Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6#include <linux/etherdevice.h>
7#include <linux/if_bridge.h>
8#include <linux/iopoll.h>
9#include <linux/mdio.h>
10#include <linux/mfd/syscon.h>
11#include <linux/module.h>
12#include <linux/netdevice.h>
13#include <linux/of_irq.h>
14#include <linux/of_mdio.h>
15#include <linux/of_net.h>
16#include <linux/of_platform.h>
17#include <linux/phylink.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/reset.h>
21#include <linux/gpio/consumer.h>
22#include <linux/gpio/driver.h>
23#include <net/dsa.h>
24
25#include "mt7530.h"
26
27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28{
29 return container_of(pcs, struct mt753x_pcs, pcs);
30}
31
32/* String, offset, and register size in bytes if different from 4 bytes */
33static const struct mt7530_mib_desc mt7530_mib[] = {
34 MIB_DESC(1, 0x00, "TxDrop"),
35 MIB_DESC(1, 0x04, "TxCrcErr"),
36 MIB_DESC(1, 0x08, "TxUnicast"),
37 MIB_DESC(1, 0x0c, "TxMulticast"),
38 MIB_DESC(1, 0x10, "TxBroadcast"),
39 MIB_DESC(1, 0x14, "TxCollision"),
40 MIB_DESC(1, 0x18, "TxSingleCollision"),
41 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 MIB_DESC(1, 0x20, "TxDeferred"),
43 MIB_DESC(1, 0x24, "TxLateCollision"),
44 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 MIB_DESC(1, 0x2c, "TxPause"),
46 MIB_DESC(1, 0x30, "TxPktSz64"),
47 MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 MIB_DESC(2, 0x48, "TxBytes"),
53 MIB_DESC(1, 0x60, "RxDrop"),
54 MIB_DESC(1, 0x64, "RxFiltering"),
55 MIB_DESC(1, 0x68, "RxUnicast"),
56 MIB_DESC(1, 0x6c, "RxMulticast"),
57 MIB_DESC(1, 0x70, "RxBroadcast"),
58 MIB_DESC(1, 0x74, "RxAlignErr"),
59 MIB_DESC(1, 0x78, "RxCrcErr"),
60 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 MIB_DESC(1, 0x80, "RxFragErr"),
62 MIB_DESC(1, 0x84, "RxOverSzErr"),
63 MIB_DESC(1, 0x88, "RxJabberErr"),
64 MIB_DESC(1, 0x8c, "RxPause"),
65 MIB_DESC(1, 0x90, "RxPktSz64"),
66 MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 MIB_DESC(2, 0xa8, "RxBytes"),
72 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 MIB_DESC(1, 0xb8, "RxArlDrop"),
75};
76
77/* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
82static int
83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84{
85 struct mii_bus *bus = priv->bus;
86 int value, ret;
87
88 /* Write the desired MMD Devad */
89 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 if (ret < 0)
91 goto err;
92
93 /* Write the desired MMD register address */
94 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 if (ret < 0)
96 goto err;
97
98 /* Select the Function : DATA with no post increment */
99 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 if (ret < 0)
101 goto err;
102
103 /* Read the content of the MMD's selected register */
104 value = bus->read(bus, 0, MII_MMD_DATA);
105
106 return value;
107err:
108 dev_err(&bus->dev, "failed to read mmd register\n");
109
110 return ret;
111}
112
113static int
114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 int devad, u32 data)
116{
117 struct mii_bus *bus = priv->bus;
118 int ret;
119
120 /* Write the desired MMD Devad */
121 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 if (ret < 0)
123 goto err;
124
125 /* Write the desired MMD register address */
126 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 if (ret < 0)
128 goto err;
129
130 /* Select the Function : DATA with no post increment */
131 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 if (ret < 0)
133 goto err;
134
135 /* Write the data into MMD's selected register */
136 ret = bus->write(bus, 0, MII_MMD_DATA, data);
137err:
138 if (ret < 0)
139 dev_err(&bus->dev,
140 "failed to write mmd register\n");
141 return ret;
142}
143
144static void
145core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146{
147 struct mii_bus *bus = priv->bus;
148
149 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150
151 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152
153 mutex_unlock(&bus->mdio_lock);
154}
155
156static void
157core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158{
159 struct mii_bus *bus = priv->bus;
160 u32 val;
161
162 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163
164 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 val &= ~mask;
166 val |= set;
167 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168
169 mutex_unlock(&bus->mdio_lock);
170}
171
172static void
173core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174{
175 core_rmw(priv, reg, 0, val);
176}
177
178static void
179core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180{
181 core_rmw(priv, reg, val, 0);
182}
183
184static int
185mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186{
187 struct mii_bus *bus = priv->bus;
188 u16 page, r, lo, hi;
189 int ret;
190
191 page = (reg >> 6) & 0x3ff;
192 r = (reg >> 2) & 0xf;
193 lo = val & 0xffff;
194 hi = val >> 16;
195
196 /* MT7530 uses 31 as the pseudo port */
197 ret = bus->write(bus, 0x1f, 0x1f, page);
198 if (ret < 0)
199 goto err;
200
201 ret = bus->write(bus, 0x1f, r, lo);
202 if (ret < 0)
203 goto err;
204
205 ret = bus->write(bus, 0x1f, 0x10, hi);
206err:
207 if (ret < 0)
208 dev_err(&bus->dev,
209 "failed to write mt7530 register\n");
210 return ret;
211}
212
213static u32
214mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215{
216 struct mii_bus *bus = priv->bus;
217 u16 page, r, lo, hi;
218 int ret;
219
220 page = (reg >> 6) & 0x3ff;
221 r = (reg >> 2) & 0xf;
222
223 /* MT7530 uses 31 as the pseudo port */
224 ret = bus->write(bus, 0x1f, 0x1f, page);
225 if (ret < 0) {
226 dev_err(&bus->dev,
227 "failed to read mt7530 register\n");
228 return ret;
229 }
230
231 lo = bus->read(bus, 0x1f, r);
232 hi = bus->read(bus, 0x1f, 0x10);
233
234 return (hi << 16) | (lo & 0xffff);
235}
236
237static void
238mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239{
240 struct mii_bus *bus = priv->bus;
241
242 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243
244 mt7530_mii_write(priv, reg, val);
245
246 mutex_unlock(&bus->mdio_lock);
247}
248
249static u32
250_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251{
252 return mt7530_mii_read(p->priv, p->reg);
253}
254
255static u32
256_mt7530_read(struct mt7530_dummy_poll *p)
257{
258 struct mii_bus *bus = p->priv->bus;
259 u32 val;
260
261 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262
263 val = mt7530_mii_read(p->priv, p->reg);
264
265 mutex_unlock(&bus->mdio_lock);
266
267 return val;
268}
269
270static u32
271mt7530_read(struct mt7530_priv *priv, u32 reg)
272{
273 struct mt7530_dummy_poll p;
274
275 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 return _mt7530_read(&p);
277}
278
279static void
280mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 u32 mask, u32 set)
282{
283 struct mii_bus *bus = priv->bus;
284 u32 val;
285
286 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287
288 val = mt7530_mii_read(priv, reg);
289 val &= ~mask;
290 val |= set;
291 mt7530_mii_write(priv, reg, val);
292
293 mutex_unlock(&bus->mdio_lock);
294}
295
296static void
297mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298{
299 mt7530_rmw(priv, reg, 0, val);
300}
301
302static void
303mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304{
305 mt7530_rmw(priv, reg, val, 0);
306}
307
308static int
309mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310{
311 u32 val;
312 int ret;
313 struct mt7530_dummy_poll p;
314
315 /* Set the command operating upon the MAC address entries */
316 val = ATC_BUSY | ATC_MAT(0) | cmd;
317 mt7530_write(priv, MT7530_ATC, val);
318
319 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 ret = readx_poll_timeout(_mt7530_read, &p, val,
321 !(val & ATC_BUSY), 20, 20000);
322 if (ret < 0) {
323 dev_err(priv->dev, "reset timeout\n");
324 return ret;
325 }
326
327 /* Additional sanity for read command if the specified
328 * entry is invalid
329 */
330 val = mt7530_read(priv, MT7530_ATC);
331 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 return -EINVAL;
333
334 if (rsp)
335 *rsp = val;
336
337 return 0;
338}
339
340static void
341mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342{
343 u32 reg[3];
344 int i;
345
346 /* Read from ARL table into an array */
347 for (i = 0; i < 3; i++) {
348 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349
350 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 __func__, __LINE__, i, reg[i]);
352 }
353
354 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364}
365
366static void
367mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 u8 port_mask, const u8 *mac,
369 u8 aging, u8 type)
370{
371 u32 reg[3] = { 0 };
372 int i;
373
374 reg[1] |= vid & CVID_MASK;
375 reg[1] |= ATA2_IVL;
376 reg[1] |= ATA2_FID(FID_BRIDGED);
377 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 /* STATIC_ENT indicate that entry is static wouldn't
380 * be aged out and STATIC_EMP specified as erasing an
381 * entry
382 */
383 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 reg[1] |= mac[5] << MAC_BYTE_5;
385 reg[1] |= mac[4] << MAC_BYTE_4;
386 reg[0] |= mac[3] << MAC_BYTE_3;
387 reg[0] |= mac[2] << MAC_BYTE_2;
388 reg[0] |= mac[1] << MAC_BYTE_1;
389 reg[0] |= mac[0] << MAC_BYTE_0;
390
391 /* Write array into the ARL table */
392 for (i = 0; i < 3; i++)
393 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394}
395
396/* Setup TX circuit including relevant PAD and driving */
397static int
398mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
399{
400 struct mt7530_priv *priv = ds->priv;
401 u32 ncpo1, ssc_delta, trgint, i, xtal;
402
403 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
404
405 if (xtal == HWTRAP_XTAL_20MHZ) {
406 dev_err(priv->dev,
407 "%s: MT7530 with a 20MHz XTAL is not supported!\n",
408 __func__);
409 return -EINVAL;
410 }
411
412 switch (interface) {
413 case PHY_INTERFACE_MODE_RGMII:
414 trgint = 0;
415 /* PLL frequency: 125MHz */
416 ncpo1 = 0x0c80;
417 break;
418 case PHY_INTERFACE_MODE_TRGMII:
419 trgint = 1;
420 if (priv->id == ID_MT7621) {
421 /* PLL frequency: 150MHz: 1.2GBit */
422 if (xtal == HWTRAP_XTAL_40MHZ)
423 ncpo1 = 0x0780;
424 if (xtal == HWTRAP_XTAL_25MHZ)
425 ncpo1 = 0x0a00;
426 } else { /* PLL frequency: 250MHz: 2.0Gbit */
427 if (xtal == HWTRAP_XTAL_40MHZ)
428 ncpo1 = 0x0c80;
429 if (xtal == HWTRAP_XTAL_25MHZ)
430 ncpo1 = 0x1400;
431 }
432 break;
433 default:
434 dev_err(priv->dev, "xMII interface %d not supported\n",
435 interface);
436 return -EINVAL;
437 }
438
439 if (xtal == HWTRAP_XTAL_25MHZ)
440 ssc_delta = 0x57;
441 else
442 ssc_delta = 0x87;
443
444 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
445 P6_INTF_MODE(trgint));
446
447 /* Lower Tx Driving for TRGMII path */
448 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
449 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
450 TD_DM_DRVP(8) | TD_DM_DRVN(8));
451
452 /* Disable MT7530 core and TRGMII Tx clocks */
453 core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
454 REG_GSWCK_EN | REG_TRGMIICK_EN);
455
456 /* Setup core clock for MT7530 */
457 /* Disable PLL */
458 core_write(priv, CORE_GSWPLL_GRP1, 0);
459
460 /* Set core clock into 500Mhz */
461 core_write(priv, CORE_GSWPLL_GRP2,
462 RG_GSWPLL_POSDIV_500M(1) |
463 RG_GSWPLL_FBKDIV_500M(25));
464
465 /* Enable PLL */
466 core_write(priv, CORE_GSWPLL_GRP1,
467 RG_GSWPLL_EN_PRE |
468 RG_GSWPLL_POSDIV_200M(2) |
469 RG_GSWPLL_FBKDIV_200M(32));
470
471 /* Setup the MT7530 TRGMII Tx Clock */
472 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
473 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
474 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
475 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
476 core_write(priv, CORE_PLL_GROUP4,
477 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
478 RG_SYSPLL_BIAS_LPF_EN);
479 core_write(priv, CORE_PLL_GROUP2,
480 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
481 RG_SYSPLL_POSDIV(1));
482 core_write(priv, CORE_PLL_GROUP7,
483 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
484 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
485
486 /* Enable MT7530 core and TRGMII Tx clocks */
487 core_set(priv, CORE_TRGMII_GSW_CLK_CG,
488 REG_GSWCK_EN | REG_TRGMIICK_EN);
489
490 if (!trgint)
491 for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
492 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
493 RD_TAP_MASK, RD_TAP(16));
494 return 0;
495}
496
497static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
498{
499 u32 val;
500
501 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
502
503 return (val & PAD_DUAL_SGMII_EN) != 0;
504}
505
506static int
507mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
508{
509 return 0;
510}
511
512static void
513mt7531_pll_setup(struct mt7530_priv *priv)
514{
515 u32 top_sig;
516 u32 hwstrap;
517 u32 xtal;
518 u32 val;
519
520 if (mt7531_dual_sgmii_supported(priv))
521 return;
522
523 val = mt7530_read(priv, MT7531_CREV);
524 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
525 hwstrap = mt7530_read(priv, MT7531_HWTRAP);
526 if ((val & CHIP_REV_M) > 0)
527 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
528 HWTRAP_XTAL_FSEL_25MHZ;
529 else
530 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
531
532 /* Step 1 : Disable MT7531 COREPLL */
533 val = mt7530_read(priv, MT7531_PLLGP_EN);
534 val &= ~EN_COREPLL;
535 mt7530_write(priv, MT7531_PLLGP_EN, val);
536
537 /* Step 2: switch to XTAL output */
538 val = mt7530_read(priv, MT7531_PLLGP_EN);
539 val |= SW_CLKSW;
540 mt7530_write(priv, MT7531_PLLGP_EN, val);
541
542 val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 val &= ~RG_COREPLL_EN;
544 mt7530_write(priv, MT7531_PLLGP_CR0, val);
545
546 /* Step 3: disable PLLGP and enable program PLLGP */
547 val = mt7530_read(priv, MT7531_PLLGP_EN);
548 val |= SW_PLLGP;
549 mt7530_write(priv, MT7531_PLLGP_EN, val);
550
551 /* Step 4: program COREPLL output frequency to 500MHz */
552 val = mt7530_read(priv, MT7531_PLLGP_CR0);
553 val &= ~RG_COREPLL_POSDIV_M;
554 val |= 2 << RG_COREPLL_POSDIV_S;
555 mt7530_write(priv, MT7531_PLLGP_CR0, val);
556 usleep_range(25, 35);
557
558 switch (xtal) {
559 case HWTRAP_XTAL_FSEL_25MHZ:
560 val = mt7530_read(priv, MT7531_PLLGP_CR0);
561 val &= ~RG_COREPLL_SDM_PCW_M;
562 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
563 mt7530_write(priv, MT7531_PLLGP_CR0, val);
564 break;
565 case HWTRAP_XTAL_FSEL_40MHZ:
566 val = mt7530_read(priv, MT7531_PLLGP_CR0);
567 val &= ~RG_COREPLL_SDM_PCW_M;
568 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
569 mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 break;
571 }
572
573 /* Set feedback divide ratio update signal to high */
574 val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 val |= RG_COREPLL_SDM_PCW_CHG;
576 mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 /* Wait for at least 16 XTAL clocks */
578 usleep_range(10, 20);
579
580 /* Step 5: set feedback divide ratio update signal to low */
581 val = mt7530_read(priv, MT7531_PLLGP_CR0);
582 val &= ~RG_COREPLL_SDM_PCW_CHG;
583 mt7530_write(priv, MT7531_PLLGP_CR0, val);
584
585 /* Enable 325M clock for SGMII */
586 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
587
588 /* Enable 250SSC clock for RGMII */
589 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
590
591 /* Step 6: Enable MT7531 PLL */
592 val = mt7530_read(priv, MT7531_PLLGP_CR0);
593 val |= RG_COREPLL_EN;
594 mt7530_write(priv, MT7531_PLLGP_CR0, val);
595
596 val = mt7530_read(priv, MT7531_PLLGP_EN);
597 val |= EN_COREPLL;
598 mt7530_write(priv, MT7531_PLLGP_EN, val);
599 usleep_range(25, 35);
600}
601
602static void
603mt7530_mib_reset(struct dsa_switch *ds)
604{
605 struct mt7530_priv *priv = ds->priv;
606
607 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
608 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
609}
610
611static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
612{
613 return mdiobus_read_nested(priv->bus, port, regnum);
614}
615
616static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
617 u16 val)
618{
619 return mdiobus_write_nested(priv->bus, port, regnum, val);
620}
621
622static int
623mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
624 int regnum)
625{
626 struct mii_bus *bus = priv->bus;
627 struct mt7530_dummy_poll p;
628 u32 reg, val;
629 int ret;
630
631 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
632
633 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
634
635 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
636 !(val & MT7531_PHY_ACS_ST), 20, 100000);
637 if (ret < 0) {
638 dev_err(priv->dev, "poll timeout\n");
639 goto out;
640 }
641
642 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
643 MT7531_MDIO_DEV_ADDR(devad) | regnum;
644 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
645
646 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
647 !(val & MT7531_PHY_ACS_ST), 20, 100000);
648 if (ret < 0) {
649 dev_err(priv->dev, "poll timeout\n");
650 goto out;
651 }
652
653 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
654 MT7531_MDIO_DEV_ADDR(devad);
655 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
656
657 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
658 !(val & MT7531_PHY_ACS_ST), 20, 100000);
659 if (ret < 0) {
660 dev_err(priv->dev, "poll timeout\n");
661 goto out;
662 }
663
664 ret = val & MT7531_MDIO_RW_DATA_MASK;
665out:
666 mutex_unlock(&bus->mdio_lock);
667
668 return ret;
669}
670
671static int
672mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
673 int regnum, u32 data)
674{
675 struct mii_bus *bus = priv->bus;
676 struct mt7530_dummy_poll p;
677 u32 val, reg;
678 int ret;
679
680 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
681
682 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
683
684 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
685 !(val & MT7531_PHY_ACS_ST), 20, 100000);
686 if (ret < 0) {
687 dev_err(priv->dev, "poll timeout\n");
688 goto out;
689 }
690
691 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
692 MT7531_MDIO_DEV_ADDR(devad) | regnum;
693 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
694
695 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 if (ret < 0) {
698 dev_err(priv->dev, "poll timeout\n");
699 goto out;
700 }
701
702 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
703 MT7531_MDIO_DEV_ADDR(devad) | data;
704 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
705
706 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
707 !(val & MT7531_PHY_ACS_ST), 20, 100000);
708 if (ret < 0) {
709 dev_err(priv->dev, "poll timeout\n");
710 goto out;
711 }
712
713out:
714 mutex_unlock(&bus->mdio_lock);
715
716 return ret;
717}
718
719static int
720mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
721{
722 struct mii_bus *bus = priv->bus;
723 struct mt7530_dummy_poll p;
724 int ret;
725 u32 val;
726
727 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
728
729 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
730
731 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
732 !(val & MT7531_PHY_ACS_ST), 20, 100000);
733 if (ret < 0) {
734 dev_err(priv->dev, "poll timeout\n");
735 goto out;
736 }
737
738 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
739 MT7531_MDIO_REG_ADDR(regnum);
740
741 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
742
743 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
744 !(val & MT7531_PHY_ACS_ST), 20, 100000);
745 if (ret < 0) {
746 dev_err(priv->dev, "poll timeout\n");
747 goto out;
748 }
749
750 ret = val & MT7531_MDIO_RW_DATA_MASK;
751out:
752 mutex_unlock(&bus->mdio_lock);
753
754 return ret;
755}
756
757static int
758mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
759 u16 data)
760{
761 struct mii_bus *bus = priv->bus;
762 struct mt7530_dummy_poll p;
763 int ret;
764 u32 reg;
765
766 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
767
768 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
769
770 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
771 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
772 if (ret < 0) {
773 dev_err(priv->dev, "poll timeout\n");
774 goto out;
775 }
776
777 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
778 MT7531_MDIO_REG_ADDR(regnum) | data;
779
780 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
781
782 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
783 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
784 if (ret < 0) {
785 dev_err(priv->dev, "poll timeout\n");
786 goto out;
787 }
788
789out:
790 mutex_unlock(&bus->mdio_lock);
791
792 return ret;
793}
794
795static int
796mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
797{
798 int devad;
799 int ret;
800
801 if (regnum & MII_ADDR_C45) {
802 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
803 ret = mt7531_ind_c45_phy_read(priv, port, devad,
804 regnum & MII_REGADDR_C45_MASK);
805 } else {
806 ret = mt7531_ind_c22_phy_read(priv, port, regnum);
807 }
808
809 return ret;
810}
811
812static int
813mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
814 u16 data)
815{
816 int devad;
817 int ret;
818
819 if (regnum & MII_ADDR_C45) {
820 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
821 ret = mt7531_ind_c45_phy_write(priv, port, devad,
822 regnum & MII_REGADDR_C45_MASK,
823 data);
824 } else {
825 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
826 }
827
828 return ret;
829}
830
831static int
832mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
833{
834 struct mt7530_priv *priv = bus->priv;
835
836 return priv->info->phy_read(priv, port, regnum);
837}
838
839static int
840mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
841{
842 struct mt7530_priv *priv = bus->priv;
843
844 return priv->info->phy_write(priv, port, regnum, val);
845}
846
847static void
848mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
849 uint8_t *data)
850{
851 int i;
852
853 if (stringset != ETH_SS_STATS)
854 return;
855
856 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
857 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
858 ETH_GSTRING_LEN);
859}
860
861static void
862mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
863 uint64_t *data)
864{
865 struct mt7530_priv *priv = ds->priv;
866 const struct mt7530_mib_desc *mib;
867 u32 reg, i;
868 u64 hi;
869
870 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
871 mib = &mt7530_mib[i];
872 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
873
874 data[i] = mt7530_read(priv, reg);
875 if (mib->size == 2) {
876 hi = mt7530_read(priv, reg + 4);
877 data[i] |= hi << 32;
878 }
879 }
880}
881
882static int
883mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
884{
885 if (sset != ETH_SS_STATS)
886 return 0;
887
888 return ARRAY_SIZE(mt7530_mib);
889}
890
891static int
892mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
893{
894 struct mt7530_priv *priv = ds->priv;
895 unsigned int secs = msecs / 1000;
896 unsigned int tmp_age_count;
897 unsigned int error = -1;
898 unsigned int age_count;
899 unsigned int age_unit;
900
901 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
902 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
903 return -ERANGE;
904
905 /* iterate through all possible age_count to find the closest pair */
906 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
907 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
908
909 if (tmp_age_unit <= AGE_UNIT_MAX) {
910 unsigned int tmp_error = secs -
911 (tmp_age_count + 1) * (tmp_age_unit + 1);
912
913 /* found a closer pair */
914 if (error > tmp_error) {
915 error = tmp_error;
916 age_count = tmp_age_count;
917 age_unit = tmp_age_unit;
918 }
919
920 /* found the exact match, so break the loop */
921 if (!error)
922 break;
923 }
924 }
925
926 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
927
928 return 0;
929}
930
931static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932{
933 struct mt7530_priv *priv = ds->priv;
934 u8 tx_delay = 0;
935 int val;
936
937 mutex_lock(&priv->reg_mutex);
938
939 val = mt7530_read(priv, MT7530_MHWTRAP);
940
941 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943
944 switch (priv->p5_intf_sel) {
945 case P5_INTF_SEL_PHY_P0:
946 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 val |= MHWTRAP_PHY0_SEL;
948 fallthrough;
949 case P5_INTF_SEL_PHY_P4:
950 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952
953 /* Setup the MAC by default for the cpu port */
954 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 break;
956 case P5_INTF_SEL_GMAC5:
957 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 val &= ~MHWTRAP_P5_DIS;
959 break;
960 case P5_DISABLED:
961 interface = PHY_INTERFACE_MODE_NA;
962 break;
963 default:
964 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 priv->p5_intf_sel);
966 goto unlock_exit;
967 }
968
969 /* Setup RGMII settings */
970 if (phy_interface_mode_is_rgmii(interface)) {
971 val |= MHWTRAP_P5_RGMII_MODE;
972
973 /* P5 RGMII RX Clock Control: delay setting for 1000M */
974 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975
976 /* Don't set delay in DSA mode */
977 if (!dsa_is_dsa_port(priv->ds, 5) &&
978 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 interface == PHY_INTERFACE_MODE_RGMII_ID))
980 tx_delay = 4; /* n * 0.5 ns */
981
982 /* P5 RGMII TX Clock Control: delay x */
983 mt7530_write(priv, MT7530_P5RGMIITXCR,
984 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985
986 /* reduce P5 RGMII Tx driving, 8mA */
987 mt7530_write(priv, MT7530_IO_DRV_CR,
988 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 }
990
991 mt7530_write(priv, MT7530_MHWTRAP, val);
992
993 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995
996 priv->p5_interface = interface;
997
998unlock_exit:
999 mutex_unlock(&priv->reg_mutex);
1000}
1001
1002static int
1003mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1004{
1005 struct mt7530_priv *priv = ds->priv;
1006 int ret;
1007
1008 /* Setup max capability of CPU port at first */
1009 if (priv->info->cpu_port_config) {
1010 ret = priv->info->cpu_port_config(ds, port);
1011 if (ret)
1012 return ret;
1013 }
1014
1015 /* Enable Mediatek header mode on the cpu port */
1016 mt7530_write(priv, MT7530_PVC_P(port),
1017 PORT_SPEC_TAG);
1018
1019 /* Disable flooding by default */
1020 mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1021 BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1022
1023 /* Set CPU port number */
1024 if (priv->id == ID_MT7621)
1025 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1026
1027 /* CPU port gets connected to all user ports of
1028 * the switch.
