Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30
  31/* protects access to pwm_chips, allocated_pwms, and pwm_tree */
  32static DEFINE_MUTEX(pwm_lock);
  33
  34static LIST_HEAD(pwm_chips);
  35static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  36static RADIX_TREE(pwm_tree, GFP_KERNEL);
  37
  38static struct pwm_device *pwm_to_device(unsigned int pwm)
  39{
  40	return radix_tree_lookup(&pwm_tree, pwm);
  41}
  42
  43/* Called with pwm_lock held */
  44static int alloc_pwms(unsigned int count)
  45{
  46	unsigned int start;
  47
  48	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
  49					   count, 0);
  50
  51	if (start + count > MAX_PWMS)
  52		return -ENOSPC;
  53
  54	bitmap_set(allocated_pwms, start, count);
  55
  56	return start;
  57}
  58
  59/* Called with pwm_lock held */
  60static void free_pwms(struct pwm_chip *chip)
  61{
  62	unsigned int i;
  63
  64	for (i = 0; i < chip->npwm; i++) {
  65		struct pwm_device *pwm = &chip->pwms[i];
  66
  67		radix_tree_delete(&pwm_tree, pwm->pwm);
  68	}
  69
  70	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  71
  72	kfree(chip->pwms);
  73	chip->pwms = NULL;
  74}
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78	struct pwm_chip *chip;
  79
  80	if (!name)
  81		return NULL;
  82
  83	mutex_lock(&pwm_lock);
  84
  85	list_for_each_entry(chip, &pwm_chips, list) {
  86		const char *chip_name = dev_name(chip->dev);
  87
  88		if (chip_name && strcmp(chip_name, name) == 0) {
  89			mutex_unlock(&pwm_lock);
  90			return chip;
  91		}
  92	}
  93
  94	mutex_unlock(&pwm_lock);
  95
  96	return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101	int err;
 102
 103	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104		return -EBUSY;
 105
 106	if (!try_module_get(pwm->chip->ops->owner))
 107		return -ENODEV;
 108
 109	if (pwm->chip->ops->request) {
 110		err = pwm->chip->ops->request(pwm->chip, pwm);
 111		if (err) {
 112			module_put(pwm->chip->ops->owner);
 113			return err;
 114		}
 115	}
 116
 117	if (pwm->chip->ops->get_state) {
 118		struct pwm_state state;
 119
 120		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
 121		trace_pwm_get(pwm, &state, err);
 122
 123		if (!err)
 124			pwm->state = state;
 125
 126		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 127			pwm->last = pwm->state;
 128	}
 129
 130	set_bit(PWMF_REQUESTED, &pwm->flags);
 131	pwm->label = label;
 132
 133	return 0;
 134}
 135
 136struct pwm_device *
 137of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 138{
 139	struct pwm_device *pwm;
 140
 141	if (pc->of_pwm_n_cells < 2)
 142		return ERR_PTR(-EINVAL);
 143
 144	/* flags in the third cell are optional */
 145	if (args->args_count < 2)
 146		return ERR_PTR(-EINVAL);
 147
 148	if (args->args[0] >= pc->npwm)
 149		return ERR_PTR(-EINVAL);
 150
 151	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 152	if (IS_ERR(pwm))
 153		return pwm;
 154
 155	pwm->args.period = args->args[1];
 156	pwm->args.polarity = PWM_POLARITY_NORMAL;
 157
 158	if (pc->of_pwm_n_cells >= 3) {
 159		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 160			pwm->args.polarity = PWM_POLARITY_INVERSED;
 161	}
 162
 163	return pwm;
 164}
 165EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 166
 167struct pwm_device *
 168of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 169{
 170	struct pwm_device *pwm;
 171
 172	if (pc->of_pwm_n_cells < 1)
 173		return ERR_PTR(-EINVAL);
 174
 175	/* validate that one cell is specified, optionally with flags */
 176	if (args->args_count != 1 && args->args_count != 2)
 177		return ERR_PTR(-EINVAL);
 178
 179	pwm = pwm_request_from_chip(pc, 0, NULL);
 180	if (IS_ERR(pwm))
 181		return pwm;
 182
 183	pwm->args.period = args->args[0];
 184	pwm->args.polarity = PWM_POLARITY_NORMAL;
 185
 186	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
 187		pwm->args.polarity = PWM_POLARITY_INVERSED;
 188
 189	return pwm;
 190}
 191EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
 192
 193static void of_pwmchip_add(struct pwm_chip *chip)
 194{
 195	if (!chip->dev || !chip->dev->of_node)
 196		return;
 197
 198	if (!chip->of_xlate) {
 199		u32 pwm_cells;
 200
 201		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 202					 &pwm_cells))
 203			pwm_cells = 2;
 204
 205		chip->of_xlate = of_pwm_xlate_with_flags;
 206		chip->of_pwm_n_cells = pwm_cells;
 207	}
 208
 209	of_node_get(chip->dev->of_node);
 210}
 211
 212static void of_pwmchip_remove(struct pwm_chip *chip)
 213{
 214	if (chip->dev)
 215		of_node_put(chip->dev->of_node);
 216}
 217
 218/**
 219 * pwm_set_chip_data() - set private chip data for a PWM
 220 * @pwm: PWM device
 221 * @data: pointer to chip-specific data
 222 *
 223 * Returns: 0 on success or a negative error code on failure.
 224 */
 225int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 226{
 227	if (!pwm)
 228		return -EINVAL;
 229
 230	pwm->chip_data = data;
 231
 232	return 0;
 233}
 234EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 235
 236/**
 237 * pwm_get_chip_data() - get private chip data for a PWM
 238 * @pwm: PWM device
 239 *
 240 * Returns: A pointer to the chip-private data for the PWM device.
 241 */
 242void *pwm_get_chip_data(struct pwm_device *pwm)
 243{
 244	return pwm ? pwm->chip_data : NULL;
 245}
 246EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 247
 248static bool pwm_ops_check(const struct pwm_chip *chip)
 249{
 
 250	const struct pwm_ops *ops = chip->ops;
 251
 
 
 
 
 
 
 
 
 
 252	if (!ops->apply)
 253		return false;
 254
 255	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 256		dev_warn(chip->dev,
 257			 "Please implement the .get_state() callback\n");
 258
 259	return true;
 260}
 261
 262/**
 263 * pwmchip_add() - register a new PWM chip
 264 * @chip: the PWM chip to add
 265 *
 266 * Register a new PWM chip.
 267 *
 268 * Returns: 0 on success or a negative error code on failure.
 269 */
 270int pwmchip_add(struct pwm_chip *chip)
 271{
 272	struct pwm_device *pwm;
 273	unsigned int i;
 274	int ret;
 275
 276	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 277		return -EINVAL;
 278
 279	if (!pwm_ops_check(chip))
 280		return -EINVAL;
 281
 282	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 283	if (!chip->pwms)
 284		return -ENOMEM;
 285
 286	mutex_lock(&pwm_lock);
 287
 288	ret = alloc_pwms(chip->npwm);
 289	if (ret < 0) {
 290		mutex_unlock(&pwm_lock);
 291		kfree(chip->pwms);
 292		return ret;
 293	}
 294
 295	chip->base = ret;
 296
 
 
 
 
 
 
 297	for (i = 0; i < chip->npwm; i++) {
 298		pwm = &chip->pwms[i];
 299
 300		pwm->chip = chip;
 301		pwm->pwm = chip->base + i;
 302		pwm->hwpwm = i;
 303
 304		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 305	}
 306
 
 
 
 307	list_add(&chip->list, &pwm_chips);
 308
 309	mutex_unlock(&pwm_lock);
 310
 311	if (IS_ENABLED(CONFIG_OF))
 312		of_pwmchip_add(chip);
 313
 314	pwmchip_sysfs_export(chip);
 
 
 
 
 315
 316	return 0;
 317}
 318EXPORT_SYMBOL_GPL(pwmchip_add);
 319
 320/**
 321 * pwmchip_remove() - remove a PWM chip
 322 * @chip: the PWM chip to remove
 323 *
 324 * Removes a PWM chip. This function may return busy if the PWM chip provides
 325 * a PWM device that is still requested.
 326 *
 327 * Returns: 0 on success or a negative error code on failure.
 328 */
 329void pwmchip_remove(struct pwm_chip *chip)
 330{
 331	pwmchip_sysfs_unexport(chip);
 332
 333	mutex_lock(&pwm_lock);
 334
 335	list_del_init(&chip->list);
 336
 337	if (IS_ENABLED(CONFIG_OF))
 338		of_pwmchip_remove(chip);
 339
 340	free_pwms(chip);
 341
 342	mutex_unlock(&pwm_lock);
 
