Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/kernel/capability.c
  4 *
  5 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
  6 *
  7 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
  8 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/audit.h>
 14#include <linux/capability.h>
 15#include <linux/mm.h>
 16#include <linux/export.h>
 17#include <linux/security.h>
 18#include <linux/syscalls.h>
 19#include <linux/pid_namespace.h>
 20#include <linux/user_namespace.h>
 21#include <linux/uaccess.h>
 22
 23/*
 24 * Leveraged for setting/resetting capabilities
 25 */
 26
 27const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
 28EXPORT_SYMBOL(__cap_empty_set);
 29
 30int file_caps_enabled = 1;
 31
 32static int __init file_caps_disable(char *str)
 33{
 34	file_caps_enabled = 0;
 35	return 1;
 36}
 37__setup("no_file_caps", file_caps_disable);
 38
 39#ifdef CONFIG_MULTIUSER
 40/*
 41 * More recent versions of libcap are available from:
 42 *
 43 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 44 */
 45
 46static void warn_legacy_capability_use(void)
 47{
 48	char name[sizeof(current->comm)];
 49
 50	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
 51		     get_task_comm(name, current));
 52}
 53
 54/*
 55 * Version 2 capabilities worked fine, but the linux/capability.h file
 56 * that accompanied their introduction encouraged their use without
 57 * the necessary user-space source code changes. As such, we have
 58 * created a version 3 with equivalent functionality to version 2, but
 59 * with a header change to protect legacy source code from using
 60 * version 2 when it wanted to use version 1. If your system has code
 61 * that trips the following warning, it is using version 2 specific
 62 * capabilities and may be doing so insecurely.
 63 *
 64 * The remedy is to either upgrade your version of libcap (to 2.10+,
 65 * if the application is linked against it), or recompile your
 66 * application with modern kernel headers and this warning will go
 67 * away.
 68 */
 69
 70static void warn_deprecated_v2(void)
 71{
 72	char name[sizeof(current->comm)];
 73
 74	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
 75		     get_task_comm(name, current));
 76}
 77
 78/*
 79 * Version check. Return the number of u32s in each capability flag
 80 * array, or a negative value on error.
 81 */
 82static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 83{
 84	__u32 version;
 85
 86	if (get_user(version, &header->version))
 87		return -EFAULT;
 88
 89	switch (version) {
 90	case _LINUX_CAPABILITY_VERSION_1:
 91		warn_legacy_capability_use();
 92		*tocopy = _LINUX_CAPABILITY_U32S_1;
 93		break;
 94	case _LINUX_CAPABILITY_VERSION_2:
 95		warn_deprecated_v2();
 96		fallthrough;	/* v3 is otherwise equivalent to v2 */
 97	case _LINUX_CAPABILITY_VERSION_3:
 98		*tocopy = _LINUX_CAPABILITY_U32S_3;
 99		break;
100	default:
101		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
102			return -EFAULT;
103		return -EINVAL;
104	}
105
106	return 0;
107}
108
109/*
110 * The only thing that can change the capabilities of the current
111 * process is the current process. As such, we can't be in this code
112 * at the same time as we are in the process of setting capabilities
113 * in this process. The net result is that we can limit our use of
114 * locks to when we are reading the caps of another process.
115 */
116static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
117				     kernel_cap_t *pIp, kernel_cap_t *pPp)
118{
119	int ret;
120
121	if (pid && (pid != task_pid_vnr(current))) {
122		struct task_struct *target;
123
124		rcu_read_lock();
125
126		target = find_task_by_vpid(pid);
127		if (!target)
128			ret = -ESRCH;
129		else
130			ret = security_capget(target, pEp, pIp, pPp);
131
132		rcu_read_unlock();
133	} else
134		ret = security_capget(current, pEp, pIp, pPp);
135
136	return ret;
137}
138
139/**
140 * sys_capget - get the capabilities of a given process.
