Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * AppliedMicro X-Gene Multi-purpose PHY driver
   4 *
   5 * Copyright (c) 2014, Applied Micro Circuits Corporation
   6 * Author: Loc Ho <lho@apm.com>
   7 *         Tuan Phan <tphan@apm.com>
   8 *         Suman Tripathi <stripathi@apm.com>
   9 *
  10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
  11 * The first PLL clock macro is used for internal reference clock. The second
  12 * PLL clock macro is used to generate the clock for the PHY. This driver
  13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
  14 * operate according to the mode of operation. The first PLL CMU is only
  15 * required if internal clock is enabled.
  16 *
  17 * Logical Layer Out Of HW module units:
  18 *
  19 * -----------------
  20 * | Internal      |    |------|
  21 * | Ref PLL CMU   |----|      |     -------------    ---------
  22 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
  23 *                      |      |     |           |    ---------
  24 * External Clock ------|      |     -------------
  25 *                      |------|
  26 *
  27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
  28 * indirectly from the SDS offset at 0x2000. It is only required for
  29 * internal reference clock.
  30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
  31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
  32 *
  33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
  34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
  35 * it is located outside the PHY IP. This is the case for the PHY located
  36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
  37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
  38 *
  39 * Currently, this driver only supports Gen3 SATA mode with external clock.
  40 */
  41#include <linux/module.h>
  42#include <linux/platform_device.h>
  43#include <linux/io.h>
  44#include <linux/delay.h>
  45#include <linux/phy/phy.h>
  46#include <linux/clk.h>
  47
  48/* Max 2 lanes per a PHY unit */
  49#define MAX_LANE			2
  50
  51/* Register offset inside the PHY */
  52#define SERDES_PLL_INDIRECT_OFFSET	0x0000
  53#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
  54#define SERDES_INDIRECT_OFFSET		0x0400
  55#define SERDES_LANE_STRIDE		0x0200
  56
  57/* Some default Serdes parameters */
  58#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
  59#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
  60#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
  61#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
  62#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
  63#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
  64#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
  65#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
  66
  67#define SATA_SPD_SEL_GEN3		0x7
  68#define SATA_SPD_SEL_GEN2		0x3
  69#define SATA_SPD_SEL_GEN1		0x1
  70
  71#define SSC_DISABLE			0
  72#define SSC_ENABLE			1
  73
  74#define FBDIV_VAL_50M			0x77
  75#define REFDIV_VAL_50M			0x1
  76#define FBDIV_VAL_100M			0x3B
  77#define REFDIV_VAL_100M			0x0
  78
  79/* SATA Clock/Reset CSR */
  80#define SATACLKENREG			0x00000000
  81#define  SATA0_CORE_CLKEN		0x00000002
  82#define  SATA1_CORE_CLKEN		0x00000004
  83#define SATASRESETREG			0x00000004
  84#define  SATA_MEM_RESET_MASK		0x00000020
  85#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
  86#define  SATA_SDS_RESET_MASK		0x00000004
  87#define  SATA_CSR_RESET_MASK		0x00000001
  88#define  SATA_CORE_RESET_MASK		0x00000002
  89#define  SATA_PMCLK_RESET_MASK		0x00000010
  90#define  SATA_PCLK_RESET_MASK		0x00000008
  91
  92/* SDS CSR used for PHY Indirect access */
  93#define SATA_ENET_SDS_PCS_CTL0		0x00000000
  94#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
  95		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
  96#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
  97		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
  98#define SATA_ENET_SDS_CTL0		0x0000000c
  99#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
 100		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
 101#define SATA_ENET_SDS_CTL1		0x00000010
 102#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
 103		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
 104#define SATA_ENET_SDS_RST_CTL		0x00000024
 105#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
 106#define  CFG_IND_WR_CMD_MASK		0x00000001
 107#define  CFG_IND_RD_CMD_MASK		0x00000002
 108#define  CFG_IND_CMD_DONE_MASK		0x00000004
 109#define  CFG_IND_ADDR_SET(dst, src) \
 110		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
 111#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
 112#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
 113#define SATA_ENET_CLK_MACRO_REG		0x0000004c
 114#define  I_RESET_B_SET(dst, src) \
 115		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
 116#define  I_PLL_FBDIV_SET(dst, src) \
 117		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
 118#define  I_CUSTOMEROV_SET(dst, src) \
 119		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 120#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
 121#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
 122
 123/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
 124#define CMU_REG0			0x00000
 125#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
 126#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
 127		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 128#define  CMU_REG0_PDOWN_MASK		0x00004000
 129#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
 130		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 131#define CMU_REG1			0x00002
 132#define  CMU_REG1_PLL_CP_SET(dst, src) \
 133		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 134#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
 135		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 136#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
 137		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
 138#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
 139#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
 140		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 141#define CMU_REG2			0x00004
 142#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
 143		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 144#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
 145		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
 146#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
 147		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
 148#define CMU_REG3			0x00006
 149#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
 150		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 151#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
 152		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 153#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
 154		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 155#define CMU_REG4			0x00008
 156#define CMU_REG5			0x0000a
 157#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
 158		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 159#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
 160		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
 161#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
 162		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
 163#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
 164#define CMU_REG6			0x0000c
 165#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
 166		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
 167#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
 168		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 169#define CMU_REG7			0x0000e
 170#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
 171#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
 172#define CMU_REG8			0x00010
 173#define CMU_REG9			0x00012
 174#define  CMU_REG9_WORD_LEN_8BIT		0x000
 175#define  CMU_REG9_WORD_LEN_10BIT	0x001
 176#define  CMU_REG9_WORD_LEN_16BIT	0x002
 177#define  CMU_REG9_WORD_LEN_20BIT	0x003
 178#define  CMU_REG9_WORD_LEN_32BIT	0x004
 179#define  CMU_REG9_WORD_LEN_40BIT	0x005
 180#define  CMU_REG9_WORD_LEN_64BIT	0x006
 181#define  CMU_REG9_WORD_LEN_66BIT	0x007
 182#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
 183		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
 184#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
 185		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
 186#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
 187		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 188#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
 189		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 190#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
 191		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 192#define CMU_REG10			0x00014
 193#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
 194		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 195#define CMU_REG11			0x00016
 196#define CMU_REG12			0x00018
 197#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
 198		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 199#define CMU_REG13			0x0001a
 200#define CMU_REG14			0x0001c
 201#define CMU_REG15			0x0001e
 202#define CMU_REG16			0x00020
 203#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
 204#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
 205#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
 206		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
 207#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
 208		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 209#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
 210		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 211#define CMU_REG17			0x00022
 212#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
 213		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
 214#define  CMU_REG17_RESERVED_7_SET(dst, src) \
 215		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 216#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
 217#define CMU_REG18			0x00024
 218#define CMU_REG19			0x00026
 219#define CMU_REG20			0x00028
 220#define CMU_REG21			0x0002a
 221#define CMU_REG22			0x0002c
 222#define CMU_REG23			0x0002e
 223#define CMU_REG24			0x00030
 224#define CMU_REG25			0x00032
 225#define CMU_REG26			0x00034
 226#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
 227		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 228#define CMU_REG27			0x00036
 229#define CMU_REG28			0x00038
 230#define CMU_REG29			0x0003a
 231#define CMU_REG30			0x0003c
 232#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
 233		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 234#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
 235		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 236#define CMU_REG31			0x0003e
 237#define CMU_REG32			0x00040
 238#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
 239#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
 240		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 241#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
 242		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
 243#define CMU_REG33			0x00042
 244#define CMU_REG34			0x00044
 245#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
 246		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 247#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
 248		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
 249#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
 250		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 251#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
 252		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 253#define CMU_REG35			0x00046
 254#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
 255		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 256#define CMU_REG36				0x00048
 257#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
 258		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 259#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
 260		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
 261#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
 262		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 263#define CMU_REG37			0x0004a
 264#define CMU_REG38			0x0004c
 265#define CMU_REG39			0x0004e
 266
 267/* PHY lane CSR accessing from SDS indirectly */
 268#define RXTX_REG0			0x000
 269#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
 270		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 271#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
 272		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 273#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
 274		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 275#define RXTX_REG1			0x002
 276#define  RXTX_REG1_RXACVCM_SET(dst, src) \
 277		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 278#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
 279		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 280#define  RXTX_REG1_RXVREG1_SET(dst, src) \
 281		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 282#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
 283		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
 284#define RXTX_REG2			0x004
 285#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
 286		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 287#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
 288		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 289#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
 290		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 291#define RXTX_REG4			0x008
 292#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
 293#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
 294		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 295#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
 296		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 297#define RXTX_REG5			0x00a
 298#define  RXTX_REG5_TX_CN1_SET(dst, src) \
 299		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 300#define  RXTX_REG5_TX_CP1_SET(dst, src) \
 301		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
 302#define  RXTX_REG5_TX_CN2_SET(dst, src) \
 303		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
 304#define RXTX_REG6			0x00c
 305#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
 306		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
 307#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
 308		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 309#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
 310		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 311#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
 312		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 313#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
 314		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 315#define RXTX_REG7			0x00e
 316#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
 317#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
 318#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
 319		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 320#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
 321		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 322#define RXTX_REG8			0x010
 323#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
 324		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 325#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
 326		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
 327#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
 328		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
 329#define  RXTX_REG8_SD_VREF_SET(dst, src) \
 330		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 331#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
 332		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 333#define RXTX_REG7			0x00e
 334#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
 335		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 336#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
 337		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 338#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
 339#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
 340		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 341#define RXTX_REG11			0x016
 342#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
 343		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 344#define RXTX_REG12			0x018
 345#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
 346		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 347#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
 348		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 349#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
 350#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
 351		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 352#define RXTX_REG13			0x01a
 353#define RXTX_REG14			0x01c
 354#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
 355		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
 356#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
 357		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 358#define RXTX_REG26			0x034
 359#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
 360		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 361#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
 362		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 363#define RXTX_REG21			0x02a
 364#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 365#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 366#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
 367#define RXTX_REG22			0x02c
 368#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 369#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 370#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
 371#define RXTX_REG23			0x02e
 372#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 373#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 374#define RXTX_REG24			0x030
 375#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 376#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 377#define RXTX_REG27			0x036
 378#define RXTX_REG28			0x038
 379#define RXTX_REG31			0x03e
 380#define RXTX_REG38			0x04c
 381#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
 382		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
 383#define RXTX_REG39			0x04e
 384#define RXTX_REG40			0x050
 385#define RXTX_REG41			0x052
 386#define RXTX_REG42			0x054
 387#define RXTX_REG43			0x056
 388#define RXTX_REG44			0x058
 389#define RXTX_REG45			0x05a
 390#define RXTX_REG46			0x05c
 391#define RXTX_REG47			0x05e
 392#define RXTX_REG48			0x060
 393#define RXTX_REG49			0x062
 394#define RXTX_REG50			0x064
 395#define RXTX_REG51			0x066
 396#define RXTX_REG52			0x068
 397#define RXTX_REG53			0x06a
 398#define RXTX_REG54			0x06c
 399#define RXTX_REG55			0x06e
 400#define RXTX_REG61			0x07a
 401#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
 402		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 403#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
 404		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 405#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
 406		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 407#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
 408		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 409#define RXTX_REG62			0x07c
 410#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
 411		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 412#define RXTX_REG81			0x0a2
 413#define  RXTX_REG89_MU_TH7_SET(dst, src) \
 414		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 415#define  RXTX_REG89_MU_TH8_SET(dst, src) \
 416		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 417#define  RXTX_REG89_MU_TH9_SET(dst, src) \
 418		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 419#define RXTX_REG96			0x0c0
 420#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
 421		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 422#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
 423		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 424#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
 425		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 426#define RXTX_REG99			0x0c6
 427#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
 428		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 429#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
 430		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 431#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
 432		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 433#define RXTX_REG102			0x0cc
 434#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
 435		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 436#define RXTX_REG114			0x0e4
 437#define RXTX_REG121			0x0f2
 438#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
 439#define RXTX_REG125			0x0fa
 440#define  RXTX_REG125_PQ_REG_SET(dst, src) \
 441		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 442#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
 443		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 444#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
 445		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 446#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
 447		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
 448#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
 449		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 450#define RXTX_REG127			0x0fe
 451#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
 452#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
 453#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
 454		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 455#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
 456		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 457#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
 458		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 459#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
 460		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 461#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
 462		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 463#define RXTX_REG128			0x100
 464#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
 465		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
 466#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
 467		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 468#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
 469		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 470#define RXTX_REG129			0x102
 471#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
 472		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 473#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
 474		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 475#define RXTX_REG130			0x104
 476#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
 477		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 478#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
 479		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 480#define RXTX_REG145			0x122
 481#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
 482		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 483#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
 484		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 485#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
 486		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 487#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
 488		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 489#define RXTX_REG147			0x126
 490#define RXTX_REG148			0x128
 491
 492/* Clock macro type */
 493enum cmu_type_t {
 494	REF_CMU = 0,	/* Clock macro is the internal reference clock */
 495	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
 496};
 497
 498enum mux_type_t {
 499	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
 500	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
 501};
 502
 503enum clk_type_t {
 504	CLK_EXT_DIFF = 0,	/* External differential */
 505	CLK_INT_DIFF = 1,	/* Internal differential */
 506	CLK_INT_SING = 2,	/* Internal single ended */
 507};
 508
 509enum xgene_phy_mode {
 510	MODE_SATA	= 0,	/* List them for simple reference */
 511	MODE_SGMII	= 1,
 512	MODE_PCIE	= 2,
 513	MODE_USB	= 3,
 514	MODE_XFI	= 4,
 515	MODE_MAX
 516};
 517
 518struct xgene_sata_override_param {
 519	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
 520	u32 txspeed[3];			/* Tx speed */
 521	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
 522	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
 523	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
 524	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
 525	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
 526	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
 527	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
 528};
 529
 530struct xgene_phy_ctx {
 531	struct device *dev;
 532	struct phy *phy;
 533	enum xgene_phy_mode mode;		/* Mode of operation */
 534	enum clk_type_t clk_type;	/* Input clock selection */
 535	void __iomem *sds_base;		/* PHY CSR base addr */
 536	struct clk *clk;		/* Optional clock */
 537
 538	/* Override Serdes parameters */
 539	struct xgene_sata_override_param sata_param;
 540};
 541
 542/*
 543 * For chip earlier than A3 version, enable this flag.
