!depth))
5240		return 0;
5241
5242	hlock = find_held_lock(curr, lock, depth, &i);
5243	if (!hlock) {
5244		print_unlock_imbalance_bug(curr, lock, ip);
5245		return 0;
5246	}
5247
5248	curr->lockdep_depth = i;
5249	curr->curr_chain_key = hlock->prev_chain_key;
5250
5251	WARN(hlock->read, "downgrading a read lock");
5252	hlock->read = 1;
5253	hlock->acquire_ip = ip;
5254
5255	if (reacquire_held_locks(curr, depth, i, &merged))
5256		return 0;
5257
5258	/* Merging can't happen with unchanged classes.. */
5259	if (DEBUG_LOCKS_WARN_ON(merged))
5260		return 0;
5261
5262	/*
5263	 * I took it apart and put it back together again, except now I have
5264	 * these 'spare' parts.. where shall I put them.
5265	 */
5266	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5267		return 0;
5268
5269	return 1;
5270}
5271
5272/*
5273 * Remove the lock from the list of currently held locks - this gets
5274 * called on mutex_unlock()/spin_unlock*() (or on a failed
5275 * mutex_lock_interruptible()).
5276 */
5277static int
5278__lock_release(struct lockdep_map *lock, unsigned long ip)
5279{
5280	struct task_struct *curr = current;
5281	unsigned int depth, merged = 1;
5282	struct held_lock *hlock;
5283	int i;
5284
5285	if (unlikely(!debug_locks))
5286		return 0;
5287
5288	depth = curr->lockdep_depth;
5289	/*
5290	 * So we're all set to release this lock.. wait what lock? We don't
5291	 * own any locks, you've been drinking again?
5292	 */
5293	if (depth <= 0) {
5294		print_unlock_imbalance_bug(curr, lock, ip);
5295		return 0;
5296	}
5297
5298	/*
5299	 * Check whether the lock exists in the current stack
5300	 * of held locks:
5301	 */
5302	hlock = find_held_lock(curr, lock, depth, &i);
5303	if (!hlock) {
5304		print_unlock_imbalance_bug(curr, lock, ip);
5305		return 0;
5306	}
5307
5308	if (hlock->instance == lock)
5309		lock_release_holdtime(hlock);
5310
5311	WARN(hlock->pin_count, "releasing a pinned lock\n");
5312
5313	if (hlock->references) {
5314		hlock->references--;
5315		if (hlock->references) {
5316			/*
5317			 * We had, and after removing one, still have
5318			 * references, the current lock stack is still
5319			 * valid. We're done!
5320			 */
5321			return 1;
5322		}
5323	}
5324
5325	/*
5326	 * We have the right lock to unlock, 'hlock' points to it.
5327	 * Now we remove it from the stack, and add back the other
5328	 * entries (if any), recalculating the hash along the way:
5329	 */
5330
5331	curr->lockdep_depth = i;
5332	curr->curr_chain_key = hlock->prev_chain_key;
5333
5334	/*
5335	 * The most likely case is when the unlock is on the innermost
5336	 * lock. In this case, we are done!
5337	 */
5338	if (i == depth-1)
5339		return 1;
5340
5341	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5342		return 0;
5343
5344	/*
5345	 * We had N bottles of beer on the wall, we drank one, but now
5346	 * there's not N-1 bottles of beer left on the wall...
5347	 * Pouring two of the bottles together is acceptable.
5348	 */
5349	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5350
5351	/*
5352	 * Since reacquire_held_locks() would have called check_chain_key()
5353	 * indirectly via __lock_acquire(), we don't need to do it again
5354	 * on return.
5355	 */
5356	return 0;
5357}
5358
5359static __always_inline
5360int __lock_is_held(const struct lockdep_map *lock, int read)
5361{
5362	struct task_struct *curr = current;
5363	int i;
5364
5365	for (i = 0; i < curr->lockdep_depth; i++) {
5366		struct held_lock *hlock = curr->held_locks + i;
5367
5368		if (match_held_lock(hlock, lock)) {
5369			if (read == -1 || hlock->read == read)
5370				return LOCK_STATE_HELD;
5371
5372			return LOCK_STATE_NOT_HELD;
5373		}
5374	}
5375
5376	return LOCK_STATE_NOT_HELD;
5377}
5378
5379static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5380{
5381	struct pin_cookie cookie = NIL_COOKIE;
5382	struct task_struct *curr = current;
5383	int i;
5384
5385	if (unlikely(!debug_locks))
5386		return cookie;
5387
5388	for (i = 0; i < curr->lockdep_depth; i++) {
5389		struct held_lock *hlock = curr->held_locks + i;
5390
5391		if (match_held_lock(hlock, lock)) {
5392			/*
5393			 * Grab 16bits of randomness; this is sufficient to not
5394			 * be guessable and still allows some pin nesting in
5395			 * our u32 pin_count.