1029 */
1030 mt7530_write(priv, MT7530_PCR_P(port),
1031 PCR_MATRIX(dsa_user_ports(priv->ds)));
1032
1033 /* Set to fallback mode for independent VLAN learning */
1034 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1035 MT7530_PORT_FALLBACK_MODE);
1036
1037 return 0;
1038}
1039
1040static int
1041mt7530_port_enable(struct dsa_switch *ds, int port,
1042 struct phy_device *phy)
1043{
1044 struct dsa_port *dp = dsa_to_port(ds, port);
1045 struct mt7530_priv *priv = ds->priv;
1046
1047 mutex_lock(&priv->reg_mutex);
1048
1049 /* Allow the user port gets connected to the cpu port and also
1050 * restore the port matrix if the port is the member of a certain
1051 * bridge.
1052 */
1053 if (dsa_port_is_user(dp)) {
1054 struct dsa_port *cpu_dp = dp->cpu_dp;
1055
1056 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1057 }
1058 priv->ports[port].enable = true;
1059 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1060 priv->ports[port].pm);
1061 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1062
1063 mutex_unlock(&priv->reg_mutex);
1064
1065 return 0;
1066}
1067
1068static void
1069mt7530_port_disable(struct dsa_switch *ds, int port)
1070{
1071 struct mt7530_priv *priv = ds->priv;
1072
1073 mutex_lock(&priv->reg_mutex);
1074
1075 /* Clear up all port matrix which could be restored in the next
1076 * enablement for the port.
1077 */
1078 priv->ports[port].enable = false;
1079 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1080 PCR_MATRIX_CLR);
1081 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1082
1083 mutex_unlock(&priv->reg_mutex);
1084}
1085
1086static int
1087mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1088{
1089 struct mt7530_priv *priv = ds->priv;
1090 struct mii_bus *bus = priv->bus;
1091 int length;
1092 u32 val;
1093
1094 /* When a new MTU is set, DSA always set the CPU port's MTU to the
1095 * largest MTU of the slave ports. Because the switch only has a global
1096 * RX length register, only allowing CPU port here is enough.
1097 */
1098 if (!dsa_is_cpu_port(ds, port))
1099 return 0;
1100
1101 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1102
1103 val = mt7530_mii_read(priv, MT7530_GMACCR);
1104 val &= ~MAX_RX_PKT_LEN_MASK;
1105
1106 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1107 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1108 if (length <= 1522) {
1109 val |= MAX_RX_PKT_LEN_1522;
1110 } else if (length <= 1536) {
1111 val |= MAX_RX_PKT_LEN_1536;
1112 } else if (length <= 1552) {
1113 val |= MAX_RX_PKT_LEN_1552;
1114 } else {
1115 val &= ~MAX_RX_JUMBO_MASK;
1116 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1117 val |= MAX_RX_PKT_LEN_JUMBO;
1118 }
1119
1120 mt7530_mii_write(priv, MT7530_GMACCR, val);
1121
1122 mutex_unlock(&bus->mdio_lock);
1123
1124 return 0;
1125}
1126
1127static int
1128mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1129{
1130 return MT7530_MAX_MTU;
1131}
1132
1133static void
1134mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1135{
1136 struct mt7530_priv *priv = ds->priv;
1137 u32 stp_state;
1138
1139 switch (state) {
1140 case BR_STATE_DISABLED:
1141 stp_state = MT7530_STP_DISABLED;
1142 break;
1143 case BR_STATE_BLOCKING:
1144 stp_state = MT7530_STP_BLOCKING;
1145 break;
1146 case BR_STATE_LISTENING:
1147 stp_state = MT7530_STP_LISTENING;
1148 break;
1149 case BR_STATE_LEARNING:
1150 stp_state = MT7530_STP_LEARNING;
1151 break;
1152 case BR_STATE_FORWARDING:
1153 default:
1154 stp_state = MT7530_STP_FORWARDING;
1155 break;
1156 }
1157
1158 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1159 FID_PST(FID_BRIDGED, stp_state));
1160}
1161
1162static int
1163mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1164 struct switchdev_brport_flags flags,
1165 struct netlink_ext_ack *extack)
1166{
1167 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1168 BR_BCAST_FLOOD))
1169 return -EINVAL;
1170
1171 return 0;
1172}
1173
1174static int
1175mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1176 struct switchdev_brport_flags flags,
1177 struct netlink_ext_ack *extack)
1178{
1179 struct mt7530_priv *priv = ds->priv;
1180
1181 if (flags.mask & BR_LEARNING)
1182 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1183 flags.val & BR_LEARNING ? 0 : SA_DIS);
1184
1185 if (flags.mask & BR_FLOOD)
1186 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1187 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1188
1189 if (flags.mask & BR_MCAST_FLOOD)
1190 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1191 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1192
1193 if (flags.mask & BR_BCAST_FLOOD)
1194 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1195 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1196
1197 return 0;
1198}
1199
1200static int
1201mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1202 struct dsa_bridge bridge, bool *tx_fwd_offload,
1203 struct netlink_ext_ack *extack)
1204{
1205 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1206 struct dsa_port *cpu_dp = dp->cpu_dp;
1207 u32 port_bitmap = BIT(cpu_dp->index);
1208 struct mt7530_priv *priv = ds->priv;
1209
1210 mutex_lock(&priv->reg_mutex);
1211
1212 dsa_switch_for_each_user_port(other_dp, ds) {
1213 int other_port = other_dp->index;
1214
1215 if (dp == other_dp)
1216 continue;
1217
1218 /* Add this port to the port matrix of the other ports in the
1219 * same bridge. If the port is disabled, port matrix is kept
1220 * and not being setup until the port becomes enabled.
1221 */
1222 if (!dsa_port_offloads_bridge(other_dp, &bridge))
1223 continue;
1224
1225 if (priv->ports[other_port].enable)
1226 mt7530_set(priv, MT7530_PCR_P(other_port),
1227 PCR_MATRIX(BIT(port)));
1228 priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1229
1230 port_bitmap |= BIT(other_port);
1231 }
1232
1233 /* Add the all other ports to this port matrix. */
1234 if (priv->ports[port].enable)
1235 mt7530_rmw(priv, MT7530_PCR_P(port),
1236 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1237 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1238
1239 /* Set to fallback mode for independent VLAN learning */
1240 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1241 MT7530_PORT_FALLBACK_MODE);
1242
1243 mutex_unlock(&priv->reg_mutex);
1244
1245 return 0;
1246}
1247
1248static void
1249mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1250{
1251 struct mt7530_priv *priv = ds->priv;
1252 bool all_user_ports_removed = true;
1253 int i;
1254
1255 /* This is called after .port_bridge_leave when leaving a VLAN-aware
1256 * bridge. Don't set standalone ports to fallback mode.
1257 */
1258 if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1259 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1260 MT7530_PORT_FALLBACK_MODE);
1261
1262 mt7530_rmw(priv, MT7530_PVC_P(port),
1263 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1264 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1265 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1266 MT7530_VLAN_ACC_ALL);
1267
1268 /* Set PVID to 0 */
1269 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1270 G0_PORT_VID_DEF);
1271
1272 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1273 if (dsa_is_user_port(ds, i) &&
1274 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1275 all_user_ports_removed = false;
1276 break;
1277 }
1278 }
1279
1280 /* CPU port also does the same thing until all user ports belonging to
1281 * the CPU port get out of VLAN filtering mode.
1282 */
1283 if (all_user_ports_removed) {
1284 struct dsa_port *dp = dsa_to_port(ds, port);
1285 struct dsa_port *cpu_dp = dp->cpu_dp;
1286
1287 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1288 PCR_MATRIX(dsa_user_ports(priv->ds)));
1289 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1290 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1291 }
1292}
1293
1294static void
1295mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1296{
1297 struct mt7530_priv *priv = ds->priv;
1298
1299 /* Trapped into security mode allows packet forwarding through VLAN
1300 * table lookup.
1301 */
1302 if (dsa_is_user_port(ds, port)) {
1303 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1304 MT7530_PORT_SECURITY_MODE);
1305 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1306 G0_PORT_VID(priv->ports[port].pvid));
1307
1308 /* Only accept tagged frames if PVID is not set */
1309 if (!priv->ports[port].pvid)
1310 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1311 MT7530_VLAN_ACC_TAGGED);
1312
1313 /* Set the port as a user port which is to be able to recognize
1314 * VID from incoming packets before fetching entry within the
1315 * VLAN table.
1316 */
1317 mt7530_rmw(priv, MT7530_PVC_P(port),
1318 VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1319 VLAN_ATTR(MT7530_VLAN_USER) |
1320 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1321 } else {
1322 /* Also set CPU ports to the "user" VLAN port attribute, to
1323 * allow VLAN classification, but keep the EG_TAG attribute as
1324 * "consistent" (i.o.w. don't change its value) for packets
1325 * received by the switch from the CPU, so that tagged packets
1326 * are forwarded to user ports as tagged, and untagged as
1327 * untagged.
1328 */
1329 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1330 VLAN_ATTR(MT7530_VLAN_USER));
1331 }
1332}
1333
1334static void
1335mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1336 struct dsa_bridge bridge)
1337{
1338 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1339 struct dsa_port *cpu_dp = dp->cpu_dp;
1340 struct mt7530_priv *priv = ds->priv;
1341
1342 mutex_lock(&priv->reg_mutex);
1343
1344 dsa_switch_for_each_user_port(other_dp, ds) {
1345 int other_port = other_dp->index;
1346
1347 if (dp == other_dp)
1348 continue;
1349
1350 /* Remove this port from the port matrix of the other ports
1351 * in the same bridge. If the port is disabled, port matrix
1352 * is kept and not being setup until the port becomes enabled.
1353 */
1354 if (!dsa_port_offloads_bridge(other_dp, &bridge))
1355 continue;
1356
1357 if (priv->ports[other_port].enable)
1358 mt7530_clear(priv, MT7530_PCR_P(other_port),
1359 PCR_MATRIX(BIT(port)));
1360 priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1361 }
1362
1363 /* Set the cpu port to be the only one in the port matrix of
1364 * this port.
1365 */
1366 if (priv->ports[port].enable)
1367 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1368 PCR_MATRIX(BIT(cpu_dp->index)));
1369 priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1370
1371 /* When a port is removed from the bridge, the port would be set up
1372 * back to the default as is at initial boot which is a VLAN-unaware
1373 * port.
1374 */
1375 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1376 MT7530_PORT_MATRIX_MODE);
1377
1378 mutex_unlock(&priv->reg_mutex);
1379}
1380
1381static int
1382mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1383 const unsigned char *addr, u16 vid,
1384 struct dsa_db db)
1385{
1386 struct mt7530_priv *priv = ds->priv;
1387 int ret;
1388 u8 port_mask = BIT(port);
1389
1390 mutex_lock(&priv->reg_mutex);
1391 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1392 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1393 mutex_unlock(&priv->reg_mutex);
1394
1395 return ret;
1396}
1397
1398static int
1399mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1400 const unsigned char *addr, u16 vid,
1401 struct dsa_db db)
1402{
1403 struct mt7530_priv *priv = ds->priv;
1404 int ret;
1405 u8 port_mask = BIT(port);
1406
1407 mutex_lock(&priv->reg_mutex);
1408 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1409 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1410 mutex_unlock(&priv->reg_mutex);
1411
1412 return ret;
1413}
1414
1415static int
1416mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1417 dsa_fdb_dump_cb_t *cb, void *data)
1418{
1419 struct mt7530_priv *priv = ds->priv;
1420 struct mt7530_fdb _fdb = { 0 };
1421 int cnt = MT7530_NUM_FDB_RECORDS;
1422 int ret = 0;
1423 u32 rsp = 0;
1424
1425 mutex_lock(&priv->reg_mutex);
1426
1427 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1428 if (ret < 0)
1429 goto err;
1430
1431 do {
1432 if (rsp & ATC_SRCH_HIT) {
1433 mt7530_fdb_read(priv, &_fdb);
1434 if (_fdb.port_mask & BIT(port)) {
1435 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1436 data);
1437 if (ret < 0)
1438 break;
1439 }
1440 }
1441 } while (--cnt &&
1442 !(rsp & ATC_SRCH_END) &&
1443 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1444err:
1445 mutex_unlock(&priv->reg_mutex);
1446
1447 return 0;
1448}
1449
1450static int
1451mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1452 const struct switchdev_obj_port_mdb *mdb,
1453 struct dsa_db db)
1454{
1455 struct mt7530_priv *priv = ds->priv;
1456 const u8 *addr = mdb->addr;
1457 u16 vid = mdb->vid;
1458 u8 port_mask = 0;
1459 int ret;
1460
1461 mutex_lock(&priv->reg_mutex);
1462
1463 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1464 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1465 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1466 & PORT_MAP_MASK;
1467
1468 port_mask |= BIT(port);
1469 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1470 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1471
1472 mutex_unlock(&priv->reg_mutex);
1473
1474 return ret;
1475}
1476
1477static int
1478mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1479 const struct switchdev_obj_port_mdb *mdb,
1480 struct dsa_db db)
1481{
1482 struct mt7530_priv *priv = ds->priv;
1483 const u8 *addr = mdb->addr;
1484 u16 vid = mdb->vid;
1485 u8 port_mask = 0;
1486 int ret;
1487
1488 mutex_lock(&priv->reg_mutex);
1489
1490 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1491 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1492 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1493 & PORT_MAP_MASK;
1494
1495 port_mask &= ~BIT(port);
1496 mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1497 port_mask ? STATIC_ENT : STATIC_EMP);
1498 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1499
1500 mutex_unlock(&priv->reg_mutex);
1501
1502 return ret;
1503}
1504
1505static int
1506mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1507{
1508 struct mt7530_dummy_poll p;
1509 u32 val;
1510 int ret;
1511
1512 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1513 mt7530_write(priv, MT7530_VTCR, val);
1514
1515 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1516 ret = readx_poll_timeout(_mt7530_read, &p, val,
1517 !(val & VTCR_BUSY), 20, 20000);
1518 if (ret < 0) {
1519 dev_err(priv->dev, "poll timeout\n");
1520 return ret;
1521 }
1522
1523 val = mt7530_read(priv, MT7530_VTCR);
1524 if (val & VTCR_INVALID) {
1525 dev_err(priv->dev, "read VTCR invalid\n");
1526 return -EINVAL;
1527 }
1528
1529 return 0;
1530}
1531
1532static int
1533mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1534 struct netlink_ext_ack *extack)
1535{
1536 struct dsa_port *dp = dsa_to_port(ds, port);
1537 struct dsa_port *cpu_dp = dp->cpu_dp;
1538
1539 if (vlan_filtering) {
1540 /* The port is being kept as VLAN-unaware port when bridge is
1541 * set up with vlan_filtering not being set, Otherwise, the
1542 * port and the corresponding CPU port is required the setup
1543 * for becoming a VLAN-aware port.
1544 */
1545 mt7530_port_set_vlan_aware(ds, port);
1546 mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1547 } else {
1548 mt7530_port_set_vlan_unaware(ds, port);
1549 }
1550
1551 return 0;
1552}
1553
1554static void
1555mt7530_hw_vlan_add(struct mt7530_priv *priv,
1556 struct mt7530_hw_vlan_entry *entry)
1557{
1558 struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1559 u8 new_members;
1560 u32 val;
1561
1562 new_members = entry->old_members | BIT(entry->port);
1563
1564 /* Validate the entry with independent learning, create egress tag per
1565 * VLAN and joining the port as one of the port members.
1566 */
1567 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1568 VLAN_VALID;
1569 mt7530_write(priv, MT7530_VAWD1, val);
1570
1571 /* Decide whether adding tag or not for those outgoing packets from the
1572 * port inside the VLAN.
1573 * CPU port is always taken as a tagged port for serving more than one
1574 * VLANs across and also being applied with egress type stack mode for
1575 * that VLAN tags would be appended after hardware special tag used as
1576 * DSA tag.
1577 */
1578 if (dsa_port_is_cpu(dp))
1579 val = MT7530_VLAN_EGRESS_STACK;
1580 else if (entry->untagged)
1581 val = MT7530_VLAN_EGRESS_UNTAG;
1582 else
1583 val = MT7530_VLAN_EGRESS_TAG;
1584 mt7530_rmw(priv, MT7530_VAWD2,
1585 ETAG_CTRL_P_MASK(entry->port),
1586 ETAG_CTRL_P(entry->port, val));
1587}
1588
1589static void
1590mt7530_hw_vlan_del(struct mt7530_priv *priv,
1591 struct mt7530_hw_vlan_entry *entry)
1592{
1593 u8 new_members;
1594 u32 val;
1595
1596 new_members = entry->old_members & ~BIT(entry->port);
1597
1598 val = mt7530_read(priv, MT7530_VAWD1);
1599 if (!(val & VLAN_VALID)) {
1600 dev_err(priv->dev,
1601 "Cannot be deleted due to invalid entry\n");
1602 return;
1603 }
1604
1605 if (new_members) {
1606 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1607 VLAN_VALID;
1608 mt7530_write(priv, MT7530_VAWD1, val);
1609 } else {
1610 mt7530_write(priv, MT7530_VAWD1, 0);
1611 mt7530_write(priv, MT7530_VAWD2, 0);
1612 }
1613}
1614
1615static void
1616mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1617 struct mt7530_hw_vlan_entry *entry,
1618 mt7530_vlan_op vlan_op)
1619{
1620 u32 val;
1621
1622 /* Fetch entry */
1623 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1624
1625 val = mt7530_read(priv, MT7530_VAWD1);
1626
1627 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1628
1629 /* Manipulate entry */
1630 vlan_op(priv, entry);
1631
1632 /* Flush result to hardware */
1633 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1634}
1635
1636static int
1637mt7530_setup_vlan0(struct mt7530_priv *priv)
1638{
1639 u32 val;
1640
1641 /* Validate the entry with independent learning, keep the original
1642 * ingress tag attribute.
1643 */
1644 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1645 VLAN_VALID;
1646 mt7530_write(priv, MT7530_VAWD1, val);
1647
1648 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1649}
1650
1651static int
1652mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1653 const struct switchdev_obj_port_vlan *vlan,
1654 struct netlink_ext_ack *extack)
1655{
1656 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1657 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1658 struct mt7530_hw_vlan_entry new_entry;
1659 struct mt7530_priv *priv = ds->priv;
1660
1661 mutex_lock(&priv->reg_mutex);
1662
1663 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1664 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1665
1666 if (pvid) {
1667 priv->ports[port].pvid = vlan->vid;
1668
1669 /* Accept all frames if PVID is set */
1670 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1671 MT7530_VLAN_ACC_ALL);
1672
1673 /* Only configure PVID if VLAN filtering is enabled */
1674 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1675 mt7530_rmw(priv, MT7530_PPBV1_P(port),
1676 G0_PORT_VID_MASK,
1677 G0_PORT_VID(vlan->vid));
1678 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1679 /* This VLAN is overwritten without PVID, so unset it */
1680 priv->ports[port].pvid = G0_PORT_VID_DEF;
1681
1682 /* Only accept tagged frames if the port is VLAN-aware */
1683 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1684 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1685 MT7530_VLAN_ACC_TAGGED);
1686
1687 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1688 G0_PORT_VID_DEF);
1689 }
1690
1691 mutex_unlock(&priv->reg_mutex);
1692
1693 return 0;
1694}
1695
1696static int
1697mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1698 const struct switchdev_obj_port_vlan *vlan)
1699{
1700 struct mt7530_hw_vlan_entry target_entry;
1701 struct mt7530_priv *priv = ds->priv;
1702
1703 mutex_lock(&priv->reg_mutex);
1704
1705 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1706 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1707 mt7530_hw_vlan_del);
1708
1709 /* PVID is being restored to the default whenever the PVID port
1710 * is being removed from the VLAN.
