Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IOMMU API for Rockchip
   4 *
   5 * Module Authors:	Simon Xue <xxm@rock-chips.com>
   6 *			Daniel Kurtz <djkurtz@chromium.org>
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
 
  13#include <linux/dma-mapping.h>
  14#include <linux/errno.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/iommu.h>
  18#include <linux/iopoll.h>
  19#include <linux/list.h>
  20#include <linux/mm.h>
  21#include <linux/init.h>
  22#include <linux/of.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29/** MMU register offsets */
  30#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
  31#define RK_MMU_STATUS		0x04
  32#define RK_MMU_COMMAND		0x08
  33#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
  34#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
  35#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
  36#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
  37#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
  38#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
  39#define RK_MMU_AUTO_GATING	0x24
  40
  41#define DTE_ADDR_DUMMY		0xCAFEBABE
  42
  43#define RK_MMU_POLL_PERIOD_US		100
  44#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
  45#define RK_MMU_POLL_TIMEOUT_US		1000
  46
  47/* RK_MMU_STATUS fields */
  48#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
  49#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
  50#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
  51#define RK_MMU_STATUS_IDLE                 BIT(3)
  52#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
  53#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
  54#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
  55
  56/* RK_MMU_COMMAND command values */
  57#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
  58#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
  59#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
  60#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
  61#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
  62#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
  63#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
  64
  65/* RK_MMU_INT_* register fields */
  66#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
  67#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
  68#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
  69
  70#define NUM_DT_ENTRIES 1024
  71#define NUM_PT_ENTRIES 1024
  72
  73#define SPAGE_ORDER 12
  74#define SPAGE_SIZE (1 << SPAGE_ORDER)
  75
  76 /*
  77  * Support mapping any size that fits in one page table:
  78  *   4 KiB to 4 MiB
  79  */
  80#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
  81
  82struct rk_iommu_domain {
  83	struct list_head iommus;
  84	u32 *dt; /* page directory table */
  85	dma_addr_t dt_dma;
  86	spinlock_t iommus_lock; /* lock for iommus list */
  87	spinlock_t dt_lock; /* lock for modifying page directory table */
  88
  89	struct iommu_domain domain;
  90};
  91
  92/* list of clocks required by IOMMU */
  93static const char * const rk_iommu_clocks[] = {
  94	"aclk", "iface",
  95};
  96
  97struct rk_iommu_ops {
  98	phys_addr_t (*pt_address)(u32 dte);
  99	u32 (*mk_dtentries)(dma_addr_t pt_dma);
 100	u32 (*mk_ptentries)(phys_addr_t page, int prot);
 101	phys_addr_t (*dte_addr_phys)(u32 addr);
 102	u32 (*dma_addr_dte)(dma_addr_t dt_dma);
 103	u64 dma_bit_mask;
 104};
 105
 106struct rk_iommu {
 107	struct device *dev;
 108	void __iomem **bases;
 109	int num_mmu;
 110	int num_irq;
 111	struct clk_bulk_data *clocks;
 112	int num_clocks;
 113	bool reset_disabled;
 114	struct iommu_device iommu;
 115	struct list_head node; /* entry in rk_iommu_domain.iommus */
 116	struct iommu_domain *domain; /* domain to which iommu is attached */
 117	struct iommu_group *group;
 118};
 119
 120struct rk_iommudata {
 121	struct device_link *link; /* runtime PM link from IOMMU to master */
 122	struct rk_iommu *iommu;
 123};
 124
 125static struct device *dma_dev;
 126static const struct rk_iommu_ops *rk_ops;
 127
 128static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
 129				  unsigned int count)
 130{
 131	size_t size = count * sizeof(u32); /* count of u32 entry */
 132
 133	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
 134}
 135
 136static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
 137{
 138	return container_of(dom, struct rk_iommu_domain, domain);
 139}
 140
 141/*
 142 * The Rockchip rk3288 iommu uses a 2-level page table.
 143 * The first level is the "Directory Table" (DT).
 144 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
 145 * to a "Page Table".
 146 * The second level is the 1024 Page Tables (PT).
 147 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
 148 * a 4 KB page of physical memory.
 149 *
 150 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
 151 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
 152 * address of the start of the DT page.
 153 *
 154 * The structure of the page table is as follows:
 155 *
 156 *                   DT
 157 * MMU_DTE_ADDR -> +-----+
 158 *                 |     |
 159 *                 +-----+     PT
 160 *                 | DTE | -> +-----+
 161 *                 +-----+    |     |     Memory
 162 *                 |     |    +-----+     Page
 163 *                 |     |    | PTE | -> +-----+
 164 *                 +-----+    +-----+    |     |
 165 *                            |     |    |     |
 166 *                            |     |    |     |
 167 *                            +-----+    |     |
 168 *                                       |     |
 169 *                                       |     |
 170 *                                       +-----+
 171 */
 172
 173/*
 174 * Each DTE has a PT address and a valid bit:
 175 * +---------------------+-----------+-+
 176 * | PT address          | Reserved  |V|
 177 * +---------------------+-----------+-+
 178 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
 179 *  11: 1 - Reserved
 180 *      0 - 1 if PT @ PT address is valid
 181 */
 182#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
 183#define RK_DTE_PT_VALID           BIT(0)
 184
 185static inline phys_addr_t rk_dte_pt_address(u32 dte)
 186{
 187	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
 188}
 189
 190/*
 191 * In v2:
 192 * 31:12 - PT address bit 31:0
 193 * 11: 8 - PT address bit 35:32
 194 *  7: 4 - PT address bit 39:36
 195 *  3: 1 - Reserved
 196 *     0 - 1 if PT @ PT address is valid
 197 */
 198#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
 199#define DTE_HI_MASK1	GENMASK(11, 8)
 200#define DTE_HI_MASK2	GENMASK(7, 4)
 201#define DTE_HI_SHIFT1	24 /* shift bit 8 to bit 32 */
 202#define DTE_HI_SHIFT2	32 /* shift bit 4 to bit 36 */
 203#define PAGE_DESC_HI_MASK1	GENMASK_ULL(35, 32)
 204#define PAGE_DESC_HI_MASK2	GENMASK_ULL(39, 36)
 205
 206static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
 207{
 208	u64 dte_v2 = dte;
 209
 210	dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
 211		 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
 212		 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
 213
 214	return (phys_addr_t)dte_v2;
 215}
 216
 217static inline bool rk_dte_is_pt_valid(u32 dte)
 218{
 219	return dte & RK_DTE_PT_VALID;
 220}
 221
 222static inline u32 rk_mk_dte(dma_addr_t pt_dma)
 223{
 224	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
 225}
 226
 227static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
 228{
 229	pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
 230		 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
 231		 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
 232
 233	return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
 234}
 235
 236/*
 237 * Each PTE has a Page address, some flags and a valid bit:
 238 * +---------------------+---+-------+-+
 239 * | Page address        |Rsv| Flags |V|
 240 * +---------------------+---+-------+-+
 241 *  31:12 - Page address (Pages always start on a 4 KB boundary)
 242 *  11: 9 - Reserved
 243 *   8: 1 - Flags
 244 *      8 - Read allocate - allocate cache space on read misses
 245 *      7 - Read cache - enable cache & prefetch of data
 246 *      6 - Write buffer - enable delaying writes on their way to memory
 247 *      5 - Write allocate - allocate cache space on write misses
 248 *      4 - Write cache - different writes can be merged together
 249 *      3 - Override cache attributes
 250 *          if 1, bits 4-8 control cache attributes
 251 *          if 0, the system bus defaults are used
 252 *      2 - Writable
 253 *      1 - Readable
 254 *      0 - 1 if Page @ Page address is valid
 255 */
 256#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
 257#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
 258#define RK_PTE_PAGE_WRITABLE      BIT(2)
 259#define RK_PTE_PAGE_READABLE      BIT(1)
 260#define RK_PTE_PAGE_VALID         BIT(0)
 261
 262static inline bool rk_pte_is_page_valid(u32 pte)
 263{
 264	return pte & RK_PTE_PAGE_VALID;
 265}
 266
 267/* TODO: set cache flags per prot IOMMU_CACHE */
 268static u32 rk_mk_pte(phys_addr_t page, int prot)
 269{
 270	u32 flags = 0;
 271	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 272	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 273	page &= RK_PTE_PAGE_ADDRESS_MASK;
 274	return page | flags | RK_PTE_PAGE_VALID;
 275}
 276
 277/*
 278 * In v2:
 279 * 31:12 - Page address bit 31:0
 280 *  11:9 - Page address bit 34:32
 281 *   8:4 - Page address bit 39:35
 282 *     3 - Security
 283 *     2 - Writable
 284 *     1 - Readable
 285 *     0 - 1 if Page @ Page address is valid
 286 */
 