141 * @header: pointer to struct that contains capability version and
142 *	target pid data
143 * @dataptr: pointer to struct that contains the effective, permitted,
144 *	and inheritable capabilities that are returned
145 *
146 * Returns 0 on success and < 0 on error.
147 */
148SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
149{
150	int ret = 0;
151	pid_t pid;
152	unsigned tocopy;
153	kernel_cap_t pE, pI, pP;
154
155	ret = cap_validate_magic(header, &tocopy);
156	if ((dataptr == NULL) || (ret != 0))
157		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
158
159	if (get_user(pid, &header->pid))
160		return -EFAULT;
161
162	if (pid < 0)
163		return -EINVAL;
164
165	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
166	if (!ret) {
167		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
168		unsigned i;
169
170		for (i = 0; i < tocopy; i++) {
171			kdata[i].effective = pE.cap[i];
172			kdata[i].permitted = pP.cap[i];
173			kdata[i].inheritable = pI.cap[i];
174		}
175
176		/*
177		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
178		 * we silently drop the upper capabilities here. This
179		 * has the effect of making older libcap
180		 * implementations implicitly drop upper capability
181		 * bits when they perform a: capget/modify/capset
182		 * sequence.
183		 *
184		 * This behavior is considered fail-safe
185		 * behavior. Upgrading the application to a newer
186		 * version of libcap will enable access to the newer
187		 * capabilities.
188		 *
189		 * An alternative would be to return an error here
190		 * (-ERANGE), but that causes legacy applications to
191		 * unexpectedly fail; the capget/modify/capset aborts
192		 * before modification is attempted and the application
193		 * fails.
194		 */
195		if (copy_to_user(dataptr, kdata, tocopy
196				 * sizeof(struct __user_cap_data_struct))) {
197			return -EFAULT;
198		}
199	}
200
201	return ret;
202}
203
204/**
205 * sys_capset - set capabilities for a process or (*) a group of processes
206 * @header: pointer to struct that contains capability version and
207 *	target pid data
208 * @data: pointer to struct that contains the effective, permitted,
209 *	and inheritable capabilities
210 *
211 * Set capabilities for the current process only.  The ability to any other
212 * process(es) has been deprecated and removed.
213 *
214 * The restrictions on setting capabilities are specified as:
215 *
216 * I: any raised capabilities must be a subset of the old permitted
217 * P: any raised capabilities must be a subset of the old permitted
218 * E: must be set to a subset of new permitted
219 *
220 * Returns 0 on success and < 0 on error.
221 */
222SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
223{
224	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
225	unsigned i, tocopy, copybytes;
226	kernel_cap_t inheritable, permitted, effective;
227	struct cred *new;
228	int ret;
229	pid_t pid;
230
231	ret = cap_validate_magic(header, &tocopy);
232	if (ret != 0)
233		return ret;
234
235	if (get_user(pid, &header->pid))
236		return -EFAULT;
237
238	/* may only affect current now */
239	if (pid != 0 && pid != task_pid_vnr(current))
240		return -EPERM;
241
242	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
243	if (copybytes > sizeof(kdata))
244		return -EFAULT;
245
246	if (copy_from_user(&kdata, data, copybytes))
247		return -EFAULT;
248
249	for (i = 0; i < tocopy; i++) {
250		effective.cap[i] = kdata[i].effective;
251		permitted.cap[i] = kdata[i].permitted;
252		inheritable.cap[i] = kdata[i].inheritable;
253	}
254	while (i < _KERNEL_CAPABILITY_U32S) {
255		effective.cap[i] = 0;
256		permitted.cap[i] = 0;
257		inheritable.cap[i] = 0;
258		i++;
259	}
260
261	effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
262	permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
263	inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
264
265	new = prepare_creds();
266	if (!new)
267		return -ENOMEM;
268
269	ret = security_capset(new, current_cred(),
270			      &effective, &inheritable, &permitted);
271	if (ret < 0)
272		goto error;
273
274	audit_log_capset(new, current_cred());
275
276	return commit_creds(new);
277
278error:
279	abort_creds(new);
280	return ret;
281}
282
283/**
284 * has_ns_capability - Does a task have a capability in a specific user ns
285 * @t: The task in question
286 * @ns: target user namespace
287 * @cap: The capability to be tested for
288 *
289 * Return true if the specified task has the given superior capability
290 * currently in effect to the specified user namespace, false if not.