1711 */
1712 if (priv->ports[port].pvid == vlan->vid) {
1713 priv->ports[port].pvid = G0_PORT_VID_DEF;
1714
1715 /* Only accept tagged frames if the port is VLAN-aware */
1716 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1717 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1718 MT7530_VLAN_ACC_TAGGED);
1719
1720 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1721 G0_PORT_VID_DEF);
1722 }
1723
1724
1725 mutex_unlock(&priv->reg_mutex);
1726
1727 return 0;
1728}
1729
1730static int mt753x_mirror_port_get(unsigned int id, u32 val)
1731{
1732 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1733 MIRROR_PORT(val);
1734}
1735
1736static int mt753x_mirror_port_set(unsigned int id, u32 val)
1737{
1738 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1739 MIRROR_PORT(val);
1740}
1741
1742static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1743 struct dsa_mall_mirror_tc_entry *mirror,
1744 bool ingress, struct netlink_ext_ack *extack)
1745{
1746 struct mt7530_priv *priv = ds->priv;
1747 int monitor_port;
1748 u32 val;
1749
1750 /* Check for existent entry */
1751 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1752 return -EEXIST;
1753
1754 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1755
1756 /* MT7530 only supports one monitor port */
1757 monitor_port = mt753x_mirror_port_get(priv->id, val);
1758 if (val & MT753X_MIRROR_EN(priv->id) &&
1759 monitor_port != mirror->to_local_port)
1760 return -EEXIST;
1761
1762 val |= MT753X_MIRROR_EN(priv->id);
1763 val &= ~MT753X_MIRROR_MASK(priv->id);
1764 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1765 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1766
1767 val = mt7530_read(priv, MT7530_PCR_P(port));
1768 if (ingress) {
1769 val |= PORT_RX_MIR;
1770 priv->mirror_rx |= BIT(port);
1771 } else {
1772 val |= PORT_TX_MIR;
1773 priv->mirror_tx |= BIT(port);
1774 }
1775 mt7530_write(priv, MT7530_PCR_P(port), val);
1776
1777 return 0;
1778}
1779
1780static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1781 struct dsa_mall_mirror_tc_entry *mirror)
1782{
1783 struct mt7530_priv *priv = ds->priv;
1784 u32 val;
1785
1786 val = mt7530_read(priv, MT7530_PCR_P(port));
1787 if (mirror->ingress) {
1788 val &= ~PORT_RX_MIR;
1789 priv->mirror_rx &= ~BIT(port);
1790 } else {
1791 val &= ~PORT_TX_MIR;
1792 priv->mirror_tx &= ~BIT(port);
1793 }
1794 mt7530_write(priv, MT7530_PCR_P(port), val);
1795
1796 if (!priv->mirror_rx && !priv->mirror_tx) {
1797 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1798 val &= ~MT753X_MIRROR_EN(priv->id);
1799 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1800 }
1801}
1802
1803static enum dsa_tag_protocol
1804mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1805 enum dsa_tag_protocol mp)
1806{
1807 return DSA_TAG_PROTO_MTK;
1808}
1809
1810#ifdef CONFIG_GPIOLIB
1811static inline u32
1812mt7530_gpio_to_bit(unsigned int offset)
1813{
1814 /* Map GPIO offset to register bit
1815 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
1816 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
1817 * [10: 8] port 2 LED 0..2 as GPIO 6..8
1818 * [14:12] port 3 LED 0..2 as GPIO 9..11
1819 * [18:16] port 4 LED 0..2 as GPIO 12..14
1820 */
1821 return BIT(offset + offset / 3);
1822}
1823
1824static int
1825mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1826{
1827 struct mt7530_priv *priv = gpiochip_get_data(gc);
1828 u32 bit = mt7530_gpio_to_bit(offset);
1829
1830 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1831}
1832
1833static void
1834mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1835{
1836 struct mt7530_priv *priv = gpiochip_get_data(gc);
1837 u32 bit = mt7530_gpio_to_bit(offset);
1838
1839 if (value)
1840 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1841 else
1842 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1843}
1844
1845static int
1846mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1847{
1848 struct mt7530_priv *priv = gpiochip_get_data(gc);
1849 u32 bit = mt7530_gpio_to_bit(offset);
1850
1851 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1852 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1853}
1854
1855static int
1856mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1857{
1858 struct mt7530_priv *priv = gpiochip_get_data(gc);
1859 u32 bit = mt7530_gpio_to_bit(offset);
1860
1861 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1862 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1863
1864 return 0;
1865}
1866
1867static int
1868mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1869{
1870 struct mt7530_priv *priv = gpiochip_get_data(gc);
1871 u32 bit = mt7530_gpio_to_bit(offset);
1872
1873 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1874
1875 if (value)
1876 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1877 else
1878 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1879
1880 mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1881
1882 return 0;
1883}
1884
1885static int
1886mt7530_setup_gpio(struct mt7530_priv *priv)
1887{
1888 struct device *dev = priv->dev;
1889 struct gpio_chip *gc;
1890
1891 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1892 if (!gc)
1893 return -ENOMEM;
1894
1895 mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1896 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1897 mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1898
1899 gc->label = "mt7530";
1900 gc->parent = dev;
1901 gc->owner = THIS_MODULE;
1902 gc->get_direction = mt7530_gpio_get_direction;
1903 gc->direction_input = mt7530_gpio_direction_input;
1904 gc->direction_output = mt7530_gpio_direction_output;
1905 gc->get = mt7530_gpio_get;
1906 gc->set = mt7530_gpio_set;
1907 gc->base = -1;
1908 gc->ngpio = 15;
1909 gc->can_sleep = true;
1910
1911 return devm_gpiochip_add_data(dev, gc, priv);
1912}
1913#endif /* CONFIG_GPIOLIB */
1914
1915static irqreturn_t
1916mt7530_irq_thread_fn(int irq, void *dev_id)
1917{
1918 struct mt7530_priv *priv = dev_id;
1919 bool handled = false;
1920 u32 val;
1921 int p;
1922
1923 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1924 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1925 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1926 mutex_unlock(&priv->bus->mdio_lock);
1927
1928 for (p = 0; p < MT7530_NUM_PHYS; p++) {
1929 if (BIT(p) & val) {
1930 unsigned int irq;
1931
1932 irq = irq_find_mapping(priv->irq_domain, p);
1933 handle_nested_irq(irq);
1934 handled = true;
1935 }
1936 }
1937
1938 return IRQ_RETVAL(handled);
1939}
1940
1941static void
1942mt7530_irq_mask(struct irq_data *d)
1943{
1944 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1945
1946 priv->irq_enable &= ~BIT(d->hwirq);
1947}
1948
1949static void
1950mt7530_irq_unmask(struct irq_data *d)
1951{
1952 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1953
1954 priv->irq_enable |= BIT(d->hwirq);
1955}
1956
1957static void
1958mt7530_irq_bus_lock(struct irq_data *d)
1959{
1960 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1961
1962 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1963}
1964
1965static void
1966mt7530_irq_bus_sync_unlock(struct irq_data *d)
1967{
1968 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1969
1970 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1971 mutex_unlock(&priv->bus->mdio_lock);
1972}
1973
1974static struct irq_chip mt7530_irq_chip = {
1975 .name = KBUILD_MODNAME,
1976 .irq_mask = mt7530_irq_mask,
1977 .irq_unmask = mt7530_irq_unmask,
1978 .irq_bus_lock = mt7530_irq_bus_lock,
1979 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1980};
1981
1982static int
1983mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1984 irq_hw_number_t hwirq)
1985{
1986 irq_set_chip_data(irq, domain->host_data);
1987 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1988 irq_set_nested_thread(irq, true);
1989 irq_set_noprobe(irq);
1990
1991 return 0;
1992}
1993
1994static const struct irq_domain_ops mt7530_irq_domain_ops = {
1995 .map = mt7530_irq_map,
1996 .xlate = irq_domain_xlate_onecell,
1997};
1998
1999static void
2000mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2001{
2002 struct dsa_switch *ds = priv->ds;
2003 int p;
2004
2005 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2006 if (BIT(p) & ds->phys_mii_mask) {
2007 unsigned int irq;
2008
2009 irq = irq_create_mapping(priv->irq_domain, p);
2010 ds->slave_mii_bus->irq[p] = irq;
2011 }
2012 }
2013}
2014
2015static int
2016mt7530_setup_irq(struct mt7530_priv *priv)
2017{
2018 struct device *dev = priv->dev;
2019 struct device_node *np = dev->of_node;
2020 int ret;
2021
2022 if (!of_property_read_bool(np, "interrupt-controller")) {
2023 dev_info(dev, "no interrupt support\n");
2024 return 0;
2025 }
2026
2027 priv->irq = of_irq_get(np, 0);
2028 if (priv->irq <= 0) {
2029 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2030 return priv->irq ? : -EINVAL;
2031 }
2032
2033 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2034 &mt7530_irq_domain_ops, priv);
2035 if (!priv->irq_domain) {
2036 dev_err(dev, "failed to create IRQ domain\n");
2037 return -ENOMEM;
2038 }
2039
2040 /* This register must be set for MT7530 to properly fire interrupts */
2041 if (priv->id != ID_MT7531)
2042 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2043
2044 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2045 IRQF_ONESHOT, KBUILD_MODNAME, priv);
2046 if (ret) {
2047 irq_domain_remove(priv->irq_domain);
2048 dev_err(dev, "failed to request IRQ: %d\n", ret);
2049 return ret;
2050 }
2051
2052 return 0;
2053}
2054
2055static void
2056mt7530_free_mdio_irq(struct mt7530_priv *priv)
2057{
2058 int p;
2059
2060 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2061 if (BIT(p) & priv->ds->phys_mii_mask) {
2062 unsigned int irq;
2063
2064 irq = irq_find_mapping(priv->irq_domain, p);
2065 irq_dispose_mapping(irq);
2066 }
2067 }
2068}
2069
2070static void
2071mt7530_free_irq_common(struct mt7530_priv *priv)
2072{
2073 free_irq(priv->irq, priv);
2074 irq_domain_remove(priv->irq_domain);
2075}
2076
2077static void
2078mt7530_free_irq(struct mt7530_priv *priv)
2079{
2080 mt7530_free_mdio_irq(priv);
2081 mt7530_free_irq_common(priv);
2082}
2083
2084static int
2085mt7530_setup_mdio(struct mt7530_priv *priv)
2086{
2087 struct dsa_switch *ds = priv->ds;
2088 struct device *dev = priv->dev;
2089 struct mii_bus *bus;
2090 static int idx;
2091 int ret;
2092
2093 bus = devm_mdiobus_alloc(dev);
2094 if (!bus)
2095 return -ENOMEM;
2096
2097 ds->slave_mii_bus = bus;
2098 bus->priv = priv;
2099 bus->name = KBUILD_MODNAME "-mii";
2100 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2101 bus->read = mt753x_phy_read;
2102 bus->write = mt753x_phy_write;
2103 bus->parent = dev;
2104 bus->phy_mask = ~ds->phys_mii_mask;
2105
2106 if (priv->irq)
2107 mt7530_setup_mdio_irq(priv);
2108
2109 ret = devm_mdiobus_register(dev, bus);
2110 if (ret) {
2111 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2112 if (priv->irq)
2113 mt7530_free_mdio_irq(priv);
2114 }
2115
2116 return ret;
2117}
2118
2119static int
2120mt7530_setup(struct dsa_switch *ds)
2121{
2122 struct mt7530_priv *priv = ds->priv;
2123 struct device_node *dn = NULL;
2124 struct device_node *phy_node;
2125 struct device_node *mac_np;
2126 struct mt7530_dummy_poll p;
2127 phy_interface_t interface;
2128 struct dsa_port *cpu_dp;
2129 u32 id, val;
2130 int ret, i;
2131
2132 /* The parent node of master netdev which holds the common system
2133 * controller also is the container for two GMACs nodes representing
2134 * as two netdev instances.
2135 */
2136 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2137 dn = cpu_dp->master->dev.of_node->parent;
2138 /* It doesn't matter which CPU port is found first,
2139 * their masters should share the same parent OF node
2140 */
2141 break;
2142 }
2143
2144 if (!dn) {
2145 dev_err(ds->dev, "parent OF node of DSA master not found");
2146 return -EINVAL;
2147 }
2148
2149 ds->assisted_learning_on_cpu_port = true;
2150 ds->mtu_enforcement_ingress = true;
2151
2152 if (priv->id == ID_MT7530) {
2153 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2154 ret = regulator_enable(priv->core_pwr);
2155 if (ret < 0) {
2156 dev_err(priv->dev,
2157 "Failed to enable core power: %d\n", ret);
2158 return ret;
2159 }
2160
2161 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2162 ret = regulator_enable(priv->io_pwr);
2163 if (ret < 0) {
2164 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2165 ret);
2166 return ret;
2167 }
2168 }
2169
2170 /* Reset whole chip through gpio pin or memory-mapped registers for
2171 * different type of hardware
2172 */
2173 if (priv->mcm) {
2174 reset_control_assert(priv->rstc);
2175 usleep_range(1000, 1100);
2176 reset_control_deassert(priv->rstc);
2177 } else {
2178 gpiod_set_value_cansleep(priv->reset, 0);
2179 usleep_range(1000, 1100);
2180 gpiod_set_value_cansleep(priv->reset, 1);
2181 }
2182
2183 /* Waiting for MT7530 got to stable */
2184 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2185 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2186 20, 1000000);
2187 if (ret < 0) {
2188 dev_err(priv->dev, "reset timeout\n");
2189 return ret;
2190 }
2191
2192 id = mt7530_read(priv, MT7530_CREV);
2193 id >>= CHIP_NAME_SHIFT;
2194 if (id != MT7530_ID) {
2195 dev_err(priv->dev, "chip %x can't be supported\n", id);
2196 return -ENODEV;
2197 }
2198
2199 /* Reset the switch through internal reset */
2200 mt7530_write(priv, MT7530_SYS_CTRL,
2201 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2202 SYS_CTRL_REG_RST);
2203
2204 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2205 val = mt7530_read(priv, MT7530_MHWTRAP);
2206 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2207 val |= MHWTRAP_MANUAL;
2208 mt7530_write(priv, MT7530_MHWTRAP, val);
2209
2210 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2211
2212 /* Enable and reset MIB counters */
2213 mt7530_mib_reset(ds);
2214
2215 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2216 /* Disable forwarding by default on all ports */
2217 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2218 PCR_MATRIX_CLR);
2219
2220 /* Disable learning by default on all ports */
2221 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2222
2223 if (dsa_is_cpu_port(ds, i)) {
2224 ret = mt753x_cpu_port_enable(ds, i);
2225 if (ret)
2226 return ret;
2227 } else {
2228 mt7530_port_disable(ds, i);
2229
2230 /* Set default PVID to 0 on all user ports */
2231 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2232 G0_PORT_VID_DEF);
2233 }
2234 /* Enable consistent egress tag */
2235 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2236 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2237 }
2238
2239 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2240 ret = mt7530_setup_vlan0(priv);
2241 if (ret)
2242 return ret;
2243
2244 /* Setup port 5 */
2245 priv->p5_intf_sel = P5_DISABLED;
2246 interface = PHY_INTERFACE_MODE_NA;
2247
2248 if (!dsa_is_unused_port(ds, 5)) {
2249 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2250 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2251 if (ret && ret != -ENODEV)
2252 return ret;
2253 } else {
2254 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2255 for_each_child_of_node(dn, mac_np) {
2256 if (!of_device_is_compatible(mac_np,
2257 "mediatek,eth-mac"))
2258 continue;
2259
2260 ret = of_property_read_u32(mac_np, "reg", &id);
2261 if (ret < 0 || id != 1)
2262 continue;
2263
2264 phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2265 if (!phy_node)
2266 continue;
2267
2268 if (phy_node->parent == priv->dev->of_node->parent) {
2269 ret = of_get_phy_mode(mac_np, &interface);
2270 if (ret && ret != -ENODEV) {
2271 of_node_put(mac_np);
2272 of_node_put(phy_node);
2273 return ret;
2274 }
2275 id = of_mdio_parse_addr(ds->dev, phy_node);
2276 if (id == 0)
2277 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2278 if (id == 4)
2279 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2280 }
2281 of_node_put(mac_np);
2282 of_node_put(phy_node);
2283 break;
2284 }
2285 }
2286
2287#ifdef CONFIG_GPIOLIB
2288 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2289 ret = mt7530_setup_gpio(priv);
2290 if (ret)
2291 return ret;
2292 }
2293#endif /* CONFIG_GPIOLIB */
2294
2295 mt7530_setup_port5(ds, interface);
2296
2297 /* Flush the FDB table */
2298 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2299 if (ret < 0)
2300 return ret;
2301
2302 return 0;
2303}
2304
2305static int
2306mt7531_setup(struct dsa_switch *ds)
2307{
2308 struct mt7530_priv *priv = ds->priv;
2309 struct mt7530_dummy_poll p;
2310 struct dsa_port *cpu_dp;
2311 u32 val, id;
2312 int ret, i;
2313
2314 /* Reset whole chip through gpio pin or memory-mapped registers for
2315 * different type of hardware
2316 */
2317 if (priv->mcm) {
2318 reset_control_assert(priv->rstc);
2319 usleep_range(1000, 1100);
2320 reset_control_deassert(priv->rstc);
2321 } else {
2322 gpiod_set_value_cansleep(priv->reset, 0);
2323 usleep_range(1000, 1100);
2324 gpiod_set_value_cansleep(priv->reset, 1);
2325 }
2326
2327 /* Waiting for MT7530 got to stable */
2328 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2329 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2330 20, 1000000);
2331 if (ret < 0) {
2332 dev_err(priv->dev, "reset timeout\n");
2333 return ret;
2334 }
2335
2336 id = mt7530_read(priv, MT7531_CREV);
2337 id >>= CHIP_NAME_SHIFT;
2338
2339 if (id != MT7531_ID) {
2340 dev_err(priv->dev, "chip %x can't be supported\n", id);
2341 return -ENODEV;
2342 }
2343
2344 /* all MACs must be forced link-down before sw reset */
2345 for (i = 0; i < MT7530_NUM_PORTS; i++)
2346 mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2347
2348 /* Reset the switch through internal reset */
2349 mt7530_write(priv, MT7530_SYS_CTRL,
2350 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2351 SYS_CTRL_REG_RST);
2352
2353 mt7531_pll_setup(priv);
2354
2355 if (mt7531_dual_sgmii_supported(priv)) {
2356 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2357
2358 /* Let ds->slave_mii_bus be able to access external phy. */
2359 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2360 MT7531_EXT_P_MDC_11);
2361 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2362 MT7531_EXT_P_MDIO_12);
2363 } else {
2364 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2365 }
2366 dev_dbg(ds->dev, "P5 support %s interface\n",
2367 p5_intf_modes(priv->p5_intf_sel));
2368
2369 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2370 MT7531_GPIO0_INTERRUPT);
2371
2372 /* Let phylink decide the interface later. */
2373 priv->p5_interface = PHY_INTERFACE_MODE_NA;
2374 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2375
2376 /* Enable PHY core PLL, since phy_device has not yet been created
2377 * provided for phy_[read,write]_mmd_indirect is called, we provide
2378 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2379 * function.
2380 */
2381 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2382 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2383 val |= MT7531_PHY_PLL_BYPASS_MODE;
2384 val &= ~MT7531_PHY_PLL_OFF;
2385 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2386 CORE_PLL_GROUP4, val);
2387
2388 /* BPDU to CPU port */
2389 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2390 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2391 BIT(cpu_dp->index));
2392 break;
2393 }
2394 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2395 MT753X_BPDU_CPU_ONLY);
2396
2397 /* Enable and reset MIB counters */
2398 mt7530_mib_reset(ds);
2399
2400 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2401 /* Disable forwarding by default on all ports */
2402 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2403 PCR_MATRIX_CLR);
2404
2405 /* Disable learning by default on all ports */
2406 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2407
2408 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2409
2410 if (dsa_is_cpu_port(ds, i)) {
2411 ret = mt753x_cpu_port_enable(ds, i);
2412 if (ret)
2413 return ret;
2414 } else {
2415 mt7530_port_disable(ds, i);
2416
2417 /* Set default PVID to 0 on all user ports */
2418 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2419 G0_PORT_VID_DEF);
2420 }
2421
2422 /* Enable consistent egress tag */
2423 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2424 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2425 }
2426
2427 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2428 ret = mt7530_setup_vlan0(priv);
2429 if (ret)
2430 return ret;
2431
2432 ds->assisted_learning_on_cpu_port = true;
2433 ds->mtu_enforcement_ingress = true;
2434
2435 /* Flush the FDB table */
2436 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2437 if (ret < 0)
2438 return ret;
2439
2440 return 0;
2441}
2442
2443static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2444 struct phylink_config *config)
2445{
2446 switch (port) {
2447 case 0 ... 4: /* Internal phy */
2448 __set_bit(PHY_INTERFACE_MODE_GMII,
2449 config->supported_interfaces);
2450 break;
2451
2452 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2453 phy_interface_set_rgmii(config->supported_interfaces);
2454 __set_bit(PHY_INTERFACE_MODE_MII,
2455 config->supported_interfaces);
2456 __set_bit(PHY_INTERFACE_MODE_GMII,
2457 config->supported_interfaces);
2458 break;
2459
2460 case 6: /* 1st cpu port */
2461 __set_bit(PHY_INTERFACE_MODE_RGMII,
2462 config->supported_interfaces);
2463 __set_bit(PHY_INTERFACE_MODE_TRGMII,
2464 config->supported_interfaces);
2465 break;
2466 }
2467}
2468
2469static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2470{
2471 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2472}
2473
2474static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2475 struct phylink_config *config)
2476{
2477 struct mt7530_priv *priv = ds->priv;
2478
2479 switch (port) {
2480 case 0 ... 4: /* Internal phy */
2481 __set_bit(PHY_INTERFACE_MODE_GMII,
2482 config->supported_interfaces);
2483 break;
2484
2485 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2486 if (mt7531_is_rgmii_port(priv, port)) {
2487 phy_interface_set_rgmii(config->supported_interfaces);
2488 break;
2489 }
2490 fallthrough;
2491
2492 case 6: /* 1st cpu port supports sgmii/8023z only */
2493 __set_bit(PHY_INTERFACE_MODE_SGMII,
2494 config->supported_interfaces);
2495 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2496 config->supported_interfaces);
2497 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
2498 config->supported_interfaces);
2499
2500 config->mac_capabilities |= MAC_2500FD;
2501 break;
2502 }
2503}
2504
2505static int
2506mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2507{
2508 struct mt7530_priv *priv = ds->priv;
2509
2510 return priv->info->pad_setup(ds, state->interface);
2511}
2512
2513static int
2514mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2515 phy_interface_t interface)
2516{
2517 struct mt7530_priv *priv = ds->priv;
2518
2519 /* Only need to setup port5. */
2520 if (port != 5)
2521 return 0;
2522
2523 mt7530_setup_port5(priv->ds, interface);
2524
2525 return 0;
2526}
2527
2528static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2529 phy_interface_t interface,
2530 struct phy_device *phydev)
2531{
2532 u32 val;
2533
2534 if (!mt7531_is_rgmii_port(priv, port)) {
2535 dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2536 port);
2537 return -EINVAL;
2538 }
2539
2540 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2541 val |= GP_CLK_EN;
2542 val &= ~GP_MODE_MASK;
2543 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2544 val &= ~CLK_SKEW_IN_MASK;
2545 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2546 val &= ~CLK_SKEW_OUT_MASK;
2547 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2548 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2549
2550 /* Do not adjust rgmii delay when vendor phy driver presents. */
2551 if (!phydev || phy_driver_is_genphy(phydev)) {
2552 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2553 switch (interface) {
2554 case PHY_INTERFACE_MODE_RGMII:
2555 val |= TXCLK_NO_REVERSE;
2556 val |= RXCLK_NO_DELAY;
2557 break;
2558 case PHY_INTERFACE_MODE_RGMII_RXID:
2559 val |= TXCLK_NO_REVERSE;
2560 break;
2561 case PHY_INTERFACE_MODE_RGMII_TXID:
2562 val |= RXCLK_NO_DELAY;
2563 break;
2564 case PHY_INTERFACE_MODE_RGMII_ID:
2565 break;
2566 default:
2567 return -EINVAL;
2568 }
2569 }
2570 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2571
2572 return 0;
2573}
2574
2575static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2576 phy_interface_t interface, int speed, int duplex)
2577{
2578 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2579 int port = pcs_to_mt753x_pcs(pcs)->port;
2580 unsigned int val;
2581
2582 /* For adjusting speed and duplex of SGMII force mode. */
2583 if (interface != PHY_INTERFACE_MODE_SGMII ||
2584 phylink_autoneg_inband(mode))
2585 return;
2586
2587 /* SGMII force mode setting */
2588 val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2589 val &= ~MT7531_SGMII_IF_MODE_MASK;
2590
2591 switch (speed) {
2592 case SPEED_10:
2593 val |= MT7531_SGMII_FORCE_SPEED_10;
2594 break;
2595 case SPEED_100:
2596 val |= MT7531_SGMII_FORCE_SPEED_100;
2597 break;
2598 case SPEED_1000:
2599 val |= MT7531_SGMII_FORCE_SPEED_1000;
2600 break;
2601 }
2602
2603 /* MT7531 SGMII 1G force mode can only work in full duplex mode,
2604 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2605 *
2606 * The speed check is unnecessary as the MAC capabilities apply
2607 * this restriction. --rmk
2608 */
2609 if ((speed == SPEED_10 || speed == SPEED_100) &&
2610 duplex != DUPLEX_FULL)
2611 val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2612
2613 mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2614}
2615
2616static bool mt753x_is_mac_port(u32 port)
2617{
2618 return (port == 5 || port == 6);
2619}
2620
2621static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2622 phy_interface_t interface)
2623{
2624 u32 val;
2625
2626 if (!mt753x_is_mac_port(port))
2627 return -EINVAL;
2628
2629 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2630 MT7531_SGMII_PHYA_PWD);
2631
2632 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2633 val &= ~MT7531_RG_TPHY_SPEED_MASK;
2634 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2635 * encoding.