 544 * To enable, pass boot argument phy_xgene.preA3Chip=1
 545 */
 546static int preA3Chip;
 547MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
 548module_param_named(preA3Chip, preA3Chip, int, 0444);
 549
 550static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
 551		   u32 indirect_data_reg, u32 addr, u32 data)
 552{
 553	unsigned long deadline = jiffies + HZ;
 554	u32 val;
 555	u32 cmd;
 556
 557	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 558	cmd = CFG_IND_ADDR_SET(cmd, addr);
 559	writel(data, csr_base + indirect_data_reg);
 560	readl(csr_base + indirect_data_reg); /* Force a barrier */
 561	writel(cmd, csr_base + indirect_cmd_reg);
 562	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 563	do {
 564		val = readl(csr_base + indirect_cmd_reg);
 565	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
 566		 time_before(jiffies, deadline));
 567	if (!(val & CFG_IND_CMD_DONE_MASK))
 568		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 569		       csr_base + indirect_cmd_reg, addr, data);
 570}
 571
 572static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
 573		   u32 indirect_data_reg, u32 addr, u32 *data)
 574{
 575	unsigned long deadline = jiffies + HZ;
 576	u32 val;
 577	u32 cmd;
 578
 579	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 580	cmd = CFG_IND_ADDR_SET(cmd, addr);
 581	writel(cmd, csr_base + indirect_cmd_reg);
 582	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 583	do {
 584		val = readl(csr_base + indirect_cmd_reg);
 585	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
 586		 time_before(jiffies, deadline));
 587	*data = readl(csr_base + indirect_data_reg);
 588	if (!(val & CFG_IND_CMD_DONE_MASK))
 589		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 590		       csr_base + indirect_cmd_reg, addr, *data);
 591}
 592
 593static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 594		   u32 reg, u32 data)
 595{
 596	void __iomem *sds_base = ctx->sds_base;
 597	u32 val;
 598
 599	if (cmu_type == REF_CMU)
 600		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 601	else
 602		reg += SERDES_PLL_INDIRECT_OFFSET;
 603	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 604		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 605	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 606		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 607	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
 608}
 609
 610static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 611		   u32 reg, u32 *data)
 612{
 613	void __iomem *sds_base = ctx->sds_base;
 614
 615	if (cmu_type == REF_CMU)
 616		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 617	else
 618		reg += SERDES_PLL_INDIRECT_OFFSET;
 619	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 620		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 621	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
 622}
 623
 624static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 625			   u32 reg, u32 bits)
 626{
 627	u32 val;
 628
 629	cmu_rd(ctx, cmu_type, reg, &val);
 630	val |= bits;
 631	cmu_wr(ctx, cmu_type, reg, val);
 632	cmu_rd(ctx, cmu_type, reg, &val);
 633	val &= ~bits;
 634	cmu_wr(ctx, cmu_type, reg, val);
 635}
 636
 637static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 638			u32 reg, u32 bits)
 639{
 640	u32 val;
 641
 642	cmu_rd(ctx, cmu_type, reg, &val);
 643	val &= ~bits;
 644	cmu_wr(ctx, cmu_type, reg, val);
 645}
 646
 647static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 648			u32 reg, u32 bits)
 649{
 650	u32 val;
 651
 652	cmu_rd(ctx, cmu_type, reg, &val);
 653	val |= bits;
 654	cmu_wr(ctx, cmu_type, reg, val);
 655}
 656
 657static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
 658{
 659	void __iomem *sds_base = ctx->sds_base;
 660	u32 val;
 661
 662	reg += SERDES_INDIRECT_OFFSET;
 663	reg += lane * SERDES_LANE_STRIDE;
 664	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 665	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 666	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 667	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 668	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
 669		 val);
 670}
 671
 672static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
 673{
 674	void __iomem *sds_base = ctx->sds_base;
 675
 676	reg += SERDES_INDIRECT_OFFSET;
 677	reg += lane * SERDES_LANE_STRIDE;
 678	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 679	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 680	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
 681}
 682
 683static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 684			   u32 bits)
 685{
 686	u32 val;
 687
 688	serdes_rd(ctx, lane, reg, &val);
 689	val &= ~bits;
 690	serdes_wr(ctx, lane, reg, val);
 691}
 692
 693static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 694			   u32 bits)
 695{
 696	u32 val;
 697
 698	serdes_rd(ctx, lane, reg, &val);
 699	val |= bits;
 700	serdes_wr(ctx, lane, reg, val);
 701}
 702
 703static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
 704				       enum cmu_type_t cmu_type,
 705				       enum clk_type_t clk_type)
 706{
 707	u32 val;
 708
 709	/* Set the reset sequence delay for TX ready assertion */
 710	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
 711	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
 712	cmu_wr(ctx, cmu_type, CMU_REG12, val);
 713	/* Set the programmable stage delays between various enable stages */
 714	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
 715	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
 716
 717	/* Configure clock type */
 718	if (clk_type == CLK_EXT_DIFF) {
 719		/* Select external clock mux */
 720		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 721		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
 722		cmu_wr(ctx, cmu_type, CMU_REG0, val);
 723		/* Select CMOS as reference clock  */
 724		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 725		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 726		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 727		dev_dbg(ctx->dev, "Set external reference clock\n");
 728	} else if (clk_type == CLK_INT_DIFF) {
 729		/* Select internal clock mux */
 730		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 731		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
 732		cmu_wr(ctx, cmu_type, CMU_REG0, val);
 733		/* Select CMOS as reference clock  */
 734		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 735		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 736		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 737		dev_dbg(ctx->dev, "Set internal reference clock\n");
 738	} else if (clk_type == CLK_INT_SING) {
 739		/*
 740		 * NOTE: This clock type is NOT support for controller
 741		 *	 whose internal clock shared in the PCIe controller
 742		 *
 743		 * Select internal clock mux
 744		 */
 745		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 746		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 747		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 748		/* Select CML as reference clock */
 749		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 750		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 751		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 752		dev_dbg(ctx->dev,
 753			"Set internal single ended reference clock\n");
 754	}
 755}
 756
 757static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
 758					enum cmu_type_t cmu_type,
 759					enum clk_type_t clk_type)
 760{
 761	u32 val;
 762	int ref_100MHz;
 763
 764	if (cmu_type == REF_CMU) {
 765		/* Set VCO calibration voltage threshold */
 766		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
 767		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
 768		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
 769		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
 770		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
 771		cmu_wr(ctx, cmu_type, CMU_REG34, val);
 772	}
 773
 774	/* Set the VCO calibration counter */
 775	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 776	if (cmu_type == REF_CMU || preA3Chip)
 777		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
 778	else
 779		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
 780	cmu_wr(ctx, cmu_type, CMU_REG0, val);
 781
 782	/* Configure PLL for calibration */
 783	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 784	val = CMU_REG1_PLL_CP_SET(val, 0x1);
 785	if (cmu_type == REF_CMU || preA3Chip)
 786		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
 787	else
 788		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
 789	if (cmu_type == REF_CMU)
 790		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
 791	else
 792		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
 793	cmu_wr(ctx, cmu_type, CMU_REG1, val);
 794
 795	if (cmu_type != REF_CMU)
 796		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 797
 798	/* Configure the PLL for either 100MHz or 50MHz */
 799	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
 800	if (cmu_type == REF_CMU) {
 801		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
 802		ref_100MHz = 1;
 803	} else {
 804		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
 805		if (clk_type == CLK_EXT_DIFF)
 806			ref_100MHz = 0;
 807		else
 808			ref_100MHz = 1;
 809	}
 810	if (ref_100MHz) {
 811		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
 812		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
 813	} else {
 814		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
 815		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
 816	}
 817	cmu_wr(ctx, cmu_type, CMU_REG2, val);
 818
 819	/* Configure the VCO */
 820	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
 821	if (cmu_type == REF_CMU) {
 822		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
 823		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
 824	} else {
 825		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
 826		if (preA3Chip)
 827			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
 828		else
 829			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
 830		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
 831	}
 832	cmu_wr(ctx, cmu_type, CMU_REG3, val);
 833
 834	/* Disable force PLL lock */
 835	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
 836	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
 837	cmu_wr(ctx, cmu_type, CMU_REG26, val);
 838
 839	/* Setup PLL loop filter */
 840	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
 841	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
 842	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
 843	if (cmu_type == REF_CMU || !preA3Chip)
 844		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
 845	else
 846		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
 847	cmu_wr(ctx, cmu_type, CMU_REG5, val);
 848
 849	/* Enable or disable manual calibration */
 850	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
 851	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
 852	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
 853	cmu_wr(ctx, cmu_type, CMU_REG6, val);
 854
 855	/* Configure lane for 20-bits */
 856	if (cmu_type == PHY_CMU) {
 857		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
 858		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
 859						    CMU_REG9_WORD_LEN_20BIT);
 860		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
 861						    CMU_REG9_WORD_LEN_20BIT);
 862		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
 863		if (!preA3Chip) {
 864			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
 865			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
 866		}
 867		cmu_wr(ctx, cmu_type, CMU_REG9, val);
 868
 869		if (!preA3Chip) {
 870			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
 871			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
 872			cmu_wr(ctx, cmu_type, CMU_REG10, val);
 873		}
 874	}
 875
 876	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
 877	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
 878	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
 879	if (cmu_type == REF_CMU || preA3Chip)
 880		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
 881	else
 882		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
 883	cmu_wr(ctx, cmu_type, CMU_REG16, val);
 884
 885	/* Configure for SATA */
 886	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
 887	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
 888	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
 889	cmu_wr(ctx, cmu_type, CMU_REG30, val);
 890
 891	/* Disable state machine bypass */
 892	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
 893
 894	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
 895	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
 896	if (cmu_type == REF_CMU || preA3Chip)
 897		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
 898	else
 899		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
 900	cmu_wr(ctx, cmu_type, CMU_REG32, val);
 901
 902	/* Set VCO calibration threshold */
 903	if (cmu_type != REF_CMU && preA3Chip)
 904		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
 905	else
 906		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
 907
 908	/* Set CTLE Override and override waiting from state machine */
 909	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
 910}
 911
 912static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
 913				 enum cmu_type_t cmu_type)
 914{
 915	u32 val;
 916
 917	/* Set SSC modulation value */
 918	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
 919	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
 920	cmu_wr(ctx, cmu_type, CMU_REG35, val);
 921
 922	/* Enable SSC, set vertical step and DSM value */
 923	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
 924	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
 925	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
 926	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
 927	cmu_wr(ctx, cmu_type, CMU_REG36, val);
 928
 929	/* Reset the PLL */
 930	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 931	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 932
 933	/* Force VCO calibration to restart */
 934	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
 935		       CMU_REG32_FORCE_VCOCAL_START_MASK);
 936}
 937
 938static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
 939{
 940	u32 val;
 941	u32 reg;
 942	int i;
 943	int lane;
 944
 945	for (lane = 0; lane < MAX_LANE; lane++) {
 946		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
 947
 948		/* Set boost control for quarter, half, and full rate */
 949		serdes_rd(ctx, lane, RXTX_REG0, &val);
 950		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
 951		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
 952		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
 953		serdes_wr(ctx, lane, RXTX_REG0, val);
 954
 955		/* Set boost control value */
 956		serdes_rd(ctx, lane, RXTX_REG1, &val);
 957		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