 
 287
 288static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
 289{
 290	u32 flags = 0;
 291
 292	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 293	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 294
 295	return rk_mk_dte_v2(page) | flags;
 296}
 297
 298static u32 rk_mk_pte_invalid(u32 pte)
 299{
 300	return pte & ~RK_PTE_PAGE_VALID;
 301}
 302
 303/*
 304 * rk3288 iova (IOMMU Virtual Address) format
 305 *  31       22.21       12.11          0
 306 * +-----------+-----------+-------------+
 307 * | DTE index | PTE index | Page offset |
 308 * +-----------+-----------+-------------+
 309 *  31:22 - DTE index   - index of DTE in DT
 310 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
 311 *  11: 0 - Page offset - offset into page @ PTE.page_address
 312 */
 313#define RK_IOVA_DTE_MASK    0xffc00000
 314#define RK_IOVA_DTE_SHIFT   22
 315#define RK_IOVA_PTE_MASK    0x003ff000
 316#define RK_IOVA_PTE_SHIFT   12
 317#define RK_IOVA_PAGE_MASK   0x00000fff
 318#define RK_IOVA_PAGE_SHIFT  0
 319
 320static u32 rk_iova_dte_index(dma_addr_t iova)
 321{
 322	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
 323}
 324
 325static u32 rk_iova_pte_index(dma_addr_t iova)
 326{
 327	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
 328}
 329
 330static u32 rk_iova_page_offset(dma_addr_t iova)
 331{
 332	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
 333}
 334
 335static u32 rk_iommu_read(void __iomem *base, u32 offset)
 336{
 337	return readl(base + offset);
 338}
 339
 340static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
 341{
 342	writel(value, base + offset);
 343}
 344
 345static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
 346{
 347	int i;
 348
 349	for (i = 0; i < iommu->num_mmu; i++)
 350		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
 351}
 352
 353static void rk_iommu_base_command(void __iomem *base, u32 command)
 354{
 355	writel(command, base + RK_MMU_COMMAND);
 356}
 357static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
 358			       size_t size)
 359{
 360	int i;
 361	dma_addr_t iova_end = iova_start + size;
 362	/*
 363	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
 364	 * entire iotlb rather than iterate over individual iovas.
 365	 */
 366	for (i = 0; i < iommu->num_mmu; i++) {
 367		dma_addr_t iova;
 368
 369		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
 370			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
 371	}
 372}
 373
 374static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
 375{
 376	bool active = true;
 377	int i;
 378
 379	for (i = 0; i < iommu->num_mmu; i++)
 380		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 381					   RK_MMU_STATUS_STALL_ACTIVE);
 382
 383	return active;
 384}
 385
 386static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
 387{
 388	bool enable = true;
 389	int i;
 390
 391	for (i = 0; i < iommu->num_mmu; i++)
 392		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 393					   RK_MMU_STATUS_PAGING_ENABLED);
 394
 395	return enable;
 396}
 397
 398static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
 399{
 400	bool done = true;
 401	int i;
 402
 403	for (i = 0; i < iommu->num_mmu; i++)
 404		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
 405
 406	return done;
 407}
 408
 409static int rk_iommu_enable_stall(struct rk_iommu *iommu)
 410{
 411	int ret, i;
 412	bool val;
 413
 414	if (rk_iommu_is_stall_active(iommu))
 415		return 0;
 416
 417	/* Stall can only be enabled if paging is enabled */
 418	if (!rk_iommu_is_paging_enabled(iommu))
 419		return 0;
 420
 421	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
 422
 423	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 424				 val, RK_MMU_POLL_PERIOD_US,
 425				 RK_MMU_POLL_TIMEOUT_US);
 426	if (ret)
 427		for (i = 0; i < iommu->num_mmu; i++)
 428			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
 429				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 430
 431	return ret;
 432}
 433
 434static int rk_iommu_disable_stall(struct rk_iommu *iommu)
 435{
 436	int ret, i;
 437	bool val;
 438
 439	if (!rk_iommu_is_stall_active(iommu))
 440		return 0;
 441
 442	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
 443
 444	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 445				 !val, RK_MMU_POLL_PERIOD_US,
 446				 RK_MMU_POLL_TIMEOUT_US);
 447	if (ret)
 448		for (i = 0; i < iommu->num_mmu; i++)
 449			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
 450				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 451
 452	return ret;
 453}
 454
 455static int rk_iommu_enable_paging(struct rk_iommu *iommu)
 456{
 457	int ret, i;
 458	bool val;
 459
 460	if (rk_iommu_is_paging_enabled(iommu))
 461		return 0;
 462
 463	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
 464
 465	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 466				 val, RK_MMU_POLL_PERIOD_US,
 467				 RK_MMU_POLL_TIMEOUT_US);
 468	if (ret)
 469		for (i = 0; i < iommu->num_mmu; i++)
 470			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
 471				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 472
 473	return ret;
 474}
 475
 476static int rk_iommu_disable_paging(struct rk_iommu *iommu)
 477{
 478	int ret, i;
 479	bool val;
 480
 481	if (!rk_iommu_is_paging_enabled(iommu))
 482		return 0;
 483
 484	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
 485
 486	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 487				 !val, RK_MMU_POLL_PERIOD_US,
 488				 RK_MMU_POLL_TIMEOUT_US);
 489	if (ret)
 490		for (i = 0; i < iommu->num_mmu; i++)
 491			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
 492				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 493
 494	return ret;
 495}
 496
 497static int rk_iommu_force_reset(struct rk_iommu *iommu)
 498{
 499	int ret, i;
 500	u32 dte_addr;
 501	bool val;
 502
 503	if (iommu->reset_disabled)
 504		return 0;
 505
 506	/*
 507	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
 508	 * and verifying that upper 5 nybbles are read back.
 509	 */
 510	for (i = 0; i < iommu->num_mmu; i++) {
 511		dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
 512		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
 513
 514		if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
 515			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
 516			return -EFAULT;
 517		}
 518	}
 519
 520	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
 521
 522	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
 523				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
 524				 RK_MMU_POLL_TIMEOUT_US);
 525	if (ret) {
 526		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
 527		return ret;
 528	}
 529
 530	return 0;
 531}
 532
 533static inline phys_addr_t rk_dte_addr_phys(u32 addr)
 534{
 535	return (phys_addr_t)addr;
 536}
 537
 538static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma)
 539{
 540	return dt_dma;
 541}
 542
 543#define DT_HI_MASK GENMASK_ULL(39, 32)
 544#define DTE_BASE_HI_MASK GENMASK(11, 4)
 545#define DT_SHIFT   28
 546
 547static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr)
 548{
 549	u64 addr64 = addr;
 550	return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) |
 551	       ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT);
 552}
 553
 554static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma)
 555{
 556	return (dt_dma & RK_DTE_PT_ADDRESS_MASK) |
 557	       ((dt_dma & DT_HI_MASK) >> DT_SHIFT);
 558}
 559
 560static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
 561{
 562	void __iomem *base = iommu->bases[index];
 563	u32 dte_index, pte_index, page_offset;
 564	u32 mmu_dte_addr;
 565	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
 566	u32 *dte_addr;
 567	u32 dte;
 568	phys_addr_t pte_addr_phys = 0;
 569	u32 *pte_addr = NULL;
 570	u32 pte = 0;
 571	phys_addr_t page_addr_phys = 0;
 572	u32 page_flags = 0;
 573
 574	dte_index = rk_iova_dte_index(iova);
 575	pte_index = rk_iova_pte_index(iova);
 576	page_offset = rk_iova_page_offset(iova);
 577
 578	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
 579	mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr);
 580
 581	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
 582	dte_addr = phys_to_virt(dte_addr_phys);
 583	dte = *dte_addr;
 584
 585	if (!rk_dte_is_pt_valid(dte))
 586		goto print_it;
 587
 588	pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
 589	pte_addr = phys_to_virt(pte_addr_phys);
 590	pte = *pte_addr;
 591
 592	if (!rk_pte_is_page_valid(pte))
 593		goto print_it;
 594
 595	page_addr_phys = rk_ops->pt_address(pte) + page_offset;
 596	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
 597
 598print_it:
 599	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
 600		&iova, dte_index, pte_index, page_offset);
 601	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
 602		&mmu_dte_addr_phys, &dte_addr_phys, dte,
 603		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
 604		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
 605}
 606
 607static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
 608{
 609	struct rk_iommu *iommu = dev_id;
 610	u32 status;
 611	u32 int_status;
 612	dma_addr_t iova;
 613	irqreturn_t ret = IRQ_NONE;
 614	int i, err;
 615
 616	err = pm_runtime_get_if_in_use(iommu->dev);
 617	if (!err || WARN_ON_ONCE(err < 0))
 618		return ret;
 619
 620	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
 621		goto out;
 622
 623	for (i = 0; i < iommu->num_mmu; i++) {
 624		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
 625		if (int_status == 0)
 626			continue;
 627
 628		ret = IRQ_HANDLED;
 629		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
 630
 631		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
 632			int flags;
 633
 634			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
 635			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
 636					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 637
 638			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
 639				&iova,
 640				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
 641
 642			log_iova(iommu, i, iova);
 643
 644			/*
 645			 * Report page fault to any installed handlers.
 646			 * Ignore the return code, though, since we always zap cache
 647			 * and clear the page fault anyway.
 648			 */
 649			if (iommu->domain)
 650				report_iommu_fault(iommu->domain, iommu->dev, iova,
 651						   flags);
 652			else
 653				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
 654
 655			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 656			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
 657		}
 658
 659		if (int_status & RK_MMU_IRQ_BUS_ERROR)
 660			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
 661
 662		if (int_status & ~RK_MMU_IRQ_MASK)
 663			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
 664				int_status);
 665
 666		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
 667	}
 668
 669	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 670
 671out:
 672	pm_runtime_put(iommu->dev);
 673	return ret;
 674}
 675
 676static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
 677					 dma_addr_t iova)
 678{
 679	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 680	unsigned long flags;
 681	phys_addr_t pt_phys, phys = 0;
 682	u32 dte, pte;
 683	u32 *page_table;
 684
 685	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 686
 687	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 688	if (!rk_dte_is_pt_valid(dte))
 689		goto out;
 690
 691	pt_phys = rk_ops->pt_address(dte);
