Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
  4#include "igc_phy.h"
  5
  6/**
  7 * igc_check_reset_block - Check if PHY reset is blocked
  8 * @hw: pointer to the HW structure
  9 *
 10 * Read the PHY management control register and check whether a PHY reset
 11 * is blocked.  If a reset is not blocked return 0, otherwise
 12 * return IGC_ERR_BLK_PHY_RESET (12).
 13 */
 14s32 igc_check_reset_block(struct igc_hw *hw)
 15{
 16	u32 manc;
 17
 18	manc = rd32(IGC_MANC);
 19
 20	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
 21		IGC_ERR_BLK_PHY_RESET : 0;
 22}
 23
 24/**
 25 * igc_get_phy_id - Retrieve the PHY ID and revision
 26 * @hw: pointer to the HW structure
 27 *
 28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
 29 * revision in the hardware structure.
 30 */
 31s32 igc_get_phy_id(struct igc_hw *hw)
 32{
 33	struct igc_phy_info *phy = &hw->phy;
 34	s32 ret_val = 0;
 35	u16 phy_id;
 36
 37	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
 38	if (ret_val)
 39		goto out;
 40
 41	phy->id = (u32)(phy_id << 16);
 42	usleep_range(200, 500);
 43	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
 44	if (ret_val)
 45		goto out;
 46
 47	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 48	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 49
 50out:
 51	return ret_val;
 52}
 53
 54/**
 55 * igc_phy_has_link - Polls PHY for link
 56 * @hw: pointer to the HW structure
 57 * @iterations: number of times to poll for link
 58 * @usec_interval: delay between polling attempts
 59 * @success: pointer to whether polling was successful or not
 60 *
 61 * Polls the PHY status register for link, 'iterations' number of times.
 62 */
 63s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
 64		     u32 usec_interval, bool *success)
 65{
 66	u16 i, phy_status;
 67	s32 ret_val = 0;
 68
 69	for (i = 0; i < iterations; i++) {
 70		/* Some PHYs require the PHY_STATUS register to be read
 71		 * twice due to the link bit being sticky.  No harm doing
 72		 * it across the board.
 73		 */
 74		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 75		if (ret_val && usec_interval > 0) {
 76			/* If the first read fails, another entity may have
 77			 * ownership of the resources, wait and try again to
 78			 * see if they have relinquished the resources yet.
 79			 */
 80			if (usec_interval >= 1000)
 81				mdelay(usec_interval / 1000);
 82			else
 83				udelay(usec_interval);
 84		}
 85		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 86		if (ret_val)
 87			break;
 88		if (phy_status & MII_SR_LINK_STATUS)
 89			break;
 90		if (usec_interval >= 1000)
 91			mdelay(usec_interval / 1000);
 92		else
 93			udelay(usec_interval);
 94	}
 95
 96	*success = (i < iterations) ? true : false;
 97
 98	return ret_val;
 99}
100
101/**
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
104 *
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
107 */
108void igc_power_up_phy_copper(struct igc_hw *hw)
109{
110	u16 mii_reg = 0;
111
112	/* The PHY will retain its settings across a power down/up cycle */
113	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114	mii_reg &= ~MII_CR_POWER_DOWN;
115	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116}
117
118/**
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
121 *
122 * Power down PHY to save power when interface is down and wake on lan
123 * is not enabled.
124 */
125void igc_power_down_phy_copper(struct igc_hw *hw)
126{
127	u16 mii_reg = 0;
128
129	/* The PHY will retain its settings across a power down/up cycle */
130	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131	mii_reg |= MII_CR_POWER_DOWN;
132
133	/* Temporary workaround - should be removed when PHY will implement
134	 * IEEE registers as properly
135	 */
136	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137	usleep_range(1000, 2000);
138}
139
140/**
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
143 *
 
 
144 * A downshift is detected by querying the PHY link health.
145 */
146void igc_check_downshift(struct igc_hw *hw)
147{
148	struct igc_phy_info *phy = &hw->phy;
 
 
 
 
 
 
 
 
 
149
150	/* speed downshift not supported */
151	phy->speed_downgraded = false;
152}
153
154/**
155 * igc_phy_hw_reset - PHY hardware reset
156 * @hw: pointer to the HW structure
157 *
158 * Verify the reset block is not blocking us from resetting.  Acquire
159 * semaphore (if necessary) and read/set/write the device control reset
160 * bit in the PHY.  Wait the appropriate delay time for the device to
161 * reset and release the semaphore (if necessary).
162 */
163s32 igc_phy_hw_reset(struct igc_hw *hw)
164{
165	struct igc_phy_info *phy = &hw->phy;
166	u32 phpm = 0, timeout = 10000;
167	s32  ret_val;
168	u32 ctrl;
169
170	ret_val = igc_check_reset_block(hw);
171	if (ret_val) {
172		ret_val = 0;
173		goto out;
174	}
175
176	ret_val = phy->ops.acquire(hw);
177	if (ret_val)
178		goto out;
179
180	phpm = rd32(IGC_I225_PHPM);
181
182	ctrl = rd32(IGC_CTRL);
183	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
184	wrfl();
185
186	udelay(phy->reset_delay_us);
187
188	wr32(IGC_CTRL, ctrl);
189	wrfl();
190
191	/* SW should guarantee 100us for the completion of the PHY reset */
192	usleep_range(100, 150);
193	do {
194		phpm = rd32(IGC_I225_PHPM);
195		timeout--;
196		udelay(1);
197	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
198
199	if (!timeout)
200		hw_dbg("Timeout is expired after a phy reset\n");
201
202	usleep_range(100, 150);
203
204	phy->ops.release(hw);
205
206out:
207	return ret_val;
208}
209
210/**
211 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
212 * @hw: pointer to the HW structure
213 *
214 * Reads the MII auto-neg advertisement register and/or the 1000T control
215 * register and if the PHY is already setup for auto-negotiation, then
216 * return successful.  Otherwise, setup advertisement and flow control to
217 * the appropriate values for the wanted auto-negotiation.