291 *
292 * Note that this does not set PF_SUPERPRIV on the task.
293 */
294bool has_ns_capability(struct task_struct *t,
295		       struct user_namespace *ns, int cap)
296{
297	int ret;
298
299	rcu_read_lock();
300	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE);
301	rcu_read_unlock();
302
303	return (ret == 0);
304}
305
306/**
307 * has_capability - Does a task have a capability in init_user_ns
308 * @t: The task in question
309 * @cap: The capability to be tested for
310 *
311 * Return true if the specified task has the given superior capability
312 * currently in effect to the initial user namespace, false if not.
313 *
314 * Note that this does not set PF_SUPERPRIV on the task.
315 */
316bool has_capability(struct task_struct *t, int cap)
317{
318	return has_ns_capability(t, &init_user_ns, cap);
319}
320EXPORT_SYMBOL(has_capability);
321
322/**
323 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
324 * in a specific user ns.
325 * @t: The task in question
326 * @ns: target user namespace
327 * @cap: The capability to be tested for
328 *
329 * Return true if the specified task has the given superior capability
330 * currently in effect to the specified user namespace, false if not.
331 * Do not write an audit message for the check.
332 *
333 * Note that this does not set PF_SUPERPRIV on the task.
334 */
335bool has_ns_capability_noaudit(struct task_struct *t,
336			       struct user_namespace *ns, int cap)
337{
338	int ret;
339
340	rcu_read_lock();
341	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT);
342	rcu_read_unlock();
343
344	return (ret == 0);
345}
346
347/**
348 * has_capability_noaudit - Does a task have a capability (unaudited) in the
349 * initial user ns
350 * @t: The task in question
351 * @cap: The capability to be tested for
352 *
353 * Return true if the specified task has the given superior capability
354 * currently in effect to init_user_ns, false if not.  Don't write an
355 * audit message for the check.
356 *
357 * Note that this does not set PF_SUPERPRIV on the task.
358 */
359bool has_capability_noaudit(struct task_struct *t, int cap)
360{
361	return has_ns_capability_noaudit(t, &init_user_ns, cap);
362}
363EXPORT_SYMBOL(has_capability_noaudit);
364
365static bool ns_capable_common(struct user_namespace *ns,
366			      int cap,
367			      unsigned int opts)
368{
369	int capable;
370
371	if (unlikely(!cap_valid(cap))) {
372		pr_crit("capable() called with invalid cap=%u\n", cap);
373		BUG();
374	}
375
376	capable = security_capable(current_cred(), ns, cap, opts);
377	if (capable == 0) {
378		current->flags |= PF_SUPERPRIV;
379		return true;
380	}
381	return false;
382}
383
384/**
385 * ns_capable - Determine if the current task has a superior capability in effect
386 * @ns:  The usernamespace we want the capability in
387 * @cap: The capability to be tested for
388 *
389 * Return true if the current task has the given superior capability currently
390 * available for use, false if not.
391 *
392 * This sets PF_SUPERPRIV on the task if the capability is available on the
393 * assumption that it's about to be used.
394 */
395bool ns_capable(struct user_namespace *ns, int cap)
396{
397	return ns_capable_common(ns, cap, CAP_OPT_NONE);
398}
399EXPORT_SYMBOL(ns_capable);
400
401/**
402 * ns_capable_noaudit - Determine if the current task has a superior capability
403 * (unaudited) in effect
404 * @ns:  The usernamespace we want the capability in
405 * @cap: The capability to be tested for
406 *
407 * Return true if the current task has the given superior capability currently
408 * available for use, false if not.
409 *
410 * This sets PF_SUPERPRIV on the task if the capability is available on the
411 * assumption that it's about to be used.