2636 */
2637 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2638 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2639 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2640
2641 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2642
2643 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2644 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2645 */
2646 mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2647 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2648 MT7531_SGMII_FORCE_SPEED_1000);
2649
2650 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2651
2652 return 0;
2653}
2654
2655static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2656 phy_interface_t interface)
2657{
2658 if (!mt753x_is_mac_port(port))
2659 return -EINVAL;
2660
2661 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2662 MT7531_SGMII_PHYA_PWD);
2663
2664 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2665 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2666
2667 mt7530_set(priv, MT7531_SGMII_MODE(port),
2668 MT7531_SGMII_REMOTE_FAULT_DIS |
2669 MT7531_SGMII_SPEED_DUPLEX_AN);
2670
2671 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2672 MT7531_SGMII_TX_CONFIG_MASK, 1);
2673
2674 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2675
2676 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2677
2678 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2679
2680 return 0;
2681}
2682
2683static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2684{
2685 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2686 int port = pcs_to_mt753x_pcs(pcs)->port;
2687 u32 val;
2688
2689 /* Only restart AN when AN is enabled */
2690 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2691 if (val & MT7531_SGMII_AN_ENABLE) {
2692 val |= MT7531_SGMII_AN_RESTART;
2693 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2694 }
2695}
2696
2697static int
2698mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2699 phy_interface_t interface)
2700{
2701 struct mt7530_priv *priv = ds->priv;
2702 struct phy_device *phydev;
2703 struct dsa_port *dp;
2704
2705 if (!mt753x_is_mac_port(port)) {
2706 dev_err(priv->dev, "port %d is not a MAC port\n", port);
2707 return -EINVAL;
2708 }
2709
2710 switch (interface) {
2711 case PHY_INTERFACE_MODE_RGMII:
2712 case PHY_INTERFACE_MODE_RGMII_ID:
2713 case PHY_INTERFACE_MODE_RGMII_RXID:
2714 case PHY_INTERFACE_MODE_RGMII_TXID:
2715 dp = dsa_to_port(ds, port);
2716 phydev = dp->slave->phydev;
2717 return mt7531_rgmii_setup(priv, port, interface, phydev);
2718 case PHY_INTERFACE_MODE_SGMII:
2719 return mt7531_sgmii_setup_mode_an(priv, port, interface);
2720 case PHY_INTERFACE_MODE_NA:
2721 case PHY_INTERFACE_MODE_1000BASEX:
2722 case PHY_INTERFACE_MODE_2500BASEX:
2723 return mt7531_sgmii_setup_mode_force(priv, port, interface);
2724 default:
2725 return -EINVAL;
2726 }
2727
2728 return -EINVAL;
2729}
2730
2731static int
2732mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2733 const struct phylink_link_state *state)
2734{
2735 struct mt7530_priv *priv = ds->priv;
2736
2737 return priv->info->mac_port_config(ds, port, mode, state->interface);
2738}
2739
2740static struct phylink_pcs *
2741mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2742 phy_interface_t interface)
2743{
2744 struct mt7530_priv *priv = ds->priv;
2745
2746 switch (interface) {
2747 case PHY_INTERFACE_MODE_TRGMII:
2748 case PHY_INTERFACE_MODE_SGMII:
2749 case PHY_INTERFACE_MODE_1000BASEX:
2750 case PHY_INTERFACE_MODE_2500BASEX:
2751 return &priv->pcs[port].pcs;
2752
2753 default:
2754 return NULL;
2755 }
2756}
2757
2758static void
2759mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2760 const struct phylink_link_state *state)
2761{
2762 struct mt7530_priv *priv = ds->priv;
2763 u32 mcr_cur, mcr_new;
2764
2765 switch (port) {
2766 case 0 ... 4: /* Internal phy */
2767 if (state->interface != PHY_INTERFACE_MODE_GMII)
2768 goto unsupported;
2769 break;
2770 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2771 if (priv->p5_interface == state->interface)
2772 break;
2773
2774 if (mt753x_mac_config(ds, port, mode, state) < 0)
2775 goto unsupported;
2776
2777 if (priv->p5_intf_sel != P5_DISABLED)
2778 priv->p5_interface = state->interface;
2779 break;
2780 case 6: /* 1st cpu port */
2781 if (priv->p6_interface == state->interface)
2782 break;
2783
2784 mt753x_pad_setup(ds, state);
2785
2786 if (mt753x_mac_config(ds, port, mode, state) < 0)
2787 goto unsupported;
2788
2789 priv->p6_interface = state->interface;
2790 break;
2791 default:
2792unsupported:
2793 dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2794 __func__, phy_modes(state->interface), port);
2795 return;
2796 }
2797
2798 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2799 mcr_new = mcr_cur;
2800 mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2801 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2802 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2803
2804 /* Are we connected to external phy */
2805 if (port == 5 && dsa_is_user_port(ds, 5))
2806 mcr_new |= PMCR_EXT_PHY;
2807
2808 if (mcr_new != mcr_cur)
2809 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2810}
2811
2812static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2813 unsigned int mode,
2814 phy_interface_t interface)
2815{
2816 struct mt7530_priv *priv = ds->priv;
2817
2818 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2819}
2820
2821static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2822 unsigned int mode,
2823 phy_interface_t interface,
2824 int speed, int duplex)
2825{
2826 if (pcs->ops->pcs_link_up)
2827 pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2828}
2829
2830static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2831 unsigned int mode,
2832 phy_interface_t interface,
2833 struct phy_device *phydev,
2834 int speed, int duplex,
2835 bool tx_pause, bool rx_pause)
2836{
2837 struct mt7530_priv *priv = ds->priv;
2838 u32 mcr;
2839
2840 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2841
2842 /* MT753x MAC works in 1G full duplex mode for all up-clocked
2843 * variants.
2844 */
2845 if (interface == PHY_INTERFACE_MODE_TRGMII ||
2846 (phy_interface_mode_is_8023z(interface))) {
2847 speed = SPEED_1000;
2848 duplex = DUPLEX_FULL;
2849 }
2850
2851 switch (speed) {
2852 case SPEED_1000:
2853 mcr |= PMCR_FORCE_SPEED_1000;
2854 break;
2855 case SPEED_100:
2856 mcr |= PMCR_FORCE_SPEED_100;
2857 break;
2858 }
2859 if (duplex == DUPLEX_FULL) {
2860 mcr |= PMCR_FORCE_FDX;
2861 if (tx_pause)
2862 mcr |= PMCR_TX_FC_EN;
2863 if (rx_pause)
2864 mcr |= PMCR_RX_FC_EN;
2865 }
2866
2867 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2868 switch (speed) {
2869 case SPEED_1000:
2870 mcr |= PMCR_FORCE_EEE1G;
2871 break;
2872 case SPEED_100:
2873 mcr |= PMCR_FORCE_EEE100;
2874 break;
2875 }
2876 }
2877
2878 mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2879}
2880
2881static int
2882mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2883{
2884 struct mt7530_priv *priv = ds->priv;
2885 phy_interface_t interface;
2886 int speed;
2887 int ret;
2888
2889 switch (port) {
2890 case 5:
2891 if (mt7531_is_rgmii_port(priv, port))
2892 interface = PHY_INTERFACE_MODE_RGMII;
2893 else
2894 interface = PHY_INTERFACE_MODE_2500BASEX;
2895
2896 priv->p5_interface = interface;
2897 break;
2898 case 6:
2899 interface = PHY_INTERFACE_MODE_2500BASEX;
2900
2901 priv->p6_interface = interface;
2902 break;
2903 default:
2904 return -EINVAL;
2905 }
2906
2907 if (interface == PHY_INTERFACE_MODE_2500BASEX)
2908 speed = SPEED_2500;
2909 else
2910 speed = SPEED_1000;
2911
2912 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2913 if (ret)
2914 return ret;
2915 mt7530_write(priv, MT7530_PMCR_P(port),
2916 PMCR_CPU_PORT_SETTING(priv->id));
2917 mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2918 interface, speed, DUPLEX_FULL);
2919 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2920 speed, DUPLEX_FULL, true, true);
2921
2922 return 0;
2923}
2924
2925static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2926 struct phylink_config *config)
2927{
2928 struct mt7530_priv *priv = ds->priv;
2929
2930 /* This switch only supports full-duplex at 1Gbps */
2931 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2932 MAC_10 | MAC_100 | MAC_1000FD;
2933
2934 /* This driver does not make use of the speed, duplex, pause or the
2935 * advertisement in its mac_config, so it is safe to mark this driver
2936 * as non-legacy.
2937 */
2938 config->legacy_pre_march2020 = false;
2939
2940 priv->info->mac_port_get_caps(ds, port, config);
2941}
2942
2943static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2944 unsigned long *supported,
2945 const struct phylink_link_state *state)
2946{
2947 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2948 if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2949 phy_interface_mode_is_8023z(state->interface))
2950 phylink_clear(supported, Autoneg);
2951
2952 return 0;
2953}
2954
2955static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2956 struct phylink_link_state *state)
2957{
2958 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2959 int port = pcs_to_mt753x_pcs(pcs)->port;
2960 u32 pmsr;
2961
2962 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2963
2964 state->link = (pmsr & PMSR_LINK);
2965 state->an_complete = state->link;
2966 state->duplex = !!(pmsr & PMSR_DPX);
2967
2968 switch (pmsr & PMSR_SPEED_MASK) {
2969 case PMSR_SPEED_10:
2970 state->speed = SPEED_10;
2971 break;
2972 case PMSR_SPEED_100:
2973 state->speed = SPEED_100;
2974 break;
2975 case PMSR_SPEED_1000:
2976 state->speed = SPEED_1000;
2977 break;
2978 default:
2979 state->speed = SPEED_UNKNOWN;
2980 break;
2981 }
2982
2983 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2984 if (pmsr & PMSR_RX_FC)
2985 state->pause |= MLO_PAUSE_RX;
2986 if (pmsr & PMSR_TX_FC)
2987 state->pause |= MLO_PAUSE_TX;
2988}
2989
2990static int
2991mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2992 struct phylink_link_state *state)
2993{
2994 u32 status, val;
2995 u16 config_reg;
2996
2997 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2998 state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2999 state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE);
3000 if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3001 (status & MT7531_SGMII_AN_ENABLE)) {
3002 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3003 config_reg = val >> 16;
3004
3005 switch (config_reg & LPA_SGMII_SPD_MASK) {
3006 case LPA_SGMII_1000:
3007 state->speed = SPEED_1000;
3008 break;
3009 case LPA_SGMII_100:
3010 state->speed = SPEED_100;
3011 break;
3012 case LPA_SGMII_10:
3013 state->speed = SPEED_10;
3014 break;
3015 default:
3016 dev_err(priv->dev, "invalid sgmii PHY speed\n");
3017 state->link = false;
3018 return -EINVAL;
3019 }
3020
3021 if (config_reg & LPA_SGMII_FULL_DUPLEX)
3022 state->duplex = DUPLEX_FULL;
3023 else
3024 state->duplex = DUPLEX_HALF;
3025 }
3026
3027 return 0;
3028}
3029
3030static void
3031mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port,
3032 struct phylink_link_state *state)
3033{
3034 unsigned int val;
3035
3036 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3037 state->link = !!(val & MT7531_SGMII_LINK_STATUS);
3038 if (!state->link)
3039 return;
3040
3041 state->an_complete = state->link;
3042
3043 if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3044 state->speed = SPEED_2500;
3045 else
3046 state->speed = SPEED_1000;
3047
3048 state->duplex = DUPLEX_FULL;
3049 state->pause = MLO_PAUSE_NONE;
3050}
3051
3052static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3053 struct phylink_link_state *state)
3054{
3055 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3056 int port = pcs_to_mt753x_pcs(pcs)->port;
3057
3058 if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3059 mt7531_sgmii_pcs_get_state_an(priv, port, state);
3060 return;
3061 } else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) ||
3062 (state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3063 mt7531_sgmii_pcs_get_state_inband(priv, port, state);
3064 return;
3065 }
3066
3067 state->link = false;
3068}
3069
3070static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3071 phy_interface_t interface,
3072 const unsigned long *advertising,
3073 bool permit_pause_to_mac)
3074{
3075 return 0;
3076}
3077
3078static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3079{
3080}
3081
3082static const struct phylink_pcs_ops mt7530_pcs_ops = {
3083 .pcs_validate = mt753x_pcs_validate,
3084 .pcs_get_state = mt7530_pcs_get_state,
3085 .pcs_config = mt753x_pcs_config,
3086 .pcs_an_restart = mt7530_pcs_an_restart,
3087};
3088
3089static const struct phylink_pcs_ops mt7531_pcs_ops = {
3090 .pcs_validate = mt753x_pcs_validate,
3091 .pcs_get_state = mt7531_pcs_get_state,
3092 .pcs_config = mt753x_pcs_config,
3093 .pcs_an_restart = mt7531_pcs_an_restart,
3094 .pcs_link_up = mt7531_pcs_link_up,
3095};
3096
3097static int
3098mt753x_setup(struct dsa_switch *ds)
3099{
3100 struct mt7530_priv *priv = ds->priv;
3101 int i, ret;
3102
3103 /* Initialise the PCS devices */
3104 for (i = 0; i < priv->ds->num_ports; i++) {
3105 priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3106 priv->pcs[i].priv = priv;
3107 priv->pcs[i].port = i;
3108 if (mt753x_is_mac_port(i))
3109 priv->pcs[i].pcs.poll = 1;
3110 }
3111
3112 ret = priv->info->sw_setup(ds);
3113 if (ret)
3114 return ret;
3115
3116 ret = mt7530_setup_irq(priv);
3117 if (ret)
3118 return ret;
3119
3120 ret = mt7530_setup_mdio(priv);
3121 if (ret && priv->irq)
3122 mt7530_free_irq_common(priv);
3123
3124 return ret;
3125}
3126
3127static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3128 struct ethtool_eee *e)
3129{
3130 struct mt7530_priv *priv = ds->priv;
3131 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3132
3133 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3134 e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3135
3136 return 0;
3137}
3138
3139static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3140 struct ethtool_eee *e)
3141{
3142 struct mt7530_priv *priv = ds->priv;
3143 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3144
3145 if (e->tx_lpi_timer > 0xFFF)
3146 return -EINVAL;
3147
3148 set = SET_LPI_THRESH(e->tx_lpi_timer);
3149 if (!e->tx_lpi_enabled)
3150 /* Force LPI Mode without a delay */
3151 set |= LPI_MODE_EN;
3152 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3153
3154 return 0;
3155}
3156
3157static const struct dsa_switch_ops mt7530_switch_ops = {
3158 .get_tag_protocol = mtk_get_tag_protocol,
3159 .setup = mt753x_setup,
3160 .get_strings = mt7530_get_strings,
3161 .get_ethtool_stats = mt7530_get_ethtool_stats,
3162 .get_sset_count = mt7530_get_sset_count,
3163 .set_ageing_time = mt7530_set_ageing_time,
3164 .port_enable = mt7530_port_enable,
3165 .port_disable = mt7530_port_disable,
3166 .port_change_mtu = mt7530_port_change_mtu,
3167 .port_max_mtu = mt7530_port_max_mtu,
3168 .port_stp_state_set = mt7530_stp_state_set,
3169 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
3170 .port_bridge_flags = mt7530_port_bridge_flags,
3171 .port_bridge_join = mt7530_port_bridge_join,
3172 .port_bridge_leave = mt7530_port_bridge_leave,
3173 .port_fdb_add = mt7530_port_fdb_add,
3174 .port_fdb_del = mt7530_port_fdb_del,
3175 .port_fdb_dump = mt7530_port_fdb_dump,
3176 .port_mdb_add = mt7530_port_mdb_add,
3177 .port_mdb_del = mt7530_port_mdb_del,
3178 .port_vlan_filtering = mt7530_port_vlan_filtering,
3179 .port_vlan_add = mt7530_port_vlan_add,
3180 .port_vlan_del = mt7530_port_vlan_del,
3181 .port_mirror_add = mt753x_port_mirror_add,
3182 .port_mirror_del = mt753x_port_mirror_del,
3183 .phylink_get_caps = mt753x_phylink_get_caps,
3184 .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs,
3185 .phylink_mac_config = mt753x_phylink_mac_config,
3186 .phylink_mac_link_down = mt753x_phylink_mac_link_down,
3187 .phylink_mac_link_up = mt753x_phylink_mac_link_up,
3188 .get_mac_eee = mt753x_get_mac_eee,
3189 .set_mac_eee = mt753x_set_mac_eee,
3190};
3191
3192static const struct mt753x_info mt753x_table[] = {
3193 [ID_MT7621] = {
3194 .id = ID_MT7621,
3195 .pcs_ops = &mt7530_pcs_ops,
3196 .sw_setup = mt7530_setup,
3197 .phy_read = mt7530_phy_read,
3198 .phy_write = mt7530_phy_write,
3199 .pad_setup = mt7530_pad_clk_setup,
3200 .mac_port_get_caps = mt7530_mac_port_get_caps,
3201 .mac_port_config = mt7530_mac_config,
3202 },
3203 [ID_MT7530] = {
3204 .id = ID_MT7530,
3205 .pcs_ops = &mt7530_pcs_ops,
3206 .sw_setup = mt7530_setup,
3207 .phy_read = mt7530_phy_read,
3208 .phy_write = mt7530_phy_write,
3209 .pad_setup = mt7530_pad_clk_setup,
3210 .mac_port_get_caps = mt7530_mac_port_get_caps,
3211 .mac_port_config = mt7530_mac_config,
3212 },
3213 [ID_MT7531] = {
3214 .id = ID_MT7531,
3215 .pcs_ops = &mt7531_pcs_ops,
3216 .sw_setup = mt7531_setup,
3217 .phy_read = mt7531_ind_phy_read,
3218 .phy_write = mt7531_ind_phy_write,
3219 .pad_setup = mt7531_pad_setup,
3220 .cpu_port_config = mt7531_cpu_port_config,
3221 .mac_port_get_caps = mt7531_mac_port_get_caps,
3222 .mac_port_config = mt7531_mac_config,
3223 },
3224};
3225
3226static const struct of_device_id mt7530_of_match[] = {
3227 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3228 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3229 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3230 { /* sentinel */ },
3231};
3232MODULE_DEVICE_TABLE(of, mt7530_of_match);
3233
3234static int
3235mt7530_probe(struct mdio_device *mdiodev)
3236{
3237 struct mt7530_priv *priv;
3238 struct device_node *dn;
3239
3240 dn = mdiodev->dev.of_node;
3241
3242 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3243 if (!priv)
3244 return -ENOMEM;
3245
3246 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3247 if (!priv->ds)
3248 return -ENOMEM;
3249
3250 priv->ds->dev = &mdiodev->dev;
3251 priv->ds->num_ports = MT7530_NUM_PORTS;
3252
3253 /* Use medatek,mcm property to distinguish hardware type that would
3254 * casues a little bit differences on power-on sequence.
3255 */
3256 priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3257 if (priv->mcm) {
3258 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3259
3260 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3261 if (IS_ERR(priv->rstc)) {
3262 dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3263 return PTR_ERR(priv->rstc);
3264 }
3265 }
3266
3267 /* Get the hardware identifier from the devicetree node.
3268 * We will need it for some of the clock and regulator setup.
3269 */
3270 priv->info = of_device_get_match_data(&mdiodev->dev);
3271 if (!priv->info)
3272 return -EINVAL;
3273
3274 /* Sanity check if these required device operations are filled
3275 * properly.
3276 */
3277 if (!priv->info->sw_setup || !priv->info->pad_setup ||
3278 !priv->info->phy_read || !priv->info->phy_write ||
3279 !priv->info->mac_port_get_caps ||
3280 !priv->info->mac_port_config)
3281 return -EINVAL;
3282
3283 priv->id = priv->info->id;
3284
3285 if (priv->id == ID_MT7530) {
3286 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3287 if (IS_ERR(priv->core_pwr))
3288 return PTR_ERR(priv->core_pwr);
3289
3290 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3291 if (IS_ERR(priv->io_pwr))
3292 return PTR_ERR(priv->io_pwr);
3293 }
3294
3295 /* Not MCM that indicates switch works as the remote standalone
3296 * integrated circuit so the GPIO pin would be used to complete
3297 * the reset, otherwise memory-mapped register accessing used
3298 * through syscon provides in the case of MCM.