 
 343}
 344EXPORT_SYMBOL_GPL(pwmchip_remove);
 345
 346static void devm_pwmchip_remove(void *data)
 347{
 348	struct pwm_chip *chip = data;
 349
 350	pwmchip_remove(chip);
 351}
 352
 353int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 354{
 355	int ret;
 356
 357	ret = pwmchip_add(chip);
 358	if (ret)
 359		return ret;
 360
 361	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 362}
 363EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 364
 365/**
 366 * pwm_request() - request a PWM device
 367 * @pwm: global PWM device index
 368 * @label: PWM device label
 369 *
 370 * This function is deprecated, use pwm_get() instead.
 371 *
 372 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 373 * failure.
 374 */
 375struct pwm_device *pwm_request(int pwm, const char *label)
 376{
 377	struct pwm_device *dev;
 378	int err;
 379
 380	if (pwm < 0 || pwm >= MAX_PWMS)
 381		return ERR_PTR(-EINVAL);
 382
 383	mutex_lock(&pwm_lock);
 384
 385	dev = pwm_to_device(pwm);
 386	if (!dev) {
 387		dev = ERR_PTR(-EPROBE_DEFER);
 388		goto out;
 389	}
 390
 391	err = pwm_device_request(dev, label);
 392	if (err < 0)
 393		dev = ERR_PTR(err);
 394
 395out:
 396	mutex_unlock(&pwm_lock);
 397
 398	return dev;
 399}
 400EXPORT_SYMBOL_GPL(pwm_request);
 401
 402/**
 403 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 404 * @chip: PWM chip
 405 * @index: per-chip index of the PWM to request
 406 * @label: a literal description string of this PWM
 407 *
 408 * Returns: A pointer to the PWM device at the given index of the given PWM
 409 * chip. A negative error code is returned if the index is not valid for the
 410 * specified PWM chip or if the PWM device cannot be requested.
 411 */
 412struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 413					 unsigned int index,
 414					 const char *label)
 415{
 416	struct pwm_device *pwm;
 417	int err;
 418
 419	if (!chip || index >= chip->npwm)
 420		return ERR_PTR(-EINVAL);
 421
 422	mutex_lock(&pwm_lock);
 423	pwm = &chip->pwms[index];
 424
 425	err = pwm_device_request(pwm, label);
 426	if (err < 0)
 427		pwm = ERR_PTR(err);
 428
 429	mutex_unlock(&pwm_lock);
 430	return pwm;
 431}
 432EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 433
 434/**
 435 * pwm_free() - free a PWM device
 436 * @pwm: PWM device
 437 *
 438 * This function is deprecated, use pwm_put() instead.
 439 */
 440void pwm_free(struct pwm_device *pwm)
 441{
 442	pwm_put(pwm);
 443}
 444EXPORT_SYMBOL_GPL(pwm_free);
 445
 446static void pwm_apply_state_debug(struct pwm_device *pwm,
 447				  const struct pwm_state *state)
 448{
 449	struct pwm_state *last = &pwm->last;
 450	struct pwm_chip *chip = pwm->chip;
 451	struct pwm_state s1, s2;
 452	int err;
 453
 454	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 455		return;
 456
 457	/* No reasonable diagnosis possible without .get_state() */
 458	if (!chip->ops->get_state)
 459		return;
 460
 461	/*
 462	 * *state was just applied. Read out the hardware state and do some
 463	 * checks.
 464	 */
 465
 466	err = chip->ops->get_state(chip, pwm, &s1);
 467	trace_pwm_get(pwm, &s1, err);
 468	if (err)
 469		/* If that failed there isn't much to debug */
 470		return;
 471
 472	/*
 473	 * The lowlevel driver either ignored .polarity (which is a bug) or as
 474	 * best effort inverted .polarity and fixed .duty_cycle respectively.
 475	 * Undo this inversion and fixup for further tests.
 476	 */
 477	if (s1.enabled && s1.polarity != state->polarity) {
 478		s2.polarity = state->polarity;
 479		s2.duty_cycle = s1.period - s1.duty_cycle;
 480		s2.period = s1.period;
 481		s2.enabled = s1.enabled;
 482	} else {
 483		s2 = s1;
 484	}
 485
 486	if (s2.polarity != state->polarity &&
 487	    state->duty_cycle < state->period)
 488		dev_warn(chip->dev, ".apply ignored .polarity\n");
 489
 490	if (state->enabled &&
 491	    last->polarity == state->polarity &&
 492	    last->period > s2.period &&
 493	    last->period <= state->period)
 494		dev_warn(chip->dev,
 495			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 496			 state->period, s2.period, last->period);
 497
 498	if (state->enabled && state->period < s2.period)
 499		dev_warn(chip->dev,
 500			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 501			 state->period, s2.period);
 502
 503	if (state->enabled &&
 504	    last->polarity == state->polarity &&
 505	    last->period == s2.period &&
 506	    last->duty_cycle > s2.duty_cycle &&
 507	    last->duty_cycle <= state->duty_cycle)
 508		dev_warn(chip->dev,
 509			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 510			 state->duty_cycle, state->period,
 511			 s2.duty_cycle, s2.period,
 512			 last->duty_cycle, last->period);
 513
 514	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 515		dev_warn(chip->dev,
 516			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 517			 state->duty_cycle, state->period,
 518			 s2.duty_cycle, s2.period);
 519
 520	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 521		dev_warn(chip->dev,
 522			 "requested disabled, but yielded enabled with duty > 0\n");
 523
 524	/* reapply the state that the driver reported being configured. */
 525	err = chip->ops->apply(chip, pwm, &s1);
 526	trace_pwm_apply(pwm, &s1, err);
 527	if (err) {
 528		*last = s1;
 529		dev_err(chip->dev, "failed to reapply current setting\n");
 530		return;
 531	}
 532
 533	err = chip->ops->get_state(chip, pwm, last);
 534	trace_pwm_get(pwm, last, err);
 535	if (err)
 536		return;
 537
 538	/* reapplication of the current state should give an exact match */
 539	if (s1.enabled != last->enabled ||
 540	    s1.polarity != last->polarity ||
 541	    (s1.enabled && s1.period != last->period) ||
 542	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 543		dev_err(chip->dev,
 544			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 545			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 546			last->enabled, last->polarity, last->duty_cycle,
 547			last->period);
 548	}
 549}
 550
 551/**
 552 * pwm_apply_state() - atomically apply a new state to a PWM device
 553 * @pwm: PWM device
 554 * @state: new state to apply
 555 */
 556int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 557{
 558	struct pwm_chip *chip;
 559	int err;
 560
 561	/*
 562	 * Some lowlevel driver's implementations of .apply() make use of
 563	 * mutexes, also with some drivers only returning when the new
 564	 * configuration is active calling pwm_apply_state() from atomic context
 565	 * is a bad idea. So make it explicit that calling this function might
 566	 * sleep.
 567	 */
 568	might_sleep();
 569
 570	if (!pwm || !state || !state->period ||
 571	    state->duty_cycle > state->period)
 572		return -EINVAL;
 573
 574	chip = pwm->chip;
 575
 576	if (state->period == pwm->state.period &&
 577	    state->duty_cycle == pwm->state.duty_cycle &&
 578	    state->polarity == pwm->state.polarity &&
 579	    state->enabled == pwm->state.enabled &&
 580	    state->usage_power == pwm->state.usage_power)
 581		return 0;
 582
 583	err = chip->ops->apply(chip, pwm, state);
 584	trace_pwm_apply(pwm, state, err);
 585	if (err)
 586		return err;
 