412 */
413bool ns_capable_noaudit(struct user_namespace *ns, int cap)
414{
415	return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT);
416}
417EXPORT_SYMBOL(ns_capable_noaudit);
418
419/**
420 * ns_capable_setid - Determine if the current task has a superior capability
421 * in effect, while signalling that this check is being done from within a
422 * setid or setgroups syscall.
423 * @ns:  The usernamespace we want the capability in
424 * @cap: The capability to be tested for
425 *
426 * Return true if the current task has the given superior capability currently
427 * available for use, false if not.
428 *
429 * This sets PF_SUPERPRIV on the task if the capability is available on the
430 * assumption that it's about to be used.
431 */
432bool ns_capable_setid(struct user_namespace *ns, int cap)
433{
434	return ns_capable_common(ns, cap, CAP_OPT_INSETID);
435}
436EXPORT_SYMBOL(ns_capable_setid);
437
438/**
439 * capable - Determine if the current task has a superior capability in effect
440 * @cap: The capability to be tested for
441 *
442 * Return true if the current task has the given superior capability currently
443 * available for use, false if not.
444 *
445 * This sets PF_SUPERPRIV on the task if the capability is available on the
446 * assumption that it's about to be used.
447 */
448bool capable(int cap)
449{
450	return ns_capable(&init_user_ns, cap);
451}
452EXPORT_SYMBOL(capable);
453#endif /* CONFIG_MULTIUSER */
454
455/**
456 * file_ns_capable - Determine if the file's opener had a capability in effect
457 * @file:  The file we want to check
458 * @ns:  The usernamespace we want the capability in
459 * @cap: The capability to be tested for
460 *
461 * Return true if task that opened the file had a capability in effect
462 * when the file was opened.
463 *
464 * This does not set PF_SUPERPRIV because the caller may not
465 * actually be privileged.
466 */
467bool file_ns_capable(const struct file *file, struct user_namespace *ns,
468		     int cap)
469{
470
471	if (WARN_ON_ONCE(!cap_valid(cap)))
472		return false;
473
474	if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0)
475		return true;
476
477	return false;
478}
479EXPORT_SYMBOL(file_ns_capable);
480
481/**
482 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
483 * @ns: The user namespace in question
484 * @inode: The inode in question
485 *
486 * Return true if the inode uid and gid are within the namespace.
487 */
488bool privileged_wrt_inode_uidgid(struct user_namespace *ns,
489				 struct user_namespace *mnt_userns,
490				 const struct inode *inode)
491{
492	return vfsuid_has_mapping(ns, i_uid_into_vfsuid(mnt_userns, inode)) &&
493	       vfsgid_has_mapping(ns, i_gid_into_vfsgid(mnt_userns, inode));
494}
495
496/**
497 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
498 * @inode: The inode in question
499 * @cap: The capability in question
500 *
501 * Return true if the current task has the given capability targeted at
502 * its own user namespace and that the given inode's uid and gid are
503 * mapped into the current user namespace.
504 */
505bool capable_wrt_inode_uidgid(struct user_namespace *mnt_userns,
506			      const struct inode *inode, int cap)
507{
508	struct user_namespace *ns = current_user_ns();
509
510	return ns_capable(ns, cap) &&
511	       privileged_wrt_inode_uidgid(ns, mnt_userns, inode);
512}
513EXPORT_SYMBOL(capable_wrt_inode_uidgid);
514
515/**
516 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
517 * @tsk: The task that may be ptraced
518 * @ns: The user namespace to search for CAP_SYS_PTRACE in
519 *
520 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
521 * in the specified user namespace.