5396			 */
5397			cookie.val = 1 + (prandom_u32() >> 16);
5398			hlock->pin_count += cookie.val;
5399			return cookie;
5400		}
5401	}
5402
5403	WARN(1, "pinning an unheld lock\n");
5404	return cookie;
5405}
5406
5407static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5408{
5409	struct task_struct *curr = current;
5410	int i;
5411
5412	if (unlikely(!debug_locks))
5413		return;
5414
5415	for (i = 0; i < curr->lockdep_depth; i++) {
5416		struct held_lock *hlock = curr->held_locks + i;
5417
5418		if (match_held_lock(hlock, lock)) {
5419			hlock->pin_count += cookie.val;
5420			return;
5421		}
5422	}
5423
5424	WARN(1, "pinning an unheld lock\n");
5425}
5426
5427static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5428{
5429	struct task_struct *curr = current;
5430	int i;
5431
5432	if (unlikely(!debug_locks))
5433		return;
5434
5435	for (i = 0; i < curr->lockdep_depth; i++) {
5436		struct held_lock *hlock = curr->held_locks + i;
5437
5438		if (match_held_lock(hlock, lock)) {
5439			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5440				return;
5441
5442			hlock->pin_count -= cookie.val;
5443
5444			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5445				hlock->pin_count = 0;
5446
5447			return;
5448		}
5449	}
5450
5451	WARN(1, "unpinning an unheld lock\n");
5452}
5453
5454/*
5455 * Check whether we follow the irq-flags state precisely:
5456 */
5457static noinstr void check_flags(unsigned long flags)
5458{
5459#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5460	if (!debug_locks)
5461		return;
5462
5463	/* Get the warning out..  */
5464	instrumentation_begin();
5465
5466	if (irqs_disabled_flags(flags)) {
5467		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5468			printk("possible reason: unannotated irqs-off.\n");
5469		}
5470	} else {
5471		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5472			printk("possible reason: unannotated irqs-on.\n");
5473		}
5474	}
5475
 
5476	/*
5477	 * We dont accurately track softirq state in e.g.
5478	 * hardirq contexts (such as on 4KSTACKS), so only
5479	 * check if not in hardirq contexts:
5480	 */
5481	if (!hardirq_count()) {
5482		if (softirq_count()) {
5483			/* like the above, but with softirqs */
5484			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5485		} else {
5486			/* lick the above, does it taste good? */
5487			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5488		}
5489	}
 
5490
5491	if (!debug_locks)
5492		print_irqtrace_events(current);
5493
5494	instrumentation_end();
5495#endif
5496}
5497
5498void lock_set_class(struct lockdep_map *lock, const char *name,
5499		    struct lock_class_key *key, unsigned int subclass,
5500		    unsigned long ip)
5501{
5502	unsigned long flags;
5503
5504	if (unlikely(!lockdep_enabled()))
5505		return;
5506
5507	raw_local_irq_save(flags);
5508	lockdep_recursion_inc();
5509	check_flags(flags);
5510	if (__lock_set_class(lock, name, key, subclass, ip))
5511		check_chain_key(current);
5512	lockdep_recursion_finish();
5513	raw_local_irq_restore(flags);
5514}
5515EXPORT_SYMBOL_GPL(lock_set_class);
5516
5517void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5518{
5519	unsigned long flags;
5520
5521	if (unlikely(!lockdep_enabled()))
5522		return;
5523
5524	raw_local_irq_save(flags);
5525	lockdep_recursion_inc();
5526	check_flags(flags);
5527	if (__lock_downgrade(lock, ip))
5528		check_chain_key(current);
5529	lockdep_recursion_finish();
5530	raw_local_irq_restore(flags);
5531}
5532EXPORT_SYMBOL_GPL(lock_downgrade);
5533
5534/* NMI context !!! */
5535static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5536{
5537#ifdef CONFIG_PROVE_LOCKING
5538	struct lock_class *class = look_up_lock_class(lock, subclass);
5539	unsigned long mask = LOCKF_USED;
5540
5541	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5542	if (!class)
5543		return;
5544
5545	/*
5546	 * READ locks only conflict with USED, such that if we only ever use
5547	 * READ locks, there is no deadlock possible -- RCU.
5548	 */
5549	if (!hlock->read)
5550		mask |= LOCKF_USED_READ;
5551
5552	if (!(class->usage_mask & mask))
5553		return;
5554
5555	hlock->class_idx = class - lock_classes;
5556
5557	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5558#endif
5559}
5560
5561static bool lockdep_nmi(void)
5562{
5563	if (raw_cpu_read(lockdep_recursion))
5564		return false;
5565
5566	if (!in_nmi())
5567		return false;
5568
5569	return true;
5570}
5571
5572/*
5573 * read_lock() is recursive if:
5574 * 1. We force lockdep think this way in selftests or
5575 * 2. The implementation is not queued read/write lock or
5576 * 3. The locker is at an in_interrupt() context.