3299 */
3300 if (!priv->mcm) {
3301 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3302 GPIOD_OUT_LOW);
3303 if (IS_ERR(priv->reset)) {
3304 dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3305 return PTR_ERR(priv->reset);
3306 }
3307 }
3308
3309 priv->bus = mdiodev->bus;
3310 priv->dev = &mdiodev->dev;
3311 priv->ds->priv = priv;
3312 priv->ds->ops = &mt7530_switch_ops;
3313 mutex_init(&priv->reg_mutex);
3314 dev_set_drvdata(&mdiodev->dev, priv);
3315
3316 return dsa_register_switch(priv->ds);
3317}
3318
3319static void
3320mt7530_remove(struct mdio_device *mdiodev)
3321{
3322 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3323 int ret = 0;
3324
3325 if (!priv)
3326 return;
3327
3328 ret = regulator_disable(priv->core_pwr);
3329 if (ret < 0)
3330 dev_err(priv->dev,
3331 "Failed to disable core power: %d\n", ret);
3332
3333 ret = regulator_disable(priv->io_pwr);
3334 if (ret < 0)
3335 dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3336 ret);
3337
3338 if (priv->irq)
3339 mt7530_free_irq(priv);
3340
3341 dsa_unregister_switch(priv->ds);
3342 mutex_destroy(&priv->reg_mutex);
3343}
3344
3345static void mt7530_shutdown(struct mdio_device *mdiodev)
3346{
3347 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3348
3349 if (!priv)
3350 return;
3351
3352 dsa_switch_shutdown(priv->ds);
3353
3354 dev_set_drvdata(&mdiodev->dev, NULL);
3355}
3356
3357static struct mdio_driver mt7530_mdio_driver = {
3358 .probe = mt7530_probe,
3359 .remove = mt7530_remove,
3360 .shutdown = mt7530_shutdown,
3361 .mdiodrv.driver = {
3362 .name = "mt7530",
3363 .of_match_table = mt7530_of_match,
3364 },
3365};
3366
3367mdio_module_driver(mt7530_mdio_driver);
3368
3369MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3370MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3371MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6#include <linux/etherdevice.h>
7#include <linux/if_bridge.h>
8#include <linux/iopoll.h>
9#include <linux/mdio.h>
10#include <linux/mfd/syscon.h>
11#include <linux/module.h>
12#include <linux/netdevice.h>
13#include <linux/of_irq.h>
14#include <linux/of_mdio.h>
15#include <linux/of_net.h>
16#include <linux/of_platform.h>
17#include <linux/phylink.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/reset.h>
21#include <linux/gpio/consumer.h>
22#include <linux/gpio/driver.h>
23#include <net/dsa.h>
24
25#include "mt7530.h"
26
27/* String, offset, and register size in bytes if different from 4 bytes */
28static const struct mt7530_mib_desc mt7530_mib[] = {
29 MIB_DESC(1, 0x00, "TxDrop"),
30 MIB_DESC(1, 0x04, "TxCrcErr"),
31 MIB_DESC(1, 0x08, "TxUnicast"),
32 MIB_DESC(1, 0x0c, "TxMulticast"),
33 MIB_DESC(1, 0x10, "TxBroadcast"),
34 MIB_DESC(1, 0x14, "TxCollision"),
35 MIB_DESC(1, 0x18, "TxSingleCollision"),
36 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 MIB_DESC(1, 0x20, "TxDeferred"),
38 MIB_DESC(1, 0x24, "TxLateCollision"),
39 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 MIB_DESC(1, 0x2c, "TxPause"),
41 MIB_DESC(1, 0x30, "TxPktSz64"),
42 MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 MIB_DESC(2, 0x48, "TxBytes"),
48 MIB_DESC(1, 0x60, "RxDrop"),
49 MIB_DESC(1, 0x64, "RxFiltering"),
50 MIB_DESC(1, 0x68, "RxUnicast"),
51 MIB_DESC(1, 0x6c, "RxMulticast"),
52 MIB_DESC(1, 0x70, "RxBroadcast"),
53 MIB_DESC(1, 0x74, "RxAlignErr"),
54 MIB_DESC(1, 0x78, "RxCrcErr"),
55 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
56 MIB_DESC(1, 0x80, "RxFragErr"),
57 MIB_DESC(1, 0x84, "RxOverSzErr"),
58 MIB_DESC(1, 0x88, "RxJabberErr"),
59 MIB_DESC(1, 0x8c, "RxPause"),
60 MIB_DESC(1, 0x90, "RxPktSz64"),
61 MIB_DESC(1, 0x94, "RxPktSz65To127"),
62 MIB_DESC(1, 0x98, "RxPktSz128To255"),
63 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
64 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
65 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
66 MIB_DESC(2, 0xa8, "RxBytes"),
67 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
68 MIB_DESC(1, 0xb4, "RxIngressDrop"),
69 MIB_DESC(1, 0xb8, "RxArlDrop"),
70};
71
72/* Since phy_device has not yet been created and
73 * phy_{read,write}_mmd_indirect is not available, we provide our own
74 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
75 * to complete this function.
76 */
77static int
78core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
79{
80 struct mii_bus *bus = priv->bus;
81 int value, ret;
82
83 /* Write the desired MMD Devad */
84 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
85 if (ret < 0)
86 goto err;
87
88 /* Write the desired MMD register address */
89 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
90 if (ret < 0)
91 goto err;
92
93 /* Select the Function : DATA with no post increment */
94 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
95 if (ret < 0)
96 goto err;
97
98 /* Read the content of the MMD's selected register */
99 value = bus->read(bus, 0, MII_MMD_DATA);
100
101 return value;
102err:
103 dev_err(&bus->dev, "failed to read mmd register\n");
104
105 return ret;
106}
107
108static int
109core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
110 int devad, u32 data)
111{
112 struct mii_bus *bus = priv->bus;
113 int ret;
114
115 /* Write the desired MMD Devad */
116 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
117 if (ret < 0)
118 goto err;
119
120 /* Write the desired MMD register address */
121 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
122 if (ret < 0)
123 goto err;
124
125 /* Select the Function : DATA with no post increment */
126 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
127 if (ret < 0)
128 goto err;
129
130 /* Write the data into MMD's selected register */
131 ret = bus->write(bus, 0, MII_MMD_DATA, data);
132err:
133 if (ret < 0)
134 dev_err(&bus->dev,
135 "failed to write mmd register\n");
136 return ret;
137}
138
139static void
140core_write(struct mt7530_priv *priv, u32 reg, u32 val)
141{
142 struct mii_bus *bus = priv->bus;
143
144 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
145
146 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
147
148 mutex_unlock(&bus->mdio_lock);
149}
150
151static void
152core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
153{
154 struct mii_bus *bus = priv->bus;
155 u32 val;
156
157 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
158
159 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
160 val &= ~mask;
161 val |= set;
162 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
163
164 mutex_unlock(&bus->mdio_lock);
165}
166
167static void
168core_set(struct mt7530_priv *priv, u32 reg, u32 val)
169{
170 core_rmw(priv, reg, 0, val);
171}
172
173static void
174core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
175{
176 core_rmw(priv, reg, val, 0);
177}
178
179static int
180mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
181{
182 struct mii_bus *bus = priv->bus;
183 u16 page, r, lo, hi;
184 int ret;
185
186 page = (reg >> 6) & 0x3ff;
187 r = (reg >> 2) & 0xf;
188 lo = val & 0xffff;
189 hi = val >> 16;
190
191 /* MT7530 uses 31 as the pseudo port */
192 ret = bus->write(bus, 0x1f, 0x1f, page);
193 if (ret < 0)
194 goto err;
195
196 ret = bus->write(bus, 0x1f, r, lo);
197 if (ret < 0)
198 goto err;
199
200 ret = bus->write(bus, 0x1f, 0x10, hi);
201err:
202 if (ret < 0)
203 dev_err(&bus->dev,
204 "failed to write mt7530 register\n");
205 return ret;
206}
207
208static u32
209mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
210{
211 struct mii_bus *bus = priv->bus;
212 u16 page, r, lo, hi;
213 int ret;
214
215 page = (reg >> 6) & 0x3ff;
216 r = (reg >> 2) & 0xf;
217
218 /* MT7530 uses 31 as the pseudo port */
219 ret = bus->write(bus, 0x1f, 0x1f, page);
220 if (ret < 0) {
221 dev_err(&bus->dev,
222 "failed to read mt7530 register\n");
223 return ret;
224 }
225
226 lo = bus->read(bus, 0x1f, r);
227 hi = bus->read(bus, 0x1f, 0x10);
228
229 return (hi << 16) | (lo & 0xffff);
230}
231
232static void
233mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
234{
235 struct mii_bus *bus = priv->bus;
236
237 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
238
239 mt7530_mii_write(priv, reg, val);
240
241 mutex_unlock(&bus->mdio_lock);
242}
243
244static u32
245_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
246{
247 return mt7530_mii_read(p->priv, p->reg);
248}
249
250static u32
251_mt7530_read(struct mt7530_dummy_poll *p)
252{
253 struct mii_bus *bus = p->priv->bus;
254 u32 val;
255
256 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
257
258 val = mt7530_mii_read(p->priv, p->reg);
259
260 mutex_unlock(&bus->mdio_lock);
261
262 return val;
263}
264
265static u32
266mt7530_read(struct mt7530_priv *priv, u32 reg)
267{
268 struct mt7530_dummy_poll p;
269
270 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
271 return _mt7530_read(&p);
272}
273
274static void
275mt7530_rmw(struct mt7530_priv *priv, u32 reg,
276 u32 mask, u32 set)
277{
278 struct mii_bus *bus = priv->bus;
279 u32 val;
280
281 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282
283 val = mt7530_mii_read(priv, reg);
284 val &= ~mask;
285 val |= set;
286 mt7530_mii_write(priv, reg, val);
287
288 mutex_unlock(&bus->mdio_lock);
289}
290
291static void
292mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
293{
294 mt7530_rmw(priv, reg, 0, val);
295}
296
297static void
298mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
299{
300 mt7530_rmw(priv, reg, val, 0);
301}
302
303static int
304mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
305{
306 u32 val;
307 int ret;
308 struct mt7530_dummy_poll p;
309
310 /* Set the command operating upon the MAC address entries */
311 val = ATC_BUSY | ATC_MAT(0) | cmd;
312 mt7530_write(priv, MT7530_ATC, val);
313
314 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
315 ret = readx_poll_timeout(_mt7530_read, &p, val,
316 !(val & ATC_BUSY), 20, 20000);
317 if (ret < 0) {
318 dev_err(priv->dev, "reset timeout\n");
319 return ret;
320 }
321
322 /* Additional sanity for read command if the specified
323 * entry is invalid
324 */
325 val = mt7530_read(priv, MT7530_ATC);
326 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
327 return -EINVAL;
328
329 if (rsp)
330 *rsp = val;
331
332 return 0;
333}
334
335static void
336mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
337{
338 u32 reg[3];
339 int i;
340
341 /* Read from ARL table into an array */
342 for (i = 0; i < 3; i++) {
343 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
344
345 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
346 __func__, __LINE__, i, reg[i]);
347 }
348
349 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
350 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
351 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
352 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
353 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
354 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
355 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
356 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
357 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
358 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
359}
360
361static void
362mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
363 u8 port_mask, const u8 *mac,
364 u8 aging, u8 type)
365{
366 u32 reg[3] = { 0 };
367 int i;
368
369 reg[1] |= vid & CVID_MASK;
370 if (vid > 1)
371 reg[1] |= ATA2_IVL;
372 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
373 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
374 /* STATIC_ENT indicate that entry is static wouldn't
375 * be aged out and STATIC_EMP specified as erasing an
376 * entry
377 */
378 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
379 reg[1] |= mac[5] << MAC_BYTE_5;
380 reg[1] |= mac[4] << MAC_BYTE_4;
381 reg[0] |= mac[3] << MAC_BYTE_3;
382 reg[0] |= mac[2] << MAC_BYTE_2;
383 reg[0] |= mac[1] << MAC_BYTE_1;
384 reg[0] |= mac[0] << MAC_BYTE_0;
385
386 /* Write array into the ARL table */
387 for (i = 0; i < 3; i++)
388 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
389}
390
391/* Setup TX circuit including relevant PAD and driving */
392static int
393mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
394{
395 struct mt7530_priv *priv = ds->priv;
396 u32 ncpo1, ssc_delta, trgint, i, xtal;
397
398 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
399
400 if (xtal == HWTRAP_XTAL_20MHZ) {
401 dev_err(priv->dev,
402 "%s: MT7530 with a 20MHz XTAL is not supported!\n",
403 __func__);
404 return -EINVAL;
405 }
406
407 switch (interface) {
408 case PHY_INTERFACE_MODE_RGMII:
409 trgint = 0;
410 /* PLL frequency: 125MHz */
411 ncpo1 = 0x0c80;
412 break;
413 case PHY_INTERFACE_MODE_TRGMII:
414 trgint = 1;
415 if (priv->id == ID_MT7621) {
416 /* PLL frequency: 150MHz: 1.2GBit */
417 if (xtal == HWTRAP_XTAL_40MHZ)
418 ncpo1 = 0x0780;
419 if (xtal == HWTRAP_XTAL_25MHZ)
420 ncpo1 = 0x0a00;
421 } else { /* PLL frequency: 250MHz: 2.0Gbit */
422 if (xtal == HWTRAP_XTAL_40MHZ)
423 ncpo1 = 0x0c80;
424 if (xtal == HWTRAP_XTAL_25MHZ)
425 ncpo1 = 0x1400;
426 }
427 break;
428 default:
429 dev_err(priv->dev, "xMII interface %d not supported\n",
430 interface);
431 return -EINVAL;
432 }
433
434 if (xtal == HWTRAP_XTAL_25MHZ)
435 ssc_delta = 0x57;
436 else
437 ssc_delta = 0x87;
438
439 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
440 P6_INTF_MODE(trgint));
441
442 /* Lower Tx Driving for TRGMII path */
443 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
444 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
445 TD_DM_DRVP(8) | TD_DM_DRVN(8));
446
447 /* Disable MT7530 core and TRGMII Tx clocks */
448 core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
449 REG_GSWCK_EN | REG_TRGMIICK_EN);
450
451 /* Setup core clock for MT7530 */
452 /* Disable PLL */
453 core_write(priv, CORE_GSWPLL_GRP1, 0);
454
455 /* Set core clock into 500Mhz */
456 core_write(priv, CORE_GSWPLL_GRP2,
457 RG_GSWPLL_POSDIV_500M(1) |
458 RG_GSWPLL_FBKDIV_500M(25));
459
460 /* Enable PLL */
461 core_write(priv, CORE_GSWPLL_GRP1,
462 RG_GSWPLL_EN_PRE |
463 RG_GSWPLL_POSDIV_200M(2) |
464 RG_GSWPLL_FBKDIV_200M(32));
465
466 /* Setup the MT7530 TRGMII Tx Clock */
467 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
468 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
469 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
470 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
471 core_write(priv, CORE_PLL_GROUP4,
472 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
473 RG_SYSPLL_BIAS_LPF_EN);
474 core_write(priv, CORE_PLL_GROUP2,
475 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
476 RG_SYSPLL_POSDIV(1));
477 core_write(priv, CORE_PLL_GROUP7,
478 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
479 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
480
481 /* Enable MT7530 core and TRGMII Tx clocks */
482 core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 REG_GSWCK_EN | REG_TRGMIICK_EN);
484
485 if (!trgint)
486 for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 RD_TAP_MASK, RD_TAP(16));
489 return 0;
490}
491
492static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493{
494 u32 val;
495
496 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497
498 return (val & PAD_DUAL_SGMII_EN) != 0;
499}
500
501static int
502mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503{
504 struct mt7530_priv *priv = ds->priv;
505 u32 top_sig;
506 u32 hwstrap;
507 u32 xtal;
508 u32 val;
509
510 if (mt7531_dual_sgmii_supported(priv))
511 return 0;
512
513 val = mt7530_read(priv, MT7531_CREV);
514 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 if ((val & CHIP_REV_M) > 0)
517 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 HWTRAP_XTAL_FSEL_25MHZ;
519 else
520 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521
522 /* Step 1 : Disable MT7531 COREPLL */
523 val = mt7530_read(priv, MT7531_PLLGP_EN);
524 val &= ~EN_COREPLL;
525 mt7530_write(priv, MT7531_PLLGP_EN, val);
526
527 /* Step 2: switch to XTAL output */
528 val = mt7530_read(priv, MT7531_PLLGP_EN);
529 val |= SW_CLKSW;
530 mt7530_write(priv, MT7531_PLLGP_EN, val);
531
532 val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 val &= ~RG_COREPLL_EN;
534 mt7530_write(priv, MT7531_PLLGP_CR0, val);
535
536 /* Step 3: disable PLLGP and enable program PLLGP */
537 val = mt7530_read(priv, MT7531_PLLGP_EN);
538 val |= SW_PLLGP;
539 mt7530_write(priv, MT7531_PLLGP_EN, val);
540
541 /* Step 4: program COREPLL output frequency to 500MHz */
542 val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 val &= ~RG_COREPLL_POSDIV_M;
544 val |= 2 << RG_COREPLL_POSDIV_S;
545 mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 usleep_range(25, 35);
547
548 switch (xtal) {
549 case HWTRAP_XTAL_FSEL_25MHZ:
550 val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 val &= ~RG_COREPLL_SDM_PCW_M;
552 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 break;
555 case HWTRAP_XTAL_FSEL_40MHZ:
556 val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 val &= ~RG_COREPLL_SDM_PCW_M;
558 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 break;
561 }
562
563 /* Set feedback divide ratio update signal to high */
564 val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 val |= RG_COREPLL_SDM_PCW_CHG;
566 mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 /* Wait for at least 16 XTAL clocks */
568 usleep_range(10, 20);
569
570 /* Step 5: set feedback divide ratio update signal to low */
571 val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 val &= ~RG_COREPLL_SDM_PCW_CHG;
573 mt7530_write(priv, MT7531_PLLGP_CR0, val);
574
575 /* Enable 325M clock for SGMII */
576 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577
578 /* Enable 250SSC clock for RGMII */
579 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580
581 /* Step 6: Enable MT7531 PLL */
582 val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 val |= RG_COREPLL_EN;
584 mt7530_write(priv, MT7531_PLLGP_CR0, val);
585
586 val = mt7530_read(priv, MT7531_PLLGP_EN);
587 val |= EN_COREPLL;
588 mt7530_write(priv, MT7531_PLLGP_EN, val);
589 usleep_range(25, 35);
590
591 return 0;
592}
593
594static void
595mt7530_mib_reset(struct dsa_switch *ds)
596{
597 struct mt7530_priv *priv = ds->priv;
598
599 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601}
602
603static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
604{
605 return mdiobus_read_nested(priv->bus, port, regnum);
606}
607
608static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
609 u16 val)
610{
611 return mdiobus_write_nested(priv->bus, port, regnum, val);
612}
613
614static int
615mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
616 int regnum)
617{
618 struct mii_bus *bus = priv->bus;
619 struct mt7530_dummy_poll p;
620 u32 reg, val;
621 int ret;
622
623 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624
625 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
626
627 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 if (ret < 0) {
630 dev_err(priv->dev, "poll timeout\n");
631 goto out;
632 }
633
634 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637
638 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 if (ret < 0) {
641 dev_err(priv->dev, "poll timeout\n");
642 goto out;
643 }
644
645 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 MT7531_MDIO_DEV_ADDR(devad);
647 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648
649 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 if (ret < 0) {
652 dev_err(priv->dev, "poll timeout\n");
653 goto out;
654 }
655
656 ret = val & MT7531_MDIO_RW_DATA_MASK;
657out:
658 mutex_unlock(&bus->mdio_lock);
659
660 return ret;
661}
662
663static int
664mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 int regnum, u32 data)
666{
667 struct mii_bus *bus = priv->bus;
668 struct mt7530_dummy_poll p;
669 u32 val, reg;
670 int ret;
671
672 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
673
674 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
675
676 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
677 !(val & MT7531_PHY_ACS_ST), 20, 100000);
678 if (ret < 0) {
679 dev_err(priv->dev, "poll timeout\n");
680 goto out;
681 }
682
683 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
684 MT7531_MDIO_DEV_ADDR(devad) | regnum;
685 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
686
687 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 if (ret < 0) {
690 dev_err(priv->dev, "poll timeout\n");
691 goto out;
692 }
693
694 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
695 MT7531_MDIO_DEV_ADDR(devad) | data;
696 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697
698 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 if (ret < 0) {
701 dev_err(priv->dev, "poll timeout\n");
702 goto out;
703 }
704
705out:
706 mutex_unlock(&bus->mdio_lock);
707
708 return ret;
709}
710
711static int
712mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
713{
714 struct mii_bus *bus = priv->bus;
715 struct mt7530_dummy_poll p;
716 int ret;
717 u32 val;
718
719 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
720
721 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
722
723 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
724 !(val & MT7531_PHY_ACS_ST), 20, 100000);
725 if (ret < 0) {
726 dev_err(priv->dev, "poll timeout\n");
727 goto out;
728 }
729
730 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
731 MT7531_MDIO_REG_ADDR(regnum);
732
733 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
734
735 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
736 !(val & MT7531_PHY_ACS_ST), 20, 100000);
737 if (ret < 0) {
738 dev_err(priv->dev, "poll timeout\n");
739 goto out;
740 }
741
742 ret = val & MT7531_MDIO_RW_DATA_MASK;
743out:
744 mutex_unlock(&bus->mdio_lock);
745
746 return ret;
747}
748
749static int
750mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
751 u16 data)
752{
753 struct mii_bus *bus = priv->bus;
754 struct mt7530_dummy_poll p;
755 int ret;
756 u32 reg;
757
758 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
759
760 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
761
762 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
763 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
764 if (ret < 0) {
765 dev_err(priv->dev, "poll timeout\n");
766 goto out;
767 }
768
769 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
770 MT7531_MDIO_REG_ADDR(regnum) | data;
771
772 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
773
774 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
775 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
776 if (ret < 0) {
777 dev_err(priv->dev, "poll timeout\n");
778 goto out;
779 }
780
781out:
782 mutex_unlock(&bus->mdio_lock);
783
784 return ret;
785}
786
787static int
788mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
789{
790 int devad;
791 int ret;
792
793 if (regnum & MII_ADDR_C45) {
794 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
795 ret = mt7531_ind_c45_phy_read(priv, port, devad,
796 regnum & MII_REGADDR_C45_MASK);
797 } else {
798 ret = mt7531_ind_c22_phy_read(priv, port, regnum);
799 }
800
801 return ret;
802}
803
804static int
805mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
806 u16 data)
807{
808 int devad;
809 int ret;
810
811 if (regnum & MII_ADDR_C45) {
812 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
813 ret = mt7531_ind_c45_phy_write(priv, port, devad,
814 regnum & MII_REGADDR_C45_MASK,
815 data);
816 } else {
817 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
818 }
819
820 return ret;
821}
822
823static int
824mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
825{
826 struct mt7530_priv *priv = bus->priv;
827
828 return priv->info->phy_read(priv, port, regnum);
829}
830
831static int
832mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
833{
834 struct mt7530_priv *priv = bus->priv;
835
836 return priv->info->phy_write(priv, port, regnum, val);
837}
838
839static void
840mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 uint8_t *data)
842{
843 int i;
844
845 if (stringset != ETH_SS_STATS)
846 return;
847
848 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 ETH_GSTRING_LEN);
851}
852
853static void
854mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 uint64_t *data)
856{
857 struct mt7530_priv *priv = ds->priv;
858 const struct mt7530_mib_desc *mib;
859 u32 reg, i;
860 u64 hi;
861
862 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 mib = &mt7530_mib[i];
864 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865
866 data[i] = mt7530_read(priv, reg);
867 if (mib->size == 2) {
868 hi = mt7530_read(priv, reg + 4);
869 data[i] |= hi << 32;
870 }
871 }
872}
873
874static int
875mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876{
877 if (sset != ETH_SS_STATS)
878 return 0;
879
880 return ARRAY_SIZE(mt7530_mib);
881}
882
883static int
884mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885{
886 struct mt7530_priv *priv = ds->priv;
887 unsigned int secs = msecs / 1000;
888 unsigned int tmp_age_count;
889 unsigned int error = -1;
890 unsigned int age_count;
891 unsigned int age_unit;
892
893 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 return -ERANGE;
896
897 /* iterate through all possible age_count to find the closest pair */
898 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900
901 if (tmp_age_unit <= AGE_UNIT_MAX) {
902 unsigned int tmp_error = secs -
903 (tmp_age_count + 1) * (tmp_age_unit + 1);
904
905 /* found a closer pair */
906 if (error > tmp_error) {
907 error = tmp_error;
908 age_count = tmp_age_count;
909 age_unit = tmp_age_unit;
910 }
911
912 /* found the exact match, so break the loop */
913 if (!error)
914 break;
915 }
916 }
917
918 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919
920 return 0;
921}
922
923static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924{
925 struct mt7530_priv *priv = ds->priv;
926 u8 tx_delay = 0;
927 int val;
928
929 mutex_lock(&priv->reg_mutex);
930
931 val = mt7530_read(priv, MT7530_MHWTRAP);
932
933 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935
936 switch (priv->p5_intf_sel) {
937 case P5_INTF_SEL_PHY_P0:
938 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 val |= MHWTRAP_PHY0_SEL;
940 fallthrough;
941 case P5_INTF_SEL_PHY_P4:
942 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944
945 /* Setup the MAC by default for the cpu port */
946 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 break;
948 case P5_INTF_SEL_GMAC5:
949 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 val &= ~MHWTRAP_P5_DIS;
951 break;
952 case P5_DISABLED:
953 interface = PHY_INTERFACE_MODE_NA;
954 break;
955 default:
956 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 priv->p5_intf_sel);
958 goto unlock_exit;
959 }
960
961 /* Setup RGMII settings */
962 if (phy_interface_mode_is_rgmii(interface)) {
963 val |= MHWTRAP_P5_RGMII_MODE;
964
965 /* P5 RGMII RX Clock Control: delay setting for 1000M */
966 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967
968 /* Don't set delay in DSA mode */
969 if (!dsa_is_dsa_port(priv->ds, 5) &&
970 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 interface == PHY_INTERFACE_MODE_RGMII_ID))
972 tx_delay = 4; /* n * 0.5 ns */
973
974 /* P5 RGMII TX Clock Control: delay x */
975 mt7530_write(priv, MT7530_P5RGMIITXCR,
976 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977
978 /* reduce P5 RGMII Tx driving, 8mA */
979 mt7530_write(priv, MT7530_IO_DRV_CR,
980 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 }
982
983 mt7530_write(priv, MT7530_MHWTRAP, val);
984
985 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987
988 priv->p5_interface = interface;
989
990unlock_exit:
991 mutex_unlock(&priv->reg_mutex);
992}
993
994static int
995mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996{
997 struct mt7530_priv *priv = ds->priv;
998 int ret;
999
1000 /* Setup max capability of CPU port at first */
1001 if (priv->info->cpu_port_config) {
1002 ret = priv->info->cpu_port_config(ds, port);
1003 if (ret)
1004 return ret;
1005 }
1006
1007 /* Enable Mediatek header mode on the cpu port */
1008 mt7530_write(priv, MT7530_PVC_P(port),
1009 PORT_SPEC_TAG);
1010
1011 /* Disable flooding by default */
1012 mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014
1015 /* Set CPU port number */
1016 if (priv->id == ID_MT7621)
1017 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018
1019 /* CPU port gets connected to all user ports of
1020 * the switch.
