Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
  22#include <linux/rcupdate.h>
  23#include <asm/cacheflush.h>
  24#include "core.h"
  25#include "patch.h"
  26#include "state.h"
  27#include "transition.h"
  28
  29/*
  30 * klp_mutex is a coarse lock which serializes access to klp data.  All
  31 * accesses to klp-related variables and structures must have mutex protection,
  32 * except within the following functions which carefully avoid the need for it:
  33 *
  34 * - klp_ftrace_handler()
  35 * - klp_update_patch_state()
  36 */
  37DEFINE_MUTEX(klp_mutex);
  38
  39/*
  40 * Actively used patches: enabled or in transition. Note that replaced
  41 * or disabled patches are not listed even though the related kernel
  42 * module still can be loaded.
  43 */
  44LIST_HEAD(klp_patches);
  45
  46static struct kobject *klp_root_kobj;
  47
  48static bool klp_is_module(struct klp_object *obj)
  49{
  50	return obj->name;
  51}
  52
  53/* sets obj->mod if object is not vmlinux and module is found */
  54static void klp_find_object_module(struct klp_object *obj)
  55{
  56	struct module *mod;
  57
  58	if (!klp_is_module(obj))
  59		return;
  60
  61	rcu_read_lock_sched();
  62	/*
  63	 * We do not want to block removal of patched modules and therefore
  64	 * we do not take a reference here. The patches are removed by
  65	 * klp_module_going() instead.
  66	 */
  67	mod = find_module(obj->name);
  68	/*
  69	 * Do not mess work of klp_module_coming() and klp_module_going().
  70	 * Note that the patch might still be needed before klp_module_going()
  71	 * is called. Module functions can be called even in the GOING state
  72	 * until mod->exit() finishes. This is especially important for
  73	 * patches that modify semantic of the functions.
  74	 */
  75	if (mod && mod->klp_alive)
  76		obj->mod = mod;
  77
  78	rcu_read_unlock_sched();
  79}
  80
  81static bool klp_initialized(void)
  82{
  83	return !!klp_root_kobj;
  84}
  85
  86static struct klp_func *klp_find_func(struct klp_object *obj,
  87				      struct klp_func *old_func)
  88{
  89	struct klp_func *func;
  90
  91	klp_for_each_func(obj, func) {
  92		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  93		    (old_func->old_sympos == func->old_sympos)) {
  94			return func;
  95		}
  96	}
  97
  98	return NULL;
  99}
 100
 101static struct klp_object *klp_find_object(struct klp_patch *patch,
 102					  struct klp_object *old_obj)
 103{
 104	struct klp_object *obj;
 105
 106	klp_for_each_object(patch, obj) {
 107		if (klp_is_module(old_obj)) {
 108			if (klp_is_module(obj) &&
 109			    strcmp(old_obj->name, obj->name) == 0) {
 110				return obj;
 111			}
 112		} else if (!klp_is_module(obj)) {
 113			return obj;
 114		}
 115	}
 116
 117	return NULL;
 118}
 119
 120struct klp_find_arg {
 121	const char *objname;
 122	const char *name;
 123	unsigned long addr;
 124	unsigned long count;
 125	unsigned long pos;
 126};
 127
 128static int klp_match_callback(void *data, unsigned long addr)
 
 129{
 130	struct klp_find_arg *args = data;
 131
 
 
 
 
 
 
 
 
 