 692	page_table = (u32 *)phys_to_virt(pt_phys);
 693	pte = page_table[rk_iova_pte_index(iova)];
 694	if (!rk_pte_is_page_valid(pte))
 695		goto out;
 696
 697	phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
 698out:
 699	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 700
 701	return phys;
 702}
 703
 704static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
 705			      dma_addr_t iova, size_t size)
 706{
 707	struct list_head *pos;
 708	unsigned long flags;
 709
 710	/* shootdown these iova from all iommus using this domain */
 711	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 712	list_for_each(pos, &rk_domain->iommus) {
 713		struct rk_iommu *iommu;
 714		int ret;
 715
 716		iommu = list_entry(pos, struct rk_iommu, node);
 717
 718		/* Only zap TLBs of IOMMUs that are powered on. */
 719		ret = pm_runtime_get_if_in_use(iommu->dev);
 720		if (WARN_ON_ONCE(ret < 0))
 721			continue;
 722		if (ret) {
 723			WARN_ON(clk_bulk_enable(iommu->num_clocks,
 724						iommu->clocks));
 725			rk_iommu_zap_lines(iommu, iova, size);
 726			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 727			pm_runtime_put(iommu->dev);
 728		}
 729	}
 730	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 731}
 732
 733static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
 734					 dma_addr_t iova, size_t size)
 735{
 736	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
 737	if (size > SPAGE_SIZE)
 738		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
 739					SPAGE_SIZE);
 740}
 741
 742static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
 743				  dma_addr_t iova)
 744{
 745	u32 *page_table, *dte_addr;
 746	u32 dte_index, dte;
 747	phys_addr_t pt_phys;
 748	dma_addr_t pt_dma;
 749
 750	assert_spin_locked(&rk_domain->dt_lock);
 751
 752	dte_index = rk_iova_dte_index(iova);
 753	dte_addr = &rk_domain->dt[dte_index];
 754	dte = *dte_addr;
 755	if (rk_dte_is_pt_valid(dte))
 756		goto done;
 757
 758	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
 759	if (!page_table)
 760		return ERR_PTR(-ENOMEM);
 761
 762	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
 763	if (dma_mapping_error(dma_dev, pt_dma)) {
 764		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
 765		free_page((unsigned long)page_table);
 766		return ERR_PTR(-ENOMEM);
 767	}
 768
 769	dte = rk_ops->mk_dtentries(pt_dma);
 770	*dte_addr = dte;
 771
 772	rk_table_flush(rk_domain,
 773		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
 774done:
 775	pt_phys = rk_ops->pt_address(dte);
 776	return (u32 *)phys_to_virt(pt_phys);
 777}
 778
 779static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
 780				  u32 *pte_addr, dma_addr_t pte_dma,
 781				  size_t size)
 782{
 783	unsigned int pte_count;
 784	unsigned int pte_total = size / SPAGE_SIZE;
 785
 786	assert_spin_locked(&rk_domain->dt_lock);
 787
 788	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 789		u32 pte = pte_addr[pte_count];
 790		if (!rk_pte_is_page_valid(pte))
 791			break;
 792
 793		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
 794	}
 795
 796	rk_table_flush(rk_domain, pte_dma, pte_count);
 797
 798	return pte_count * SPAGE_SIZE;
 799}
 800
 801static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
 802			     dma_addr_t pte_dma, dma_addr_t iova,
 803			     phys_addr_t paddr, size_t size, int prot)
 804{
 805	unsigned int pte_count;
 806	unsigned int pte_total = size / SPAGE_SIZE;
 807	phys_addr_t page_phys;
 808
 809	assert_spin_locked(&rk_domain->dt_lock);
 810
 811	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 812		u32 pte = pte_addr[pte_count];
 813
 814		if (rk_pte_is_page_valid(pte))
 815			goto unwind;
 816
 817		pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
 818
 819		paddr += SPAGE_SIZE;
 820	}
 821
 822	rk_table_flush(rk_domain, pte_dma, pte_total);
 823
 824	/*
 825	 * Zap the first and last iova to evict from iotlb any previously
 826	 * mapped cachelines holding stale values for its dte and pte.
 827	 * We only zap the first and last iova, since only they could have
 828	 * dte or pte shared with an existing mapping.
 829	 */
 830	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
 831
 832	return 0;
 833unwind:
 834	/* Unmap the range of iovas that we just mapped */
 835	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
 836			    pte_count * SPAGE_SIZE);
 837
 838	iova += pte_count * SPAGE_SIZE;
 839	page_phys = rk_ops->pt_address(pte_addr[pte_count]);
 840	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
 841	       &iova, &page_phys, &paddr, prot);
 842
 843	return -EADDRINUSE;
 844}
 845
 846static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
 847			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
 848{
 849	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 850	unsigned long flags;
 851	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 852	u32 *page_table, *pte_addr;
 853	u32 dte_index, pte_index;
 854	int ret;
 855
 856	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 857
 858	/*
 859	 * pgsize_bitmap specifies iova sizes that fit in one page table
 860	 * (1024 4-KiB pages = 4 MiB).
 861	 * So, size will always be 4096 <= size <= 4194304.
 862	 * Since iommu_map() guarantees that both iova and size will be
 863	 * aligned, we will always only be mapping from a single dte here.
 864	 */
 865	page_table = rk_dte_get_page_table(rk_domain, iova);
 866	if (IS_ERR(page_table)) {
 867		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 868		return PTR_ERR(page_table);
 869	}
 870
 871	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
 872	pte_index = rk_iova_pte_index(iova);
 873	pte_addr = &page_table[pte_index];
 874
 875	pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
 876	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
 877				paddr, size, prot);
 878
 879	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 880
 881	return ret;
 882}
 883
 884static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
 885			     size_t size, struct iommu_iotlb_gather *gather)
 886{
 887	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 888	unsigned long flags;
 889	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 890	phys_addr_t pt_phys;
 891	u32 dte;
 892	u32 *pte_addr;
 893	size_t unmap_size;
 894
 895	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 896
 897	/*
 898	 * pgsize_bitmap specifies iova sizes that fit in one page table
 899	 * (1024 4-KiB pages = 4 MiB).
 900	 * So, size will always be 4096 <= size <= 4194304.
 901	 * Since iommu_unmap() guarantees that both iova and size will be
 902	 * aligned, we will always only be unmapping from a single dte here.
 903	 */
 904	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 905	/* Just return 0 if iova is unmapped */
 906	if (!rk_dte_is_pt_valid(dte)) {
 907		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 908		return 0;
 909	}
 910
 911	pt_phys = rk_ops->pt_address(dte);
 912	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
 913	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
 914	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
 915
 916	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 917
 918	/* Shootdown iotlb entries for iova range that was just unmapped */
 919	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
 920
 921	return unmap_size;
 922}
 923
 924static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
 925{
 926	struct rk_iommudata *data = dev_iommu_priv_get(dev);
 927
 928	return data ? data->iommu : NULL;
 929}
 930
 931/* Must be called with iommu powered on and attached */
 932static void rk_iommu_disable(struct rk_iommu *iommu)
 933{
 934	int i;
 935
 936	/* Ignore error while disabling, just keep going */
 937	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
 938	rk_iommu_enable_stall(iommu);
 939	rk_iommu_disable_paging(iommu);
 940	for (i = 0; i < iommu->num_mmu; i++) {
 941		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
 942		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
 943	}
 944	rk_iommu_disable_stall(iommu);
 945	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 946}
 947
 948/* Must be called with iommu powered on and attached */
 949static int rk_iommu_enable(struct rk_iommu *iommu)
 950{
 951	struct iommu_domain *domain = iommu->domain;
 952	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 953	int ret, i;
 954
 955	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
 956	if (ret)
 957		return ret;
 958
 959	ret = rk_iommu_enable_stall(iommu);
 960	if (ret)
 961		goto out_disable_clocks;
 962
 963	ret = rk_iommu_force_reset(iommu);
 964	if (ret)
 965		goto out_disable_stall;
 966
 967	for (i = 0; i < iommu->num_mmu; i++) {
 968		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
 969			       rk_ops->dma_addr_dte(rk_domain->dt_dma));
 970		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 971		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
 972	}
 973
 974	ret = rk_iommu_enable_paging(iommu);
 975
 976out_disable_stall:
 977	rk_iommu_disable_stall(iommu);
 978out_disable_clocks:
 979	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 980	return ret;
 981}
 982
 983static void rk_iommu_detach_device(struct iommu_domain *domain,
 984				   struct device *dev)
 985{
 986	struct rk_iommu *iommu;
 987	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 988	unsigned long flags;
 989	int ret;
 990
 991	/* Allow 'virtual devices' (eg drm) to detach from domain */
 992	iommu = rk_iommu_from_dev(dev);
 993	if (!iommu)
 994		return;
 995
 996	dev_dbg(dev, "Detaching from iommu domain\n");
 997
 998	/* iommu already detached */
 999	if (iommu->domain != domain)
1000		return;
1001
1002	iommu->domain = NULL;
1003
1004	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1005	list_del_init(&iommu->node);
1006	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1007
1008	ret = pm_runtime_get_if_in_use(iommu->dev);
1009	WARN_ON_ONCE(ret < 0);
1010	if (ret > 0) {
1011		rk_iommu_disable(iommu);
1012		pm_runtime_put(iommu->dev);
1013	}
1014}
1015
1016static int rk_iommu_attach_device(struct iommu_domain *domain,
1017		struct device *dev)
1018{
1019	struct rk_iommu *iommu;
1020	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1021	unsigned long flags;
1022	int ret;
1023
1024	/*
1025	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1026	 * Such a device does not belong to an iommu group.
1027	 */
1028	iommu = rk_iommu_from_dev(dev);
1029	if (!iommu)
1030		return 0;
1031
1032	dev_dbg(dev, "Attaching to iommu domain\n");
1033
1034	/* iommu already attached */
1035	if (iommu->domain == domain)
1036		return 0;
1037
1038	if (iommu->domain)
1039		rk_iommu_detach_device(iommu->domain, dev);
1040
1041	iommu->domain = domain;
1042
1043	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1044	list_add_tail(&iommu->node, &rk_domain->iommus);
1045	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1046
1047	ret = pm_runtime_get_if_in_use(iommu->dev);
1048	if (!ret || WARN_ON_ONCE(ret < 0))
1049		return 0;
1050
1051	ret = rk_iommu_enable(iommu);
1052	if (ret)
1053		rk_iommu_detach_device(iommu->domain, dev);
1054
1055	pm_runtime_put(iommu->dev);
1056
1057	return ret;
1058}
1059
1060static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
1061{
1062	struct rk_iommu_domain *rk_domain;
1063
1064	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1065		return NULL;
1066
1067	if (!dma_dev)
1068		return NULL;
1069
1070	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1071	if (!rk_domain)
1072		return NULL;
1073
 