218 */
219static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
220{
221	struct igc_phy_info *phy = &hw->phy;
222	u16 aneg_multigbt_an_ctrl = 0;
223	u16 mii_1000t_ctrl_reg = 0;
224	u16 mii_autoneg_adv_reg;
225	s32 ret_val;
226
227	phy->autoneg_advertised &= phy->autoneg_mask;
228
229	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
230	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
231	if (ret_val)
232		return ret_val;
233
234	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
235		/* Read the MII 1000Base-T Control Register (Address 9). */
236		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
237					    &mii_1000t_ctrl_reg);
238		if (ret_val)
239			return ret_val;
240	}
241
242	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
 
243		/* Read the MULTI GBT AN Control Register - reg 7.32 */
244		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
245					    MMD_DEVADDR_SHIFT) |
246					    ANEG_MULTIGBT_AN_CTRL,
247					    &aneg_multigbt_an_ctrl);
248
249		if (ret_val)
250			return ret_val;
251	}
252
253	/* Need to parse both autoneg_advertised and fc and set up
254	 * the appropriate PHY registers.  First we will parse for
255	 * autoneg_advertised software override.  Since we can advertise
256	 * a plethora of combinations, we need to check each bit
257	 * individually.
258	 */
259
260	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
261	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
262	 * the  1000Base-T Control Register (Address 9).
263	 */
264	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
265				 NWAY_AR_100TX_HD_CAPS |
266				 NWAY_AR_10T_FD_CAPS   |
267				 NWAY_AR_10T_HD_CAPS);
268	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
269
270	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
271
272	/* Do we want to advertise 10 Mb Half Duplex? */
273	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
274		hw_dbg("Advertise 10mb Half duplex\n");
275		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
276	}
277
278	/* Do we want to advertise 10 Mb Full Duplex? */
279	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
280		hw_dbg("Advertise 10mb Full duplex\n");
281		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
282	}
283
284	/* Do we want to advertise 100 Mb Half Duplex? */
285	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
286		hw_dbg("Advertise 100mb Half duplex\n");
287		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
288	}
289
290	/* Do we want to advertise 100 Mb Full Duplex? */
291	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
292		hw_dbg("Advertise 100mb Full duplex\n");
293		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
294	}
295
296	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
297	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
298		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
299
300	/* Do we want to advertise 1000 Mb Full Duplex? */
301	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
302		hw_dbg("Advertise 1000mb Full duplex\n");
303		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
304	}
305
306	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
307	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
308		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
309
310	/* Do we want to advertise 2500 Mb Full Duplex? */
311	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
312		hw_dbg("Advertise 2500mb Full duplex\n");
313		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
314	} else {
315		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
316	}
317
318	/* Check for a software override of the flow control settings, and
319	 * setup the PHY advertisement registers accordingly.  If
320	 * auto-negotiation is enabled, then software will have to set the
321	 * "PAUSE" bits to the correct value in the Auto-Negotiation
322	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
323	 * negotiation.
324	 *
325	 * The possible values of the "fc" parameter are:
326	 *      0:  Flow control is completely disabled
327	 *      1:  Rx flow control is enabled (we can receive pause frames
328	 *          but not send pause frames).
329	 *      2:  Tx flow control is enabled (we can send pause frames
330	 *          but we do not support receiving pause frames).
331	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
332	 *  other:  No software override.  The flow control configuration
333	 *          in the EEPROM is used.
334	 */
335	switch (hw->fc.current_mode) {
336	case igc_fc_none:
337		/* Flow control (Rx & Tx) is completely disabled by a
338		 * software over-ride.
339		 */
340		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
341		break;
342	case igc_fc_rx_pause:
343		/* Rx Flow control is enabled, and Tx Flow control is
344		 * disabled, by a software over-ride.
345		 *
346		 * Since there really isn't a way to advertise that we are
347		 * capable of Rx Pause ONLY, we will advertise that we
348		 * support both symmetric and asymmetric Rx PAUSE.  Later
349		 * (in igc_config_fc_after_link_up) we will disable the
350		 * hw's ability to send PAUSE frames.
351		 */
352		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
353		break;
354	case igc_fc_tx_pause:
355		/* Tx Flow control is enabled, and Rx Flow control is
356		 * disabled, by a software over-ride.
357		 */
358		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
359		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
360		break;
361	case igc_fc_full:
362		/* Flow control (both Rx and Tx) is enabled by a software
363		 * over-ride.
364		 */
365		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
366		break;
367	default:
368		hw_dbg("Flow control param set incorrectly\n");
369		return -IGC_ERR_CONFIG;
370	}
371
372	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
373	if (ret_val)
374		return ret_val;
375
376	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
377
378	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
379		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
380					     mii_1000t_ctrl_reg);
381
382	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
 
383		ret_val = phy->ops.write_reg(hw,
384					     (STANDARD_AN_REG_MASK <<
385					     MMD_DEVADDR_SHIFT) |
386					     ANEG_MULTIGBT_AN_CTRL,
387					     aneg_multigbt_an_ctrl);
388
389	return ret_val;
390}
391
392/**
393 * igc_wait_autoneg - Wait for auto-neg completion
394 * @hw: pointer to the HW structure
395 *
396 * Waits for auto-negotiation to complete or for the auto-negotiation time
397 * limit to expire, which ever happens first.