522 */
523bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
524{
525	int ret = 0;  /* An absent tracer adds no restrictions */
526	const struct cred *cred;
527
528	rcu_read_lock();
529	cred = rcu_dereference(tsk->ptracer_cred);
530	if (cred)
531		ret = security_capable(cred, ns, CAP_SYS_PTRACE,
532				       CAP_OPT_NOAUDIT);
533	rcu_read_unlock();
534	return (ret == 0);
535}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/kernel/capability.c
  4 *
  5 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
  6 *
  7 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
  8 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/audit.h>
 14#include <linux/capability.h>
 15#include <linux/mm.h>
 16#include <linux/export.h>
 17#include <linux/security.h>
 18#include <linux/syscalls.h>
 19#include <linux/pid_namespace.h>
 20#include <linux/user_namespace.h>
 21#include <linux/uaccess.h>
 22
 23/*
 24 * Leveraged for setting/resetting capabilities
 25 */
 26
 27const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
 28EXPORT_SYMBOL(__cap_empty_set);
 29
 30int file_caps_enabled = 1;
 31
 32static int __init file_caps_disable(char *str)
 33{
 34	file_caps_enabled = 0;
 35	return 1;
 36}
 37__setup("no_file_caps", file_caps_disable);
 38
 39#ifdef CONFIG_MULTIUSER
 40/*
 41 * More recent versions of libcap are available from:
 42 *
 43 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 44 */
 45
 46static void warn_legacy_capability_use(void)
 47{
 48	char name[sizeof(current->comm)];
 49
 50	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
 51		     get_task_comm(name, current));
 52}
 53
 54/*
 55 * Version 2 capabilities worked fine, but the linux/capability.h file
 56 * that accompanied their introduction encouraged their use without
 57 * the necessary user-space source code changes. As such, we have
 58 * created a version 3 with equivalent functionality to version 2, but
 59 * with a header change to protect legacy source code from using
 60 * version 2 when it wanted to use version 1. If your system has code
 61 * that trips the following warning, it is using version 2 specific
 62 * capabilities and may be doing so insecurely.
 63 *
 64 * The remedy is to either upgrade your version of libcap (to 2.10+,
 65 * if the application is linked against it), or recompile your
 66 * application with modern kernel headers and this warning will go
 67 * away.
 68 */
 69
 70static void warn_deprecated_v2(void)
 71{
 72	char name[sizeof(current->comm)];
 73
 74	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
 75		     get_task_comm(name, current));
 76}
 77
 78/*
 79 * Version check. Return the number of u32s in each capability flag
 80 * array, or a negative value on error.
 81 */
 82static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 83{
 84	__u32 version;
 85
 86	if (get_user(version, &header->version))
 87		return -EFAULT;
 88
 89	switch (version) {
 90	case _LINUX_CAPABILITY_VERSION_1:
 91		warn_legacy_capability_use();
 92		*tocopy = _LINUX_CAPABILITY_U32S_1;
 93		break;
 94	case _LINUX_CAPABILITY_VERSION_2:
 95		warn_deprecated_v2();
 96		fallthrough;	/* v3 is otherwise equivalent to v2 */
 97	case _LINUX_CAPABILITY_VERSION_3:
 98		*tocopy = _LINUX_CAPABILITY_U32S_3;
 99		break;
100	default:
101		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
102			return -EFAULT;
103		return -EINVAL;
104	}
105
106	return 0;
107}
108
109/*
110 * The only thing that can change the capabilities of the current
111 * process is the current process. As such, we can't be in this code
112 * at the same time as we are in the process of setting capabilities
113 * in this process. The net result is that we can limit our use of
114 * locks to when we are reading the caps of another process.
115 */
116static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
117				     kernel_cap_t *pIp, kernel_cap_t *pPp)
118{
119	int ret;
120
121	if (pid && (pid != task_pid_vnr(current))) {
122		struct task_struct *target;
123
124		rcu_read_lock();
125
126		target = find_task_by_vpid(pid);
127		if (!target)
128			ret = -ESRCH;
129		else
130			ret = security_capget(target, pEp, pIp, pPp);
131
132		rcu_read_unlock();
133	} else
134		ret = security_capget(current, pEp, pIp, pPp);
135
136	return ret;
137}
138
139/**
140 * sys_capget - get the capabilities of a given process.