5577 */
5578bool read_lock_is_recursive(void)
5579{
5580	return force_read_lock_recursive ||
5581	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5582	       in_interrupt();
5583}
5584EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5585
5586/*
5587 * We are not always called with irqs disabled - do that here,
5588 * and also avoid lockdep recursion:
5589 */
5590void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5591			  int trylock, int read, int check,
5592			  struct lockdep_map *nest_lock, unsigned long ip)
5593{
5594	unsigned long flags;
5595
5596	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5597
5598	if (!debug_locks)
5599		return;
5600
5601	if (unlikely(!lockdep_enabled())) {
5602		/* XXX allow trylock from NMI ?!? */
5603		if (lockdep_nmi() && !trylock) {
5604			struct held_lock hlock;
5605
5606			hlock.acquire_ip = ip;
5607			hlock.instance = lock;
5608			hlock.nest_lock = nest_lock;
5609			hlock.irq_context = 2; // XXX
5610			hlock.trylock = trylock;
5611			hlock.read = read;
5612			hlock.check = check;
5613			hlock.hardirqs_off = true;
5614			hlock.references = 0;
5615
5616			verify_lock_unused(lock, &hlock, subclass);
5617		}
5618		return;
5619	}
5620
5621	raw_local_irq_save(flags);
5622	check_flags(flags);
5623
5624	lockdep_recursion_inc();
5625	__lock_acquire(lock, subclass, trylock, read, check,
5626		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5627	lockdep_recursion_finish();
5628	raw_local_irq_restore(flags);
5629}
5630EXPORT_SYMBOL_GPL(lock_acquire);
5631
5632void lock_release(struct lockdep_map *lock, unsigned long ip)
5633{
5634	unsigned long flags;
5635
5636	trace_lock_release(lock, ip);
5637
5638	if (unlikely(!lockdep_enabled()))
5639		return;
5640
5641	raw_local_irq_save(flags);
5642	check_flags(flags);
5643
5644	lockdep_recursion_inc();
5645	if (__lock_release(lock, ip))
5646		check_chain_key(current);
5647	lockdep_recursion_finish();
5648	raw_local_irq_restore(flags);
5649}
5650EXPORT_SYMBOL_GPL(lock_release);
5651
5652noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5653{
5654	unsigned long flags;
5655	int ret = LOCK_STATE_NOT_HELD;
5656
5657	/*
5658	 * Avoid false negative lockdep_assert_held() and
5659	 * lockdep_assert_not_held().
5660	 */
5661	if (unlikely(!lockdep_enabled()))
5662		return LOCK_STATE_UNKNOWN;
5663
5664	raw_local_irq_save(flags);
5665	check_flags(flags);
5666
5667	lockdep_recursion_inc();
5668	ret = __lock_is_held(lock, read);
5669	lockdep_recursion_finish();
5670	raw_local_irq_restore(flags);
5671
5672	return ret;
5673}
5674EXPORT_SYMBOL_GPL(lock_is_held_type);
5675NOKPROBE_SYMBOL(lock_is_held_type);
5676
5677struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5678{
5679	struct pin_cookie cookie = NIL_COOKIE;
5680	unsigned long flags;
5681
5682	if (unlikely(!lockdep_enabled()))
5683		return cookie;
5684
5685	raw_local_irq_save(flags);
5686	check_flags(flags);
5687
5688	lockdep_recursion_inc();
5689	cookie = __lock_pin_lock(lock);
5690	lockdep_recursion_finish();
5691	raw_local_irq_restore(flags);
5692
5693	return cookie;
5694}
5695EXPORT_SYMBOL_GPL(lock_pin_lock);
5696
5697void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5698{
5699	unsigned long flags;
5700
5701	if (unlikely(!lockdep_enabled()))
5702		return;
5703
5704	raw_local_irq_save(flags);
5705	check_flags(flags);
5706
5707	lockdep_recursion_inc();
5708	__lock_repin_lock(lock, cookie);
5709	lockdep_recursion_finish();
5710	raw_local_irq_restore(flags);
5711}
5712EXPORT_SYMBOL_GPL(lock_repin_lock);
5713
5714void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5715{
5716	unsigned long flags;
5717
5718	if (unlikely(!lockdep_enabled()))
5719		return;
5720
5721	raw_local_irq_save(flags);
5722	check_flags(flags);
5723
5724	lockdep_recursion_inc();
5725	__lock_unpin_lock(lock, cookie);
5726	lockdep_recursion_finish();
5727	raw_local_irq_restore(flags);
5728}
5729EXPORT_SYMBOL_GPL(lock_unpin_lock);
5730
5731#ifdef CONFIG_LOCK_STAT
5732static void print_lock_contention_bug(struct task_struct *curr,
5733				      struct lockdep_map *lock,
5734				      unsigned long ip)
5735{
5736	if (!debug_locks_off())
5737		return;
5738	if (debug_locks_silent)
5739		return;
5740
5741	pr_warn("\n");
5742	pr_warn("=================================\n");
5743	pr_warn("WARNING: bad contention detected!\n");
5744	print_kernel_ident();
5745	pr_warn("---------------------------------\n");
5746	pr_warn("%s/%d is trying to contend lock (",
5747		curr->comm, task_pid_nr(curr));
5748	print_lockdep_cache(lock);
5749	pr_cont(") at:\n");
5750	print_ip_sym(KERN_WARNING, ip);
5751	pr_warn("but there are no locks held!\n");
5752	pr_warn("\nother info that might help us debug this:\n");
5753	lockdep_print_held_locks(curr);
5754
5755	pr_warn("\nstack backtrace:\n");
5756	dump_stack();
5757}
5758
5759static void
5760__lock_contended(struct lockdep_map *lock, unsigned long ip)
5761{
5762	struct task_struct *curr = current;
5763	struct held_lock *hlock;
5764	struct lock_class_stats *stats;
5765	unsigned int depth;
5766	int i, contention_point, contending_point;
5767
5768	depth = curr->lockdep_depth;
5769	/*
5770	 * Whee, we contended on this lock, except it seems we're not
5771	 * actually trying to acquire anything much at all..
