Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/compat.h>
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/errno.h>
  25#include <linux/stat.h>
  26#include <linux/fcntl.h>
  27#include <linux/string.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/mm.h>
  31#include <linux/sunrpc/clnt.h>
  32#include <linux/nfs_fs.h>
  33#include <linux/nfs_mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/pagevec.h>
  36#include <linux/namei.h>
  37#include <linux/mount.h>
  38#include <linux/swap.h>
  39#include <linux/sched.h>
  40#include <linux/kmemleak.h>
  41#include <linux/xattr.h>
  42#include <linux/hash.h>
  43
  44#include "delegation.h"
  45#include "iostat.h"
  46#include "internal.h"
  47#include "fscache.h"
  48
  49#include "nfstrace.h"
  50
  51/* #define NFS_DEBUG_VERBOSE 1 */
  52
  53static int nfs_opendir(struct inode *, struct file *);
  54static int nfs_closedir(struct inode *, struct file *);
  55static int nfs_readdir(struct file *, struct dir_context *);
  56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  58static void nfs_readdir_free_folio(struct folio *);
  59
  60const struct file_operations nfs_dir_operations = {
  61	.llseek		= nfs_llseek_dir,
  62	.read		= generic_read_dir,
  63	.iterate_shared	= nfs_readdir,
  64	.open		= nfs_opendir,
  65	.release	= nfs_closedir,
  66	.fsync		= nfs_fsync_dir,
  67};
  68
  69const struct address_space_operations nfs_dir_aops = {
  70	.free_folio = nfs_readdir_free_folio,
  71};
  72
  73#define NFS_INIT_DTSIZE PAGE_SIZE
  74
  75static struct nfs_open_dir_context *
  76alloc_nfs_open_dir_context(struct inode *dir)
  77{
  78	struct nfs_inode *nfsi = NFS_I(dir);
  79	struct nfs_open_dir_context *ctx;
  80
  81	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
  82	if (ctx != NULL) {
 
  83		ctx->attr_gencount = nfsi->attr_gencount;
  84		ctx->dtsize = NFS_INIT_DTSIZE;
 
  85		spin_lock(&dir->i_lock);
  86		if (list_empty(&nfsi->open_files) &&
  87		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  88			nfs_set_cache_invalid(dir,
  89					      NFS_INO_INVALID_DATA |
  90						      NFS_INO_REVAL_FORCED);
  91		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
  92		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
  93		spin_unlock(&dir->i_lock);
  94		return ctx;
  95	}
  96	return  ERR_PTR(-ENOMEM);
  97}
  98
  99static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
 100{
 101	spin_lock(&dir->i_lock);
 102	list_del_rcu(&ctx->list);
 103	spin_unlock(&dir->i_lock);
 104	kfree_rcu(ctx, rcu_head);
 105}
 106
 107/*
 108 * Open file
 109 */
 110static int
 111nfs_opendir(struct inode *inode, struct file *filp)
 112{
 113	int res = 0;
 114	struct nfs_open_dir_context *ctx;
 115
 116	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 117
 118	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 119
 120	ctx = alloc_nfs_open_dir_context(inode);
 121	if (IS_ERR(ctx)) {
 122		res = PTR_ERR(ctx);
 123		goto out;
 124	}
 125	filp->private_data = ctx;
 126out:
 127	return res;
 128}
 129
 130static int
 131nfs_closedir(struct inode *inode, struct file *filp)
 132{
 133	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 134	return 0;
 135}
 136
 137struct nfs_cache_array_entry {
 138	u64 cookie;
 139	u64 ino;
 140	const char *name;
 141	unsigned int name_len;
 142	unsigned char d_type;
 143};
 144
 145struct nfs_cache_array {
 146	u64 change_attr;
 147	u64 last_cookie;
 148	unsigned int size;
 149	unsigned char page_full : 1,
 150		      page_is_eof : 1,
 151		      cookies_are_ordered : 1;
 152	struct nfs_cache_array_entry array[];
 153};
 154
 155struct nfs_readdir_descriptor {
 156	struct file	*file;
 157	struct page	*page;
 158	struct dir_context *ctx;
 159	pgoff_t		page_index;
 160	pgoff_t		page_index_max;
 161	u64		dir_cookie;
 162	u64		last_cookie;
 
 163	loff_t		current_index;
 
 164
 165	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 166	unsigned long	dir_verifier;
 167	unsigned long	timestamp;
 168	unsigned long	gencount;
 169	unsigned long	attr_gencount;
 170	unsigned int	cache_entry_index;
 171	unsigned int	buffer_fills;
 172	unsigned int	dtsize;
 173	bool clear_cache;
 174	bool plus;
 175	bool eob;
 176	bool eof;
 177};
 178
 179static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
 180{
 181	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
 182	unsigned int maxsize = server->dtsize;
 183
 184	if (sz > maxsize)
 185		sz = maxsize;
 186	if (sz < NFS_MIN_FILE_IO_SIZE)
 187		sz = NFS_MIN_FILE_IO_SIZE;
 188	desc->dtsize = sz;
 189}
 190
 191static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
 192{
 193	nfs_set_dtsize(desc, desc->dtsize >> 1);
 194}
 195
 196static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
 197{
 198	nfs_set_dtsize(desc, desc->dtsize << 1);
 199}
 200
 201static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
 202					u64 change_attr)
 203{
 204	struct nfs_cache_array *array;
 205
 206	array = kmap_atomic(page);
 207	array->change_attr = change_attr;
 208	array->last_cookie = last_cookie;
 209	array->size = 0;
 210	array->page_full = 0;
 211	array->page_is_eof = 0;
 212	array->cookies_are_ordered = 1;
 213	kunmap_atomic(array);
 214}
 215
 216/*
 217 * we are freeing strings created by nfs_add_to_readdir_array()
 218 */
 219static void nfs_readdir_clear_array(struct page *page)
 
 220{
 221	struct nfs_cache_array *array;
 222	unsigned int i;
 223
 224	array = kmap_atomic(page);
 225	for (i = 0; i < array->size; i++)
 226		kfree(array->array[i].name);
 227	array->size = 0;
 228	kunmap_atomic(array);
 229}
 230
 231static void nfs_readdir_free_folio(struct folio *folio)
 232{
 233	nfs_readdir_clear_array(&folio->page);
 234}
 235
 236static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
 237					  u64 change_attr)
 238{
 239	nfs_readdir_clear_array(page);
 240	nfs_readdir_page_init_array(page, last_cookie, change_attr);
 241}
 242
 243static struct page *
 244nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 245{
 246	struct page *page = alloc_page(gfp_flags);
 247	if (page)
 248		nfs_readdir_page_init_array(page, last_cookie, 0);
 249	return page;
 250}
 251
 252static void nfs_readdir_page_array_free(struct page *page)
 253{
 254	if (page) {
 255		nfs_readdir_clear_array(page);
 256		put_page(page);
 257	}
 258}
 259
 260static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
 261{
 262	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
 263}
 264
 265static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 266{
 267	array->page_is_eof = 1;
 268	array->page_full = 1;
 269}
 270
 271static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 272{
 273	return array->page_full;
 274}
 275
 276/*
 277 * the caller is responsible for freeing qstr.name
 278 * when called by nfs_readdir_add_to_array, the strings will be freed in
 279 * nfs_clear_readdir_array()
 280 */
 281static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 282{
 283	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 284
 285	/*
 286	 * Avoid a kmemleak false positive. The pointer to the name is stored
 287	 * in a page cache page which kmemleak does not scan.
 288	 */
 289	if (ret != NULL)
 290		kmemleak_not_leak(ret);
 291	return ret;
 292}
 293
 294static size_t nfs_readdir_array_maxentries(void)
 295{
 296	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
 297	       sizeof(struct nfs_cache_array_entry);
 298}
 299
 300/*
 301 * Check that the next array entry lies entirely within the page bounds
 302 */
 303static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 304{
 
 
 305	if (array->page_full)
 306		return -ENOSPC;
 307	if (array->size == nfs_readdir_array_maxentries()) {
 
 308		array->page_full = 1;
 309		return -ENOSPC;
 310	}
 311	return 0;
 312}
 313
 314static int nfs_readdir_page_array_append(struct page *page,
 315					 const struct nfs_entry *entry,
 316					 u64 *cookie)
 317{
 318	struct nfs_cache_array *array;
 319	struct nfs_cache_array_entry *cache_entry;
 320	const char *name;
 321	int ret = -ENOMEM;
 322
 323	name = nfs_readdir_copy_name(entry->name, entry->len);
 
 
 324
 325	array = kmap_atomic(page);
 326	if (!name)
 327		goto out;
 328	ret = nfs_readdir_array_can_expand(array);
 329	if (ret) {
 330		kfree(name);
 331		goto out;
 332	}
 333
 334	cache_entry = &array->array[array->size];
 335	cache_entry->cookie = array->last_cookie;
 336	cache_entry->ino = entry->ino;
 337	cache_entry->d_type = entry->d_type;
 338	cache_entry->name_len = entry->len;
 339	cache_entry->name = name;
 340	array->last_cookie = entry->cookie;
 341	if (array->last_cookie <= cache_entry->cookie)
 342		array->cookies_are_ordered = 0;
 343	array->size++;
 344	if (entry->eof != 0)
 345		nfs_readdir_array_set_eof(array);
 346out:
 347	*cookie = array->last_cookie;
 348	kunmap_atomic(array);
 349	return ret;
 350}
 351
 352#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
 353/*
 354 * Hash algorithm allowing content addressible access to sequences
 355 * of directory cookies. Content is addressed by the value of the
 356 * cookie index of the first readdir entry in a page.
 357 *
 358 * We select only the first 18 bits to avoid issues with excessive
 359 * memory use for the page cache XArray. 18 bits should allow the caching
 360 * of 262144 pages of sequences of readdir entries. Since each page holds
 361 * 127 readdir entries for a typical 64-bit system, that works out to a
 362 * cache of ~ 33 million entries per directory.
 363 */
 364static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
 365{
 366	if (cookie == 0)
 367		return 0;
 368	return hash_64(cookie, 18);
 369}
 370
 371static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
 372				      u64 change_attr)
 373{
 374	struct nfs_cache_array *array = kmap_atomic(page);
 375	int ret = true;
 376
 377	if (array->change_attr != change_attr)
 378		ret = false;
 379	if (nfs_readdir_array_index_cookie(array) != last_cookie)
 380		ret = false;
 381	kunmap_atomic(array);
 382	return ret;
 383}
 384
 385static void nfs_readdir_page_unlock_and_put(struct page *page)
 386{
 387	unlock_page(page);
 388	put_page(page);
 389}
 390
 391static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
 392					       u64 change_attr)
 393{
 394	if (PageUptodate(page)) {
 395		if (nfs_readdir_page_validate(page, cookie, change_attr))
 396			return;
 397		nfs_readdir_clear_array(page);
 398	}
 399	nfs_readdir_page_init_array(page, cookie, change_attr);
 400	SetPageUptodate(page);
 401}
 402
 403static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
 404						u64 cookie, u64 change_attr)
 405{
 406	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
 407	struct page *page;
 408
 409	page = grab_cache_page(mapping, index);
 410	if (!page)
 411		return NULL;
 412	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
 
 
 
 
 413	return page;
 414}
 415
 416static u64 nfs_readdir_page_last_cookie(struct page *page)
 417{
 418	struct nfs_cache_array *array;
 419	u64 ret;
 420
 421	array = kmap_atomic(page);
 422	ret = array->last_cookie;
 423	kunmap_atomic(array);
 424	return ret;
 425}
 426
 427static bool nfs_readdir_page_needs_filling(struct page *page)
 428{
 429	struct nfs_cache_array *array;
 430	bool ret;
 431
 432	array = kmap_atomic(page);
 433	ret = !nfs_readdir_array_is_full(array);
 434	kunmap_atomic(array);
 435	return ret;
 436}
 437
 438static void nfs_readdir_page_set_eof(struct page *page)
 439{
 440	struct nfs_cache_array *array;
 441
 442	array = kmap_atomic(page);
 443	nfs_readdir_array_set_eof(array);
 444	kunmap_atomic(array);
 445}
 446
 
 
 
 
 
 
 447static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
 448					      u64 cookie, u64 change_attr)
 449{
 450	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
 451	struct page *page;
 452
 453	page = grab_cache_page_nowait(mapping, index);
 454	if (!page)
 455		return NULL;
 456	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
 457	if (nfs_readdir_page_last_cookie(page) != cookie)
 458		nfs_readdir_page_reinit_array(page, cookie, change_attr);
 459	return page;
 460}
 461
 462static inline
 463int is_32bit_api(void)
 464{
 465#ifdef CONFIG_COMPAT
 466	return in_compat_syscall();
 467#else
 468	return (BITS_PER_LONG == 32);
 469#endif
 470}
 471
 472static
 473bool nfs_readdir_use_cookie(const struct file *filp)
 474{
 475	if ((filp->f_mode & FMODE_32BITHASH) ||
 476	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 477		return false;
 478	return true;
 479}
 480
 481static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
 482					struct nfs_readdir_descriptor *desc)
 483{
 484	if (array->page_full) {
 485		desc->last_cookie = array->last_cookie;
 486		desc->current_index += array->size;
 487		desc->cache_entry_index = 0;
 488		desc->page_index++;
 489	} else
 490		desc->last_cookie = nfs_readdir_array_index_cookie(array);
 491}
 492
 493static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
 494{
 495	desc->current_index = 0;
 496	desc->last_cookie = 0;
 497	desc->page_index = 0;
 498}
 499
 500static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 501				      struct nfs_readdir_descriptor *desc)
 502{
 503	loff_t diff = desc->ctx->pos - desc->current_index;
 504	unsigned int index;
 505
 506	if (diff < 0)
 507		goto out_eof;
 508	if (diff >= array->size) {
 509		if (array->page_is_eof)
 510			goto out_eof;
 511		nfs_readdir_seek_next_array(array, desc);
 512		return -EAGAIN;
 513	}
 514
 515	index = (unsigned int)diff;
 516	desc->dir_cookie = array->array[index].cookie;
 517	desc->cache_entry_index = index;
 518	return 0;
 519out_eof:
 520	desc->eof = true;
 521	return -EBADCOOKIE;
 522}
 523
 
 
 
 
 
 
 
 
 
 524static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 525					      u64 cookie)
 526{
 527	if (!array->cookies_are_ordered)
 528		return true;
 529	/* Optimisation for monotonically increasing cookies */
 530	if (cookie >= array->last_cookie)
 531		return false;
 532	if (array->size && cookie < array->array[0].cookie)
 533		return false;
 534	return true;
 535}
 536
 537static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 538					 struct nfs_readdir_descriptor *desc)
 539{
 540	unsigned int i;
 
 541	int status = -EAGAIN;
 542
 543	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 544		goto check_eof;
 545
 546	for (i = 0; i < array->size; i++) {
 547		if (array->array[i].cookie == desc->dir_cookie) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548			if (nfs_readdir_use_cookie(desc->file))
 549				desc->ctx->pos = desc->dir_cookie;
 550			else
 551				desc->ctx->pos = desc->current_index + i;
 
 552			desc->cache_entry_index = i;
 553			return 0;
 554		}
 555	}
 556check_eof:
 557	if (array->page_is_eof) {
 558		status = -EBADCOOKIE;
 559		if (desc->dir_cookie == array->last_cookie)
 560			desc->eof = true;
 561	} else
 562		nfs_readdir_seek_next_array(array, desc);
 563	return status;
 564}
 565
 566static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 567{
 568	struct nfs_cache_array *array;
 569	int status;
 570
 571	array = kmap_atomic(desc->page);
 572
 573	if (desc->dir_cookie == 0)
 574		status = nfs_readdir_search_for_pos(array, desc);
 575	else
 576		status = nfs_readdir_search_for_cookie(array, desc);
 577
 
 
 
 
 
 578	kunmap_atomic(array);
 579	return status;
 580}
 581
 582/* Fill a page with xdr information before transferring to the cache page */
 583static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 584				  __be32 *verf, u64 cookie,
 585				  struct page **pages, size_t bufsize,
 586				  __be32 *verf_res)
 587{
 588	struct inode *inode = file_inode(desc->file);
 589	struct nfs_readdir_arg arg = {
 590		.dentry = file_dentry(desc->file),
 591		.cred = desc->file->f_cred,
 592		.verf = verf,
 593		.cookie = cookie,
 594		.pages = pages,
 595		.page_len = bufsize,
 596		.plus = desc->plus,
 597	};
 598	struct nfs_readdir_res res = {
 599		.verf = verf_res,
 600	};
 601	unsigned long	timestamp, gencount;
 602	int		error;
 603
 604 again:
 605	timestamp = jiffies;
 606	gencount = nfs_inc_attr_generation_counter();
 607	desc->dir_verifier = nfs_save_change_attribute(inode);
 608	error = NFS_PROTO(inode)->readdir(&arg, &res);
 609	if (error < 0) {
 610		/* We requested READDIRPLUS, but the server doesn't grok it */
 611		if (error == -ENOTSUPP && desc->plus) {
 612			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 
 613			desc->plus = arg.plus = false;
 614			goto again;
 615		}
 616		goto error;
 617	}
 618	desc->timestamp = timestamp;
 619	desc->gencount = gencount;
 620error:
 621	return error;
 622}
 623
 624static int xdr_decode(struct nfs_readdir_descriptor *desc,
 625		      struct nfs_entry *entry, struct xdr_stream *xdr)
 626{
 627	struct inode *inode = file_inode(desc->file);
 628	int error;
 629
 630	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 631	if (error)
 632		return error;
 633	entry->fattr->time_start = desc->timestamp;
 634	entry->fattr->gencount = desc->gencount;
 635	return 0;
 636}
 637
 638/* Match file and dirent using either filehandle or fileid
 639 * Note: caller is responsible for checking the fsid
 640 */
 641static
 642int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 643{
 644	struct inode *inode;
 645	struct nfs_inode *nfsi;
 646
 647	if (d_really_is_negative(dentry))
 648		return 0;
 649
 650	inode = d_inode(dentry);
 651	if (is_bad_inode(inode) || NFS_STALE(inode))
 652		return 0;
 653
 654	nfsi = NFS_I(inode);
 655	if (entry->fattr->fileid != nfsi->fileid)
 656		return 0;
 657	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 658		return 0;
 659	return 1;
 660}
 661
 662#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
 663
 664static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
 665				unsigned int cache_hits,
 666				unsigned int cache_misses)
 667{
 668	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 669		return false;
 670	if (ctx->pos == 0 ||
 671	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
 
 672		return true;
 673	return false;
 674}
 675
 676/*
 677 * This function is called by the getattr code to request the
 678 * use of readdirplus to accelerate any future lookups in the same
 679 * directory.
 680 */
 681void nfs_readdir_record_entry_cache_hit(struct inode *dir)
 682{
 683	struct nfs_inode *nfsi = NFS_I(dir);
 684	struct nfs_open_dir_context *ctx;
 685
 686	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 687	    S_ISDIR(dir->i_mode)) {
 688		rcu_read_lock();
 689		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 690			atomic_inc(&ctx->cache_hits);
 691		rcu_read_unlock();
 692	}
 693}
 694
 695/*
 696 * This function is mainly for use by nfs_getattr().
 697 *
 698 * If this is an 'ls -l', we want to force use of readdirplus.
 