141 * @header: pointer to struct that contains capability version and
142 *	target pid data
143 * @dataptr: pointer to struct that contains the effective, permitted,
144 *	and inheritable capabilities that are returned
145 *
146 * Returns 0 on success and < 0 on error.
147 */
148SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
149{
150	int ret = 0;
151	pid_t pid;
152	unsigned tocopy;
153	kernel_cap_t pE, pI, pP;
154
155	ret = cap_validate_magic(header, &tocopy);
156	if ((dataptr == NULL) || (ret != 0))
157		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
158
159	if (get_user(pid, &header->pid))
160		return -EFAULT;
161
162	if (pid < 0)
163		return -EINVAL;
164
165	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
166	if (!ret) {
167		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
168		unsigned i;
169
170		for (i = 0; i < tocopy; i++) {
171			kdata[i].effective = pE.cap[i];
172			kdata[i].permitted = pP.cap[i];
173			kdata[i].inheritable = pI.cap[i];
174		}
175
176		/*
177		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
178		 * we silently drop the upper capabilities here. This
179		 * has the effect of making older libcap
180		 * implementations implicitly drop upper capability
181		 * bits when they perform a: capget/modify/capset
182		 * sequence.
183		 *
184		 * This behavior is considered fail-safe
185		 * behavior. Upgrading the application to a newer
186		 * version of libcap will enable access to the newer
187		 * capabilities.
188		 *
189		 * An alternative would be to return an error here
190		 * (-ERANGE), but that causes legacy applications to
191		 * unexpectedly fail; the capget/modify/capset aborts
192		 * before modification is attempted and the application
193		 * fails.
194		 */
195		if (copy_to_user(dataptr, kdata, tocopy
196				 * sizeof(struct __user_cap_data_struct))) {
197			return -EFAULT;
198		}
199	}
200
201	return ret;
202}
203
204/**
205 * sys_capset - set capabilities for a process or (*) a group of processes
206 * @header: pointer to struct that contains capability version and
207 *	target pid data
208 * @data: pointer to struct that contains the effective, permitted,
209 *	and inheritable capabilities
210 *
211 * Set capabilities for the current process only.  The ability to any other
212 * process(es) has been deprecated and removed.
213 *
214 * The restrictions on setting capabilities are specified as:
215 *
216 * I: any raised capabilities must be a subset of the old permitted
217 * P: any raised capabilities must be a subset of the old permitted
218 * E: must be set to a subset of new permitted
219 *
220 * Returns 0 on success and < 0 on error.
221 */
222SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
223{
224	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
225	unsigned i, tocopy, copybytes;
226	kernel_cap_t inheritable, permitted, effective;
227	struct cred *new;
228	int ret;
229	pid_t pid;
230
231	ret = cap_validate_magic(header, &tocopy);
232	if (ret != 0)
233		return ret;
234
235	if (get_user(pid, &header->pid))
236		return -EFAULT;
237
238	/* may only affect current now */
239	if (pid != 0 && pid != task_pid_vnr(current))
240		return -EPERM;
241
242	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
243	if (copybytes > sizeof(kdata))
244		return -EFAULT;
245
246	if (copy_from_user(&kdata, data, copybytes))
247		return -EFAULT;
248
249	for (i = 0; i < tocopy; i++) {
250		effective.cap[i] = kdata[i].effective;
251		permitted.cap[i] = kdata[i].permitted;
252		inheritable.cap[i] = kdata[i].inheritable;
253	}
254	while (i < _KERNEL_CAPABILITY_U32S) {
255		effective.cap[i] = 0;
256		permitted.cap[i] = 0;
257		inheritable.cap[i] = 0;
258		i++;
259	}
260
261	effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
262	permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
263	inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
264
265	new = prepare_creds();
266	if (!new)
267		return -ENOMEM;
268
269	ret = security_capset(new, current_cred(),
270			      &effective, &inheritable, &permitted);
271	if (ret < 0)
272		goto error;
273
274	audit_log_capset(new, current_cred());
275
276	return commit_creds(new);
277
278error:
279	abort_creds(new);
280	return ret;
281}
282
283/**
284 * has_ns_capability - Does a task have a capability in a specific user ns
285 * @t: The task in question
286 * @ns: target user namespace
287 * @cap: The capability to be tested for
288 *
289 * Return true if the specified task has the given superior capability
290 * currently in effect to the specified user namespace, false if not.