 
 587
 588	pwm->state = *state;
 589
 590	/*
 591	 * only do this after pwm->state was applied as some
 592	 * implementations of .get_state depend on this
 593	 */
 594	pwm_apply_state_debug(pwm, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(pwm_apply_state);
 599
 600/**
 601 * pwm_capture() - capture and report a PWM signal
 602 * @pwm: PWM device
 603 * @result: structure to fill with capture result
 604 * @timeout: time to wait, in milliseconds, before giving up on capture
 605 *
 606 * Returns: 0 on success or a negative error code on failure.
 607 */
 608int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 609		unsigned long timeout)
 610{
 611	int err;
 612
 613	if (!pwm || !pwm->chip->ops)
 614		return -EINVAL;
 615
 616	if (!pwm->chip->ops->capture)
 617		return -ENOSYS;
 618
 619	mutex_lock(&pwm_lock);
 620	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 621	mutex_unlock(&pwm_lock);
 622
 623	return err;
 624}
 625EXPORT_SYMBOL_GPL(pwm_capture);
 626
 627/**
 628 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 629 * @pwm: PWM device
 630 *
 631 * This function will adjust the PWM config to the PWM arguments provided
 632 * by the DT or PWM lookup table. This is particularly useful to adapt
 633 * the bootloader config to the Linux one.
 634 */
 635int pwm_adjust_config(struct pwm_device *pwm)
 636{
 637	struct pwm_state state;
 638	struct pwm_args pargs;
 639
 640	pwm_get_args(pwm, &pargs);
 641	pwm_get_state(pwm, &state);
 642
 643	/*
 644	 * If the current period is zero it means that either the PWM driver
 645	 * does not support initial state retrieval or the PWM has not yet
 646	 * been configured.
 647	 *
 648	 * In either case, we setup the new period and polarity, and assign a
 649	 * duty cycle of 0.
 650	 */
 651	if (!state.period) {
 652		state.duty_cycle = 0;
 653		state.period = pargs.period;
 654		state.polarity = pargs.polarity;
 655
 656		return pwm_apply_state(pwm, &state);
 657	}
 658
 659	/*
 660	 * Adjust the PWM duty cycle/period based on the period value provided
 661	 * in PWM args.
 662	 */
 663	if (pargs.period != state.period) {
 664		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 665
 666		do_div(dutycycle, state.period);
 667		state.duty_cycle = dutycycle;
 668		state.period = pargs.period;
 669	}
 670
 671	/*
 672	 * If the polarity changed, we should also change the duty cycle.
 673	 */
 674	if (pargs.polarity != state.polarity) {
 675		state.polarity = pargs.polarity;
 676		state.duty_cycle = state.period - state.duty_cycle;
 677	}
 678
 679	return pwm_apply_state(pwm, &state);
 680}
 681EXPORT_SYMBOL_GPL(pwm_adjust_config);
 682
 683static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 684{
 685	struct pwm_chip *chip;
 686
 687	mutex_lock(&pwm_lock);
 688
 689	list_for_each_entry(chip, &pwm_chips, list)
 690		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
 691			mutex_unlock(&pwm_lock);
 692			return chip;
 693		}
 694
 695	mutex_unlock(&pwm_lock);
 696
 697	return ERR_PTR(-EPROBE_DEFER);
 698}
 699
 700static struct device_link *pwm_device_link_add(struct device *dev,
 701					       struct pwm_device *pwm)
 702{
 703	struct device_link *dl;
 704
 705	if (!dev) {
 706		/*
 707		 * No device for the PWM consumer has been provided. It may
 708		 * impact the PM sequence ordering: the PWM supplier may get
 709		 * suspended before the consumer.
 710		 */
 711		dev_warn(pwm->chip->dev,
 712			 "No consumer device specified to create a link to\n");
 713		return NULL;
 714	}
 715
 716	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 717	if (!dl) {
 718		dev_err(dev, "failed to create device link to %s\n",
 719			dev_name(pwm->chip->dev));
 720		return ERR_PTR(-EINVAL);
 721	}
 722
 723	return dl;
 724}
 725
 726/**
 727 * of_pwm_get() - request a PWM via the PWM framework
 728 * @dev: device for PWM consumer
 729 * @np: device node to get the PWM from
 730 * @con_id: consumer name
 731 *
 732 * Returns the PWM device parsed from the phandle and index specified in the
 733 * "pwms" property of a device tree node or a negative error-code on failure.
 734 * Values parsed from the device tree are stored in the returned PWM device
 735 * object.
 736 *
 737 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 738 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 739 * lookup of the PWM index. This also means that the "pwm-names" property
 740 * becomes mandatory for devices that look up the PWM device via the con_id
 741 * parameter.
 742 *
 743 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 744 * error code on failure.
 745 */
 746static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 747				     const char *con_id)
 748{
 749	struct pwm_device *pwm = NULL;
 750	struct of_phandle_args args;
 751	struct device_link *dl;
 752	struct pwm_chip *pc;
 753	int index = 0;
 754	int err;
 755
 756	if (con_id) {
 757		index = of_property_match_string(np, "pwm-names", con_id);
 758		if (index < 0)
 759			return ERR_PTR(index);
 760	}
 761
 762	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 763					 &args);
 764	if (err) {
 765		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 766		return ERR_PTR(err);
 767	}
 768
 769	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 770	if (IS_ERR(pc)) {
 771		if (PTR_ERR(pc) != -EPROBE_DEFER)
 772			pr_err("%s(): PWM chip not found\n", __func__);
 773
 774		pwm = ERR_CAST(pc);
 775		goto put;
 776	}
 777
 778	pwm = pc->of_xlate(pc, &args);
 779	if (IS_ERR(pwm))
 780		goto put;
 781
 782	dl = pwm_device_link_add(dev, pwm);
 783	if (IS_ERR(dl)) {
 784		/* of_xlate ended up calling pwm_request_from_chip() */
 785		pwm_free(pwm);
 786		pwm = ERR_CAST(dl);
 787		goto put;
 788	}
 789
 790	/*
 791	 * If a consumer name was not given, try to look it up from the
 792	 * "pwm-names" property if it exists. Otherwise use the name of
 793	 * the user device node.
 794	 */
 795	if (!con_id) {
 796		err = of_property_read_string_index(np, "pwm-names", index,
 797						    &con_id);
 798		if (err < 0)
 799			con_id = np->name;
 800	}
 801
 802	pwm->label = con_id;
 803
 804put:
 805	of_node_put(args.np);
 806
 807	return pwm;
 808}
 