 
 
 699 */
 700void nfs_readdir_record_entry_cache_miss(struct inode *dir)
 701{
 702	struct nfs_inode *nfsi = NFS_I(dir);
 703	struct nfs_open_dir_context *ctx;
 704
 705	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 706	    S_ISDIR(dir->i_mode)) {
 707		rcu_read_lock();
 708		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 709			atomic_inc(&ctx->cache_misses);
 710		rcu_read_unlock();
 711	}
 712}
 713
 714static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
 715						unsigned int flags)
 716{
 717	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
 718		return;
 719	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
 720		return;
 721	nfs_readdir_record_entry_cache_miss(dir);
 722}
 723
 724static
 725void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 726		unsigned long dir_verifier)
 727{
 728	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 729	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 730	struct dentry *dentry;
 731	struct dentry *alias;
 732	struct inode *inode;
 733	int status;
 734
 735	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 736		return;
 737	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 738		return;
 739	if (filename.len == 0)
 740		return;
 741	/* Validate that the name doesn't contain any illegal '\0' */
 742	if (strnlen(filename.name, filename.len) != filename.len)
 743		return;
 744	/* ...or '/' */
 745	if (strnchr(filename.name, filename.len, '/'))
 746		return;
 747	if (filename.name[0] == '.') {
 748		if (filename.len == 1)
 749			return;
 750		if (filename.len == 2 && filename.name[1] == '.')
 751			return;
 752	}
 753	filename.hash = full_name_hash(parent, filename.name, filename.len);
 754
 755	dentry = d_lookup(parent, &filename);
 756again:
 757	if (!dentry) {
 758		dentry = d_alloc_parallel(parent, &filename, &wq);
 759		if (IS_ERR(dentry))
 760			return;
 761	}
 762	if (!d_in_lookup(dentry)) {
 763		/* Is there a mountpoint here? If so, just exit */
 764		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 765					&entry->fattr->fsid))
 766			goto out;
 767		if (nfs_same_file(dentry, entry)) {
 768			if (!entry->fh->size)
 769				goto out;
 770			nfs_set_verifier(dentry, dir_verifier);
 771			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 772			if (!status)
 773				nfs_setsecurity(d_inode(dentry), entry->fattr);
 774			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
 775							    dentry, 0, status);
 776			goto out;
 777		} else {
 778			trace_nfs_readdir_lookup_revalidate_failed(
 779				d_inode(parent), dentry, 0);
 780			d_invalidate(dentry);
 781			dput(dentry);
 782			dentry = NULL;
 783			goto again;
 784		}
 785	}
 786	if (!entry->fh->size) {
 787		d_lookup_done(dentry);
 788		goto out;
 789	}
 790
 791	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 792	alias = d_splice_alias(inode, dentry);
 793	d_lookup_done(dentry);
 794	if (alias) {
 795		if (IS_ERR(alias))
 796			goto out;
 797		dput(dentry);
 798		dentry = alias;
 799	}
 800	nfs_set_verifier(dentry, dir_verifier);
 801	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
 802out:
 803	dput(dentry);
 804}
 805
 806static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
 807				    struct nfs_entry *entry,
 808				    struct xdr_stream *stream)
 809{
 810	int ret;
 811
 812	if (entry->fattr->label)
 813		entry->fattr->label->len = NFS4_MAXLABELLEN;
 814	ret = xdr_decode(desc, entry, stream);
 815	if (ret || !desc->plus)
 816		return ret;
 817	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
 818	return 0;
 819}
 820
 821/* Perform conversion from xdr to cache array */
 822static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
 823				   struct nfs_entry *entry,
 824				   struct page **xdr_pages, unsigned int buflen,
 825				   struct page **arrays, size_t narrays,
 826				   u64 change_attr)
 
 827{
 828	struct address_space *mapping = desc->file->f_mapping;
 829	struct xdr_stream stream;
 830	struct xdr_buf buf;
 831	struct page *scratch, *new, *page = *arrays;
 832	u64 cookie;
 833	int status;
 834
 835	scratch = alloc_page(GFP_KERNEL);
 836	if (scratch == NULL)
 837		return -ENOMEM;
 838
 839	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 840	xdr_set_scratch_page(&stream, scratch);
 841
 842	do {
 843		status = nfs_readdir_entry_decode(desc, entry, &stream);
 
 
 
 844		if (status != 0)
 845			break;
 846
 847		status = nfs_readdir_page_array_append(page, entry, &cookie);
 
 
 
 
 848		if (status != -ENOSPC)
 849			continue;
 850
 851		if (page->mapping != mapping) {
 852			if (!--narrays)
 853				break;
 854			new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
 
 855			if (!new)
 856				break;
 857			arrays++;
 858			*arrays = page = new;
 859		} else {
 860			new = nfs_readdir_page_get_next(mapping, cookie,
 861							change_attr);
 
 862			if (!new)
 863				break;
 864			if (page != *arrays)
 865				nfs_readdir_page_unlock_and_put(page);
 866			page = new;
 867		}
 868		desc->page_index_max++;
 869		status = nfs_readdir_page_array_append(page, entry, &cookie);
 870	} while (!status && !entry->eof);
 871
 872	switch (status) {
 873	case -EBADCOOKIE:
 874		if (!entry->eof)
 875			break;
 876		nfs_readdir_page_set_eof(page);
 877		fallthrough;
 878	case -EAGAIN:
 879		status = 0;
 880		break;
 881	case -ENOSPC:
 
 882		status = 0;
 883		if (!desc->plus)
 884			break;
 885		while (!nfs_readdir_entry_decode(desc, entry, &stream))
 886			;
 887	}
 888
 889	if (page != *arrays)
 890		nfs_readdir_page_unlock_and_put(page);
 891
 892	put_page(scratch);
 893	return status;
 894}
 895
 896static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 897{
 898	while (npages--)
 899		put_page(pages[npages]);
 900	kfree(pages);
 901}
 902
 903/*
 904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 905 * to nfs_readdir_free_pages()
 906 */
 907static struct page **nfs_readdir_alloc_pages(size_t npages)
 908{
 909	struct page **pages;
 910	size_t i;
 911
 912	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 913	if (!pages)
 914		return NULL;
 915	for (i = 0; i < npages; i++) {
 916		struct page *page = alloc_page(GFP_KERNEL);
 917		if (page == NULL)
 918			goto out_freepages;
 919		pages[i] = page;
 920	}
 921	return pages;
 922
 923out_freepages:
 924	nfs_readdir_free_pages(pages, i);
 925	return NULL;
 926}
 927
 928static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 929				    __be32 *verf_arg, __be32 *verf_res,
 930				    struct page **arrays, size_t narrays)
 931{
 932	u64 change_attr;
 933	struct page **pages;
 934	struct page *page = *arrays;
 935	struct nfs_entry *entry;
 936	size_t array_size;
 937	struct inode *inode = file_inode(desc->file);
 938	unsigned int dtsize = desc->dtsize;
 939	unsigned int pglen;
 940	int status = -ENOMEM;
 941
 942	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 943	if (!entry)
 944		return -ENOMEM;
 945	entry->cookie = nfs_readdir_page_last_cookie(page);
 946	entry->fh = nfs_alloc_fhandle();
 947	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
 948	entry->server = NFS_SERVER(inode);
 949	if (entry->fh == NULL || entry->fattr == NULL)
 950		goto out;
 951
 
 
 
 
 
 
 952	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 953	pages = nfs_readdir_alloc_pages(array_size);
 954	if (!pages)
 955		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957	change_attr = inode_peek_iversion_raw(inode);
 958	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
 959					dtsize, verf_res);
 960	if (status < 0)
 961		goto free_pages;
 962
 963	pglen = status;
 964	if (pglen != 0)
 965		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
 966						 arrays, narrays, change_attr);
 967	else
 968		nfs_readdir_page_set_eof(page);
 969	desc->buffer_fills++;
 970
 971free_pages:
 972	nfs_readdir_free_pages(pages, array_size);
 
 
 973out:
 974	nfs_free_fattr(entry->fattr);
 975	nfs_free_fhandle(entry->fh);
 976	kfree(entry);
 977	return status;
 978}
 979
 980static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
 981{
 982	put_page(desc->page);
 983	desc->page = NULL;
 984}
 985
 986static void
 987nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 988{
 989	unlock_page(desc->page);
 990	nfs_readdir_page_put(desc);
 991}
 992
 993static struct page *
 994nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
 995{
 996	struct address_space *mapping = desc->file->f_mapping;
 997	u64 change_attr = inode_peek_iversion_raw(mapping->host);
 998	u64 cookie = desc->last_cookie;
 999	struct page *page;
1000
1001	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1002	if (!page)
1003		return NULL;
1004	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1005		nfs_readdir_page_reinit_array(page, cookie, change_attr);
1006	return page;
1007}
1008
1009/*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
1013static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014{
1015	struct inode *inode = file_inode(desc->file);
1016	struct nfs_inode *nfsi = NFS_I(inode);
1017	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018	int res;
1019
1020	desc->page = nfs_readdir_page_get_cached(desc);
1021	if (!desc->page)
1022		return -ENOMEM;
1023	if (nfs_readdir_page_needs_filling(desc->page)) {
1024		/* Grow the dtsize if we had to go back for more pages */
1025		if (desc->page_index == desc->page_index_max)
1026			nfs_grow_dtsize(desc);
1027		desc->page_index_max = desc->page_index;
1028		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029					     desc->last_cookie,
1030					     desc->page->index, desc->dtsize);
1031		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032					       &desc->page, 1);
1033		if (res < 0) {
1034			nfs_readdir_page_unlock_and_put_cached(desc);
1035			trace_nfs_readdir_cache_fill_done(inode, res);
1036			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037				invalidate_inode_pages2(desc->file->f_mapping);
1038				nfs_readdir_rewind_search(desc);
1039				trace_nfs_readdir_invalidate_cache_range(
1040					inode, 0, MAX_LFS_FILESIZE);
1041				return -EAGAIN;
1042			}
1043			return res;
1044		}
1045		/*
1046		 * Set the cookie verifier if the page cache was empty
1047		 */
1048		if (desc->last_cookie == 0 &&
1049		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050			memcpy(nfsi->cookieverf, verf,
1051			       sizeof(nfsi->cookieverf));
1052			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053						      -1);
1054			trace_nfs_readdir_invalidate_cache_range(
1055				inode, 1, MAX_LFS_FILESIZE);
1056		}
1057		desc->clear_cache = false;
1058	}
1059	res = nfs_readdir_search_array(desc);
1060	if (res == 0)
 
1061		return 0;
 
1062	nfs_readdir_page_unlock_and_put_cached(desc);
1063	return res;
1064}
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066/* Search for desc->dir_cookie from the beginning of the page cache */
1067static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068{
1069	int res;
1070
 
 
 
1071	do {
 
 
 
 
 
1072		res = find_and_lock_cache_page(desc);
1073	} while (res == -EAGAIN);
1074	return res;
1075}
1076
1077#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079/*
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1081 */
1082static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083			   const __be32 *verf)
1084{
1085	struct file	*file = desc->file;
1086	struct nfs_cache_array *array;
1087	unsigned int i;
1088	bool first_emit = !desc->dir_cookie;
1089
1090	array = kmap_local_page(desc->page);
1091	for (i = desc->cache_entry_index; i < array->size; i++) {
1092		struct nfs_cache_array_entry *ent;
1093
1094		ent = &array->array[i];
1095		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1096		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1097			desc->eob = true;
1098			break;
1099		}
1100		memcpy(desc->verf, verf, sizeof(desc->verf));
1101		if (i == array->size - 1) {
 
 
1102			desc->dir_cookie = array->last_cookie;
1103			nfs_readdir_seek_next_array(array, desc);
1104		} else {
1105			desc->dir_cookie = array->array[i + 1].cookie;
1106			desc->last_cookie = array->array[0].cookie;
1107		}
1108		if (nfs_readdir_use_cookie(file))
1109			desc->ctx->pos = desc->dir_cookie;
1110		else
1111			desc->ctx->pos++;
1112		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) {
1113			desc->eob = true;
1114			break;
1115		}
1116	}
1117	if (array->page_is_eof)
1118		desc->eof = !desc->eob;
1119
1120	kunmap_local(array);
1121	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1122			(unsigned long long)desc->dir_cookie);
1123}
1124
1125/*
1126 * If we cannot find a cookie in our cache, we suspect that this is
1127 * because it points to a deleted file, so we ask the server to return
1128 * whatever it thinks is the next entry. We then feed this to filldir.
1129 * If all goes well, we should then be able to find our way round the
1130 * cache on the next call to readdir_search_pagecache();
1131 *
1132 * NOTE: we cannot add the anonymous page to the pagecache because
1133 *	 the data it contains might not be page aligned. Besides,
1134 *	 we should already have a complete representation of the
1135 *	 directory in the page cache by the time we get here.
1136 */
1137static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1138{
1139	struct page	**arrays;
1140	size_t		i, sz = 512;
1141	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1142	int		status = -ENOMEM;
1143
1144	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1145			(unsigned long long)desc->dir_cookie);
1146
1147	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1148	if (!arrays)
1149		goto out;
1150	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1151	if (!arrays[0])
1152		goto out;
1153
1154	desc->page_index = 0;
1155	desc->cache_entry_index = 0;
1156	desc->last_cookie = desc->dir_cookie;
1157	desc->page_index_max = 0;
1158
1159	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1160				   -1, desc->dtsize);
1161
1162	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1163	if (status < 0) {
1164		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1165		goto out_free;
1166	}
1167
1168	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1169		desc->page = arrays[i];
1170		nfs_do_filldir(desc, verf);
1171	}
1172	desc->page = NULL;
1173
1174	/*
1175	 * Grow the dtsize if we have to go back for more pages,
1176	 * or shrink it if we're reading too many.
1177	 */
1178	if (!desc->eof) {
1179		if (!desc->eob)
1180			nfs_grow_dtsize(desc);
1181		else if (desc->buffer_fills == 1 &&
1182			 i < (desc->page_index_max >> 1))
1183			nfs_shrink_dtsize(desc);
1184	}
1185out_free:
1186	for (i = 0; i < sz && arrays[i]; i++)
1187		nfs_readdir_page_array_free(arrays[i]);
1188out:
1189	if (!nfs_readdir_use_cookie(desc->file))
1190		nfs_readdir_rewind_search(desc);
1191	desc->page_index_max = -1;
1192	kfree(arrays);
1193	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1194	return status;
1195}
1196
1197static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1198					    struct nfs_readdir_descriptor *desc,
1199					    unsigned int cache_misses,
1200					    bool force_clear)
1201{
1202	if (desc->ctx->pos == 0 || !desc->plus)
1203		return false;
1204	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1205		return false;
1206	trace_nfs_readdir_force_readdirplus(inode);
1207	return true;
1208}
1209
1210/* The file offset position represents the dirent entry number.  A
1211   last cookie cache takes care of the common case of reading the
1212   whole directory.
1213 */
1214static int nfs_readdir(struct file *file, struct dir_context *ctx)
1215{
1216	struct dentry	*dentry = file_dentry(file);
1217	struct inode	*inode = d_inode(dentry);
1218	struct nfs_inode *nfsi = NFS_I(inode);
1219	struct nfs_open_dir_context *dir_ctx = file->private_data;
1220	struct nfs_readdir_descriptor *desc;
1221	unsigned int cache_hits, cache_misses;
1222	bool force_clear;
1223	int res;
1224
1225	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1226			file, (long long)ctx->pos);
1227	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1228
1229	/*
1230	 * ctx->pos points to the dirent entry number.
1231	 * *desc->dir_cookie has the cookie for the next entry. We have
1232	 * to either find the entry with the appropriate number or
1233	 * revalidate the cookie.
1234	 */
1235	nfs_revalidate_mapping(inode, file->f_mapping);
 
 
 
 
1236
1237	res = -ENOMEM;
1238	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1239	if (!desc)
1240		goto out;
1241	desc->file = file;
1242	desc->ctx = ctx;
1243	desc->page_index_max = -1;
1244
1245	spin_lock(&file->f_lock);
1246	desc->dir_cookie = dir_ctx->dir_cookie;
1247	desc->page_index = dir_ctx->page_index;
1248	desc->last_cookie = dir_ctx->last_cookie;
1249	desc->attr_gencount = dir_ctx->attr_gencount;
1250	desc->eof = dir_ctx->eof;
1251	nfs_set_dtsize(desc, dir_ctx->dtsize);
1252	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1253	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1254	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1255	force_clear = dir_ctx->force_clear;
1256	spin_unlock(&file->f_lock);
1257
1258	if (desc->eof) {
1259		res = 0;
1260		goto out_free;
1261	}
1262
1263	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1264	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1265						      force_clear);
1266	desc->clear_cache = force_clear;
1267
1268	do {
1269		res = readdir_search_pagecache(desc);
1270
1271		if (res == -EBADCOOKIE) {
1272			res = 0;
1273			/* This means either end of directory */
1274			if (desc->dir_cookie && !desc->eof) {
1275				/* Or that the server has 'lost' a cookie */
1276				res = uncached_readdir(desc);
1277				if (res == 0)
1278					continue;
1279				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1280					res = 0;
1281			}
1282			break;
1283		}
1284		if (res == -ETOOSMALL && desc->plus) {
 
1285			nfs_zap_caches(inode);
 
1286			desc->plus = false;
1287			desc->eof = false;
1288			continue;
1289		}
1290		if (res < 0)
1291			break;
1292
1293		nfs_do_filldir(desc, nfsi->cookieverf);
1294		nfs_readdir_page_unlock_and_put_cached(desc);
1295		if (desc->page_index == desc->page_index_max)
1296			desc->clear_cache = force_clear;
1297	} while (!desc->eob && !desc->eof);
1298
1299	spin_lock(&file->f_lock);
1300	dir_ctx->dir_cookie = desc->dir_cookie;
1301	dir_ctx->last_cookie = desc->last_cookie;
 
1302	dir_ctx->attr_gencount = desc->attr_gencount;
1303	dir_ctx->page_index = desc->page_index;
1304	dir_ctx->force_clear = force_clear;
1305	dir_ctx->eof = desc->eof;
1306	dir_ctx->dtsize = desc->dtsize;
1307	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1308	spin_unlock(&file->f_lock);
1309out_free:
1310	kfree(desc);
1311
1312out:
1313	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1314	return res;
1315}
1316
1317static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1318{
1319	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1320
1321	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1322			filp, offset, whence);
1323
1324	switch (whence) {
1325	default:
1326		return -EINVAL;
1327	case SEEK_SET:
1328		if (offset < 0)
1329			return -EINVAL;
1330		spin_lock(&filp->f_lock);
1331		break;
1332	case SEEK_CUR:
1333		if (offset == 0)
1334			return filp->f_pos;
1335		spin_lock(&filp->f_lock);
1336		offset += filp->f_pos;
1337		if (offset < 0) {
1338			spin_unlock(&filp->f_lock);
1339			return -EINVAL;
1340		}
1341	}
1342	if (offset != filp->f_pos) {
1343		filp->f_pos = offset;
1344		dir_ctx->page_index = 0;
1345		if (!nfs_readdir_use_cookie(filp)) {
1346			dir_ctx->dir_cookie = 0;
1347			dir_ctx->last_cookie = 0;
1348		} else {
1349			dir_ctx->dir_cookie = offset;
1350			dir_ctx->last_cookie = offset;
1351		}
1352		dir_ctx->eof = false;
 
 
1353	}
1354	spin_unlock(&filp->f_lock);
1355	return offset;
1356}
1357
1358/*
1359 * All directory operations under NFS are synchronous, so fsync()
1360 * is a dummy operation.
1361 */
1362static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1363			 int datasync)
1364{
1365	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1366
1367	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1368	return 0;
1369}
1370
1371/**
1372 * nfs_force_lookup_revalidate - Mark the directory as having changed
1373 * @dir: pointer to directory inode
1374 *
1375 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1376 * full lookup on all child dentries of 'dir' whenever a change occurs
1377 * on the server that might have invalidated our dcache.
1378 *
1379 * Note that we reserve bit '0' as a tag to let us know when a dentry
1380 * was revalidated while holding a delegation on its inode.
1381 *
1382 * The caller should be holding dir->i_lock
1383 */
1384void nfs_force_lookup_revalidate(struct inode *dir)
1385{
1386	NFS_I(dir)->cache_change_attribute += 2;
1387}
1388EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1389
1390/**
1391 * nfs_verify_change_attribute - Detects NFS remote directory changes
1392 * @dir: pointer to parent directory inode
1393 * @verf: previously saved change attribute
1394 *
1395 * Return "false" if the verifiers doesn't match the change attribute.
1396 * This would usually indicate that the directory contents have changed on
1397 * the server, and that any dentries need revalidating.
1398 */
1399static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1400{
1401	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1402}
1403
1404static void nfs_set_verifier_delegated(unsigned long *verf)
1405{
1406	*verf |= 1UL;
1407}
1408
1409#if IS_ENABLED(CONFIG_NFS_V4)
1410static void nfs_unset_verifier_delegated(unsigned long *verf)
1411{
1412	*verf &= ~1UL;
1413}
1414#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1415
1416static bool nfs_test_verifier_delegated(unsigned long verf)
1417{
1418	return verf & 1;
1419}
1420
1421static bool nfs_verifier_is_delegated(struct dentry *dentry)
1422{
1423	return nfs_test_verifier_delegated(dentry->d_time);
1424}
1425
1426static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1427{
1428	struct inode *inode = d_inode(dentry);
1429	struct inode *dir = d_inode(dentry->d_parent);
1430
1431	if (!nfs_verify_change_attribute(dir, verf))
1432		return;
 
1433	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1434		nfs_set_verifier_delegated(&verf);
 
1435	dentry->d_time = verf;
1436}
1437
1438/**
1439 * nfs_set_verifier - save a parent directory verifier in the dentry
1440 * @dentry: pointer to dentry
1441 * @verf: verifier to save
1442 *
1443 * Saves the parent directory verifier in @dentry. If the inode has
1444 * a delegation, we also tag the dentry as having been revalidated
1445 * while holding a delegation so that we know we don't have to
1446 * look it up again after a directory change.
1447 */
1448void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1449{
1450
1451	spin_lock(&dentry->d_lock);
1452	nfs_set_verifier_locked(dentry, verf);
1453	spin_unlock(&dentry->d_lock);
1454}
1455EXPORT_SYMBOL_GPL(nfs_set_verifier);
1456
1457#if IS_ENABLED(CONFIG_NFS_V4)
1458/**
1459 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1460 * @inode: pointer to inode
1461 *
1462 * Iterates through the dentries in the inode alias list and clears
1463 * the tag used to indicate that the dentry has been revalidated
1464 * while holding a delegation.
1465 * This function is intended for use when the delegation is being
1466 * returned or revoked.
1467 */
1468void nfs_clear_verifier_delegated(struct inode *inode)
1469{
1470	struct dentry *alias;
1471
1472	if (!inode)
1473		return;
1474	spin_lock(&inode->i_lock);
1475	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1476		spin_lock(&alias->d_lock);
1477		nfs_unset_verifier_delegated(&alias->d_time);
1478		spin_unlock(&alias->d_lock);
1479	}
1480	spin_unlock(&inode->i_lock);
1481}
1482EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1483#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1484
1485static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1486{
1487	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1488	    d_really_is_negative(dentry))
1489		return dentry->d_time == inode_peek_iversion_raw(dir);
1490	return nfs_verify_change_attribute(dir, dentry->d_time);
1491}
1492
1493/*
1494 * A check for whether or not the parent directory has changed.
1495 * In the case it has, we assume that the dentries are untrustworthy
1496 * and may need to be looked up again.
1497 * If rcu_walk prevents us from performing a full check, return 0.
1498 */
1499static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1500			      int rcu_walk)
1501{
1502	if (IS_ROOT(dentry))
1503		return 1;
1504	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1505		return 0;
1506	if (!nfs_dentry_verify_change(dir, dentry))
1507		return 0;
1508	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1509	if (nfs_mapping_need_revalidate_inode(dir)) {
1510		if (rcu_walk)
1511			return 0;
1512		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1513			return 0;
1514	}
1515	if (!nfs_dentry_verify_change(dir, dentry))
1516		return 0;
1517	return 1;
1518}
1519
1520/*
1521 * Use intent information to check whether or not we're going to do
1522 * an O_EXCL create using this path component.
1523 */
1524static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1525{
1526	if (NFS_PROTO(dir)->version == 2)
1527		return 0;
1528	return flags & LOOKUP_EXCL;
1529}
1530
1531/*
1532 * Inode and filehandle revalidation for lookups.
1533 *
1534 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1535 * or if the intent information indicates that we're about to open this
1536 * particular file and the "nocto" mount flag is not set.
1537 *
1538 */
1539static
1540int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1541{
1542	struct nfs_server *server = NFS_SERVER(inode);
1543	int ret;
1544
1545	if (IS_AUTOMOUNT(inode))
1546		return 0;
1547
1548	if (flags & LOOKUP_OPEN) {
1549		switch (inode->i_mode & S_IFMT) {
1550		case S_IFREG:
1551			/* A NFSv4 OPEN will revalidate later */
1552			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1553				goto out;
1554			fallthrough;
1555		case S_IFDIR:
1556			if (server->flags & NFS_MOUNT_NOCTO)
1557				break;
1558			/* NFS close-to-open cache consistency validation */
1559			goto out_force;
1560		}
1561	}
1562
1563	/* VFS wants an on-the-wire revalidation */
1564	if (flags & LOOKUP_REVAL)
1565		goto out_force;
1566out:
1567	if (inode->i_nlink > 0 ||
1568	    (inode->i_nlink == 0 &&
1569	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1570		return 0;
1571	else
1572		return -ESTALE;
1573out_force:
1574	if (flags & LOOKUP_RCU)
1575		return -ECHILD;
1576	ret = __nfs_revalidate_inode(server, inode);
1577	if (ret != 0)
1578		return ret;
1579	goto out;
1580}
1581
1582static void nfs_mark_dir_for_revalidate(struct inode *inode)
1583{
1584	spin_lock(&inode->i_lock);
1585	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1586	spin_unlock(&inode->i_lock);
1587}
1588
1589/*
1590 * We judge how long we want to trust negative
1591 * dentries by looking at the parent inode mtime.
1592 *
1593 * If parent mtime has changed, we revalidate, else we wait for a
1594 * period corresponding to the parent's attribute cache timeout value.
1595 *
1596 * If LOOKUP_RCU prevents us from performing a full check, return 1
1597 * suggesting a reval is needed.
1598 *
1599 * Note that when creating a new file, or looking up a rename target,
1600 * then it shouldn't be necessary to revalidate a negative dentry.
1601 */
1602static inline
1603int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1604		       unsigned int flags)
1605{
1606	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1607		return 0;
1608	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1609		return 1;
1610	/* Case insensitive server? Revalidate negative dentries */
1611	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1612		return 1;
1613	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1614}
1615
1616static int
1617nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1618			   struct inode *inode, int error)
1619{
1620	switch (error) {
1621	case 1:
1622		break;
 