291 *
292 * Note that this does not set PF_SUPERPRIV on the task.
293 */
294bool has_ns_capability(struct task_struct *t,
295		       struct user_namespace *ns, int cap)
296{
297	int ret;
298
299	rcu_read_lock();
300	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE);
301	rcu_read_unlock();
302
303	return (ret == 0);
304}
305
306/**
307 * has_capability - Does a task have a capability in init_user_ns
308 * @t: The task in question
309 * @cap: The capability to be tested for
310 *
311 * Return true if the specified task has the given superior capability
312 * currently in effect to the initial user namespace, false if not.
313 *
314 * Note that this does not set PF_SUPERPRIV on the task.
315 */
316bool has_capability(struct task_struct *t, int cap)
317{
318	return has_ns_capability(t, &init_user_ns, cap);
319}
320EXPORT_SYMBOL(has_capability);
321
322/**
323 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
324 * in a specific user ns.
325 * @t: The task in question
326 * @ns: target user namespace
327 * @cap: The capability to be tested for
328 *
329 * Return true if the specified task has the given superior capability
330 * currently in effect to the specified user namespace, false if not.
331 * Do not write an audit message for the check.
332 *
333 * Note that this does not set PF_SUPERPRIV on the task.
334 */
335bool has_ns_capability_noaudit(struct task_struct *t,
336			       struct user_namespace *ns, int cap)
337{
338	int ret;
339
340	rcu_read_lock();
341	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT);
342	rcu_read_unlock();
343
344	return (ret == 0);
345}
346
347/**
348 * has_capability_noaudit - Does a task have a capability (unaudited) in the
349 * initial user ns
350 * @t: The task in question
351 * @cap: The capability to be tested for
352 *
353 * Return true if the specified task has the given superior capability
354 * currently in effect to init_user_ns, false if not.  Don't write an
355 * audit message for the check.
356 *
357 * Note that this does not set PF_SUPERPRIV on the task.
358 */
359bool has_capability_noaudit(struct task_struct *t, int cap)
360{
361	return has_ns_capability_noaudit(t, &init_user_ns, cap);
362}
 
363
364static bool ns_capable_common(struct user_namespace *ns,
365			      int cap,
366			      unsigned int opts)
367{
368	int capable;
369
370	if (unlikely(!cap_valid(cap))) {
371		pr_crit("capable() called with invalid cap=%u\n", cap);
372		BUG();
373	}
374
375	capable = security_capable(current_cred(), ns, cap, opts);
376	if (capable == 0) {
377		current->flags |= PF_SUPERPRIV;
378		return true;
379	}
380	return false;
381}
382
383/**
384 * ns_capable - Determine if the current task has a superior capability in effect
385 * @ns:  The usernamespace we want the capability in
386 * @cap: The capability to be tested for
387 *
388 * Return true if the current task has the given superior capability currently
389 * available for use, false if not.
390 *
391 * This sets PF_SUPERPRIV on the task if the capability is available on the
392 * assumption that it's about to be used.
393 */
394bool ns_capable(struct user_namespace *ns, int cap)
395{
396	return ns_capable_common(ns, cap, CAP_OPT_NONE);
397}
398EXPORT_SYMBOL(ns_capable);
399
400/**
401 * ns_capable_noaudit - Determine if the current task has a superior capability
402 * (unaudited) in effect
403 * @ns:  The usernamespace we want the capability in
404 * @cap: The capability to be tested for
405 *
406 * Return true if the current task has the given superior capability currently
407 * available for use, false if not.
408 *
409 * This sets PF_SUPERPRIV on the task if the capability is available on the
410 * assumption that it's about to be used.