 132	args->addr = addr;
 133	args->count++;
 134
 135	/*
 136	 * Finish the search when the symbol is found for the desired position
 137	 * or the position is not defined for a non-unique symbol.
 138	 */
 139	if ((args->pos && (args->count == args->pos)) ||
 140	    (!args->pos && (args->count > 1)))
 141		return 1;
 142
 143	return 0;
 144}
 145
 146static int klp_find_callback(void *data, const char *name,
 147			     struct module *mod, unsigned long addr)
 148{
 149	struct klp_find_arg *args = data;
 150
 151	if ((mod && !args->objname) || (!mod && args->objname))
 152		return 0;
 153
 154	if (strcmp(args->name, name))
 155		return 0;
 156
 157	if (args->objname && strcmp(args->objname, mod->name))
 158		return 0;
 159
 160	return klp_match_callback(data, addr);
 161}
 162
 163static int klp_find_object_symbol(const char *objname, const char *name,
 164				  unsigned long sympos, unsigned long *addr)
 165{
 166	struct klp_find_arg args = {
 167		.objname = objname,
 168		.name = name,
 169		.addr = 0,
 170		.count = 0,
 171		.pos = sympos,
 172	};
 173
 174	if (objname)
 175		module_kallsyms_on_each_symbol(klp_find_callback, &args);
 176	else
 177		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
 178
 179	/*
 180	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 181	 * otherwise ensure the symbol position count matches sympos.
 182	 */
 183	if (args.addr == 0)
 184		pr_err("symbol '%s' not found in symbol table\n", name);
 185	else if (args.count > 1 && sympos == 0) {
 186		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 187		       name, objname);
 188	} else if (sympos != args.count && sympos > 0) {
 189		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 190		       sympos, name, objname ? objname : "vmlinux");
 191	} else {
 192		*addr = args.addr;
 193		return 0;
 194	}
 195
 196	*addr = 0;
 197	return -EINVAL;
 198}
 199
 200static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
 201			       unsigned int symndx, Elf_Shdr *relasec,
 202			       const char *sec_objname)
 203{
 204	int i, cnt, ret;
 205	char sym_objname[MODULE_NAME_LEN];
 206	char sym_name[KSYM_NAME_LEN];
 207	Elf_Rela *relas;
 208	Elf_Sym *sym;
 209	unsigned long sympos, addr;
 210	bool sym_vmlinux;
 211	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 212
 213	/*
 214	 * Since the field widths for sym_objname and sym_name in the sscanf()
 215	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 216	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 217	 * and KSYM_NAME_LEN have the values we expect them to have.
 218	 *
 219	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 220	 * we use the smallest/strictest upper bound possible (56, based on
 221	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 222	 */
 223	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
 224
 225	relas = (Elf_Rela *) relasec->sh_addr;
 226	/* For each rela in this klp relocation section */
 227	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 228		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 229		if (sym->st_shndx != SHN_LIVEPATCH) {
 230			pr_err("symbol %s is not marked as a livepatch symbol\n",
 231			       strtab + sym->st_name);
 232			return -EINVAL;
 233		}
 234
 235		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 236		cnt = sscanf(strtab + sym->st_name,
 237			     ".klp.sym.%55[^.].%511[^,],%lu",
 238			     sym_objname, sym_name, &sympos);
 239		if (cnt != 3) {
 240			pr_err("symbol %s has an incorrectly formatted name\n",
 241			       strtab + sym->st_name);
 242			return -EINVAL;
 243		}
 244
 245		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 246
 247		/*
 248		 * Prevent module-specific KLP rela sections from referencing
 249		 * vmlinux symbols.  This helps prevent ordering issues with
 250		 * module special section initializations.  Presumably such
 251		 * symbols are exported and normal relas can be used instead.
 252		 */
 253		if (!sec_vmlinux && sym_vmlinux) {
 254			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
 255			       sym_name);
 256			return -EINVAL;
 257		}
 258
 259		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 260		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 261					     sym_name, sympos, &addr);
 262		if (ret)
 263			return ret;
 264
 265		sym->st_value = addr;
 266	}
 267
 268	return 0;
 269}
 270
 271/*
 272 * At a high-level, there are two types of klp relocation sections: those which
 273 * reference symbols which live in vmlinux; and those which reference symbols
 274 * which live in other modules.  This function is called for both types:
 275 *
 276 * 1) When a klp module itself loads, the module code calls this function to
 277 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 278 *    These relocations are written to the klp module text to allow the patched
 279 *    code/data to reference unexported vmlinux symbols.  They're written as
 280 *    early as possible to ensure that other module init code (.e.g.,
 281 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 282 *    might be referenced by the klp module's special sections.
 283 *
 284 * 2) When a to-be-patched module loads -- or is already loaded when a
 285 *    corresponding klp module loads -- klp code calls this function to write
 286 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 287 *    are written to the klp module text to allow the patched code/data to
 288 *    reference symbols which live in the to-be-patched module or one of its
 289 *    module dependencies.  Exported symbols are supported, in addition to
 290 *    unexported symbols, in order to enable late module patching, which allows
 291 *    the to-be-patched module to be loaded and patched sometime *after* the
 292 *    klp module is loaded.
 293 */
 294int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 295			     const char *shstrtab, const char *strtab,
 296			     unsigned int symndx, unsigned int secndx,
 297			     const char *objname)
 298{
 299	int cnt, ret;
 300	char sec_objname[MODULE_NAME_LEN];
 301	Elf_Shdr *sec = sechdrs + secndx;
 302
 303	/*
 304	 * Format: .klp.rela.sec_objname.section_name
 305	 * See comment in klp_resolve_symbols() for an explanation
 306	 * of the selected field width value.
 307	 */
 308	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 309		     sec_objname);
 310	if (cnt != 1) {
 311		pr_err("section %s has an incorrectly formatted name\n",
 312		       shstrtab + sec->sh_name);
 313		return -EINVAL;
 314	}
 315
 316	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 317		return 0;
 318
 319	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
 320	if (ret)
 321		return ret;
 322
 323	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 324}
 325
 326/*
 327 * Sysfs Interface
 328 *
 329 * /sys/kernel/livepatch
 330 * /sys/kernel/livepatch/<patch>
 331 * /sys/kernel/livepatch/<patch>/enabled
 332 * /sys/kernel/livepatch/<patch>/transition
 333 * /sys/kernel/livepatch/<patch>/force
 334 * /sys/kernel/livepatch/<patch>/<object>
 335 * /sys/kernel/livepatch/<patch>/<object>/patched
 336 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 337 */
 338static int __klp_disable_patch(struct klp_patch *patch);
 339
 340static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 341			     const char *buf, size_t count)
 342{
 343	struct klp_patch *patch;
 344	int ret;
 345	bool enabled;
 346
 347	ret = kstrtobool(buf, &enabled);
 348	if (ret)
 349		return ret;
 350
 351	patch = container_of(kobj, struct klp_patch, kobj);
 352
 353	mutex_lock(&klp_mutex);
 354
 355	if (patch->enabled == enabled) {
 356		/* already in requested state */
 357		ret = -EINVAL;
 358		goto out;
 359	}
 360
 361	/*
 362	 * Allow to reverse a pending transition in both ways. It might be
 363	 * necessary to complete the transition without forcing and breaking
 364	 * the system integrity.
 365	 *
 366	 * Do not allow to re-enable a disabled patch.
 367	 */
 368	if (patch == klp_transition_patch)
 369		klp_reverse_transition();
 370	else if (!enabled)
 371		ret = __klp_disable_patch(patch);
 372	else
 373		ret = -EINVAL;
 374
 375out:
 376	mutex_unlock(&klp_mutex);
 377
 378	if (ret)
 379		return ret;
 380	return count;
 381}
 382
 383static ssize_t enabled_show(struct kobject *kobj,
 384			    struct kobj_attribute *attr, char *buf)
 385{
 386	struct klp_patch *patch;
 387
 388	patch = container_of(kobj, struct klp_patch, kobj);
 389	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
 390}
 391
 392static ssize_t transition_show(struct kobject *kobj,
 393			       struct kobj_attribute *attr, char *buf)
 394{
 395	struct klp_patch *patch;
 396
 397	patch = container_of(kobj, struct klp_patch, kobj);
 398	return snprintf(buf, PAGE_SIZE-1, "%d\n",
 399			patch == klp_transition_patch);
 400}
 401
 402static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 403			   const char *buf, size_t count)
 404{
 405	struct klp_patch *patch;
 406	int ret;
 407	bool val;
 408
 409	ret = kstrtobool(buf, &val);
 410	if (ret)
 411		return ret;
 412
 413	if (!val)
 414		return count;
 415
 416	mutex_lock(&klp_mutex);
 417
 418	patch = container_of(kobj, struct klp_patch, kobj);
 419	if (patch != klp_transition_patch) {
 420		mutex_unlock(&klp_mutex);
 421		return -EINVAL;
 422	}
 423
 424	klp_force_transition();
 425
 426	mutex_unlock(&klp_mutex);
 427
 428	return count;
 429}
 430
 431static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 432static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 433static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 434static struct attribute *klp_patch_attrs[] = {
 435	&enabled_kobj_attr.attr,
 436	&transition_kobj_attr.attr,
 437	&force_kobj_attr.attr,
 438	NULL
 439};
 440ATTRIBUTE_GROUPS(klp_patch);
 441
 442static ssize_t patched_show(struct kobject *kobj,
 443			    struct kobj_attribute *attr, char *buf)
 444{
 445	struct klp_object *obj;
 446
 447	obj = container_of(kobj, struct klp_object, kobj);
 448	return sysfs_emit(buf, "%d\n", obj->patched);
 449}
 450
 451static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
 452static struct attribute *klp_object_attrs[] = {
 453	&patched_kobj_attr.attr,
 454	NULL,
 455};
 456ATTRIBUTE_GROUPS(klp_object);
 457
 458static void klp_free_object_dynamic(struct klp_object *obj)
 459{
 460	kfree(obj->name);
 461	kfree(obj);
 462}
 463
 464static void klp_init_func_early(struct klp_object *obj,
 465				struct klp_func *func);
 466static void klp_init_object_early(struct klp_patch *patch,
 467				  struct klp_object *obj);
 468
 469static struct klp_object *klp_alloc_object_dynamic(const char *name,
 470						   struct klp_patch *patch)
 471{
 472	struct klp_object *obj;
 473
 474	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 475	if (!obj)
 476		return NULL;
 477