 809
 810/**
 811 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 812 * @fwnode: firmware node to get the "pwms" property from
 813 *
 814 * Returns the PWM device parsed from the fwnode and index specified in the
 815 * "pwms" property or a negative error-code on failure.
 816 * Values parsed from the device tree are stored in the returned PWM device
 817 * object.
 818 *
 819 * This is analogous to of_pwm_get() except con_id is not yet supported.
 820 * ACPI entries must look like
 821 * Package () {"pwms", Package ()
 822 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 823 *
 824 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 825 * error code on failure.
 826 */
 827static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 828{
 829	struct pwm_device *pwm;
 830	struct fwnode_reference_args args;
 831	struct pwm_chip *chip;
 832	int ret;
 833
 834	memset(&args, 0, sizeof(args));
 835
 836	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 837	if (ret < 0)
 838		return ERR_PTR(ret);
 839
 840	if (args.nargs < 2)
 841		return ERR_PTR(-EPROTO);
 842
 843	chip = fwnode_to_pwmchip(args.fwnode);
 844	if (IS_ERR(chip))
 845		return ERR_CAST(chip);
 846
 847	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 848	if (IS_ERR(pwm))
 849		return pwm;
 850
 851	pwm->args.period = args.args[1];
 852	pwm->args.polarity = PWM_POLARITY_NORMAL;
 853
 854	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 855		pwm->args.polarity = PWM_POLARITY_INVERSED;
 856
 857	return pwm;
 858}
 859
 860/**
 861 * pwm_add_table() - register PWM device consumers
 862 * @table: array of consumers to register
 863 * @num: number of consumers in table
 864 */
 865void pwm_add_table(struct pwm_lookup *table, size_t num)
 866{
 867	mutex_lock(&pwm_lookup_lock);
 868
 869	while (num--) {
 870		list_add_tail(&table->list, &pwm_lookup_list);
 871		table++;
 872	}
 873
 874	mutex_unlock(&pwm_lookup_lock);
 875}
 876
 877/**
 878 * pwm_remove_table() - unregister PWM device consumers
 879 * @table: array of consumers to unregister
 880 * @num: number of consumers in table
 881 */
 882void pwm_remove_table(struct pwm_lookup *table, size_t num)
 883{
 884	mutex_lock(&pwm_lookup_lock);
 885
 886	while (num--) {
 887		list_del(&table->list);
 888		table++;
 889	}
 890
 891	mutex_unlock(&pwm_lookup_lock);
 892}
 893
 894/**
 895 * pwm_get() - look up and request a PWM device
 896 * @dev: device for PWM consumer
 897 * @con_id: consumer name
 898 *
 899 * Lookup is first attempted using DT. If the device was not instantiated from
 900 * a device tree, a PWM chip and a relative index is looked up via a table
 901 * supplied by board setup code (see pwm_add_table()).
 902 *
 903 * Once a PWM chip has been found the specified PWM device will be requested
 904 * and is ready to be used.
 905 *
 906 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 907 * error code on failure.
 908 */
 909struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 910{
 911	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 912	const char *dev_id = dev ? dev_name(dev) : NULL;
 913	struct pwm_device *pwm;
 914	struct pwm_chip *chip;
 915	struct device_link *dl;
 916	unsigned int best = 0;
 917	struct pwm_lookup *p, *chosen = NULL;
 918	unsigned int match;
 919	int err;
 920
 921	/* look up via DT first */
 922	if (is_of_node(fwnode))
 923		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 924
 925	/* then lookup via ACPI */
 926	if (is_acpi_node(fwnode)) {
 927		pwm = acpi_pwm_get(fwnode);
 928		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 929			return pwm;
 930	}
 931
 932	/*
 933	 * We look up the provider in the static table typically provided by
 934	 * board setup code. We first try to lookup the consumer device by
 935	 * name. If the consumer device was passed in as NULL or if no match
 936	 * was found, we try to find the consumer by directly looking it up
 937	 * by name.
 938	 *
 939	 * If a match is found, the provider PWM chip is looked up by name
 940	 * and a PWM device is requested using the PWM device per-chip index.
 941	 *
 942	 * The lookup algorithm was shamelessly taken from the clock
 943	 * framework:
 944	 *
 945	 * We do slightly fuzzy matching here:
 946	 *  An entry with a NULL ID is assumed to be a wildcard.
 947	 *  If an entry has a device ID, it must match
 948	 *  If an entry has a connection ID, it must match
 949	 * Then we take the most specific entry - with the following order
 950	 * of precedence: dev+con > dev only > con only.
 951	 */
 952	mutex_lock(&pwm_lookup_lock);
 953
 954	list_for_each_entry(p, &pwm_lookup_list, list) {
 955		match = 0;
 956
 957		if (p->dev_id) {
 958			if (!dev_id || strcmp(p->dev_id, dev_id))
 959				continue;
 960
 961			match += 2;
 962		}
 963
 964		if (p->con_id) {
 965			if (!con_id || strcmp(p->con_id, con_id))
 966				continue;
 967
 968			match += 1;
 969		}
 970
 971		if (match > best) {
 972			chosen = p;
 973
 974			if (match != 3)
 975				best = match;
 976			else
 977				break;
 978		}
 979	}
 980
 981	mutex_unlock(&pwm_lookup_lock);
 982
 983	if (!chosen)
 984		return ERR_PTR(-ENODEV);
 985
 986	chip = pwmchip_find_by_name(chosen->provider);
 987
 988	/*
 989	 * If the lookup entry specifies a module, load the module and retry
 990	 * the PWM chip lookup. This can be used to work around driver load
 991	 * ordering issues if driver's can't be made to properly support the
 992	 * deferred probe mechanism.
 993	 */
 994	if (!chip && chosen->module) {
 995		err = request_module(chosen->module);
 996		if (err == 0)
 997			chip = pwmchip_find_by_name(chosen->provider);
 998	}
 999
1000	if (!chip)
1001		return ERR_PTR(-EPROBE_DEFER);
1002
1003	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1004	if (IS_ERR(pwm))
1005		return pwm;
1006
1007	dl = pwm_device_link_add(dev, pwm);
1008	if (IS_ERR(dl)) {
1009		pwm_free(pwm);
1010		return ERR_CAST(dl);
1011	}
1012
1013	pwm->args.period = chosen->period;
1014	pwm->args.polarity = chosen->polarity;
1015
1016	return pwm;
1017}
1018EXPORT_SYMBOL_GPL(pwm_get);
1019
1020/**
1021 * pwm_put() - release a PWM device
1022 * @pwm: PWM device
1023 */
1024void pwm_put(struct pwm_device *pwm)
1025{
1026	if (!pwm)
1027		return;
1028
1029	mutex_lock(&pwm_lock);
1030
1031	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1032		pr_warn("PWM device already freed\n");
1033		goto out;
1034	}
1035
1036	if (pwm->chip->ops->free)
1037		pwm->chip->ops->free(pwm->chip, pwm);
1038
1039	pwm_set_chip_data(pwm, NULL);
1040	pwm->label = NULL;
1041
1042	module_put(pwm->chip->ops->owner);
1043out:
1044	mutex_unlock(&pwm_lock);
1045}
1046EXPORT_SYMBOL_GPL(pwm_put);
1047
1048static void devm_pwm_release(void *pwm)
1049{
1050	pwm_put(pwm);
1051}
1052
1053/**
1054 * devm_pwm_get() - resource managed pwm_get()
1055 * @dev: device for PWM consumer
1056 * @con_id: consumer name
1057 *
1058 * This function performs like pwm_get() but the acquired PWM device will
1059 * automatically be released on driver detach.
1060 *
1061 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1062 * error code on failure.
1063 */
1064struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1065{
1066	struct pwm_device *pwm;
1067	int ret;
1068
1069	pwm = pwm_get(dev, con_id);
1070	if (IS_ERR(pwm))
1071		return pwm;
1072
1073	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1074	if (ret)
1075		return ERR_PTR(ret);
1076
1077	return pwm;
1078}
1079EXPORT_SYMBOL_GPL(devm_pwm_get);
1080
1081/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1083 * @dev: device for PWM consumer
1084 * @fwnode: firmware node to get the PWM from
1085 * @con_id: consumer name
1086 *
1087 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1088 * acpi_pwm_get() for a detailed description.
1089 *
1090 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1091 * error code on failure.
1092 */
1093struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1094				       struct fwnode_handle *fwnode,
1095				       const char *con_id)
1096{
1097	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1098	int ret;
1099
1100	if (is_of_node(fwnode))
1101		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1102	else if (is_acpi_node(fwnode))
1103		pwm = acpi_pwm_get(fwnode);
1104	if (IS_ERR(pwm))
1105		return pwm;
1106
1107	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1108	if (ret)
1109		return ERR_PTR(ret);
1110
1111	return pwm;
1112}
1113EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114
1115#ifdef CONFIG_DEBUG_FS
1116static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1117{
1118	unsigned int i;
1119
1120	for (i = 0; i < chip->npwm; i++) {
1121		struct pwm_device *pwm = &chip->pwms[i];
1122		struct pwm_state state;
1123
1124		pwm_get_state(pwm, &state);
1125
1126		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1127
1128		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1129			seq_puts(s, " requested");
1130
1131		if (state.enabled)
1132			seq_puts(s, " enabled");
1133
1134		seq_printf(s, " period: %llu ns", state.period);
1135		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1136		seq_printf(s, " polarity: %s",
1137			   state.polarity ? "inverse" : "normal");
1138
1139		if (state.usage_power)
1140			seq_puts(s, " usage_power");
1141
1142		seq_puts(s, "\n");
1143	}
1144}
1145
1146static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1147{
1148	mutex_lock(&pwm_lock);
1149	s->private = "";
1150
1151	return seq_list_start(&pwm_chips, *pos);
1152}
1153
1154static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1155{
1156	s->private = "\n";
1157
1158	return seq_list_next(v, &pwm_chips, pos);
1159}
1160
1161static void pwm_seq_stop(struct seq_file *s, void *v)
1162{
1163	mutex_unlock(&pwm_lock);
1164}
1165
1166static int pwm_seq_show(struct seq_file *s, void *v)
1167{
1168	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1169
1170	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1171		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1172		   dev_name(chip->dev), chip->npwm,
1173		   (chip->npwm != 1) ? "s" : "");
1174
1175	pwm_dbg_show(chip, s);
1176
1177	return 0;
1178}
1179
1180static const struct seq_operations pwm_debugfs_sops = {
1181	.start = pwm_seq_start,
1182	.next = pwm_seq_next,
1183	.stop = pwm_seq_stop,
1184	.show = pwm_seq_show,
1185};
1186
1187DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1188
1189static int __init pwm_debugfs_init(void)
1190{
1191	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
 
1192
1193	return 0;
1194}
1195subsys_initcall(pwm_debugfs_init);
1196#endif /* CONFIG_DEBUG_FS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
 
 
  30static DEFINE_MUTEX(pwm_lock);
 
  31static LIST_HEAD(pwm_chips);
  32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  33static RADIX_TREE(pwm_tree, GFP_KERNEL);
  34
  35static struct pwm_device *pwm_to_device(unsigned int pwm)
  36{
  37	return radix_tree_lookup(&pwm_tree, pwm);
  38}
  39
 
  40static int alloc_pwms(unsigned int count)
  41{
  42	unsigned int start;
  43
  44	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
  45					   count, 0);
  46
  47	if (start + count > MAX_PWMS)
  48		return -ENOSPC;
  49
 