1021 */
1022 mt7530_write(priv, MT7530_PCR_P(port),
1023 PCR_MATRIX(dsa_user_ports(priv->ds)));
1024
1025 return 0;
1026}
1027
1028static int
1029mt7530_port_enable(struct dsa_switch *ds, int port,
1030 struct phy_device *phy)
1031{
1032 struct mt7530_priv *priv = ds->priv;
1033
1034 mutex_lock(&priv->reg_mutex);
1035
1036 /* Allow the user port gets connected to the cpu port and also
1037 * restore the port matrix if the port is the member of a certain
1038 * bridge.
1039 */
1040 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1041 priv->ports[port].enable = true;
1042 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1043 priv->ports[port].pm);
1044 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1045
1046 mutex_unlock(&priv->reg_mutex);
1047
1048 return 0;
1049}
1050
1051static void
1052mt7530_port_disable(struct dsa_switch *ds, int port)
1053{
1054 struct mt7530_priv *priv = ds->priv;
1055
1056 mutex_lock(&priv->reg_mutex);
1057
1058 /* Clear up all port matrix which could be restored in the next
1059 * enablement for the port.
1060 */
1061 priv->ports[port].enable = false;
1062 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1063 PCR_MATRIX_CLR);
1064 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1065
1066 mutex_unlock(&priv->reg_mutex);
1067}
1068
1069static int
1070mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1071{
1072 struct mt7530_priv *priv = ds->priv;
1073 struct mii_bus *bus = priv->bus;
1074 int length;
1075 u32 val;
1076
1077 /* When a new MTU is set, DSA always set the CPU port's MTU to the
1078 * largest MTU of the slave ports. Because the switch only has a global
1079 * RX length register, only allowing CPU port here is enough.
1080 */
1081 if (!dsa_is_cpu_port(ds, port))
1082 return 0;
1083
1084 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1085
1086 val = mt7530_mii_read(priv, MT7530_GMACCR);
1087 val &= ~MAX_RX_PKT_LEN_MASK;
1088
1089 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1090 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1091 if (length <= 1522) {
1092 val |= MAX_RX_PKT_LEN_1522;
1093 } else if (length <= 1536) {
1094 val |= MAX_RX_PKT_LEN_1536;
1095 } else if (length <= 1552) {
1096 val |= MAX_RX_PKT_LEN_1552;
1097 } else {
1098 val &= ~MAX_RX_JUMBO_MASK;
1099 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1100 val |= MAX_RX_PKT_LEN_JUMBO;
1101 }
1102
1103 mt7530_mii_write(priv, MT7530_GMACCR, val);
1104
1105 mutex_unlock(&bus->mdio_lock);
1106
1107 return 0;
1108}
1109
1110static int
1111mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1112{
1113 return MT7530_MAX_MTU;
1114}
1115
1116static void
1117mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1118{
1119 struct mt7530_priv *priv = ds->priv;
1120 u32 stp_state;
1121
1122 switch (state) {
1123 case BR_STATE_DISABLED:
1124 stp_state = MT7530_STP_DISABLED;
1125 break;
1126 case BR_STATE_BLOCKING:
1127 stp_state = MT7530_STP_BLOCKING;
1128 break;
1129 case BR_STATE_LISTENING:
1130 stp_state = MT7530_STP_LISTENING;
1131 break;
1132 case BR_STATE_LEARNING:
1133 stp_state = MT7530_STP_LEARNING;
1134 break;
1135 case BR_STATE_FORWARDING:
1136 default:
1137 stp_state = MT7530_STP_FORWARDING;
1138 break;
1139 }
1140
1141 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1142}
1143
1144static int
1145mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1146 struct switchdev_brport_flags flags,
1147 struct netlink_ext_ack *extack)
1148{
1149 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1150 BR_BCAST_FLOOD))
1151 return -EINVAL;
1152
1153 return 0;
1154}
1155
1156static int
1157mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1158 struct switchdev_brport_flags flags,
1159 struct netlink_ext_ack *extack)
1160{
1161 struct mt7530_priv *priv = ds->priv;
1162
1163 if (flags.mask & BR_LEARNING)
1164 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1165 flags.val & BR_LEARNING ? 0 : SA_DIS);
1166
1167 if (flags.mask & BR_FLOOD)
1168 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1169 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1170
1171 if (flags.mask & BR_MCAST_FLOOD)
1172 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1173 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1174
1175 if (flags.mask & BR_BCAST_FLOOD)
1176 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1177 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1178
1179 return 0;
1180}
1181
1182static int
1183mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1184 struct net_device *bridge)
1185{
1186 struct mt7530_priv *priv = ds->priv;
1187 u32 port_bitmap = BIT(MT7530_CPU_PORT);
1188 int i;
1189
1190 mutex_lock(&priv->reg_mutex);
1191
1192 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1193 /* Add this port to the port matrix of the other ports in the
1194 * same bridge. If the port is disabled, port matrix is kept
1195 * and not being setup until the port becomes enabled.
1196 */
1197 if (dsa_is_user_port(ds, i) && i != port) {
1198 if (dsa_to_port(ds, i)->bridge_dev != bridge)
1199 continue;
1200 if (priv->ports[i].enable)
1201 mt7530_set(priv, MT7530_PCR_P(i),
1202 PCR_MATRIX(BIT(port)));
1203 priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1204
1205 port_bitmap |= BIT(i);
1206 }
1207 }
1208
1209 /* Add the all other ports to this port matrix. */
1210 if (priv->ports[port].enable)
1211 mt7530_rmw(priv, MT7530_PCR_P(port),
1212 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1213 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1214
1215 mutex_unlock(&priv->reg_mutex);
1216
1217 return 0;
1218}
1219
1220static void
1221mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1222{
1223 struct mt7530_priv *priv = ds->priv;
1224 bool all_user_ports_removed = true;
1225 int i;
1226
1227 /* When a port is removed from the bridge, the port would be set up
1228 * back to the default as is at initial boot which is a VLAN-unaware
1229 * port.
1230 */
1231 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1232 MT7530_PORT_MATRIX_MODE);
1233 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1234 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1235 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1236
1237 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1238 if (dsa_is_user_port(ds, i) &&
1239 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1240 all_user_ports_removed = false;
1241 break;
1242 }
1243 }
1244
1245 /* CPU port also does the same thing until all user ports belonging to
1246 * the CPU port get out of VLAN filtering mode.
1247 */
1248 if (all_user_ports_removed) {
1249 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1250 PCR_MATRIX(dsa_user_ports(priv->ds)));
1251 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1252 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1253 }
1254}
1255
1256static void
1257mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1258{
1259 struct mt7530_priv *priv = ds->priv;
1260
1261 /* Trapped into security mode allows packet forwarding through VLAN
1262 * table lookup. CPU port is set to fallback mode to let untagged
1263 * frames pass through.
1264 */
1265 if (dsa_is_cpu_port(ds, port))
1266 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1267 MT7530_PORT_FALLBACK_MODE);
1268 else
1269 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1270 MT7530_PORT_SECURITY_MODE);
1271
1272 /* Set the port as a user port which is to be able to recognize VID
1273 * from incoming packets before fetching entry within the VLAN table.
1274 */
1275 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1276 VLAN_ATTR(MT7530_VLAN_USER) |
1277 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1278}
1279
1280static void
1281mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1282 struct net_device *bridge)
1283{
1284 struct mt7530_priv *priv = ds->priv;
1285 int i;
1286
1287 mutex_lock(&priv->reg_mutex);
1288
1289 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1290 /* Remove this port from the port matrix of the other ports
1291 * in the same bridge. If the port is disabled, port matrix
1292 * is kept and not being setup until the port becomes enabled.
1293 */
1294 if (dsa_is_user_port(ds, i) && i != port) {
1295 if (dsa_to_port(ds, i)->bridge_dev != bridge)
1296 continue;
1297 if (priv->ports[i].enable)
1298 mt7530_clear(priv, MT7530_PCR_P(i),
1299 PCR_MATRIX(BIT(port)));
1300 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1301 }
1302 }
1303
1304 /* Set the cpu port to be the only one in the port matrix of
1305 * this port.
1306 */
1307 if (priv->ports[port].enable)
1308 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1309 PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1310 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1311
1312 mutex_unlock(&priv->reg_mutex);
1313}
1314
1315static int
1316mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1317 const unsigned char *addr, u16 vid)
1318{
1319 struct mt7530_priv *priv = ds->priv;
1320 int ret;
1321 u8 port_mask = BIT(port);
1322
1323 mutex_lock(&priv->reg_mutex);
1324 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1325 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1326 mutex_unlock(&priv->reg_mutex);
1327
1328 return ret;
1329}
1330
1331static int
1332mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1333 const unsigned char *addr, u16 vid)
1334{
1335 struct mt7530_priv *priv = ds->priv;
1336 int ret;
1337 u8 port_mask = BIT(port);
1338
1339 mutex_lock(&priv->reg_mutex);
1340 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1341 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1342 mutex_unlock(&priv->reg_mutex);
1343
1344 return ret;
1345}
1346
1347static int
1348mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1349 dsa_fdb_dump_cb_t *cb, void *data)
1350{
1351 struct mt7530_priv *priv = ds->priv;
1352 struct mt7530_fdb _fdb = { 0 };
1353 int cnt = MT7530_NUM_FDB_RECORDS;
1354 int ret = 0;
1355 u32 rsp = 0;
1356
1357 mutex_lock(&priv->reg_mutex);
1358
1359 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1360 if (ret < 0)
1361 goto err;
1362
1363 do {
1364 if (rsp & ATC_SRCH_HIT) {
1365 mt7530_fdb_read(priv, &_fdb);
1366 if (_fdb.port_mask & BIT(port)) {
1367 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1368 data);
1369 if (ret < 0)
1370 break;
1371 }
1372 }
1373 } while (--cnt &&
1374 !(rsp & ATC_SRCH_END) &&
1375 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1376err:
1377 mutex_unlock(&priv->reg_mutex);
1378
1379 return 0;
1380}
1381
1382static int
1383mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1384 const struct switchdev_obj_port_mdb *mdb)
1385{
1386 struct mt7530_priv *priv = ds->priv;
1387 const u8 *addr = mdb->addr;
1388 u16 vid = mdb->vid;
1389 u8 port_mask = 0;
1390 int ret;
1391
1392 mutex_lock(&priv->reg_mutex);
1393
1394 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1395 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1396 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1397 & PORT_MAP_MASK;
1398
1399 port_mask |= BIT(port);
1400 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1401 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1402
1403 mutex_unlock(&priv->reg_mutex);
1404
1405 return ret;
1406}
1407
1408static int
1409mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1410 const struct switchdev_obj_port_mdb *mdb)
1411{
1412 struct mt7530_priv *priv = ds->priv;
1413 const u8 *addr = mdb->addr;
1414 u16 vid = mdb->vid;
1415 u8 port_mask = 0;
1416 int ret;
1417
1418 mutex_lock(&priv->reg_mutex);
1419
1420 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1421 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1422 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1423 & PORT_MAP_MASK;
1424
1425 port_mask &= ~BIT(port);
1426 mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1427 port_mask ? STATIC_ENT : STATIC_EMP);
1428 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1429
1430 mutex_unlock(&priv->reg_mutex);
1431
1432 return ret;
1433}
1434
1435static int
1436mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1437{
1438 struct mt7530_dummy_poll p;
1439 u32 val;
1440 int ret;
1441
1442 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1443 mt7530_write(priv, MT7530_VTCR, val);
1444
1445 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1446 ret = readx_poll_timeout(_mt7530_read, &p, val,
1447 !(val & VTCR_BUSY), 20, 20000);
1448 if (ret < 0) {
1449 dev_err(priv->dev, "poll timeout\n");
1450 return ret;
1451 }
1452
1453 val = mt7530_read(priv, MT7530_VTCR);
1454 if (val & VTCR_INVALID) {
1455 dev_err(priv->dev, "read VTCR invalid\n");
1456 return -EINVAL;
1457 }
1458
1459 return 0;
1460}
1461
1462static int
1463mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1464 struct netlink_ext_ack *extack)
1465{
1466 if (vlan_filtering) {
1467 /* The port is being kept as VLAN-unaware port when bridge is
1468 * set up with vlan_filtering not being set, Otherwise, the
1469 * port and the corresponding CPU port is required the setup
1470 * for becoming a VLAN-aware port.
1471 */
1472 mt7530_port_set_vlan_aware(ds, port);
1473 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1474 } else {
1475 mt7530_port_set_vlan_unaware(ds, port);
1476 }
1477
1478 return 0;
1479}
1480
1481static void
1482mt7530_hw_vlan_add(struct mt7530_priv *priv,
1483 struct mt7530_hw_vlan_entry *entry)
1484{
1485 u8 new_members;
1486 u32 val;
1487
1488 new_members = entry->old_members | BIT(entry->port) |
1489 BIT(MT7530_CPU_PORT);
1490
1491 /* Validate the entry with independent learning, create egress tag per
1492 * VLAN and joining the port as one of the port members.
1493 */
1494 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1495 mt7530_write(priv, MT7530_VAWD1, val);
1496
1497 /* Decide whether adding tag or not for those outgoing packets from the
1498 * port inside the VLAN.
1499 */
1500 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1501 MT7530_VLAN_EGRESS_TAG;
1502 mt7530_rmw(priv, MT7530_VAWD2,
1503 ETAG_CTRL_P_MASK(entry->port),
1504 ETAG_CTRL_P(entry->port, val));
1505
1506 /* CPU port is always taken as a tagged port for serving more than one
1507 * VLANs across and also being applied with egress type stack mode for
1508 * that VLAN tags would be appended after hardware special tag used as
1509 * DSA tag.
1510 */
1511 mt7530_rmw(priv, MT7530_VAWD2,
1512 ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1513 ETAG_CTRL_P(MT7530_CPU_PORT,
1514 MT7530_VLAN_EGRESS_STACK));
1515}
1516
1517static void
1518mt7530_hw_vlan_del(struct mt7530_priv *priv,
1519 struct mt7530_hw_vlan_entry *entry)
1520{
1521 u8 new_members;
1522 u32 val;
1523
1524 new_members = entry->old_members & ~BIT(entry->port);
1525
1526 val = mt7530_read(priv, MT7530_VAWD1);
1527 if (!(val & VLAN_VALID)) {
1528 dev_err(priv->dev,
1529 "Cannot be deleted due to invalid entry\n");
1530 return;
1531 }
1532
1533 /* If certain member apart from CPU port is still alive in the VLAN,
1534 * the entry would be kept valid. Otherwise, the entry is got to be
1535 * disabled.
1536 */
1537 if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1538 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1539 VLAN_VALID;
1540 mt7530_write(priv, MT7530_VAWD1, val);
1541 } else {
1542 mt7530_write(priv, MT7530_VAWD1, 0);
1543 mt7530_write(priv, MT7530_VAWD2, 0);
1544 }
1545}
1546
1547static void
1548mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1549 struct mt7530_hw_vlan_entry *entry,
1550 mt7530_vlan_op vlan_op)
1551{
1552 u32 val;
1553
1554 /* Fetch entry */
1555 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1556
1557 val = mt7530_read(priv, MT7530_VAWD1);
1558
1559 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1560
1561 /* Manipulate entry */
1562 vlan_op(priv, entry);
1563
1564 /* Flush result to hardware */
1565 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1566}
1567
1568static int
1569mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1570 const struct switchdev_obj_port_vlan *vlan,
1571 struct netlink_ext_ack *extack)
1572{
1573 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1574 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1575 struct mt7530_hw_vlan_entry new_entry;
1576 struct mt7530_priv *priv = ds->priv;
1577
1578 mutex_lock(&priv->reg_mutex);
1579
1580 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1581 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1582
1583 if (pvid) {
1584 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1585 G0_PORT_VID(vlan->vid));
1586 priv->ports[port].pvid = vlan->vid;
1587 }
1588
1589 mutex_unlock(&priv->reg_mutex);
1590
1591 return 0;
1592}
1593
1594static int
1595mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1596 const struct switchdev_obj_port_vlan *vlan)
1597{
1598 struct mt7530_hw_vlan_entry target_entry;
1599 struct mt7530_priv *priv = ds->priv;
1600 u16 pvid;
1601
1602 mutex_lock(&priv->reg_mutex);
1603
1604 pvid = priv->ports[port].pvid;
1605 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1606 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1607 mt7530_hw_vlan_del);
1608
1609 /* PVID is being restored to the default whenever the PVID port
1610 * is being removed from the VLAN.