 478	if (name) {
 479		obj->name = kstrdup(name, GFP_KERNEL);
 480		if (!obj->name) {
 481			kfree(obj);
 482			return NULL;
 483		}
 484	}
 485
 486	klp_init_object_early(patch, obj);
 487	obj->dynamic = true;
 488
 489	return obj;
 490}
 491
 492static void klp_free_func_nop(struct klp_func *func)
 493{
 494	kfree(func->old_name);
 495	kfree(func);
 496}
 497
 498static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 499					   struct klp_object *obj)
 500{
 501	struct klp_func *func;
 502
 503	func = kzalloc(sizeof(*func), GFP_KERNEL);
 504	if (!func)
 505		return NULL;
 506
 507	if (old_func->old_name) {
 508		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 509		if (!func->old_name) {
 510			kfree(func);
 511			return NULL;
 512		}
 513	}
 514
 515	klp_init_func_early(obj, func);
 516	/*
 517	 * func->new_func is same as func->old_func. These addresses are
 518	 * set when the object is loaded, see klp_init_object_loaded().
 519	 */
 520	func->old_sympos = old_func->old_sympos;
 521	func->nop = true;
 522
 523	return func;
 524}
 525
 526static int klp_add_object_nops(struct klp_patch *patch,
 527			       struct klp_object *old_obj)
 528{
 529	struct klp_object *obj;
 530	struct klp_func *func, *old_func;
 531
 532	obj = klp_find_object(patch, old_obj);
 533
 534	if (!obj) {
 535		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 536		if (!obj)
 537			return -ENOMEM;
 538	}
 539
 540	klp_for_each_func(old_obj, old_func) {
 541		func = klp_find_func(obj, old_func);
 542		if (func)
 543			continue;
 544
 545		func = klp_alloc_func_nop(old_func, obj);
 546		if (!func)
 547			return -ENOMEM;
 548	}
 549
 550	return 0;
 551}
 552
 553/*
 554 * Add 'nop' functions which simply return to the caller to run
 555 * the original function. The 'nop' functions are added to a
 556 * patch to facilitate a 'replace' mode.
 557 */
 558static int klp_add_nops(struct klp_patch *patch)
 559{
 560	struct klp_patch *old_patch;
 561	struct klp_object *old_obj;
 562
 563	klp_for_each_patch(old_patch) {
 564		klp_for_each_object(old_patch, old_obj) {
 565			int err;
 566
 567			err = klp_add_object_nops(patch, old_obj);
 568			if (err)
 569				return err;
 570		}
 571	}
 572
 573	return 0;
 574}
 575
 576static void klp_kobj_release_patch(struct kobject *kobj)
 577{
 578	struct klp_patch *patch;
 579
 580	patch = container_of(kobj, struct klp_patch, kobj);
 581	complete(&patch->finish);
 582}
 583
 584static struct kobj_type klp_ktype_patch = {
 585	.release = klp_kobj_release_patch,
 586	.sysfs_ops = &kobj_sysfs_ops,
 587	.default_groups = klp_patch_groups,
 588};
 589
 590static void klp_kobj_release_object(struct kobject *kobj)
 591{
 592	struct klp_object *obj;
 593
 594	obj = container_of(kobj, struct klp_object, kobj);
 595
 596	if (obj->dynamic)
 597		klp_free_object_dynamic(obj);
 598}
 599
 600static struct kobj_type klp_ktype_object = {
 601	.release = klp_kobj_release_object,
 602	.sysfs_ops = &kobj_sysfs_ops,
 603	.default_groups = klp_object_groups,
 604};
 605
 606static void klp_kobj_release_func(struct kobject *kobj)
 607{
 608	struct klp_func *func;
 609
 610	func = container_of(kobj, struct klp_func, kobj);
 611
 612	if (func->nop)
 613		klp_free_func_nop(func);
 614}
 615
 616static struct kobj_type klp_ktype_func = {
 617	.release = klp_kobj_release_func,
 618	.sysfs_ops = &kobj_sysfs_ops,
 619};
 620
 621static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 622{
 623	struct klp_func *func, *tmp_func;
 624
 625	klp_for_each_func_safe(obj, func, tmp_func) {
 626		if (nops_only && !func->nop)
 627			continue;
 628
 629		list_del(&func->node);
 630		kobject_put(&func->kobj);
 631	}
 632}
 633
 634/* Clean up when a patched object is unloaded */
 635static void klp_free_object_loaded(struct klp_object *obj)
 636{
 637	struct klp_func *func;
 638
 639	obj->mod = NULL;
 640
 641	klp_for_each_func(obj, func) {
 642		func->old_func = NULL;
 643
 644		if (func->nop)
 645			func->new_func = NULL;
 646	}
 647}
 648
 649static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 650{
 651	struct klp_object *obj, *tmp_obj;
 652
 653	klp_for_each_object_safe(patch, obj, tmp_obj) {
 654		__klp_free_funcs(obj, nops_only);
 655
 656		if (nops_only && !obj->dynamic)
 657			continue;
 658
 659		list_del(&obj->node);
 660		kobject_put(&obj->kobj);
 661	}
 662}
 663
 664static void klp_free_objects(struct klp_patch *patch)
 665{
 666	__klp_free_objects(patch, false);
 667}
 668
 669static void klp_free_objects_dynamic(struct klp_patch *patch)
 670{
 671	__klp_free_objects(patch, true);
 672}
 673
 674/*
 675 * This function implements the free operations that can be called safely
 676 * under klp_mutex.
 677 *
 678 * The operation must be completed by calling klp_free_patch_finish()
 679 * outside klp_mutex.
 680 */
 681static void klp_free_patch_start(struct klp_patch *patch)
 682{
 683	if (!list_empty(&patch->list))
 684		list_del(&patch->list);
 685
 686	klp_free_objects(patch);
 687}
 688
 689/*
 690 * This function implements the free part that must be called outside
 691 * klp_mutex.
 692 *
 693 * It must be called after klp_free_patch_start(). And it has to be
 694 * the last function accessing the livepatch structures when the patch
 695 * gets disabled.
 696 */
 697static void klp_free_patch_finish(struct klp_patch *patch)
 698{
 699	/*
 700	 * Avoid deadlock with enabled_store() sysfs callback by
 701	 * calling this outside klp_mutex. It is safe because
 702	 * this is called when the patch gets disabled and it
 703	 * cannot get enabled again.
 704	 */
 705	kobject_put(&patch->kobj);
 706	wait_for_completion(&patch->finish);
 707
 708	/* Put the module after the last access to struct klp_patch. */
 709	if (!patch->forced)
 710		module_put(patch->mod);
 711}
 712
 713/*
 714 * The livepatch might be freed from sysfs interface created by the patch.
 715 * This work allows to wait until the interface is destroyed in a separate
 716 * context.
 717 */
 718static void klp_free_patch_work_fn(struct work_struct *work)
 719{
 720	struct klp_patch *patch =
 721		container_of(work, struct klp_patch, free_work);
 722
 723	klp_free_patch_finish(patch);
 724}
 725
 726void klp_free_patch_async(struct klp_patch *patch)
 727{
 728	klp_free_patch_start(patch);
 729	schedule_work(&patch->free_work);
 730}
 731
 732void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 733{
 734	struct klp_patch *old_patch, *tmp_patch;
 735
 736	klp_for_each_patch_safe(old_patch, tmp_patch) {
 737		if (old_patch == new_patch)
 738			return;
 739		klp_free_patch_async(old_patch);
 740	}
 741}
 742
 743static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 744{
 745	if (!func->old_name)
 746		return -EINVAL;
 747
 748	/*
 749	 * NOPs get the address later. The patched module must be loaded,
 750	 * see klp_init_object_loaded().
 751	 */
 752	if (!func->new_func && !func->nop)
 753		return -EINVAL;
 754
 755	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 756		return -EINVAL;
 757
 758	INIT_LIST_HEAD(&func->stack_node);
 759	func->patched = false;
 760	func->transition = false;
 761
 762	/* The format for the sysfs directory is <function,sympos> where sympos
 763	 * is the nth occurrence of this symbol in kallsyms for the patched
 764	 * object. If the user selects 0 for old_sympos, then 1 will be used
 765	 * since a unique symbol will be the first occurrence.
 766	 */
 767	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 768			   func->old_name,
 769			   func->old_sympos ? func->old_sympos : 1);
 770}
 771
 772static int klp_apply_object_relocs(struct klp_patch *patch,
 773				   struct klp_object *obj)
 774{
 775	int i, ret;
 776	struct klp_modinfo *info = patch->mod->klp_info;
 777
 778	for (i = 1; i < info->hdr.e_shnum; i++) {
 779		Elf_Shdr *sec = info->sechdrs + i;
 780
 781		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 782			continue;
 783
 784		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
 785					       info->secstrings,
 786					       patch->mod->core_kallsyms.strtab,
 787					       info->symndx, i, obj->name);
 788		if (ret)
 789			return ret;
 790	}
 791
 792	return 0;
 793}
 794
 795/* parts of the initialization that is done only when the object is loaded */
 796static int klp_init_object_loaded(struct klp_patch *patch,
 797				  struct klp_object *obj)
 798{
 799	struct klp_func *func;
 800	int ret;
 801
 802	if (klp_is_module(obj)) {
 803		/*
 804		 * Only write module-specific relocations here
 805		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 806		 * written earlier during the initialization of the klp module
 807		 * itself.
 808		 */
 809		ret = klp_apply_object_relocs(patch, obj);
 810		if (ret)
 811			return ret;
 812	}
 813
 814	klp_for_each_func(obj, func) {
 815		ret = klp_find_object_symbol(obj->name, func->old_name,
 816					     func->old_sympos,
 817					     (unsigned long *)&func->old_func);
 818		if (ret)
 819			return ret;
 820
 821		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 822						  &func->old_size, NULL);
 823		if (!ret) {
 824			pr_err("kallsyms size lookup failed for '%s'\n",
 825			       func->old_name);
 826			return -ENOENT;
 827		}
 828
 829		if (func->nop)
 830			func->new_func = func->old_func;
 831
 832		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 833						  &func->new_size, NULL);
 834		if (!ret) {
 835			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 836			       func->old_name);
 837			return -ENOENT;
 838		}
 839	}
 840
 841	return 0;
 842}
 843
 844static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 845{
 846	struct klp_func *func;
 847	int ret;
 848	const char *name;
 849
 850	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 851		return -EINVAL;
 852
 853	obj->patched = false;
 854	obj->mod = NULL;
 855
 856	klp_find_object_module(obj);
 857
 858	name = klp_is_module(obj) ? obj->name : "vmlinux";
 859	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 860	if (ret)
 861		return ret;
 862
 863	klp_for_each_func(obj, func) {
 864		ret = klp_init_func(obj, func);
 865		if (ret)
 866			return ret;
 867	}
 868
 869	if (klp_is_object_loaded(obj))
 870		ret = klp_init_object_loaded(patch, obj);
 871
 872	return ret;
 873}
 874
 875static void klp_init_func_early(struct klp_object *obj,
 876				struct klp_func *func)
 877{
 878	kobject_init(&func->kobj, &klp_ktype_func);
 879	list_add_tail(&func->node, &obj->func_list);
 880}
 881
 882static void klp_init_object_early(struct klp_patch *patch,
 883				  struct klp_object *obj)
 884{
 885	INIT_LIST_HEAD(&obj->func_list);
 886	kobject_init(&obj->kobj, &klp_ktype_object);
 887	list_add_tail(&obj->node, &patch->obj_list);
 888}
 889
 890static void klp_init_patch_early(struct klp_patch *patch)
 891{
 892	struct klp_object *obj;
 893	struct klp_func *func;
 894
 