 
 
 
1074	/*
1075	 * rk32xx iommus use a 2 level pagetable.
1076	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1077	 * Allocate one 4 KiB page for each table.
1078	 */
1079	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
1080	if (!rk_domain->dt)
1081		goto err_free_domain;
1082
1083	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1084					   SPAGE_SIZE, DMA_TO_DEVICE);
1085	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1086		dev_err(dma_dev, "DMA map error for DT\n");
1087		goto err_free_dt;
1088	}
1089
1090	spin_lock_init(&rk_domain->iommus_lock);
1091	spin_lock_init(&rk_domain->dt_lock);
1092	INIT_LIST_HEAD(&rk_domain->iommus);
1093
1094	rk_domain->domain.geometry.aperture_start = 0;
1095	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1096	rk_domain->domain.geometry.force_aperture = true;
1097
1098	return &rk_domain->domain;
1099
1100err_free_dt:
1101	free_page((unsigned long)rk_domain->dt);
 
 
 
1102err_free_domain:
1103	kfree(rk_domain);
1104
1105	return NULL;
1106}
1107
1108static void rk_iommu_domain_free(struct iommu_domain *domain)
1109{
1110	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1111	int i;
1112
1113	WARN_ON(!list_empty(&rk_domain->iommus));
1114
1115	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1116		u32 dte = rk_domain->dt[i];
1117		if (rk_dte_is_pt_valid(dte)) {
1118			phys_addr_t pt_phys = rk_ops->pt_address(dte);
1119			u32 *page_table = phys_to_virt(pt_phys);
1120			dma_unmap_single(dma_dev, pt_phys,
1121					 SPAGE_SIZE, DMA_TO_DEVICE);
1122			free_page((unsigned long)page_table);
1123		}
1124	}
1125
1126	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1127			 SPAGE_SIZE, DMA_TO_DEVICE);
1128	free_page((unsigned long)rk_domain->dt);
1129
 
 
1130	kfree(rk_domain);
1131}
1132
1133static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1134{
1135	struct rk_iommudata *data;
1136	struct rk_iommu *iommu;
1137
1138	data = dev_iommu_priv_get(dev);
1139	if (!data)
1140		return ERR_PTR(-ENODEV);
1141
1142	iommu = rk_iommu_from_dev(dev);
1143
1144	data->link = device_link_add(dev, iommu->dev,
1145				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1146
1147	return &iommu->iommu;
1148}
1149
1150static void rk_iommu_release_device(struct device *dev)
1151{
1152	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1153
1154	device_link_del(data->link);
1155}
1156
1157static struct iommu_group *rk_iommu_device_group(struct device *dev)
1158{
1159	struct rk_iommu *iommu;
1160
1161	iommu = rk_iommu_from_dev(dev);
1162
1163	return iommu_group_ref_get(iommu->group);
1164}
1165
1166static int rk_iommu_of_xlate(struct device *dev,
1167			     struct of_phandle_args *args)
1168{
1169	struct platform_device *iommu_dev;
1170	struct rk_iommudata *data;
1171
1172	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1173	if (!data)
1174		return -ENOMEM;
1175
1176	iommu_dev = of_find_device_by_node(args->np);
1177
1178	data->iommu = platform_get_drvdata(iommu_dev);
1179	dev_iommu_priv_set(dev, data);
1180
1181	platform_device_put(iommu_dev);
1182
1183	return 0;
1184}
1185
1186static const struct iommu_ops rk_iommu_ops = {
1187	.domain_alloc = rk_iommu_domain_alloc,
 
 
 
 
 
1188	.probe_device = rk_iommu_probe_device,
1189	.release_device = rk_iommu_release_device,
 
1190	.device_group = rk_iommu_device_group,
1191	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1192	.of_xlate = rk_iommu_of_xlate,
1193	.default_domain_ops = &(const struct iommu_domain_ops) {
1194		.attach_dev	= rk_iommu_attach_device,
1195		.detach_dev	= rk_iommu_detach_device,
1196		.map		= rk_iommu_map,
1197		.unmap		= rk_iommu_unmap,
1198		.iova_to_phys	= rk_iommu_iova_to_phys,
1199		.free		= rk_iommu_domain_free,
1200	}
1201};
1202
1203static int rk_iommu_probe(struct platform_device *pdev)
1204{
1205	struct device *dev = &pdev->dev;
1206	struct rk_iommu *iommu;
1207	struct resource *res;
1208	const struct rk_iommu_ops *ops;
1209	int num_res = pdev->num_resources;
1210	int err, i;
1211
1212	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1213	if (!iommu)
1214		return -ENOMEM;
1215
1216	platform_set_drvdata(pdev, iommu);
1217	iommu->dev = dev;
1218	iommu->num_mmu = 0;
1219
1220	ops = of_device_get_match_data(dev);
1221	if (!rk_ops)
1222		rk_ops = ops;
1223
1224	/*
1225	 * That should not happen unless different versions of the
1226	 * hardware block are embedded the same SoC
1227	 */
1228	if (WARN_ON(rk_ops != ops))
1229		return -EINVAL;
1230
1231	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1232				    GFP_KERNEL);
1233	if (!iommu->bases)
1234		return -ENOMEM;
1235
1236	for (i = 0; i < num_res; i++) {
1237		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1238		if (!res)
1239			continue;
1240		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1241		if (IS_ERR(iommu->bases[i]))
1242			continue;
1243		iommu->num_mmu++;
1244	}
1245	if (iommu->num_mmu == 0)
1246		return PTR_ERR(iommu->bases[0]);
1247
1248	iommu->num_irq = platform_irq_count(pdev);
1249	if (iommu->num_irq < 0)
1250		return iommu->num_irq;
1251
1252	iommu->reset_disabled = device_property_read_bool(dev,
1253					"rockchip,disable-mmu-reset");
1254
1255	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1256	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1257				     sizeof(*iommu->clocks), GFP_KERNEL);
1258	if (!iommu->clocks)
1259		return -ENOMEM;
1260
1261	for (i = 0; i < iommu->num_clocks; ++i)
1262		iommu->clocks[i].id = rk_iommu_clocks[i];
1263
1264	/*
1265	 * iommu clocks should be present for all new devices and devicetrees
1266	 * but there are older devicetrees without clocks out in the wild.
1267	 * So clocks as optional for the time being.
1268	 */
1269	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1270	if (err == -ENOENT)
1271		iommu->num_clocks = 0;
1272	else if (err)
1273		return err;
1274
1275	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1276	if (err)
1277		return err;
1278
1279	iommu->group = iommu_group_alloc();
1280	if (IS_ERR(iommu->group)) {
1281		err = PTR_ERR(iommu->group);
1282		goto err_unprepare_clocks;
1283	}
1284
1285	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1286	if (err)
1287		goto err_put_group;
1288
1289	err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1290	if (err)
1291		goto err_remove_sysfs;
1292
1293	/*
1294	 * Use the first registered IOMMU device for domain to use with DMA
1295	 * API, since a domain might not physically correspond to a single
1296	 * IOMMU device..
1297	 */
1298	if (!dma_dev)
1299		dma_dev = &pdev->dev;
1300
 