 
1623	case 0:
1624		/*
1625		 * We can't d_drop the root of a disconnected tree:
1626		 * its d_hash is on the s_anon list and d_drop() would hide
1627		 * it from shrink_dcache_for_unmount(), leading to busy
1628		 * inodes on unmount and further oopses.
1629		 */
1630		if (inode && IS_ROOT(dentry))
1631			error = 1;
1632		break;
 
 
1633	}
1634	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
 
1635	return error;
1636}
1637
1638static int
1639nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1640			       unsigned int flags)
1641{
1642	int ret = 1;
1643	if (nfs_neg_need_reval(dir, dentry, flags)) {
1644		if (flags & LOOKUP_RCU)
1645			return -ECHILD;
1646		ret = 0;
1647	}
1648	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1649}
1650
1651static int
1652nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1653				struct inode *inode)
1654{
1655	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1656	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1657}
1658
1659static int nfs_lookup_revalidate_dentry(struct inode *dir,
1660					struct dentry *dentry,
1661					struct inode *inode, unsigned int flags)
1662{
1663	struct nfs_fh *fhandle;
1664	struct nfs_fattr *fattr;
 
1665	unsigned long dir_verifier;
1666	int ret;
1667
1668	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1669
1670	ret = -ENOMEM;
1671	fhandle = nfs_alloc_fhandle();
1672	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1673	if (fhandle == NULL || fattr == NULL)
 
1674		goto out;
1675
1676	dir_verifier = nfs_save_change_attribute(dir);
1677	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1678	if (ret < 0) {
1679		switch (ret) {
1680		case -ESTALE:
1681		case -ENOENT:
1682			ret = 0;
1683			break;
1684		case -ETIMEDOUT:
1685			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1686				ret = 1;
1687		}
1688		goto out;
1689	}
1690
1691	/* Request help from readdirplus */
1692	nfs_lookup_advise_force_readdirplus(dir, flags);
1693
1694	ret = 0;
1695	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1696		goto out;
1697	if (nfs_refresh_inode(inode, fattr) < 0)
1698		goto out;
1699
1700	nfs_setsecurity(inode, fattr);
1701	nfs_set_verifier(dentry, dir_verifier);
1702
 
 
1703	ret = 1;
1704out:
1705	nfs_free_fattr(fattr);
1706	nfs_free_fhandle(fhandle);
 
1707
1708	/*
1709	 * If the lookup failed despite the dentry change attribute being
1710	 * a match, then we should revalidate the directory cache.
1711	 */
1712	if (!ret && nfs_dentry_verify_change(dir, dentry))
1713		nfs_mark_dir_for_revalidate(dir);
1714	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1715}
1716
1717/*
1718 * This is called every time the dcache has a lookup hit,
1719 * and we should check whether we can really trust that
1720 * lookup.
1721 *
1722 * NOTE! The hit can be a negative hit too, don't assume
1723 * we have an inode!
1724 *
1725 * If the parent directory is seen to have changed, we throw out the
1726 * cached dentry and do a new lookup.
1727 */
1728static int
1729nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1730			 unsigned int flags)
1731{
1732	struct inode *inode;
1733	int error;
1734
1735	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1736	inode = d_inode(dentry);
1737
1738	if (!inode)
1739		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1740
1741	if (is_bad_inode(inode)) {
1742		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1743				__func__, dentry);
1744		goto out_bad;
1745	}
1746
1747	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1748	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1749		goto out_bad;
1750
1751	if (nfs_verifier_is_delegated(dentry))
1752		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1753
1754	/* Force a full look up iff the parent directory has changed */
1755	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1756	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1757		error = nfs_lookup_verify_inode(inode, flags);
1758		if (error) {
1759			if (error == -ESTALE)
1760				nfs_mark_dir_for_revalidate(dir);
1761			goto out_bad;
1762		}
 
1763		goto out_valid;
1764	}
1765
1766	if (flags & LOOKUP_RCU)
1767		return -ECHILD;
1768
1769	if (NFS_STALE(inode))
1770		goto out_bad;
1771
1772	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
 
 
 
1773out_valid:
1774	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1775out_bad:
1776	if (flags & LOOKUP_RCU)
1777		return -ECHILD;
1778	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1779}
1780
1781static int
1782__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1783			int (*reval)(struct inode *, struct dentry *, unsigned int))
1784{
1785	struct dentry *parent;
1786	struct inode *dir;
1787	int ret;
1788
1789	if (flags & LOOKUP_RCU) {
1790		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1791			return -ECHILD;
1792		parent = READ_ONCE(dentry->d_parent);
1793		dir = d_inode_rcu(parent);
1794		if (!dir)
1795			return -ECHILD;
1796		ret = reval(dir, dentry, flags);
1797		if (parent != READ_ONCE(dentry->d_parent))
1798			return -ECHILD;
1799	} else {
1800		/* Wait for unlink to complete */
1801		wait_var_event(&dentry->d_fsdata,
1802			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1803		parent = dget_parent(dentry);
1804		ret = reval(d_inode(parent), dentry, flags);
1805		dput(parent);
1806	}
1807	return ret;
1808}
1809
1810static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1811{
1812	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1813}
1814
1815/*
1816 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1817 * when we don't really care about the dentry name. This is called when a
1818 * pathwalk ends on a dentry that was not found via a normal lookup in the
1819 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1820 *
1821 * In this situation, we just want to verify that the inode itself is OK
1822 * since the dentry might have changed on the server.
1823 */
1824static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1825{
1826	struct inode *inode = d_inode(dentry);
1827	int error = 0;
1828
1829	/*
1830	 * I believe we can only get a negative dentry here in the case of a
1831	 * procfs-style symlink. Just assume it's correct for now, but we may
1832	 * eventually need to do something more here.
1833	 */
1834	if (!inode) {
1835		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1836				__func__, dentry);
1837		return 1;
1838	}
1839
1840	if (is_bad_inode(inode)) {
1841		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1842				__func__, dentry);
1843		return 0;
1844	}
1845
1846	error = nfs_lookup_verify_inode(inode, flags);
1847	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1848			__func__, inode->i_ino, error ? "invalid" : "valid");
1849	return !error;
1850}
1851
1852/*
1853 * This is called from dput() when d_count is going to 0.
1854 */
1855static int nfs_dentry_delete(const struct dentry *dentry)
1856{
1857	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1858		dentry, dentry->d_flags);
1859
1860	/* Unhash any dentry with a stale inode */
1861	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1862		return 1;
1863
1864	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1865		/* Unhash it, so that ->d_iput() would be called */
1866		return 1;
1867	}
1868	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1869		/* Unhash it, so that ancestors of killed async unlink
1870		 * files will be cleaned up during umount */
1871		return 1;
1872	}
1873	return 0;
1874
1875}
1876
1877/* Ensure that we revalidate inode->i_nlink */
1878static void nfs_drop_nlink(struct inode *inode)
1879{
1880	spin_lock(&inode->i_lock);
1881	/* drop the inode if we're reasonably sure this is the last link */
1882	if (inode->i_nlink > 0)
1883		drop_nlink(inode);
1884	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1885	nfs_set_cache_invalid(
1886		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1887			       NFS_INO_INVALID_NLINK);
1888	spin_unlock(&inode->i_lock);
1889}
1890
1891/*
1892 * Called when the dentry loses inode.
1893 * We use it to clean up silly-renamed files.
1894 */
1895static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1896{
 
 
 
 
1897	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1898		nfs_complete_unlink(dentry, inode);
1899		nfs_drop_nlink(inode);
1900	}
1901	iput(inode);
1902}
1903
1904static void nfs_d_release(struct dentry *dentry)
1905{
1906	/* free cached devname value, if it survived that far */
1907	if (unlikely(dentry->d_fsdata)) {
1908		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1909			WARN_ON(1);
1910		else
1911			kfree(dentry->d_fsdata);
1912	}
1913}
1914
1915const struct dentry_operations nfs_dentry_operations = {
1916	.d_revalidate	= nfs_lookup_revalidate,
1917	.d_weak_revalidate	= nfs_weak_revalidate,
1918	.d_delete	= nfs_dentry_delete,
1919	.d_iput		= nfs_dentry_iput,
1920	.d_automount	= nfs_d_automount,
1921	.d_release	= nfs_d_release,
1922};
1923EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1924
1925struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1926{
1927	struct dentry *res;
1928	struct inode *inode = NULL;
1929	struct nfs_fh *fhandle = NULL;
1930	struct nfs_fattr *fattr = NULL;
 
1931	unsigned long dir_verifier;
1932	int error;
1933
1934	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1935	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1936
1937	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1938		return ERR_PTR(-ENAMETOOLONG);
1939
1940	/*
1941	 * If we're doing an exclusive create, optimize away the lookup
1942	 * but don't hash the dentry.
1943	 */
1944	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1945		return NULL;
1946
1947	res = ERR_PTR(-ENOMEM);
1948	fhandle = nfs_alloc_fhandle();
1949	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1950	if (fhandle == NULL || fattr == NULL)
1951		goto out;
1952
 
 
 
 
1953	dir_verifier = nfs_save_change_attribute(dir);
1954	trace_nfs_lookup_enter(dir, dentry, flags);
1955	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1956	if (error == -ENOENT) {
1957		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1958			dir_verifier = inode_peek_iversion_raw(dir);
1959		goto no_entry;
1960	}
1961	if (error < 0) {
1962		res = ERR_PTR(error);
1963		goto out;
1964	}
1965	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1966	res = ERR_CAST(inode);
1967	if (IS_ERR(res))
1968		goto out;
1969
1970	/* Notify readdir to use READDIRPLUS */
1971	nfs_lookup_advise_force_readdirplus(dir, flags);
1972
1973no_entry:
1974	res = d_splice_alias(inode, dentry);
1975	if (res != NULL) {
1976		if (IS_ERR(res))
1977			goto out;
1978		dentry = res;
1979	}
1980	nfs_set_verifier(dentry, dir_verifier);
 
 
 
1981out:
1982	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1983	nfs_free_fattr(fattr);
1984	nfs_free_fhandle(fhandle);
1985	return res;
1986}
1987EXPORT_SYMBOL_GPL(nfs_lookup);
1988
1989void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1990{
1991	/* Case insensitive server? Revalidate dentries */
1992	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1993		d_prune_aliases(inode);
1994}
1995EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1996
1997#if IS_ENABLED(CONFIG_NFS_V4)
1998static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1999
2000const struct dentry_operations nfs4_dentry_operations = {
2001	.d_revalidate	= nfs4_lookup_revalidate,
2002	.d_weak_revalidate	= nfs_weak_revalidate,
2003	.d_delete	= nfs_dentry_delete,
2004	.d_iput		= nfs_dentry_iput,
2005	.d_automount	= nfs_d_automount,
2006	.d_release	= nfs_d_release,
2007};
2008EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2009
 
 
 
 
 
 
 
 
 
 
2010static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2011{
2012	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2013}
2014
2015static int do_open(struct inode *inode, struct file *filp)
2016{
2017	nfs_fscache_open_file(inode, filp);
2018	return 0;
2019}
2020
2021static int nfs_finish_open(struct nfs_open_context *ctx,
2022			   struct dentry *dentry,
2023			   struct file *file, unsigned open_flags)
2024{
2025	int err;
2026
2027	err = finish_open(file, dentry, do_open);
2028	if (err)
2029		goto out;
2030	if (S_ISREG(file_inode(file)->i_mode))
2031		nfs_file_set_open_context(file, ctx);
2032	else
2033		err = -EOPENSTALE;
2034out:
2035	return err;
2036}
2037
2038int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2039		    struct file *file, unsigned open_flags,
2040		    umode_t mode)
2041{
2042	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2043	struct nfs_open_context *ctx;
2044	struct dentry *res;
2045	struct iattr attr = { .ia_valid = ATTR_OPEN };
2046	struct inode *inode;
2047	unsigned int lookup_flags = 0;
2048	unsigned long dir_verifier;
2049	bool switched = false;
2050	int created = 0;
2051	int err;
2052
2053	/* Expect a negative dentry */
2054	BUG_ON(d_inode(dentry));
2055
2056	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2057			dir->i_sb->s_id, dir->i_ino, dentry);
2058
2059	err = nfs_check_flags(open_flags);
2060	if (err)
2061		return err;
2062
2063	/* NFS only supports OPEN on regular files */
2064	if ((open_flags & O_DIRECTORY)) {
2065		if (!d_in_lookup(dentry)) {
2066			/*
2067			 * Hashed negative dentry with O_DIRECTORY: dentry was
2068			 * revalidated and is fine, no need to perform lookup
2069			 * again
2070			 */
2071			return -ENOENT;
2072		}
2073		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2074		goto no_open;
2075	}
2076
2077	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2078		return -ENAMETOOLONG;
2079
2080	if (open_flags & O_CREAT) {
2081		struct nfs_server *server = NFS_SERVER(dir);
2082
2083		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2084			mode &= ~current_umask();
2085
2086		attr.ia_valid |= ATTR_MODE;
2087		attr.ia_mode = mode;
2088	}
2089	if (open_flags & O_TRUNC) {
2090		attr.ia_valid |= ATTR_SIZE;
2091		attr.ia_size = 0;
2092	}
2093
2094	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2095		d_drop(dentry);
2096		switched = true;
2097		dentry = d_alloc_parallel(dentry->d_parent,
2098					  &dentry->d_name, &wq);
2099		if (IS_ERR(dentry))
2100			return PTR_ERR(dentry);
2101		if (unlikely(!d_in_lookup(dentry)))
2102			return finish_no_open(file, dentry);
2103	}
2104
2105	ctx = create_nfs_open_context(dentry, open_flags, file);
2106	err = PTR_ERR(ctx);
2107	if (IS_ERR(ctx))
2108		goto out;
2109
2110	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2111	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2112	if (created)
2113		file->f_mode |= FMODE_CREATED;
2114	if (IS_ERR(inode)) {
2115		err = PTR_ERR(inode);
2116		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2117		put_nfs_open_context(ctx);
2118		d_drop(dentry);
2119		switch (err) {
2120		case -ENOENT:
2121			d_splice_alias(NULL, dentry);
2122			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2123				dir_verifier = inode_peek_iversion_raw(dir);
2124			else
2125				dir_verifier = nfs_save_change_attribute(dir);
2126			nfs_set_verifier(dentry, dir_verifier);
2127			break;
2128		case -EISDIR:
2129		case -ENOTDIR:
2130			goto no_open;
2131		case -ELOOP:
2132			if (!(open_flags & O_NOFOLLOW))
2133				goto no_open;
2134			break;
2135			/* case -EINVAL: */
2136		default:
2137			break;
2138		}
2139		goto out;
2140	}
2141	file->f_mode |= FMODE_CAN_ODIRECT;
2142
2143	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2144	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145	put_nfs_open_context(ctx);
2146out:
2147	if (unlikely(switched)) {
2148		d_lookup_done(dentry);
2149		dput(dentry);
2150	}
2151	return err;
2152
2153no_open:
2154	res = nfs_lookup(dir, dentry, lookup_flags);
2155	if (!res) {
2156		inode = d_inode(dentry);
2157		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2158		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2159			res = ERR_PTR(-ENOTDIR);
2160		else if (inode && S_ISREG(inode->i_mode))
2161			res = ERR_PTR(-EOPENSTALE);
2162	} else if (!IS_ERR(res)) {
2163		inode = d_inode(res);
2164		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2166			dput(res);
2167			res = ERR_PTR(-ENOTDIR);
2168		} else if (inode && S_ISREG(inode->i_mode)) {
2169			dput(res);
2170			res = ERR_PTR(-EOPENSTALE);
2171		}
2172	}
2173	if (switched) {
2174		d_lookup_done(dentry);
2175		if (!res)
2176			res = dentry;
2177		else
2178			dput(dentry);
2179	}
2180	if (IS_ERR(res))
2181		return PTR_ERR(res);
2182	return finish_no_open(file, res);
2183}
2184EXPORT_SYMBOL_GPL(nfs_atomic_open);
2185
2186static int
2187nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2188			  unsigned int flags)
2189{
2190	struct inode *inode;
2191
2192	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2193		goto full_reval;
2194	if (d_mountpoint(dentry))
2195		goto full_reval;
2196
2197	inode = d_inode(dentry);
2198
2199	/* We can't create new files in nfs_open_revalidate(), so we
2200	 * optimize away revalidation of negative dentries.
2201	 */
2202	if (inode == NULL)
2203		goto full_reval;
2204
2205	if (nfs_verifier_is_delegated(dentry))
2206		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2207
2208	/* NFS only supports OPEN on regular files */
2209	if (!S_ISREG(inode->i_mode))
2210		goto full_reval;
2211
2212	/* We cannot do exclusive creation on a positive dentry */
2213	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2214		goto reval_dentry;
2215
2216	/* Check if the directory changed */
2217	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2218		goto reval_dentry;
2219
2220	/* Let f_op->open() actually open (and revalidate) the file */
2221	return 1;
2222reval_dentry:
2223	if (flags & LOOKUP_RCU)
2224		return -ECHILD;
2225	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2226
2227full_reval:
2228	return nfs_do_lookup_revalidate(dir, dentry, flags);
2229}
2230
2231static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2232{
2233	return __nfs_lookup_revalidate(dentry, flags,
2234			nfs4_do_lookup_revalidate);
2235}
2236
2237#endif /* CONFIG_NFSV4 */
2238
2239struct dentry *
2240nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2241				struct nfs_fattr *fattr)
 
2242{
2243	struct dentry *parent = dget_parent(dentry);
2244	struct inode *dir = d_inode(parent);
2245	struct inode *inode;
2246	struct dentry *d;
2247	int error;
2248
2249	d_drop(dentry);
2250
2251	if (fhandle->size == 0) {
2252		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2253		if (error)
2254			goto out_error;
2255	}
2256	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2257	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2258		struct nfs_server *server = NFS_SB(dentry->d_sb);
2259		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2260				fattr, NULL);
2261		if (error < 0)
2262			goto out_error;
2263	}
2264	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2265	d = d_splice_alias(inode, dentry);
2266out:
2267	dput(parent);
2268	return d;
2269out_error:
2270	d = ERR_PTR(error);
2271	goto out;
2272}
2273EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2274
2275/*
2276 * Code common to create, mkdir, and mknod.
2277 */
2278int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2279				struct nfs_fattr *fattr)
 
2280{
2281	struct dentry *d;
2282
2283	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2284	if (IS_ERR(d))
2285		return PTR_ERR(d);
2286
2287	/* Callers don't care */
2288	dput(d);
2289	return 0;
2290}
2291EXPORT_SYMBOL_GPL(nfs_instantiate);
2292
2293/*
2294 * Following a failed create operation, we drop the dentry rather
2295 * than retain a negative dentry. This avoids a problem in the event
2296 * that the operation succeeded on the server, but an error in the
2297 * reply path made it appear to have failed.
2298 */
2299int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2300	       struct dentry *dentry, umode_t mode, bool excl)
2301{
2302	struct iattr attr;
2303	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2304	int error;
2305
2306	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2307			dir->i_sb->s_id, dir->i_ino, dentry);
2308
2309	attr.ia_mode = mode;
2310	attr.ia_valid = ATTR_MODE;
2311
2312	trace_nfs_create_enter(dir, dentry, open_flags);
2313	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2314	trace_nfs_create_exit(dir, dentry, open_flags, error);
2315	if (error != 0)
2316		goto out_err;
2317	return 0;
2318out_err:
2319	d_drop(dentry);
2320	return error;
2321}
2322EXPORT_SYMBOL_GPL(nfs_create);
2323
2324/*
2325 * See comments for nfs_proc_create regarding failed operations.
2326 */
2327int
2328nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2329	  struct dentry *dentry, umode_t mode, dev_t rdev)
2330{
2331	struct iattr attr;
2332	int status;
2333
2334	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2335			dir->i_sb->s_id, dir->i_ino, dentry);
2336
2337	attr.ia_mode = mode;
2338	attr.ia_valid = ATTR_MODE;
2339
2340	trace_nfs_mknod_enter(dir, dentry);
2341	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2342	trace_nfs_mknod_exit(dir, dentry, status);
2343	if (status != 0)
2344		goto out_err;
2345	return 0;
2346out_err:
2347	d_drop(dentry);
2348	return status;
2349}
2350EXPORT_SYMBOL_GPL(nfs_mknod);
2351
2352/*
2353 * See comments for nfs_proc_create regarding failed operations.
2354 */
2355int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2356	      struct dentry *dentry, umode_t mode)
2357{
2358	struct iattr attr;
2359	int error;
2360
2361	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2362			dir->i_sb->s_id, dir->i_ino, dentry);
2363
2364	attr.ia_valid = ATTR_MODE;
2365	attr.ia_mode = mode | S_IFDIR;
2366
2367	trace_nfs_mkdir_enter(dir, dentry);
2368	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2369	trace_nfs_mkdir_exit(dir, dentry, error);
2370	if (error != 0)
2371		goto out_err;
2372	return 0;
2373out_err:
2374	d_drop(dentry);
2375	return error;
2376}
2377EXPORT_SYMBOL_GPL(nfs_mkdir);
2378
2379static void nfs_dentry_handle_enoent(struct dentry *dentry)
2380{
2381	if (simple_positive(dentry))
2382		d_delete(dentry);
2383}
2384
2385static void nfs_dentry_remove_handle_error(struct inode *dir,
2386					   struct dentry *dentry, int error)
2387{
2388	switch (error) {
2389	case -ENOENT:
2390		if (d_really_is_positive(dentry))
2391			d_delete(dentry);
2392		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2393		break;
2394	case 0:
2395		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2396		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2397	}
2398}
2399
2400int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2401{
2402	int error;
2403
2404	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2405			dir->i_sb->s_id, dir->i_ino, dentry);
2406
2407	trace_nfs_rmdir_enter(dir, dentry);
2408	if (d_really_is_positive(dentry)) {
2409		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2410		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2411		/* Ensure the VFS deletes this inode */
2412		switch (error) {
2413		case 0:
2414			clear_nlink(d_inode(dentry));
2415			break;
2416		case -ENOENT:
2417			nfs_dentry_handle_enoent(dentry);
2418		}
2419		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2420	} else
2421		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2422	nfs_dentry_remove_handle_error(dir, dentry, error);
2423	trace_nfs_rmdir_exit(dir, dentry, error);
2424
2425	return error;
2426}
2427EXPORT_SYMBOL_GPL(nfs_rmdir);
2428
2429/*
2430 * Remove a file after making sure there are no pending writes,
2431 * and after checking that the file has only one user. 
2432 *
2433 * We invalidate the attribute cache and free the inode prior to the operation
2434 * to avoid possible races if the server reuses the inode.
2435 */
2436static int nfs_safe_remove(struct dentry *dentry)
2437{
2438	struct inode *dir = d_inode(dentry->d_parent);
2439	struct inode *inode = d_inode(dentry);
2440	int error = -EBUSY;
2441		
2442	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2443
2444	/* If the dentry was sillyrenamed, we simply call d_delete() */
2445	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2446		error = 0;
2447		goto out;
2448	}
2449
2450	trace_nfs_remove_enter(dir, dentry);
2451	if (inode != NULL) {
2452		error = NFS_PROTO(dir)->remove(dir, dentry);
2453		if (error == 0)
2454			nfs_drop_nlink(inode);
2455	} else
2456		error = NFS_PROTO(dir)->remove(dir, dentry);
2457	if (error == -ENOENT)
2458		nfs_dentry_handle_enoent(dentry);
2459	trace_nfs_remove_exit(dir, dentry, error);
2460out:
2461	return error;
2462}
2463
2464/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2465 *  belongs to an active ".nfs..." file and we return -EBUSY.
2466 *
2467 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2468 */
2469int nfs_unlink(struct inode *dir, struct dentry *dentry)
2470{
2471	int error;
 