5772	 */
5773	if (DEBUG_LOCKS_WARN_ON(!depth))
5774		return;
5775
5776	hlock = find_held_lock(curr, lock, depth, &i);
5777	if (!hlock) {
5778		print_lock_contention_bug(curr, lock, ip);
5779		return;
5780	}
5781
5782	if (hlock->instance != lock)
5783		return;
5784
5785	hlock->waittime_stamp = lockstat_clock();
5786
5787	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5788	contending_point = lock_point(hlock_class(hlock)->contending_point,
5789				      lock->ip);
5790
5791	stats = get_lock_stats(hlock_class(hlock));
5792	if (contention_point < LOCKSTAT_POINTS)
5793		stats->contention_point[contention_point]++;
5794	if (contending_point < LOCKSTAT_POINTS)
5795		stats->contending_point[contending_point]++;
5796	if (lock->cpu != smp_processor_id())
5797		stats->bounces[bounce_contended + !!hlock->read]++;
5798}
5799
5800static void
5801__lock_acquired(struct lockdep_map *lock, unsigned long ip)
5802{
5803	struct task_struct *curr = current;
5804	struct held_lock *hlock;
5805	struct lock_class_stats *stats;
5806	unsigned int depth;
5807	u64 now, waittime = 0;
5808	int i, cpu;
5809
5810	depth = curr->lockdep_depth;
5811	/*
5812	 * Yay, we acquired ownership of this lock we didn't try to
5813	 * acquire, how the heck did that happen?
5814	 */
5815	if (DEBUG_LOCKS_WARN_ON(!depth))
5816		return;
5817
5818	hlock = find_held_lock(curr, lock, depth, &i);
5819	if (!hlock) {
5820		print_lock_contention_bug(curr, lock, _RET_IP_);
5821		return;
5822	}
5823
5824	if (hlock->instance != lock)
5825		return;
5826
5827	cpu = smp_processor_id();
5828	if (hlock->waittime_stamp) {
5829		now = lockstat_clock();
5830		waittime = now - hlock->waittime_stamp;
5831		hlock->holdtime_stamp = now;
5832	}
5833
5834	stats = get_lock_stats(hlock_class(hlock));
5835	if (waittime) {
5836		if (hlock->read)
5837			lock_time_inc(&stats->read_waittime, waittime);
5838		else
5839			lock_time_inc(&stats->write_waittime, waittime);
5840	}
5841	if (lock->cpu != cpu)
5842		stats->bounces[bounce_acquired + !!hlock->read]++;
5843
5844	lock->cpu = cpu;
5845	lock->ip = ip;
5846}
5847
5848void lock_contended(struct lockdep_map *lock, unsigned long ip)
5849{
5850	unsigned long flags;
5851
5852	trace_lock_contended(lock, ip);
5853
5854	if (unlikely(!lock_stat || !lockdep_enabled()))
5855		return;
5856
5857	raw_local_irq_save(flags);
5858	check_flags(flags);
5859	lockdep_recursion_inc();
5860	__lock_contended(lock, ip);
5861	lockdep_recursion_finish();
5862	raw_local_irq_restore(flags);
5863}
5864EXPORT_SYMBOL_GPL(lock_contended);
5865
5866void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5867{
5868	unsigned long flags;
5869
5870	trace_lock_acquired(lock, ip);
5871
5872	if (unlikely(!lock_stat || !lockdep_enabled()))
5873		return;
5874
5875	raw_local_irq_save(flags);
5876	check_flags(flags);
5877	lockdep_recursion_inc();
5878	__lock_acquired(lock, ip);
5879	lockdep_recursion_finish();
5880	raw_local_irq_restore(flags);
5881}
5882EXPORT_SYMBOL_GPL(lock_acquired);
5883#endif
5884
5885/*
5886 * Used by the testsuite, sanitize the validator state
5887 * after a simulated failure:
5888 */
5889
5890void lockdep_reset(void)
5891{
5892	unsigned long flags;
5893	int i;
5894
5895	raw_local_irq_save(flags);
5896	lockdep_init_task(current);
5897	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5898	nr_hardirq_chains = 0;
5899	nr_softirq_chains = 0;
5900	nr_process_chains = 0;
5901	debug_locks = 1;
5902	for (i = 0; i < CHAINHASH_SIZE; i++)
5903		INIT_HLIST_HEAD(chainhash_table + i);
5904	raw_local_irq_restore(flags);
5905}
5906
5907/* Remove a class from a lock chain. Must be called with the graph lock held. */
5908static void remove_class_from_lock_chain(struct pending_free *pf,
5909					 struct lock_chain *chain,
5910					 struct lock_class *class)
5911{
5912#ifdef CONFIG_PROVE_LOCKING
5913	int i;
5914
5915	for (i = chain->base; i < chain->base + chain->depth; i++) {
5916		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5917			continue;
5918		/*
5919		 * Each lock class occurs at most once in a lock chain so once
5920		 * we found a match we can break out of this loop.