 
1301	pm_runtime_enable(dev);
1302
1303	for (i = 0; i < iommu->num_irq; i++) {
1304		int irq = platform_get_irq(pdev, i);
1305
1306		if (irq < 0)
1307			return irq;
1308
1309		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1310				       IRQF_SHARED, dev_name(dev), iommu);
1311		if (err) {
1312			pm_runtime_disable(dev);
1313			goto err_remove_sysfs;
1314		}
1315	}
1316
1317	dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1318
1319	return 0;
1320err_remove_sysfs:
1321	iommu_device_sysfs_remove(&iommu->iommu);
1322err_put_group:
1323	iommu_group_put(iommu->group);
1324err_unprepare_clocks:
1325	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1326	return err;
1327}
1328
1329static void rk_iommu_shutdown(struct platform_device *pdev)
1330{
1331	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1332	int i;
1333
1334	for (i = 0; i < iommu->num_irq; i++) {
1335		int irq = platform_get_irq(pdev, i);
1336
1337		devm_free_irq(iommu->dev, irq, iommu);
1338	}
1339
1340	pm_runtime_force_suspend(&pdev->dev);
1341}
1342
1343static int __maybe_unused rk_iommu_suspend(struct device *dev)
1344{
1345	struct rk_iommu *iommu = dev_get_drvdata(dev);
1346
1347	if (!iommu->domain)
1348		return 0;
1349
1350	rk_iommu_disable(iommu);
1351	return 0;
1352}
1353
1354static int __maybe_unused rk_iommu_resume(struct device *dev)
1355{
1356	struct rk_iommu *iommu = dev_get_drvdata(dev);
1357
1358	if (!iommu->domain)
1359		return 0;
1360
1361	return rk_iommu_enable(iommu);
1362}
1363
1364static const struct dev_pm_ops rk_iommu_pm_ops = {
1365	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1366	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1367				pm_runtime_force_resume)
1368};
1369
1370static struct rk_iommu_ops iommu_data_ops_v1 = {
1371	.pt_address = &rk_dte_pt_address,
1372	.mk_dtentries = &rk_mk_dte,
1373	.mk_ptentries = &rk_mk_pte,
1374	.dte_addr_phys = &rk_dte_addr_phys,
1375	.dma_addr_dte = &rk_dma_addr_dte,
1376	.dma_bit_mask = DMA_BIT_MASK(32),
1377};
1378
1379static struct rk_iommu_ops iommu_data_ops_v2 = {
1380	.pt_address = &rk_dte_pt_address_v2,
1381	.mk_dtentries = &rk_mk_dte_v2,
1382	.mk_ptentries = &rk_mk_pte_v2,
1383	.dte_addr_phys = &rk_dte_addr_phys_v2,
1384	.dma_addr_dte = &rk_dma_addr_dte_v2,
1385	.dma_bit_mask = DMA_BIT_MASK(40),
1386};
1387
1388static const struct of_device_id rk_iommu_dt_ids[] = {
1389	{	.compatible = "rockchip,iommu",
1390		.data = &iommu_data_ops_v1,
1391	},
1392	{	.compatible = "rockchip,rk3568-iommu",
1393		.data = &iommu_data_ops_v2,
1394	},
1395	{ /* sentinel */ }
1396};
1397
1398static struct platform_driver rk_iommu_driver = {
1399	.probe = rk_iommu_probe,
1400	.shutdown = rk_iommu_shutdown,
1401	.driver = {
1402		   .name = "rk_iommu",
1403		   .of_match_table = rk_iommu_dt_ids,
1404		   .pm = &rk_iommu_pm_ops,
1405		   .suppress_bind_attrs = true,
1406	},
1407};
1408builtin_platform_driver(rk_iommu_driver);
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IOMMU API for Rockchip
   4 *
   5 * Module Authors:	Simon Xue <xxm@rock-chips.com>
   6 *			Daniel Kurtz <djkurtz@chromium.org>
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-iommu.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/iommu.h>
  19#include <linux/iopoll.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/init.h>
  23#include <linux/of.h>
  24#include <linux/of_platform.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29
  30/** MMU register offsets */
  31#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
  32#define RK_MMU_STATUS		0x04
  33#define RK_MMU_COMMAND		0x08
  34#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
  35#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
  36#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
  37#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
  38#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
  39#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
  40#define RK_MMU_AUTO_GATING	0x24
  41
  42#define DTE_ADDR_DUMMY		0xCAFEBABE
  43
  44#define RK_MMU_POLL_PERIOD_US		100
  45#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
  46#define RK_MMU_POLL_TIMEOUT_US		1000
  47
  48/* RK_MMU_STATUS fields */
  49#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
  50#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
  51#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
  52#define RK_MMU_STATUS_IDLE                 BIT(3)
  53#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
  54#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
  55#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
  56
  57/* RK_MMU_COMMAND command values */
  58#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
  59#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
  60#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
  61#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
  62#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
  63#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
  64#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
  65
  66/* RK_MMU_INT_* register fields */
  67#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
  68#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
  69#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
  70
  71#define NUM_DT_ENTRIES 1024
  72#define NUM_PT_ENTRIES 1024
  73
  74#define SPAGE_ORDER 12
  75#define SPAGE_SIZE (1 << SPAGE_ORDER)
  76
  77 /*
  78  * Support mapping any size that fits in one page table:
  79  *   4 KiB to 4 MiB
  80  */
  81#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
  82
  83struct rk_iommu_domain {
  84	struct list_head iommus;
  85	u32 *dt; /* page directory table */
  86	dma_addr_t dt_dma;
  87	spinlock_t iommus_lock; /* lock for iommus list */
  88	spinlock_t dt_lock; /* lock for modifying page directory table */
  89
  90	struct iommu_domain domain;
  91};
  92
  93/* list of clocks required by IOMMU */
  94static const char * const rk_iommu_clocks[] = {
  95	"aclk", "iface",
  96};
  97
  98struct rk_iommu_ops {
  99	phys_addr_t (*pt_address)(u32 dte);
 100	u32 (*mk_dtentries)(dma_addr_t pt_dma);
 101	u32 (*mk_ptentries)(phys_addr_t page, int prot);
 102	phys_addr_t (*dte_addr_phys)(u32 addr);
 103	u32 (*dma_addr_dte)(dma_addr_t dt_dma);
 104	u64 dma_bit_mask;
 105};
 106
 107struct rk_iommu {
 108	struct device *dev;
 109	void __iomem **bases;
 110	int num_mmu;
 111	int num_irq;
 112	struct clk_bulk_data *clocks;
 113	int num_clocks;
 114	bool reset_disabled;
 115	struct iommu_device iommu;
 116	struct list_head node; /* entry in rk_iommu_domain.iommus */
 117	struct iommu_domain *domain; /* domain to which iommu is attached */
 118	struct iommu_group *group;
 119};
 120
 121struct rk_iommudata {
 122	struct device_link *link; /* runtime PM link from IOMMU to master */
 123	struct rk_iommu *iommu;
 124};
 125
 126static struct device *dma_dev;
 127static const struct rk_iommu_ops *rk_ops;
 128
 129static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
 130				  unsigned int count)
 131{
 132	size_t size = count * sizeof(u32); /* count of u32 entry */
 133
 134	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
 135}
 136
 137static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
 138{
 139	return container_of(dom, struct rk_iommu_domain, domain);
 140}
 141
 142/*
 143 * The Rockchip rk3288 iommu uses a 2-level page table.
 144 * The first level is the "Directory Table" (DT).
 145 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
 146 * to a "Page Table".
 147 * The second level is the 1024 Page Tables (PT).
 148 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
 149 * a 4 KB page of physical memory.
 150 *
 151 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
 152 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
 153 * address of the start of the DT page.
 154 *
 155 * The structure of the page table is as follows:
 156 *
 157 *                   DT
 158 * MMU_DTE_ADDR -> +-----+
 159 *                 |     |
 160 *                 +-----+     PT
 161 *                 | DTE | -> +-----+
 162 *                 +-----+    |     |     Memory
 163 *                 |     |    +-----+     Page
 164 *                 |     |    | PTE | -> +-----+
 165 *                 +-----+    +-----+    |     |
 166 *                            |     |    |     |
 167 *                            |     |    |     |
 168 *                            +-----+    |     |
 169 *                                       |     |
 170 *                                       |     |
 171 *                                       +-----+
 172 */
 173
 174/*
 175 * Each DTE has a PT address and a valid bit:
 176 * +---------------------+-----------+-+
 177 * | PT address          | Reserved  |V|
 178 * +---------------------+-----------+-+
 179 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
 180 *  11: 1 - Reserved
 181 *      0 - 1 if PT @ PT address is valid
 182 */
 183#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
 184#define RK_DTE_PT_VALID           BIT(0)
 185
 186static inline phys_addr_t rk_dte_pt_address(u32 dte)
 187{
 188	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
 189}
 190
 191/*
 192 * In v2:
 193 * 31:12 - PT address bit 31:0
 194 * 11: 8 - PT address bit 35:32
 195 *  7: 4 - PT address bit 39:36
 196 *  3: 1 - Reserved
 197 *     0 - 1 if PT @ PT address is valid
 198 */
 199#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
 200#define DTE_HI_MASK1	GENMASK(11, 8)
 201#define DTE_HI_MASK2	GENMASK(7, 4)
 202#define DTE_HI_SHIFT1	24 /* shift bit 8 to bit 32 */
 203#define DTE_HI_SHIFT2	32 /* shift bit 4 to bit 36 */
 204#define PAGE_DESC_HI_MASK1	GENMASK_ULL(39, 36)
 205#define PAGE_DESC_HI_MASK2	GENMASK_ULL(35, 32)
 206
 207static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
 208{
 209	u64 dte_v2 = dte;
 210
 211	dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
 212		 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
 213		 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
 214
 215	return (phys_addr_t)dte_v2;
 216}
 217
 218static inline bool rk_dte_is_pt_valid(u32 dte)
 219{
 220	return dte & RK_DTE_PT_VALID;
 221}
 222
 223static inline u32 rk_mk_dte(dma_addr_t pt_dma)
 224{
 225	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
 226}
 227
 228static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
 229{
 230	pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
 231		 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
 232		 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
 233
 234	return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
 235}
 236
 237/*
 238 * Each PTE has a Page address, some flags and a valid bit:
 239 * +---------------------+---+-------+-+
 240 * | Page address        |Rsv| Flags |V|
 241 * +---------------------+---+-------+-+
 242 *  31:12 - Page address (Pages always start on a 4 KB boundary)
 243 *  11: 9 - Reserved
 244 *   8: 1 - Flags
 245 *      8 - Read allocate - allocate cache space on read misses
 246 *      7 - Read cache - enable cache & prefetch of data
 247 *      6 - Write buffer - enable delaying writes on their way to memory
 248 *      5 - Write allocate - allocate cache space on write misses
 249 *      4 - Write cache - different writes can be merged together
 250 *      3 - Override cache attributes
 251 *          if 1, bits 4-8 control cache attributes
 252 *          if 0, the system bus defaults are used
 253 *      2 - Writable
 254 *      1 - Readable
 255 *      0 - 1 if Page @ Page address is valid
 256 */
 257#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
 258#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
 259#define RK_PTE_PAGE_WRITABLE      BIT(2)
 260#define RK_PTE_PAGE_READABLE      BIT(1)
 261#define RK_PTE_PAGE_VALID         BIT(0)
 262
 263static inline bool rk_pte_is_page_valid(u32 pte)
 264{
 265	return pte & RK_PTE_PAGE_VALID;
 266}
 267
 268/* TODO: set cache flags per prot IOMMU_CACHE */
 269static u32 rk_mk_pte(phys_addr_t page, int prot)
 270{
 271	u32 flags = 0;
 272	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 273	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 274	page &= RK_PTE_PAGE_ADDRESS_MASK;
 275	return page | flags | RK_PTE_PAGE_VALID;
 276}
 277
 278/*
 279 * In v2:
 280 * 31:12 - Page address bit 31:0
 281 *  11:9 - Page address bit 34:32
 282 *   8:4 - Page address bit 39:35
 283 *     3 - Security
 284 *     2 - Readable
 285 *     1 - Writable
 286 *     0 - 1 if Page @ Page address is valid
 287 */
 288#define RK_PTE_PAGE_READABLE_V2      BIT(2)
 289#define RK_PTE_PAGE_WRITABLE_V2      BIT(1)
 290
 291static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
 292{
 293	u32 flags = 0;
 294
 295	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE_V2 : 0;
 296	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE_V2 : 0;
 297
 298	return rk_mk_dte_v2(page) | flags;
 299}
 300
 301static u32 rk_mk_pte_invalid(u32 pte)
 302{
 303	return pte & ~RK_PTE_PAGE_VALID;
 304}
 305
 306/*
 307 * rk3288 iova (IOMMU Virtual Address) format
 308 *  31       22.21       12.11          0
 309 * +-----------+-----------+-------------+
 310 * | DTE index | PTE index | Page offset |