2472
2473	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2474		dir->i_ino, dentry);
2475
2476	trace_nfs_unlink_enter(dir, dentry);
2477	spin_lock(&dentry->d_lock);
2478	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2479					     &NFS_I(d_inode(dentry))->flags)) {
2480		spin_unlock(&dentry->d_lock);
2481		/* Start asynchronous writeout of the inode */
2482		write_inode_now(d_inode(dentry), 0);
2483		error = nfs_sillyrename(dir, dentry);
2484		goto out;
2485	}
2486	/* We must prevent any concurrent open until the unlink
2487	 * completes.  ->d_revalidate will wait for ->d_fsdata
2488	 * to clear.  We set it here to ensure no lookup succeeds until
2489	 * the unlink is complete on the server.
2490	 */
2491	error = -ETXTBSY;
2492	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2493	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2494		spin_unlock(&dentry->d_lock);
2495		goto out;
2496	}
2497	/* old devname */
2498	kfree(dentry->d_fsdata);
2499	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2500
2501	spin_unlock(&dentry->d_lock);
2502	error = nfs_safe_remove(dentry);
2503	nfs_dentry_remove_handle_error(dir, dentry, error);
2504	dentry->d_fsdata = NULL;
2505	wake_up_var(&dentry->d_fsdata);
 
2506out:
2507	trace_nfs_unlink_exit(dir, dentry, error);
2508	return error;
2509}
2510EXPORT_SYMBOL_GPL(nfs_unlink);
2511
2512/*
2513 * To create a symbolic link, most file systems instantiate a new inode,
2514 * add a page to it containing the path, then write it out to the disk
2515 * using prepare_write/commit_write.
2516 *
2517 * Unfortunately the NFS client can't create the in-core inode first
2518 * because it needs a file handle to create an in-core inode (see
2519 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2520 * symlink request has completed on the server.
2521 *
2522 * So instead we allocate a raw page, copy the symname into it, then do
2523 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2524 * now have a new file handle and can instantiate an in-core NFS inode
2525 * and move the raw page into its mapping.
2526 */
2527int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2528		struct dentry *dentry, const char *symname)
2529{
2530	struct page *page;
2531	char *kaddr;
2532	struct iattr attr;
2533	unsigned int pathlen = strlen(symname);
2534	int error;
2535
2536	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2537		dir->i_ino, dentry, symname);
2538
2539	if (pathlen > PAGE_SIZE)
2540		return -ENAMETOOLONG;
2541
2542	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2543	attr.ia_valid = ATTR_MODE;
2544
2545	page = alloc_page(GFP_USER);
2546	if (!page)
2547		return -ENOMEM;
2548
2549	kaddr = page_address(page);
2550	memcpy(kaddr, symname, pathlen);
2551	if (pathlen < PAGE_SIZE)
2552		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2553
2554	trace_nfs_symlink_enter(dir, dentry);
2555	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2556	trace_nfs_symlink_exit(dir, dentry, error);
2557	if (error != 0) {
2558		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2559			dir->i_sb->s_id, dir->i_ino,
2560			dentry, symname, error);
2561		d_drop(dentry);
2562		__free_page(page);
2563		return error;
2564	}
2565
2566	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2567
2568	/*
2569	 * No big deal if we can't add this page to the page cache here.
2570	 * READLINK will get the missing page from the server if needed.
2571	 */
2572	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2573							GFP_KERNEL)) {
2574		SetPageUptodate(page);
2575		unlock_page(page);
2576		/*
2577		 * add_to_page_cache_lru() grabs an extra page refcount.
2578		 * Drop it here to avoid leaking this page later.
2579		 */
2580		put_page(page);
2581	} else
2582		__free_page(page);
2583
2584	return 0;
2585}
2586EXPORT_SYMBOL_GPL(nfs_symlink);
2587
2588int
2589nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2590{
2591	struct inode *inode = d_inode(old_dentry);
2592	int error;
2593
2594	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2595		old_dentry, dentry);
2596
2597	trace_nfs_link_enter(inode, dir, dentry);
2598	d_drop(dentry);
2599	if (S_ISREG(inode->i_mode))
2600		nfs_sync_inode(inode);
2601	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2602	if (error == 0) {
2603		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2604		ihold(inode);
2605		d_add(dentry, inode);
2606	}
2607	trace_nfs_link_exit(inode, dir, dentry, error);
2608	return error;
2609}
2610EXPORT_SYMBOL_GPL(nfs_link);
2611
2612static void
2613nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2614{
2615	struct dentry *new_dentry = data->new_dentry;
2616
2617	new_dentry->d_fsdata = NULL;
2618	wake_up_var(&new_dentry->d_fsdata);
2619}
2620
2621/*
2622 * RENAME
2623 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2624 * different file handle for the same inode after a rename (e.g. when
2625 * moving to a different directory). A fail-safe method to do so would
2626 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2627 * rename the old file using the sillyrename stuff. This way, the original
2628 * file in old_dir will go away when the last process iput()s the inode.
2629 *
2630 * FIXED.
2631 * 
2632 * It actually works quite well. One needs to have the possibility for
2633 * at least one ".nfs..." file in each directory the file ever gets
2634 * moved or linked to which happens automagically with the new
2635 * implementation that only depends on the dcache stuff instead of
2636 * using the inode layer
2637 *
2638 * Unfortunately, things are a little more complicated than indicated
2639 * above. For a cross-directory move, we want to make sure we can get
2640 * rid of the old inode after the operation.  This means there must be
2641 * no pending writes (if it's a file), and the use count must be 1.
2642 * If these conditions are met, we can drop the dentries before doing
2643 * the rename.
2644 */
2645int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2646	       struct dentry *old_dentry, struct inode *new_dir,
2647	       struct dentry *new_dentry, unsigned int flags)
2648{
2649	struct inode *old_inode = d_inode(old_dentry);
2650	struct inode *new_inode = d_inode(new_dentry);
2651	struct dentry *dentry = NULL;
2652	struct rpc_task *task;
2653	bool must_unblock = false;
2654	int error = -EBUSY;
2655
2656	if (flags)
2657		return -EINVAL;
2658
2659	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2660		 old_dentry, new_dentry,
2661		 d_count(new_dentry));
2662
2663	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2664	/*
2665	 * For non-directories, check whether the target is busy and if so,
2666	 * make a copy of the dentry and then do a silly-rename. If the
2667	 * silly-rename succeeds, the copied dentry is hashed and becomes
2668	 * the new target.
2669	 */
2670	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2671		/* We must prevent any concurrent open until the unlink
2672		 * completes.  ->d_revalidate will wait for ->d_fsdata
2673		 * to clear.  We set it here to ensure no lookup succeeds until
2674		 * the unlink is complete on the server.
2675		 */
2676		error = -ETXTBSY;
2677		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2678		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2679			goto out;
2680		if (new_dentry->d_fsdata) {
2681			/* old devname */
2682			kfree(new_dentry->d_fsdata);
2683			new_dentry->d_fsdata = NULL;
2684		}
2685
2686		spin_lock(&new_dentry->d_lock);
2687		if (d_count(new_dentry) > 2) {
2688			int err;
2689
2690			spin_unlock(&new_dentry->d_lock);
2691
2692			/* copy the target dentry's name */
2693			dentry = d_alloc(new_dentry->d_parent,
2694					 &new_dentry->d_name);
2695			if (!dentry)
2696				goto out;
2697
2698			/* silly-rename the existing target ... */
2699			err = nfs_sillyrename(new_dir, new_dentry);
2700			if (err)
2701				goto out;
2702
2703			new_dentry = dentry;
 
2704			new_inode = NULL;
2705		} else {
2706			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2707			must_unblock = true;
2708			spin_unlock(&new_dentry->d_lock);
2709		}
2710
2711	}
2712
2713	if (S_ISREG(old_inode->i_mode))
2714		nfs_sync_inode(old_inode);
2715	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2716				must_unblock ? nfs_unblock_rename : NULL);
2717	if (IS_ERR(task)) {
2718		error = PTR_ERR(task);
2719		goto out;
2720	}
2721
2722	error = rpc_wait_for_completion_task(task);
2723	if (error != 0) {
2724		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2725		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2726		smp_wmb();
2727	} else
2728		error = task->tk_status;
2729	rpc_put_task(task);
2730	/* Ensure the inode attributes are revalidated */
2731	if (error == 0) {
2732		spin_lock(&old_inode->i_lock);
2733		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2734		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2735							 NFS_INO_INVALID_CTIME |
2736							 NFS_INO_REVAL_FORCED);
2737		spin_unlock(&old_inode->i_lock);
2738	}
2739out:
 
 
2740	trace_nfs_rename_exit(old_dir, old_dentry,
2741			new_dir, new_dentry, error);
2742	if (!error) {
2743		if (new_inode != NULL)
2744			nfs_drop_nlink(new_inode);
2745		/*
2746		 * The d_move() should be here instead of in an async RPC completion
2747		 * handler because we need the proper locks to move the dentry.  If
2748		 * we're interrupted by a signal, the async RPC completion handler
2749		 * should mark the directories for revalidation.
2750		 */
2751		d_move(old_dentry, new_dentry);
2752		nfs_set_verifier(old_dentry,
2753					nfs_save_change_attribute(new_dir));
2754	} else if (error == -ENOENT)
2755		nfs_dentry_handle_enoent(old_dentry);
2756
2757	/* new dentry created? */
2758	if (dentry)
2759		dput(dentry);
2760	return error;
2761}
2762EXPORT_SYMBOL_GPL(nfs_rename);
2763
2764static DEFINE_SPINLOCK(nfs_access_lru_lock);
2765static LIST_HEAD(nfs_access_lru_list);
2766static atomic_long_t nfs_access_nr_entries;
2767
2768static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2769module_param(nfs_access_max_cachesize, ulong, 0644);
2770MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2771
2772static void nfs_access_free_entry(struct nfs_access_entry *entry)
2773{
2774	put_group_info(entry->group_info);
2775	kfree_rcu(entry, rcu_head);
2776	smp_mb__before_atomic();
2777	atomic_long_dec(&nfs_access_nr_entries);
2778	smp_mb__after_atomic();
2779}
2780
2781static void nfs_access_free_list(struct list_head *head)
2782{
2783	struct nfs_access_entry *cache;
2784
2785	while (!list_empty(head)) {
2786		cache = list_entry(head->next, struct nfs_access_entry, lru);
2787		list_del(&cache->lru);
2788		nfs_access_free_entry(cache);
2789	}
2790}
2791
2792static unsigned long
2793nfs_do_access_cache_scan(unsigned int nr_to_scan)
2794{
2795	LIST_HEAD(head);
2796	struct nfs_inode *nfsi, *next;
2797	struct nfs_access_entry *cache;
2798	long freed = 0;
2799
2800	spin_lock(&nfs_access_lru_lock);
2801	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2802		struct inode *inode;
2803
2804		if (nr_to_scan-- == 0)
2805			break;
2806		inode = &nfsi->vfs_inode;
2807		spin_lock(&inode->i_lock);
2808		if (list_empty(&nfsi->access_cache_entry_lru))
2809			goto remove_lru_entry;
2810		cache = list_entry(nfsi->access_cache_entry_lru.next,
2811				struct nfs_access_entry, lru);
2812		list_move(&cache->lru, &head);
2813		rb_erase(&cache->rb_node, &nfsi->access_cache);
2814		freed++;
2815		if (!list_empty(&nfsi->access_cache_entry_lru))
2816			list_move_tail(&nfsi->access_cache_inode_lru,
2817					&nfs_access_lru_list);
2818		else {
2819remove_lru_entry:
2820			list_del_init(&nfsi->access_cache_inode_lru);
2821			smp_mb__before_atomic();
2822			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2823			smp_mb__after_atomic();
2824		}
2825		spin_unlock(&inode->i_lock);
2826	}
2827	spin_unlock(&nfs_access_lru_lock);
2828	nfs_access_free_list(&head);
2829	return freed;
2830}
2831
2832unsigned long
2833nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2834{
2835	int nr_to_scan = sc->nr_to_scan;
2836	gfp_t gfp_mask = sc->gfp_mask;
2837
2838	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2839		return SHRINK_STOP;
2840	return nfs_do_access_cache_scan(nr_to_scan);
2841}
2842
2843
2844unsigned long
2845nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2846{
2847	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2848}
2849
2850static void
2851nfs_access_cache_enforce_limit(void)
2852{
2853	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2854	unsigned long diff;
2855	unsigned int nr_to_scan;
2856
2857	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2858		return;
2859	nr_to_scan = 100;
2860	diff = nr_entries - nfs_access_max_cachesize;
2861	if (diff < nr_to_scan)
2862		nr_to_scan = diff;
2863	nfs_do_access_cache_scan(nr_to_scan);
2864}
2865
2866static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2867{
2868	struct rb_root *root_node = &nfsi->access_cache;
2869	struct rb_node *n;
2870	struct nfs_access_entry *entry;
2871
2872	/* Unhook entries from the cache */
2873	while ((n = rb_first(root_node)) != NULL) {
2874		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2875		rb_erase(n, root_node);
2876		list_move(&entry->lru, head);
2877	}
2878	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2879}
2880
2881void nfs_access_zap_cache(struct inode *inode)
2882{
2883	LIST_HEAD(head);
2884
2885	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2886		return;
2887	/* Remove from global LRU init */
2888	spin_lock(&nfs_access_lru_lock);
2889	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2890		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2891
2892	spin_lock(&inode->i_lock);
2893	__nfs_access_zap_cache(NFS_I(inode), &head);
2894	spin_unlock(&inode->i_lock);
2895	spin_unlock(&nfs_access_lru_lock);
2896	nfs_access_free_list(&head);
2897}
2898EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2899
2900static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2901{
2902	struct group_info *ga, *gb;
2903	int g;
2904
2905	if (uid_lt(a->fsuid, b->fsuid))
2906		return -1;
2907	if (uid_gt(a->fsuid, b->fsuid))
2908		return 1;
2909
2910	if (gid_lt(a->fsgid, b->fsgid))
2911		return -1;
2912	if (gid_gt(a->fsgid, b->fsgid))
2913		return 1;
2914
2915	ga = a->group_info;
2916	gb = b->group_info;
2917	if (ga == gb)
2918		return 0;
2919	if (ga == NULL)
2920		return -1;
2921	if (gb == NULL)
2922		return 1;
2923	if (ga->ngroups < gb->ngroups)
2924		return -1;
2925	if (ga->ngroups > gb->ngroups)
2926		return 1;
2927
2928	for (g = 0; g < ga->ngroups; g++) {
2929		if (gid_lt(ga->gid[g], gb->gid[g]))
2930			return -1;
2931		if (gid_gt(ga->gid[g], gb->gid[g]))
2932			return 1;
2933	}
2934	return 0;
2935}
2936
2937static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2938{
2939	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2940
2941	while (n != NULL) {
2942		struct nfs_access_entry *entry =
2943			rb_entry(n, struct nfs_access_entry, rb_node);
2944		int cmp = access_cmp(cred, entry);
2945
2946		if (cmp < 0)
2947			n = n->rb_left;
2948		else if (cmp > 0)
2949			n = n->rb_right;
2950		else
2951			return entry;
2952	}
2953	return NULL;
2954}
2955
2956static u64 nfs_access_login_time(const struct task_struct *task,
2957				 const struct cred *cred)
2958{
2959	const struct task_struct *parent;
2960	const struct cred *pcred;
2961	u64 ret;
2962
2963	rcu_read_lock();
2964	for (;;) {
2965		parent = rcu_dereference(task->real_parent);
2966		pcred = rcu_dereference(parent->cred);
2967		if (parent == task || cred_fscmp(pcred, cred) != 0)
2968			break;
2969		task = parent;
2970	}
2971	ret = task->start_time;
2972	rcu_read_unlock();
2973	return ret;
2974}
2975
2976static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2977{
2978	struct nfs_inode *nfsi = NFS_I(inode);
2979	u64 login_time = nfs_access_login_time(current, cred);
2980	struct nfs_access_entry *cache;
2981	bool retry = true;
2982	int err;
2983
2984	spin_lock(&inode->i_lock);
2985	for(;;) {
2986		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2987			goto out_zap;
2988		cache = nfs_access_search_rbtree(inode, cred);
2989		err = -ENOENT;
2990		if (cache == NULL)
2991			goto out;
2992		/* Found an entry, is our attribute cache valid? */
2993		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2994			break;
2995		if (!retry)
2996			break;
2997		err = -ECHILD;
2998		if (!may_block)
2999			goto out;
3000		spin_unlock(&inode->i_lock);
3001		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002		if (err)
3003			return err;
3004		spin_lock(&inode->i_lock);
3005		retry = false;
3006	}
3007	err = -ENOENT;
3008	if ((s64)(login_time - cache->timestamp) > 0)
3009		goto out;
3010	*mask = cache->mask;
3011	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3012	err = 0;
3013out:
3014	spin_unlock(&inode->i_lock);
3015	return err;
3016out_zap:
3017	spin_unlock(&inode->i_lock);
3018	nfs_access_zap_cache(inode);
3019	return -ENOENT;
3020}
3021
3022static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3023{
3024	/* Only check the most recently returned cache entry,
3025	 * but do it without locking.
3026	 */
3027	struct nfs_inode *nfsi = NFS_I(inode);
3028	u64 login_time = nfs_access_login_time(current, cred);
3029	struct nfs_access_entry *cache;
3030	int err = -ECHILD;
3031	struct list_head *lh;
3032
3033	rcu_read_lock();
3034	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3035		goto out;
3036	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3037	cache = list_entry(lh, struct nfs_access_entry, lru);
3038	if (lh == &nfsi->access_cache_entry_lru ||
3039	    access_cmp(cred, cache) != 0)
3040		cache = NULL;
3041	if (cache == NULL)
3042		goto out;
3043	if ((s64)(login_time - cache->timestamp) > 0)
3044		goto out;
3045	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3046		goto out;
3047	*mask = cache->mask;
 
3048	err = 0;
3049out:
3050	rcu_read_unlock();
3051	return err;
3052}
3053
3054int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3055			  u32 *mask, bool may_block)
3056{
3057	int status;
3058
3059	status = nfs_access_get_cached_rcu(inode, cred, mask);
3060	if (status != 0)
3061		status = nfs_access_get_cached_locked(inode, cred, mask,
3062		    may_block);
3063
3064	return status;
3065}
3066EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3067
3068static void nfs_access_add_rbtree(struct inode *inode,
3069				  struct nfs_access_entry *set,
3070				  const struct cred *cred)
3071{
3072	struct nfs_inode *nfsi = NFS_I(inode);
3073	struct rb_root *root_node = &nfsi->access_cache;
3074	struct rb_node **p = &root_node->rb_node;
3075	struct rb_node *parent = NULL;
3076	struct nfs_access_entry *entry;
3077	int cmp;
3078
3079	spin_lock(&inode->i_lock);
3080	while (*p != NULL) {
3081		parent = *p;
3082		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3083		cmp = access_cmp(cred, entry);
3084
3085		if (cmp < 0)
3086			p = &parent->rb_left;
3087		else if (cmp > 0)
3088			p = &parent->rb_right;
3089		else
3090			goto found;
3091	}
3092	set->timestamp = ktime_get_ns();
3093	rb_link_node(&set->rb_node, parent, p);
3094	rb_insert_color(&set->rb_node, root_node);
3095	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3096	spin_unlock(&inode->i_lock);
3097	return;
3098found:
3099	rb_replace_node(parent, &set->rb_node, root_node);
3100	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3101	list_del(&entry->lru);
3102	spin_unlock(&inode->i_lock);
3103	nfs_access_free_entry(entry);
3104}
3105
3106void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3107			  const struct cred *cred)
3108{
3109	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3110	if (cache == NULL)
3111		return;
3112	RB_CLEAR_NODE(&cache->rb_node);
3113	cache->fsuid = cred->fsuid;
3114	cache->fsgid = cred->fsgid;
3115	cache->group_info = get_group_info(cred->group_info);
3116	cache->mask = set->mask;
3117
3118	/* The above field assignments must be visible
3119	 * before this item appears on the lru.  We cannot easily
3120	 * use rcu_assign_pointer, so just force the memory barrier.
3121	 */
3122	smp_wmb();
3123	nfs_access_add_rbtree(inode, cache, cred);
3124
3125	/* Update accounting */
3126	smp_mb__before_atomic();
3127	atomic_long_inc(&nfs_access_nr_entries);
3128	smp_mb__after_atomic();
3129
3130	/* Add inode to global LRU list */
3131	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3132		spin_lock(&nfs_access_lru_lock);
3133		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3134			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3135					&nfs_access_lru_list);
3136		spin_unlock(&nfs_access_lru_lock);
3137	}
3138	nfs_access_cache_enforce_limit();
3139}
3140EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3141
3142#define NFS_MAY_READ (NFS_ACCESS_READ)
3143#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3144		NFS_ACCESS_EXTEND | \
3145		NFS_ACCESS_DELETE)
3146#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3147		NFS_ACCESS_EXTEND)
3148#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3149#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3150#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3151static int
3152nfs_access_calc_mask(u32 access_result, umode_t umode)
3153{
3154	int mask = 0;
3155
3156	if (access_result & NFS_MAY_READ)
3157		mask |= MAY_READ;
3158	if (S_ISDIR(umode)) {
3159		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3160			mask |= MAY_WRITE;
3161		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3162			mask |= MAY_EXEC;
3163	} else if (S_ISREG(umode)) {
3164		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3165			mask |= MAY_WRITE;
3166		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3167			mask |= MAY_EXEC;
3168	} else if (access_result & NFS_MAY_WRITE)
3169			mask |= MAY_WRITE;
3170	return mask;
3171}
3172
3173void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3174{
3175	entry->mask = access_result;
3176}
3177EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3178
3179static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3180{
3181	struct nfs_access_entry cache;
3182	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3183	int cache_mask = -1;
3184	int status;
3185
3186	trace_nfs_access_enter(inode);
3187
3188	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3189	if (status == 0)
3190		goto out_cached;
3191
3192	status = -ECHILD;
3193	if (!may_block)
3194		goto out;
3195
3196	/*
3197	 * Determine which access bits we want to ask for...
3198	 */
3199	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3200		     nfs_access_xattr_mask(NFS_SERVER(inode));
 