 958		val = RXTX_REG1_CTLE_EQ_SET(val,
 959			ctx->sata_param.txboostgain[lane * 3 +
 960			ctx->sata_param.speed[lane]]);
 961		serdes_wr(ctx, lane, RXTX_REG1, val);
 962
 963		/* Latch VTT value based on the termination to ground and
 964		 * enable TX FIFO
 965		 */
 966		serdes_rd(ctx, lane, RXTX_REG2, &val);
 967		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
 968		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
 969		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
 970		serdes_wr(ctx, lane, RXTX_REG2, val);
 971
 972		/* Configure Tx for 20-bits */
 973		serdes_rd(ctx, lane, RXTX_REG4, &val);
 974		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
 975		serdes_wr(ctx, lane, RXTX_REG4, val);
 976
 977		if (!preA3Chip) {
 978			serdes_rd(ctx, lane, RXTX_REG1, &val);
 979			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
 980			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
 981			serdes_wr(ctx, lane, RXTX_REG1, val);
 982		}
 983
 984		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
 985		serdes_rd(ctx, lane, RXTX_REG5, &val);
 986		val = RXTX_REG5_TX_CN1_SET(val,
 987			ctx->sata_param.txprecursor_cn1[lane * 3 +
 988			ctx->sata_param.speed[lane]]);
 989		val = RXTX_REG5_TX_CP1_SET(val,
 990			ctx->sata_param.txpostcursor_cp1[lane * 3 +
 991			ctx->sata_param.speed[lane]]);
 992		val = RXTX_REG5_TX_CN2_SET(val,
 993			ctx->sata_param.txprecursor_cn2[lane * 3 +
 994			ctx->sata_param.speed[lane]]);
 995		serdes_wr(ctx, lane, RXTX_REG5, val);
 996
 997		/* Set TX amplitude value */
 998		serdes_rd(ctx, lane, RXTX_REG6, &val);
 999		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1000			ctx->sata_param.txamplitude[lane * 3 +
1001			ctx->sata_param.speed[lane]]);
1002		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1003		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1004		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1005		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1006		serdes_wr(ctx, lane, RXTX_REG6, val);
1007
1008		/* Configure Rx for 20-bits */
1009		serdes_rd(ctx, lane, RXTX_REG7, &val);
1010		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1011		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1012		serdes_wr(ctx, lane, RXTX_REG7, val);
1013
1014		/* Set CDR and LOS values and enable Rx SSC */
1015		serdes_rd(ctx, lane, RXTX_REG8, &val);
1016		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1017		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1018		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1019		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1020		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1021		serdes_wr(ctx, lane, RXTX_REG8, val);
1022
1023		/* Set phase adjust upper/lower limits */
1024		serdes_rd(ctx, lane, RXTX_REG11, &val);
1025		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1026		serdes_wr(ctx, lane, RXTX_REG11, val);
1027
1028		/* Enable Latch Off; disable SUMOS and Tx termination */
1029		serdes_rd(ctx, lane, RXTX_REG12, &val);
1030		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1031		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1032		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1033		serdes_wr(ctx, lane, RXTX_REG12, val);
1034
1035		/* Set period error latch to 512T and enable BWL */
1036		serdes_rd(ctx, lane, RXTX_REG26, &val);
1037		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1038		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1039		serdes_wr(ctx, lane, RXTX_REG26, val);
1040
1041		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1042
1043		/* Set DFE loop preset value */
1044		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1045
1046		/* Set Eye Monitor counter width to 12-bit */
1047		serdes_rd(ctx, lane, RXTX_REG61, &val);
1048		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1049		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1050		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1051		serdes_wr(ctx, lane, RXTX_REG61, val);
1052
1053		serdes_rd(ctx, lane, RXTX_REG62, &val);
1054		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1055		serdes_wr(ctx, lane, RXTX_REG62, val);
1056
1057		/* Set BW select tap X for DFE loop */
1058		for (i = 0; i < 9; i++) {
1059			reg = RXTX_REG81 + i * 2;
1060			serdes_rd(ctx, lane, reg, &val);
1061			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1062			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1063			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1064			serdes_wr(ctx, lane, reg, val);
1065		}
1066
1067		/* Set BW select tap X for frequency adjust loop */
1068		for (i = 0; i < 3; i++) {
1069			reg = RXTX_REG96 + i * 2;
1070			serdes_rd(ctx, lane, reg, &val);
1071			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1072			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1073			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1074			serdes_wr(ctx, lane, reg, val);
1075		}
1076
1077		/* Set BW select tap X for phase adjust loop */
1078		for (i = 0; i < 3; i++) {
1079			reg = RXTX_REG99 + i * 2;
1080			serdes_rd(ctx, lane, reg, &val);
1081			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1082			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1083			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1084			serdes_wr(ctx, lane, reg, val);
1085		}
1086
1087		serdes_rd(ctx, lane, RXTX_REG102, &val);
1088		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1089		serdes_wr(ctx, lane, RXTX_REG102, val);
1090
1091		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1092
1093		serdes_rd(ctx, lane, RXTX_REG125, &val);
1094		val = RXTX_REG125_SIGN_PQ_SET(val,
1095			ctx->sata_param.txeyedirection[lane * 3 +
1096			ctx->sata_param.speed[lane]]);
1097		val = RXTX_REG125_PQ_REG_SET(val,
1098			ctx->sata_param.txeyetuning[lane * 3 +
1099			ctx->sata_param.speed[lane]]);
1100		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1101		serdes_wr(ctx, lane, RXTX_REG125, val);
1102
1103		serdes_rd(ctx, lane, RXTX_REG127, &val);
1104		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1105		serdes_wr(ctx, lane, RXTX_REG127, val);
1106
1107		serdes_rd(ctx, lane, RXTX_REG128, &val);
1108		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1109		serdes_wr(ctx, lane, RXTX_REG128, val);
1110
1111		serdes_rd(ctx, lane, RXTX_REG145, &val);
1112		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1113		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1114		if (preA3Chip) {
1115			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1116			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1117		} else {
1118			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1119			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1120		}
1121		serdes_wr(ctx, lane, RXTX_REG145, val);
1122
1123		/*
1124		 * Set Rx LOS filter clock rate, sample rate, and threshold
1125		 * windows
1126		 */
1127		for (i = 0; i < 4; i++) {
1128			reg = RXTX_REG148 + i * 2;
1129			serdes_wr(ctx, lane, reg, 0xFFFF);
1130		}
1131	}
1132}
1133
1134static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1135				 enum cmu_type_t cmu_type,
1136				 enum clk_type_t clk_type)
1137{
1138	void __iomem *csr_serdes = ctx->sds_base;
1139	int loop;
1140	u32 val;
1141
1142	/* Release PHY main reset */
1143	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1144	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1145
1146	if (cmu_type != REF_CMU) {
1147		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1148		/*
1149		 * As per PHY design spec, the PLL reset requires a minimum
1150		 * of 800us.
1151		 */
1152		usleep_range(800, 1000);
1153
1154		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1155		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1156		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1157		/*
1158		 * As per PHY design spec, the PLL auto calibration requires
1159		 * a minimum of 800us.
1160		 */
1161		usleep_range(800, 1000);
1162
1163		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1164			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1165		/*
1166		 * As per PHY design spec, the PLL requires a minimum of
1167		 * 800us to settle.
1168		 */
1169		usleep_range(800, 1000);
1170	}
1171
1172	if (!preA3Chip)
1173		goto skip_manual_cal;
1174
1175	/*
1176	 * Configure the termination resister calibration
1177	 * The serial receive pins, RXP/RXN, have TERMination resistor
1178	 * that is required to be calibrated.
1179	 */
1180	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1181	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1182	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1183	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1184	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1185		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1186	/*
1187	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1188	 * resistors that are required to the calibrated.
1189	 * Configure the pull DOWN calibration
1190	 */
1191	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1193	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1196		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1197	/* Configure the pull UP calibration */
1198	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1199	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1200	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1201	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1202	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1203		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1204
1205skip_manual_cal:
1206	/* Poll the PLL calibration completion status for at least 1 ms */
1207	loop = 100;
1208	do {
1209		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1210		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1211			break;
1212		/*
1213		 * As per PHY design spec, PLL calibration status requires
1214		 * a minimum of 10us to be updated.
1215		 */
1216		usleep_range(10, 100);
1217	} while (--loop > 0);
1218
1219	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1220	dev_dbg(ctx->dev, "PLL calibration %s\n",
1221		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1222	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1223		dev_err(ctx->dev,
1224			"PLL calibration failed due to VCO failure\n");
1225		return -1;
1226	}
1227	dev_dbg(ctx->dev, "PLL calibration successful\n");
1228
1229	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1230	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1231	return 0;
1232}
1233
1234static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1235				     enum cmu_type_t cmu_type,
1236				     enum clk_type_t clk_type)
1237{
1238	u32 val;
1239
1240	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1241	if (cmu_type == PHY_CMU) {
1242		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1243		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1244		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1245	}
1246
1247	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1248	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1249		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1250}
1251
1252static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1253				  enum clk_type_t clk_type, int ssc_enable)
1254{
1255	void __iomem *sds_base = ctx->sds_base;
1256	u32 val;
1257	int i;
1258
1259	/* Configure the PHY for operation */
1260	dev_dbg(ctx->dev, "Reset PHY\n");
1261	/* Place PHY into reset */
1262	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1263	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1264	/* Release PHY lane from reset (active high) */
1265	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1266	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1267	/* Release all PHY module out of reset except PHY main reset */
1268	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1269	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1270
1271	/* Set the operation speed */
1272	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1273	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1274		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1275	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1276
1277	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1278	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1279	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1280	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1281
1282	/* Configure the clock macro unit (CMU) clock type */
1283	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1284
1285	/* Configure the clock macro */
1286	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1287
1288	/* Enable SSC if enabled */
1289	if (ssc_enable)
1290		xgene_phy_ssc_enable(ctx, PHY_CMU);
1291
1292	/* Configure PHY lanes */
1293	xgene_phy_sata_cfg_lanes(ctx);
1294
1295	/* Set Rx/Tx 20-bit */
1296	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1297	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1298	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1299	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1300
1301	/* Start PLL calibration and try for three times */
1302	i = 10;
1303	do {
1304		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1305			break;
1306		/* If failed, toggle the VCO power signal and start again */
1307		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1308	} while (--i > 0);
1309	/* Even on failure, allow to continue any way */
1310	if (i <= 0)
1311		dev_err(ctx->dev, "PLL calibration failed\n");
1312
1313	return 0;
1314}
1315
1316static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1317				   enum clk_type_t clk_type,
1318				   int ssc_enable)
1319{
1320	int rc;
1321
1322	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1323
1324	if (ctx->mode == MODE_SATA) {
1325		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1326		if (rc)
1327			return rc;
1328	} else {
1329		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1330			ctx->mode);
1331		return -ENODEV;
1332	}
1333
1334	return 0;
1335}
1336
1337/*
1338 * Receiver Offset Calibration:
1339 *
1340 * Calibrate the receiver signal path offset in two steps - summar and
1341 * latch calibrations
1342 */
1343static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1344{
1345	int i;
1346	static const struct {
1347		u32 reg;
1348		u32 val;
1349	} serdes_reg[] = {
1350		{RXTX_REG38, 0x0},
1351		{RXTX_REG39, 0xff00},
1352		{RXTX_REG40, 0xffff},
1353		{RXTX_REG41, 0xffff},
1354		{RXTX_REG42, 0xffff},
1355		{RXTX_REG43, 0xffff},
1356		{RXTX_REG44, 0xffff},
1357		{RXTX_REG45, 0xffff},
1358		{RXTX_REG46, 0xffff},
1359		{RXTX_REG47, 0xfffc},
1360		{RXTX_REG48, 0x0},
1361		{RXTX_REG49, 0x0},
1362		{RXTX_REG50, 0x0},
1363		{RXTX_REG51, 0x0},
1364		{RXTX_REG52, 0x0},
1365		{RXTX_REG53, 0x0},
1366		{RXTX_REG54, 0x0},
1367		{RXTX_REG55, 0x0},
1368	};
1369
1370	/* Start SUMMER calibration */
1371	serdes_setbits(ctx, lane, RXTX_REG127,
1372		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1373	/*
1374	 * As per PHY design spec, the Summer calibration requires a minimum
1375	 * of 100us to complete.