 311 * +-----------+-----------+-------------+
 312 *  31:22 - DTE index   - index of DTE in DT
 313 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
 314 *  11: 0 - Page offset - offset into page @ PTE.page_address
 315 */
 316#define RK_IOVA_DTE_MASK    0xffc00000
 317#define RK_IOVA_DTE_SHIFT   22
 318#define RK_IOVA_PTE_MASK    0x003ff000
 319#define RK_IOVA_PTE_SHIFT   12
 320#define RK_IOVA_PAGE_MASK   0x00000fff
 321#define RK_IOVA_PAGE_SHIFT  0
 322
 323static u32 rk_iova_dte_index(dma_addr_t iova)
 324{
 325	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
 326}
 327
 328static u32 rk_iova_pte_index(dma_addr_t iova)
 329{
 330	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
 331}
 332
 333static u32 rk_iova_page_offset(dma_addr_t iova)
 334{
 335	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
 336}
 337
 338static u32 rk_iommu_read(void __iomem *base, u32 offset)
 339{
 340	return readl(base + offset);
 341}
 342
 343static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
 344{
 345	writel(value, base + offset);
 346}
 347
 348static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
 349{
 350	int i;
 351
 352	for (i = 0; i < iommu->num_mmu; i++)
 353		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
 354}
 355
 356static void rk_iommu_base_command(void __iomem *base, u32 command)
 357{
 358	writel(command, base + RK_MMU_COMMAND);
 359}
 360static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
 361			       size_t size)
 362{
 363	int i;
 364	dma_addr_t iova_end = iova_start + size;
 365	/*
 366	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
 367	 * entire iotlb rather than iterate over individual iovas.
 368	 */
 369	for (i = 0; i < iommu->num_mmu; i++) {
 370		dma_addr_t iova;
 371
 372		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
 373			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
 374	}
 375}
 376
 377static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
 378{
 379	bool active = true;
 380	int i;
 381
 382	for (i = 0; i < iommu->num_mmu; i++)
 383		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 384					   RK_MMU_STATUS_STALL_ACTIVE);
 385
 386	return active;
 387}
 388
 389static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
 390{
 391	bool enable = true;
 392	int i;
 393
 394	for (i = 0; i < iommu->num_mmu; i++)
 395		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 396					   RK_MMU_STATUS_PAGING_ENABLED);
 397
 398	return enable;
 399}
 400
 401static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
 402{
 403	bool done = true;
 404	int i;
 405
 406	for (i = 0; i < iommu->num_mmu; i++)
 407		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
 408
 409	return done;
 410}
 411
 412static int rk_iommu_enable_stall(struct rk_iommu *iommu)
 413{
 414	int ret, i;
 415	bool val;
 416
 417	if (rk_iommu_is_stall_active(iommu))
 418		return 0;
 419
 420	/* Stall can only be enabled if paging is enabled */
 421	if (!rk_iommu_is_paging_enabled(iommu))
 422		return 0;
 423
 424	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
 425
 426	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 427				 val, RK_MMU_POLL_PERIOD_US,
 428				 RK_MMU_POLL_TIMEOUT_US);
 429	if (ret)
 430		for (i = 0; i < iommu->num_mmu; i++)
 431			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
 432				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 433
 434	return ret;
 435}
 436
 437static int rk_iommu_disable_stall(struct rk_iommu *iommu)
 438{
 439	int ret, i;
 440	bool val;
 441
 442	if (!rk_iommu_is_stall_active(iommu))
 443		return 0;
 444
 445	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
 446
 447	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 448				 !val, RK_MMU_POLL_PERIOD_US,
 449				 RK_MMU_POLL_TIMEOUT_US);
 450	if (ret)
 451		for (i = 0; i < iommu->num_mmu; i++)
 452			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
 453				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 454
 455	return ret;
 456}
 457
 458static int rk_iommu_enable_paging(struct rk_iommu *iommu)
 459{
 460	int ret, i;
 461	bool val;
 462
 463	if (rk_iommu_is_paging_enabled(iommu))
 464		return 0;
 465
 466	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
 467
 468	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 469				 val, RK_MMU_POLL_PERIOD_US,
 470				 RK_MMU_POLL_TIMEOUT_US);
 471	if (ret)
 472		for (i = 0; i < iommu->num_mmu; i++)
 473			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
 474				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 475
 476	return ret;
 477}
 478
 479static int rk_iommu_disable_paging(struct rk_iommu *iommu)
 480{
 481	int ret, i;
 482	bool val;
 483
 484	if (!rk_iommu_is_paging_enabled(iommu))
 485		return 0;
 486
 487	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
 488
 489	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 490				 !val, RK_MMU_POLL_PERIOD_US,
 491				 RK_MMU_POLL_TIMEOUT_US);
 492	if (ret)
 493		for (i = 0; i < iommu->num_mmu; i++)
 494			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
 495				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 496
 497	return ret;
 498}
 499
 500static int rk_iommu_force_reset(struct rk_iommu *iommu)
 501{
 502	int ret, i;
 503	u32 dte_addr;
 504	bool val;
 505
 506	if (iommu->reset_disabled)
 507		return 0;
 508
 509	/*
 510	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
 511	 * and verifying that upper 5 nybbles are read back.
 512	 */
 513	for (i = 0; i < iommu->num_mmu; i++) {
 514		dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
 515		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
 516
 517		if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
 518			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
 519			return -EFAULT;
 520		}
 521	}
 522
 523	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
 524
 525	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
 526				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
 527				 RK_MMU_POLL_TIMEOUT_US);
 528	if (ret) {
 529		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
 530		return ret;
 531	}
 532
 533	return 0;
 534}
 535
 536static inline phys_addr_t rk_dte_addr_phys(u32 addr)
 537{
 538	return (phys_addr_t)addr;
 539}
 540
 541static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma)
 542{
 543	return dt_dma;
 544}
 545
 546#define DT_HI_MASK GENMASK_ULL(39, 32)
 547#define DTE_BASE_HI_MASK GENMASK(11, 4)
 548#define DT_SHIFT   28
 549
 550static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr)
 551{
 552	u64 addr64 = addr;
 553	return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) |
 554	       ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT);
 555}
 556
 557static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma)
 558{
 559	return (dt_dma & RK_DTE_PT_ADDRESS_MASK) |
 560	       ((dt_dma & DT_HI_MASK) >> DT_SHIFT);
 561}
 562
 563static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
 564{
 565	void __iomem *base = iommu->bases[index];
 566	u32 dte_index, pte_index, page_offset;
 567	u32 mmu_dte_addr;
 568	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
 569	u32 *dte_addr;
 570	u32 dte;
 571	phys_addr_t pte_addr_phys = 0;
 572	u32 *pte_addr = NULL;
 573	u32 pte = 0;
 574	phys_addr_t page_addr_phys = 0;
 575	u32 page_flags = 0;
 576
 577	dte_index = rk_iova_dte_index(iova);
 578	pte_index = rk_iova_pte_index(iova);
 579	page_offset = rk_iova_page_offset(iova);
 580
 581	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
 582	mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr);
 583
 584	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
 585	dte_addr = phys_to_virt(dte_addr_phys);
 586	dte = *dte_addr;
 587
 588	if (!rk_dte_is_pt_valid(dte))
 589		goto print_it;
 590
 591	pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
 592	pte_addr = phys_to_virt(pte_addr_phys);
 593	pte = *pte_addr;
 594
 595	if (!rk_pte_is_page_valid(pte))
 596		goto print_it;
 597
 598	page_addr_phys = rk_ops->pt_address(pte) + page_offset;
 599	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
 600
 601print_it:
 602	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
 603		&iova, dte_index, pte_index, page_offset);
 604	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
 605		&mmu_dte_addr_phys, &dte_addr_phys, dte,
 606		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
 607		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
 608}
 609
 610static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
 611{
 612	struct rk_iommu *iommu = dev_id;
 613	u32 status;
 614	u32 int_status;
 615	dma_addr_t iova;
 616	irqreturn_t ret = IRQ_NONE;
 617	int i, err;
 618
 619	err = pm_runtime_get_if_in_use(iommu->dev);
 620	if (!err || WARN_ON_ONCE(err < 0))
 621		return ret;
 622
 623	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
 624		goto out;
 625
 626	for (i = 0; i < iommu->num_mmu; i++) {
 627		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
 628		if (int_status == 0)
 629			continue;
 630
 631		ret = IRQ_HANDLED;
 632		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
 633
 634		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
 635			int flags;
 636
 637			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
 638			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
 639					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 640
 641			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
 642				&iova,
 643				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
 644
 645			log_iova(iommu, i, iova);
 646
 647			/*
 648			 * Report page fault to any installed handlers.
 649			 * Ignore the return code, though, since we always zap cache
 650			 * and clear the page fault anyway.
 651			 */
 652			if (iommu->domain)
 653				report_iommu_fault(iommu->domain, iommu->dev, iova,
 654						   flags);
 655			else
 656				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
 657
 658			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 659			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
 660		}
 661
 662		if (int_status & RK_MMU_IRQ_BUS_ERROR)
 663			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
 664
 665		if (int_status & ~RK_MMU_IRQ_MASK)
 666			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
 667				int_status);
 668
 669		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
 670	}
 671
 672	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 673
 674out:
 675	pm_runtime_put(iommu->dev);
 676	return ret;
 677}
 678
 679static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
 680					 dma_addr_t iova)
 681{
 682	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 683	unsigned long flags;
 684	phys_addr_t pt_phys, phys = 0;
 685	u32 dte, pte;
 686	u32 *page_table;
 687
 688	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 689
 690	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 691	if (!rk_dte_is_pt_valid(dte))
 692		goto out;
 693
 694	pt_phys = rk_ops->pt_address(dte);
 695	page_table = (u32 *)phys_to_virt(pt_phys);
 696	pte = page_table[rk_iova_pte_index(iova)];
 697	if (!rk_pte_is_page_valid(pte))
 698		goto out;
 699
 700	phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
 701out:
 702	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 703
 704	return phys;
 705}
 706
 707static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
 708			      dma_addr_t iova, size_t size)
 709{
 710	struct list_head *pos;
 711	unsigned long flags;
 712
 713	/* shootdown these iova from all iommus using this domain */
 714	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 715	list_for_each(pos, &rk_domain->iommus) {
 716		struct rk_iommu *iommu;
 717		int ret;
 718
 719		iommu = list_entry(pos, struct rk_iommu, node);
 720
 721		/* Only zap TLBs of IOMMUs that are powered on. */
 722		ret = pm_runtime_get_if_in_use(iommu->dev);
 723		if (WARN_ON_ONCE(ret < 0))
 724			continue;
 725		if (ret) {
 726			WARN_ON(clk_bulk_enable(iommu->num_clocks,
 727						iommu->clocks));
 728			rk_iommu_zap_lines(iommu, iova, size);
 729			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 730			pm_runtime_put(iommu->dev);
 731		}
 732	}
 733	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 734}
 735
 736static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
 737					 dma_addr_t iova, size_t size)
 738{
 739	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
 740	if (size > SPAGE_SIZE)
 741		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
 742					SPAGE_SIZE);
 743}
 744
 745static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
 746				  dma_addr_t iova)
 747{
 748	u32 *page_table, *dte_addr;
 749	u32 dte_index, dte;
 750	phys_addr_t pt_phys;
 751	dma_addr_t pt_dma;
 752
 753	assert_spin_locked(&rk_domain->dt_lock);
 754
 755	dte_index = rk_iova_dte_index(iova);
 756	dte_addr = &rk_domain->dt[dte_index];
 757	dte = *dte_addr;
 758	if (rk_dte_is_pt_valid(dte))
 759		goto done;
 760
 761	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
 762	if (!page_table)
 763		return ERR_PTR(-ENOMEM);
 764
 765	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
 766	if (dma_mapping_error(dma_dev, pt_dma)) {
 767		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