 
 
3201	if (S_ISDIR(inode->i_mode))
3202		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3203	else
3204		cache.mask |= NFS_ACCESS_EXECUTE;
3205	status = NFS_PROTO(inode)->access(inode, &cache, cred);
 
3206	if (status != 0) {
3207		if (status == -ESTALE) {
3208			if (!S_ISDIR(inode->i_mode))
3209				nfs_set_inode_stale(inode);
3210			else
3211				nfs_zap_caches(inode);
3212		}
3213		goto out;
3214	}
3215	nfs_access_add_cache(inode, &cache, cred);
3216out_cached:
3217	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3218	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3219		status = -EACCES;
3220out:
3221	trace_nfs_access_exit(inode, mask, cache_mask, status);
3222	return status;
3223}
3224
3225static int nfs_open_permission_mask(int openflags)
3226{
3227	int mask = 0;
3228
3229	if (openflags & __FMODE_EXEC) {
3230		/* ONLY check exec rights */
3231		mask = MAY_EXEC;
3232	} else {
3233		if ((openflags & O_ACCMODE) != O_WRONLY)
3234			mask |= MAY_READ;
3235		if ((openflags & O_ACCMODE) != O_RDONLY)
3236			mask |= MAY_WRITE;
3237	}
3238
3239	return mask;
3240}
3241
3242int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3243{
3244	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3245}
3246EXPORT_SYMBOL_GPL(nfs_may_open);
3247
3248static int nfs_execute_ok(struct inode *inode, int mask)
3249{
3250	struct nfs_server *server = NFS_SERVER(inode);
3251	int ret = 0;
3252
3253	if (S_ISDIR(inode->i_mode))
3254		return 0;
3255	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3256		if (mask & MAY_NOT_BLOCK)
3257			return -ECHILD;
3258		ret = __nfs_revalidate_inode(server, inode);
3259	}
3260	if (ret == 0 && !execute_ok(inode))
3261		ret = -EACCES;
3262	return ret;
3263}
3264
3265int nfs_permission(struct user_namespace *mnt_userns,
3266		   struct inode *inode,
3267		   int mask)
3268{
3269	const struct cred *cred = current_cred();
3270	int res = 0;
3271
3272	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3273
3274	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3275		goto out;
3276	/* Is this sys_access() ? */
3277	if (mask & (MAY_ACCESS | MAY_CHDIR))
3278		goto force_lookup;
3279
3280	switch (inode->i_mode & S_IFMT) {
3281		case S_IFLNK:
3282			goto out;
3283		case S_IFREG:
3284			if ((mask & MAY_OPEN) &&
3285			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3286				return 0;
3287			break;
3288		case S_IFDIR:
3289			/*
3290			 * Optimize away all write operations, since the server
3291			 * will check permissions when we perform the op.
3292			 */
3293			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3294				goto out;
3295	}
3296
3297force_lookup:
3298	if (!NFS_PROTO(inode)->access)
3299		goto out_notsup;
3300
3301	res = nfs_do_access(inode, cred, mask);
3302out:
3303	if (!res && (mask & MAY_EXEC))
3304		res = nfs_execute_ok(inode, mask);
3305
3306	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3307		inode->i_sb->s_id, inode->i_ino, mask, res);
3308	return res;
3309out_notsup:
3310	if (mask & MAY_NOT_BLOCK)
3311		return -ECHILD;
3312
3313	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3314						  NFS_INO_INVALID_OTHER);
3315	if (res == 0)
3316		res = generic_permission(&init_user_ns, inode, mask);
3317	goto out;
3318}
3319EXPORT_SYMBOL_GPL(nfs_permission);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
 
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
 
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59	.llseek		= nfs_llseek_dir,
  60	.read		= generic_read_dir,
  61	.iterate_shared	= nfs_readdir,
  62	.open		= nfs_opendir,
  63	.release	= nfs_closedir,
  64	.fsync		= nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68	.freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
 
 
 
  72{
  73	struct nfs_inode *nfsi = NFS_I(dir);
  74	struct nfs_open_dir_context *ctx;
  75	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 
  76	if (ctx != NULL) {
  77		ctx->duped = 0;
  78		ctx->attr_gencount = nfsi->attr_gencount;
  79		ctx->dir_cookie = 0;
  80		ctx->dup_cookie = 0;
  81		spin_lock(&dir->i_lock);
  82		if (list_empty(&nfsi->open_files) &&
  83		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  84			nfs_set_cache_invalid(dir,
  85					      NFS_INO_INVALID_DATA |
  86						      NFS_INO_REVAL_FORCED);
  87		list_add(&ctx->list, &nfsi->open_files);
 
  88		spin_unlock(&dir->i_lock);
  89		return ctx;
  90	}
  91	return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96	spin_lock(&dir->i_lock);
  97	list_del(&ctx->list);
  98	spin_unlock(&dir->i_lock);
  99	kfree(ctx);
 100}
 101
 102/*
 103 * Open file
 104 */
 105static int
 106nfs_opendir(struct inode *inode, struct file *filp)
 107{
 108	int res = 0;
 109	struct nfs_open_dir_context *ctx;
 110
 111	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 112
 113	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 114
 115	ctx = alloc_nfs_open_dir_context(inode);
 116	if (IS_ERR(ctx)) {
 117		res = PTR_ERR(ctx);
 118		goto out;
 119	}
 120	filp->private_data = ctx;
 121out:
 122	return res;
 123}
 124
 125static int
 126nfs_closedir(struct inode *inode, struct file *filp)
 127{
 128	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 129	return 0;
 130}
 131
 132struct nfs_cache_array_entry {
 133	u64 cookie;
 134	u64 ino;
 135	const char *name;
 136	unsigned int name_len;
 137	unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 
 141	u64 last_cookie;
 142	unsigned int size;
 143	unsigned char page_full : 1,
 144		      page_is_eof : 1,
 145		      cookies_are_ordered : 1;
 146	struct nfs_cache_array_entry array[];
 147};
 148
 149struct nfs_readdir_descriptor {
 150	struct file	*file;
 151	struct page	*page;
 152	struct dir_context *ctx;
 153	pgoff_t		page_index;
 
 154	u64		dir_cookie;
 155	u64		last_cookie;
 156	u64		dup_cookie;
 157	loff_t		current_index;
 158	loff_t		prev_index;
 159
 160	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 161	unsigned long	dir_verifier;
 162	unsigned long	timestamp;
 163	unsigned long	gencount;
 164	unsigned long	attr_gencount;
 165	unsigned int	cache_entry_index;
 166	signed char duped;
 
 
 167	bool plus;
 
 168	bool eof;
 169};
 170
 171static void nfs_readdir_array_init(struct nfs_cache_array *array)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172{
 173	memset(array, 0, sizeof(struct nfs_cache_array));
 174}
 175
 176static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
 
 177{
 178	struct nfs_cache_array *array;
 179
 180	array = kmap_atomic(page);
 181	nfs_readdir_array_init(array);
 182	array->last_cookie = last_cookie;
 
 
 
 183	array->cookies_are_ordered = 1;
 184	kunmap_atomic(array);
 185}
 186
 187/*
 188 * we are freeing strings created by nfs_add_to_readdir_array()
 189 */
 190static
 191void nfs_readdir_clear_array(struct page *page)
 192{
 193	struct nfs_cache_array *array;
 194	int i;
 195
 196	array = kmap_atomic(page);
 197	for (i = 0; i < array->size; i++)
 198		kfree(array->array[i].name);
 199	nfs_readdir_array_init(array);
 200	kunmap_atomic(array);
 201}
 202
 
 
 
 
 
 
 
 
 
 
 
 
 203static struct page *
 204nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 205{
 206	struct page *page = alloc_page(gfp_flags);
 207	if (page)
 208		nfs_readdir_page_init_array(page, last_cookie);
 209	return page;
 210}
 211
 212static void nfs_readdir_page_array_free(struct page *page)
 213{
 214	if (page) {
 215		nfs_readdir_clear_array(page);
 216		put_page(page);
 217	}
 218}
 219
 
 
 
 
 
 220static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 221{
 222	array->page_is_eof = 1;
 223	array->page_full = 1;
 224}
 225
 226static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 227{
 228	return array->page_full;
 229}
 230
 231/*
 232 * the caller is responsible for freeing qstr.name
 233 * when called by nfs_readdir_add_to_array, the strings will be freed in
 234 * nfs_clear_readdir_array()
 235 */
 236static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 237{
 238	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 239
 240	/*
 241	 * Avoid a kmemleak false positive. The pointer to the name is stored
 242	 * in a page cache page which kmemleak does not scan.
 243	 */
 244	if (ret != NULL)
 245		kmemleak_not_leak(ret);
 246	return ret;
 247}
 248
 
 
 
 
 
 
 249/*
 250 * Check that the next array entry lies entirely within the page bounds
 251 */
 252static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 253{
 254	struct nfs_cache_array_entry *cache_entry;
 255
 256	if (array->page_full)
 257		return -ENOSPC;
 258	cache_entry = &array->array[array->size + 1];
 259	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
 260		array->page_full = 1;
 261		return -ENOSPC;
 262	}
 263	return 0;
 264}
 265
 266static
 267int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 
 268{
 269	struct nfs_cache_array *array;
 270	struct nfs_cache_array_entry *cache_entry;
 271	const char *name;
 272	int ret;
 273
 274	name = nfs_readdir_copy_name(entry->name, entry->len);
 275	if (!name)
 276		return -ENOMEM;
 277
 278	array = kmap_atomic(page);
 
 
 279	ret = nfs_readdir_array_can_expand(array);
 280	if (ret) {
 281		kfree(name);
 282		goto out;
 283	}
 284
 285	cache_entry = &array->array[array->size];
 286	cache_entry->cookie = entry->prev_cookie;
 287	cache_entry->ino = entry->ino;
 288	cache_entry->d_type = entry->d_type;
 289	cache_entry->name_len = entry->len;
 290	cache_entry->name = name;
 291	array->last_cookie = entry->cookie;
 292	if (array->last_cookie <= cache_entry->cookie)
 293		array->cookies_are_ordered = 0;
 294	array->size++;
 295	if (entry->eof != 0)
 296		nfs_readdir_array_set_eof(array);
 297out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298	kunmap_atomic(array);
 299	return ret;
 300}
 301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
 303						pgoff_t index, u64 last_cookie)
 304{
 
 305	struct page *page;
 306
 307	page = grab_cache_page(mapping, index);
 308	if (page && !PageUptodate(page)) {
 309		nfs_readdir_page_init_array(page, last_cookie);
 310		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
 311			nfs_zap_mapping(mapping->host, mapping);
 312		SetPageUptodate(page);
 313	}
 314
 315	return page;
 316}
 317
 318static u64 nfs_readdir_page_last_cookie(struct page *page)
 319{
 320	struct nfs_cache_array *array;
 321	u64 ret;
 322
 323	array = kmap_atomic(page);
 324	ret = array->last_cookie;
 325	kunmap_atomic(array);
 326	return ret;
 327}
 328
 329static bool nfs_readdir_page_needs_filling(struct page *page)
 330{
 331	struct nfs_cache_array *array;
 332	bool ret;
 333
 334	array = kmap_atomic(page);
 335	ret = !nfs_readdir_array_is_full(array);
 336	kunmap_atomic(array);
 337	return ret;
 338}
 339
 340static void nfs_readdir_page_set_eof(struct page *page)
 341{
 342	struct nfs_cache_array *array;
 343
 344	array = kmap_atomic(page);
 345	nfs_readdir_array_set_eof(array);
 346	kunmap_atomic(array);
 347}
 348
 349static void nfs_readdir_page_unlock_and_put(struct page *page)
 350{
 351	unlock_page(page);
 352	put_page(page);
 353}
 354
 355static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
 356					      pgoff_t index, u64 cookie)
 357{
 
 358	struct page *page;
 359
 360	page = nfs_readdir_page_get_locked(mapping, index, cookie);
 361	if (page) {
 362		if (nfs_readdir_page_last_cookie(page) == cookie)
 363			return page;
 364		nfs_readdir_page_unlock_and_put(page);
 365	}
 366	return NULL;
 367}
 368
 369static inline
 370int is_32bit_api(void)
 371{
 372#ifdef CONFIG_COMPAT
 373	return in_compat_syscall();
 374#else
 375	return (BITS_PER_LONG == 32);
 376#endif
 377}
 378
 379static
 380bool nfs_readdir_use_cookie(const struct file *filp)
 381{
 382	if ((filp->f_mode & FMODE_32BITHASH) ||
 383	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 384		return false;
 385	return true;
 386}
 387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 389				      struct nfs_readdir_descriptor *desc)
 390{
 391	loff_t diff = desc->ctx->pos - desc->current_index;
 392	unsigned int index;
 393
 394	if (diff < 0)
 395		goto out_eof;
 396	if (diff >= array->size) {
 397		if (array->page_is_eof)
 398			goto out_eof;
 
 399		return -EAGAIN;
 400	}
 401
 402	index = (unsigned int)diff;
 403	desc->dir_cookie = array->array[index].cookie;
 404	desc->cache_entry_index = index;
 405	return 0;
 406out_eof:
 407	desc->eof = true;
 408	return -EBADCOOKIE;
 409}
 410
 411static bool
 412nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 413{
 414	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 415		return false;
 416	smp_rmb();
 417	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 418}
 419
 420static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 421					      u64 cookie)
 422{
 423	if (!array->cookies_are_ordered)
 424		return true;
 425	/* Optimisation for monotonically increasing cookies */
 426	if (cookie >= array->last_cookie)
 427		return false;
 428	if (array->size && cookie < array->array[0].cookie)
 429		return false;
 430	return true;
 431}
 432
 433static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 434					 struct nfs_readdir_descriptor *desc)
 435{
 436	int i;
 437	loff_t new_pos;
 438	int status = -EAGAIN;
 439
 440	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 441		goto check_eof;
 442
 443	for (i = 0; i < array->size; i++) {
 444		if (array->array[i].cookie == desc->dir_cookie) {
 445			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 446
 447			new_pos = desc->current_index + i;
 448			if (desc->attr_gencount != nfsi->attr_gencount ||
 449			    !nfs_readdir_inode_mapping_valid(nfsi)) {
 450				desc->duped = 0;
 451				desc->attr_gencount = nfsi->attr_gencount;
 452			} else if (new_pos < desc->prev_index) {
 453				if (desc->duped > 0
 454				    && desc->dup_cookie == desc->dir_cookie) {
 455					if (printk_ratelimit()) {
 456						pr_notice("NFS: directory %pD2 contains a readdir loop."
 457								"Please contact your server vendor.  "
 458								"The file: %s has duplicate cookie %llu\n",
 459								desc->file, array->array[i].name, desc->dir_cookie);
 460					}
 461					status = -ELOOP;
 462					goto out;
 463				}
 464				desc->dup_cookie = desc->dir_cookie;
 465				desc->duped = -1;
 466			}
 467			if (nfs_readdir_use_cookie(desc->file))
 468				desc->ctx->pos = desc->dir_cookie;
 469			else
 470				desc->ctx->pos = new_pos;
 471			desc->prev_index = new_pos;
 472			desc->cache_entry_index = i;
 473			return 0;
 474		}
 475	}
 476check_eof:
 477	if (array->page_is_eof) {
 478		status = -EBADCOOKIE;
 479		if (desc->dir_cookie == array->last_cookie)
 480			desc->eof = true;
 481	}
 482out:
 483	return status;
 484}
 485
 486static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 487{
 488	struct nfs_cache_array *array;
 489	int status;
 490
 491	array = kmap_atomic(desc->page);
 492
 493	if (desc->dir_cookie == 0)
 494		status = nfs_readdir_search_for_pos(array, desc);
 495	else
 496		status = nfs_readdir_search_for_cookie(array, desc);
 497
 498	if (status == -EAGAIN) {
 499		desc->last_cookie = array->last_cookie;
 500		desc->current_index += array->size;
 501		desc->page_index++;
 502	}
 503	kunmap_atomic(array);
 504	return status;
 505}
 506
 507/* Fill a page with xdr information before transferring to the cache page */
 508static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 509				  __be32 *verf, u64 cookie,
 510				  struct page **pages, size_t bufsize,
 511				  __be32 *verf_res)
 512{
 513	struct inode *inode = file_inode(desc->file);
 514	struct nfs_readdir_arg arg = {
 515		.dentry = file_dentry(desc->file),
 516		.cred = desc->file->f_cred,
 517		.verf = verf,
 518		.cookie = cookie,
 519		.pages = pages,
 520		.page_len = bufsize,
 521		.plus = desc->plus,
 522	};
 523	struct nfs_readdir_res res = {
 524		.verf = verf_res,
 525	};
 526	unsigned long	timestamp, gencount;
 527	int		error;
 528
 529 again:
 530	timestamp = jiffies;
 531	gencount = nfs_inc_attr_generation_counter();
 532	desc->dir_verifier = nfs_save_change_attribute(inode);
 533	error = NFS_PROTO(inode)->readdir(&arg, &res);
 534	if (error < 0) {
 535		/* We requested READDIRPLUS, but the server doesn't grok it */
 536		if (error == -ENOTSUPP && desc->plus) {
 537			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 538			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 539			desc->plus = arg.plus = false;
 540			goto again;
 541		}
 542		goto error;
 543	}
 544	desc->timestamp = timestamp;
 545	desc->gencount = gencount;
 546error:
 547	return error;
 548}
 549
 550static int xdr_decode(struct nfs_readdir_descriptor *desc,
 551		      struct nfs_entry *entry, struct xdr_stream *xdr)
 552{
 553	struct inode *inode = file_inode(desc->file);
 554	int error;
 555
 556	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 557	if (error)
 558		return error;
 559	entry->fattr->time_start = desc->timestamp;
 560	entry->fattr->gencount = desc->gencount;
 561	return 0;
 562}
 563
 564/* Match file and dirent using either filehandle or fileid
 565 * Note: caller is responsible for checking the fsid
 566 */
 567static
 568int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 569{
 570	struct inode *inode;
 571	struct nfs_inode *nfsi;
 572
 573	if (d_really_is_negative(dentry))
 574		return 0;
 575
 576	inode = d_inode(dentry);
 577	if (is_bad_inode(inode) || NFS_STALE(inode))
 578		return 0;
 579
 580	nfsi = NFS_I(inode);
 581	if (entry->fattr->fileid != nfsi->fileid)
 582		return 0;
 583	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 584		return 0;
 585	return 1;
 586}
 587
 588static
 589bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 
 
 
 590{
 591	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 592		return false;
 593	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 594		return true;
 595	if (ctx->pos == 0)
 596		return true;
 597	return false;
 598}
 599
 600/*
 601 * This function is called by the lookup and getattr code to request the
 602 * use of readdirplus to accelerate any future lookups in the same
 603 * directory.
 604 */
 605void nfs_advise_use_readdirplus(struct inode *dir)
 606{
 607	struct nfs_inode *nfsi = NFS_I(dir);
 
 608
 609	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 610	    !list_empty(&nfsi->open_files))
 611		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 
 
 
 
 612}
 613
 614/*
 615 * This function is mainly for use by nfs_getattr().
 616 *
 617 * If this is an 'ls -l', we want to force use of readdirplus.
 618 * Do this by checking if there is an active file descriptor
 619 * and calling nfs_advise_use_readdirplus, then forcing a
 620 * cache flush.
 621 */
 622void nfs_force_use_readdirplus(struct inode *dir)
 623{
 624	struct nfs_inode *nfsi = NFS_I(dir);
 
 625
 626	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 627	    !list_empty(&nfsi->open_files)) {
 628		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 629		invalidate_mapping_pages(dir->i_mapping,
 630			nfsi->page_index + 1, -1);
 
 631	}
 632}
 633
 
 
 
 
 
 
 
 
 
 
 634static
 635void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 636		unsigned long dir_verifier)
 637{
 638	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 639	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 640	struct dentry *dentry;
 641	struct dentry *alias;
 642	struct inode *inode;
 643	int status;
 644
 645	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 646		return;
 647	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 648		return;
 649	if (filename.len == 0)
 650		return;
 651	/* Validate that the name doesn't contain any illegal '\0' */
 652	if (strnlen(filename.name, filename.len) != filename.len)
 653		return;
 654	/* ...or '/' */
 655	if (strnchr(filename.name, filename.len, '/'))
 656		return;
 657	if (filename.name[0] == '.') {
 658		if (filename.len == 1)
 659			return;
 660		if (filename.len == 2 && filename.name[1] == '.')
 661			return;
 662	}
 663	filename.hash = full_name_hash(parent, filename.name, filename.len);
 664
 665	dentry = d_lookup(parent, &filename);
 666again:
 667	if (!dentry) {
 668		dentry = d_alloc_parallel(parent, &filename, &wq);
 669		if (IS_ERR(dentry))
 670			return;
 671	}
 672	if (!d_in_lookup(dentry)) {
 673		/* Is there a mountpoint here? If so, just exit */
 674		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 675					&entry->fattr->fsid))
 676			goto out;
 677		if (nfs_same_file(dentry, entry)) {
 678			if (!entry->fh->size)
 679				goto out;
 680			nfs_set_verifier(dentry, dir_verifier);
 681			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 682			if (!status)
 683				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 
 