398 */
399static s32 igc_wait_autoneg(struct igc_hw *hw)
400{
401	u16 i, phy_status;
402	s32 ret_val = 0;
403
404	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
405	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
406		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
407		if (ret_val)
408			break;
409		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
410		if (ret_val)
411			break;
412		if (phy_status & MII_SR_AUTONEG_COMPLETE)
413			break;
414		msleep(100);
415	}
416
417	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
418	 * has completed.
419	 */
420	return ret_val;
421}
422
423/**
424 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
425 * @hw: pointer to the HW structure
426 *
427 * Performs initial bounds checking on autoneg advertisement parameter, then
428 * configure to advertise the full capability.  Setup the PHY to autoneg
429 * and restart the negotiation process between the link partner.  If
430 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
431 */
432static s32 igc_copper_link_autoneg(struct igc_hw *hw)
433{
434	struct igc_phy_info *phy = &hw->phy;
435	u16 phy_ctrl;
436	s32 ret_val;
437
438	/* Perform some bounds checking on the autoneg advertisement
439	 * parameter.
440	 */
441	phy->autoneg_advertised &= phy->autoneg_mask;
442
443	/* If autoneg_advertised is zero, we assume it was not defaulted
444	 * by the calling code so we set to advertise full capability.
445	 */
446	if (phy->autoneg_advertised == 0)
447		phy->autoneg_advertised = phy->autoneg_mask;
448
449	hw_dbg("Reconfiguring auto-neg advertisement params\n");
450	ret_val = igc_phy_setup_autoneg(hw);
451	if (ret_val) {
452		hw_dbg("Error Setting up Auto-Negotiation\n");
453		goto out;
454	}
455	hw_dbg("Restarting Auto-Neg\n");
456
457	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
458	 * the Auto Neg Restart bit in the PHY control register.
459	 */
460	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
461	if (ret_val)
462		goto out;
463
464	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
465	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
466	if (ret_val)
467		goto out;
468
469	/* Does the user want to wait for Auto-Neg to complete here, or
470	 * check at a later time (for example, callback routine).
471	 */
472	if (phy->autoneg_wait_to_complete) {
473		ret_val = igc_wait_autoneg(hw);
474		if (ret_val) {
475			hw_dbg("Error while waiting for autoneg to complete\n");
476			goto out;
477		}
478	}
479
480	hw->mac.get_link_status = true;
481
482out:
483	return ret_val;
484}
485
486/**
487 * igc_setup_copper_link - Configure copper link settings
488 * @hw: pointer to the HW structure
489 *
490 * Calls the appropriate function to configure the link for auto-neg or forced
491 * speed and duplex.  Then we check for link, once link is established calls
492 * to configure collision distance and flow control are called.  If link is
493 * not established, we return -IGC_ERR_PHY (-2).
494 */
495s32 igc_setup_copper_link(struct igc_hw *hw)
496{
497	s32 ret_val = 0;
498	bool link;
499
500	if (hw->mac.autoneg) {
501		/* Setup autoneg and flow control advertisement and perform
502		 * autonegotiation.
503		 */
504		ret_val = igc_copper_link_autoneg(hw);
505		if (ret_val)
506			goto out;
507	} else {
508		/* PHY will be set to 10H, 10F, 100H or 100F
509		 * depending on user settings.
510		 */
511		hw_dbg("Forcing Speed and Duplex\n");
512		ret_val = hw->phy.ops.force_speed_duplex(hw);
513		if (ret_val) {
514			hw_dbg("Error Forcing Speed and Duplex\n");
515			goto out;
516		}
517	}
518
519	/* Check link status. Wait up to 100 microseconds for link to become
520	 * valid.
521	 */
522	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
523	if (ret_val)
524		goto out;
525
526	if (link) {
527		hw_dbg("Valid link established!!!\n");
528		igc_config_collision_dist(hw);
529		ret_val = igc_config_fc_after_link_up(hw);
530	} else {
531		hw_dbg("Unable to establish link!!!\n");
532	}
533
534out:
535	return ret_val;
536}
537
538/**
539 * igc_read_phy_reg_mdic - Read MDI control register
540 * @hw: pointer to the HW structure
541 * @offset: register offset to be read
542 * @data: pointer to the read data
543 *
544 * Reads the MDI control register in the PHY at offset and stores the
545 * information read to data.
546 */
547static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
548{
549	struct igc_phy_info *phy = &hw->phy;
550	u32 i, mdic = 0;
551	s32 ret_val = 0;
552
553	if (offset > MAX_PHY_REG_ADDRESS) {
554		hw_dbg("PHY Address %d is out of range\n", offset);
555		ret_val = -IGC_ERR_PARAM;
556		goto out;
557	}
558
559	/* Set up Op-code, Phy Address, and register offset in the MDI
560	 * Control register.  The MAC will take care of interfacing with the
561	 * PHY to retrieve the desired data.
562	 */
563	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
564		(phy->addr << IGC_MDIC_PHY_SHIFT) |
565		(IGC_MDIC_OP_READ));
566
567	wr32(IGC_MDIC, mdic);
568
569	/* Poll the ready bit to see if the MDI read completed
570	 * Increasing the time out as testing showed failures with
571	 * the lower time out
572	 */
573	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
574		udelay(50);
575		mdic = rd32(IGC_MDIC);
576		if (mdic & IGC_MDIC_READY)
577			break;
578	}
579	if (!(mdic & IGC_MDIC_READY)) {
580		hw_dbg("MDI Read did not complete\n");
581		ret_val = -IGC_ERR_PHY;
582		goto out;
583	}
584	if (mdic & IGC_MDIC_ERROR) {
585		hw_dbg("MDI Error\n");
586		ret_val = -IGC_ERR_PHY;
587		goto out;
588	}
589	*data = (u16)mdic;
590
591out:
592	return ret_val;
593}
594
595/**
596 * igc_write_phy_reg_mdic - Write MDI control register
597 * @hw: pointer to the HW structure
598 * @offset: register offset to write to
599 * @data: data to write to register at offset
600 *
601 * Writes data to MDI control register in the PHY at offset.