1611 */
1612 if (pvid == vlan->vid)
1613 pvid = G0_PORT_VID_DEF;
1614
1615 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1616 priv->ports[port].pvid = pvid;
1617
1618 mutex_unlock(&priv->reg_mutex);
1619
1620 return 0;
1621}
1622
1623static int mt753x_mirror_port_get(unsigned int id, u32 val)
1624{
1625 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1626 MIRROR_PORT(val);
1627}
1628
1629static int mt753x_mirror_port_set(unsigned int id, u32 val)
1630{
1631 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1632 MIRROR_PORT(val);
1633}
1634
1635static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1636 struct dsa_mall_mirror_tc_entry *mirror,
1637 bool ingress)
1638{
1639 struct mt7530_priv *priv = ds->priv;
1640 int monitor_port;
1641 u32 val;
1642
1643 /* Check for existent entry */
1644 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1645 return -EEXIST;
1646
1647 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1648
1649 /* MT7530 only supports one monitor port */
1650 monitor_port = mt753x_mirror_port_get(priv->id, val);
1651 if (val & MT753X_MIRROR_EN(priv->id) &&
1652 monitor_port != mirror->to_local_port)
1653 return -EEXIST;
1654
1655 val |= MT753X_MIRROR_EN(priv->id);
1656 val &= ~MT753X_MIRROR_MASK(priv->id);
1657 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1658 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1659
1660 val = mt7530_read(priv, MT7530_PCR_P(port));
1661 if (ingress) {
1662 val |= PORT_RX_MIR;
1663 priv->mirror_rx |= BIT(port);
1664 } else {
1665 val |= PORT_TX_MIR;
1666 priv->mirror_tx |= BIT(port);
1667 }
1668 mt7530_write(priv, MT7530_PCR_P(port), val);
1669
1670 return 0;
1671}
1672
1673static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1674 struct dsa_mall_mirror_tc_entry *mirror)
1675{
1676 struct mt7530_priv *priv = ds->priv;
1677 u32 val;
1678
1679 val = mt7530_read(priv, MT7530_PCR_P(port));
1680 if (mirror->ingress) {
1681 val &= ~PORT_RX_MIR;
1682 priv->mirror_rx &= ~BIT(port);
1683 } else {
1684 val &= ~PORT_TX_MIR;
1685 priv->mirror_tx &= ~BIT(port);
1686 }
1687 mt7530_write(priv, MT7530_PCR_P(port), val);
1688
1689 if (!priv->mirror_rx && !priv->mirror_tx) {
1690 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1691 val &= ~MT753X_MIRROR_EN(priv->id);
1692 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1693 }
1694}
1695
1696static enum dsa_tag_protocol
1697mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1698 enum dsa_tag_protocol mp)
1699{
1700 struct mt7530_priv *priv = ds->priv;
1701
1702 if (port != MT7530_CPU_PORT) {
1703 dev_warn(priv->dev,
1704 "port not matched with tagging CPU port\n");
1705 return DSA_TAG_PROTO_NONE;
1706 } else {
1707 return DSA_TAG_PROTO_MTK;
1708 }
1709}
1710
1711#ifdef CONFIG_GPIOLIB
1712static inline u32
1713mt7530_gpio_to_bit(unsigned int offset)
1714{
1715 /* Map GPIO offset to register bit
1716 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
1717 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
1718 * [10: 8] port 2 LED 0..2 as GPIO 6..8
1719 * [14:12] port 3 LED 0..2 as GPIO 9..11
1720 * [18:16] port 4 LED 0..2 as GPIO 12..14
1721 */
1722 return BIT(offset + offset / 3);
1723}
1724
1725static int
1726mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1727{
1728 struct mt7530_priv *priv = gpiochip_get_data(gc);
1729 u32 bit = mt7530_gpio_to_bit(offset);
1730
1731 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1732}
1733
1734static void
1735mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1736{
1737 struct mt7530_priv *priv = gpiochip_get_data(gc);
1738 u32 bit = mt7530_gpio_to_bit(offset);
1739
1740 if (value)
1741 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1742 else
1743 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1744}
1745
1746static int
1747mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1748{
1749 struct mt7530_priv *priv = gpiochip_get_data(gc);
1750 u32 bit = mt7530_gpio_to_bit(offset);
1751
1752 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1753 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1754}
1755
1756static int
1757mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1758{
1759 struct mt7530_priv *priv = gpiochip_get_data(gc);
1760 u32 bit = mt7530_gpio_to_bit(offset);
1761
1762 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1763 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1764
1765 return 0;
1766}
1767
1768static int
1769mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1770{
1771 struct mt7530_priv *priv = gpiochip_get_data(gc);
1772 u32 bit = mt7530_gpio_to_bit(offset);
1773
1774 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1775
1776 if (value)
1777 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1778 else
1779 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1780
1781 mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1782
1783 return 0;
1784}
1785
1786static int
1787mt7530_setup_gpio(struct mt7530_priv *priv)
1788{
1789 struct device *dev = priv->dev;
1790 struct gpio_chip *gc;
1791
1792 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1793 if (!gc)
1794 return -ENOMEM;
1795
1796 mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1797 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1798 mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1799
1800 gc->label = "mt7530";
1801 gc->parent = dev;
1802 gc->owner = THIS_MODULE;
1803 gc->get_direction = mt7530_gpio_get_direction;
1804 gc->direction_input = mt7530_gpio_direction_input;
1805 gc->direction_output = mt7530_gpio_direction_output;
1806 gc->get = mt7530_gpio_get;
1807 gc->set = mt7530_gpio_set;
1808 gc->base = -1;
1809 gc->ngpio = 15;
1810 gc->can_sleep = true;
1811
1812 return devm_gpiochip_add_data(dev, gc, priv);
1813}
1814#endif /* CONFIG_GPIOLIB */
1815
1816static irqreturn_t
1817mt7530_irq_thread_fn(int irq, void *dev_id)
1818{
1819 struct mt7530_priv *priv = dev_id;
1820 bool handled = false;
1821 u32 val;
1822 int p;
1823
1824 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1825 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1826 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1827 mutex_unlock(&priv->bus->mdio_lock);
1828
1829 for (p = 0; p < MT7530_NUM_PHYS; p++) {
1830 if (BIT(p) & val) {
1831 unsigned int irq;
1832
1833 irq = irq_find_mapping(priv->irq_domain, p);
1834 handle_nested_irq(irq);
1835 handled = true;
1836 }
1837 }
1838
1839 return IRQ_RETVAL(handled);
1840}
1841
1842static void
1843mt7530_irq_mask(struct irq_data *d)
1844{
1845 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1846
1847 priv->irq_enable &= ~BIT(d->hwirq);
1848}
1849
1850static void
1851mt7530_irq_unmask(struct irq_data *d)
1852{
1853 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1854
1855 priv->irq_enable |= BIT(d->hwirq);
1856}
1857
1858static void
1859mt7530_irq_bus_lock(struct irq_data *d)
1860{
1861 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1862
1863 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1864}
1865
1866static void
1867mt7530_irq_bus_sync_unlock(struct irq_data *d)
1868{
1869 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1870
1871 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1872 mutex_unlock(&priv->bus->mdio_lock);
1873}
1874
1875static struct irq_chip mt7530_irq_chip = {
1876 .name = KBUILD_MODNAME,
1877 .irq_mask = mt7530_irq_mask,
1878 .irq_unmask = mt7530_irq_unmask,
1879 .irq_bus_lock = mt7530_irq_bus_lock,
1880 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1881};
1882
1883static int
1884mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1885 irq_hw_number_t hwirq)
1886{
1887 irq_set_chip_data(irq, domain->host_data);
1888 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1889 irq_set_nested_thread(irq, true);
1890 irq_set_noprobe(irq);
1891
1892 return 0;
1893}
1894
1895static const struct irq_domain_ops mt7530_irq_domain_ops = {
1896 .map = mt7530_irq_map,
1897 .xlate = irq_domain_xlate_onecell,
1898};
1899
1900static void
1901mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1902{
1903 struct dsa_switch *ds = priv->ds;
1904 int p;
1905
1906 for (p = 0; p < MT7530_NUM_PHYS; p++) {
1907 if (BIT(p) & ds->phys_mii_mask) {
1908 unsigned int irq;
1909
1910 irq = irq_create_mapping(priv->irq_domain, p);
1911 ds->slave_mii_bus->irq[p] = irq;
1912 }
1913 }
1914}
1915
1916static int
1917mt7530_setup_irq(struct mt7530_priv *priv)
1918{
1919 struct device *dev = priv->dev;
1920 struct device_node *np = dev->of_node;
1921 int ret;
1922
1923 if (!of_property_read_bool(np, "interrupt-controller")) {
1924 dev_info(dev, "no interrupt support\n");
1925 return 0;
1926 }
1927
1928 priv->irq = of_irq_get(np, 0);
1929 if (priv->irq <= 0) {
1930 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
1931 return priv->irq ? : -EINVAL;
1932 }
1933
1934 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
1935 &mt7530_irq_domain_ops, priv);
1936 if (!priv->irq_domain) {
1937 dev_err(dev, "failed to create IRQ domain\n");
1938 return -ENOMEM;
1939 }
1940
1941 /* This register must be set for MT7530 to properly fire interrupts */
1942 if (priv->id != ID_MT7531)
1943 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
1944
1945 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
1946 IRQF_ONESHOT, KBUILD_MODNAME, priv);
1947 if (ret) {
1948 irq_domain_remove(priv->irq_domain);
1949 dev_err(dev, "failed to request IRQ: %d\n", ret);
1950 return ret;
1951 }
1952
1953 return 0;
1954}
1955
1956static void
1957mt7530_free_mdio_irq(struct mt7530_priv *priv)
1958{
1959 int p;
1960
1961 for (p = 0; p < MT7530_NUM_PHYS; p++) {
1962 if (BIT(p) & priv->ds->phys_mii_mask) {
1963 unsigned int irq;
1964
1965 irq = irq_find_mapping(priv->irq_domain, p);
1966 irq_dispose_mapping(irq);
1967 }
1968 }
1969}
1970
1971static void
1972mt7530_free_irq_common(struct mt7530_priv *priv)
1973{
1974 free_irq(priv->irq, priv);
1975 irq_domain_remove(priv->irq_domain);
1976}
1977
1978static void
1979mt7530_free_irq(struct mt7530_priv *priv)
1980{
1981 mt7530_free_mdio_irq(priv);
1982 mt7530_free_irq_common(priv);
1983}
1984
1985static int
1986mt7530_setup_mdio(struct mt7530_priv *priv)
1987{
1988 struct dsa_switch *ds = priv->ds;
1989 struct device *dev = priv->dev;
1990 struct mii_bus *bus;
1991 static int idx;
1992 int ret;
1993
1994 bus = devm_mdiobus_alloc(dev);
1995 if (!bus)
1996 return -ENOMEM;
1997
1998 ds->slave_mii_bus = bus;
1999 bus->priv = priv;
2000 bus->name = KBUILD_MODNAME "-mii";
2001 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2002 bus->read = mt753x_phy_read;
2003 bus->write = mt753x_phy_write;
2004 bus->parent = dev;
2005 bus->phy_mask = ~ds->phys_mii_mask;
2006
2007 if (priv->irq)
2008 mt7530_setup_mdio_irq(priv);
2009
2010 ret = mdiobus_register(bus);
2011 if (ret) {
2012 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2013 if (priv->irq)
2014 mt7530_free_mdio_irq(priv);
2015 }
2016
2017 return ret;
2018}
2019
2020static int
2021mt7530_setup(struct dsa_switch *ds)
2022{
2023 struct mt7530_priv *priv = ds->priv;
2024 struct device_node *phy_node;
2025 struct device_node *mac_np;
2026 struct mt7530_dummy_poll p;
2027 phy_interface_t interface;
2028 struct device_node *dn;
2029 u32 id, val;
2030 int ret, i;
2031
2032 /* The parent node of master netdev which holds the common system
2033 * controller also is the container for two GMACs nodes representing
2034 * as two netdev instances.
2035 */
2036 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2037 ds->mtu_enforcement_ingress = true;
2038
2039 if (priv->id == ID_MT7530) {
2040 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2041 ret = regulator_enable(priv->core_pwr);
2042 if (ret < 0) {
2043 dev_err(priv->dev,
2044 "Failed to enable core power: %d\n", ret);
2045 return ret;
2046 }
2047
2048 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2049 ret = regulator_enable(priv->io_pwr);
2050 if (ret < 0) {
2051 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2052 ret);
2053 return ret;
2054 }
2055 }
2056
2057 /* Reset whole chip through gpio pin or memory-mapped registers for
2058 * different type of hardware
2059 */
2060 if (priv->mcm) {
2061 reset_control_assert(priv->rstc);
2062 usleep_range(1000, 1100);
2063 reset_control_deassert(priv->rstc);
2064 } else {
2065 gpiod_set_value_cansleep(priv->reset, 0);
2066 usleep_range(1000, 1100);
2067 gpiod_set_value_cansleep(priv->reset, 1);
2068 }
2069
2070 /* Waiting for MT7530 got to stable */
2071 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2072 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2073 20, 1000000);
2074 if (ret < 0) {
2075 dev_err(priv->dev, "reset timeout\n");
2076 return ret;
2077 }
2078
2079 id = mt7530_read(priv, MT7530_CREV);
2080 id >>= CHIP_NAME_SHIFT;
2081 if (id != MT7530_ID) {
2082 dev_err(priv->dev, "chip %x can't be supported\n", id);
2083 return -ENODEV;
2084 }
2085
2086 /* Reset the switch through internal reset */
2087 mt7530_write(priv, MT7530_SYS_CTRL,
2088 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2089 SYS_CTRL_REG_RST);
2090
2091 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2092 val = mt7530_read(priv, MT7530_MHWTRAP);
2093 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2094 val |= MHWTRAP_MANUAL;
2095 mt7530_write(priv, MT7530_MHWTRAP, val);
2096
2097 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2098
2099 /* Enable and reset MIB counters */
2100 mt7530_mib_reset(ds);
2101
2102 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2103 /* Disable forwarding by default on all ports */
2104 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2105 PCR_MATRIX_CLR);
2106
2107 if (dsa_is_cpu_port(ds, i)) {
2108 ret = mt753x_cpu_port_enable(ds, i);
2109 if (ret)
2110 return ret;
2111 } else {
2112 mt7530_port_disable(ds, i);
2113
2114 /* Disable learning by default on all user ports */
2115 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2116 }
2117 /* Enable consistent egress tag */
2118 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2119 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2120 }
2121
2122 /* Setup port 5 */
2123 priv->p5_intf_sel = P5_DISABLED;
2124 interface = PHY_INTERFACE_MODE_NA;
2125
2126 if (!dsa_is_unused_port(ds, 5)) {
2127 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2128 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2129 if (ret && ret != -ENODEV)
2130 return ret;
2131 } else {
2132 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2133 for_each_child_of_node(dn, mac_np) {
2134 if (!of_device_is_compatible(mac_np,
2135 "mediatek,eth-mac"))
2136 continue;
2137
2138 ret = of_property_read_u32(mac_np, "reg", &id);
2139 if (ret < 0 || id != 1)
2140 continue;
2141
2142 phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2143 if (!phy_node)
2144 continue;
2145
2146 if (phy_node->parent == priv->dev->of_node->parent) {
2147 ret = of_get_phy_mode(mac_np, &interface);
2148 if (ret && ret != -ENODEV) {
2149 of_node_put(mac_np);
2150 return ret;
2151 }
2152 id = of_mdio_parse_addr(ds->dev, phy_node);
2153 if (id == 0)
2154 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2155 if (id == 4)
2156 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2157 }
2158 of_node_put(mac_np);
2159 of_node_put(phy_node);
2160 break;
2161 }
2162 }
2163
2164#ifdef CONFIG_GPIOLIB
2165 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2166 ret = mt7530_setup_gpio(priv);
2167 if (ret)
2168 return ret;
2169 }
2170#endif /* CONFIG_GPIOLIB */
2171
2172 mt7530_setup_port5(ds, interface);
2173
2174 /* Flush the FDB table */
2175 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2176 if (ret < 0)
2177 return ret;
2178
2179 return 0;
2180}
2181
2182static int
2183mt7531_setup(struct dsa_switch *ds)
2184{
2185 struct mt7530_priv *priv = ds->priv;
2186 struct mt7530_dummy_poll p;
2187 u32 val, id;
2188 int ret, i;
2189
2190 /* Reset whole chip through gpio pin or memory-mapped registers for
2191 * different type of hardware
2192 */
2193 if (priv->mcm) {
2194 reset_control_assert(priv->rstc);
2195 usleep_range(1000, 1100);
2196 reset_control_deassert(priv->rstc);
2197 } else {
2198 gpiod_set_value_cansleep(priv->reset, 0);
2199 usleep_range(1000, 1100);
2200 gpiod_set_value_cansleep(priv->reset, 1);
2201 }
2202
2203 /* Waiting for MT7530 got to stable */
2204 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2205 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2206 20, 1000000);
2207 if (ret < 0) {
2208 dev_err(priv->dev, "reset timeout\n");
2209 return ret;
2210 }
2211
2212 id = mt7530_read(priv, MT7531_CREV);
2213 id >>= CHIP_NAME_SHIFT;
2214
2215 if (id != MT7531_ID) {
2216 dev_err(priv->dev, "chip %x can't be supported\n", id);
2217 return -ENODEV;
2218 }
2219
2220 /* Reset the switch through internal reset */
2221 mt7530_write(priv, MT7530_SYS_CTRL,
2222 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2223 SYS_CTRL_REG_RST);
2224
2225 if (mt7531_dual_sgmii_supported(priv)) {
2226 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2227
2228 /* Let ds->slave_mii_bus be able to access external phy. */
2229 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2230 MT7531_EXT_P_MDC_11);
2231 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2232 MT7531_EXT_P_MDIO_12);
2233 } else {
2234 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2235 }
2236 dev_dbg(ds->dev, "P5 support %s interface\n",
2237 p5_intf_modes(priv->p5_intf_sel));
2238
2239 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2240 MT7531_GPIO0_INTERRUPT);
2241
2242 /* Let phylink decide the interface later. */
2243 priv->p5_interface = PHY_INTERFACE_MODE_NA;
2244 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2245
2246 /* Enable PHY core PLL, since phy_device has not yet been created
2247 * provided for phy_[read,write]_mmd_indirect is called, we provide
2248 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2249 * function.
2250 */
2251 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2252 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2253 val |= MT7531_PHY_PLL_BYPASS_MODE;
2254 val &= ~MT7531_PHY_PLL_OFF;
2255 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2256 CORE_PLL_GROUP4, val);
2257
2258 /* BPDU to CPU port */
2259 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2260 BIT(MT7530_CPU_PORT));
2261 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2262 MT753X_BPDU_CPU_ONLY);
2263
2264 /* Enable and reset MIB counters */
2265 mt7530_mib_reset(ds);
2266
2267 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2268 /* Disable forwarding by default on all ports */
2269 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2270 PCR_MATRIX_CLR);
2271
2272 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2273
2274 if (dsa_is_cpu_port(ds, i)) {
2275 ret = mt753x_cpu_port_enable(ds, i);
2276 if (ret)
2277 return ret;
2278 } else {
2279 mt7530_port_disable(ds, i);
2280
2281 /* Disable learning by default on all user ports */
2282 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2283 }
2284
2285 /* Enable consistent egress tag */
2286 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2287 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2288 }
2289
2290 ds->mtu_enforcement_ingress = true;
2291
2292 /* Flush the FDB table */
2293 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2294 if (ret < 0)
2295 return ret;
2296
2297 return 0;
2298}
2299
2300static bool
2301mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2302 const struct phylink_link_state *state)
2303{
2304 struct mt7530_priv *priv = ds->priv;
2305
2306 switch (port) {
2307 case 0 ... 4: /* Internal phy */
2308 if (state->interface != PHY_INTERFACE_MODE_GMII)
2309 return false;
2310 break;
2311 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2312 if (!phy_interface_mode_is_rgmii(state->interface) &&
2313 state->interface != PHY_INTERFACE_MODE_MII &&
2314 state->interface != PHY_INTERFACE_MODE_GMII)
2315 return false;
2316 break;
2317 case 6: /* 1st cpu port */
2318 if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2319 state->interface != PHY_INTERFACE_MODE_TRGMII)
2320 return false;
2321 break;
2322 default:
2323 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2324 port);
2325 return false;
2326 }
2327
2328 return true;
2329}
2330
2331static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2332{
2333 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2334}
2335
2336static bool
2337mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2338 const struct phylink_link_state *state)
2339{
2340 struct mt7530_priv *priv = ds->priv;
2341
2342 switch (port) {
2343 case 0 ... 4: /* Internal phy */
2344 if (state->interface != PHY_INTERFACE_MODE_GMII)
2345 return false;
2346 break;
2347 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2348 if (mt7531_is_rgmii_port(priv, port))
2349 return phy_interface_mode_is_rgmii(state->interface);
2350 fallthrough;
2351 case 6: /* 1st cpu port supports sgmii/8023z only */
2352 if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2353 !phy_interface_mode_is_8023z(state->interface))
2354 return false;
2355 break;
2356 default:
2357 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2358 port);
2359 return false;
2360 }
2361
2362 return true;
2363}
2364
2365static bool
2366mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2367 const struct phylink_link_state *state)
2368{
2369 struct mt7530_priv *priv = ds->priv;
2370
2371 return priv->info->phy_mode_supported(ds, port, state);
2372}
2373
2374static int
2375mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2376{
2377 struct mt7530_priv *priv = ds->priv;
2378
2379 return priv->info->pad_setup(ds, state->interface);
2380}
2381
2382static int
2383mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2384 phy_interface_t interface)
2385{
2386 struct mt7530_priv *priv = ds->priv;
2387
2388 /* Only need to setup port5. */
2389 if (port != 5)
2390 return 0;
2391
2392 mt7530_setup_port5(priv->ds, interface);
2393
2394 return 0;
2395}
2396
2397static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2398 phy_interface_t interface,
2399 struct phy_device *phydev)
2400{
2401 u32 val;
2402
2403 if (!mt7531_is_rgmii_port(priv, port)) {
2404 dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2405 port);
2406 return -EINVAL;
2407 }
2408
2409 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2410 val |= GP_CLK_EN;
2411 val &= ~GP_MODE_MASK;
2412 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2413 val &= ~CLK_SKEW_IN_MASK;
2414 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2415 val &= ~CLK_SKEW_OUT_MASK;
2416 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2417 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2418
2419 /* Do not adjust rgmii delay when vendor phy driver presents. */
2420 if (!phydev || phy_driver_is_genphy(phydev)) {
2421 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2422 switch (interface) {
2423 case PHY_INTERFACE_MODE_RGMII:
2424 val |= TXCLK_NO_REVERSE;
2425 val |= RXCLK_NO_DELAY;
2426 break;
2427 case PHY_INTERFACE_MODE_RGMII_RXID:
2428 val |= TXCLK_NO_REVERSE;
2429 break;
2430 case PHY_INTERFACE_MODE_RGMII_TXID:
2431 val |= RXCLK_NO_DELAY;
2432 break;
2433 case PHY_INTERFACE_MODE_RGMII_ID:
2434 break;
2435 default:
2436 return -EINVAL;
2437 }
2438 }
2439 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2440
2441 return 0;
2442}
2443
2444static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2445 unsigned long *supported)
2446{
2447 /* Port5 supports ethier RGMII or SGMII.
2448 * Port6 supports SGMII only.
2449 */
2450 switch (port) {
2451 case 5:
2452 if (mt7531_is_rgmii_port(priv, port))
2453 break;
2454 fallthrough;
2455 case 6:
2456 phylink_set(supported, 1000baseX_Full);
2457 phylink_set(supported, 2500baseX_Full);
2458 phylink_set(supported, 2500baseT_Full);
2459 }
2460}
2461
2462static void
2463mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2464 unsigned int mode, phy_interface_t interface,
2465 int speed, int duplex)
2466{
2467 struct mt7530_priv *priv = ds->priv;
2468 unsigned int val;
2469
2470 /* For adjusting speed and duplex of SGMII force mode. */
2471 if (interface != PHY_INTERFACE_MODE_SGMII ||
2472 phylink_autoneg_inband(mode))
2473 return;
2474
2475 /* SGMII force mode setting */
2476 val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2477 val &= ~MT7531_SGMII_IF_MODE_MASK;
2478
2479 switch (speed) {
2480 case SPEED_10:
2481 val |= MT7531_SGMII_FORCE_SPEED_10;
2482 break;
2483 case SPEED_100:
2484 val |= MT7531_SGMII_FORCE_SPEED_100;
2485 break;
2486 case SPEED_1000:
2487 val |= MT7531_SGMII_FORCE_SPEED_1000;
2488 break;
2489 }
2490
2491 /* MT7531 SGMII 1G force mode can only work in full duplex mode,
2492 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2493 */
2494 if ((speed == SPEED_10 || speed == SPEED_100) &&
2495 duplex != DUPLEX_FULL)
2496 val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2497
2498 mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2499}
2500
2501static bool mt753x_is_mac_port(u32 port)
2502{
2503 return (port == 5 || port == 6);
2504}
2505
2506static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2507 phy_interface_t interface)
2508{
2509 u32 val;
2510
2511 if (!mt753x_is_mac_port(port))
2512 return -EINVAL;
2513
2514 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2515 MT7531_SGMII_PHYA_PWD);
2516
2517 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2518 val &= ~MT7531_RG_TPHY_SPEED_MASK;
2519 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2520 * encoding.