 
  50	return start;
  51}
  52
 
  53static void free_pwms(struct pwm_chip *chip)
  54{
  55	unsigned int i;
  56
  57	for (i = 0; i < chip->npwm; i++) {
  58		struct pwm_device *pwm = &chip->pwms[i];
  59
  60		radix_tree_delete(&pwm_tree, pwm->pwm);
  61	}
  62
  63	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  64
  65	kfree(chip->pwms);
  66	chip->pwms = NULL;
  67}
  68
  69static struct pwm_chip *pwmchip_find_by_name(const char *name)
  70{
  71	struct pwm_chip *chip;
  72
  73	if (!name)
  74		return NULL;
  75
  76	mutex_lock(&pwm_lock);
  77
  78	list_for_each_entry(chip, &pwm_chips, list) {
  79		const char *chip_name = dev_name(chip->dev);
  80
  81		if (chip_name && strcmp(chip_name, name) == 0) {
  82			mutex_unlock(&pwm_lock);
  83			return chip;
  84		}
  85	}
  86
  87	mutex_unlock(&pwm_lock);
  88
  89	return NULL;
  90}
  91
  92static int pwm_device_request(struct pwm_device *pwm, const char *label)
  93{
  94	int err;
  95
  96	if (test_bit(PWMF_REQUESTED, &pwm->flags))
  97		return -EBUSY;
  98
  99	if (!try_module_get(pwm->chip->ops->owner))
 100		return -ENODEV;
 101
 102	if (pwm->chip->ops->request) {
 103		err = pwm->chip->ops->request(pwm->chip, pwm);
 104		if (err) {
 105			module_put(pwm->chip->ops->owner);
 106			return err;
 107		}
 108	}
 109
 110	if (pwm->chip->ops->get_state) {
 111		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
 112		trace_pwm_get(pwm, &pwm->state);
 
 
 
 
 
 113
 114		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 115			pwm->last = pwm->state;
 116	}
 117
 118	set_bit(PWMF_REQUESTED, &pwm->flags);
 119	pwm->label = label;
 120
 121	return 0;
 122}
 123
 124struct pwm_device *
 125of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 126{
 127	struct pwm_device *pwm;
 128
 129	if (pc->of_pwm_n_cells < 2)
 130		return ERR_PTR(-EINVAL);
 131
 132	/* flags in the third cell are optional */
 133	if (args->args_count < 2)
 134		return ERR_PTR(-EINVAL);
 135
 136	if (args->args[0] >= pc->npwm)
 137		return ERR_PTR(-EINVAL);
 138
 139	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140	if (IS_ERR(pwm))
 141		return pwm;
 142
 143	pwm->args.period = args->args[1];
 144	pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146	if (pc->of_pwm_n_cells >= 3) {
 147		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 148			pwm->args.polarity = PWM_POLARITY_INVERSED;
 149	}
 150
 151	return pwm;
 152}
 153EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155static void of_pwmchip_add(struct pwm_chip *chip)
 156{
 157	if (!chip->dev || !chip->dev->of_node)
 158		return;
 159
 160	if (!chip->of_xlate) {
 161		u32 pwm_cells;
 162
 163		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 164					 &pwm_cells))
 165			pwm_cells = 2;
 166
 167		chip->of_xlate = of_pwm_xlate_with_flags;
 168		chip->of_pwm_n_cells = pwm_cells;
 169	}
 170
 171	of_node_get(chip->dev->of_node);
 172}
 173
 174static void of_pwmchip_remove(struct pwm_chip *chip)
 175{
 176	if (chip->dev)
 177		of_node_put(chip->dev->of_node);
 178}
 179
 180/**
 181 * pwm_set_chip_data() - set private chip data for a PWM
 182 * @pwm: PWM device
 183 * @data: pointer to chip-specific data
 184 *
 185 * Returns: 0 on success or a negative error code on failure.
 186 */
 187int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 188{
 189	if (!pwm)
 190		return -EINVAL;
 191
 192	pwm->chip_data = data;
 193
 194	return 0;
 195}
 196EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 197
 198/**
 199 * pwm_get_chip_data() - get private chip data for a PWM
 200 * @pwm: PWM device
 201 *
 202 * Returns: A pointer to the chip-private data for the PWM device.
 203 */
 204void *pwm_get_chip_data(struct pwm_device *pwm)
 205{
 206	return pwm ? pwm->chip_data : NULL;
 207}
 208EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 209
 210static bool pwm_ops_check(const struct pwm_chip *chip)
 211{
 212
 213	const struct pwm_ops *ops = chip->ops;
 214
 215	/* driver supports legacy, non-atomic operation */
 216	if (ops->config && ops->enable && ops->disable) {
 217		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 218			dev_warn(chip->dev,
 219				 "Driver needs updating to atomic API\n");
 220
 221		return true;
 222	}
 223
 224	if (!ops->apply)
 225		return false;
 226
 227	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 228		dev_warn(chip->dev,
 229			 "Please implement the .get_state() callback\n");
 230
 231	return true;
 232}
 233
 234/**
 235 * pwmchip_add() - register a new PWM chip
 236 * @chip: the PWM chip to add
 237 *
 238 * Register a new PWM chip.
 239 *
 240 * Returns: 0 on success or a negative error code on failure.
 241 */
 242int pwmchip_add(struct pwm_chip *chip)
 243{
 244	struct pwm_device *pwm;
 245	unsigned int i;
 246	int ret;
 247
 248	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 249		return -EINVAL;
 250
 251	if (!pwm_ops_check(chip))
 252		return -EINVAL;
 253
 
 
 
 
 254	mutex_lock(&pwm_lock);
 255
 256	ret = alloc_pwms(chip->npwm);
 257	if (ret < 0)
 258		goto out;
 
 
 
 259
 260	chip->base = ret;
 261
 262	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 263	if (!chip->pwms) {
 264		ret = -ENOMEM;
 265		goto out;
 266	}
 267
 268	for (i = 0; i < chip->npwm; i++) {
 269		pwm = &chip->pwms[i];
 270
 271		pwm->chip = chip;
 272		pwm->pwm = chip->base + i;
 273		pwm->hwpwm = i;
 274
 275		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 276	}
 277
 278	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 279
 280	INIT_LIST_HEAD(&chip->list);
 281	list_add(&chip->list, &pwm_chips);
 282
 283	ret = 0;
 284
 285	if (IS_ENABLED(CONFIG_OF))
 286		of_pwmchip_add(chip);
 287
 288out:
 289	mutex_unlock(&pwm_lock);
 290
 291	if (!ret)
 292		pwmchip_sysfs_export(chip);
 293
 294	return ret;
 295}
 296EXPORT_SYMBOL_GPL(pwmchip_add);
 297
 298/**
 299 * pwmchip_remove() - remove a PWM chip
 300 * @chip: the PWM chip to remove
 301 *
 302 * Removes a PWM chip. This function may return busy if the PWM chip provides
 303 * a PWM device that is still requested.
 304 *
 305 * Returns: 0 on success or a negative error code on failure.
 306 */
 307int pwmchip_remove(struct pwm_chip *chip)
 308{
 309	pwmchip_sysfs_unexport(chip);
 310
 311	mutex_lock(&pwm_lock);
 312
 313	list_del_init(&chip->list);
 314
 315	if (IS_ENABLED(CONFIG_OF))
 316		of_pwmchip_remove(chip);
 317
 318	free_pwms(chip);
 319
 320	mutex_unlock(&pwm_lock);
 321
 322	return 0;
 323}
 324EXPORT_SYMBOL_GPL(pwmchip_remove);
 325
 326static void devm_pwmchip_remove(void *data)
 327{
 328	struct pwm_chip *chip = data;
 329
 330	pwmchip_remove(chip);
 331}
 332
 333int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 334{
 335	int ret;
 336
 337	ret = pwmchip_add(chip);
 338	if (ret)
 339		return ret;
 340
 341	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 342}
 343EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 344
 345/**
 346 * pwm_request() - request a PWM device
 347 * @pwm: global PWM device index
 348 * @label: PWM device label
 349 *
 350 * This function is deprecated, use pwm_get() instead.
 351 *
 352 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 353 * failure.
 354 */
 355struct pwm_device *pwm_request(int pwm, const char *label)
 356{
 357	struct pwm_device *dev;
 358	int err;
 359
 360	if (pwm < 0 || pwm >= MAX_PWMS)
 361		return ERR_PTR(-EINVAL);
 362
 363	mutex_lock(&pwm_lock);
 364
 365	dev = pwm_to_device(pwm);
 366	if (!dev) {
 367		dev = ERR_PTR(-EPROBE_DEFER);
 368		goto out;
 369	}
 370
 371	err = pwm_device_request(dev, label);
 372	if (err < 0)
 373		dev = ERR_PTR(err);
 374
 375out:
 376	mutex_unlock(&pwm_lock);
 377
 378	return dev;
 379}
 380EXPORT_SYMBOL_GPL(pwm_request);
 381
 382/**
 383 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 384 * @chip: PWM chip
 385 * @index: per-chip index of the PWM to request
 386 * @label: a literal description string of this PWM
 387 *
 388 * Returns: A pointer to the PWM device at the given index of the given PWM
 389 * chip. A negative error code is returned if the index is not valid for the
 390 * specified PWM chip or if the PWM device cannot be requested.
 391 */
 392struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 393					 unsigned int index,
 394					 const char *label)
 395{
 396	struct pwm_device *pwm;
 397	int err;
 398
 399	if (!chip || index >= chip->npwm)
 400		return ERR_PTR(-EINVAL);
 401
 402	mutex_lock(&pwm_lock);
 403	pwm = &chip->pwms[index];
 404
 405	err = pwm_device_request(pwm, label);
 406	if (err < 0)
 407		pwm = ERR_PTR(err);
 408
 409	mutex_unlock(&pwm_lock);
 410	return pwm;
 411}
 412EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 413
 414/**
 415 * pwm_free() - free a PWM device
 416 * @pwm: PWM device
 417 *
 418 * This function is deprecated, use pwm_put() instead.
 419 */
 420void pwm_free(struct pwm_device *pwm)
 421{
 422	pwm_put(pwm);
 423}
 424EXPORT_SYMBOL_GPL(pwm_free);
 425
 426static void pwm_apply_state_debug(struct pwm_device *pwm,
 427				  const struct pwm_state *state)
 428{
 429	struct pwm_state *last = &pwm->last;
 430	struct pwm_chip *chip = pwm->chip;
 431	struct pwm_state s1, s2;
 432	int err;
 433
 434	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 435		return;
 436
 437	/* No reasonable diagnosis possible without .get_state() */
 438	if (!chip->ops->get_state)
 439		return;
 440
 441	/*
 442	 * *state was just applied. Read out the hardware state and do some
 443	 * checks.
 444	 */
 445
 446	chip->ops->get_state(chip, pwm, &s1);
 447	trace_pwm_get(pwm, &s1);
 