602 */
603static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
604{
605	struct igc_phy_info *phy = &hw->phy;
606	u32 i, mdic = 0;
607	s32 ret_val = 0;
608
609	if (offset > MAX_PHY_REG_ADDRESS) {
610		hw_dbg("PHY Address %d is out of range\n", offset);
611		ret_val = -IGC_ERR_PARAM;
612		goto out;
613	}
614
615	/* Set up Op-code, Phy Address, and register offset in the MDI
616	 * Control register.  The MAC will take care of interfacing with the
617	 * PHY to write the desired data.
618	 */
619	mdic = (((u32)data) |
620		(offset << IGC_MDIC_REG_SHIFT) |
621		(phy->addr << IGC_MDIC_PHY_SHIFT) |
622		(IGC_MDIC_OP_WRITE));
623
624	wr32(IGC_MDIC, mdic);
625
626	/* Poll the ready bit to see if the MDI read completed
627	 * Increasing the time out as testing showed failures with
628	 * the lower time out
629	 */
630	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
631		udelay(50);
632		mdic = rd32(IGC_MDIC);
633		if (mdic & IGC_MDIC_READY)
634			break;
635	}
636	if (!(mdic & IGC_MDIC_READY)) {
637		hw_dbg("MDI Write did not complete\n");
638		ret_val = -IGC_ERR_PHY;
639		goto out;
640	}
641	if (mdic & IGC_MDIC_ERROR) {
642		hw_dbg("MDI Error\n");
643		ret_val = -IGC_ERR_PHY;
644		goto out;
645	}
646
647out:
648	return ret_val;
649}
650
651/**
652 * __igc_access_xmdio_reg - Read/write XMDIO register
653 * @hw: pointer to the HW structure
654 * @address: XMDIO address to program
655 * @dev_addr: device address to program
656 * @data: pointer to value to read/write from/to the XMDIO address
657 * @read: boolean flag to indicate read or write
658 */
659static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
660				  u8 dev_addr, u16 *data, bool read)
661{
662	s32 ret_val;
663
664	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
665	if (ret_val)
666		return ret_val;
667
668	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
669	if (ret_val)
670		return ret_val;
671
672	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
673					dev_addr);
674	if (ret_val)
675		return ret_val;
676
677	if (read)
678		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
679	else
680		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
681	if (ret_val)
682		return ret_val;
683
684	/* Recalibrate the device back to 0 */
685	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
686	if (ret_val)
687		return ret_val;
688
689	return ret_val;
690}
691
692/**
693 * igc_read_xmdio_reg - Read XMDIO register
694 * @hw: pointer to the HW structure
695 * @addr: XMDIO address to program
696 * @dev_addr: device address to program
697 * @data: value to be read from the EMI address
698 */
699static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
700			      u8 dev_addr, u16 *data)
701{
702	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
703}
704
705/**
706 * igc_write_xmdio_reg - Write XMDIO register
707 * @hw: pointer to the HW structure
708 * @addr: XMDIO address to program
709 * @dev_addr: device address to program
710 * @data: value to be written to the XMDIO address
711 */
712static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
713			       u8 dev_addr, u16 data)
714{
715	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
716}
717
718/**
719 * igc_write_phy_reg_gpy - Write GPY PHY register
720 * @hw: pointer to the HW structure
721 * @offset: register offset to write to
722 * @data: data to write at register offset
723 *
724 * Acquires semaphore, if necessary, then writes the data to PHY register
725 * at the offset. Release any acquired semaphores before exiting.
726 */
727s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
728{
729	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
730	s32 ret_val;
731
732	offset = offset & GPY_REG_MASK;
733
734	if (!dev_addr) {
735		ret_val = hw->phy.ops.acquire(hw);
736		if (ret_val)
737			return ret_val;
738		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
 
 
739		hw->phy.ops.release(hw);
740	} else {
741		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
742					      data);
743	}
744
745	return ret_val;
746}
747
748/**
749 * igc_read_phy_reg_gpy - Read GPY PHY register
750 * @hw: pointer to the HW structure
751 * @offset: lower half is register offset to read to
752 * upper half is MMD to use.
753 * @data: data to read at register offset
754 *
755 * Acquires semaphore, if necessary, then reads the data in the PHY register
756 * at the offset. Release any acquired semaphores before exiting.
757 */
758s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
759{
760	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
761	s32 ret_val;
762
763	offset = offset & GPY_REG_MASK;
764
765	if (!dev_addr) {
766		ret_val = hw->phy.ops.acquire(hw);
767		if (ret_val)
768			return ret_val;
769		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
 
 
770		hw->phy.ops.release(hw);
771	} else {
772		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
773					     data);
774	}
775
776	return ret_val;
777}
778
779/**
780 * igc_read_phy_fw_version - Read gPHY firmware version
781 * @hw: pointer to the HW structure
782 */
783u16 igc_read_phy_fw_version(struct igc_hw *hw)
784{
785	struct igc_phy_info *phy = &hw->phy;
786	u16 gphy_version = 0;
787	u16 ret_val;
788
789	/* NVM image version is reported as firmware version for i225 device */
790	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
791	if (ret_val)
792		hw_dbg("igc_phy: read wrong gphy version\n");
793
794	return gphy_version;
795}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
  4#include "igc_phy.h"
  5
  6/**
  7 * igc_check_reset_block - Check if PHY reset is blocked
  8 * @hw: pointer to the HW structure
  9 *
 10 * Read the PHY management control register and check whether a PHY reset
 11 * is blocked.  If a reset is not blocked return 0, otherwise
 12 * return IGC_ERR_BLK_PHY_RESET (12).