 
 
 895	INIT_LIST_HEAD(&patch->list);
 896	INIT_LIST_HEAD(&patch->obj_list);
 897	kobject_init(&patch->kobj, &klp_ktype_patch);
 898	patch->enabled = false;
 899	patch->forced = false;
 900	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 901	init_completion(&patch->finish);
 902
 903	klp_for_each_object_static(patch, obj) {
 
 
 
 904		klp_init_object_early(patch, obj);
 905
 906		klp_for_each_func_static(obj, func) {
 907			klp_init_func_early(obj, func);
 908		}
 909	}
 
 
 
 
 
 910}
 911
 912static int klp_init_patch(struct klp_patch *patch)
 913{
 914	struct klp_object *obj;
 915	int ret;
 916
 917	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 918	if (ret)
 919		return ret;
 920
 921	if (patch->replace) {
 922		ret = klp_add_nops(patch);
 923		if (ret)
 924			return ret;
 925	}
 926
 927	klp_for_each_object(patch, obj) {
 928		ret = klp_init_object(patch, obj);
 929		if (ret)
 930			return ret;
 931	}
 932
 933	list_add_tail(&patch->list, &klp_patches);
 934
 935	return 0;
 936}
 937
 938static int __klp_disable_patch(struct klp_patch *patch)
 939{
 940	struct klp_object *obj;
 941
 942	if (WARN_ON(!patch->enabled))
 943		return -EINVAL;
 944
 945	if (klp_transition_patch)
 946		return -EBUSY;
 947
 948	klp_init_transition(patch, KLP_UNPATCHED);
 949
 950	klp_for_each_object(patch, obj)
 951		if (obj->patched)
 952			klp_pre_unpatch_callback(obj);
 953
 954	/*
 955	 * Enforce the order of the func->transition writes in
 956	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 957	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 958	 * is called shortly after klp_update_patch_state() switches the task,
 959	 * this ensures the handler sees that func->transition is set.
 960	 */
 961	smp_wmb();
 962
 963	klp_start_transition();
 964	patch->enabled = false;
 965	klp_try_complete_transition();
 966
 967	return 0;
 968}
 969
 970static int __klp_enable_patch(struct klp_patch *patch)
 971{
 972	struct klp_object *obj;
 973	int ret;
 974
 975	if (klp_transition_patch)
 976		return -EBUSY;
 977
 978	if (WARN_ON(patch->enabled))
 979		return -EINVAL;
 980
 981	pr_notice("enabling patch '%s'\n", patch->mod->name);
 982
 983	klp_init_transition(patch, KLP_PATCHED);
 984
 985	/*
 986	 * Enforce the order of the func->transition writes in
 987	 * klp_init_transition() and the ops->func_stack writes in
 988	 * klp_patch_object(), so that klp_ftrace_handler() will see the
 989	 * func->transition updates before the handler is registered and the
 990	 * new funcs become visible to the handler.
 991	 */
 992	smp_wmb();
 993
 994	klp_for_each_object(patch, obj) {
 995		if (!klp_is_object_loaded(obj))
 996			continue;
 997
 998		ret = klp_pre_patch_callback(obj);
 999		if (ret) {
1000			pr_warn("pre-patch callback failed for object '%s'\n",
1001				klp_is_module(obj) ? obj->name : "vmlinux");
1002			goto err;
1003		}
1004
1005		ret = klp_patch_object(obj);
1006		if (ret) {
1007			pr_warn("failed to patch object '%s'\n",
1008				klp_is_module(obj) ? obj->name : "vmlinux");
1009			goto err;
1010		}
1011	}
1012
1013	klp_start_transition();
1014	patch->enabled = true;
1015	klp_try_complete_transition();
1016
1017	return 0;
1018err:
1019	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1020
1021	klp_cancel_transition();
1022	return ret;
1023}
1024
1025/**
1026 * klp_enable_patch() - enable the livepatch
1027 * @patch:	patch to be enabled
1028 *
1029 * Initializes the data structure associated with the patch, creates the sysfs
1030 * interface, performs the needed symbol lookups and code relocations,
1031 * registers the patched functions with ftrace.
1032 *
1033 * This function is supposed to be called from the livepatch module_init()
1034 * callback.
1035 *
1036 * Return: 0 on success, otherwise error
1037 */
1038int klp_enable_patch(struct klp_patch *patch)
1039{
1040	int ret;
1041	struct klp_object *obj;
1042
1043	if (!patch || !patch->mod || !patch->objs)
1044		return -EINVAL;
1045
1046	klp_for_each_object_static(patch, obj) {
1047		if (!obj->funcs)
1048			return -EINVAL;
1049	}
1050
1051
1052	if (!is_livepatch_module(patch->mod)) {
1053		pr_err("module %s is not marked as a livepatch module\n",
1054		       patch->mod->name);
1055		return -EINVAL;
1056	}
1057
1058	if (!klp_initialized())
1059		return -ENODEV;
1060
1061	if (!klp_have_reliable_stack()) {
1062		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1063		pr_warn("The livepatch transition may never complete.\n");
1064	}
1065
1066	mutex_lock(&klp_mutex);
1067
1068	if (!klp_is_patch_compatible(patch)) {
1069		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1070			patch->mod->name);
1071		mutex_unlock(&klp_mutex);
1072		return -EINVAL;
1073	}
1074
1075	if (!try_module_get(patch->mod)) {
 