 684			goto out;
 685		} else {
 
 
 686			d_invalidate(dentry);
 687			dput(dentry);
 688			dentry = NULL;
 689			goto again;
 690		}
 691	}
 692	if (!entry->fh->size) {
 693		d_lookup_done(dentry);
 694		goto out;
 695	}
 696
 697	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 698	alias = d_splice_alias(inode, dentry);
 699	d_lookup_done(dentry);
 700	if (alias) {
 701		if (IS_ERR(alias))
 702			goto out;
 703		dput(dentry);
 704		dentry = alias;
 705	}
 706	nfs_set_verifier(dentry, dir_verifier);
 
 707out:
 708	dput(dentry);
 709}
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711/* Perform conversion from xdr to cache array */
 712static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
 713				   struct nfs_entry *entry,
 714				   struct page **xdr_pages,
 715				   unsigned int buflen,
 716				   struct page **arrays,
 717				   size_t narrays)
 718{
 719	struct address_space *mapping = desc->file->f_mapping;
 720	struct xdr_stream stream;
 721	struct xdr_buf buf;
 722	struct page *scratch, *new, *page = *arrays;
 
 723	int status;
 724
 725	scratch = alloc_page(GFP_KERNEL);
 726	if (scratch == NULL)
 727		return -ENOMEM;
 728
 729	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 730	xdr_set_scratch_page(&stream, scratch);
 731
 732	do {
 733		if (entry->label)
 734			entry->label->len = NFS4_MAXLABELLEN;
 735
 736		status = xdr_decode(desc, entry, &stream);
 737		if (status != 0)
 738			break;
 739
 740		if (desc->plus)
 741			nfs_prime_dcache(file_dentry(desc->file), entry,
 742					desc->dir_verifier);
 743
 744		status = nfs_readdir_add_to_array(entry, page);
 745		if (status != -ENOSPC)
 746			continue;
 747
 748		if (page->mapping != mapping) {
 749			if (!--narrays)
 750				break;
 751			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
 752							   GFP_KERNEL);
 753			if (!new)
 754				break;
 755			arrays++;
 756			*arrays = page = new;
 757		} else {
 758			new = nfs_readdir_page_get_next(mapping,
 759							page->index + 1,
 760							entry->prev_cookie);
 761			if (!new)
 762				break;
 763			if (page != *arrays)
 764				nfs_readdir_page_unlock_and_put(page);
 765			page = new;
 766		}
 767		status = nfs_readdir_add_to_array(entry, page);
 
 768	} while (!status && !entry->eof);
 769
 770	switch (status) {
 771	case -EBADCOOKIE:
 772		if (entry->eof) {
 773			nfs_readdir_page_set_eof(page);
 774			status = 0;
 775		}
 
 
 776		break;
 777	case -ENOSPC:
 778	case -EAGAIN:
 779		status = 0;
 780		break;
 
 
 
 781	}
 782
 783	if (page != *arrays)
 784		nfs_readdir_page_unlock_and_put(page);
 785
 786	put_page(scratch);
 787	return status;
 788}
 789
 790static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 791{
 792	while (npages--)
 793		put_page(pages[npages]);
 794	kfree(pages);
 795}
 796
 797/*
 798 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 799 * to nfs_readdir_free_pages()
 800 */
 801static struct page **nfs_readdir_alloc_pages(size_t npages)
 802{
 803	struct page **pages;
 804	size_t i;
 805
 806	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 807	if (!pages)
 808		return NULL;
 809	for (i = 0; i < npages; i++) {
 810		struct page *page = alloc_page(GFP_KERNEL);
 811		if (page == NULL)
 812			goto out_freepages;
 813		pages[i] = page;
 814	}
 815	return pages;
 816
 817out_freepages:
 818	nfs_readdir_free_pages(pages, i);
 819	return NULL;
 820}
 821
 822static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 823				    __be32 *verf_arg, __be32 *verf_res,
 824				    struct page **arrays, size_t narrays)
 825{
 
 826	struct page **pages;
 827	struct page *page = *arrays;
 828	struct nfs_entry *entry;
 829	size_t array_size;
 830	struct inode *inode = file_inode(desc->file);
 831	size_t dtsize = NFS_SERVER(inode)->dtsize;
 
 832	int status = -ENOMEM;
 833
 834	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 835	if (!entry)
 836		return -ENOMEM;
 837	entry->cookie = nfs_readdir_page_last_cookie(page);
 838	entry->fh = nfs_alloc_fhandle();
 839	entry->fattr = nfs_alloc_fattr();
 840	entry->server = NFS_SERVER(inode);
 841	if (entry->fh == NULL || entry->fattr == NULL)
 842		goto out;
 843
 844	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 845	if (IS_ERR(entry->label)) {
 846		status = PTR_ERR(entry->label);
 847		goto out;
 848	}
 849
 850	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 851	pages = nfs_readdir_alloc_pages(array_size);
 852	if (!pages)
 853		goto out_release_label;
 854
 855	do {
 856		unsigned int pglen;
 857		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
 858						pages, dtsize,
 859						verf_res);
 860		if (status < 0)
 861			break;
 862
 863		pglen = status;
 864		if (pglen == 0) {
 865			nfs_readdir_page_set_eof(page);
 866			break;
 867		}
 868
 869		verf_arg = verf_res;
 
 
 
 
 870
 
 
 871		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
 872						 arrays, narrays);
 873	} while (!status && nfs_readdir_page_needs_filling(page));
 
 
 874
 
 875	nfs_readdir_free_pages(pages, array_size);
 876out_release_label:
 877	nfs4_label_free(entry->label);
 878out:
 879	nfs_free_fattr(entry->fattr);
 880	nfs_free_fhandle(entry->fh);
 881	kfree(entry);
 882	return status;
 883}
 884
 885static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
 886{
 887	put_page(desc->page);
 888	desc->page = NULL;
 889}
 890
 891static void
 892nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 893{
 894	unlock_page(desc->page);
 895	nfs_readdir_page_put(desc);
 896}
 897
 898static struct page *
 899nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
 900{
 901	return nfs_readdir_page_get_locked(desc->file->f_mapping,
 902					   desc->page_index,
 903					   desc->last_cookie);
 
 
 
 
 
 
 
 
 904}
 905
 906/*
 907 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 908 * and locks the page to prevent removal from the page cache.
 909 */
 910static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 911{
 912	struct inode *inode = file_inode(desc->file);
 913	struct nfs_inode *nfsi = NFS_I(inode);
 914	__be32 verf[NFS_DIR_VERIFIER_SIZE];
 915	int res;
 916
 917	desc->page = nfs_readdir_page_get_cached(desc);
 918	if (!desc->page)
 919		return -ENOMEM;
 920	if (nfs_readdir_page_needs_filling(desc->page)) {
 
 
 
 
 
 
 
 921		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
 922					       &desc->page, 1);
 923		if (res < 0) {
 924			nfs_readdir_page_unlock_and_put_cached(desc);
 
 925			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
 926				invalidate_inode_pages2(desc->file->f_mapping);
 927				desc->page_index = 0;
 
 
 928				return -EAGAIN;
 929			}
 930			return res;
 931		}
 932		/*
 933		 * Set the cookie verifier if the page cache was empty
 934		 */
 935		if (desc->page_index == 0)
 
 936			memcpy(nfsi->cookieverf, verf,
 937			       sizeof(nfsi->cookieverf));
 
 
 
 
 
 
 938	}
 939	res = nfs_readdir_search_array(desc);
 940	if (res == 0) {
 941		nfsi->page_index = desc->page_index;
 942		return 0;
 943	}
 944	nfs_readdir_page_unlock_and_put_cached(desc);
 945	return res;
 946}
 947
 948static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
 949{
 950	struct address_space *mapping = desc->file->f_mapping;
 951	struct inode *dir = file_inode(desc->file);
 952	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
 953	loff_t size = i_size_read(dir);
 954
 955	/*
 956	 * Default to uncached readdir if the page cache is empty, and
 957	 * we're looking for a non-zero cookie in a large directory.
 958	 */
 959	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
 960}
 961
 962/* Search for desc->dir_cookie from the beginning of the page cache */
 963static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 964{
 965	int res;
 966
 967	if (nfs_readdir_dont_search_cache(desc))
 968		return -EBADCOOKIE;
 969
 970	do {
 971		if (desc->page_index == 0) {
 972			desc->current_index = 0;
 973			desc->prev_index = 0;
 974			desc->last_cookie = 0;
 975		}
 976		res = find_and_lock_cache_page(desc);
 977	} while (res == -EAGAIN);
 978	return res;
 979}
 980
 
 
 981/*
 982 * Once we've found the start of the dirent within a page: fill 'er up...
 983 */
 984static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
 985			   const __be32 *verf)
 986{
 987	struct file	*file = desc->file;
 988	struct nfs_cache_array *array;
 989	unsigned int i = 0;
 
 990
 991	array = kmap(desc->page);
 992	for (i = desc->cache_entry_index; i < array->size; i++) {
 993		struct nfs_cache_array_entry *ent;
 994
 995		ent = &array->array[i];
 996		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
 997		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 998			desc->eof = true;
 999			break;
1000		}
1001		memcpy(desc->verf, verf, sizeof(desc->verf));
1002		if (i < (array->size-1))
1003			desc->dir_cookie = array->array[i+1].cookie;
1004		else
1005			desc->dir_cookie = array->last_cookie;
 
 
 
 
 
1006		if (nfs_readdir_use_cookie(file))
1007			desc->ctx->pos = desc->dir_cookie;
1008		else
1009			desc->ctx->pos++;
1010		if (desc->duped != 0)
1011			desc->duped = 1;
 
 
1012	}
1013	if (array->page_is_eof)
1014		desc->eof = true;
1015
1016	kunmap(desc->page);
1017	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018			(unsigned long long)desc->dir_cookie);
1019}
1020
1021/*
1022 * If we cannot find a cookie in our cache, we suspect that this is
1023 * because it points to a deleted file, so we ask the server to return
1024 * whatever it thinks is the next entry. We then feed this to filldir.
1025 * If all goes well, we should then be able to find our way round the
1026 * cache on the next call to readdir_search_pagecache();
1027 *
1028 * NOTE: we cannot add the anonymous page to the pagecache because
1029 *	 the data it contains might not be page aligned. Besides,
1030 *	 we should already have a complete representation of the
1031 *	 directory in the page cache by the time we get here.
1032 */
1033static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034{
1035	struct page	**arrays;
1036	size_t		i, sz = 512;
1037	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038	int		status = -ENOMEM;
1039
1040	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041			(unsigned long long)desc->dir_cookie);
1042
1043	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044	if (!arrays)
1045		goto out;
1046	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047	if (!arrays[0])
1048		goto out;
1049
1050	desc->page_index = 0;
 
1051	desc->last_cookie = desc->dir_cookie;
1052	desc->duped = 0;
 
 
 
1053
1054	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
 
 
 
 
1055
1056	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057		desc->page = arrays[i];
1058		nfs_do_filldir(desc, verf);
1059	}
1060	desc->page = NULL;
1061
1062
 
 
 
 
 
 
 
 
 
 
 
1063	for (i = 0; i < sz && arrays[i]; i++)
1064		nfs_readdir_page_array_free(arrays[i]);
1065out:
 
 
 
1066	kfree(arrays);
1067	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068	return status;
1069}
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
1071/* The file offset position represents the dirent entry number.  A
1072   last cookie cache takes care of the common case of reading the
1073   whole directory.
1074 */
1075static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076{
1077	struct dentry	*dentry = file_dentry(file);
1078	struct inode	*inode = d_inode(dentry);
1079	struct nfs_inode *nfsi = NFS_I(inode);
1080	struct nfs_open_dir_context *dir_ctx = file->private_data;
1081	struct nfs_readdir_descriptor *desc;
 
 
1082	int res;
1083
1084	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1085			file, (long long)ctx->pos);
1086	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087
1088	/*
1089	 * ctx->pos points to the dirent entry number.
1090	 * *desc->dir_cookie has the cookie for the next entry. We have
1091	 * to either find the entry with the appropriate number or
1092	 * revalidate the cookie.
1093	 */
1094	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1095		res = nfs_revalidate_mapping(inode, file->f_mapping);
1096		if (res < 0)
1097			goto out;
1098	}
1099
1100	res = -ENOMEM;
1101	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1102	if (!desc)
1103		goto out;
1104	desc->file = file;
1105	desc->ctx = ctx;
1106	desc->plus = nfs_use_readdirplus(inode, ctx);
1107
1108	spin_lock(&file->f_lock);
1109	desc->dir_cookie = dir_ctx->dir_cookie;
1110	desc->dup_cookie = dir_ctx->dup_cookie;
1111	desc->duped = dir_ctx->duped;
1112	desc->attr_gencount = dir_ctx->attr_gencount;
 
 
1113	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
 
 
 
1114	spin_unlock(&file->f_lock);
1115
 
 
 
 
 
 
 
 
 
 
1116	do {
1117		res = readdir_search_pagecache(desc);
1118
1119		if (res == -EBADCOOKIE) {
1120			res = 0;
1121			/* This means either end of directory */
1122			if (desc->dir_cookie && !desc->eof) {
1123				/* Or that the server has 'lost' a cookie */
1124				res = uncached_readdir(desc);
1125				if (res == 0)
1126					continue;
1127				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128					res = 0;
1129			}
1130			break;
1131		}
1132		if (res == -ETOOSMALL && desc->plus) {
1133			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134			nfs_zap_caches(inode);
1135			desc->page_index = 0;
1136			desc->plus = false;
1137			desc->eof = false;
1138			continue;
1139		}
1140		if (res < 0)
1141			break;
1142
1143		nfs_do_filldir(desc, nfsi->cookieverf);
1144		nfs_readdir_page_unlock_and_put_cached(desc);
1145	} while (!desc->eof);
 
 
1146
1147	spin_lock(&file->f_lock);
1148	dir_ctx->dir_cookie = desc->dir_cookie;
1149	dir_ctx->dup_cookie = desc->dup_cookie;
1150	dir_ctx->duped = desc->duped;
1151	dir_ctx->attr_gencount = desc->attr_gencount;
 
 
 
 
1152	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153	spin_unlock(&file->f_lock);
1154
1155	kfree(desc);
1156
1157out:
1158	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159	return res;
1160}
1161
1162static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163{
1164	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165
1166	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167			filp, offset, whence);
1168
1169	switch (whence) {
1170	default:
1171		return -EINVAL;
1172	case SEEK_SET:
1173		if (offset < 0)
1174			return -EINVAL;
1175		spin_lock(&filp->f_lock);
1176		break;
1177	case SEEK_CUR:
1178		if (offset == 0)
1179			return filp->f_pos;
1180		spin_lock(&filp->f_lock);
1181		offset += filp->f_pos;
1182		if (offset < 0) {
1183			spin_unlock(&filp->f_lock);
1184			return -EINVAL;
1185		}
1186	}
1187	if (offset != filp->f_pos) {
1188		filp->f_pos = offset;
1189		if (nfs_readdir_use_cookie(filp))
 
 
 
 
1190			dir_ctx->dir_cookie = offset;
1191		else
1192			dir_ctx->dir_cookie = 0;
1193		if (offset == 0)
1194			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195		dir_ctx->duped = 0;
1196	}
1197	spin_unlock(&filp->f_lock);
1198	return offset;
1199}
1200
1201/*
1202 * All directory operations under NFS are synchronous, so fsync()
1203 * is a dummy operation.
1204 */
1205static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206			 int datasync)
1207{
1208	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209
1210	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211	return 0;
1212}
1213
1214/**
1215 * nfs_force_lookup_revalidate - Mark the directory as having changed
1216 * @dir: pointer to directory inode
1217 *
1218 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219 * full lookup on all child dentries of 'dir' whenever a change occurs
1220 * on the server that might have invalidated our dcache.
1221 *
1222 * Note that we reserve bit '0' as a tag to let us know when a dentry
1223 * was revalidated while holding a delegation on its inode.
1224 *
1225 * The caller should be holding dir->i_lock
1226 */
1227void nfs_force_lookup_revalidate(struct inode *dir)
1228{
1229	NFS_I(dir)->cache_change_attribute += 2;
1230}
1231EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232
1233/**
1234 * nfs_verify_change_attribute - Detects NFS remote directory changes
1235 * @dir: pointer to parent directory inode
1236 * @verf: previously saved change attribute
1237 *
1238 * Return "false" if the verifiers doesn't match the change attribute.
1239 * This would usually indicate that the directory contents have changed on
1240 * the server, and that any dentries need revalidating.
1241 */
1242static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243{
1244	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245}
1246
1247static void nfs_set_verifier_delegated(unsigned long *verf)
1248{
1249	*verf |= 1UL;
1250}
1251
1252#if IS_ENABLED(CONFIG_NFS_V4)
1253static void nfs_unset_verifier_delegated(unsigned long *verf)
1254{
1255	*verf &= ~1UL;
1256}
1257#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258
1259static bool nfs_test_verifier_delegated(unsigned long verf)
1260{
1261	return verf & 1;
1262}
1263
1264static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265{
1266	return nfs_test_verifier_delegated(dentry->d_time);
1267}
1268
1269static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270{
1271	struct inode *inode = d_inode(dentry);
 
1272
1273	if (!nfs_verifier_is_delegated(dentry) &&
1274	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1275		goto out;
1276	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277		nfs_set_verifier_delegated(&verf);
1278out:
1279	dentry->d_time = verf;
1280}
1281
1282/**
1283 * nfs_set_verifier - save a parent directory verifier in the dentry
1284 * @dentry: pointer to dentry
1285 * @verf: verifier to save
1286 *
1287 * Saves the parent directory verifier in @dentry. If the inode has
1288 * a delegation, we also tag the dentry as having been revalidated
1289 * while holding a delegation so that we know we don't have to
1290 * look it up again after a directory change.
1291 */
1292void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1293{
1294
1295	spin_lock(&dentry->d_lock);
1296	nfs_set_verifier_locked(dentry, verf);
1297	spin_unlock(&dentry->d_lock);
1298}
1299EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300
1301#if IS_ENABLED(CONFIG_NFS_V4)
1302/**
1303 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1304 * @inode: pointer to inode
1305 *
1306 * Iterates through the dentries in the inode alias list and clears
1307 * the tag used to indicate that the dentry has been revalidated
1308 * while holding a delegation.
1309 * This function is intended for use when the delegation is being
1310 * returned or revoked.
1311 */
1312void nfs_clear_verifier_delegated(struct inode *inode)
1313{
1314	struct dentry *alias;
1315
1316	if (!inode)
1317		return;
1318	spin_lock(&inode->i_lock);
1319	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1320		spin_lock(&alias->d_lock);
1321		nfs_unset_verifier_delegated(&alias->d_time);
1322		spin_unlock(&alias->d_lock);
1323	}
1324	spin_unlock(&inode->i_lock);
1325}
1326EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1327#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1328
 
 
 
 
 
 
 
 
1329/*
1330 * A check for whether or not the parent directory has changed.
1331 * In the case it has, we assume that the dentries are untrustworthy
1332 * and may need to be looked up again.
1333 * If rcu_walk prevents us from performing a full check, return 0.
1334 */
1335static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1336			      int rcu_walk)
1337{
1338	if (IS_ROOT(dentry))
1339		return 1;
1340	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1341		return 0;
1342	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343		return 0;
1344	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1345	if (nfs_mapping_need_revalidate_inode(dir)) {
1346		if (rcu_walk)
1347			return 0;
1348		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1349			return 0;
1350	}
1351	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1352		return 0;
1353	return 1;
1354}
1355
1356/*
1357 * Use intent information to check whether or not we're going to do
1358 * an O_EXCL create using this path component.
1359 */
1360static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1361{
1362	if (NFS_PROTO(dir)->version == 2)
1363		return 0;
1364	return flags & LOOKUP_EXCL;
1365}
1366
1367/*
1368 * Inode and filehandle revalidation for lookups.
1369 *
1370 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1371 * or if the intent information indicates that we're about to open this
1372 * particular file and the "nocto" mount flag is not set.
1373 *
1374 */
1375static
1376int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1377{
1378	struct nfs_server *server = NFS_SERVER(inode);
1379	int ret;
1380
1381	if (IS_AUTOMOUNT(inode))
1382		return 0;
1383
1384	if (flags & LOOKUP_OPEN) {
1385		switch (inode->i_mode & S_IFMT) {
1386		case S_IFREG:
1387			/* A NFSv4 OPEN will revalidate later */
1388			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1389				goto out;
1390			fallthrough;
1391		case S_IFDIR:
1392			if (server->flags & NFS_MOUNT_NOCTO)
1393				break;
1394			/* NFS close-to-open cache consistency validation */
1395			goto out_force;
1396		}
1397	}
1398
1399	/* VFS wants an on-the-wire revalidation */
1400	if (flags & LOOKUP_REVAL)
1401		goto out_force;
1402out:
1403	return (inode->i_nlink == 0) ? -ESTALE : 0;
 
 
 
 
 
1404out_force:
1405	if (flags & LOOKUP_RCU)
1406		return -ECHILD;
1407	ret = __nfs_revalidate_inode(server, inode);
1408	if (ret != 0)
1409		return ret;
1410	goto out;
1411}
1412
1413static void nfs_mark_dir_for_revalidate(struct inode *inode)
1414{
1415	spin_lock(&inode->i_lock);
1416	nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1417	spin_unlock(&inode->i_lock);
1418}
1419
1420/*
1421 * We judge how long we want to trust negative
1422 * dentries by looking at the parent inode mtime.
1423 *
1424 * If parent mtime has changed, we revalidate, else we wait for a
1425 * period corresponding to the parent's attribute cache timeout value.
1426 *
1427 * If LOOKUP_RCU prevents us from performing a full check, return 1
1428 * suggesting a reval is needed.
1429 *
1430 * Note that when creating a new file, or looking up a rename target,
1431 * then it shouldn't be necessary to revalidate a negative dentry.
1432 */
1433static inline
1434int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1435		       unsigned int flags)
1436{
1437	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1438		return 0;
1439	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1440		return 1;
 
 
 