 13 */
 14s32 igc_check_reset_block(struct igc_hw *hw)
 15{
 16	u32 manc;
 17
 18	manc = rd32(IGC_MANC);
 19
 20	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
 21		IGC_ERR_BLK_PHY_RESET : 0;
 22}
 23
 24/**
 25 * igc_get_phy_id - Retrieve the PHY ID and revision
 26 * @hw: pointer to the HW structure
 27 *
 28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
 29 * revision in the hardware structure.
 30 */
 31s32 igc_get_phy_id(struct igc_hw *hw)
 32{
 33	struct igc_phy_info *phy = &hw->phy;
 34	s32 ret_val = 0;
 35	u16 phy_id;
 36
 37	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
 38	if (ret_val)
 39		goto out;
 40
 41	phy->id = (u32)(phy_id << 16);
 42	usleep_range(200, 500);
 43	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
 44	if (ret_val)
 45		goto out;
 46
 47	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 48	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 49
 50out:
 51	return ret_val;
 52}
 53
 54/**
 55 * igc_phy_has_link - Polls PHY for link
 56 * @hw: pointer to the HW structure
 57 * @iterations: number of times to poll for link
 58 * @usec_interval: delay between polling attempts
 59 * @success: pointer to whether polling was successful or not
 60 *
 61 * Polls the PHY status register for link, 'iterations' number of times.
 62 */
 63s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
 64		     u32 usec_interval, bool *success)
 65{
 66	u16 i, phy_status;
 67	s32 ret_val = 0;
 68
 69	for (i = 0; i < iterations; i++) {
 70		/* Some PHYs require the PHY_STATUS register to be read
 71		 * twice due to the link bit being sticky.  No harm doing
 72		 * it across the board.
 73		 */
 74		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 75		if (ret_val && usec_interval > 0) {
 76			/* If the first read fails, another entity may have
 77			 * ownership of the resources, wait and try again to
 78			 * see if they have relinquished the resources yet.
 79			 */
 80			if (usec_interval >= 1000)
 81				mdelay(usec_interval / 1000);
 82			else
 83				udelay(usec_interval);
 84		}
 85		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
 86		if (ret_val)
 87			break;
 88		if (phy_status & MII_SR_LINK_STATUS)
 89			break;
 90		if (usec_interval >= 1000)
 91			mdelay(usec_interval / 1000);
 92		else
 93			udelay(usec_interval);
 94	}
 95
 96	*success = (i < iterations) ? true : false;
 97
 98	return ret_val;
 99}
100
101/**
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
104 *
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
107 */
108void igc_power_up_phy_copper(struct igc_hw *hw)
109{
110	u16 mii_reg = 0;
111
112	/* The PHY will retain its settings across a power down/up cycle */
113	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114	mii_reg &= ~MII_CR_POWER_DOWN;
115	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116}
117
118/**
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
121 *
122 * Power down PHY to save power when interface is down and wake on lan
123 * is not enabled.
124 */
125void igc_power_down_phy_copper(struct igc_hw *hw)
126{
127	u16 mii_reg = 0;
128
129	/* The PHY will retain its settings across a power down/up cycle */
130	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131	mii_reg |= MII_CR_POWER_DOWN;
132
133	/* Temporary workaround - should be removed when PHY will implement
134	 * IEEE registers as properly
135	 */
136	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137	usleep_range(1000, 2000);
138}
139
140/**
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
143 *
144 * Success returns 0, Failure returns 1
145 *
146 * A downshift is detected by querying the PHY link health.
147 */
148s32 igc_check_downshift(struct igc_hw *hw)
149{
150	struct igc_phy_info *phy = &hw->phy;
151	s32 ret_val;
152
153	switch (phy->type) {
154	case igc_phy_i225:
155	default:
156		/* speed downshift not supported */
157		phy->speed_downgraded = false;
158		ret_val = 0;
159	}
160
161	return ret_val;
 
162}
163
164/**
165 * igc_phy_hw_reset - PHY hardware reset
166 * @hw: pointer to the HW structure
167 *
168 * Verify the reset block is not blocking us from resetting.  Acquire
169 * semaphore (if necessary) and read/set/write the device control reset
170 * bit in the PHY.  Wait the appropriate delay time for the device to
171 * reset and release the semaphore (if necessary).
172 */
173s32 igc_phy_hw_reset(struct igc_hw *hw)
174{
175	struct igc_phy_info *phy = &hw->phy;
176	u32 phpm = 0, timeout = 10000;
177	s32  ret_val;
178	u32 ctrl;
179
180	ret_val = igc_check_reset_block(hw);
181	if (ret_val) {
182		ret_val = 0;
183		goto out;
184	}
185
186	ret_val = phy->ops.acquire(hw);
187	if (ret_val)
188		goto out;
189
190	phpm = rd32(IGC_I225_PHPM);
191
192	ctrl = rd32(IGC_CTRL);
193	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
194	wrfl();
195
196	udelay(phy->reset_delay_us);
197
198	wr32(IGC_CTRL, ctrl);
199	wrfl();
200
201	/* SW should guarantee 100us for the completion of the PHY reset */
202	usleep_range(100, 150);
203	do {
204		phpm = rd32(IGC_I225_PHPM);
205		timeout--;
206		udelay(1);
207	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
208
209	if (!timeout)
210		hw_dbg("Timeout is expired after a phy reset\n");
211
212	usleep_range(100, 150);
213
214	phy->ops.release(hw);
215
216out:
217	return ret_val;
218}
219
220/**
221 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
222 * @hw: pointer to the HW structure
223 *
224 * Reads the MII auto-neg advertisement register and/or the 1000T control
225 * register and if the PHY is already setup for auto-negotiation, then
226 * return successful.  Otherwise, setup advertisement and flow control to
227 * the appropriate values for the wanted auto-negotiation.