5921		 */
5922		goto free_lock_chain;
5923	}
5924	/* Since the chain has not been modified, return. */
5925	return;
5926
5927free_lock_chain:
5928	free_chain_hlocks(chain->base, chain->depth);
5929	/* Overwrite the chain key for concurrent RCU readers. */
5930	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5931	dec_chains(chain->irq_context);
5932
5933	/*
5934	 * Note: calling hlist_del_rcu() from inside a
5935	 * hlist_for_each_entry_rcu() loop is safe.
5936	 */
5937	hlist_del_rcu(&chain->entry);
5938	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5939	nr_zapped_lock_chains++;
5940#endif
5941}
5942
5943/* Must be called with the graph lock held. */
5944static void remove_class_from_lock_chains(struct pending_free *pf,
5945					  struct lock_class *class)
5946{
5947	struct lock_chain *chain;
5948	struct hlist_head *head;
5949	int i;
5950
5951	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5952		head = chainhash_table + i;
5953		hlist_for_each_entry_rcu(chain, head, entry) {
5954			remove_class_from_lock_chain(pf, chain, class);
5955		}
5956	}
5957}
5958
5959/*
5960 * Remove all references to a lock class. The caller must hold the graph lock.
5961 */
5962static void zap_class(struct pending_free *pf, struct lock_class *class)
5963{
5964	struct lock_list *entry;
5965	int i;
5966
5967	WARN_ON_ONCE(!class->key);
5968
5969	/*
5970	 * Remove all dependencies this lock is
5971	 * involved in:
5972	 */
5973	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5974		entry = list_entries + i;
5975		if (entry->class != class && entry->links_to != class)
5976			continue;
5977		__clear_bit(i, list_entries_in_use);
5978		nr_list_entries--;
5979		list_del_rcu(&entry->entry);
5980	}
5981	if (list_empty(&class->locks_after) &&
5982	    list_empty(&class->locks_before)) {
5983		list_move_tail(&class->lock_entry, &pf->zapped);
5984		hlist_del_rcu(&class->hash_entry);
5985		WRITE_ONCE(class->key, NULL);
5986		WRITE_ONCE(class->name, NULL);
5987		nr_lock_classes--;
5988		__clear_bit(class - lock_classes, lock_classes_in_use);
 
 
5989	} else {
5990		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991			  class->name);
5992	}
5993
5994	remove_class_from_lock_chains(pf, class);
5995	nr_zapped_classes++;
5996}
5997
5998static void reinit_class(struct lock_class *class)
5999{
6000	void *const p = class;
6001	const unsigned int offset = offsetof(struct lock_class, key);
6002
6003	WARN_ON_ONCE(!class->lock_entry.next);
6004	WARN_ON_ONCE(!list_empty(&class->locks_after));
6005	WARN_ON_ONCE(!list_empty(&class->locks_before));
6006	memset(p + offset, 0, sizeof(*class) - offset);
6007	WARN_ON_ONCE(!class->lock_entry.next);
6008	WARN_ON_ONCE(!list_empty(&class->locks_after));
6009	WARN_ON_ONCE(!list_empty(&class->locks_before));
6010}
6011
6012static inline int within(const void *addr, void *start, unsigned long size)
6013{
6014	return addr >= start && addr < start + size;
6015}
6016
6017static bool inside_selftest(void)
6018{
6019	return current == lockdep_selftest_task_struct;
6020}
6021
6022/* The caller must hold the graph lock. */
6023static struct pending_free *get_pending_free(void)
6024{
6025	return delayed_free.pf + delayed_free.index;
6026}
6027
6028static void free_zapped_rcu(struct rcu_head *cb);
6029
6030/*
6031 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032 * the graph lock held.