1376	 */
1377	usleep_range(100, 500);
1378	serdes_clrbits(ctx, lane, RXTX_REG127,
1379			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1380	/*
1381	 * As per PHY design spec, the auto calibration requires a minimum
1382	 * of 100us to complete.
1383	 */
1384	usleep_range(100, 500);
1385
1386	/* Start latch calibration */
1387	serdes_setbits(ctx, lane, RXTX_REG127,
1388		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1389	/*
1390	 * As per PHY design spec, the latch calibration requires a minimum
1391	 * of 100us to complete.
1392	 */
1393	usleep_range(100, 500);
1394	serdes_clrbits(ctx, lane, RXTX_REG127,
1395		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1396
1397	/* Configure the PHY lane for calibration */
1398	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1399	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1400	serdes_clrbits(ctx, lane, RXTX_REG4,
1401		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1402	serdes_clrbits(ctx, lane, RXTX_REG7,
1403		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1404	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1405		serdes_wr(ctx, lane, serdes_reg[i].reg,
1406			  serdes_reg[i].val);
1407}
1408
1409static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1410{
1411	/* Reset digital Rx */
1412	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1413	/* As per PHY design spec, the reset requires a minimum of 100us. */
1414	usleep_range(100, 150);
1415	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1416}
1417
1418static int xgene_phy_get_avg(int accum, int samples)
1419{
1420	return (accum + (samples / 2)) / samples;
1421}
1422
1423static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1424{
1425	int max_loop = 10;
1426	int avg_loop = 0;
1427	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1428	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1429	int sum_cal = 0;
1430	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1431	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1432	int sum_cal_itr;
1433	int fail_even;
1434	int fail_odd;
1435	u32 val;
1436
1437	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1438		lane);
1439
1440	/* Enable RX Hi-Z termination */
1441	serdes_setbits(ctx, lane, RXTX_REG12,
1442			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1443	/* Turn off DFE */
1444	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1445	/* DFE Presets to zero */
1446	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1447
1448	/*
1449	 * Receiver Offset Calibration:
1450	 * Calibrate the receiver signal path offset in two steps - summar
1451	 * and latch calibration.
1452	 * Runs the "Receiver Offset Calibration multiple times to determine
1453	 * the average value to use.
1454	 */
1455	while (avg_loop < max_loop) {
1456		/* Start the calibration */
1457		xgene_phy_force_lat_summer_cal(ctx, lane);
1458
1459		serdes_rd(ctx, lane, RXTX_REG21, &val);
1460		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1461		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1462		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1463
1464		serdes_rd(ctx, lane, RXTX_REG22, &val);
1465		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1466		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1467		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1468
1469		serdes_rd(ctx, lane, RXTX_REG23, &val);
1470		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1471		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1472
1473		serdes_rd(ctx, lane, RXTX_REG24, &val);
1474		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1475		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1476
1477		serdes_rd(ctx, lane, RXTX_REG121, &val);
1478		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1479
1480		/* Check for failure. If passed, sum them for averaging */
1481		if ((fail_even == 0 || fail_even == 1) &&
1482		    (fail_odd == 0 || fail_odd == 1)) {
1483			lat_do += lat_do_itr;
1484			lat_xo += lat_xo_itr;
1485			lat_eo += lat_eo_itr;
1486			lat_so += lat_so_itr;
1487			lat_de += lat_de_itr;
1488			lat_xe += lat_xe_itr;
1489			lat_ee += lat_ee_itr;
1490			lat_se += lat_se_itr;
1491			sum_cal += sum_cal_itr;
1492
1493			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1494			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1495				lat_do_itr, lat_xo_itr, lat_eo_itr,
1496				lat_so_itr);
1497			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1498				lat_de_itr, lat_xe_itr, lat_ee_itr,
1499				lat_se_itr);
1500			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1501			++avg_loop;
1502		} else {
1503			dev_err(ctx->dev,
1504				"Receiver calibration failed at %d loop\n",
1505				avg_loop);
1506		}
1507		xgene_phy_reset_rxd(ctx, lane);
1508	}
1509
1510	/* Update latch manual calibration with average value */
1511	serdes_rd(ctx, lane, RXTX_REG127, &val);
1512	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1513		xgene_phy_get_avg(lat_do, max_loop));
1514	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1515		xgene_phy_get_avg(lat_xo, max_loop));
1516	serdes_wr(ctx, lane, RXTX_REG127, val);
1517
1518	serdes_rd(ctx, lane, RXTX_REG128, &val);
1519	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1520		xgene_phy_get_avg(lat_eo, max_loop));
1521	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1522		xgene_phy_get_avg(lat_so, max_loop));
1523	serdes_wr(ctx, lane, RXTX_REG128, val);
1524
1525	serdes_rd(ctx, lane, RXTX_REG129, &val);
1526	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1527		xgene_phy_get_avg(lat_de, max_loop));
1528	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1529		xgene_phy_get_avg(lat_xe, max_loop));
1530	serdes_wr(ctx, lane, RXTX_REG129, val);
1531
1532	serdes_rd(ctx, lane, RXTX_REG130, &val);
1533	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1534		xgene_phy_get_avg(lat_ee, max_loop));
1535	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1536		xgene_phy_get_avg(lat_se, max_loop));
1537	serdes_wr(ctx, lane, RXTX_REG130, val);
1538
1539	/* Update SUMMER calibration with average value */
1540	serdes_rd(ctx, lane, RXTX_REG14, &val);
1541	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1542		xgene_phy_get_avg(sum_cal, max_loop));
1543	serdes_wr(ctx, lane, RXTX_REG14, val);
1544
1545	dev_dbg(ctx->dev, "Average Value:\n");
1546	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1547		 xgene_phy_get_avg(lat_do, max_loop),
1548		 xgene_phy_get_avg(lat_xo, max_loop),
1549		 xgene_phy_get_avg(lat_eo, max_loop),
1550		 xgene_phy_get_avg(lat_so, max_loop));
1551	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1552		 xgene_phy_get_avg(lat_de, max_loop),
1553		 xgene_phy_get_avg(lat_xe, max_loop),
1554		 xgene_phy_get_avg(lat_ee, max_loop),
1555		 xgene_phy_get_avg(lat_se, max_loop));
1556	dev_dbg(ctx->dev, "SUM 0x%x\n",
1557		xgene_phy_get_avg(sum_cal, max_loop));
1558
1559	serdes_rd(ctx, lane, RXTX_REG14, &val);
1560	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1561	serdes_wr(ctx, lane, RXTX_REG14, val);
1562	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1563
1564	serdes_rd(ctx, lane, RXTX_REG127, &val);
1565	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1566	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1567	serdes_wr(ctx, lane, RXTX_REG127, val);
1568
1569	/* Disable RX Hi-Z termination */
1570	serdes_rd(ctx, lane, RXTX_REG12, &val);
1571	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1572	serdes_wr(ctx, lane, RXTX_REG12, val);
1573	/* Turn on DFE */
1574	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1575	/* Set DFE preset */
1576	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1577}
1578
1579static int xgene_phy_hw_init(struct phy *phy)
1580{
1581	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1582	int rc;
1583	int i;
1584
1585	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1586	if (rc) {
1587		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1588		return rc;
1589	}
1590
1591	/* Setup clock properly after PHY configuration */
1592	if (!IS_ERR(ctx->clk)) {
1593		/* HW requires an toggle of the clock */
1594		clk_prepare_enable(ctx->clk);
1595		clk_disable_unprepare(ctx->clk);
1596		clk_prepare_enable(ctx->clk);
1597	}
1598
1599	/* Compute average value */
1600	for (i = 0; i < MAX_LANE; i++)
1601		xgene_phy_gen_avg_val(ctx, i);
1602
1603	dev_dbg(ctx->dev, "PHY initialized\n");
1604	return 0;
1605}
1606
1607static const struct phy_ops xgene_phy_ops = {
1608	.init		= xgene_phy_hw_init,
1609	.owner		= THIS_MODULE,
1610};
1611
1612static struct phy *xgene_phy_xlate(struct device *dev,
1613				   struct of_phandle_args *args)
1614{
1615	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1616
1617	if (args->args_count <= 0)
1618		return ERR_PTR(-EINVAL);
1619	if (args->args[0] >= MODE_MAX)
1620		return ERR_PTR(-EINVAL);
1621
1622	ctx->mode = args->args[0];
1623	return ctx->phy;
1624}
1625
1626static void xgene_phy_get_param(struct platform_device *pdev,
1627				const char *name, u32 *buffer,
1628				int count, u32 *default_val,
1629				u32 conv_factor)
1630{
1631	int i;
1632
1633	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1634					count)) {
1635		for (i = 0; i < count; i++)
1636			buffer[i] /= conv_factor;
1637		return;
1638	}
1639	/* Does not exist, load default */
1640	for (i = 0; i < count; i++)
1641		buffer[i] = default_val[i % 3];
1642}
1643
1644static int xgene_phy_probe(struct platform_device *pdev)
1645{
1646	struct phy_provider *phy_provider;
1647	struct xgene_phy_ctx *ctx;
1648	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1649	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1650	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1651	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1652	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1653	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1654	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1655	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1656	int i;
1657
1658	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1659	if (!ctx)
1660		return -ENOMEM;
1661
1662	ctx->dev = &pdev->dev;
1663
1664	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
1665	if (IS_ERR(ctx->sds_base))
1666		return PTR_ERR(ctx->sds_base);
1667
1668	/* Retrieve optional clock */
1669	ctx->clk = clk_get(&pdev->dev, NULL);
1670
1671	/* Load override paramaters */
1672	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1673		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1674	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1675		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1676	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1677		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1678	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1679		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1680	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1681		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1682	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1683		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1684	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1685		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1686	xgene_phy_get_param(pdev, "apm,tx-speed",
1687		ctx->sata_param.txspeed, 3, default_spd, 1);
1688	for (i = 0; i < MAX_LANE; i++)
1689		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1690
1691	platform_set_drvdata(pdev, ctx);
1692
1693	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1694	if (IS_ERR(ctx->phy)) {
1695		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1696		return PTR_ERR(ctx->phy);
1697	}
1698	phy_set_drvdata(ctx->phy, ctx);
1699
1700	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1701	return PTR_ERR_OR_ZERO(phy_provider);
1702}
1703
1704static const struct of_device_id xgene_phy_of_match[] = {
1705	{.compatible = "apm,xgene-phy",},
1706	{},
1707};
1708MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1709
1710static struct platform_driver xgene_phy_driver = {
1711	.probe = xgene_phy_probe,
1712	.driver = {
1713		   .name = "xgene-phy",
1714		   .of_match_table = xgene_phy_of_match,
1715	},
1716};
1717module_platform_driver(xgene_phy_driver);
1718
1719MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1720MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1721MODULE_LICENSE("GPL v2");
1722MODULE_VERSION("0.1");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * AppliedMicro X-Gene Multi-purpose PHY driver
   4 *
   5 * Copyright (c) 2014, Applied Micro Circuits Corporation
   6 * Author: Loc Ho <lho@apm.com>
   7 *         Tuan Phan <tphan@apm.com>
   8 *         Suman Tripathi <stripathi@apm.com>
   9 *
  10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
  11 * The first PLL clock macro is used for internal reference clock. The second
  12 * PLL clock macro is used to generate the clock for the PHY. This driver
  13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
  14 * operate according to the mode of operation. The first PLL CMU is only
  15 * required if internal clock is enabled.