228 */
229static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
230{
231	struct igc_phy_info *phy = &hw->phy;
232	u16 aneg_multigbt_an_ctrl = 0;
233	u16 mii_1000t_ctrl_reg = 0;
234	u16 mii_autoneg_adv_reg;
235	s32 ret_val;
236
237	phy->autoneg_advertised &= phy->autoneg_mask;
238
239	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
240	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
241	if (ret_val)
242		return ret_val;
243
244	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
245		/* Read the MII 1000Base-T Control Register (Address 9). */
246		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
247					    &mii_1000t_ctrl_reg);
248		if (ret_val)
249			return ret_val;
250	}
251
252	if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
253	    hw->phy.id == I225_I_PHY_ID) {
254		/* Read the MULTI GBT AN Control Register - reg 7.32 */
255		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
256					    MMD_DEVADDR_SHIFT) |
257					    ANEG_MULTIGBT_AN_CTRL,
258					    &aneg_multigbt_an_ctrl);
259
260		if (ret_val)
261			return ret_val;
262	}
263
264	/* Need to parse both autoneg_advertised and fc and set up
265	 * the appropriate PHY registers.  First we will parse for
266	 * autoneg_advertised software override.  Since we can advertise
267	 * a plethora of combinations, we need to check each bit
268	 * individually.
269	 */
270
271	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
272	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
273	 * the  1000Base-T Control Register (Address 9).
274	 */
275	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
276				 NWAY_AR_100TX_HD_CAPS |
277				 NWAY_AR_10T_FD_CAPS   |
278				 NWAY_AR_10T_HD_CAPS);
279	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
280
281	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
282
283	/* Do we want to advertise 10 Mb Half Duplex? */
284	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
285		hw_dbg("Advertise 10mb Half duplex\n");
286		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
287	}
288
289	/* Do we want to advertise 10 Mb Full Duplex? */
290	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
291		hw_dbg("Advertise 10mb Full duplex\n");
292		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
293	}
294
295	/* Do we want to advertise 100 Mb Half Duplex? */
296	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
297		hw_dbg("Advertise 100mb Half duplex\n");
298		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
299	}
300
301	/* Do we want to advertise 100 Mb Full Duplex? */
302	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
303		hw_dbg("Advertise 100mb Full duplex\n");
304		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
305	}
306
307	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
308	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
309		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
310
311	/* Do we want to advertise 1000 Mb Full Duplex? */
312	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
313		hw_dbg("Advertise 1000mb Full duplex\n");
314		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
315	}
316
317	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
318	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
319		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
320
321	/* Do we want to advertise 2500 Mb Full Duplex? */
322	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
323		hw_dbg("Advertise 2500mb Full duplex\n");
324		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
325	} else {
326		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
327	}
328
329	/* Check for a software override of the flow control settings, and
330	 * setup the PHY advertisement registers accordingly.  If
331	 * auto-negotiation is enabled, then software will have to set the
332	 * "PAUSE" bits to the correct value in the Auto-Negotiation
333	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
334	 * negotiation.
335	 *
336	 * The possible values of the "fc" parameter are:
337	 *      0:  Flow control is completely disabled
338	 *      1:  Rx flow control is enabled (we can receive pause frames
339	 *          but not send pause frames).
340	 *      2:  Tx flow control is enabled (we can send pause frames
341	 *          but we do not support receiving pause frames).
342	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
343	 *  other:  No software override.  The flow control configuration
344	 *          in the EEPROM is used.
345	 */
346	switch (hw->fc.current_mode) {
347	case igc_fc_none:
348		/* Flow control (Rx & Tx) is completely disabled by a
349		 * software over-ride.
350		 */
351		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
352		break;
353	case igc_fc_rx_pause:
354		/* Rx Flow control is enabled, and Tx Flow control is
355		 * disabled, by a software over-ride.
356		 *
357		 * Since there really isn't a way to advertise that we are
358		 * capable of Rx Pause ONLY, we will advertise that we
359		 * support both symmetric and asymmetric Rx PAUSE.  Later
360		 * (in igc_config_fc_after_link_up) we will disable the
361		 * hw's ability to send PAUSE frames.
362		 */
363		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
364		break;
365	case igc_fc_tx_pause:
366		/* Tx Flow control is enabled, and Rx Flow control is
367		 * disabled, by a software over-ride.
368		 */
369		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
370		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
371		break;
372	case igc_fc_full:
373		/* Flow control (both Rx and Tx) is enabled by a software
374		 * over-ride.
375		 */
376		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
377		break;
378	default:
379		hw_dbg("Flow control param set incorrectly\n");
380		return -IGC_ERR_CONFIG;
381	}
382
383	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
384	if (ret_val)
385		return ret_val;
386
387	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
388
389	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
390		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
391					     mii_1000t_ctrl_reg);
392
393	if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
394	    hw->phy.id == I225_I_PHY_ID)
395		ret_val = phy->ops.write_reg(hw,
396					     (STANDARD_AN_REG_MASK <<
397					     MMD_DEVADDR_SHIFT) |
398					     ANEG_MULTIGBT_AN_CTRL,
399					     aneg_multigbt_an_ctrl);
400
401	return ret_val;
402}
403
404/**
405 * igc_wait_autoneg - Wait for auto-neg completion
406 * @hw: pointer to the HW structure
407 *
408 * Waits for auto-negotiation to complete or for the auto-negotiation time
409 * limit to expire, which ever happens first.