6033 */
6034static void call_rcu_zapped(struct pending_free *pf)
6035{
6036	WARN_ON_ONCE(inside_selftest());
6037
6038	if (list_empty(&pf->zapped))
6039		return;
6040
6041	if (delayed_free.scheduled)
6042		return;
6043
6044	delayed_free.scheduled = true;
6045
6046	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047	delayed_free.index ^= 1;
6048
6049	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050}
6051
6052/* The caller must hold the graph lock. May be called from RCU context. */
6053static void __free_zapped_classes(struct pending_free *pf)
6054{
6055	struct lock_class *class;
6056
6057	check_data_structures();
6058
6059	list_for_each_entry(class, &pf->zapped, lock_entry)
6060		reinit_class(class);
6061
6062	list_splice_init(&pf->zapped, &free_lock_classes);
6063
6064#ifdef CONFIG_PROVE_LOCKING
6065	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068#endif
6069}
6070
6071static void free_zapped_rcu(struct rcu_head *ch)
6072{
6073	struct pending_free *pf;
6074	unsigned long flags;
6075
6076	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077		return;
6078
6079	raw_local_irq_save(flags);
6080	lockdep_lock();
6081
6082	/* closed head */
6083	pf = delayed_free.pf + (delayed_free.index ^ 1);
6084	__free_zapped_classes(pf);
6085	delayed_free.scheduled = false;
6086
6087	/*
6088	 * If there's anything on the open list, close and start a new callback.
6089	 */
6090	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091
6092	lockdep_unlock();
6093	raw_local_irq_restore(flags);
6094}
6095
6096/*
6097 * Remove all lock classes from the class hash table and from the
6098 * all_lock_classes list whose key or name is in the address range [start,
6099 * start + size). Move these lock classes to the zapped_classes list. Must
6100 * be called with the graph lock held.
6101 */
6102static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103				     unsigned long size)
6104{
6105	struct lock_class *class;
6106	struct hlist_head *head;
6107	int i;
6108
6109	/* Unhash all classes that were created by a module. */
6110	for (i = 0; i < CLASSHASH_SIZE; i++) {
6111		head = classhash_table + i;
6112		hlist_for_each_entry_rcu(class, head, hash_entry) {
6113			if (!within(class->key, start, size) &&
6114			    !within(class->name, start, size))
6115				continue;
6116			zap_class(pf, class);
6117		}
6118	}
6119}
6120
6121/*
6122 * Used in module.c to remove lock classes from memory that is going to be
6123 * freed; and possibly re-used by other modules.
6124 *
6125 * We will have had one synchronize_rcu() before getting here, so we're
6126 * guaranteed nobody will look up these exact classes -- they're properly dead
6127 * but still allocated.
6128 */
6129static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130{
6131	struct pending_free *pf;
6132	unsigned long flags;
6133
6134	init_data_structures_once();
6135
6136	raw_local_irq_save(flags);
6137	lockdep_lock();
6138	pf = get_pending_free();
6139	__lockdep_free_key_range(pf, start, size);
6140	call_rcu_zapped(pf);
6141	lockdep_unlock();
6142	raw_local_irq_restore(flags);
6143
6144	/*
6145	 * Wait for any possible iterators from look_up_lock_class() to pass
6146	 * before continuing to free the memory they refer to.
6147	 */
6148	synchronize_rcu();
6149}
6150
6151/*
6152 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153 * Ignores debug_locks. Must only be used by the lockdep selftests.
6154 */
6155static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156{
6157	struct pending_free *pf = delayed_free.pf;
6158	unsigned long flags;
6159
6160	init_data_structures_once();
6161
6162	raw_local_irq_save(flags);
6163	lockdep_lock();
6164	__lockdep_free_key_range(pf, start, size);
6165	__free_zapped_classes(pf);
6166	lockdep_unlock();
6167	raw_local_irq_restore(flags);
6168}
6169
6170void lockdep_free_key_range(void *start, unsigned long size)
6171{
6172	init_data_structures_once();
6173
6174	if (inside_selftest())
6175		lockdep_free_key_range_imm(start, size);
6176	else
6177		lockdep_free_key_range_reg(start, size);
6178}
6179
6180/*
6181 * Check whether any element of the @lock->class_cache[] array refers to a
6182 * registered lock class. The caller must hold either the graph lock or the
6183 * RCU read lock.
6184 */
6185static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186{
6187	struct lock_class *class;
6188	struct hlist_head *head;
6189	int i, j;
6190
6191	for (i = 0; i < CLASSHASH_SIZE; i++) {
6192		head = classhash_table + i;
6193		hlist_for_each_entry_rcu(class, head, hash_entry) {
6194			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195				if (lock->class_cache[j] == class)
6196					return true;
6197		}
6198	}
6199	return false;
6200}
6201
6202/* The caller must hold the graph lock. Does not sleep. */
6203static void __lockdep_reset_lock(struct pending_free *pf,
6204				 struct lockdep_map *lock)
6205{
6206	struct lock_class *class;
6207	int j;
6208
6209	/*
6210	 * Remove all classes this lock might have:
6211	 */
6212	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213		/*
6214		 * If the class exists we look it up and zap it:
6215		 */
6216		class = look_up_lock_class(lock, j);
6217		if (class)
6218			zap_class(pf, class);
6219	}
6220	/*
6221	 * Debug check: in the end all mapped classes should
6222	 * be gone.