  16 *
  17 * Logical Layer Out Of HW module units:
  18 *
  19 * -----------------
  20 * | Internal      |    |------|
  21 * | Ref PLL CMU   |----|      |     -------------    ---------
  22 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
  23 *                      |      |     |           |    ---------
  24 * External Clock ------|      |     -------------
  25 *                      |------|
  26 *
  27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
  28 * indirectly from the SDS offset at 0x2000. It is only required for
  29 * internal reference clock.
  30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
  31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
  32 *
  33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
  34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
  35 * it is located outside the PHY IP. This is the case for the PHY located
  36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
  37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
  38 *
  39 * Currently, this driver only supports Gen3 SATA mode with external clock.
  40 */
  41#include <linux/module.h>
  42#include <linux/platform_device.h>
  43#include <linux/io.h>
  44#include <linux/delay.h>
  45#include <linux/phy/phy.h>
  46#include <linux/clk.h>
  47
  48/* Max 2 lanes per a PHY unit */
  49#define MAX_LANE			2
  50
  51/* Register offset inside the PHY */
  52#define SERDES_PLL_INDIRECT_OFFSET	0x0000
  53#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
  54#define SERDES_INDIRECT_OFFSET		0x0400
  55#define SERDES_LANE_STRIDE		0x0200
  56
  57/* Some default Serdes parameters */
  58#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
  59#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
  60#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
  61#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
  62#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
  63#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
  64#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
  65#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
  66
  67#define SATA_SPD_SEL_GEN3		0x7
  68#define SATA_SPD_SEL_GEN2		0x3
  69#define SATA_SPD_SEL_GEN1		0x1
  70
  71#define SSC_DISABLE			0
  72#define SSC_ENABLE			1
  73
  74#define FBDIV_VAL_50M			0x77
  75#define REFDIV_VAL_50M			0x1
  76#define FBDIV_VAL_100M			0x3B
  77#define REFDIV_VAL_100M			0x0
  78
  79/* SATA Clock/Reset CSR */
  80#define SATACLKENREG			0x00000000
  81#define  SATA0_CORE_CLKEN		0x00000002
  82#define  SATA1_CORE_CLKEN		0x00000004
  83#define SATASRESETREG			0x00000004
  84#define  SATA_MEM_RESET_MASK		0x00000020
  85#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
  86#define  SATA_SDS_RESET_MASK		0x00000004
  87#define  SATA_CSR_RESET_MASK		0x00000001
  88#define  SATA_CORE_RESET_MASK		0x00000002
  89#define  SATA_PMCLK_RESET_MASK		0x00000010
  90#define  SATA_PCLK_RESET_MASK		0x00000008
  91
  92/* SDS CSR used for PHY Indirect access */
  93#define SATA_ENET_SDS_PCS_CTL0		0x00000000
  94#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
  95		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
  96#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
  97		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
  98#define SATA_ENET_SDS_CTL0		0x0000000c
  99#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
 100		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
 101#define SATA_ENET_SDS_CTL1		0x00000010
 102#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
 103		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
 104#define SATA_ENET_SDS_RST_CTL		0x00000024
 105#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
 106#define  CFG_IND_WR_CMD_MASK		0x00000001
 107#define  CFG_IND_RD_CMD_MASK		0x00000002
 108#define  CFG_IND_CMD_DONE_MASK		0x00000004
 109#define  CFG_IND_ADDR_SET(dst, src) \
 110		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
 111#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
 112#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
 113#define SATA_ENET_CLK_MACRO_REG		0x0000004c
 114#define  I_RESET_B_SET(dst, src) \
 115		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
 116#define  I_PLL_FBDIV_SET(dst, src) \
 117		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
 118#define  I_CUSTOMEROV_SET(dst, src) \
 119		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 120#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
 121#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
 122
 123/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
 124#define CMU_REG0			0x00000
 125#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
 126#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
 127		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 128#define  CMU_REG0_PDOWN_MASK		0x00004000
 129#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
 130		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 131#define CMU_REG1			0x00002
 132#define  CMU_REG1_PLL_CP_SET(dst, src) \
 133		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 134#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
 135		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 136#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
 137		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
 138#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
 139#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
 140		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 141#define CMU_REG2			0x00004
 142#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
 143		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 144#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
 145		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
 146#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
 147		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
 148#define CMU_REG3			0x00006
 149#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
 150		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 151#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
 152		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 153#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
 154		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 155#define CMU_REG4			0x00008
 156#define CMU_REG5			0x0000a
 157#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
 158		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 159#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
 160		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
 161#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
 162		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
 163#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
 164#define CMU_REG6			0x0000c
 165#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
 166		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
 167#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
 168		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 169#define CMU_REG7			0x0000e
 170#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
 171#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
 172#define CMU_REG8			0x00010
 173#define CMU_REG9			0x00012
 174#define  CMU_REG9_WORD_LEN_8BIT		0x000
 175#define  CMU_REG9_WORD_LEN_10BIT	0x001
 176#define  CMU_REG9_WORD_LEN_16BIT	0x002
 177#define  CMU_REG9_WORD_LEN_20BIT	0x003
 178#define  CMU_REG9_WORD_LEN_32BIT	0x004
 179#define  CMU_REG9_WORD_LEN_40BIT	0x005
 180#define  CMU_REG9_WORD_LEN_64BIT	0x006
 181#define  CMU_REG9_WORD_LEN_66BIT	0x007
 182#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
 183		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
 184#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
 185		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
 186#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
 187		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 188#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
 189		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 190#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
 191		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 192#define CMU_REG10			0x00014
 193#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
 194		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 195#define CMU_REG11			0x00016
 196#define CMU_REG12			0x00018
 197#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
 198		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 199#define CMU_REG13			0x0001a
 200#define CMU_REG14			0x0001c
 201#define CMU_REG15			0x0001e
 202#define CMU_REG16			0x00020
 203#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
 204#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
 205#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
 206		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
 207#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
 208		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 209#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
 210		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 211#define CMU_REG17			0x00022
 212#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
 213		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
 214#define  CMU_REG17_RESERVED_7_SET(dst, src) \
 215		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 216#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
 217#define CMU_REG18			0x00024
 218#define CMU_REG19			0x00026
 219#define CMU_REG20			0x00028
 220#define CMU_REG21			0x0002a
 221#define CMU_REG22			0x0002c
 222#define CMU_REG23			0x0002e
 223#define CMU_REG24			0x00030
 224#define CMU_REG25			0x00032
 225#define CMU_REG26			0x00034
 226#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
 227		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 228#define CMU_REG27			0x00036
 229#define CMU_REG28			0x00038
 230#define CMU_REG29			0x0003a
 231#define CMU_REG30			0x0003c
 232#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
 233		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 234#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
 235		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 236#define CMU_REG31			0x0003e
 237#define CMU_REG32			0x00040
 238#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
 239#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
 240		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 241#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
 242		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
 243#define CMU_REG33			0x00042
 244#define CMU_REG34			0x00044
 245#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
 246		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 247#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
 248		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
 249#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
 250		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 251#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
 252		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 253#define CMU_REG35			0x00046
 254#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
 255		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 256#define CMU_REG36				0x00048
 257#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
 258		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 259#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
 260		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
 261#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
 262		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 263#define CMU_REG37			0x0004a
 264#define CMU_REG38			0x0004c
 265#define CMU_REG39			0x0004e
 266
 267/* PHY lane CSR accessing from SDS indirectly */
 268#define RXTX_REG0			0x000
 269#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
 270		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 271#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
 272		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 273#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
 274		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 275#define RXTX_REG1			0x002
 276#define  RXTX_REG1_RXACVCM_SET(dst, src) \
 277		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 278#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
 279		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 280#define  RXTX_REG1_RXVREG1_SET(dst, src) \
 281		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 282#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
 283		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
 284#define RXTX_REG2			0x004
 285#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
 286		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 287#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
 288		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 289#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
 290		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 291#define RXTX_REG4			0x008
 292#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
 293#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
 294		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 295#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
 296		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 297#define RXTX_REG5			0x00a
 298#define  RXTX_REG5_TX_CN1_SET(dst, src) \
 299		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 300#define  RXTX_REG5_TX_CP1_SET(dst, src) \
 301		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
 302#define  RXTX_REG5_TX_CN2_SET(dst, src) \
 303		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
 304#define RXTX_REG6			0x00c
 305#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
 306		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
 307#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
 308		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 309#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
 310		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 311#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
 312		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 313#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
 314		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 315#define RXTX_REG7			0x00e
 316#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
 317#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
 318#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
 319		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 320#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
 321		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 322#define RXTX_REG8			0x010
 323#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
 324		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 325#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
 326		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
 327#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
 328		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
 329#define  RXTX_REG8_SD_VREF_SET(dst, src) \
 330		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 331#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
 332		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 333#define RXTX_REG7			0x00e
 334#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
 335		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 336#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
 337		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 338#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
 339#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
 340		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 341#define RXTX_REG11			0x016
 342#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
 343		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 344#define RXTX_REG12			0x018
 345#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
 346		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 347#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
 348		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 349#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
 350#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
 351		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 352#define RXTX_REG13			0x01a
 353#define RXTX_REG14			0x01c
 354#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
 355		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
 356#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
 357		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 358#define RXTX_REG26			0x034
 359#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
 360		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 361#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
 362		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 363#define RXTX_REG21			0x02a
 364#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 365#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 366#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
 367#define RXTX_REG22			0x02c
 368#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 369#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 370#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
 371#define RXTX_REG23			0x02e
 372#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 373#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 374#define RXTX_REG24			0x030
 375#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 376#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 377#define RXTX_REG27			0x036
 378#define RXTX_REG28			0x038
 379#define RXTX_REG31			0x03e
 380#define RXTX_REG38			0x04c
 381#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
 382		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
 383#define RXTX_REG39			0x04e
 384#define RXTX_REG40			0x050
 385#define RXTX_REG41			0x052
 386#define RXTX_REG42			0x054
 387#define RXTX_REG43			0x056
 388#define RXTX_REG44			0x058
 389#define RXTX_REG45			0x05a
 390#define RXTX_REG46			0x05c
 391#define RXTX_REG47			0x05e
 392#define RXTX_REG48			0x060
 393#define RXTX_REG49			0x062
 394#define RXTX_REG50			0x064
 395#define RXTX_REG51			0x066
 396#define RXTX_REG52			0x068
 397#define RXTX_REG53			0x06a
 398#define RXTX_REG54			0x06c
 399#define RXTX_REG55			0x06e
 400#define RXTX_REG61			0x07a
 401#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
 402		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 403#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
 404		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 405#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
 406		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 407#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
 408		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 409#define RXTX_REG62			0x07c
 410#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
 411		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 412#define RXTX_REG81			0x0a2
 413#define  RXTX_REG89_MU_TH7_SET(dst, src) \
 414		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 415#define  RXTX_REG89_MU_TH8_SET(dst, src) \
 416		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 417#define  RXTX_REG89_MU_TH9_SET(dst, src) \
 418		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 419#define RXTX_REG96			0x0c0
 420#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
 421		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 422#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
 423		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 424#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
 425		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 426#define RXTX_REG99			0x0c6
 427#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
 428		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 429#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
 430		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 431#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
 432		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 433#define RXTX_REG102			0x0cc
 434#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
 435		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 436#define RXTX_REG114			0x0e4
 437#define RXTX_REG121			0x0f2
 438#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
 439#define RXTX_REG125			0x0fa
 440#define  RXTX_REG125_PQ_REG_SET(dst, src) \
 441		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 442#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
 443		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 444#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
 445		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 446#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
 447		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
 448#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
 449		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 450#define RXTX_REG127			0x0fe
 451#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
 452#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
 453#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
 454		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 455#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
 456		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 457#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
 458		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 459#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
 460		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 461#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
 462		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 463#define RXTX_REG128			0x100
 464#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
 465		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
 466#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
 467		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 468#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
 469		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 470#define RXTX_REG129			0x102
 471#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
 472		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 473#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
 474		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 475#define RXTX_REG130			0x104
 476#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
 477		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 478#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
 479		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 480#define RXTX_REG145			0x122
 481#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
 482		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 483#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
 484		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 485#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
 486		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 487#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
 488		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 489#define RXTX_REG147			0x126
 490#define RXTX_REG148			0x128
 491
 492/* Clock macro type */
 493enum cmu_type_t {
 494	REF_CMU = 0,	/* Clock macro is the internal reference clock */
 495	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
 496};
 497
 498enum mux_type_t {
 499	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
 500	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
 501};
 502
 503enum clk_type_t {
 504	CLK_EXT_DIFF = 0,	/* External differential */
 505	CLK_INT_DIFF = 1,	/* Internal differential */
 506	CLK_INT_SING = 2,	/* Internal single ended */
 507};
 508
 509enum xgene_phy_mode {
 510	MODE_SATA	= 0,	/* List them for simple reference */
 511	MODE_SGMII	= 1,
 512	MODE_PCIE	= 2,
 513	MODE_USB	= 3,
 514	MODE_XFI	= 4,
 515	MODE_MAX
 516};
 517
 518struct xgene_sata_override_param {
 519	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
 520	u32 txspeed[3];			/* Tx speed */
 521	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
 522	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
 523	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
 524	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
 525	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
 526	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
 527	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
 528};
 529
 530struct xgene_phy_ctx {
 531	struct device *dev;
 532	struct phy *phy;
 533	enum xgene_phy_mode mode;		/* Mode of operation */
 534	enum clk_type_t clk_type;	/* Input clock selection */
 535	void __iomem *sds_base;		/* PHY CSR base addr */
 536	struct clk *clk;		/* Optional clock */
 537
 538	/* Override Serdes parameters */
 539	struct xgene_sata_override_param sata_param;
 540};
 541
 542/*
 543 * For chip earlier than A3 version, enable this flag.