410 */
411static s32 igc_wait_autoneg(struct igc_hw *hw)
412{
413	u16 i, phy_status;
414	s32 ret_val = 0;
415
416	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
417	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
418		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
419		if (ret_val)
420			break;
421		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
422		if (ret_val)
423			break;
424		if (phy_status & MII_SR_AUTONEG_COMPLETE)
425			break;
426		msleep(100);
427	}
428
429	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
430	 * has completed.
431	 */
432	return ret_val;
433}
434
435/**
436 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
437 * @hw: pointer to the HW structure
438 *
439 * Performs initial bounds checking on autoneg advertisement parameter, then
440 * configure to advertise the full capability.  Setup the PHY to autoneg
441 * and restart the negotiation process between the link partner.  If
442 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
443 */
444static s32 igc_copper_link_autoneg(struct igc_hw *hw)
445{
446	struct igc_phy_info *phy = &hw->phy;
447	u16 phy_ctrl;
448	s32 ret_val;
449
450	/* Perform some bounds checking on the autoneg advertisement
451	 * parameter.
452	 */
453	phy->autoneg_advertised &= phy->autoneg_mask;
454
455	/* If autoneg_advertised is zero, we assume it was not defaulted
456	 * by the calling code so we set to advertise full capability.
457	 */
458	if (phy->autoneg_advertised == 0)
459		phy->autoneg_advertised = phy->autoneg_mask;
460
461	hw_dbg("Reconfiguring auto-neg advertisement params\n");
462	ret_val = igc_phy_setup_autoneg(hw);
463	if (ret_val) {
464		hw_dbg("Error Setting up Auto-Negotiation\n");
465		goto out;
466	}
467	hw_dbg("Restarting Auto-Neg\n");
468
469	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
470	 * the Auto Neg Restart bit in the PHY control register.
471	 */
472	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
473	if (ret_val)
474		goto out;
475
476	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
477	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
478	if (ret_val)
479		goto out;
480
481	/* Does the user want to wait for Auto-Neg to complete here, or
482	 * check at a later time (for example, callback routine).
483	 */
484	if (phy->autoneg_wait_to_complete) {
485		ret_val = igc_wait_autoneg(hw);
486		if (ret_val) {
487			hw_dbg("Error while waiting for autoneg to complete\n");
488			goto out;
489		}
490	}
491
492	hw->mac.get_link_status = true;
493
494out:
495	return ret_val;
496}
497
498/**
499 * igc_setup_copper_link - Configure copper link settings
500 * @hw: pointer to the HW structure
501 *
502 * Calls the appropriate function to configure the link for auto-neg or forced
503 * speed and duplex.  Then we check for link, once link is established calls
504 * to configure collision distance and flow control are called.  If link is
505 * not established, we return -IGC_ERR_PHY (-2).
506 */
507s32 igc_setup_copper_link(struct igc_hw *hw)
508{
509	s32 ret_val = 0;
510	bool link;
511
512	if (hw->mac.autoneg) {
513		/* Setup autoneg and flow control advertisement and perform
514		 * autonegotiation.
515		 */
516		ret_val = igc_copper_link_autoneg(hw);
517		if (ret_val)
518			goto out;
519	} else {
520		/* PHY will be set to 10H, 10F, 100H or 100F
521		 * depending on user settings.
522		 */
523		hw_dbg("Forcing Speed and Duplex\n");
524		ret_val = hw->phy.ops.force_speed_duplex(hw);
525		if (ret_val) {
526			hw_dbg("Error Forcing Speed and Duplex\n");
527			goto out;
528		}
529	}
530
531	/* Check link status. Wait up to 100 microseconds for link to become
532	 * valid.
533	 */
534	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
535	if (ret_val)
536		goto out;
537
538	if (link) {
539		hw_dbg("Valid link established!!!\n");
540		igc_config_collision_dist(hw);
541		ret_val = igc_config_fc_after_link_up(hw);
542	} else {
543		hw_dbg("Unable to establish link!!!\n");
544	}
545
546out:
547	return ret_val;
548}
549
550/**
551 * igc_read_phy_reg_mdic - Read MDI control register
552 * @hw: pointer to the HW structure
553 * @offset: register offset to be read
554 * @data: pointer to the read data
555 *
556 * Reads the MDI control register in the PHY at offset and stores the
557 * information read to data.
558 */
559static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
560{
561	struct igc_phy_info *phy = &hw->phy;
562	u32 i, mdic = 0;
563	s32 ret_val = 0;
564
565	if (offset > MAX_PHY_REG_ADDRESS) {
566		hw_dbg("PHY Address %d is out of range\n", offset);
567		ret_val = -IGC_ERR_PARAM;
568		goto out;
569	}
570
571	/* Set up Op-code, Phy Address, and register offset in the MDI
572	 * Control register.  The MAC will take care of interfacing with the
573	 * PHY to retrieve the desired data.
574	 */
575	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
576		(phy->addr << IGC_MDIC_PHY_SHIFT) |
577		(IGC_MDIC_OP_READ));
578
579	wr32(IGC_MDIC, mdic);
580
581	/* Poll the ready bit to see if the MDI read completed
582	 * Increasing the time out as testing showed failures with
583	 * the lower time out
584	 */
585	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
586		usleep_range(500, 1000);
587		mdic = rd32(IGC_MDIC);
588		if (mdic & IGC_MDIC_READY)
589			break;
590	}
591	if (!(mdic & IGC_MDIC_READY)) {
592		hw_dbg("MDI Read did not complete\n");
593		ret_val = -IGC_ERR_PHY;
594		goto out;
595	}
596	if (mdic & IGC_MDIC_ERROR) {
597		hw_dbg("MDI Error\n");
598		ret_val = -IGC_ERR_PHY;
599		goto out;
600	}
601	*data = (u16)mdic;
602
603out:
604	return ret_val;
605}
606
607/**
608 * igc_write_phy_reg_mdic - Write MDI control register
609 * @hw: pointer to the HW structure
610 * @offset: register offset to write to
611 * @data: data to write to register at offset
612 *
613 * Writes data to MDI control register in the PHY at offset.