 
 
 448
 449	/*
 450	 * The lowlevel driver either ignored .polarity (which is a bug) or as
 451	 * best effort inverted .polarity and fixed .duty_cycle respectively.
 452	 * Undo this inversion and fixup for further tests.
 453	 */
 454	if (s1.enabled && s1.polarity != state->polarity) {
 455		s2.polarity = state->polarity;
 456		s2.duty_cycle = s1.period - s1.duty_cycle;
 457		s2.period = s1.period;
 458		s2.enabled = s1.enabled;
 459	} else {
 460		s2 = s1;
 461	}
 462
 463	if (s2.polarity != state->polarity &&
 464	    state->duty_cycle < state->period)
 465		dev_warn(chip->dev, ".apply ignored .polarity\n");
 466
 467	if (state->enabled &&
 468	    last->polarity == state->polarity &&
 469	    last->period > s2.period &&
 470	    last->period <= state->period)
 471		dev_warn(chip->dev,
 472			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 473			 state->period, s2.period, last->period);
 474
 475	if (state->enabled && state->period < s2.period)
 476		dev_warn(chip->dev,
 477			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 478			 state->period, s2.period);
 479
 480	if (state->enabled &&
 481	    last->polarity == state->polarity &&
 482	    last->period == s2.period &&
 483	    last->duty_cycle > s2.duty_cycle &&
 484	    last->duty_cycle <= state->duty_cycle)
 485		dev_warn(chip->dev,
 486			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 487			 state->duty_cycle, state->period,
 488			 s2.duty_cycle, s2.period,
 489			 last->duty_cycle, last->period);
 490
 491	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 492		dev_warn(chip->dev,
 493			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 494			 state->duty_cycle, state->period,
 495			 s2.duty_cycle, s2.period);
 496
 497	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 498		dev_warn(chip->dev,
 499			 "requested disabled, but yielded enabled with duty > 0\n");
 500
 501	/* reapply the state that the driver reported being configured. */
 502	err = chip->ops->apply(chip, pwm, &s1);
 
 503	if (err) {
 504		*last = s1;
 505		dev_err(chip->dev, "failed to reapply current setting\n");
 506		return;
 507	}
 508
 509	trace_pwm_apply(pwm, &s1);
 510
 511	chip->ops->get_state(chip, pwm, last);
 512	trace_pwm_get(pwm, last);
 513
 514	/* reapplication of the current state should give an exact match */
 515	if (s1.enabled != last->enabled ||
 516	    s1.polarity != last->polarity ||
 517	    (s1.enabled && s1.period != last->period) ||
 518	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 519		dev_err(chip->dev,
 520			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 521			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 522			last->enabled, last->polarity, last->duty_cycle,
 523			last->period);
 524	}
 525}
 526
 527/**
 528 * pwm_apply_state() - atomically apply a new state to a PWM device
 529 * @pwm: PWM device
 530 * @state: new state to apply
 531 */
 532int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 533{
 534	struct pwm_chip *chip;
 535	int err;
 536
 
 
 
 
 
 
 
 
 