1441	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1442}
1443
1444static int
1445nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1446			   struct inode *inode, int error)
1447{
1448	switch (error) {
1449	case 1:
1450		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1451			__func__, dentry);
1452		return 1;
1453	case 0:
1454		/*
1455		 * We can't d_drop the root of a disconnected tree:
1456		 * its d_hash is on the s_anon list and d_drop() would hide
1457		 * it from shrink_dcache_for_unmount(), leading to busy
1458		 * inodes on unmount and further oopses.
1459		 */
1460		if (inode && IS_ROOT(dentry))
1461			return 1;
1462		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1463				__func__, dentry);
1464		return 0;
1465	}
1466	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1467				__func__, dentry, error);
1468	return error;
1469}
1470
1471static int
1472nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1473			       unsigned int flags)
1474{
1475	int ret = 1;
1476	if (nfs_neg_need_reval(dir, dentry, flags)) {
1477		if (flags & LOOKUP_RCU)
1478			return -ECHILD;
1479		ret = 0;
1480	}
1481	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1482}
1483
1484static int
1485nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1486				struct inode *inode)
1487{
1488	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1489	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1490}
1491
1492static int
1493nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1494			     struct inode *inode)
1495{
1496	struct nfs_fh *fhandle;
1497	struct nfs_fattr *fattr;
1498	struct nfs4_label *label;
1499	unsigned long dir_verifier;
1500	int ret;
1501
 
 
1502	ret = -ENOMEM;
1503	fhandle = nfs_alloc_fhandle();
1504	fattr = nfs_alloc_fattr();
1505	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1506	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1507		goto out;
1508
1509	dir_verifier = nfs_save_change_attribute(dir);
1510	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1511	if (ret < 0) {
1512		switch (ret) {
1513		case -ESTALE:
1514		case -ENOENT:
1515			ret = 0;
1516			break;
1517		case -ETIMEDOUT:
1518			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1519				ret = 1;
1520		}
1521		goto out;
1522	}
 
 
 
 
1523	ret = 0;
1524	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1525		goto out;
1526	if (nfs_refresh_inode(inode, fattr) < 0)
1527		goto out;
1528
1529	nfs_setsecurity(inode, fattr, label);
1530	nfs_set_verifier(dentry, dir_verifier);
1531
1532	/* set a readdirplus hint that we had a cache miss */
1533	nfs_force_use_readdirplus(dir);
1534	ret = 1;
1535out:
1536	nfs_free_fattr(fattr);
1537	nfs_free_fhandle(fhandle);
1538	nfs4_label_free(label);
1539
1540	/*
1541	 * If the lookup failed despite the dentry change attribute being
1542	 * a match, then we should revalidate the directory cache.
1543	 */
1544	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1545		nfs_mark_dir_for_revalidate(dir);
1546	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1547}
1548
1549/*
1550 * This is called every time the dcache has a lookup hit,
1551 * and we should check whether we can really trust that
1552 * lookup.
1553 *
1554 * NOTE! The hit can be a negative hit too, don't assume
1555 * we have an inode!
1556 *
1557 * If the parent directory is seen to have changed, we throw out the
1558 * cached dentry and do a new lookup.
1559 */
1560static int
1561nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1562			 unsigned int flags)
1563{
1564	struct inode *inode;
1565	int error;
1566
1567	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1568	inode = d_inode(dentry);
1569
1570	if (!inode)
1571		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1572
1573	if (is_bad_inode(inode)) {
1574		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1575				__func__, dentry);
1576		goto out_bad;
1577	}
1578
 
 
 
 
1579	if (nfs_verifier_is_delegated(dentry))
1580		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1581
1582	/* Force a full look up iff the parent directory has changed */
1583	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1584	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1585		error = nfs_lookup_verify_inode(inode, flags);
1586		if (error) {
1587			if (error == -ESTALE)
1588				nfs_mark_dir_for_revalidate(dir);
1589			goto out_bad;
1590		}
1591		nfs_advise_use_readdirplus(dir);
1592		goto out_valid;
1593	}
1594
1595	if (flags & LOOKUP_RCU)
1596		return -ECHILD;
1597
1598	if (NFS_STALE(inode))
1599		goto out_bad;
1600
1601	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1602	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1603	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1604	return error;
1605out_valid:
1606	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1607out_bad:
1608	if (flags & LOOKUP_RCU)
1609		return -ECHILD;
1610	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1611}
1612
1613static int
1614__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1615			int (*reval)(struct inode *, struct dentry *, unsigned int))
1616{
1617	struct dentry *parent;
1618	struct inode *dir;
1619	int ret;
1620
1621	if (flags & LOOKUP_RCU) {
 
 
1622		parent = READ_ONCE(dentry->d_parent);
1623		dir = d_inode_rcu(parent);
1624		if (!dir)
1625			return -ECHILD;
1626		ret = reval(dir, dentry, flags);
1627		if (parent != READ_ONCE(dentry->d_parent))
1628			return -ECHILD;
1629	} else {
 
 
 
1630		parent = dget_parent(dentry);
1631		ret = reval(d_inode(parent), dentry, flags);
1632		dput(parent);
1633	}
1634	return ret;
1635}
1636
1637static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1638{
1639	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1640}
1641
1642/*
1643 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1644 * when we don't really care about the dentry name. This is called when a
1645 * pathwalk ends on a dentry that was not found via a normal lookup in the
1646 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1647 *
1648 * In this situation, we just want to verify that the inode itself is OK
1649 * since the dentry might have changed on the server.
1650 */
1651static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1652{
1653	struct inode *inode = d_inode(dentry);
1654	int error = 0;
1655
1656	/*
1657	 * I believe we can only get a negative dentry here in the case of a
1658	 * procfs-style symlink. Just assume it's correct for now, but we may
1659	 * eventually need to do something more here.
1660	 */
1661	if (!inode) {
1662		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1663				__func__, dentry);
1664		return 1;
1665	}
1666
1667	if (is_bad_inode(inode)) {
1668		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1669				__func__, dentry);
1670		return 0;
1671	}
1672
1673	error = nfs_lookup_verify_inode(inode, flags);
1674	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1675			__func__, inode->i_ino, error ? "invalid" : "valid");
1676	return !error;
1677}
1678
1679/*
1680 * This is called from dput() when d_count is going to 0.
1681 */
1682static int nfs_dentry_delete(const struct dentry *dentry)
1683{
1684	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1685		dentry, dentry->d_flags);
1686
1687	/* Unhash any dentry with a stale inode */
1688	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1689		return 1;
1690
1691	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1692		/* Unhash it, so that ->d_iput() would be called */
1693		return 1;
1694	}
1695	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1696		/* Unhash it, so that ancestors of killed async unlink
1697		 * files will be cleaned up during umount */
1698		return 1;
1699	}
1700	return 0;
1701
1702}
1703
1704/* Ensure that we revalidate inode->i_nlink */
1705static void nfs_drop_nlink(struct inode *inode)
1706{
1707	spin_lock(&inode->i_lock);
1708	/* drop the inode if we're reasonably sure this is the last link */
1709	if (inode->i_nlink > 0)
1710		drop_nlink(inode);
1711	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1712	nfs_set_cache_invalid(
1713		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1714			       NFS_INO_INVALID_NLINK);
1715	spin_unlock(&inode->i_lock);
1716}
1717
1718/*
1719 * Called when the dentry loses inode.
1720 * We use it to clean up silly-renamed files.
1721 */
1722static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1723{
1724	if (S_ISDIR(inode->i_mode))
1725		/* drop any readdir cache as it could easily be old */
1726		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1727
1728	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1729		nfs_complete_unlink(dentry, inode);
1730		nfs_drop_nlink(inode);
1731	}
1732	iput(inode);
1733}
1734
1735static void nfs_d_release(struct dentry *dentry)
1736{
1737	/* free cached devname value, if it survived that far */
1738	if (unlikely(dentry->d_fsdata)) {
1739		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1740			WARN_ON(1);
1741		else
1742			kfree(dentry->d_fsdata);
1743	}
1744}
1745
1746const struct dentry_operations nfs_dentry_operations = {
1747	.d_revalidate	= nfs_lookup_revalidate,
1748	.d_weak_revalidate	= nfs_weak_revalidate,
1749	.d_delete	= nfs_dentry_delete,
1750	.d_iput		= nfs_dentry_iput,
1751	.d_automount	= nfs_d_automount,
1752	.d_release	= nfs_d_release,
1753};
1754EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1755
1756struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1757{
1758	struct dentry *res;
1759	struct inode *inode = NULL;
1760	struct nfs_fh *fhandle = NULL;
1761	struct nfs_fattr *fattr = NULL;
1762	struct nfs4_label *label = NULL;
1763	unsigned long dir_verifier;
1764	int error;
1765
1766	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1767	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1768
1769	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1770		return ERR_PTR(-ENAMETOOLONG);
1771
1772	/*
1773	 * If we're doing an exclusive create, optimize away the lookup
1774	 * but don't hash the dentry.
1775	 */
1776	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1777		return NULL;
1778
1779	res = ERR_PTR(-ENOMEM);
1780	fhandle = nfs_alloc_fhandle();
1781	fattr = nfs_alloc_fattr();
1782	if (fhandle == NULL || fattr == NULL)
1783		goto out;
1784
1785	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1786	if (IS_ERR(label))
1787		goto out;
1788
1789	dir_verifier = nfs_save_change_attribute(dir);
1790	trace_nfs_lookup_enter(dir, dentry, flags);
1791	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1792	if (error == -ENOENT)
 
 
1793		goto no_entry;
 
1794	if (error < 0) {
1795		res = ERR_PTR(error);
1796		goto out_label;
1797	}
1798	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1799	res = ERR_CAST(inode);
1800	if (IS_ERR(res))
1801		goto out_label;
1802
1803	/* Notify readdir to use READDIRPLUS */
1804	nfs_force_use_readdirplus(dir);
1805
1806no_entry:
1807	res = d_splice_alias(inode, dentry);
1808	if (res != NULL) {
1809		if (IS_ERR(res))
1810			goto out_label;
1811		dentry = res;
1812	}
1813	nfs_set_verifier(dentry, dir_verifier);
1814out_label:
1815	trace_nfs_lookup_exit(dir, dentry, flags, error);
1816	nfs4_label_free(label);
1817out:
 
1818	nfs_free_fattr(fattr);
1819	nfs_free_fhandle(fhandle);
1820	return res;
1821}
1822EXPORT_SYMBOL_GPL(nfs_lookup);
1823
 
 
 
 
 
 
 
 
1824#if IS_ENABLED(CONFIG_NFS_V4)
1825static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1826
1827const struct dentry_operations nfs4_dentry_operations = {
1828	.d_revalidate	= nfs4_lookup_revalidate,
1829	.d_weak_revalidate	= nfs_weak_revalidate,
1830	.d_delete	= nfs_dentry_delete,
1831	.d_iput		= nfs_dentry_iput,
1832	.d_automount	= nfs_d_automount,
1833	.d_release	= nfs_d_release,
1834};
1835EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1836
1837static fmode_t flags_to_mode(int flags)
1838{
1839	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1840	if ((flags & O_ACCMODE) != O_WRONLY)
1841		res |= FMODE_READ;
1842	if ((flags & O_ACCMODE) != O_RDONLY)
1843		res |= FMODE_WRITE;
1844	return res;
1845}
1846
1847static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1848{
1849	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1850}
1851
1852static int do_open(struct inode *inode, struct file *filp)
1853{
1854	nfs_fscache_open_file(inode, filp);
1855	return 0;
1856}
1857
1858static int nfs_finish_open(struct nfs_open_context *ctx,
1859			   struct dentry *dentry,
1860			   struct file *file, unsigned open_flags)
1861{
1862	int err;
1863
1864	err = finish_open(file, dentry, do_open);
1865	if (err)
1866		goto out;
1867	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1868		nfs_file_set_open_context(file, ctx);
1869	else
1870		err = -EOPENSTALE;
1871out:
1872	return err;
1873}
1874
1875int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1876		    struct file *file, unsigned open_flags,
1877		    umode_t mode)
1878{
1879	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880	struct nfs_open_context *ctx;
1881	struct dentry *res;
1882	struct iattr attr = { .ia_valid = ATTR_OPEN };
1883	struct inode *inode;
1884	unsigned int lookup_flags = 0;
 
1885	bool switched = false;
1886	int created = 0;
1887	int err;
1888
1889	/* Expect a negative dentry */
1890	BUG_ON(d_inode(dentry));
1891
1892	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1893			dir->i_sb->s_id, dir->i_ino, dentry);
1894
1895	err = nfs_check_flags(open_flags);
1896	if (err)
1897		return err;
1898
1899	/* NFS only supports OPEN on regular files */
1900	if ((open_flags & O_DIRECTORY)) {
1901		if (!d_in_lookup(dentry)) {
1902			/*
1903			 * Hashed negative dentry with O_DIRECTORY: dentry was
1904			 * revalidated and is fine, no need to perform lookup
1905			 * again
1906			 */
1907			return -ENOENT;
1908		}
1909		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1910		goto no_open;
1911	}
1912
1913	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1914		return -ENAMETOOLONG;
1915
1916	if (open_flags & O_CREAT) {
1917		struct nfs_server *server = NFS_SERVER(dir);
1918
1919		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1920			mode &= ~current_umask();
1921
1922		attr.ia_valid |= ATTR_MODE;
1923		attr.ia_mode = mode;
1924	}
1925	if (open_flags & O_TRUNC) {
1926		attr.ia_valid |= ATTR_SIZE;
1927		attr.ia_size = 0;
1928	}
1929
1930	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1931		d_drop(dentry);
1932		switched = true;
1933		dentry = d_alloc_parallel(dentry->d_parent,
1934					  &dentry->d_name, &wq);
1935		if (IS_ERR(dentry))
1936			return PTR_ERR(dentry);
1937		if (unlikely(!d_in_lookup(dentry)))
1938			return finish_no_open(file, dentry);
1939	}
1940
1941	ctx = create_nfs_open_context(dentry, open_flags, file);
1942	err = PTR_ERR(ctx);
1943	if (IS_ERR(ctx))
1944		goto out;
1945
1946	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1947	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1948	if (created)
1949		file->f_mode |= FMODE_CREATED;
1950	if (IS_ERR(inode)) {
1951		err = PTR_ERR(inode);
1952		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1953		put_nfs_open_context(ctx);
1954		d_drop(dentry);
1955		switch (err) {
1956		case -ENOENT:
1957			d_splice_alias(NULL, dentry);
1958			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 
 
 
 
1959			break;
1960		case -EISDIR:
1961		case -ENOTDIR:
1962			goto no_open;
1963		case -ELOOP:
1964			if (!(open_flags & O_NOFOLLOW))
1965				goto no_open;
1966			break;
1967			/* case -EINVAL: */
1968		default:
1969			break;
1970		}
1971		goto out;
1972	}
 
1973
1974	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1975	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1976	put_nfs_open_context(ctx);
1977out:
1978	if (unlikely(switched)) {
1979		d_lookup_done(dentry);
1980		dput(dentry);
1981	}
1982	return err;
1983
1984no_open:
1985	res = nfs_lookup(dir, dentry, lookup_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986	if (switched) {
1987		d_lookup_done(dentry);
1988		if (!res)
1989			res = dentry;
1990		else
1991			dput(dentry);
1992	}
1993	if (IS_ERR(res))
1994		return PTR_ERR(res);
1995	return finish_no_open(file, res);
1996}
1997EXPORT_SYMBOL_GPL(nfs_atomic_open);
1998
1999static int
2000nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2001			  unsigned int flags)
2002{
2003	struct inode *inode;
2004
2005	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2006		goto full_reval;
2007	if (d_mountpoint(dentry))
2008		goto full_reval;
2009
2010	inode = d_inode(dentry);
2011
2012	/* We can't create new files in nfs_open_revalidate(), so we
2013	 * optimize away revalidation of negative dentries.
2014	 */
2015	if (inode == NULL)
2016		goto full_reval;
2017
2018	if (nfs_verifier_is_delegated(dentry))
2019		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2020
2021	/* NFS only supports OPEN on regular files */
2022	if (!S_ISREG(inode->i_mode))
2023		goto full_reval;
2024
2025	/* We cannot do exclusive creation on a positive dentry */
2026	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2027		goto reval_dentry;
2028
2029	/* Check if the directory changed */
2030	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2031		goto reval_dentry;
2032
2033	/* Let f_op->open() actually open (and revalidate) the file */
2034	return 1;
2035reval_dentry:
2036	if (flags & LOOKUP_RCU)
2037		return -ECHILD;
2038	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2039
2040full_reval:
2041	return nfs_do_lookup_revalidate(dir, dentry, flags);
2042}
2043
2044static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2045{
2046	return __nfs_lookup_revalidate(dentry, flags,
2047			nfs4_do_lookup_revalidate);
2048}
2049
2050#endif /* CONFIG_NFSV4 */
2051
2052struct dentry *
2053nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2054				struct nfs_fattr *fattr,
2055				struct nfs4_label *label)
2056{
2057	struct dentry *parent = dget_parent(dentry);
2058	struct inode *dir = d_inode(parent);
2059	struct inode *inode;
2060	struct dentry *d;
2061	int error;
2062
2063	d_drop(dentry);
2064
2065	if (fhandle->size == 0) {
2066		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2067		if (error)
2068			goto out_error;
2069	}
2070	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2071	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2072		struct nfs_server *server = NFS_SB(dentry->d_sb);
2073		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2074				fattr, NULL, NULL);
2075		if (error < 0)
2076			goto out_error;
2077	}
2078	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2079	d = d_splice_alias(inode, dentry);
2080out:
2081	dput(parent);
2082	return d;
2083out_error:
2084	d = ERR_PTR(error);
2085	goto out;
2086}
2087EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2088
2089/*
2090 * Code common to create, mkdir, and mknod.
2091 */
2092int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2093				struct nfs_fattr *fattr,
2094				struct nfs4_label *label)
2095{
2096	struct dentry *d;
2097
2098	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2099	if (IS_ERR(d))
2100		return PTR_ERR(d);
2101
2102	/* Callers don't care */
2103	dput(d);
2104	return 0;
2105}
2106EXPORT_SYMBOL_GPL(nfs_instantiate);
2107
2108/*
2109 * Following a failed create operation, we drop the dentry rather
2110 * than retain a negative dentry. This avoids a problem in the event
2111 * that the operation succeeded on the server, but an error in the
2112 * reply path made it appear to have failed.
2113 */
2114int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2115	       struct dentry *dentry, umode_t mode, bool excl)
2116{
2117	struct iattr attr;
2118	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2119	int error;
2120
2121	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2122			dir->i_sb->s_id, dir->i_ino, dentry);
2123
2124	attr.ia_mode = mode;
2125	attr.ia_valid = ATTR_MODE;
2126
2127	trace_nfs_create_enter(dir, dentry, open_flags);
2128	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2129	trace_nfs_create_exit(dir, dentry, open_flags, error);
2130	if (error != 0)
2131		goto out_err;
2132	return 0;
2133out_err:
2134	d_drop(dentry);
2135	return error;
2136}
2137EXPORT_SYMBOL_GPL(nfs_create);
2138
2139/*
2140 * See comments for nfs_proc_create regarding failed operations.
2141 */
2142int
2143nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2144	  struct dentry *dentry, umode_t mode, dev_t rdev)
2145{
2146	struct iattr attr;
2147	int status;
2148
2149	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2150			dir->i_sb->s_id, dir->i_ino, dentry);
2151
2152	attr.ia_mode = mode;
2153	attr.ia_valid = ATTR_MODE;
2154
2155	trace_nfs_mknod_enter(dir, dentry);
2156	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2157	trace_nfs_mknod_exit(dir, dentry, status);
2158	if (status != 0)
2159		goto out_err;
2160	return 0;
2161out_err:
2162	d_drop(dentry);
2163	return status;
2164}
2165EXPORT_SYMBOL_GPL(nfs_mknod);
2166
2167/*
2168 * See comments for nfs_proc_create regarding failed operations.
2169 */
2170int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2171	      struct dentry *dentry, umode_t mode)
2172{
2173	struct iattr attr;
2174	int error;
2175
2176	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2177			dir->i_sb->s_id, dir->i_ino, dentry);
2178
2179	attr.ia_valid = ATTR_MODE;
2180	attr.ia_mode = mode | S_IFDIR;
2181
2182	trace_nfs_mkdir_enter(dir, dentry);
2183	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2184	trace_nfs_mkdir_exit(dir, dentry, error);
2185	if (error != 0)
2186		goto out_err;
2187	return 0;
2188out_err:
2189	d_drop(dentry);
2190	return error;
2191}
2192EXPORT_SYMBOL_GPL(nfs_mkdir);
2193
2194static void nfs_dentry_handle_enoent(struct dentry *dentry)
2195{
2196	if (simple_positive(dentry))
2197		d_delete(dentry);
2198}
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2201{
2202	int error;
2203
2204	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2205			dir->i_sb->s_id, dir->i_ino, dentry);
2206
2207	trace_nfs_rmdir_enter(dir, dentry);
2208	if (d_really_is_positive(dentry)) {
2209		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2210		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2211		/* Ensure the VFS deletes this inode */
2212		switch (error) {
2213		case 0:
2214			clear_nlink(d_inode(dentry));
2215			break;
2216		case -ENOENT:
2217			nfs_dentry_handle_enoent(dentry);
2218		}
2219		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2220	} else
2221		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
 
2222	trace_nfs_rmdir_exit(dir, dentry, error);
2223
2224	return error;
2225}
2226EXPORT_SYMBOL_GPL(nfs_rmdir);
2227
2228/*
2229 * Remove a file after making sure there are no pending writes,
2230 * and after checking that the file has only one user. 
2231 *
2232 * We invalidate the attribute cache and free the inode prior to the operation
2233 * to avoid possible races if the server reuses the inode.
2234 */
2235static int nfs_safe_remove(struct dentry *dentry)
2236{
2237	struct inode *dir = d_inode(dentry->d_parent);
2238	struct inode *inode = d_inode(dentry);
2239	int error = -EBUSY;
2240		
2241	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2242
2243	/* If the dentry was sillyrenamed, we simply call d_delete() */
2244	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2245		error = 0;
2246		goto out;
2247	}
2248
2249	trace_nfs_remove_enter(dir, dentry);
2250	if (inode != NULL) {
2251		error = NFS_PROTO(dir)->remove(dir, dentry);
2252		if (error == 0)
2253			nfs_drop_nlink(inode);
2254	} else
2255		error = NFS_PROTO(dir)->remove(dir, dentry);
2256	if (error == -ENOENT)
2257		nfs_dentry_handle_enoent(dentry);
2258	trace_nfs_remove_exit(dir, dentry, error);
2259out:
2260	return error;
2261}
2262
2263/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2264 *  belongs to an active ".nfs..." file and we return -EBUSY.
2265 *
2266 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2267 */
2268int nfs_unlink(struct inode *dir, struct dentry *dentry)
2269{
2270	int error;
2271	int need_rehash = 0;
2272
2273	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2274		dir->i_ino, dentry);
2275
2276	trace_nfs_unlink_enter(dir, dentry);
2277	spin_lock(&dentry->d_lock);
2278	if (d_count(dentry) > 1) {
 