614 */
615static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
616{
617	struct igc_phy_info *phy = &hw->phy;
618	u32 i, mdic = 0;
619	s32 ret_val = 0;
620
621	if (offset > MAX_PHY_REG_ADDRESS) {
622		hw_dbg("PHY Address %d is out of range\n", offset);
623		ret_val = -IGC_ERR_PARAM;
624		goto out;
625	}
626
627	/* Set up Op-code, Phy Address, and register offset in the MDI
628	 * Control register.  The MAC will take care of interfacing with the
629	 * PHY to write the desired data.
630	 */
631	mdic = (((u32)data) |
632		(offset << IGC_MDIC_REG_SHIFT) |
633		(phy->addr << IGC_MDIC_PHY_SHIFT) |
634		(IGC_MDIC_OP_WRITE));
635
636	wr32(IGC_MDIC, mdic);
637
638	/* Poll the ready bit to see if the MDI read completed
639	 * Increasing the time out as testing showed failures with
640	 * the lower time out
641	 */
642	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
643		usleep_range(500, 1000);
644		mdic = rd32(IGC_MDIC);
645		if (mdic & IGC_MDIC_READY)
646			break;
647	}
648	if (!(mdic & IGC_MDIC_READY)) {
649		hw_dbg("MDI Write did not complete\n");
650		ret_val = -IGC_ERR_PHY;
651		goto out;
652	}
653	if (mdic & IGC_MDIC_ERROR) {
654		hw_dbg("MDI Error\n");
655		ret_val = -IGC_ERR_PHY;
656		goto out;
657	}
658
659out:
660	return ret_val;
661}
662
663/**
664 * __igc_access_xmdio_reg - Read/write XMDIO register
665 * @hw: pointer to the HW structure
666 * @address: XMDIO address to program
667 * @dev_addr: device address to program
668 * @data: pointer to value to read/write from/to the XMDIO address
669 * @read: boolean flag to indicate read or write
670 */
671static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
672				  u8 dev_addr, u16 *data, bool read)
673{
674	s32 ret_val;
675
676	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
677	if (ret_val)
678		return ret_val;
679
680	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
681	if (ret_val)
682		return ret_val;
683
684	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
685					dev_addr);
686	if (ret_val)
687		return ret_val;
688
689	if (read)
690		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
691	else
692		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
693	if (ret_val)
694		return ret_val;
695
696	/* Recalibrate the device back to 0 */
697	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
698	if (ret_val)
699		return ret_val;
700
701	return ret_val;
702}
703
704/**
705 * igc_read_xmdio_reg - Read XMDIO register
706 * @hw: pointer to the HW structure
707 * @addr: XMDIO address to program
708 * @dev_addr: device address to program
709 * @data: value to be read from the EMI address
710 */
711static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
712			      u8 dev_addr, u16 *data)
713{
714	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
715}
716
717/**
718 * igc_write_xmdio_reg - Write XMDIO register
719 * @hw: pointer to the HW structure
720 * @addr: XMDIO address to program
721 * @dev_addr: device address to program
722 * @data: value to be written to the XMDIO address
723 */
724static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
725			       u8 dev_addr, u16 data)
726{
727	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
728}
729
730/**
731 * igc_write_phy_reg_gpy - Write GPY PHY register
732 * @hw: pointer to the HW structure
733 * @offset: register offset to write to
734 * @data: data to write at register offset
735 *
736 * Acquires semaphore, if necessary, then writes the data to PHY register
737 * at the offset. Release any acquired semaphores before exiting.
738 */
739s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
740{
741	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
742	s32 ret_val;
743
744	offset = offset & GPY_REG_MASK;
745
746	if (!dev_addr) {
747		ret_val = hw->phy.ops.acquire(hw);
748		if (ret_val)
749			return ret_val;
750		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
751		if (ret_val)
752			return ret_val;
753		hw->phy.ops.release(hw);
754	} else {
755		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
756					      data);
757	}
758
759	return ret_val;
760}
761
762/**
763 * igc_read_phy_reg_gpy - Read GPY PHY register
764 * @hw: pointer to the HW structure
765 * @offset: lower half is register offset to read to
766 * upper half is MMD to use.
767 * @data: data to read at register offset
768 *
769 * Acquires semaphore, if necessary, then reads the data in the PHY register
770 * at the offset. Release any acquired semaphores before exiting.
771 */
772s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
773{
774	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
775	s32 ret_val;
776
777	offset = offset & GPY_REG_MASK;
778
779	if (!dev_addr) {
780		ret_val = hw->phy.ops.acquire(hw);
781		if (ret_val)
782			return ret_val;
783		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
784		if (ret_val)
785			return ret_val;
786		hw->phy.ops.release(hw);
787	} else {
788		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
789					     data);
790	}
791
792	return ret_val;
793}
794
795/**
796 * igc_read_phy_fw_version - Read gPHY firmware version
797 * @hw: pointer to the HW structure
798 */
799u16 igc_read_phy_fw_version(struct igc_hw *hw)
800{
801	struct igc_phy_info *phy = &hw->phy;
802	u16 gphy_version = 0;
803	u16 ret_val;
804
805	/* NVM image version is reported as firmware version for i225 device */
806	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
807	if (ret_val)
808		hw_dbg("igc_phy: read wrong gphy version\n");
809
810	return gphy_version;
811}