 544 * To enable, pass boot argument phy_xgene.preA3Chip=1
 545 */
 546static int preA3Chip;
 547MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
 548module_param_named(preA3Chip, preA3Chip, int, 0444);
 549
 550static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
 551		   u32 indirect_data_reg, u32 addr, u32 data)
 552{
 553	unsigned long deadline = jiffies + HZ;
 554	u32 val;
 555	u32 cmd;
 556
 557	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 558	cmd = CFG_IND_ADDR_SET(cmd, addr);
 559	writel(data, csr_base + indirect_data_reg);
 560	readl(csr_base + indirect_data_reg); /* Force a barrier */
 561	writel(cmd, csr_base + indirect_cmd_reg);
 562	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 563	do {
 564		val = readl(csr_base + indirect_cmd_reg);
 565	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
 566		 time_before(jiffies, deadline));
 567	if (!(val & CFG_IND_CMD_DONE_MASK))
 568		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 569		       csr_base + indirect_cmd_reg, addr, data);
 570}
 571
 572static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
 573		   u32 indirect_data_reg, u32 addr, u32 *data)
 574{
 575	unsigned long deadline = jiffies + HZ;
 576	u32 val;
 577	u32 cmd;
 578
 579	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 580	cmd = CFG_IND_ADDR_SET(cmd, addr);
 581	writel(cmd, csr_base + indirect_cmd_reg);
 582	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 583	do {
 584		val = readl(csr_base + indirect_cmd_reg);
 585	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
 586		 time_before(jiffies, deadline));
 587	*data = readl(csr_base + indirect_data_reg);
 588	if (!(val & CFG_IND_CMD_DONE_MASK))
 589		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 590		       csr_base + indirect_cmd_reg, addr, *data);
 591}
 592
 593static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 594		   u32 reg, u32 data)
 595{
 596	void __iomem *sds_base = ctx->sds_base;
 597	u32 val;
 598
 599	if (cmu_type == REF_CMU)
 600		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 601	else
 602		reg += SERDES_PLL_INDIRECT_OFFSET;
 603	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 604		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 605	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 606		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 607	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
 608}
 609
 610static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 611		   u32 reg, u32 *data)
 612{
 613	void __iomem *sds_base = ctx->sds_base;
 614
 615	if (cmu_type == REF_CMU)
 616		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 617	else
 618		reg += SERDES_PLL_INDIRECT_OFFSET;
 619	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 620		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 621	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
 622}
 623
 624static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 625			   u32 reg, u32 bits)
 626{
 627	u32 val;
 628
 629	cmu_rd(ctx, cmu_type, reg, &val);
 630	val |= bits;
 631	cmu_wr(ctx, cmu_type, reg, val);
 632	cmu_rd(ctx, cmu_type, reg, &val);
 633	val &= ~bits;
 634	cmu_wr(ctx, cmu_type, reg, val);
 635}
 636
 637static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 638			u32 reg, u32 bits)
 639{
 640	u32 val;
 641
 642	cmu_rd(ctx, cmu_type, reg, &val);
 643	val &= ~bits;
 644	cmu_wr(ctx, cmu_type, reg, val);
 645}
 646
 647static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 648			u32 reg, u32 bits)
 649{
 650	u32 val;
 651
 652	cmu_rd(ctx, cmu_type, reg, &val);
 653	val |= bits;
 654	cmu_wr(ctx, cmu_type, reg, val);
 655}
 656
 657static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
 658{
 659	void __iomem *sds_base = ctx->sds_base;
 660	u32 val;
 661
 662	reg += SERDES_INDIRECT_OFFSET;
 663	reg += lane * SERDES_LANE_STRIDE;
 664	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 665	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 666	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 667	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 668	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
 669		 val);
 670}
 671
 672static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
 673{
 674	void __iomem *sds_base = ctx->sds_base;
 675
 676	reg += SERDES_INDIRECT_OFFSET;
 677	reg += lane * SERDES_LANE_STRIDE;
 678	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 679	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 680	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
 681}
 682
 683static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 684			   u32 bits)
 685{
 686	u32 val;
 687
 688	serdes_rd(ctx, lane, reg, &val);
 689	val &= ~bits;
 690	serdes_wr(ctx, lane, reg, val);
 691}
 692
 693static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 694			   u32 bits)
 695{
 696	u32 val;
 697
 698	serdes_rd(ctx, lane, reg, &val);
 699	val |= bits;
 700	serdes_wr(ctx, lane, reg, val);
 701}
 702
 703static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
 704				       enum cmu_type_t cmu_type,
 705				       enum clk_type_t clk_type)
 706{
 707	u32 val;
 708
 709	/* Set the reset sequence delay for TX ready assertion */
 710	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
 711	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
 712	cmu_wr(ctx, cmu_type, CMU_REG12, val);
 713	/* Set the programmable stage delays between various enable stages */
 714	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
 715	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
 716
 717	/* Configure clock type */
 718	if (clk_type == CLK_EXT_DIFF) {
 719		/* Select external clock mux */
 720		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 721		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
 722		cmu_wr(ctx, cmu_type, CMU_REG0, val);
 723		/* Select CMOS as reference clock  */
 724		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 725		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 726		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 727		dev_dbg(ctx->dev, "Set external reference clock\n");
 728	} else if (clk_type == CLK_INT_DIFF) {
 729		/* Select internal clock mux */
 730		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 731		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
 732		cmu_wr(ctx, cmu_type, CMU_REG0, val);
 733		/* Select CMOS as reference clock  */
 734		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 735		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 736		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 737		dev_dbg(ctx->dev, "Set internal reference clock\n");
 738	} else if (clk_type == CLK_INT_SING) {
 739		/*
 740		 * NOTE: This clock type is NOT support for controller
 741		 *	 whose internal clock shared in the PCIe controller
 742		 *
 743		 * Select internal clock mux
 744		 */
 745		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 746		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 747		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 748		/* Select CML as reference clock */
 749		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 750		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 751		cmu_wr(ctx, cmu_type, CMU_REG1, val);
 752		dev_dbg(ctx->dev,
 753			"Set internal single ended reference clock\n");
 754	}
 755}
 756
 757static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
 758					enum cmu_type_t cmu_type,
 759					enum clk_type_t clk_type)
 760{
 761	u32 val;
 762	int ref_100MHz;
 763
 764	if (cmu_type == REF_CMU) {
 765		/* Set VCO calibration voltage threshold */
 766		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
 767		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
 768		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
 769		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
 770		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
 771		cmu_wr(ctx, cmu_type, CMU_REG34, val);
 772	}
 773
 774	/* Set the VCO calibration counter */
 775	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 776	if (cmu_type == REF_CMU || preA3Chip)
 777		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
 778	else
 779		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
 780	cmu_wr(ctx, cmu_type, CMU_REG0, val);
 781
 782	/* Configure PLL for calibration */
 783	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 784	val = CMU_REG1_PLL_CP_SET(val, 0x1);
 785	if (cmu_type == REF_CMU || preA3Chip)
 786		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
 787	else
 788		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
 789	if (cmu_type == REF_CMU)
 790		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
 791	else
 792		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
 793	cmu_wr(ctx, cmu_type, CMU_REG1, val);
 794
 795	if (cmu_type != REF_CMU)
 796		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 797
 798	/* Configure the PLL for either 100MHz or 50MHz */
 799	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
 800	if (cmu_type == REF_CMU) {
 801		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
 802		ref_100MHz = 1;
 803	} else {
 804		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
 805		if (clk_type == CLK_EXT_DIFF)
 806			ref_100MHz = 0;
 807		else
 808			ref_100MHz = 1;
 809	}
 810	if (ref_100MHz) {
 811		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
 812		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
 813	} else {
 814		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
 815		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
 816	}
 817	cmu_wr(ctx, cmu_type, CMU_REG2, val);
 818
 819	/* Configure the VCO */
 820	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
 821	if (cmu_type == REF_CMU) {
 822		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
 823		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
 824	} else {
 825		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
 826		if (preA3Chip)
 827			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
 828		else
 829			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
 830		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
 831	}
 832	cmu_wr(ctx, cmu_type, CMU_REG3, val);
 833
 834	/* Disable force PLL lock */
 835	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
 836	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
 837	cmu_wr(ctx, cmu_type, CMU_REG26, val);
 838
 839	/* Setup PLL loop filter */
 840	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
 841	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
 842	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
 843	if (cmu_type == REF_CMU || !preA3Chip)
 844		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
 845	else
 846		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
 847	cmu_wr(ctx, cmu_type, CMU_REG5, val);
 848
 849	/* Enable or disable manual calibration */
 850	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
 851	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
 852	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
 853	cmu_wr(ctx, cmu_type, CMU_REG6, val);
 854
 855	/* Configure lane for 20-bits */
 856	if (cmu_type == PHY_CMU) {
 857		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
 858		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
 859						    CMU_REG9_WORD_LEN_20BIT);
 860		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
 861						    CMU_REG9_WORD_LEN_20BIT);
 862		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
 863		if (!preA3Chip) {
 864			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
 865			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
 866		}
 867		cmu_wr(ctx, cmu_type, CMU_REG9, val);
 868
 869		if (!preA3Chip) {
 870			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
 871			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
 872			cmu_wr(ctx, cmu_type, CMU_REG10, val);
 873		}
 874	}
 875
 876	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
 877	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
 878	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
 879	if (cmu_type == REF_CMU || preA3Chip)
 880		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
 881	else
 882		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
 883	cmu_wr(ctx, cmu_type, CMU_REG16, val);
 884
 885	/* Configure for SATA */
 886	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
 887	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
 888	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
 889	cmu_wr(ctx, cmu_type, CMU_REG30, val);
 890
 891	/* Disable state machine bypass */
 892	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
 893
 894	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
 895	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
 896	if (cmu_type == REF_CMU || preA3Chip)
 897		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
 898	else
 899		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
 900	cmu_wr(ctx, cmu_type, CMU_REG32, val);
 901
 902	/* Set VCO calibration threshold */
 903	if (cmu_type != REF_CMU && preA3Chip)
 904		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
 905	else
 906		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
 907
 908	/* Set CTLE Override and override waiting from state machine */
 909	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
 910}
 911
 912static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
 913				 enum cmu_type_t cmu_type)
 914{
 915	u32 val;
 916
 917	/* Set SSC modulation value */
 918	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
 919	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
 920	cmu_wr(ctx, cmu_type, CMU_REG35, val);
 921
 922	/* Enable SSC, set vertical step and DSM value */
 923	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
 924	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
 925	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
 926	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
 927	cmu_wr(ctx, cmu_type, CMU_REG36, val);
 928
 929	/* Reset the PLL */
 930	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 931	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 932
 933	/* Force VCO calibration to restart */
 934	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
 935		       CMU_REG32_FORCE_VCOCAL_START_MASK);
 936}
 937
 938static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
 939{
 940	u32 val;
 941	u32 reg;
 942	int i;
 943	int lane;
 944
 945	for (lane = 0; lane < MAX_LANE; lane++) {
 946		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
 947
 948		/* Set boost control for quarter, half, and full rate */
 949		serdes_rd(ctx, lane, RXTX_REG0, &val);
 950		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
 951		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
 952		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
 953		serdes_wr(ctx, lane, RXTX_REG0, val);
 954
 955		/* Set boost control value */
 956		serdes_rd(ctx, lane, RXTX_REG1, &val);
 957		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