6223	 */
6224	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225		debug_locks_off();
6226}
6227
6228/*
6229 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230 * released data structures from RCU context.
6231 */
6232static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233{
6234	struct pending_free *pf;
6235	unsigned long flags;
6236	int locked;
6237
6238	raw_local_irq_save(flags);
6239	locked = graph_lock();
6240	if (!locked)
6241		goto out_irq;
6242
6243	pf = get_pending_free();
6244	__lockdep_reset_lock(pf, lock);
6245	call_rcu_zapped(pf);
6246
6247	graph_unlock();
6248out_irq:
6249	raw_local_irq_restore(flags);
6250}
6251
6252/*
6253 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254 * lockdep selftests.
6255 */
6256static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257{
6258	struct pending_free *pf = delayed_free.pf;
6259	unsigned long flags;
6260
6261	raw_local_irq_save(flags);
6262	lockdep_lock();
6263	__lockdep_reset_lock(pf, lock);
6264	__free_zapped_classes(pf);
6265	lockdep_unlock();
6266	raw_local_irq_restore(flags);
6267}
6268
6269void lockdep_reset_lock(struct lockdep_map *lock)
6270{
6271	init_data_structures_once();
6272
6273	if (inside_selftest())
6274		lockdep_reset_lock_imm(lock);
6275	else
6276		lockdep_reset_lock_reg(lock);
6277}
6278
6279/* Unregister a dynamically allocated key. */
 
 
 
 
 
 
6280void lockdep_unregister_key(struct lock_class_key *key)
6281{
6282	struct hlist_head *hash_head = keyhashentry(key);
6283	struct lock_class_key *k;
6284	struct pending_free *pf;
6285	unsigned long flags;
6286	bool found = false;
6287
6288	might_sleep();
6289
6290	if (WARN_ON_ONCE(static_obj(key)))
6291		return;
6292
6293	raw_local_irq_save(flags);
6294	if (!graph_lock())
6295		goto out_irq;
6296
6297	pf = get_pending_free();
6298	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6299		if (k == key) {
6300			hlist_del_rcu(&k->hash_entry);
6301			found = true;
6302			break;
6303		}
6304	}
6305	WARN_ON_ONCE(!found);
6306	__lockdep_free_key_range(pf, key, 1);
6307	call_rcu_zapped(pf);
6308	graph_unlock();
6309out_irq:
 
 
6310	raw_local_irq_restore(flags);
6311
6312	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6313	synchronize_rcu();
6314}
6315EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6316
6317void __init lockdep_init(void)
6318{
6319	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6320
6321	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6322	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6323	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6324	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6325	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6326	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6327	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6328
6329	printk(" memory used by lock dependency info: %zu kB\n",
6330	       (sizeof(lock_classes) +
6331		sizeof(lock_classes_in_use) +
6332		sizeof(classhash_table) +
6333		sizeof(list_entries) +
6334		sizeof(list_entries_in_use) +
6335		sizeof(chainhash_table) +
6336		sizeof(delayed_free)
6337#ifdef CONFIG_PROVE_LOCKING
6338		+ sizeof(lock_cq)
6339		+ sizeof(lock_chains)
6340		+ sizeof(lock_chains_in_use)
6341		+ sizeof(chain_hlocks)
6342#endif
6343		) / 1024
6344		);
6345
6346#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6347	printk(" memory used for stack traces: %zu kB\n",
6348	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6349	       );
6350#endif
6351
6352	printk(" per task-struct memory footprint: %zu bytes\n",
6353	       sizeof(((struct task_struct *)NULL)->held_locks));
6354}
6355
6356static void
6357print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6358		     const void *mem_to, struct held_lock *hlock)
6359{
6360	if (!debug_locks_off())
6361		return;
6362	if (debug_locks_silent)
6363		return;
6364
6365	pr_warn("\n");
6366	pr_warn("=========================\n");
6367	pr_warn("WARNING: held lock freed!\n");
6368	print_kernel_ident();
6369	pr_warn("-------------------------\n");
6370	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6371		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6372	print_lock(hlock);
6373	lockdep_print_held_locks(curr);
6374
6375	pr_warn("\nstack backtrace:\n");
6376	dump_stack();
6377}
6378
6379static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6380				const void* lock_from, unsigned long lock_len)
6381{
6382	return lock_from + lock_len <= mem_from ||
6383		mem_from + mem_len <= lock_from;
6384}
6385
6386/*
6387 * Called when kernel memory is freed (or unmapped), or if a lock
6388 * is destroyed or reinitialized - this code checks whether there is
6389 * any held lock in the memory range of <from> to <to>:
6390 */
6391void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6392{
6393	struct task_struct *curr = current;
6394	struct held_lock *hlock;
6395	unsigned long flags;
6396	int i;
6397
6398	if (unlikely(!debug_locks))
6399		return;
6400
6401	raw_local_irq_save(flags);