 537	if (!pwm || !state || !state->period ||
 538	    state->duty_cycle > state->period)
 539		return -EINVAL;
 540
 541	chip = pwm->chip;
 542
 543	if (state->period == pwm->state.period &&
 544	    state->duty_cycle == pwm->state.duty_cycle &&
 545	    state->polarity == pwm->state.polarity &&
 546	    state->enabled == pwm->state.enabled &&
 547	    state->usage_power == pwm->state.usage_power)
 548		return 0;
 549
 550	if (chip->ops->apply) {
 551		err = chip->ops->apply(chip, pwm, state);
 552		if (err)
 553			return err;
 554
 555		trace_pwm_apply(pwm, state);
 556
 557		pwm->state = *state;
 558
 559		/*
 560		 * only do this after pwm->state was applied as some
 561		 * implementations of .get_state depend on this
 562		 */
 563		pwm_apply_state_debug(pwm, state);
 564	} else {
 565		/*
 566		 * FIXME: restore the initial state in case of error.
 567		 */
 568		if (state->polarity != pwm->state.polarity) {
 569			if (!chip->ops->set_polarity)
 570				return -EINVAL;
 571
 572			/*
 573			 * Changing the polarity of a running PWM is
 574			 * only allowed when the PWM driver implements
 575			 * ->apply().
 576			 */
 577			if (pwm->state.enabled) {
 578				chip->ops->disable(chip, pwm);
 579				pwm->state.enabled = false;
 580			}
 581
 582			err = chip->ops->set_polarity(chip, pwm,
 583						      state->polarity);
 584			if (err)
 585				return err;
 586
 587			pwm->state.polarity = state->polarity;
 588		}
 589
 590		if (state->period != pwm->state.period ||
 591		    state->duty_cycle != pwm->state.duty_cycle) {
 592			err = chip->ops->config(pwm->chip, pwm,
 593						state->duty_cycle,
 594						state->period);
 595			if (err)
 596				return err;
 597
 598			pwm->state.duty_cycle = state->duty_cycle;
 599			pwm->state.period = state->period;
 600		}
 601
 602		if (state->enabled != pwm->state.enabled) {
 603			if (state->enabled) {
 604				err = chip->ops->enable(chip, pwm);
 605				if (err)
 606					return err;
 607			} else {
 608				chip->ops->disable(chip, pwm);
 609			}
 610
 611			pwm->state.enabled = state->enabled;
 612		}
 613	}
 614
 615	return 0;
 616}
 617EXPORT_SYMBOL_GPL(pwm_apply_state);
 618
 619/**
 620 * pwm_capture() - capture and report a PWM signal
 621 * @pwm: PWM device
 622 * @result: structure to fill with capture result
 623 * @timeout: time to wait, in milliseconds, before giving up on capture
 624 *
 625 * Returns: 0 on success or a negative error code on failure.
 626 */
 627int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 628		unsigned long timeout)
 629{
 630	int err;
 631
 632	if (!pwm || !pwm->chip->ops)
 633		return -EINVAL;
 634
 635	if (!pwm->chip->ops->capture)
 636		return -ENOSYS;
 637
 638	mutex_lock(&pwm_lock);
 639	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 640	mutex_unlock(&pwm_lock);
 641
 642	return err;
 643}
 644EXPORT_SYMBOL_GPL(pwm_capture);
 645
 646/**
 647 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 648 * @pwm: PWM device
 649 *
 650 * This function will adjust the PWM config to the PWM arguments provided
 651 * by the DT or PWM lookup table. This is particularly useful to adapt
 652 * the bootloader config to the Linux one.
 653 */
 654int pwm_adjust_config(struct pwm_device *pwm)
 655{
 656	struct pwm_state state;
 657	struct pwm_args pargs;
 658
 659	pwm_get_args(pwm, &pargs);
 660	pwm_get_state(pwm, &state);
 661
 662	/*
 663	 * If the current period is zero it means that either the PWM driver
 664	 * does not support initial state retrieval or the PWM has not yet
 665	 * been configured.
 666	 *
 667	 * In either case, we setup the new period and polarity, and assign a
 668	 * duty cycle of 0.
 669	 */
 670	if (!state.period) {
 671		state.duty_cycle = 0;
 672		state.period = pargs.period;
 673		state.polarity = pargs.polarity;
 674
 675		return pwm_apply_state(pwm, &state);
 676	}
 677
 678	/*
 679	 * Adjust the PWM duty cycle/period based on the period value provided
 680	 * in PWM args.
 681	 */
 682	if (pargs.period != state.period) {
 683		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 684
 685		do_div(dutycycle, state.period);
 686		state.duty_cycle = dutycycle;
 687		state.period = pargs.period;
 688	}
 689
 690	/*
 691	 * If the polarity changed, we should also change the duty cycle.
 692	 */
 693	if (pargs.polarity != state.polarity) {
 694		state.polarity = pargs.polarity;
 695		state.duty_cycle = state.period - state.duty_cycle;
 696	}
 697
 698	return pwm_apply_state(pwm, &state);
 699}
 700EXPORT_SYMBOL_GPL(pwm_adjust_config);
 701
 702static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 703{
 704	struct pwm_chip *chip;
 705
 706	mutex_lock(&pwm_lock);
 707
 708	list_for_each_entry(chip, &pwm_chips, list)
 709		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
 710			mutex_unlock(&pwm_lock);
 711			return chip;
 712		}
 713
 714	mutex_unlock(&pwm_lock);
 715
 716	return ERR_PTR(-EPROBE_DEFER);
 717}
 718
 719static struct device_link *pwm_device_link_add(struct device *dev,
 720					       struct pwm_device *pwm)
 721{
 722	struct device_link *dl;
 723
 724	if (!dev) {
 725		/*
 726		 * No device for the PWM consumer has been provided. It may
 727		 * impact the PM sequence ordering: the PWM supplier may get
 728		 * suspended before the consumer.
 729		 */
 730		dev_warn(pwm->chip->dev,
 731			 "No consumer device specified to create a link to\n");
 732		return NULL;
 733	}
 734
 735	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 736	if (!dl) {
 737		dev_err(dev, "failed to create device link to %s\n",
 738			dev_name(pwm->chip->dev));
 739		return ERR_PTR(-EINVAL);
 740	}
 741
 742	return dl;
 743}
 744
 745/**
 746 * of_pwm_get() - request a PWM via the PWM framework
 747 * @dev: device for PWM consumer
 748 * @np: device node to get the PWM from
 749 * @con_id: consumer name
 750 *
 751 * Returns the PWM device parsed from the phandle and index specified in the
 752 * "pwms" property of a device tree node or a negative error-code on failure.
 753 * Values parsed from the device tree are stored in the returned PWM device
 754 * object.
 755 *
 756 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 757 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 758 * lookup of the PWM index. This also means that the "pwm-names" property
 759 * becomes mandatory for devices that look up the PWM device via the con_id
 760 * parameter.
 761 *
 762 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 763 * error code on failure.
 764 */
 765struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 766			      const char *con_id)
 767{
 768	struct pwm_device *pwm = NULL;
 769	struct of_phandle_args args;
 770	struct device_link *dl;
 771	struct pwm_chip *pc;
 772	int index = 0;
 773	int err;
 774
 775	if (con_id) {
 776		index = of_property_match_string(np, "pwm-names", con_id);
 777		if (index < 0)
 778			return ERR_PTR(index);
 779	}
 780
 781	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 782					 &args);
 783	if (err) {
 784		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 785		return ERR_PTR(err);
 786	}
 787
 788	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 789	if (IS_ERR(pc)) {
 790		if (PTR_ERR(pc) != -EPROBE_DEFER)
 791			pr_err("%s(): PWM chip not found\n", __func__);
 792
 793		pwm = ERR_CAST(pc);
 794		goto put;
 795	}
 796
 797	pwm = pc->of_xlate(pc, &args);
 798	if (IS_ERR(pwm))
 799		goto put;
 800
 801	dl = pwm_device_link_add(dev, pwm);
 802	if (IS_ERR(dl)) {
 803		/* of_xlate ended up calling pwm_request_from_chip() */
 804		pwm_free(pwm);
 805		pwm = ERR_CAST(dl);
 806		goto put;
 807	}
 808
 809	/*
 810	 * If a consumer name was not given, try to look it up from the
 811	 * "pwm-names" property if it exists. Otherwise use the name of
 812	 * the user device node.
 813	 */
 814	if (!con_id) {
 815		err = of_property_read_string_index(np, "pwm-names", index,
 816						    &con_id);
 817		if (err < 0)
 818			con_id = np->name;
 819	}
 820
 821	pwm->label = con_id;
 822
 823put:
 824	of_node_put(args.np);
 825
 826	return pwm;
 827}
 828EXPORT_SYMBOL_GPL(of_pwm_get);
 829
 830/**
 831 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 832 * @fwnode: firmware node to get the "pwms" property from
 833 *
 834 * Returns the PWM device parsed from the fwnode and index specified in the
 835 * "pwms" property or a negative error-code on failure.
 836 * Values parsed from the device tree are stored in the returned PWM device
 837 * object.
 838 *
 839 * This is analogous to of_pwm_get() except con_id is not yet supported.
 840 * ACPI entries must look like
 841 * Package () {"pwms", Package ()
 842 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 843 *
 844 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 845 * error code on failure.
 846 */
 847static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 848{
 849	struct pwm_device *pwm;
 850	struct fwnode_reference_args args;
 851	struct pwm_chip *chip;
 852	int ret;
 853
 854	memset(&args, 0, sizeof(args));
 855
 856	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 857	if (ret < 0)
 858		return ERR_PTR(ret);
 859
 860	if (args.nargs < 2)
 861		return ERR_PTR(-EPROTO);
 862
 863	chip = fwnode_to_pwmchip(args.fwnode);
 864	if (IS_ERR(chip))
 865		return ERR_CAST(chip);
 866
 867	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 868	if (IS_ERR(pwm))
 869		return pwm;
 870
 871	pwm->args.period = args.args[1];
 872	pwm->args.polarity = PWM_POLARITY_NORMAL;
 873
 874	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 875		pwm->args.polarity = PWM_POLARITY_INVERSED;
 876
 877	return pwm;
 878}
 879
 880/**
 881 * pwm_add_table() - register PWM device consumers
 882 * @table: array of consumers to register
 883 * @num: number of consumers in table
 884 */