 958		val = RXTX_REG1_CTLE_EQ_SET(val,
 959			ctx->sata_param.txboostgain[lane * 3 +
 960			ctx->sata_param.speed[lane]]);
 961		serdes_wr(ctx, lane, RXTX_REG1, val);
 962
 963		/* Latch VTT value based on the termination to ground and
 964		 * enable TX FIFO
 965		 */
 966		serdes_rd(ctx, lane, RXTX_REG2, &val);
 967		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
 968		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
 969		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
 970		serdes_wr(ctx, lane, RXTX_REG2, val);
 971
 972		/* Configure Tx for 20-bits */
 973		serdes_rd(ctx, lane, RXTX_REG4, &val);
 974		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
 975		serdes_wr(ctx, lane, RXTX_REG4, val);
 976
 977		if (!preA3Chip) {
 978			serdes_rd(ctx, lane, RXTX_REG1, &val);
 979			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
 980			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
 981			serdes_wr(ctx, lane, RXTX_REG1, val);
 982		}
 983
 984		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
 985		serdes_rd(ctx, lane, RXTX_REG5, &val);
 986		val = RXTX_REG5_TX_CN1_SET(val,
 987			ctx->sata_param.txprecursor_cn1[lane * 3 +
 988			ctx->sata_param.speed[lane]]);
 989		val = RXTX_REG5_TX_CP1_SET(val,
 990			ctx->sata_param.txpostcursor_cp1[lane * 3 +
 991			ctx->sata_param.speed[lane]]);
 992		val = RXTX_REG5_TX_CN2_SET(val,
 993			ctx->sata_param.txprecursor_cn2[lane * 3 +
 994			ctx->sata_param.speed[lane]]);
 995		serdes_wr(ctx, lane, RXTX_REG5, val);
 996
 997		/* Set TX amplitude value */
 998		serdes_rd(ctx, lane, RXTX_REG6, &val);
 999		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1000			ctx->sata_param.txamplitude[lane * 3 +
1001			ctx->sata_param.speed[lane]]);
1002		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1003		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1004		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1005		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1006		serdes_wr(ctx, lane, RXTX_REG6, val);
1007
1008		/* Configure Rx for 20-bits */
1009		serdes_rd(ctx, lane, RXTX_REG7, &val);
1010		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1011		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1012		serdes_wr(ctx, lane, RXTX_REG7, val);
1013
1014		/* Set CDR and LOS values and enable Rx SSC */
1015		serdes_rd(ctx, lane, RXTX_REG8, &val);
1016		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1017		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1018		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1019		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1020		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1021		serdes_wr(ctx, lane, RXTX_REG8, val);
1022
1023		/* Set phase adjust upper/lower limits */
1024		serdes_rd(ctx, lane, RXTX_REG11, &val);
1025		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1026		serdes_wr(ctx, lane, RXTX_REG11, val);
1027
1028		/* Enable Latch Off; disable SUMOS and Tx termination */
1029		serdes_rd(ctx, lane, RXTX_REG12, &val);
1030		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1031		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1032		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1033		serdes_wr(ctx, lane, RXTX_REG12, val);
1034
1035		/* Set period error latch to 512T and enable BWL */
1036		serdes_rd(ctx, lane, RXTX_REG26, &val);
1037		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1038		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1039		serdes_wr(ctx, lane, RXTX_REG26, val);
1040
1041		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1042
1043		/* Set DFE loop preset value */
1044		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1045
1046		/* Set Eye Monitor counter width to 12-bit */
1047		serdes_rd(ctx, lane, RXTX_REG61, &val);
1048		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1049		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1050		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1051		serdes_wr(ctx, lane, RXTX_REG61, val);
1052
1053		serdes_rd(ctx, lane, RXTX_REG62, &val);
1054		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1055		serdes_wr(ctx, lane, RXTX_REG62, val);
1056
1057		/* Set BW select tap X for DFE loop */
1058		for (i = 0; i < 9; i++) {
1059			reg = RXTX_REG81 + i * 2;
1060			serdes_rd(ctx, lane, reg, &val);
1061			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1062			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1063			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1064			serdes_wr(ctx, lane, reg, val);
1065		}
1066
1067		/* Set BW select tap X for frequency adjust loop */
1068		for (i = 0; i < 3; i++) {
1069			reg = RXTX_REG96 + i * 2;
1070			serdes_rd(ctx, lane, reg, &val);
1071			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1072			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1073			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1074			serdes_wr(ctx, lane, reg, val);
1075		}
1076
1077		/* Set BW select tap X for phase adjust loop */
1078		for (i = 0; i < 3; i++) {
1079			reg = RXTX_REG99 + i * 2;
1080			serdes_rd(ctx, lane, reg, &val);
1081			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1082			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1083			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1084			serdes_wr(ctx, lane, reg, val);
1085		}
1086
1087		serdes_rd(ctx, lane, RXTX_REG102, &val);
1088		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1089		serdes_wr(ctx, lane, RXTX_REG102, val);
1090
1091		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1092
1093		serdes_rd(ctx, lane, RXTX_REG125, &val);
1094		val = RXTX_REG125_SIGN_PQ_SET(val,
1095			ctx->sata_param.txeyedirection[lane * 3 +
1096			ctx->sata_param.speed[lane]]);
1097		val = RXTX_REG125_PQ_REG_SET(val,
1098			ctx->sata_param.txeyetuning[lane * 3 +
1099			ctx->sata_param.speed[lane]]);
1100		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1101		serdes_wr(ctx, lane, RXTX_REG125, val);
1102
1103		serdes_rd(ctx, lane, RXTX_REG127, &val);
1104		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1105		serdes_wr(ctx, lane, RXTX_REG127, val);
1106
1107		serdes_rd(ctx, lane, RXTX_REG128, &val);
1108		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1109		serdes_wr(ctx, lane, RXTX_REG128, val);
1110
1111		serdes_rd(ctx, lane, RXTX_REG145, &val);
1112		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1113		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1114		if (preA3Chip) {
1115			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1116			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1117		} else {
1118			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1119			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1120		}
1121		serdes_wr(ctx, lane, RXTX_REG145, val);
1122
1123		/*
1124		 * Set Rx LOS filter clock rate, sample rate, and threshold
1125		 * windows
1126		 */
1127		for (i = 0; i < 4; i++) {
1128			reg = RXTX_REG148 + i * 2;
1129			serdes_wr(ctx, lane, reg, 0xFFFF);
1130		}
1131	}
1132}
1133
1134static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1135				 enum cmu_type_t cmu_type,
1136				 enum clk_type_t clk_type)
1137{
1138	void __iomem *csr_serdes = ctx->sds_base;
1139	int loop;
1140	u32 val;
1141
1142	/* Release PHY main reset */
1143	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1144	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1145
1146	if (cmu_type != REF_CMU) {
1147		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1148		/*
1149		 * As per PHY design spec, the PLL reset requires a minimum
1150		 * of 800us.
1151		 */
1152		usleep_range(800, 1000);
1153
1154		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1155		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1156		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1157		/*
1158		 * As per PHY design spec, the PLL auto calibration requires
1159		 * a minimum of 800us.
1160		 */
1161		usleep_range(800, 1000);
1162
1163		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1164			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1165		/*
1166		 * As per PHY design spec, the PLL requires a minimum of
1167		 * 800us to settle.
1168		 */
1169		usleep_range(800, 1000);
1170	}
1171
1172	if (!preA3Chip)
1173		goto skip_manual_cal;
1174
1175	/*
1176	 * Configure the termination resister calibration
1177	 * The serial receive pins, RXP/RXN, have TERMination resistor
1178	 * that is required to be calibrated.
1179	 */
1180	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1181	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1182	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1183	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1184	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1185		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1186	/*
1187	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1188	 * resistors that are required to the calibrated.
1189	 * Configure the pull DOWN calibration
1190	 */
1191	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1193	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1196		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1197	/* Configure the pull UP calibration */
1198	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1199	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1200	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1201	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1202	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1203		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1204
1205skip_manual_cal:
1206	/* Poll the PLL calibration completion status for at least 1 ms */
1207	loop = 100;
1208	do {
1209		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1210		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1211			break;
1212		/*
1213		 * As per PHY design spec, PLL calibration status requires
1214		 * a minimum of 10us to be updated.
1215		 */
1216		usleep_range(10, 100);
1217	} while (--loop > 0);
1218
1219	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1220	dev_dbg(ctx->dev, "PLL calibration %s\n",
1221		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1222	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1223		dev_err(ctx->dev,
1224			"PLL calibration failed due to VCO failure\n");
1225		return -1;
1226	}
1227	dev_dbg(ctx->dev, "PLL calibration successful\n");
1228
1229	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1230	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1231	return 0;
1232}
1233
1234static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1235				     enum cmu_type_t cmu_type,
1236				     enum clk_type_t clk_type)
1237{
1238	u32 val;
1239
1240	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1241	if (cmu_type == PHY_CMU) {
1242		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1243		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1244		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1245	}
1246
1247	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1248	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1249		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1250}
1251
1252static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1253				  enum clk_type_t clk_type, int ssc_enable)
1254{
1255	void __iomem *sds_base = ctx->sds_base;
1256	u32 val;
1257	int i;
1258
1259	/* Configure the PHY for operation */
1260	dev_dbg(ctx->dev, "Reset PHY\n");
1261	/* Place PHY into reset */
1262	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1263	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1264	/* Release PHY lane from reset (active high) */
1265	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1266	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1267	/* Release all PHY module out of reset except PHY main reset */
1268	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1269	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1270
1271	/* Set the operation speed */
1272	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1273	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1274		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1275	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1276
1277	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1278	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1279	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1280	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1281
1282	/* Configure the clock macro unit (CMU) clock type */
1283	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1284
1285	/* Configure the clock macro */
1286	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1287
1288	/* Enable SSC if enabled */
1289	if (ssc_enable)
1290		xgene_phy_ssc_enable(ctx, PHY_CMU);
1291
1292	/* Configure PHY lanes */
1293	xgene_phy_sata_cfg_lanes(ctx);
1294
1295	/* Set Rx/Tx 20-bit */
1296	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1297	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1298	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1299	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1300
1301	/* Start PLL calibration and try for three times */
1302	i = 10;
1303	do {
1304		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1305			break;
1306		/* If failed, toggle the VCO power signal and start again */
1307		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1308	} while (--i > 0);
1309	/* Even on failure, allow to continue any way */
1310	if (i <= 0)
1311		dev_err(ctx->dev, "PLL calibration failed\n");
1312
1313	return 0;
1314}
1315
1316static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1317				   enum clk_type_t clk_type,
1318				   int ssc_enable)
1319{
1320	int rc;
1321
1322	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1323
1324	if (ctx->mode == MODE_SATA) {
1325		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1326		if (rc)
1327			return rc;
1328	} else {
1329		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1330			ctx->mode);
1331		return -ENODEV;
1332	}
1333
1334	return 0;
1335}
1336
1337/*
1338 * Receiver Offset Calibration:
1339 *
1340 * Calibrate the receiver signal path offset in two steps - summar and
1341 * latch calibrations
1342 */
1343static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1344{
1345	int i;
1346	static const struct {
1347		u32 reg;
1348		u32 val;
1349	} serdes_reg[] = {
1350		{RXTX_REG38, 0x0},
1351		{RXTX_REG39, 0xff00},
1352		{RXTX_REG40, 0xffff},
1353		{RXTX_REG41, 0xffff},
1354		{RXTX_REG42, 0xffff},
1355		{RXTX_REG43, 0xffff},
1356		{RXTX_REG44, 0xffff},
1357		{RXTX_REG45, 0xffff},
1358		{RXTX_REG46, 0xffff},
1359		{RXTX_REG47, 0xfffc},
1360		{RXTX_REG48, 0x0},
1361		{RXTX_REG49, 0x0},
1362		{RXTX_REG50, 0x0},
1363		{RXTX_REG51, 0x0},
1364		{RXTX_REG52, 0x0},
1365		{RXTX_REG53, 0x0},
1366		{RXTX_REG54, 0x0},
1367		{RXTX_REG55, 0x0},
1368	};
1369
1370	/* Start SUMMER calibration */
1371	serdes_setbits(ctx, lane, RXTX_REG127,
1372		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1373	/*
1374	 * As per PHY design spec, the Summer calibration requires a minimum
1375	 * of 100us to complete.