1076		mutex_unlock(&klp_mutex);
1077		return -ENODEV;
1078	}
1079
1080	klp_init_patch_early(patch);
1081
1082	ret = klp_init_patch(patch);
1083	if (ret)
1084		goto err;
1085
1086	ret = __klp_enable_patch(patch);
1087	if (ret)
1088		goto err;
1089
1090	mutex_unlock(&klp_mutex);
1091
1092	return 0;
1093
1094err:
1095	klp_free_patch_start(patch);
1096
1097	mutex_unlock(&klp_mutex);
1098
1099	klp_free_patch_finish(patch);
1100
1101	return ret;
1102}
1103EXPORT_SYMBOL_GPL(klp_enable_patch);
1104
1105/*
1106 * This function unpatches objects from the replaced livepatches.
1107 *
1108 * We could be pretty aggressive here. It is called in the situation where
1109 * these structures are no longer accessed from the ftrace handler.
1110 * All functions are redirected by the klp_transition_patch. They
1111 * use either a new code or they are in the original code because
1112 * of the special nop function patches.
1113 *
1114 * The only exception is when the transition was forced. In this case,
1115 * klp_ftrace_handler() might still see the replaced patch on the stack.
1116 * Fortunately, it is carefully designed to work with removed functions
1117 * thanks to RCU. We only have to keep the patches on the system. Also
1118 * this is handled transparently by patch->module_put.
1119 */
1120void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1121{
1122	struct klp_patch *old_patch;
1123
1124	klp_for_each_patch(old_patch) {
1125		if (old_patch == new_patch)
1126			return;
1127
1128		old_patch->enabled = false;
1129		klp_unpatch_objects(old_patch);
1130	}
1131}
1132
1133/*
1134 * This function removes the dynamically allocated 'nop' functions.
1135 *
1136 * We could be pretty aggressive. NOPs do not change the existing
1137 * behavior except for adding unnecessary delay by the ftrace handler.
1138 *
1139 * It is safe even when the transition was forced. The ftrace handler
1140 * will see a valid ops->func_stack entry thanks to RCU.
1141 *
1142 * We could even free the NOPs structures. They must be the last entry
1143 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1144 * It does the same as klp_synchronize_transition() to make sure that
1145 * nobody is inside the ftrace handler once the operation finishes.
1146 *
1147 * IMPORTANT: It must be called right after removing the replaced patches!
1148 */
1149void klp_discard_nops(struct klp_patch *new_patch)
1150{
1151	klp_unpatch_objects_dynamic(klp_transition_patch);
1152	klp_free_objects_dynamic(klp_transition_patch);
1153}
1154
1155/*
1156 * Remove parts of patches that touch a given kernel module. The list of
1157 * patches processed might be limited. When limit is NULL, all patches
1158 * will be handled.
1159 */
1160static void klp_cleanup_module_patches_limited(struct module *mod,
1161					       struct klp_patch *limit)
1162{
1163	struct klp_patch *patch;
1164	struct klp_object *obj;
1165
1166	klp_for_each_patch(patch) {
1167		if (patch == limit)
1168			break;
1169
1170		klp_for_each_object(patch, obj) {
1171			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1172				continue;
1173
1174			if (patch != klp_transition_patch)
1175				klp_pre_unpatch_callback(obj);
1176
1177			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1178				  patch->mod->name, obj->mod->name);
1179			klp_unpatch_object(obj);
1180
1181			klp_post_unpatch_callback(obj);
1182
1183			klp_free_object_loaded(obj);
1184			break;
1185		}
1186	}
1187}
1188
1189int klp_module_coming(struct module *mod)
1190{
1191	int ret;
1192	struct klp_patch *patch;
1193	struct klp_object *obj;
1194
1195	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1196		return -EINVAL;
1197
1198	if (!strcmp(mod->name, "vmlinux")) {
1199		pr_err("vmlinux.ko: invalid module name\n");
1200		return -EINVAL;
1201	}
1202
1203	mutex_lock(&klp_mutex);
1204	/*
1205	 * Each module has to know that klp_module_coming()
1206	 * has been called. We never know what module will
1207	 * get patched by a new patch.
1208	 */
1209	mod->klp_alive = true;
1210
1211	klp_for_each_patch(patch) {
1212		klp_for_each_object(patch, obj) {
1213			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1214				continue;
1215
1216			obj->mod = mod;
1217
1218			ret = klp_init_object_loaded(patch, obj);
1219			if (ret) {
1220				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1221					patch->mod->name, obj->mod->name, ret);
1222				goto err;
1223			}
1224
1225			pr_notice("applying patch '%s' to loading module '%s'\n",
1226				  patch->mod->name, obj->mod->name);
1227
1228			ret = klp_pre_patch_callback(obj);
1229			if (ret) {
1230				pr_warn("pre-patch callback failed for object '%s'\n",
1231					obj->name);
1232				goto err;
1233			}
1234
1235			ret = klp_patch_object(obj);
1236			if (ret) {
1237				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1238					patch->mod->name, obj->mod->name, ret);
1239
1240				klp_post_unpatch_callback(obj);
1241				goto err;
1242			}
1243
1244			if (patch != klp_transition_patch)
1245				klp_post_patch_callback(obj);
1246
1247			break;
1248		}
1249	}
1250
1251	mutex_unlock(&klp_mutex);
1252
1253	return 0;
1254
1255err:
1256	/*
1257	 * If a patch is unsuccessfully applied, return
1258	 * error to the module loader.
1259	 */
1260	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1261		patch->mod->name, obj->mod->name, obj->mod->name);
1262	mod->klp_alive = false;
1263	obj->mod = NULL;
1264	klp_cleanup_module_patches_limited(mod, patch);
1265	mutex_unlock(&klp_mutex);
1266
1267	return ret;
1268}
1269
1270void klp_module_going(struct module *mod)
1271{
1272	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1273		    mod->state != MODULE_STATE_COMING))
1274		return;
1275
1276	mutex_lock(&klp_mutex);
1277	/*
1278	 * Each module has to know that klp_module_going()
1279	 * has been called. We never know what module will
1280	 * get patched by a new patch.
1281	 */
1282	mod->klp_alive = false;
1283
1284	klp_cleanup_module_patches_limited(mod, NULL);
1285
1286	mutex_unlock(&klp_mutex);
1287}
1288
1289static int __init klp_init(void)
1290{
1291	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1292	if (!klp_root_kobj)
1293		return -ENOMEM;
1294
1295	return 0;
1296}
1297
1298module_init(klp_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
  22#include <linux/rcupdate.h>
  23#include <asm/cacheflush.h>
  24#include "core.h"
  25#include "patch.h"
  26#include "state.h"
  27#include "transition.h"
  28
  29/*
  30 * klp_mutex is a coarse lock which serializes access to klp data.  All
  31 * accesses to klp-related variables and structures must have mutex protection,
  32 * except within the following functions which carefully avoid the need for it:
  33 *
  34 * - klp_ftrace_handler()
  35 * - klp_update_patch_state()
  36 */
  37DEFINE_MUTEX(klp_mutex);
  38
  39/*
  40 * Actively used patches: enabled or in transition. Note that replaced
  41 * or disabled patches are not listed even though the related kernel
  42 * module still can be loaded.
  43 */
  44LIST_HEAD(klp_patches);
  45
  46static struct kobject *klp_root_kobj;
  47
  48static bool klp_is_module(struct klp_object *obj)
  49{
  50	return obj->name;
  51}
  52
  53/* sets obj->mod if object is not vmlinux and module is found */
  54static void klp_find_object_module(struct klp_object *obj)
  55{
  56	struct module *mod;
  57
  58	if (!klp_is_module(obj))
  59		return;
  60
  61	rcu_read_lock_sched();
  62	/*
  63	 * We do not want to block removal of patched modules and therefore
  64	 * we do not take a reference here. The patches are removed by
  65	 * klp_module_going() instead.
  66	 */
  67	mod = find_module(obj->name);
  68	/*
  69	 * Do not mess work of klp_module_coming() and klp_module_going().
  70	 * Note that the patch might still be needed before klp_module_going()
  71	 * is called. Module functions can be called even in the GOING state
  72	 * until mod->exit() finishes. This is especially important for
  73	 * patches that modify semantic of the functions.
  74	 */
  75	if (mod && mod->klp_alive)
  76		obj->mod = mod;
  77
  78	rcu_read_unlock_sched();
  79}
  80
  81static bool klp_initialized(void)
  82{
  83	return !!klp_root_kobj;
  84}
  85
  86static struct klp_func *klp_find_func(struct klp_object *obj,
  87				      struct klp_func *old_func)
  88{
  89	struct klp_func *func;
  90
  91	klp_for_each_func(obj, func) {
  92		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  93		    (old_func->old_sympos == func->old_sympos)) {
  94			return func;
  95		}
  96	}
  97
  98	return NULL;
  99}
 100
 101static struct klp_object *klp_find_object(struct klp_patch *patch,
 102					  struct klp_object *old_obj)
 103{
 104	struct klp_object *obj;
 105
 106	klp_for_each_object(patch, obj) {
 107		if (klp_is_module(old_obj)) {
 108			if (klp_is_module(obj) &&
 109			    strcmp(old_obj->name, obj->name) == 0) {
 110				return obj;
 111			}
 112		} else if (!klp_is_module(obj)) {
 113			return obj;
 114		}
 115	}
 116
 117	return NULL;
 118}
 119
 120struct klp_find_arg {
 121	const char *objname;
 122	const char *name;
 123	unsigned long addr;
 124	unsigned long count;
 125	unsigned long pos;
 126};
 127
 128static int klp_find_callback(void *data, const char *name,
 129			     struct module *mod, unsigned long addr)
 130{
 131	struct klp_find_arg *args = data;
 132
 133	if ((mod && !args->objname) || (!mod && args->objname))
 134		return 0;
 135
 136	if (strcmp(args->name, name))
 137		return 0;
 138
 139	if (args->objname && strcmp(args->objname, mod->name))
 140		return 0;
 141
 142	args->addr = addr;
 143	args->count++;
 144
 145	/*
 146	 * Finish the search when the symbol is found for the desired position
 147	 * or the position is not defined for a non-unique symbol.
 148	 */
 149	if ((args->pos && (args->count == args->pos)) ||
 150	    (!args->pos && (args->count > 1)))
 151		return 1;
 152
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static int klp_find_object_symbol(const char *objname, const char *name,
 157				  unsigned long sympos, unsigned long *addr)
 158{
 159	struct klp_find_arg args = {
 160		.objname = objname,
 161		.name = name,
 162		.addr = 0,
 163		.count = 0,
 164		.pos = sympos,
 165	};
 166
 167	if (objname)
 168		module_kallsyms_on_each_symbol(klp_find_callback, &args);
 169	else
 170		kallsyms_on_each_symbol(klp_find_callback, &args);
 171
 172	/*
 173	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 174	 * otherwise ensure the symbol position count matches sympos.
 175	 */
 176	if (args.addr == 0)
 177		pr_err("symbol '%s' not found in symbol table\n", name);
 178	else if (args.count > 1 && sympos == 0) {
 179		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 180		       name, objname);
 181	} else if (sympos != args.count && sympos > 0) {
 182		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 183		       sympos, name, objname ? objname : "vmlinux");
 184	} else {
 185		*addr = args.addr;
 186		return 0;
 187	}
 188
 189	*addr = 0;
 190	return -EINVAL;
 191}
 192
 193static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
 194			       unsigned int symndx, Elf_Shdr *relasec,
 195			       const char *sec_objname)
 196{
 197	int i, cnt, ret;
 198	char sym_objname[MODULE_NAME_LEN];
 199	char sym_name[KSYM_NAME_LEN];
 200	Elf_Rela *relas;
 201	Elf_Sym *sym;
 202	unsigned long sympos, addr;
 203	bool sym_vmlinux;
 204	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 205
 206	/*
 207	 * Since the field widths for sym_objname and sym_name in the sscanf()
 208	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 209	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 210	 * and KSYM_NAME_LEN have the values we expect them to have.
 211	 *
 212	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 213	 * we use the smallest/strictest upper bound possible (56, based on
 214	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 215	 */
 216	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
 217
 218	relas = (Elf_Rela *) relasec->sh_addr;
 219	/* For each rela in this klp relocation section */
 220	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 221		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 222		if (sym->st_shndx != SHN_LIVEPATCH) {
 223			pr_err("symbol %s is not marked as a livepatch symbol\n",
 224			       strtab + sym->st_name);
 225			return -EINVAL;
 226		}
 227
 228		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 229		cnt = sscanf(strtab + sym->st_name,
 230			     ".klp.sym.%55[^.].%127[^,],%lu",
 231			     sym_objname, sym_name, &sympos);
 232		if (cnt != 3) {
 233			pr_err("symbol %s has an incorrectly formatted name\n",
 234			       strtab + sym->st_name);
 235			return -EINVAL;
 236		}
 237
 238		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 239
 240		/*
 241		 * Prevent module-specific KLP rela sections from referencing
 242		 * vmlinux symbols.  This helps prevent ordering issues with
 243		 * module special section initializations.  Presumably such
 244		 * symbols are exported and normal relas can be used instead.
 245		 */
 246		if (!sec_vmlinux && sym_vmlinux) {
 247			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
 248			       sym_name);
 249			return -EINVAL;
 250		}
 251
 252		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 253		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 254					     sym_name, sympos, &addr);
 255		if (ret)
 256			return ret;
 257
 258		sym->st_value = addr;
 259	}
 260
 261	return 0;
 262}
 263
 264/*
 265 * At a high-level, there are two types of klp relocation sections: those which
 266 * reference symbols which live in vmlinux; and those which reference symbols
 267 * which live in other modules.  This function is called for both types:
 268 *
 269 * 1) When a klp module itself loads, the module code calls this function to
 270 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 271 *    These relocations are written to the klp module text to allow the patched
 272 *    code/data to reference unexported vmlinux symbols.  They're written as
 273 *    early as possible to ensure that other module init code (.e.g.,
 274 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 275 *    might be referenced by the klp module's special sections.
 276 *
 277 * 2) When a to-be-patched module loads -- or is already loaded when a
 278 *    corresponding klp module loads -- klp code calls this function to write
 279 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 280 *    are written to the klp module text to allow the patched code/data to
 281 *    reference symbols which live in the to-be-patched module or one of its
 282 *    module dependencies.  Exported symbols are supported, in addition to
 283 *    unexported symbols, in order to enable late module patching, which allows
 284 *    the to-be-patched module to be loaded and patched sometime *after* the
 285 *    klp module is loaded.
 286 */
 287int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 288			     const char *shstrtab, const char *strtab,
 289			     unsigned int symndx, unsigned int secndx,
 290			     const char *objname)
 291{
 292	int cnt, ret;
 293	char sec_objname[MODULE_NAME_LEN];
 294	Elf_Shdr *sec = sechdrs + secndx;
 295
 296	/*
 297	 * Format: .klp.rela.sec_objname.section_name
 298	 * See comment in klp_resolve_symbols() for an explanation
 299	 * of the selected field width value.
 300	 */
 301	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 302		     sec_objname);
 303	if (cnt != 1) {
 304		pr_err("section %s has an incorrectly formatted name\n",
 305		       shstrtab + sec->sh_name);
 306		return -EINVAL;
 307	}
 308
 309	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 310		return 0;
 311
 312	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
 313	if (ret)
 314		return ret;
 315
 316	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 317}
 318
 319/*
 320 * Sysfs Interface
 321 *
 322 * /sys/kernel/livepatch
 323 * /sys/kernel/livepatch/<patch>
 324 * /sys/kernel/livepatch/<patch>/enabled
 325 * /sys/kernel/livepatch/<patch>/transition
 326 * /sys/kernel/livepatch/<patch>/force
 327 * /sys/kernel/livepatch/<patch>/<object>
 