2521 */
2522 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2523 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2524 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2525
2526 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2527
2528 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2529 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2530 */
2531 mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2532 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2533 MT7531_SGMII_FORCE_SPEED_1000);
2534
2535 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2536
2537 return 0;
2538}
2539
2540static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2541 phy_interface_t interface)
2542{
2543 if (!mt753x_is_mac_port(port))
2544 return -EINVAL;
2545
2546 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2547 MT7531_SGMII_PHYA_PWD);
2548
2549 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2550 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2551
2552 mt7530_set(priv, MT7531_SGMII_MODE(port),
2553 MT7531_SGMII_REMOTE_FAULT_DIS |
2554 MT7531_SGMII_SPEED_DUPLEX_AN);
2555
2556 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2557 MT7531_SGMII_TX_CONFIG_MASK, 1);
2558
2559 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2560
2561 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2562
2563 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2564
2565 return 0;
2566}
2567
2568static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2569{
2570 struct mt7530_priv *priv = ds->priv;
2571 u32 val;
2572
2573 /* Only restart AN when AN is enabled */
2574 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2575 if (val & MT7531_SGMII_AN_ENABLE) {
2576 val |= MT7531_SGMII_AN_RESTART;
2577 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2578 }
2579}
2580
2581static int
2582mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2583 phy_interface_t interface)
2584{
2585 struct mt7530_priv *priv = ds->priv;
2586 struct phy_device *phydev;
2587 struct dsa_port *dp;
2588
2589 if (!mt753x_is_mac_port(port)) {
2590 dev_err(priv->dev, "port %d is not a MAC port\n", port);
2591 return -EINVAL;
2592 }
2593
2594 switch (interface) {
2595 case PHY_INTERFACE_MODE_RGMII:
2596 case PHY_INTERFACE_MODE_RGMII_ID:
2597 case PHY_INTERFACE_MODE_RGMII_RXID:
2598 case PHY_INTERFACE_MODE_RGMII_TXID:
2599 dp = dsa_to_port(ds, port);
2600 phydev = dp->slave->phydev;
2601 return mt7531_rgmii_setup(priv, port, interface, phydev);
2602 case PHY_INTERFACE_MODE_SGMII:
2603 return mt7531_sgmii_setup_mode_an(priv, port, interface);
2604 case PHY_INTERFACE_MODE_NA:
2605 case PHY_INTERFACE_MODE_1000BASEX:
2606 case PHY_INTERFACE_MODE_2500BASEX:
2607 if (phylink_autoneg_inband(mode))
2608 return -EINVAL;
2609
2610 return mt7531_sgmii_setup_mode_force(priv, port, interface);
2611 default:
2612 return -EINVAL;
2613 }
2614
2615 return -EINVAL;
2616}
2617
2618static int
2619mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2620 const struct phylink_link_state *state)
2621{
2622 struct mt7530_priv *priv = ds->priv;
2623
2624 return priv->info->mac_port_config(ds, port, mode, state->interface);
2625}
2626
2627static void
2628mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2629 const struct phylink_link_state *state)
2630{
2631 struct mt7530_priv *priv = ds->priv;
2632 u32 mcr_cur, mcr_new;
2633
2634 if (!mt753x_phy_mode_supported(ds, port, state))
2635 goto unsupported;
2636
2637 switch (port) {
2638 case 0 ... 4: /* Internal phy */
2639 if (state->interface != PHY_INTERFACE_MODE_GMII)
2640 goto unsupported;
2641 break;
2642 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2643 if (priv->p5_interface == state->interface)
2644 break;
2645
2646 if (mt753x_mac_config(ds, port, mode, state) < 0)
2647 goto unsupported;
2648
2649 if (priv->p5_intf_sel != P5_DISABLED)
2650 priv->p5_interface = state->interface;
2651 break;
2652 case 6: /* 1st cpu port */
2653 if (priv->p6_interface == state->interface)
2654 break;
2655
2656 mt753x_pad_setup(ds, state);
2657
2658 if (mt753x_mac_config(ds, port, mode, state) < 0)
2659 goto unsupported;
2660
2661 priv->p6_interface = state->interface;
2662 break;
2663 default:
2664unsupported:
2665 dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2666 __func__, phy_modes(state->interface), port);
2667 return;
2668 }
2669
2670 if (phylink_autoneg_inband(mode) &&
2671 state->interface != PHY_INTERFACE_MODE_SGMII) {
2672 dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2673 __func__);
2674 return;
2675 }
2676
2677 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2678 mcr_new = mcr_cur;
2679 mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2680 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2681 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2682
2683 /* Are we connected to external phy */
2684 if (port == 5 && dsa_is_user_port(ds, 5))
2685 mcr_new |= PMCR_EXT_PHY;
2686
2687 if (mcr_new != mcr_cur)
2688 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2689}
2690
2691static void
2692mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2693{
2694 struct mt7530_priv *priv = ds->priv;
2695
2696 if (!priv->info->mac_pcs_an_restart)
2697 return;
2698
2699 priv->info->mac_pcs_an_restart(ds, port);
2700}
2701
2702static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2703 unsigned int mode,
2704 phy_interface_t interface)
2705{
2706 struct mt7530_priv *priv = ds->priv;
2707
2708 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2709}
2710
2711static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2712 unsigned int mode, phy_interface_t interface,
2713 int speed, int duplex)
2714{
2715 struct mt7530_priv *priv = ds->priv;
2716
2717 if (!priv->info->mac_pcs_link_up)
2718 return;
2719
2720 priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2721}
2722
2723static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2724 unsigned int mode,
2725 phy_interface_t interface,
2726 struct phy_device *phydev,
2727 int speed, int duplex,
2728 bool tx_pause, bool rx_pause)
2729{
2730 struct mt7530_priv *priv = ds->priv;
2731 u32 mcr;
2732
2733 mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2734
2735 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2736
2737 /* MT753x MAC works in 1G full duplex mode for all up-clocked
2738 * variants.
2739 */
2740 if (interface == PHY_INTERFACE_MODE_TRGMII ||
2741 (phy_interface_mode_is_8023z(interface))) {
2742 speed = SPEED_1000;
2743 duplex = DUPLEX_FULL;
2744 }
2745
2746 switch (speed) {
2747 case SPEED_1000:
2748 mcr |= PMCR_FORCE_SPEED_1000;
2749 break;
2750 case SPEED_100:
2751 mcr |= PMCR_FORCE_SPEED_100;
2752 break;
2753 }
2754 if (duplex == DUPLEX_FULL) {
2755 mcr |= PMCR_FORCE_FDX;
2756 if (tx_pause)
2757 mcr |= PMCR_TX_FC_EN;
2758 if (rx_pause)
2759 mcr |= PMCR_RX_FC_EN;
2760 }
2761
2762 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
2763 switch (speed) {
2764 case SPEED_1000:
2765 mcr |= PMCR_FORCE_EEE1G;
2766 break;
2767 case SPEED_100:
2768 mcr |= PMCR_FORCE_EEE100;
2769 break;
2770 }
2771 }
2772
2773 mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2774}
2775
2776static int
2777mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2778{
2779 struct mt7530_priv *priv = ds->priv;
2780 phy_interface_t interface;
2781 int speed;
2782 int ret;
2783
2784 switch (port) {
2785 case 5:
2786 if (mt7531_is_rgmii_port(priv, port))
2787 interface = PHY_INTERFACE_MODE_RGMII;
2788 else
2789 interface = PHY_INTERFACE_MODE_2500BASEX;
2790
2791 priv->p5_interface = interface;
2792 break;
2793 case 6:
2794 interface = PHY_INTERFACE_MODE_2500BASEX;
2795
2796 mt7531_pad_setup(ds, interface);
2797
2798 priv->p6_interface = interface;
2799 break;
2800 default:
2801 return -EINVAL;
2802 }
2803
2804 if (interface == PHY_INTERFACE_MODE_2500BASEX)
2805 speed = SPEED_2500;
2806 else
2807 speed = SPEED_1000;
2808
2809 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2810 if (ret)
2811 return ret;
2812 mt7530_write(priv, MT7530_PMCR_P(port),
2813 PMCR_CPU_PORT_SETTING(priv->id));
2814 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2815 speed, DUPLEX_FULL, true, true);
2816
2817 return 0;
2818}
2819
2820static void
2821mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2822 unsigned long *supported)
2823{
2824 if (port == 5)
2825 phylink_set(supported, 1000baseX_Full);
2826}
2827
2828static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2829 unsigned long *supported)
2830{
2831 struct mt7530_priv *priv = ds->priv;
2832
2833 mt7531_sgmii_validate(priv, port, supported);
2834}
2835
2836static void
2837mt753x_phylink_validate(struct dsa_switch *ds, int port,
2838 unsigned long *supported,
2839 struct phylink_link_state *state)
2840{
2841 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2842 struct mt7530_priv *priv = ds->priv;
2843
2844 if (state->interface != PHY_INTERFACE_MODE_NA &&
2845 !mt753x_phy_mode_supported(ds, port, state)) {
2846 linkmode_zero(supported);
2847 return;
2848 }
2849
2850 phylink_set_port_modes(mask);
2851
2852 if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2853 !phy_interface_mode_is_8023z(state->interface)) {
2854 phylink_set(mask, 10baseT_Half);
2855 phylink_set(mask, 10baseT_Full);
2856 phylink_set(mask, 100baseT_Half);
2857 phylink_set(mask, 100baseT_Full);
2858 phylink_set(mask, Autoneg);
2859 }
2860
2861 /* This switch only supports 1G full-duplex. */
2862 if (state->interface != PHY_INTERFACE_MODE_MII)
2863 phylink_set(mask, 1000baseT_Full);
2864
2865 priv->info->mac_port_validate(ds, port, mask);
2866
2867 phylink_set(mask, Pause);
2868 phylink_set(mask, Asym_Pause);
2869
2870 linkmode_and(supported, supported, mask);
2871 linkmode_and(state->advertising, state->advertising, mask);
2872
2873 /* We can only operate at 2500BaseX or 1000BaseX. If requested
2874 * to advertise both, only report advertising at 2500BaseX.
2875 */
2876 phylink_helper_basex_speed(state);
2877}
2878
2879static int
2880mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2881 struct phylink_link_state *state)
2882{
2883 struct mt7530_priv *priv = ds->priv;
2884 u32 pmsr;
2885
2886 if (port < 0 || port >= MT7530_NUM_PORTS)
2887 return -EINVAL;
2888
2889 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2890
2891 state->link = (pmsr & PMSR_LINK);
2892 state->an_complete = state->link;
2893 state->duplex = !!(pmsr & PMSR_DPX);
2894
2895 switch (pmsr & PMSR_SPEED_MASK) {
2896 case PMSR_SPEED_10:
2897 state->speed = SPEED_10;
2898 break;
2899 case PMSR_SPEED_100:
2900 state->speed = SPEED_100;
2901 break;
2902 case PMSR_SPEED_1000:
2903 state->speed = SPEED_1000;
2904 break;
2905 default:
2906 state->speed = SPEED_UNKNOWN;
2907 break;
2908 }
2909
2910 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2911 if (pmsr & PMSR_RX_FC)
2912 state->pause |= MLO_PAUSE_RX;
2913 if (pmsr & PMSR_TX_FC)
2914 state->pause |= MLO_PAUSE_TX;
2915
2916 return 1;
2917}
2918
2919static int
2920mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2921 struct phylink_link_state *state)
2922{
2923 u32 status, val;
2924 u16 config_reg;
2925
2926 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2927 state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2928 if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2929 (status & MT7531_SGMII_AN_ENABLE)) {
2930 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2931 config_reg = val >> 16;
2932
2933 switch (config_reg & LPA_SGMII_SPD_MASK) {
2934 case LPA_SGMII_1000:
2935 state->speed = SPEED_1000;
2936 break;
2937 case LPA_SGMII_100:
2938 state->speed = SPEED_100;
2939 break;
2940 case LPA_SGMII_10:
2941 state->speed = SPEED_10;
2942 break;
2943 default:
2944 dev_err(priv->dev, "invalid sgmii PHY speed\n");
2945 state->link = false;
2946 return -EINVAL;
2947 }
2948
2949 if (config_reg & LPA_SGMII_FULL_DUPLEX)
2950 state->duplex = DUPLEX_FULL;
2951 else
2952 state->duplex = DUPLEX_HALF;
2953 }
2954
2955 return 0;
2956}
2957
2958static int
2959mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2960 struct phylink_link_state *state)
2961{
2962 struct mt7530_priv *priv = ds->priv;
2963
2964 if (state->interface == PHY_INTERFACE_MODE_SGMII)
2965 return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2966
2967 return -EOPNOTSUPP;
2968}
2969
2970static int
2971mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2972 struct phylink_link_state *state)
2973{
2974 struct mt7530_priv *priv = ds->priv;
2975
2976 return priv->info->mac_port_get_state(ds, port, state);
2977}
2978
2979static int
2980mt753x_setup(struct dsa_switch *ds)
2981{
2982 struct mt7530_priv *priv = ds->priv;
2983 int ret = priv->info->sw_setup(ds);
2984
2985 if (ret)
2986 return ret;
2987
2988 ret = mt7530_setup_irq(priv);
2989 if (ret)
2990 return ret;
2991
2992 ret = mt7530_setup_mdio(priv);
2993 if (ret && priv->irq)
2994 mt7530_free_irq_common(priv);
2995
2996 return ret;
2997}
2998
2999static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3000 struct ethtool_eee *e)
3001{
3002 struct mt7530_priv *priv = ds->priv;
3003 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3004
3005 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3006 e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3007
3008 return 0;
3009}
3010
3011static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3012 struct ethtool_eee *e)
3013{
3014 struct mt7530_priv *priv = ds->priv;
3015 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3016
3017 if (e->tx_lpi_timer > 0xFFF)
3018 return -EINVAL;
3019
3020 set = SET_LPI_THRESH(e->tx_lpi_timer);
3021 if (!e->tx_lpi_enabled)
3022 /* Force LPI Mode without a delay */
3023 set |= LPI_MODE_EN;
3024 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3025
3026 return 0;
3027}
3028
3029static const struct dsa_switch_ops mt7530_switch_ops = {
3030 .get_tag_protocol = mtk_get_tag_protocol,
3031 .setup = mt753x_setup,
3032 .get_strings = mt7530_get_strings,
3033 .get_ethtool_stats = mt7530_get_ethtool_stats,
3034 .get_sset_count = mt7530_get_sset_count,
3035 .set_ageing_time = mt7530_set_ageing_time,
3036 .port_enable = mt7530_port_enable,
3037 .port_disable = mt7530_port_disable,
3038 .port_change_mtu = mt7530_port_change_mtu,
3039 .port_max_mtu = mt7530_port_max_mtu,
3040 .port_stp_state_set = mt7530_stp_state_set,
3041 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
3042 .port_bridge_flags = mt7530_port_bridge_flags,
3043 .port_bridge_join = mt7530_port_bridge_join,
3044 .port_bridge_leave = mt7530_port_bridge_leave,
3045 .port_fdb_add = mt7530_port_fdb_add,
3046 .port_fdb_del = mt7530_port_fdb_del,
3047 .port_fdb_dump = mt7530_port_fdb_dump,
3048 .port_mdb_add = mt7530_port_mdb_add,
3049 .port_mdb_del = mt7530_port_mdb_del,
3050 .port_vlan_filtering = mt7530_port_vlan_filtering,
3051 .port_vlan_add = mt7530_port_vlan_add,
3052 .port_vlan_del = mt7530_port_vlan_del,
3053 .port_mirror_add = mt753x_port_mirror_add,
3054 .port_mirror_del = mt753x_port_mirror_del,
3055 .phylink_validate = mt753x_phylink_validate,
3056 .phylink_mac_link_state = mt753x_phylink_mac_link_state,
3057 .phylink_mac_config = mt753x_phylink_mac_config,
3058 .phylink_mac_an_restart = mt753x_phylink_mac_an_restart,
3059 .phylink_mac_link_down = mt753x_phylink_mac_link_down,
3060 .phylink_mac_link_up = mt753x_phylink_mac_link_up,
3061 .get_mac_eee = mt753x_get_mac_eee,
3062 .set_mac_eee = mt753x_set_mac_eee,
3063};
3064
3065static const struct mt753x_info mt753x_table[] = {
3066 [ID_MT7621] = {
3067 .id = ID_MT7621,
3068 .sw_setup = mt7530_setup,
3069 .phy_read = mt7530_phy_read,
3070 .phy_write = mt7530_phy_write,
3071 .pad_setup = mt7530_pad_clk_setup,
3072 .phy_mode_supported = mt7530_phy_mode_supported,
3073 .mac_port_validate = mt7530_mac_port_validate,
3074 .mac_port_get_state = mt7530_phylink_mac_link_state,
3075 .mac_port_config = mt7530_mac_config,
3076 },
3077 [ID_MT7530] = {
3078 .id = ID_MT7530,
3079 .sw_setup = mt7530_setup,
3080 .phy_read = mt7530_phy_read,
3081 .phy_write = mt7530_phy_write,
3082 .pad_setup = mt7530_pad_clk_setup,
3083 .phy_mode_supported = mt7530_phy_mode_supported,
3084 .mac_port_validate = mt7530_mac_port_validate,
3085 .mac_port_get_state = mt7530_phylink_mac_link_state,
3086 .mac_port_config = mt7530_mac_config,
3087 },
3088 [ID_MT7531] = {
3089 .id = ID_MT7531,
3090 .sw_setup = mt7531_setup,
3091 .phy_read = mt7531_ind_phy_read,
3092 .phy_write = mt7531_ind_phy_write,
3093 .pad_setup = mt7531_pad_setup,
3094 .cpu_port_config = mt7531_cpu_port_config,
3095 .phy_mode_supported = mt7531_phy_mode_supported,
3096 .mac_port_validate = mt7531_mac_port_validate,
3097 .mac_port_get_state = mt7531_phylink_mac_link_state,
3098 .mac_port_config = mt7531_mac_config,
3099 .mac_pcs_an_restart = mt7531_sgmii_restart_an,
3100 .mac_pcs_link_up = mt7531_sgmii_link_up_force,
3101 },
3102};
3103
3104static const struct of_device_id mt7530_of_match[] = {
3105 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3106 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3107 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3108 { /* sentinel */ },
3109};
3110MODULE_DEVICE_TABLE(of, mt7530_of_match);
3111
3112static int
3113mt7530_probe(struct mdio_device *mdiodev)
3114{
3115 struct mt7530_priv *priv;
3116 struct device_node *dn;
3117
3118 dn = mdiodev->dev.of_node;
3119
3120 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3121 if (!priv)
3122 return -ENOMEM;
3123
3124 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3125 if (!priv->ds)
3126 return -ENOMEM;
3127
3128 priv->ds->dev = &mdiodev->dev;
3129 priv->ds->num_ports = MT7530_NUM_PORTS;
3130
3131 /* Use medatek,mcm property to distinguish hardware type that would
3132 * casues a little bit differences on power-on sequence.
3133 */
3134 priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3135 if (priv->mcm) {
3136 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3137
3138 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3139 if (IS_ERR(priv->rstc)) {
3140 dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3141 return PTR_ERR(priv->rstc);
3142 }
3143 }
3144
3145 /* Get the hardware identifier from the devicetree node.
3146 * We will need it for some of the clock and regulator setup.
3147 */
3148 priv->info = of_device_get_match_data(&mdiodev->dev);
3149 if (!priv->info)
3150 return -EINVAL;
3151
3152 /* Sanity check if these required device operations are filled
3153 * properly.
3154 */
3155 if (!priv->info->sw_setup || !priv->info->pad_setup ||
3156 !priv->info->phy_read || !priv->info->phy_write ||
3157 !priv->info->phy_mode_supported ||
3158 !priv->info->mac_port_validate ||
3159 !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3160 return -EINVAL;
3161
3162 priv->id = priv->info->id;
3163
3164 if (priv->id == ID_MT7530) {
3165 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3166 if (IS_ERR(priv->core_pwr))
3167 return PTR_ERR(priv->core_pwr);
3168
3169 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3170 if (IS_ERR(priv->io_pwr))
3171 return PTR_ERR(priv->io_pwr);
3172 }
3173
3174 /* Not MCM that indicates switch works as the remote standalone
3175 * integrated circuit so the GPIO pin would be used to complete
3176 * the reset, otherwise memory-mapped register accessing used
3177 * through syscon provides in the case of MCM.
3178 */
3179 if (!priv->mcm) {
3180 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3181 GPIOD_OUT_LOW);
3182 if (IS_ERR(priv->reset)) {
3183 dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3184 return PTR_ERR(priv->reset);
3185 }
3186 }
3187
3188 priv->bus = mdiodev->bus;
3189 priv->dev = &mdiodev->dev;
3190 priv->ds->priv = priv;
3191 priv->ds->ops = &mt7530_switch_ops;
3192 mutex_init(&priv->reg_mutex);
3193 dev_set_drvdata(&mdiodev->dev, priv);
3194
3195 return dsa_register_switch(priv->ds);
3196}
3197
3198static void
3199mt7530_remove(struct mdio_device *mdiodev)
3200{
3201 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3202 int ret = 0;
3203
3204 ret = regulator_disable(priv->core_pwr);
3205 if (ret < 0)
3206 dev_err(priv->dev,
3207 "Failed to disable core power: %d\n", ret);
3208
3209 ret = regulator_disable(priv->io_pwr);
3210 if (ret < 0)
3211 dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3212 ret);
3213
3214 if (priv->irq)
3215 mt7530_free_irq(priv);
3216
3217 dsa_unregister_switch(priv->ds);
3218 mutex_destroy(&priv->reg_mutex);
3219}
3220
3221static struct mdio_driver mt7530_mdio_driver = {
3222 .probe = mt7530_probe,
3223 .remove = mt7530_remove,
3224 .mdiodrv.driver = {
3225 .name = "mt7530",
3226 .of_match_table = mt7530_of_match,
3227 },
3228};
3229
3230mdio_module_driver(mt7530_mdio_driver);
3231
3232MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3233MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3234MODULE_LICENSE("GPL");