 885void pwm_add_table(struct pwm_lookup *table, size_t num)
 886{
 887	mutex_lock(&pwm_lookup_lock);
 888
 889	while (num--) {
 890		list_add_tail(&table->list, &pwm_lookup_list);
 891		table++;
 892	}
 893
 894	mutex_unlock(&pwm_lookup_lock);
 895}
 896
 897/**
 898 * pwm_remove_table() - unregister PWM device consumers
 899 * @table: array of consumers to unregister
 900 * @num: number of consumers in table
 901 */
 902void pwm_remove_table(struct pwm_lookup *table, size_t num)
 903{
 904	mutex_lock(&pwm_lookup_lock);
 905
 906	while (num--) {
 907		list_del(&table->list);
 908		table++;
 909	}
 910
 911	mutex_unlock(&pwm_lookup_lock);
 912}
 913
 914/**
 915 * pwm_get() - look up and request a PWM device
 916 * @dev: device for PWM consumer
 917 * @con_id: consumer name
 918 *
 919 * Lookup is first attempted using DT. If the device was not instantiated from
 920 * a device tree, a PWM chip and a relative index is looked up via a table
 921 * supplied by board setup code (see pwm_add_table()).
 922 *
 923 * Once a PWM chip has been found the specified PWM device will be requested
 924 * and is ready to be used.
 925 *
 926 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 927 * error code on failure.
 928 */
 929struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 930{
 931	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 932	const char *dev_id = dev ? dev_name(dev) : NULL;
 933	struct pwm_device *pwm;
 934	struct pwm_chip *chip;
 935	struct device_link *dl;
 936	unsigned int best = 0;
 937	struct pwm_lookup *p, *chosen = NULL;
 938	unsigned int match;
 939	int err;
 940
 941	/* look up via DT first */
 942	if (is_of_node(fwnode))
 943		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 944
 945	/* then lookup via ACPI */
 946	if (is_acpi_node(fwnode)) {
 947		pwm = acpi_pwm_get(fwnode);
 948		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 949			return pwm;
 950	}
 951
 952	/*
 953	 * We look up the provider in the static table typically provided by
 954	 * board setup code. We first try to lookup the consumer device by
 955	 * name. If the consumer device was passed in as NULL or if no match
 956	 * was found, we try to find the consumer by directly looking it up
 957	 * by name.
 958	 *
 959	 * If a match is found, the provider PWM chip is looked up by name
 960	 * and a PWM device is requested using the PWM device per-chip index.
 961	 *
 962	 * The lookup algorithm was shamelessly taken from the clock
 963	 * framework:
 964	 *
 965	 * We do slightly fuzzy matching here:
 966	 *  An entry with a NULL ID is assumed to be a wildcard.
 967	 *  If an entry has a device ID, it must match
 968	 *  If an entry has a connection ID, it must match
 969	 * Then we take the most specific entry - with the following order
 970	 * of precedence: dev+con > dev only > con only.
 971	 */
 972	mutex_lock(&pwm_lookup_lock);
 973
 974	list_for_each_entry(p, &pwm_lookup_list, list) {
 975		match = 0;
 976
 977		if (p->dev_id) {
 978			if (!dev_id || strcmp(p->dev_id, dev_id))
 979				continue;
 980
 981			match += 2;
 982		}
 983
 984		if (p->con_id) {
 985			if (!con_id || strcmp(p->con_id, con_id))
 986				continue;
 987
 988			match += 1;
 989		}
 990
 991		if (match > best) {
 992			chosen = p;
 993
 994			if (match != 3)
 995				best = match;
 996			else
 997				break;
 998		}
 999	}
1000
1001	mutex_unlock(&pwm_lookup_lock);
1002
1003	if (!chosen)
1004		return ERR_PTR(-ENODEV);
1005
1006	chip = pwmchip_find_by_name(chosen->provider);
1007
1008	/*
1009	 * If the lookup entry specifies a module, load the module and retry
1010	 * the PWM chip lookup. This can be used to work around driver load
1011	 * ordering issues if driver's can't be made to properly support the
1012	 * deferred probe mechanism.
1013	 */
1014	if (!chip && chosen->module) {
1015		err = request_module(chosen->module);
1016		if (err == 0)
1017			chip = pwmchip_find_by_name(chosen->provider);
1018	}
1019
1020	if (!chip)
1021		return ERR_PTR(-EPROBE_DEFER);
1022
1023	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1024	if (IS_ERR(pwm))
1025		return pwm;
1026
1027	dl = pwm_device_link_add(dev, pwm);
1028	if (IS_ERR(dl)) {
1029		pwm_free(pwm);
1030		return ERR_CAST(dl);
1031	}
1032
1033	pwm->args.period = chosen->period;
1034	pwm->args.polarity = chosen->polarity;
1035
1036	return pwm;
1037}
1038EXPORT_SYMBOL_GPL(pwm_get);
1039
1040/**
1041 * pwm_put() - release a PWM device
1042 * @pwm: PWM device
1043 */
1044void pwm_put(struct pwm_device *pwm)
1045{
1046	if (!pwm)
1047		return;
1048
1049	mutex_lock(&pwm_lock);
1050
1051	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1052		pr_warn("PWM device already freed\n");
1053		goto out;
1054	}
1055
1056	if (pwm->chip->ops->free)
1057		pwm->chip->ops->free(pwm->chip, pwm);
1058
1059	pwm_set_chip_data(pwm, NULL);
1060	pwm->label = NULL;
1061
1062	module_put(pwm->chip->ops->owner);
1063out:
1064	mutex_unlock(&pwm_lock);
1065}
1066EXPORT_SYMBOL_GPL(pwm_put);
1067
1068static void devm_pwm_release(void *pwm)
1069{
1070	pwm_put(pwm);
1071}
1072
1073/**
1074 * devm_pwm_get() - resource managed pwm_get()
1075 * @dev: device for PWM consumer
1076 * @con_id: consumer name
1077 *
1078 * This function performs like pwm_get() but the acquired PWM device will
1079 * automatically be released on driver detach.
1080 *
1081 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1082 * error code on failure.
1083 */
1084struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1085{
1086	struct pwm_device *pwm;
1087	int ret;
1088
1089	pwm = pwm_get(dev, con_id);
1090	if (IS_ERR(pwm))
1091		return pwm;
1092
1093	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1094	if (ret)
1095		return ERR_PTR(ret);
1096
1097	return pwm;
1098}
1099EXPORT_SYMBOL_GPL(devm_pwm_get);
1100
1101/**
1102 * devm_of_pwm_get() - resource managed of_pwm_get()
1103 * @dev: device for PWM consumer
1104 * @np: device node to get the PWM from
1105 * @con_id: consumer name
1106 *
1107 * This function performs like of_pwm_get() but the acquired PWM device will
1108 * automatically be released on driver detach.
1109 *
1110 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1111 * error code on failure.
1112 */
1113struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1114				   const char *con_id)
1115{
1116	struct pwm_device *pwm;
1117	int ret;
1118
1119	pwm = of_pwm_get(dev, np, con_id);
1120	if (IS_ERR(pwm))
1121		return pwm;
1122
1123	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1124	if (ret)
1125		return ERR_PTR(ret);
1126
1127	return pwm;
1128}
1129EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1130
1131/**
1132 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1133 * @dev: device for PWM consumer
1134 * @fwnode: firmware node to get the PWM from
1135 * @con_id: consumer name
1136 *
1137 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1138 * acpi_pwm_get() for a detailed description.
1139 *
1140 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1141 * error code on failure.
1142 */
1143struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1144				       struct fwnode_handle *fwnode,
1145				       const char *con_id)
1146{
1147	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1148	int ret;
1149
1150	if (is_of_node(fwnode))
1151		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1152	else if (is_acpi_node(fwnode))
1153		pwm = acpi_pwm_get(fwnode);
1154	if (IS_ERR(pwm))
1155		return pwm;
1156
1157	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1158	if (ret)
1159		return ERR_PTR(ret);
1160
1161	return pwm;
1162}
1163EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1164
1165#ifdef CONFIG_DEBUG_FS
1166static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1167{
1168	unsigned int i;
1169
1170	for (i = 0; i < chip->npwm; i++) {
1171		struct pwm_device *pwm = &chip->pwms[i];
1172		struct pwm_state state;
1173
1174		pwm_get_state(pwm, &state);
1175
1176		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1177
1178		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1179			seq_puts(s, " requested");
1180
1181		if (state.enabled)
1182			seq_puts(s, " enabled");
1183
1184		seq_printf(s, " period: %llu ns", state.period);
1185		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1186		seq_printf(s, " polarity: %s",
1187			   state.polarity ? "inverse" : "normal");
1188
1189		if (state.usage_power)
1190			seq_puts(s, " usage_power");
1191
1192		seq_puts(s, "\n");
1193	}
1194}
1195
1196static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1197{
1198	mutex_lock(&pwm_lock);
1199	s->private = "";
1200
1201	return seq_list_start(&pwm_chips, *pos);
1202}
1203
1204static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1205{
1206	s->private = "\n";
1207
1208	return seq_list_next(v, &pwm_chips, pos);
1209}
1210
1211static void pwm_seq_stop(struct seq_file *s, void *v)
1212{
1213	mutex_unlock(&pwm_lock);
1214}
1215
1216static int pwm_seq_show(struct seq_file *s, void *v)
1217{
1218	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1219
1220	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1221		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1222		   dev_name(chip->dev), chip->npwm,
1223		   (chip->npwm != 1) ? "s" : "");
1224
1225	pwm_dbg_show(chip, s);
1226
1227	return 0;
1228}
1229
1230static const struct seq_operations pwm_debugfs_sops = {
1231	.start = pwm_seq_start,
1232	.next = pwm_seq_next,
1233	.stop = pwm_seq_stop,
1234	.show = pwm_seq_show,
1235};
1236
1237DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1238
1239static int __init pwm_debugfs_init(void)
1240{
1241	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1242			    &pwm_debugfs_fops);
1243
1244	return 0;
1245}
1246subsys_initcall(pwm_debugfs_init);
1247#endif /* CONFIG_DEBUG_FS */