 328 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 329 */
 330static int __klp_disable_patch(struct klp_patch *patch);
 331
 332static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 333			     const char *buf, size_t count)
 334{
 335	struct klp_patch *patch;
 336	int ret;
 337	bool enabled;
 338
 339	ret = kstrtobool(buf, &enabled);
 340	if (ret)
 341		return ret;
 342
 343	patch = container_of(kobj, struct klp_patch, kobj);
 344
 345	mutex_lock(&klp_mutex);
 346
 347	if (patch->enabled == enabled) {
 348		/* already in requested state */
 349		ret = -EINVAL;
 350		goto out;
 351	}
 352
 353	/*
 354	 * Allow to reverse a pending transition in both ways. It might be
 355	 * necessary to complete the transition without forcing and breaking
 356	 * the system integrity.
 357	 *
 358	 * Do not allow to re-enable a disabled patch.
 359	 */
 360	if (patch == klp_transition_patch)
 361		klp_reverse_transition();
 362	else if (!enabled)
 363		ret = __klp_disable_patch(patch);
 364	else
 365		ret = -EINVAL;
 366
 367out:
 368	mutex_unlock(&klp_mutex);
 369
 370	if (ret)
 371		return ret;
 372	return count;
 373}
 374
 375static ssize_t enabled_show(struct kobject *kobj,
 376			    struct kobj_attribute *attr, char *buf)
 377{
 378	struct klp_patch *patch;
 379
 380	patch = container_of(kobj, struct klp_patch, kobj);
 381	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
 382}
 383
 384static ssize_t transition_show(struct kobject *kobj,
 385			       struct kobj_attribute *attr, char *buf)
 386{
 387	struct klp_patch *patch;
 388
 389	patch = container_of(kobj, struct klp_patch, kobj);
 390	return snprintf(buf, PAGE_SIZE-1, "%d\n",
 391			patch == klp_transition_patch);
 392}
 393
 394static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 395			   const char *buf, size_t count)
 396{
 397	struct klp_patch *patch;
 398	int ret;
 399	bool val;
 400
 401	ret = kstrtobool(buf, &val);
 402	if (ret)
 403		return ret;
 404
 405	if (!val)
 406		return count;
 407
 408	mutex_lock(&klp_mutex);
 409
 410	patch = container_of(kobj, struct klp_patch, kobj);
 411	if (patch != klp_transition_patch) {
 412		mutex_unlock(&klp_mutex);
 413		return -EINVAL;
 414	}
 415
 416	klp_force_transition();
 417
 418	mutex_unlock(&klp_mutex);
 419
 420	return count;
 421}
 422
 423static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 424static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 425static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 426static struct attribute *klp_patch_attrs[] = {
 427	&enabled_kobj_attr.attr,
 428	&transition_kobj_attr.attr,
 429	&force_kobj_attr.attr,
 430	NULL
 431};
 432ATTRIBUTE_GROUPS(klp_patch);
 433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434static void klp_free_object_dynamic(struct klp_object *obj)
 435{
 436	kfree(obj->name);
 437	kfree(obj);
 438}
 439
 440static void klp_init_func_early(struct klp_object *obj,
 441				struct klp_func *func);
 442static void klp_init_object_early(struct klp_patch *patch,
 443				  struct klp_object *obj);
 444
 445static struct klp_object *klp_alloc_object_dynamic(const char *name,
 446						   struct klp_patch *patch)
 447{
 448	struct klp_object *obj;
 449
 450	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 451	if (!obj)
 452		return NULL;
 453
 454	if (name) {
 455		obj->name = kstrdup(name, GFP_KERNEL);
 456		if (!obj->name) {
 457			kfree(obj);
 458			return NULL;
 459		}
 460	}
 461
 462	klp_init_object_early(patch, obj);
 463	obj->dynamic = true;
 464
 465	return obj;
 466}
 467
 468static void klp_free_func_nop(struct klp_func *func)
 469{
 470	kfree(func->old_name);
 471	kfree(func);
 472}
 473
 474static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 475					   struct klp_object *obj)
 476{
 477	struct klp_func *func;
 478
 479	func = kzalloc(sizeof(*func), GFP_KERNEL);
 480	if (!func)
 481		return NULL;
 482
 483	if (old_func->old_name) {
 484		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 485		if (!func->old_name) {
 486			kfree(func);
 487			return NULL;
 488		}
 489	}
 490
 491	klp_init_func_early(obj, func);
 492	/*
 493	 * func->new_func is same as func->old_func. These addresses are
 494	 * set when the object is loaded, see klp_init_object_loaded().
 495	 */
 496	func->old_sympos = old_func->old_sympos;
 497	func->nop = true;
 498
 499	return func;
 500}
 501
 502static int klp_add_object_nops(struct klp_patch *patch,
 503			       struct klp_object *old_obj)
 504{
 505	struct klp_object *obj;
 506	struct klp_func *func, *old_func;
 507
 508	obj = klp_find_object(patch, old_obj);
 509
 510	if (!obj) {
 511		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 512		if (!obj)
 513			return -ENOMEM;
 514	}
 515
 516	klp_for_each_func(old_obj, old_func) {
 517		func = klp_find_func(obj, old_func);
 518		if (func)
 519			continue;
 520
 521		func = klp_alloc_func_nop(old_func, obj);
 522		if (!func)
 523			return -ENOMEM;
 524	}
 525
 526	return 0;
 527}
 528
 529/*
 530 * Add 'nop' functions which simply return to the caller to run
 531 * the original function. The 'nop' functions are added to a
 532 * patch to facilitate a 'replace' mode.
 533 */
 534static int klp_add_nops(struct klp_patch *patch)
 535{
 536	struct klp_patch *old_patch;
 537	struct klp_object *old_obj;
 538
 539	klp_for_each_patch(old_patch) {
 540		klp_for_each_object(old_patch, old_obj) {
 541			int err;
 542
 543			err = klp_add_object_nops(patch, old_obj);
 544			if (err)
 545				return err;
 546		}
 547	}
 548
 549	return 0;
 550}
 551
 552static void klp_kobj_release_patch(struct kobject *kobj)
 553{
 554	struct klp_patch *patch;
 555
 556	patch = container_of(kobj, struct klp_patch, kobj);
 557	complete(&patch->finish);
 558}
 559
 560static struct kobj_type klp_ktype_patch = {
 561	.release = klp_kobj_release_patch,
 562	.sysfs_ops = &kobj_sysfs_ops,
 563	.default_groups = klp_patch_groups,
 564};
 565
 566static void klp_kobj_release_object(struct kobject *kobj)
 567{
 568	struct klp_object *obj;
 569
 570	obj = container_of(kobj, struct klp_object, kobj);
 571
 572	if (obj->dynamic)
 573		klp_free_object_dynamic(obj);
 574}
 575
 576static struct kobj_type klp_ktype_object = {
 577	.release = klp_kobj_release_object,
 578	.sysfs_ops = &kobj_sysfs_ops,
 