1376	 */
1377	usleep_range(100, 500);
1378	serdes_clrbits(ctx, lane, RXTX_REG127,
1379			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1380	/*
1381	 * As per PHY design spec, the auto calibration requires a minimum
1382	 * of 100us to complete.
1383	 */
1384	usleep_range(100, 500);
1385
1386	/* Start latch calibration */
1387	serdes_setbits(ctx, lane, RXTX_REG127,
1388		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1389	/*
1390	 * As per PHY design spec, the latch calibration requires a minimum
1391	 * of 100us to complete.
1392	 */
1393	usleep_range(100, 500);
1394	serdes_clrbits(ctx, lane, RXTX_REG127,
1395		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1396
1397	/* Configure the PHY lane for calibration */
1398	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1399	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1400	serdes_clrbits(ctx, lane, RXTX_REG4,
1401		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1402	serdes_clrbits(ctx, lane, RXTX_REG7,
1403		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1404	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1405		serdes_wr(ctx, lane, serdes_reg[i].reg,
1406			  serdes_reg[i].val);
1407}
1408
1409static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1410{
1411	/* Reset digital Rx */
1412	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1413	/* As per PHY design spec, the reset requires a minimum of 100us. */
1414	usleep_range(100, 150);
1415	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1416}
1417
1418static int xgene_phy_get_avg(int accum, int samples)
1419{
1420	return (accum + (samples / 2)) / samples;
1421}
1422
1423static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1424{
1425	int max_loop = 10;
1426	int avg_loop = 0;
1427	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1428	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1429	int sum_cal = 0;
1430	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1431	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1432	int sum_cal_itr;
1433	int fail_even;
1434	int fail_odd;
1435	u32 val;
1436
1437	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1438		lane);
1439
1440	/* Enable RX Hi-Z termination */
1441	serdes_setbits(ctx, lane, RXTX_REG12,
1442			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1443	/* Turn off DFE */
1444	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1445	/* DFE Presets to zero */
1446	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1447
1448	/*
1449	 * Receiver Offset Calibration:
1450	 * Calibrate the receiver signal path offset in two steps - summar
1451	 * and latch calibration.
1452	 * Runs the "Receiver Offset Calibration multiple times to determine
1453	 * the average value to use.
1454	 */
1455	while (avg_loop < max_loop) {
1456		/* Start the calibration */
1457		xgene_phy_force_lat_summer_cal(ctx, lane);
1458
1459		serdes_rd(ctx, lane, RXTX_REG21, &val);
1460		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1461		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1462		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1463
1464		serdes_rd(ctx, lane, RXTX_REG22, &val);
1465		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1466		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1467		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1468
1469		serdes_rd(ctx, lane, RXTX_REG23, &val);
1470		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1471		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1472
1473		serdes_rd(ctx, lane, RXTX_REG24, &val);
1474		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1475		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1476
1477		serdes_rd(ctx, lane, RXTX_REG121, &val);
1478		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1479
1480		/* Check for failure. If passed, sum them for averaging */
1481		if ((fail_even == 0 || fail_even == 1) &&
1482		    (fail_odd == 0 || fail_odd == 1)) {
1483			lat_do += lat_do_itr;
1484			lat_xo += lat_xo_itr;
1485			lat_eo += lat_eo_itr;
1486			lat_so += lat_so_itr;
1487			lat_de += lat_de_itr;
1488			lat_xe += lat_xe_itr;
1489			lat_ee += lat_ee_itr;
1490			lat_se += lat_se_itr;
1491			sum_cal += sum_cal_itr;
1492
1493			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1494			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1495				lat_do_itr, lat_xo_itr, lat_eo_itr,
1496				lat_so_itr);
1497			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1498				lat_de_itr, lat_xe_itr, lat_ee_itr,
1499				lat_se_itr);
1500			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1501			++avg_loop;
1502		} else {
1503			dev_err(ctx->dev,
1504				"Receiver calibration failed at %d loop\n",
1505				avg_loop);
1506		}
1507		xgene_phy_reset_rxd(ctx, lane);
1508	}
1509
1510	/* Update latch manual calibration with average value */
1511	serdes_rd(ctx, lane, RXTX_REG127, &val);
1512	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1513		xgene_phy_get_avg(lat_do, max_loop));
1514	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1515		xgene_phy_get_avg(lat_xo, max_loop));
1516	serdes_wr(ctx, lane, RXTX_REG127, val);
1517
1518	serdes_rd(ctx, lane, RXTX_REG128, &val);
1519	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1520		xgene_phy_get_avg(lat_eo, max_loop));
1521	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1522		xgene_phy_get_avg(lat_so, max_loop));
1523	serdes_wr(ctx, lane, RXTX_REG128, val);
1524
1525	serdes_rd(ctx, lane, RXTX_REG129, &val);
1526	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1527		xgene_phy_get_avg(lat_de, max_loop));
1528	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1529		xgene_phy_get_avg(lat_xe, max_loop));
1530	serdes_wr(ctx, lane, RXTX_REG129, val);
1531
1532	serdes_rd(ctx, lane, RXTX_REG130, &val);
1533	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1534		xgene_phy_get_avg(lat_ee, max_loop));
1535	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1536		xgene_phy_get_avg(lat_se, max_loop));
1537	serdes_wr(ctx, lane, RXTX_REG130, val);
1538
1539	/* Update SUMMER calibration with average value */
1540	serdes_rd(ctx, lane, RXTX_REG14, &val);
1541	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1542		xgene_phy_get_avg(sum_cal, max_loop));
1543	serdes_wr(ctx, lane, RXTX_REG14, val);
1544
1545	dev_dbg(ctx->dev, "Average Value:\n");
1546	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1547		 xgene_phy_get_avg(lat_do, max_loop),
1548		 xgene_phy_get_avg(lat_xo, max_loop),
1549		 xgene_phy_get_avg(lat_eo, max_loop),
1550		 xgene_phy_get_avg(lat_so, max_loop));
1551	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1552		 xgene_phy_get_avg(lat_de, max_loop),
1553		 xgene_phy_get_avg(lat_xe, max_loop),
1554		 xgene_phy_get_avg(lat_ee, max_loop),
1555		 xgene_phy_get_avg(lat_se, max_loop));
1556	dev_dbg(ctx->dev, "SUM 0x%x\n",
1557		xgene_phy_get_avg(sum_cal, max_loop));
1558
1559	serdes_rd(ctx, lane, RXTX_REG14, &val);
1560	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1561	serdes_wr(ctx, lane, RXTX_REG14, val);
1562	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1563
1564	serdes_rd(ctx, lane, RXTX_REG127, &val);
1565	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1566	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1567	serdes_wr(ctx, lane, RXTX_REG127, val);
1568
1569	/* Disable RX Hi-Z termination */
1570	serdes_rd(ctx, lane, RXTX_REG12, &val);
1571	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1572	serdes_wr(ctx, lane, RXTX_REG12, val);
1573	/* Turn on DFE */
1574	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1575	/* Set DFE preset */
1576	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1577}
1578
1579static int xgene_phy_hw_init(struct phy *phy)
1580{
1581	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1582	int rc;
1583	int i;
1584
1585	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1586	if (rc) {
1587		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1588		return rc;
1589	}
1590
1591	/* Setup clock properly after PHY configuration */
1592	if (!IS_ERR(ctx->clk)) {
1593		/* HW requires an toggle of the clock */
1594		clk_prepare_enable(ctx->clk);
1595		clk_disable_unprepare(ctx->clk);
1596		clk_prepare_enable(ctx->clk);
1597	}
1598
1599	/* Compute average value */
1600	for (i = 0; i < MAX_LANE; i++)
1601		xgene_phy_gen_avg_val(ctx, i);
1602
1603	dev_dbg(ctx->dev, "PHY initialized\n");
1604	return 0;
1605}
1606
1607static const struct phy_ops xgene_phy_ops = {
1608	.init		= xgene_phy_hw_init,
1609	.owner		= THIS_MODULE,
1610};
1611
1612static struct phy *xgene_phy_xlate(struct device *dev,
1613				   struct of_phandle_args *args)
1614{
1615	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1616
1617	if (args->args_count <= 0)
1618		return ERR_PTR(-EINVAL);
1619	if (args->args[0] >= MODE_MAX)
1620		return ERR_PTR(-EINVAL);
1621
1622	ctx->mode = args->args[0];
1623	return ctx->phy;
1624}
1625
1626static void xgene_phy_get_param(struct platform_device *pdev,
1627				const char *name, u32 *buffer,
1628				int count, u32 *default_val,
1629				u32 conv_factor)
1630{
1631	int i;
1632
1633	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1634					count)) {
1635		for (i = 0; i < count; i++)
1636			buffer[i] /= conv_factor;
1637		return;
1638	}
1639	/* Does not exist, load default */
1640	for (i = 0; i < count; i++)
1641		buffer[i] = default_val[i % 3];
1642}
1643
1644static int xgene_phy_probe(struct platform_device *pdev)
1645{
1646	struct phy_provider *phy_provider;
1647	struct xgene_phy_ctx *ctx;
1648	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1649	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1650	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1651	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1652	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1653	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1654	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1655	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1656	int i;
1657
1658	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1659	if (!ctx)
1660		return -ENOMEM;
1661
1662	ctx->dev = &pdev->dev;
1663
1664	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
1665	if (IS_ERR(ctx->sds_base))
1666		return PTR_ERR(ctx->sds_base);
1667
1668	/* Retrieve optional clock */
1669	ctx->clk = clk_get(&pdev->dev, NULL);
1670
1671	/* Load override paramaters */
1672	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1673		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1674	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1675		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1676	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1677		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1678	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1679		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1680	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1681		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1682	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1683		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1684	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1685		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1686	xgene_phy_get_param(pdev, "apm,tx-speed",
1687		ctx->sata_param.txspeed, 3, default_spd, 1);
1688	for (i = 0; i < MAX_LANE; i++)
1689		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1690
1691	platform_set_drvdata(pdev, ctx);
1692
1693	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1694	if (IS_ERR(ctx->phy)) {
1695		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1696		return PTR_ERR(ctx->phy);
1697	}
1698	phy_set_drvdata(ctx->phy, ctx);
1699
1700	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1701	return PTR_ERR_OR_ZERO(phy_provider);
1702}
1703
1704static const struct of_device_id xgene_phy_of_match[] = {
1705	{.compatible = "apm,xgene-phy",},
1706	{},
1707};
1708MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1709
1710static struct platform_driver xgene_phy_driver = {
1711	.probe = xgene_phy_probe,
1712	.driver = {
1713		   .name = "xgene-phy",
1714		   .of_match_table = xgene_phy_of_match,
1715	},
1716};
1717module_platform_driver(xgene_phy_driver);
1718
1719MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1720MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1721MODULE_LICENSE("GPL v2");
1722MODULE_VERSION("0.1");