6402	for (i = 0; i < curr->lockdep_depth; i++) {
6403		hlock = curr->held_locks + i;
6404
6405		if (not_in_range(mem_from, mem_len, hlock->instance,
6406					sizeof(*hlock->instance)))
6407			continue;
6408
6409		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6410		break;
6411	}
6412	raw_local_irq_restore(flags);
6413}
6414EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6415
6416static void print_held_locks_bug(void)
6417{
6418	if (!debug_locks_off())
6419		return;
6420	if (debug_locks_silent)
6421		return;
6422
6423	pr_warn("\n");
6424	pr_warn("====================================\n");
6425	pr_warn("WARNING: %s/%d still has locks held!\n",
6426	       current->comm, task_pid_nr(current));
6427	print_kernel_ident();
6428	pr_warn("------------------------------------\n");
6429	lockdep_print_held_locks(current);
6430	pr_warn("\nstack backtrace:\n");
6431	dump_stack();
6432}
6433
6434void debug_check_no_locks_held(void)
6435{
6436	if (unlikely(current->lockdep_depth > 0))
6437		print_held_locks_bug();
6438}
6439EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6440
6441#ifdef __KERNEL__
6442void debug_show_all_locks(void)
6443{
6444	struct task_struct *g, *p;
6445
6446	if (unlikely(!debug_locks)) {
6447		pr_warn("INFO: lockdep is turned off.\n");
6448		return;
6449	}
6450	pr_warn("\nShowing all locks held in the system:\n");
6451
6452	rcu_read_lock();
6453	for_each_process_thread(g, p) {
6454		if (!p->lockdep_depth)
6455			continue;
6456		lockdep_print_held_locks(p);
6457		touch_nmi_watchdog();
6458		touch_all_softlockup_watchdogs();
6459	}
6460	rcu_read_unlock();
6461
6462	pr_warn("\n");
6463	pr_warn("=============================================\n\n");
6464}
6465EXPORT_SYMBOL_GPL(debug_show_all_locks);
6466#endif
6467
6468/*
6469 * Careful: only use this function if you are sure that
6470 * the task cannot run in parallel!
6471 */
6472void debug_show_held_locks(struct task_struct *task)
6473{
6474	if (unlikely(!debug_locks)) {
6475		printk("INFO: lockdep is turned off.\n");
6476		return;
6477	}
6478	lockdep_print_held_locks(task);
6479}
6480EXPORT_SYMBOL_GPL(debug_show_held_locks);
6481
6482asmlinkage __visible void lockdep_sys_exit(void)
6483{
6484	struct task_struct *curr = current;
6485
6486	if (unlikely(curr->lockdep_depth)) {
6487		if (!debug_locks_off())
6488			return;
6489		pr_warn("\n");
6490		pr_warn("================================================\n");
6491		pr_warn("WARNING: lock held when returning to user space!\n");
6492		print_kernel_ident();
6493		pr_warn("------------------------------------------------\n");
6494		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6495				curr->comm, curr->pid);
6496		lockdep_print_held_locks(curr);
6497	}
6498
6499	/*
6500	 * The lock history for each syscall should be independent. So wipe the
6501	 * slate clean on return to userspace.
6502	 */
6503	lockdep_invariant_state(false);
6504}
6505
6506void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6507{
6508	struct task_struct *curr = current;
6509	int dl = READ_ONCE(debug_locks);
6510
6511	/* Note: the following can be executed concurrently, so be careful. */
6512	pr_warn("\n");
6513	pr_warn("=============================\n");
6514	pr_warn("WARNING: suspicious RCU usage\n");
6515	print_kernel_ident();
6516	pr_warn("-----------------------------\n");
6517	pr_warn("%s:%d %s!\n", file, line, s);
6518	pr_warn("\nother info that might help us debug this:\n\n");
6519	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6520	       !rcu_lockdep_current_cpu_online()
6521			? "RCU used illegally from offline CPU!\n"
6522			: "",
6523	       rcu_scheduler_active, dl,
6524	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6525
6526	/*
6527	 * If a CPU is in the RCU-free window in idle (ie: in the section
6528	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6529	 * considers that CPU to be in an "extended quiescent state",
6530	 * which means that RCU will be completely ignoring that CPU.
6531	 * Therefore, rcu_read_lock() and friends have absolutely no
6532	 * effect on a CPU running in that state. In other words, even if
6533	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6534	 * delete data structures out from under it.  RCU really has no
6535	 * choice here: we need to keep an RCU-free window in idle where
6536	 * the CPU may possibly enter into low power mode. This way we can
6537	 * notice an extended quiescent state to other CPUs that started a grace
6538	 * period. Otherwise we would delay any grace period as long as we run
6539	 * in the idle task.
6540	 *
6541	 * So complain bitterly if someone does call rcu_read_lock(),
6542	 * rcu_read_lock_bh() and so on from extended quiescent states.
6543	 */
6544	if (!rcu_is_watching())
6545		pr_warn("RCU used illegally from extended quiescent state!\n");
6546
6547	lockdep_print_held_locks(curr);
6548	pr_warn("\nstack backtrace:\n");
6549	dump_stack();
6550}
6551EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);