 579};
 580
 581static void klp_kobj_release_func(struct kobject *kobj)
 582{
 583	struct klp_func *func;
 584
 585	func = container_of(kobj, struct klp_func, kobj);
 586
 587	if (func->nop)
 588		klp_free_func_nop(func);
 589}
 590
 591static struct kobj_type klp_ktype_func = {
 592	.release = klp_kobj_release_func,
 593	.sysfs_ops = &kobj_sysfs_ops,
 594};
 595
 596static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 597{
 598	struct klp_func *func, *tmp_func;
 599
 600	klp_for_each_func_safe(obj, func, tmp_func) {
 601		if (nops_only && !func->nop)
 602			continue;
 603
 604		list_del(&func->node);
 605		kobject_put(&func->kobj);
 606	}
 607}
 608
 609/* Clean up when a patched object is unloaded */
 610static void klp_free_object_loaded(struct klp_object *obj)
 611{
 612	struct klp_func *func;
 613
 614	obj->mod = NULL;
 615
 616	klp_for_each_func(obj, func) {
 617		func->old_func = NULL;
 618
 619		if (func->nop)
 620			func->new_func = NULL;
 621	}
 622}
 623
 624static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 625{
 626	struct klp_object *obj, *tmp_obj;
 627
 628	klp_for_each_object_safe(patch, obj, tmp_obj) {
 629		__klp_free_funcs(obj, nops_only);
 630
 631		if (nops_only && !obj->dynamic)
 632			continue;
 633
 634		list_del(&obj->node);
 635		kobject_put(&obj->kobj);
 636	}
 637}
 638
 639static void klp_free_objects(struct klp_patch *patch)
 640{
 641	__klp_free_objects(patch, false);
 642}
 643
 644static void klp_free_objects_dynamic(struct klp_patch *patch)
 645{
 646	__klp_free_objects(patch, true);
 647}
 648
 649/*
 650 * This function implements the free operations that can be called safely
 651 * under klp_mutex.
 652 *
 653 * The operation must be completed by calling klp_free_patch_finish()
 654 * outside klp_mutex.
 655 */
 656static void klp_free_patch_start(struct klp_patch *patch)
 657{
 658	if (!list_empty(&patch->list))
 659		list_del(&patch->list);
 660
 661	klp_free_objects(patch);
 662}
 663
 664/*
 665 * This function implements the free part that must be called outside
 666 * klp_mutex.
 667 *
 668 * It must be called after klp_free_patch_start(). And it has to be
 669 * the last function accessing the livepatch structures when the patch
 670 * gets disabled.
 671 */
 672static void klp_free_patch_finish(struct klp_patch *patch)
 673{
 674	/*
 675	 * Avoid deadlock with enabled_store() sysfs callback by
 676	 * calling this outside klp_mutex. It is safe because
 677	 * this is called when the patch gets disabled and it
 678	 * cannot get enabled again.
 679	 */
 680	kobject_put(&patch->kobj);
 681	wait_for_completion(&patch->finish);
 682
 683	/* Put the module after the last access to struct klp_patch. */
 684	if (!patch->forced)
 685		module_put(patch->mod);
 686}
 687
 688/*
 689 * The livepatch might be freed from sysfs interface created by the patch.
 690 * This work allows to wait until the interface is destroyed in a separate
 691 * context.
 692 */
 693static void klp_free_patch_work_fn(struct work_struct *work)
 694{
 695	struct klp_patch *patch =
 696		container_of(work, struct klp_patch, free_work);
 697
 698	klp_free_patch_finish(patch);
 699}
 700
 701void klp_free_patch_async(struct klp_patch *patch)
 702{
 703	klp_free_patch_start(patch);
 704	schedule_work(&patch->free_work);
 705}
 706
 707void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 708{
 709	struct klp_patch *old_patch, *tmp_patch;
 710
 711	klp_for_each_patch_safe(old_patch, tmp_patch) {
 712		if (old_patch == new_patch)
 713			return;
 714		klp_free_patch_async(old_patch);
 715	}
 716}
 717
 718static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 719{
 720	if (!func->old_name)
 721		return -EINVAL;
 722
 723	/*
 724	 * NOPs get the address later. The patched module must be loaded,
 725	 * see klp_init_object_loaded().
 726	 */
 727	if (!func->new_func && !func->nop)
 728		return -EINVAL;
 729
 730	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 731		return -EINVAL;
 732
 733	INIT_LIST_HEAD(&func->stack_node);
 734	func->patched = false;
 735	func->transition = false;
 736
 737	/* The format for the sysfs directory is <function,sympos> where sympos
 738	 * is the nth occurrence of this symbol in kallsyms for the patched
 739	 * object. If the user selects 0 for old_sympos, then 1 will be used
 740	 * since a unique symbol will be the first occurrence.
 741	 */
 742	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 743			   func->old_name,
 744			   func->old_sympos ? func->old_sympos : 1);
 745}
 746
 747static int klp_apply_object_relocs(struct klp_patch *patch,
 748				   struct klp_object *obj)
 749{
 750	int i, ret;
 751	struct klp_modinfo *info = patch->mod->klp_info;
 752
 753	for (i = 1; i < info->hdr.e_shnum; i++) {
 754		Elf_Shdr *sec = info->sechdrs + i;
 755
 756		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 757			continue;
 758
 759		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
 760					       info->secstrings,
 761					       patch->mod->core_kallsyms.strtab,
 762					       info->symndx, i, obj->name);
 763		if (ret)
 764			return ret;
 765	}
 766
 767	return 0;
 768}
 769
 770/* parts of the initialization that is done only when the object is loaded */
 771static int klp_init_object_loaded(struct klp_patch *patch,
 772				  struct klp_object *obj)
 773{
 774	struct klp_func *func;
 775	int ret;
 776
 777	if (klp_is_module(obj)) {
 778		/*
 779		 * Only write module-specific relocations here
 780		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 781		 * written earlier during the initialization of the klp module
 782		 * itself.
 783		 */
 784		ret = klp_apply_object_relocs(patch, obj);
 785		if (ret)
 786			return ret;
 787	}
 788
 789	klp_for_each_func(obj, func) {
 790		ret = klp_find_object_symbol(obj->name, func->old_name,
 791					     func->old_sympos,
 792					     (unsigned long *)&func->old_func);
 793		if (ret)
 794			return ret;
 795
 796		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 797						  &func->old_size, NULL);
 798		if (!ret) {
 799			pr_err("kallsyms size lookup failed for '%s'\n",
 800			       func->old_name);
 801			return -ENOENT;
 802		}
 803
 804		if (func->nop)
 805			func->new_func = func->old_func;
 806
 807		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 808						  &func->new_size, NULL);
 809		if (!ret) {
 810			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 811			       func->old_name);
 812			return -ENOENT;
 813		}
 814	}
 815
 816	return 0;
 817}
 818
 819static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 820{
 821	struct klp_func *func;
 822	int ret;
 823	const char *name;
 824
 825	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 826		return -EINVAL;
 827
 828	obj->patched = false;
 829	obj->mod = NULL;
 830
 831	klp_find_object_module(obj);
 832
 833	name = klp_is_module(obj) ? obj->name : "vmlinux";
 834	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 835	if (ret)
 836		return ret;
 837
 838	klp_for_each_func(obj, func) {
 839		ret = klp_init_func(obj, func);
 840		if (ret)
 841			return ret;
 842	}
 843
 844	if (klp_is_object_loaded(obj))
 845		ret = klp_init_object_loaded(patch, obj);
 846
 847	return ret;
 848}
 849
 850static void klp_init_func_early(struct klp_object *obj,
 851				struct klp_func *func)
 852{
 853	kobject_init(&func->kobj, &klp_ktype_func);
 854	list_add_tail(&func->node, &obj->func_list);
 855}
 856
 857static void klp_init_object_early(struct klp_patch *patch,
 858				  struct klp_object *obj)
 859{
 860	INIT_LIST_HEAD(&obj->func_list);
 861	kobject_init(&obj->kobj, &klp_ktype_object);
 862	list_add_tail(&obj->node, &patch->obj_list);
 863}
 864
 865static int klp_init_patch_early(struct klp_patch *patch)
 866{
 867	struct klp_object *obj;
 868	struct klp_func *func;
 869
 870	if (!patch->objs)
 871		return -EINVAL;
 872
 873	INIT_LIST_HEAD(&patch->list);
 874	INIT_LIST_HEAD(&patch->obj_list);
 875	kobject_init(&patch->kobj, &klp_ktype_patch);
 876	patch->enabled = false;
 877	patch->forced = false;
 878	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 879	init_completion(&patch->finish);
 880
 881	klp_for_each_object_static(patch, obj) {
 882		if (!obj->funcs)
 883			return -EINVAL;
 884
 885		klp_init_object_early(patch, obj);
 886
 887		klp_for_each_func_static(obj, func) {
 888			klp_init_func_early(obj, func);
 889		}
 890	}
 891
 892	if (!try_module_get(patch->mod))
 893		return -ENODEV;
 894
 895	return 0;
 896}
 897
 898static int klp_init_patch(struct klp_patch *patch)
 899{
 900	struct klp_object *obj;
 901	int ret;
 902
 903	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 904	if (ret)
 905		return ret;
 906
 907	if (patch->replace) {
 908		ret = klp_add_nops(patch);
 909		if (ret)
 910			return ret;
 911	}
 912
 913	klp_for_each_object(patch, obj) {
 914		ret = klp_init_object(patch, obj);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	list_add_tail(&patch->list, &klp_patches);
 920
 921	return 0;
 922}
 923
 924static int __klp_disable_patch(struct klp_patch *patch)
 925{
 926	struct klp_object *obj;
 927
 928	if (WARN_ON(!patch->enabled))
 929		return -EINVAL;
 930
 931	if (klp_transition_patch)
 932		return -EBUSY;
 933
 934	klp_init_transition(patch, KLP_UNPATCHED);
 935
 936	klp_for_each_object(patch, obj)
 937		if (obj->patched)
 938			klp_pre_unpatch_callback(obj);
 939
 940	/*
 941	 * Enforce the order of the func->transition writes in
 942	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 943	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 944	 * is called shortly after klp_update_patch_state() switches the task,
 945	 * this ensures the handler sees that func->transition is set.
 946	 */
 947	smp_wmb();
 948
 949	klp_start_transition();
 950	patch->enabled = false;
 951	klp_try_complete_transition();
 952
 953	return 0;
 954}
 955
 956static int __klp_enable_patch(struct klp_patch *patch)
 957{
 958	struct klp_object *obj;
 959	int ret;
 960
 961	if (klp_transition_patch)
 962		return -EBUSY;
 963
 964	if (WARN_ON(patch->enabled))
 965		return -EINVAL;
 966
 967	pr_notice("enabling patch '%s'\n", patch->mod->name);
 968
 969	klp_init_transition(patch, KLP_PATCHED);
 970
 971	/*
 972	 * Enforce the order of the func->transition writes in
 973	 * klp_init_transition() and the ops->func_stack writes in
 974	 * klp_patch_object(), so that klp_ftrace_handler() will see the
 975	 * func->transition updates before the handler is registered and the
 976	 * new funcs become visible to the handler.
 977	 */
 978	smp_wmb();
 979
 980	klp_for_each_object(patch, obj) {
 981		if (!klp_is_object_loaded(obj))
 982			continue;
 983
 984		ret = klp_pre_patch_callback(obj);
 985		if (ret) {
 986			pr_warn("pre-patch callback failed for object '%s'\n",
 987				klp_is_module(obj) ? obj->name : "vmlinux");
 988			goto err;
 989		}
 990
 991		ret = klp_patch_object(obj);
 992		if (ret) {
 993			pr_warn("failed to patch object '%s'\n",
 994				klp_is_module(obj) ? obj->name : "vmlinux");
 995			goto err;
 996		}
 997	}
 998
 999	klp_start_transition();
1000	patch->enabled = true;
1001	klp_try_complete_transition();
1002
1003	return 0;
1004err:
1005	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1006
1007	klp_cancel_transition();
1008	return ret;
1009}
1010
1011/**
1012 * klp_enable_patch() - enable the livepatch
1013 * @patch:	patch to be enabled
1014 *
1015 * Initializes the data structure associated with the patch, creates the sysfs
1016 * interface, performs the needed symbol lookups and code relocations,
1017 * registers the patched functions with ftrace.
1018 *
1019 * This function is supposed to be called from the livepatch module_init()
1020 * callback.
1021 *
1022 * Return: 0 on success, otherwise error
1023 */
1024int klp_enable_patch(struct klp_patch *patch)
1025{
1026	int ret;
 