2279		spin_unlock(&dentry->d_lock);
2280		/* Start asynchronous writeout of the inode */
2281		write_inode_now(d_inode(dentry), 0);
2282		error = nfs_sillyrename(dir, dentry);
2283		goto out;
2284	}
2285	if (!d_unhashed(dentry)) {
2286		__d_drop(dentry);
2287		need_rehash = 1;
 
 
 
 
 
 
 
2288	}
 
 
 
 
2289	spin_unlock(&dentry->d_lock);
2290	error = nfs_safe_remove(dentry);
2291	if (!error || error == -ENOENT) {
2292		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2293	} else if (need_rehash)
2294		d_rehash(dentry);
2295out:
2296	trace_nfs_unlink_exit(dir, dentry, error);
2297	return error;
2298}
2299EXPORT_SYMBOL_GPL(nfs_unlink);
2300
2301/*
2302 * To create a symbolic link, most file systems instantiate a new inode,
2303 * add a page to it containing the path, then write it out to the disk
2304 * using prepare_write/commit_write.
2305 *
2306 * Unfortunately the NFS client can't create the in-core inode first
2307 * because it needs a file handle to create an in-core inode (see
2308 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2309 * symlink request has completed on the server.
2310 *
2311 * So instead we allocate a raw page, copy the symname into it, then do
2312 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2313 * now have a new file handle and can instantiate an in-core NFS inode
2314 * and move the raw page into its mapping.
2315 */
2316int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2317		struct dentry *dentry, const char *symname)
2318{
2319	struct page *page;
2320	char *kaddr;
2321	struct iattr attr;
2322	unsigned int pathlen = strlen(symname);
2323	int error;
2324
2325	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2326		dir->i_ino, dentry, symname);
2327
2328	if (pathlen > PAGE_SIZE)
2329		return -ENAMETOOLONG;
2330
2331	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2332	attr.ia_valid = ATTR_MODE;
2333
2334	page = alloc_page(GFP_USER);
2335	if (!page)
2336		return -ENOMEM;
2337
2338	kaddr = page_address(page);
2339	memcpy(kaddr, symname, pathlen);
2340	if (pathlen < PAGE_SIZE)
2341		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2342
2343	trace_nfs_symlink_enter(dir, dentry);
2344	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2345	trace_nfs_symlink_exit(dir, dentry, error);
2346	if (error != 0) {
2347		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2348			dir->i_sb->s_id, dir->i_ino,
2349			dentry, symname, error);
2350		d_drop(dentry);
2351		__free_page(page);
2352		return error;
2353	}
2354
 
 
2355	/*
2356	 * No big deal if we can't add this page to the page cache here.
2357	 * READLINK will get the missing page from the server if needed.
2358	 */
2359	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2360							GFP_KERNEL)) {
2361		SetPageUptodate(page);
2362		unlock_page(page);
2363		/*
2364		 * add_to_page_cache_lru() grabs an extra page refcount.
2365		 * Drop it here to avoid leaking this page later.
2366		 */
2367		put_page(page);
2368	} else
2369		__free_page(page);
2370
2371	return 0;
2372}
2373EXPORT_SYMBOL_GPL(nfs_symlink);
2374
2375int
2376nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377{
2378	struct inode *inode = d_inode(old_dentry);
2379	int error;
2380
2381	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2382		old_dentry, dentry);
2383
2384	trace_nfs_link_enter(inode, dir, dentry);
2385	d_drop(dentry);
 
 
2386	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2387	if (error == 0) {
 
2388		ihold(inode);
2389		d_add(dentry, inode);
2390	}
2391	trace_nfs_link_exit(inode, dir, dentry, error);
2392	return error;
2393}
2394EXPORT_SYMBOL_GPL(nfs_link);
2395
 
 
 
 
 
 
 
 
 
2396/*
2397 * RENAME
2398 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2399 * different file handle for the same inode after a rename (e.g. when
2400 * moving to a different directory). A fail-safe method to do so would
2401 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2402 * rename the old file using the sillyrename stuff. This way, the original
2403 * file in old_dir will go away when the last process iput()s the inode.
2404 *
2405 * FIXED.
2406 * 
2407 * It actually works quite well. One needs to have the possibility for
2408 * at least one ".nfs..." file in each directory the file ever gets
2409 * moved or linked to which happens automagically with the new
2410 * implementation that only depends on the dcache stuff instead of
2411 * using the inode layer
2412 *
2413 * Unfortunately, things are a little more complicated than indicated
2414 * above. For a cross-directory move, we want to make sure we can get
2415 * rid of the old inode after the operation.  This means there must be
2416 * no pending writes (if it's a file), and the use count must be 1.
2417 * If these conditions are met, we can drop the dentries before doing
2418 * the rename.
2419 */
2420int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2421	       struct dentry *old_dentry, struct inode *new_dir,
2422	       struct dentry *new_dentry, unsigned int flags)
2423{
2424	struct inode *old_inode = d_inode(old_dentry);
2425	struct inode *new_inode = d_inode(new_dentry);
2426	struct dentry *dentry = NULL, *rehash = NULL;
2427	struct rpc_task *task;
 
2428	int error = -EBUSY;
2429
2430	if (flags)
2431		return -EINVAL;
2432
2433	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2434		 old_dentry, new_dentry,
2435		 d_count(new_dentry));
2436
2437	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2438	/*
2439	 * For non-directories, check whether the target is busy and if so,
2440	 * make a copy of the dentry and then do a silly-rename. If the
2441	 * silly-rename succeeds, the copied dentry is hashed and becomes
2442	 * the new target.
2443	 */
2444	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2445		/*
2446		 * To prevent any new references to the target during the
2447		 * rename, we unhash the dentry in advance.
 
2448		 */
2449		if (!d_unhashed(new_dentry)) {
2450			d_drop(new_dentry);
2451			rehash = new_dentry;
 
 
 
 
 
2452		}
2453
 
2454		if (d_count(new_dentry) > 2) {
2455			int err;
2456
 
 
2457			/* copy the target dentry's name */
2458			dentry = d_alloc(new_dentry->d_parent,
2459					 &new_dentry->d_name);
2460			if (!dentry)
2461				goto out;
2462
2463			/* silly-rename the existing target ... */
2464			err = nfs_sillyrename(new_dir, new_dentry);
2465			if (err)
2466				goto out;
2467
2468			new_dentry = dentry;
2469			rehash = NULL;
2470			new_inode = NULL;
 
 
 
 
2471		}
 
2472	}
2473
2474	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
 
 
 
2475	if (IS_ERR(task)) {
2476		error = PTR_ERR(task);
2477		goto out;
2478	}
2479
2480	error = rpc_wait_for_completion_task(task);
2481	if (error != 0) {
2482		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2483		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2484		smp_wmb();
2485	} else
2486		error = task->tk_status;
2487	rpc_put_task(task);
2488	/* Ensure the inode attributes are revalidated */
2489	if (error == 0) {
2490		spin_lock(&old_inode->i_lock);
2491		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2492		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2493							 NFS_INO_INVALID_CTIME |
2494							 NFS_INO_REVAL_FORCED);
2495		spin_unlock(&old_inode->i_lock);
2496	}
2497out:
2498	if (rehash)
2499		d_rehash(rehash);
2500	trace_nfs_rename_exit(old_dir, old_dentry,
2501			new_dir, new_dentry, error);
2502	if (!error) {
2503		if (new_inode != NULL)
2504			nfs_drop_nlink(new_inode);
2505		/*
2506		 * The d_move() should be here instead of in an async RPC completion
2507		 * handler because we need the proper locks to move the dentry.  If
2508		 * we're interrupted by a signal, the async RPC completion handler
2509		 * should mark the directories for revalidation.
2510		 */
2511		d_move(old_dentry, new_dentry);
2512		nfs_set_verifier(old_dentry,
2513					nfs_save_change_attribute(new_dir));
2514	} else if (error == -ENOENT)
2515		nfs_dentry_handle_enoent(old_dentry);
2516
2517	/* new dentry created? */
2518	if (dentry)
2519		dput(dentry);
2520	return error;
2521}
2522EXPORT_SYMBOL_GPL(nfs_rename);
2523
2524static DEFINE_SPINLOCK(nfs_access_lru_lock);
2525static LIST_HEAD(nfs_access_lru_list);
2526static atomic_long_t nfs_access_nr_entries;
2527
2528static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2529module_param(nfs_access_max_cachesize, ulong, 0644);
2530MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2531
2532static void nfs_access_free_entry(struct nfs_access_entry *entry)
2533{
2534	put_cred(entry->cred);
2535	kfree_rcu(entry, rcu_head);
2536	smp_mb__before_atomic();
2537	atomic_long_dec(&nfs_access_nr_entries);
2538	smp_mb__after_atomic();
2539}
2540
2541static void nfs_access_free_list(struct list_head *head)
2542{
2543	struct nfs_access_entry *cache;
2544
2545	while (!list_empty(head)) {
2546		cache = list_entry(head->next, struct nfs_access_entry, lru);
2547		list_del(&cache->lru);
2548		nfs_access_free_entry(cache);
2549	}
2550}
2551
2552static unsigned long
2553nfs_do_access_cache_scan(unsigned int nr_to_scan)
2554{
2555	LIST_HEAD(head);
2556	struct nfs_inode *nfsi, *next;
2557	struct nfs_access_entry *cache;
2558	long freed = 0;
2559
2560	spin_lock(&nfs_access_lru_lock);
2561	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2562		struct inode *inode;
2563
2564		if (nr_to_scan-- == 0)
2565			break;
2566		inode = &nfsi->vfs_inode;
2567		spin_lock(&inode->i_lock);
2568		if (list_empty(&nfsi->access_cache_entry_lru))
2569			goto remove_lru_entry;
2570		cache = list_entry(nfsi->access_cache_entry_lru.next,
2571				struct nfs_access_entry, lru);
2572		list_move(&cache->lru, &head);
2573		rb_erase(&cache->rb_node, &nfsi->access_cache);
2574		freed++;
2575		if (!list_empty(&nfsi->access_cache_entry_lru))
2576			list_move_tail(&nfsi->access_cache_inode_lru,
2577					&nfs_access_lru_list);
2578		else {
2579remove_lru_entry:
2580			list_del_init(&nfsi->access_cache_inode_lru);
2581			smp_mb__before_atomic();
2582			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2583			smp_mb__after_atomic();
2584		}
2585		spin_unlock(&inode->i_lock);
2586	}
2587	spin_unlock(&nfs_access_lru_lock);
2588	nfs_access_free_list(&head);
2589	return freed;
2590}
2591
2592unsigned long
2593nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2594{
2595	int nr_to_scan = sc->nr_to_scan;
2596	gfp_t gfp_mask = sc->gfp_mask;
2597
2598	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2599		return SHRINK_STOP;
2600	return nfs_do_access_cache_scan(nr_to_scan);
2601}
2602
2603
2604unsigned long
2605nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2606{
2607	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2608}
2609
2610static void
2611nfs_access_cache_enforce_limit(void)
2612{
2613	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2614	unsigned long diff;
2615	unsigned int nr_to_scan;
2616
2617	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2618		return;
2619	nr_to_scan = 100;
2620	diff = nr_entries - nfs_access_max_cachesize;
2621	if (diff < nr_to_scan)
2622		nr_to_scan = diff;
2623	nfs_do_access_cache_scan(nr_to_scan);
2624}
2625
2626static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2627{
2628	struct rb_root *root_node = &nfsi->access_cache;
2629	struct rb_node *n;
2630	struct nfs_access_entry *entry;
2631
2632	/* Unhook entries from the cache */
2633	while ((n = rb_first(root_node)) != NULL) {
2634		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2635		rb_erase(n, root_node);
2636		list_move(&entry->lru, head);
2637	}
2638	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2639}
2640
2641void nfs_access_zap_cache(struct inode *inode)
2642{
2643	LIST_HEAD(head);
2644
2645	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2646		return;
2647	/* Remove from global LRU init */
2648	spin_lock(&nfs_access_lru_lock);
2649	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2650		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2651
2652	spin_lock(&inode->i_lock);
2653	__nfs_access_zap_cache(NFS_I(inode), &head);
2654	spin_unlock(&inode->i_lock);
2655	spin_unlock(&nfs_access_lru_lock);
2656	nfs_access_free_list(&head);
2657}
2658EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2661{
2662	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2663
2664	while (n != NULL) {
2665		struct nfs_access_entry *entry =
2666			rb_entry(n, struct nfs_access_entry, rb_node);
2667		int cmp = cred_fscmp(cred, entry->cred);
2668
2669		if (cmp < 0)
2670			n = n->rb_left;
2671		else if (cmp > 0)
2672			n = n->rb_right;
2673		else
2674			return entry;
2675	}
2676	return NULL;
2677}
2678
2679static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2680{
2681	struct nfs_inode *nfsi = NFS_I(inode);
 
2682	struct nfs_access_entry *cache;
2683	bool retry = true;
2684	int err;
2685
2686	spin_lock(&inode->i_lock);
2687	for(;;) {
2688		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2689			goto out_zap;
2690		cache = nfs_access_search_rbtree(inode, cred);
2691		err = -ENOENT;
2692		if (cache == NULL)
2693			goto out;
2694		/* Found an entry, is our attribute cache valid? */
2695		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2696			break;
2697		if (!retry)
2698			break;
2699		err = -ECHILD;
2700		if (!may_block)
2701			goto out;
2702		spin_unlock(&inode->i_lock);
2703		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2704		if (err)
2705			return err;
2706		spin_lock(&inode->i_lock);
2707		retry = false;
2708	}
2709	res->cred = cache->cred;
2710	res->mask = cache->mask;
 
 
2711	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2712	err = 0;
2713out:
2714	spin_unlock(&inode->i_lock);
2715	return err;
2716out_zap:
2717	spin_unlock(&inode->i_lock);
2718	nfs_access_zap_cache(inode);
2719	return -ENOENT;
2720}
2721
2722static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2723{
2724	/* Only check the most recently returned cache entry,
2725	 * but do it without locking.
2726	 */
2727	struct nfs_inode *nfsi = NFS_I(inode);
 
2728	struct nfs_access_entry *cache;
2729	int err = -ECHILD;
2730	struct list_head *lh;
2731
2732	rcu_read_lock();
2733	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2734		goto out;
2735	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2736	cache = list_entry(lh, struct nfs_access_entry, lru);
2737	if (lh == &nfsi->access_cache_entry_lru ||
2738	    cred_fscmp(cred, cache->cred) != 0)
2739		cache = NULL;
2740	if (cache == NULL)
2741		goto out;
 
 
2742	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2743		goto out;
2744	res->cred = cache->cred;
2745	res->mask = cache->mask;
2746	err = 0;
2747out:
2748	rcu_read_unlock();
2749	return err;
2750}
2751
2752int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2753nfs_access_entry *res, bool may_block)
2754{
2755	int status;
2756
2757	status = nfs_access_get_cached_rcu(inode, cred, res);
2758	if (status != 0)
2759		status = nfs_access_get_cached_locked(inode, cred, res,
2760		    may_block);
2761
2762	return status;
2763}
2764EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2765
2766static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
 
 
2767{
2768	struct nfs_inode *nfsi = NFS_I(inode);
2769	struct rb_root *root_node = &nfsi->access_cache;
2770	struct rb_node **p = &root_node->rb_node;
2771	struct rb_node *parent = NULL;
2772	struct nfs_access_entry *entry;
2773	int cmp;
2774
2775	spin_lock(&inode->i_lock);
2776	while (*p != NULL) {
2777		parent = *p;
2778		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2779		cmp = cred_fscmp(set->cred, entry->cred);
2780
2781		if (cmp < 0)
2782			p = &parent->rb_left;
2783		else if (cmp > 0)
2784			p = &parent->rb_right;
2785		else
2786			goto found;
2787	}
 
2788	rb_link_node(&set->rb_node, parent, p);
2789	rb_insert_color(&set->rb_node, root_node);
2790	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2791	spin_unlock(&inode->i_lock);
2792	return;
2793found:
2794	rb_replace_node(parent, &set->rb_node, root_node);
2795	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2796	list_del(&entry->lru);
2797	spin_unlock(&inode->i_lock);
2798	nfs_access_free_entry(entry);
2799}
2800
2801void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
 
2802{
2803	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2804	if (cache == NULL)
2805		return;
2806	RB_CLEAR_NODE(&cache->rb_node);
2807	cache->cred = get_cred(set->cred);
 
 
2808	cache->mask = set->mask;
2809
2810	/* The above field assignments must be visible
2811	 * before this item appears on the lru.  We cannot easily
2812	 * use rcu_assign_pointer, so just force the memory barrier.
2813	 */
2814	smp_wmb();
2815	nfs_access_add_rbtree(inode, cache);
2816
2817	/* Update accounting */
2818	smp_mb__before_atomic();
2819	atomic_long_inc(&nfs_access_nr_entries);
2820	smp_mb__after_atomic();
2821
2822	/* Add inode to global LRU list */
2823	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2824		spin_lock(&nfs_access_lru_lock);
2825		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2826			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2827					&nfs_access_lru_list);
2828		spin_unlock(&nfs_access_lru_lock);
2829	}
2830	nfs_access_cache_enforce_limit();
2831}
2832EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2833
2834#define NFS_MAY_READ (NFS_ACCESS_READ)
2835#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836		NFS_ACCESS_EXTEND | \
2837		NFS_ACCESS_DELETE)
2838#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2839		NFS_ACCESS_EXTEND)
2840#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2841#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2842#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2843static int
2844nfs_access_calc_mask(u32 access_result, umode_t umode)
2845{
2846	int mask = 0;
2847
2848	if (access_result & NFS_MAY_READ)
2849		mask |= MAY_READ;
2850	if (S_ISDIR(umode)) {
2851		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2852			mask |= MAY_WRITE;
2853		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2854			mask |= MAY_EXEC;
2855	} else if (S_ISREG(umode)) {
2856		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2857			mask |= MAY_WRITE;
2858		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2859			mask |= MAY_EXEC;
2860	} else if (access_result & NFS_MAY_WRITE)
2861			mask |= MAY_WRITE;
2862	return mask;
2863}
2864
2865void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2866{
2867	entry->mask = access_result;
2868}
2869EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2870
2871static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2872{
2873	struct nfs_access_entry cache;
2874	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2875	int cache_mask = -1;
2876	int status;
2877
2878	trace_nfs_access_enter(inode);
2879
2880	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2881	if (status == 0)
2882		goto out_cached;
2883
2884	status = -ECHILD;
2885	if (!may_block)
2886		goto out;
2887
2888	/*
2889	 * Determine which access bits we want to ask for...
2890	 */
2891	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2892	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2893		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2894		    NFS_ACCESS_XALIST;
2895	}
2896	if (S_ISDIR(inode->i_mode))
2897		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2898	else
2899		cache.mask |= NFS_ACCESS_EXECUTE;
2900	cache.cred = cred;
2901	status = NFS_PROTO(inode)->access(inode, &cache);
2902	if (status != 0) {
2903		if (status == -ESTALE) {
2904			if (!S_ISDIR(inode->i_mode))
2905				nfs_set_inode_stale(inode);
2906			else
2907				nfs_zap_caches(inode);
2908		}
2909		goto out;
2910	}
2911	nfs_access_add_cache(inode, &cache);
2912out_cached:
2913	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2914	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2915		status = -EACCES;
2916out:
2917	trace_nfs_access_exit(inode, mask, cache_mask, status);
2918	return status;
2919}
2920
2921static int nfs_open_permission_mask(int openflags)
2922{
2923	int mask = 0;
2924
2925	if (openflags & __FMODE_EXEC) {
2926		/* ONLY check exec rights */
2927		mask = MAY_EXEC;
2928	} else {
2929		if ((openflags & O_ACCMODE) != O_WRONLY)
2930			mask |= MAY_READ;
2931		if ((openflags & O_ACCMODE) != O_RDONLY)
2932			mask |= MAY_WRITE;
2933	}
2934
2935	return mask;
2936}
2937
2938int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2939{
2940	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2941}
2942EXPORT_SYMBOL_GPL(nfs_may_open);
2943
2944static int nfs_execute_ok(struct inode *inode, int mask)
2945{
2946	struct nfs_server *server = NFS_SERVER(inode);
2947	int ret = 0;
2948
2949	if (S_ISDIR(inode->i_mode))
2950		return 0;
2951	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2952		if (mask & MAY_NOT_BLOCK)
2953			return -ECHILD;
2954		ret = __nfs_revalidate_inode(server, inode);
2955	}
2956	if (ret == 0 && !execute_ok(inode))
2957		ret = -EACCES;
2958	return ret;
2959}
2960
2961int nfs_permission(struct user_namespace *mnt_userns,
2962		   struct inode *inode,
2963		   int mask)
2964{
2965	const struct cred *cred = current_cred();
2966	int res = 0;
2967
2968	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2969
2970	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2971		goto out;
2972	/* Is this sys_access() ? */
2973	if (mask & (MAY_ACCESS | MAY_CHDIR))
2974		goto force_lookup;
2975
2976	switch (inode->i_mode & S_IFMT) {
2977		case S_IFLNK:
2978			goto out;
2979		case S_IFREG:
2980			if ((mask & MAY_OPEN) &&
2981			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2982				return 0;
2983			break;
2984		case S_IFDIR:
2985			/*
2986			 * Optimize away all write operations, since the server
2987			 * will check permissions when we perform the op.
2988			 */
2989			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2990				goto out;
2991	}
2992
2993force_lookup:
2994	if (!NFS_PROTO(inode)->access)
2995		goto out_notsup;
2996
2997	res = nfs_do_access(inode, cred, mask);
2998out:
2999	if (!res && (mask & MAY_EXEC))
3000		res = nfs_execute_ok(inode, mask);
3001
3002	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3003		inode->i_sb->s_id, inode->i_ino, mask, res);
3004	return res;
3005out_notsup:
3006	if (mask & MAY_NOT_BLOCK)
3007		return -ECHILD;
3008
3009	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3010						  NFS_INO_INVALID_OTHER);
3011	if (res == 0)
3012		res = generic_permission(&init_user_ns, inode, mask);
3013	goto out;
3014}
3015EXPORT_SYMBOL_GPL(nfs_permission);