411 */
412bool ns_capable_noaudit(struct user_namespace *ns, int cap)
413{
414	return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT);
415}
416EXPORT_SYMBOL(ns_capable_noaudit);
417
418/**
419 * ns_capable_setid - Determine if the current task has a superior capability
420 * in effect, while signalling that this check is being done from within a
421 * setid or setgroups syscall.
422 * @ns:  The usernamespace we want the capability in
423 * @cap: The capability to be tested for
424 *
425 * Return true if the current task has the given superior capability currently
426 * available for use, false if not.
427 *
428 * This sets PF_SUPERPRIV on the task if the capability is available on the
429 * assumption that it's about to be used.
430 */
431bool ns_capable_setid(struct user_namespace *ns, int cap)
432{
433	return ns_capable_common(ns, cap, CAP_OPT_INSETID);
434}
435EXPORT_SYMBOL(ns_capable_setid);
436
437/**
438 * capable - Determine if the current task has a superior capability in effect
439 * @cap: The capability to be tested for
440 *
441 * Return true if the current task has the given superior capability currently
442 * available for use, false if not.
443 *
444 * This sets PF_SUPERPRIV on the task if the capability is available on the
445 * assumption that it's about to be used.
446 */
447bool capable(int cap)
448{
449	return ns_capable(&init_user_ns, cap);
450}
451EXPORT_SYMBOL(capable);
452#endif /* CONFIG_MULTIUSER */
453
454/**
455 * file_ns_capable - Determine if the file's opener had a capability in effect
456 * @file:  The file we want to check
457 * @ns:  The usernamespace we want the capability in
458 * @cap: The capability to be tested for
459 *
460 * Return true if task that opened the file had a capability in effect
461 * when the file was opened.
462 *
463 * This does not set PF_SUPERPRIV because the caller may not
464 * actually be privileged.
465 */
466bool file_ns_capable(const struct file *file, struct user_namespace *ns,
467		     int cap)
468{
469
470	if (WARN_ON_ONCE(!cap_valid(cap)))
471		return false;
472
473	if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0)
474		return true;
475
476	return false;
477}
478EXPORT_SYMBOL(file_ns_capable);
479
480/**
481 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
482 * @ns: The user namespace in question
483 * @inode: The inode in question
484 *
485 * Return true if the inode uid and gid are within the namespace.
486 */
487bool privileged_wrt_inode_uidgid(struct user_namespace *ns,
488				 struct user_namespace *mnt_userns,
489				 const struct inode *inode)
490{
491	return kuid_has_mapping(ns, i_uid_into_mnt(mnt_userns, inode)) &&
492	       kgid_has_mapping(ns, i_gid_into_mnt(mnt_userns, inode));
493}
494
495/**
496 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
497 * @inode: The inode in question
498 * @cap: The capability in question
499 *
500 * Return true if the current task has the given capability targeted at
501 * its own user namespace and that the given inode's uid and gid are
502 * mapped into the current user namespace.
503 */
504bool capable_wrt_inode_uidgid(struct user_namespace *mnt_userns,
505			      const struct inode *inode, int cap)
506{
507	struct user_namespace *ns = current_user_ns();
508
509	return ns_capable(ns, cap) &&
510	       privileged_wrt_inode_uidgid(ns, mnt_userns, inode);
511}
512EXPORT_SYMBOL(capable_wrt_inode_uidgid);
513
514/**
515 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
516 * @tsk: The task that may be ptraced
517 * @ns: The user namespace to search for CAP_SYS_PTRACE in
518 *
519 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
520 * in the specified user namespace.
521 */
522bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
523{
524	int ret = 0;  /* An absent tracer adds no restrictions */
525	const struct cred *cred;
526
527	rcu_read_lock();
528	cred = rcu_dereference(tsk->ptracer_cred);
529	if (cred)
530		ret = security_capable(cred, ns, CAP_SYS_PTRACE,
531				       CAP_OPT_NOAUDIT);
532	rcu_read_unlock();
533	return (ret == 0);
534}