1027
1028	if (!patch || !patch->mod)
1029		return -EINVAL;
1030
 
 
 
 
 
 
1031	if (!is_livepatch_module(patch->mod)) {
1032		pr_err("module %s is not marked as a livepatch module\n",
1033		       patch->mod->name);
1034		return -EINVAL;
1035	}
1036
1037	if (!klp_initialized())
1038		return -ENODEV;
1039
1040	if (!klp_have_reliable_stack()) {
1041		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1042		pr_warn("The livepatch transition may never complete.\n");
1043	}
1044
1045	mutex_lock(&klp_mutex);
1046
1047	if (!klp_is_patch_compatible(patch)) {
1048		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1049			patch->mod->name);
1050		mutex_unlock(&klp_mutex);
1051		return -EINVAL;
1052	}
1053
1054	ret = klp_init_patch_early(patch);
1055	if (ret) {
1056		mutex_unlock(&klp_mutex);
1057		return ret;
1058	}
1059
 
 
1060	ret = klp_init_patch(patch);
1061	if (ret)
1062		goto err;
1063
1064	ret = __klp_enable_patch(patch);
1065	if (ret)
1066		goto err;
1067
1068	mutex_unlock(&klp_mutex);
1069
1070	return 0;
1071
1072err:
1073	klp_free_patch_start(patch);
1074
1075	mutex_unlock(&klp_mutex);
1076
1077	klp_free_patch_finish(patch);
1078
1079	return ret;
1080}
1081EXPORT_SYMBOL_GPL(klp_enable_patch);
1082
1083/*
1084 * This function unpatches objects from the replaced livepatches.
1085 *
1086 * We could be pretty aggressive here. It is called in the situation where
1087 * these structures are no longer accessed from the ftrace handler.
1088 * All functions are redirected by the klp_transition_patch. They
1089 * use either a new code or they are in the original code because
1090 * of the special nop function patches.
1091 *
1092 * The only exception is when the transition was forced. In this case,
1093 * klp_ftrace_handler() might still see the replaced patch on the stack.
1094 * Fortunately, it is carefully designed to work with removed functions
1095 * thanks to RCU. We only have to keep the patches on the system. Also
1096 * this is handled transparently by patch->module_put.
1097 */
1098void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1099{
1100	struct klp_patch *old_patch;
1101
1102	klp_for_each_patch(old_patch) {
1103		if (old_patch == new_patch)
1104			return;
1105
1106		old_patch->enabled = false;
1107		klp_unpatch_objects(old_patch);
1108	}
1109}
1110
1111/*
1112 * This function removes the dynamically allocated 'nop' functions.
1113 *
1114 * We could be pretty aggressive. NOPs do not change the existing
1115 * behavior except for adding unnecessary delay by the ftrace handler.
1116 *
1117 * It is safe even when the transition was forced. The ftrace handler
1118 * will see a valid ops->func_stack entry thanks to RCU.
1119 *
1120 * We could even free the NOPs structures. They must be the last entry
1121 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1122 * It does the same as klp_synchronize_transition() to make sure that
1123 * nobody is inside the ftrace handler once the operation finishes.
1124 *
1125 * IMPORTANT: It must be called right after removing the replaced patches!
1126 */
1127void klp_discard_nops(struct klp_patch *new_patch)
1128{
1129	klp_unpatch_objects_dynamic(klp_transition_patch);
1130	klp_free_objects_dynamic(klp_transition_patch);
1131}
1132
1133/*
1134 * Remove parts of patches that touch a given kernel module. The list of
1135 * patches processed might be limited. When limit is NULL, all patches
1136 * will be handled.
1137 */
1138static void klp_cleanup_module_patches_limited(struct module *mod,
1139					       struct klp_patch *limit)
1140{
1141	struct klp_patch *patch;
1142	struct klp_object *obj;
1143
1144	klp_for_each_patch(patch) {
1145		if (patch == limit)
1146			break;
1147
1148		klp_for_each_object(patch, obj) {
1149			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1150				continue;
1151
1152			if (patch != klp_transition_patch)
1153				klp_pre_unpatch_callback(obj);
1154
1155			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1156				  patch->mod->name, obj->mod->name);
1157			klp_unpatch_object(obj);
1158
1159			klp_post_unpatch_callback(obj);
1160
1161			klp_free_object_loaded(obj);
1162			break;
1163		}
1164	}
1165}
1166
1167int klp_module_coming(struct module *mod)
1168{
1169	int ret;
1170	struct klp_patch *patch;
1171	struct klp_object *obj;
1172
1173	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1174		return -EINVAL;
1175
1176	if (!strcmp(mod->name, "vmlinux")) {
1177		pr_err("vmlinux.ko: invalid module name");
1178		return -EINVAL;
1179	}
1180
1181	mutex_lock(&klp_mutex);
1182	/*
1183	 * Each module has to know that klp_module_coming()
1184	 * has been called. We never know what module will
1185	 * get patched by a new patch.
1186	 */
1187	mod->klp_alive = true;
1188
1189	klp_for_each_patch(patch) {
1190		klp_for_each_object(patch, obj) {
1191			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1192				continue;
1193
1194			obj->mod = mod;
1195
1196			ret = klp_init_object_loaded(patch, obj);
1197			if (ret) {
1198				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1199					patch->mod->name, obj->mod->name, ret);
1200				goto err;
1201			}
1202
1203			pr_notice("applying patch '%s' to loading module '%s'\n",
1204				  patch->mod->name, obj->mod->name);
1205
1206			ret = klp_pre_patch_callback(obj);
1207			if (ret) {
1208				pr_warn("pre-patch callback failed for object '%s'\n",
1209					obj->name);
1210				goto err;
1211			}
1212
1213			ret = klp_patch_object(obj);
1214			if (ret) {
1215				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1216					patch->mod->name, obj->mod->name, ret);
1217
1218				klp_post_unpatch_callback(obj);
1219				goto err;
1220			}
1221
1222			if (patch != klp_transition_patch)
1223				klp_post_patch_callback(obj);
1224
1225			break;
1226		}
1227	}
1228
1229	mutex_unlock(&klp_mutex);
1230
1231	return 0;
1232
1233err:
1234	/*
1235	 * If a patch is unsuccessfully applied, return
1236	 * error to the module loader.
1237	 */
1238	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1239		patch->mod->name, obj->mod->name, obj->mod->name);
1240	mod->klp_alive = false;
1241	obj->mod = NULL;
1242	klp_cleanup_module_patches_limited(mod, patch);
1243	mutex_unlock(&klp_mutex);
1244
1245	return ret;
1246}
1247
1248void klp_module_going(struct module *mod)
1249{
1250	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1251		    mod->state != MODULE_STATE_COMING))
1252		return;
1253
1254	mutex_lock(&klp_mutex);
1255	/*
1256	 * Each module has to know that klp_module_going()
1257	 * has been called. We never know what module will
1258	 * get patched by a new patch.
1259	 */
1260	mod->klp_alive = false;
1261
1262	klp_cleanup_module_patches_limited(mod, NULL);
1263
1264	mutex_unlock(&klp_mutex);
1265}
1266
1267static int __init klp_init(void)
1268{
1269	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1270	if (!klp_root_kobj)
1271		return -ENOMEM;
1272
1273	return 0;
1274}
1275
1276module_init(klp_init);