 768		free_page((unsigned long)page_table);
 769		return ERR_PTR(-ENOMEM);
 770	}
 771
 772	dte = rk_ops->mk_dtentries(pt_dma);
 773	*dte_addr = dte;
 774
 775	rk_table_flush(rk_domain,
 776		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
 777done:
 778	pt_phys = rk_ops->pt_address(dte);
 779	return (u32 *)phys_to_virt(pt_phys);
 780}
 781
 782static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
 783				  u32 *pte_addr, dma_addr_t pte_dma,
 784				  size_t size)
 785{
 786	unsigned int pte_count;
 787	unsigned int pte_total = size / SPAGE_SIZE;
 788
 789	assert_spin_locked(&rk_domain->dt_lock);
 790
 791	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 792		u32 pte = pte_addr[pte_count];
 793		if (!rk_pte_is_page_valid(pte))
 794			break;
 795
 796		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
 797	}
 798
 799	rk_table_flush(rk_domain, pte_dma, pte_count);
 800
 801	return pte_count * SPAGE_SIZE;
 802}
 803
 804static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
 805			     dma_addr_t pte_dma, dma_addr_t iova,
 806			     phys_addr_t paddr, size_t size, int prot)
 807{
 808	unsigned int pte_count;
 809	unsigned int pte_total = size / SPAGE_SIZE;
 810	phys_addr_t page_phys;
 811
 812	assert_spin_locked(&rk_domain->dt_lock);
 813
 814	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 815		u32 pte = pte_addr[pte_count];
 816
 817		if (rk_pte_is_page_valid(pte))
 818			goto unwind;
 819
 820		pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
 821
 822		paddr += SPAGE_SIZE;
 823	}
 824
 825	rk_table_flush(rk_domain, pte_dma, pte_total);
 826
 827	/*
 828	 * Zap the first and last iova to evict from iotlb any previously
 829	 * mapped cachelines holding stale values for its dte and pte.
 830	 * We only zap the first and last iova, since only they could have
 831	 * dte or pte shared with an existing mapping.
 832	 */
 833	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
 834
 835	return 0;
 836unwind:
 837	/* Unmap the range of iovas that we just mapped */
 838	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
 839			    pte_count * SPAGE_SIZE);
 840
 841	iova += pte_count * SPAGE_SIZE;
 842	page_phys = rk_ops->pt_address(pte_addr[pte_count]);
 843	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
 844	       &iova, &page_phys, &paddr, prot);
 845
 846	return -EADDRINUSE;
 847}
 848
 849static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
 850			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
 851{
 852	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 853	unsigned long flags;
 854	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 855	u32 *page_table, *pte_addr;
 856	u32 dte_index, pte_index;
 857	int ret;
 858
 859	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 860
 861	/*
 862	 * pgsize_bitmap specifies iova sizes that fit in one page table
 863	 * (1024 4-KiB pages = 4 MiB).
 864	 * So, size will always be 4096 <= size <= 4194304.
 865	 * Since iommu_map() guarantees that both iova and size will be
 866	 * aligned, we will always only be mapping from a single dte here.
 867	 */
 868	page_table = rk_dte_get_page_table(rk_domain, iova);
 869	if (IS_ERR(page_table)) {
 870		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 871		return PTR_ERR(page_table);
 872	}
 873
 874	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
 875	pte_index = rk_iova_pte_index(iova);
 876	pte_addr = &page_table[pte_index];
 877
 878	pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
 879	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
 880				paddr, size, prot);
 881
 882	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 883
 884	return ret;
 885}
 886
 887static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
 888			     size_t size, struct iommu_iotlb_gather *gather)
 889{
 890	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 891	unsigned long flags;
 892	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 893	phys_addr_t pt_phys;
 894	u32 dte;
 895	u32 *pte_addr;
 896	size_t unmap_size;
 897
 898	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 899
 900	/*
 901	 * pgsize_bitmap specifies iova sizes that fit in one page table
 902	 * (1024 4-KiB pages = 4 MiB).
 903	 * So, size will always be 4096 <= size <= 4194304.
 904	 * Since iommu_unmap() guarantees that both iova and size will be
 905	 * aligned, we will always only be unmapping from a single dte here.
 906	 */
 907	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 908	/* Just return 0 if iova is unmapped */
 909	if (!rk_dte_is_pt_valid(dte)) {
 910		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 911		return 0;
 912	}
 913
 914	pt_phys = rk_ops->pt_address(dte);
 915	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
 916	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
 917	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
 918
 919	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 920
 921	/* Shootdown iotlb entries for iova range that was just unmapped */
 922	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
 923
 924	return unmap_size;
 925}
 926
 927static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
 928{
 929	struct rk_iommudata *data = dev_iommu_priv_get(dev);
 930
 931	return data ? data->iommu : NULL;
 932}
 933
 934/* Must be called with iommu powered on and attached */
 935static void rk_iommu_disable(struct rk_iommu *iommu)
 936{
 937	int i;
 938
 939	/* Ignore error while disabling, just keep going */
 940	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
 941	rk_iommu_enable_stall(iommu);
 942	rk_iommu_disable_paging(iommu);
 943	for (i = 0; i < iommu->num_mmu; i++) {
 944		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
 945		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
 946	}
 947	rk_iommu_disable_stall(iommu);
 948	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 949}
 950
 951/* Must be called with iommu powered on and attached */
 952static int rk_iommu_enable(struct rk_iommu *iommu)
 953{
 954	struct iommu_domain *domain = iommu->domain;
 955	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 956	int ret, i;
 957
 958	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
 959	if (ret)
 960		return ret;
 961
 962	ret = rk_iommu_enable_stall(iommu);
 963	if (ret)
 964		goto out_disable_clocks;
 965
 966	ret = rk_iommu_force_reset(iommu);
 967	if (ret)
 968		goto out_disable_stall;
 969
 970	for (i = 0; i < iommu->num_mmu; i++) {
 971		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
 972			       rk_ops->dma_addr_dte(rk_domain->dt_dma));
 973		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 974		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
 975	}
 976
 977	ret = rk_iommu_enable_paging(iommu);
 978
 979out_disable_stall:
 980	rk_iommu_disable_stall(iommu);
 981out_disable_clocks:
 982	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 983	return ret;
 984}
 985
 986static void rk_iommu_detach_device(struct iommu_domain *domain,
 987				   struct device *dev)
 988{
 989	struct rk_iommu *iommu;
 990	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 991	unsigned long flags;
 992	int ret;
 993
 994	/* Allow 'virtual devices' (eg drm) to detach from domain */
 995	iommu = rk_iommu_from_dev(dev);
 996	if (!iommu)
 997		return;
 998
 999	dev_dbg(dev, "Detaching from iommu domain\n");
1000
1001	/* iommu already detached */
1002	if (iommu->domain != domain)
1003		return;
1004
1005	iommu->domain = NULL;
1006
1007	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1008	list_del_init(&iommu->node);
1009	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1010
1011	ret = pm_runtime_get_if_in_use(iommu->dev);
1012	WARN_ON_ONCE(ret < 0);
1013	if (ret > 0) {
1014		rk_iommu_disable(iommu);
1015		pm_runtime_put(iommu->dev);
1016	}
1017}
1018
1019static int rk_iommu_attach_device(struct iommu_domain *domain,
1020		struct device *dev)
1021{
1022	struct rk_iommu *iommu;
1023	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1024	unsigned long flags;
1025	int ret;
1026
1027	/*
1028	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1029	 * Such a device does not belong to an iommu group.
1030	 */
1031	iommu = rk_iommu_from_dev(dev);
1032	if (!iommu)
1033		return 0;
1034
1035	dev_dbg(dev, "Attaching to iommu domain\n");
1036
1037	/* iommu already attached */
1038	if (iommu->domain == domain)
1039		return 0;
1040
1041	if (iommu->domain)
1042		rk_iommu_detach_device(iommu->domain, dev);
1043
1044	iommu->domain = domain;
1045
1046	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1047	list_add_tail(&iommu->node, &rk_domain->iommus);
1048	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1049
1050	ret = pm_runtime_get_if_in_use(iommu->dev);
1051	if (!ret || WARN_ON_ONCE(ret < 0))
1052		return 0;
1053
1054	ret = rk_iommu_enable(iommu);
1055	if (ret)
1056		rk_iommu_detach_device(iommu->domain, dev);
1057
1058	pm_runtime_put(iommu->dev);
1059
1060	return ret;
1061}
1062
1063static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
1064{
1065	struct rk_iommu_domain *rk_domain;
1066
1067	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1068		return NULL;
1069
1070	if (!dma_dev)
1071		return NULL;
1072
1073	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1074	if (!rk_domain)
1075		return NULL;
1076
1077	if (type == IOMMU_DOMAIN_DMA &&
1078	    iommu_get_dma_cookie(&rk_domain->domain))
1079		goto err_free_domain;
1080
1081	/*
1082	 * rk32xx iommus use a 2 level pagetable.
1083	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1084	 * Allocate one 4 KiB page for each table.
1085	 */
1086	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
1087	if (!rk_domain->dt)
1088		goto err_put_cookie;
1089
1090	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1091					   SPAGE_SIZE, DMA_TO_DEVICE);
1092	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1093		dev_err(dma_dev, "DMA map error for DT\n");
1094		goto err_free_dt;
1095	}
1096
1097	spin_lock_init(&rk_domain->iommus_lock);
1098	spin_lock_init(&rk_domain->dt_lock);
1099	INIT_LIST_HEAD(&rk_domain->iommus);
1100
1101	rk_domain->domain.geometry.aperture_start = 0;
1102	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1103	rk_domain->domain.geometry.force_aperture = true;
1104
1105	return &rk_domain->domain;
1106
1107err_free_dt:
1108	free_page((unsigned long)rk_domain->dt);
1109err_put_cookie:
1110	if (type == IOMMU_DOMAIN_DMA)
1111		iommu_put_dma_cookie(&rk_domain->domain);
1112err_free_domain:
1113	kfree(rk_domain);
1114
1115	return NULL;
1116}
1117
1118static void rk_iommu_domain_free(struct iommu_domain *domain)
1119{
1120	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1121	int i;
1122
1123	WARN_ON(!list_empty(&rk_domain->iommus));
1124
1125	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1126		u32 dte = rk_domain->dt[i];
1127		if (rk_dte_is_pt_valid(dte)) {
1128			phys_addr_t pt_phys = rk_ops->pt_address(dte);
1129			u32 *page_table = phys_to_virt(pt_phys);
1130			dma_unmap_single(dma_dev, pt_phys,
1131					 SPAGE_SIZE, DMA_TO_DEVICE);
1132			free_page((unsigned long)page_table);
1133		}
1134	}
1135
1136	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1137			 SPAGE_SIZE, DMA_TO_DEVICE);
1138	free_page((unsigned long)rk_domain->dt);
1139
1140	if (domain->type == IOMMU_DOMAIN_DMA)
1141		iommu_put_dma_cookie(&rk_domain->domain);
1142	kfree(rk_domain);
1143}
1144
1145static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1146{
1147	struct rk_iommudata *data;
1148	struct rk_iommu *iommu;
1149
1150	data = dev_iommu_priv_get(dev);
1151	if (!data)
1152		return ERR_PTR(-ENODEV);
1153
1154	iommu = rk_iommu_from_dev(dev);
1155
1156	data->link = device_link_add(dev, iommu->dev,
1157				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1158
1159	return &iommu->iommu;
1160}
1161
1162static void rk_iommu_release_device(struct device *dev)
1163{
1164	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1165
1166	device_link_del(data->link);
1167}
1168
1169static struct iommu_group *rk_iommu_device_group(struct device *dev)
1170{
1171	struct rk_iommu *iommu;
1172
1173	iommu = rk_iommu_from_dev(dev);
1174
1175	return iommu_group_ref_get(iommu->group);
1176}
1177
1178static int rk_iommu_of_xlate(struct device *dev,
1179			     struct of_phandle_args *args)
1180{
1181	struct platform_device *iommu_dev;
1182	struct rk_iommudata *data;
1183
1184	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1185	if (!data)
1186		return -ENOMEM;
1187
1188	iommu_dev = of_find_device_by_node(args->np);
1189
1190	data->iommu = platform_get_drvdata(iommu_dev);
1191	dev_iommu_priv_set(dev, data);
1192
1193	platform_device_put(iommu_dev);
1194
1195	return 0;
1196}
1197
1198static const struct iommu_ops rk_iommu_ops = {
1199	.domain_alloc = rk_iommu_domain_alloc,
1200	.domain_free = rk_iommu_domain_free,
1201	.attach_dev = rk_iommu_attach_device,
1202	.detach_dev = rk_iommu_detach_device,
1203	.map = rk_iommu_map,
1204	.unmap = rk_iommu_unmap,
1205	.probe_device = rk_iommu_probe_device,
1206	.release_device = rk_iommu_release_device,
1207	.iova_to_phys = rk_iommu_iova_to_phys,
1208	.device_group = rk_iommu_device_group,
1209	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1210	.of_xlate = rk_iommu_of_xlate,
 
 
 
 
 
 
 
 
1211};
1212
1213static int rk_iommu_probe(struct platform_device *pdev)
1214{
1215	struct device *dev = &pdev->dev;
1216	struct rk_iommu *iommu;
1217	struct resource *res;
1218	const struct rk_iommu_ops *ops;
1219	int num_res = pdev->num_resources;
1220	int err, i;
1221
1222	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1223	if (!iommu)
1224		return -ENOMEM;
1225
1226	platform_set_drvdata(pdev, iommu);
1227	iommu->dev = dev;
1228	iommu->num_mmu = 0;
1229
1230	ops = of_device_get_match_data(dev);
1231	if (!rk_ops)
1232		rk_ops = ops;
1233
1234	/*
1235	 * That should not happen unless different versions of the
1236	 * hardware block are embedded the same SoC
1237	 */
1238	if (WARN_ON(rk_ops != ops))
1239		return -EINVAL;
1240
1241	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1242				    GFP_KERNEL);
1243	if (!iommu->bases)
1244		return -ENOMEM;
1245
1246	for (i = 0; i < num_res; i++) {
1247		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1248		if (!res)
1249			continue;
1250		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1251		if (IS_ERR(iommu->bases[i]))
1252			continue;
1253		iommu->num_mmu++;
1254	}
1255	if (iommu->num_mmu == 0)
1256		return PTR_ERR(iommu->bases[0]);
1257
1258	iommu->num_irq = platform_irq_count(pdev);
1259	if (iommu->num_irq < 0)
1260		return iommu->num_irq;
1261
1262	iommu->reset_disabled = device_property_read_bool(dev,
1263					"rockchip,disable-mmu-reset");
1264
1265	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1266	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1267				     sizeof(*iommu->clocks), GFP_KERNEL);
1268	if (!iommu->clocks)
1269		return -ENOMEM;
1270
1271	for (i = 0; i < iommu->num_clocks; ++i)
1272		iommu->clocks[i].id = rk_iommu_clocks[i];
1273
1274	/*
1275	 * iommu clocks should be present for all new devices and devicetrees
1276	 * but there are older devicetrees without clocks out in the wild.
1277	 * So clocks as optional for the time being.
1278	 */
1279	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1280	if (err == -ENOENT)
1281		iommu->num_clocks = 0;
1282	else if (err)
1283		return err;
1284
1285	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1286	if (err)
1287		return err;
1288
1289	iommu->group = iommu_group_alloc();
1290	if (IS_ERR(iommu->group)) {
1291		err = PTR_ERR(iommu->group);
1292		goto err_unprepare_clocks;
1293	}
1294
1295	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1296	if (err)
1297		goto err_put_group;
1298
1299	err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1300	if (err)
1301		goto err_remove_sysfs;
1302
1303	/*
1304	 * Use the first registered IOMMU device for domain to use with DMA
1305	 * API, since a domain might not physically correspond to a single
1306	 * IOMMU device..
1307	 */
1308	if (!dma_dev)
1309		dma_dev = &pdev->dev;
1310
1311	bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1312
1313	pm_runtime_enable(dev);
1314
1315	for (i = 0; i < iommu->num_irq; i++) {
1316		int irq = platform_get_irq(pdev, i);
1317
1318		if (irq < 0)
1319			return irq;
1320
1321		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1322				       IRQF_SHARED, dev_name(dev), iommu);
1323		if (err) {
1324			pm_runtime_disable(dev);
1325			goto err_remove_sysfs;
1326		}
1327	}
1328
1329	dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1330
1331	return 0;
1332err_remove_sysfs:
1333	iommu_device_sysfs_remove(&iommu->iommu);
1334err_put_group:
1335	iommu_group_put(iommu->group);
1336err_unprepare_clocks:
1337	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1338	return err;
1339}
1340
1341static void rk_iommu_shutdown(struct platform_device *pdev)
1342{
1343	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1344	int i;
1345
1346	for (i = 0; i < iommu->num_irq; i++) {
1347		int irq = platform_get_irq(pdev, i);
1348
1349		devm_free_irq(iommu->dev, irq, iommu);
1350	}
1351
1352	pm_runtime_force_suspend(&pdev->dev);
1353}
1354
1355static int __maybe_unused rk_iommu_suspend(struct device *dev)
1356{
1357	struct rk_iommu *iommu = dev_get_drvdata(dev);
1358
1359	if (!iommu->domain)
1360		return 0;
1361
1362	rk_iommu_disable(iommu);
1363	return 0;
1364}
1365
1366static int __maybe_unused rk_iommu_resume(struct device *dev)
1367{
1368	struct rk_iommu *iommu = dev_get_drvdata(dev);
1369
1370	if (!iommu->domain)
1371		return 0;
1372
1373	return rk_iommu_enable(iommu);
1374}
1375
1376static const struct dev_pm_ops rk_iommu_pm_ops = {
1377	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1378	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1379				pm_runtime_force_resume)
1380};
1381
1382static struct rk_iommu_ops iommu_data_ops_v1 = {
1383	.pt_address = &rk_dte_pt_address,
1384	.mk_dtentries = &rk_mk_dte,
1385	.mk_ptentries = &rk_mk_pte,
1386	.dte_addr_phys = &rk_dte_addr_phys,
1387	.dma_addr_dte = &rk_dma_addr_dte,
1388	.dma_bit_mask = DMA_BIT_MASK(32),
1389};
1390
1391static struct rk_iommu_ops iommu_data_ops_v2 = {
1392	.pt_address = &rk_dte_pt_address_v2,
1393	.mk_dtentries = &rk_mk_dte_v2,
1394	.mk_ptentries = &rk_mk_pte_v2,
1395	.dte_addr_phys = &rk_dte_addr_phys_v2,
1396	.dma_addr_dte = &rk_dma_addr_dte_v2,
1397	.dma_bit_mask = DMA_BIT_MASK(40),
1398};
1399
1400static const struct of_device_id rk_iommu_dt_ids[] = {
1401	{	.compatible = "rockchip,iommu",
1402		.data = &iommu_data_ops_v1,
1403	},
1404	{	.compatible = "rockchip,rk3568-iommu",
1405		.data = &iommu_data_ops_v2,
1406	},
1407	{ /* sentinel */ }
1408};
1409
1410static struct platform_driver rk_iommu_driver = {
1411	.probe = rk_iommu_probe,
1412	.shutdown = rk_iommu_shutdown,
1413	.driver = {
1414		   .name = "rk_iommu",
1415		   .of_match_table = rk_iommu_dt_ids,
1416		   .pm = &rk_iommu_pm_ops,
1417		   .suppress_bind_attrs = true,
1418	},
1419};
1420
1421static int __init rk_iommu_init(void)
1422{
1423	return platform_driver_register(&rk_iommu_driver);
1424}
1425subsys_initcall(rk_iommu_init);