Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL		0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C		0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX	0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX	1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  91# define DSI_TXPKT1C_CMD_EN		BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H		0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT	0
 102
 103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H		0x14
 105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 106# define DSI_RXPKT1H_DET_ERR		BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 108# define DSI_RXPKT1H_COR_ERR		BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 121
 122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H		0x18
 124# define DSI_RXPKT1H_DET_ERR		BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 126# define DSI_RXPKT1H_COR_ERR		BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT		0
 132
 133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO	0x1c
 135
 136#define DSI0_DISP0_CTRL		0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 141# define DSI_DISP0_LP_STOP_DISABLE	0
 142# define DSI_DISP0_LP_STOP_PERLINE	1
 143# define DSI_DISP0_LP_STOP_PERFRAME	2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL		BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL		BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL		BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL		BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT	5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END		BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT	2
 161# define DSI_PFORMAT_RGB565		0
 162# define DSI_PFORMAT_RGB666_PACKED	1
 163# define DSI_PFORMAT_RGB666		2
 164# define DSI_PFORMAT_RGB888		3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE		BIT(1)
 167# define DSI_DISP0_ENABLE		BIT(0)
 168
 169#define DSI0_DISP1_CTRL		0x1c
 170#define DSI1_DISP1_CTRL		0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT	1
 174# define DSI_DISP1_PFORMAT_16BIT	0
 175# define DSI_DISP1_PFORMAT_24BIT	1
 176# define DSI_DISP1_PFORMAT_32BIT_LE	2
 177# define DSI_DISP1_PFORMAT_32BIT_BE	3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE		BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT			0x24
 185#define DSI0_INT_EN			0x28
 186# define DSI0_INT_FIFO_ERR		BIT(25)
 187# define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
 188# define DSI0_INT_CMDC_DONE_SHIFT	23
 189#  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
 190#  define DSI0_INT_CMDC_DONE_REPEAT		3
 191# define DSI0_INT_PHY_DIR_RTF		BIT(22)
 192# define DSI0_INT_PHY_D1_ULPS		BIT(21)
 193# define DSI0_INT_PHY_D1_STOP		BIT(20)
 194# define DSI0_INT_PHY_RXLPDT		BIT(19)
 195# define DSI0_INT_PHY_RXTRIG		BIT(18)
 196# define DSI0_INT_PHY_D0_ULPS		BIT(17)
 197# define DSI0_INT_PHY_D0_LPDT		BIT(16)
 198# define DSI0_INT_PHY_D0_FTR		BIT(15)
 199# define DSI0_INT_PHY_D0_STOP		BIT(14)
 200/* Signaled when the clock lane enters the given state. */
 201# define DSI0_INT_PHY_CLK_ULPS		BIT(13)
 202# define DSI0_INT_PHY_CLK_HS		BIT(12)
 203# define DSI0_INT_PHY_CLK_FTR		BIT(11)
 204/* Signaled on timeouts */
 205# define DSI0_INT_PR_TO			BIT(10)
 206# define DSI0_INT_TA_TO			BIT(9)
 207# define DSI0_INT_LPRX_TO		BIT(8)
 208# define DSI0_INT_HSTX_TO		BIT(7)
 209/* Contention on a line when trying to drive the line low */
 210# define DSI0_INT_ERR_CONT_LP1		BIT(6)
 211# define DSI0_INT_ERR_CONT_LP0		BIT(5)
 212/* Control error: incorrect line state sequence on data lane 0. */
 213# define DSI0_INT_ERR_CONTROL		BIT(4)
 214# define DSI0_INT_ERR_SYNC_ESC		BIT(3)
 215# define DSI0_INT_RX2_PKT		BIT(2)
 216# define DSI0_INT_RX1_PKT		BIT(1)
 217# define DSI0_INT_CMD_PKT		BIT(0)
 218
 219#define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
 220					 DSI0_INT_ERR_CONTROL |	 \
 221					 DSI0_INT_ERR_CONT_LP0 | \
 222					 DSI0_INT_ERR_CONT_LP1 | \
 223					 DSI0_INT_HSTX_TO |	 \
 224					 DSI0_INT_LPRX_TO |	 \
 225					 DSI0_INT_TA_TO |	 \
 226					 DSI0_INT_PR_TO)
 227
 228# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 229# define DSI1_INT_PHY_D3_STOP		BIT(29)
 230# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 231# define DSI1_INT_PHY_D2_STOP		BIT(27)
 232# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 233# define DSI1_INT_PHY_D1_STOP		BIT(25)
 234# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 235# define DSI1_INT_PHY_D0_STOP		BIT(23)
 236# define DSI1_INT_FIFO_ERR		BIT(22)
 237# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 238# define DSI1_INT_PHY_RXLPDT		BIT(20)
 239# define DSI1_INT_PHY_RXTRIG		BIT(19)
 240# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 241# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 242
 243/* Signaled when the clock lane enters the given state. */
 244# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 245# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 246# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 247
 248/* Signaled on timeouts */
 249# define DSI1_INT_PR_TO			BIT(13)
 250# define DSI1_INT_TA_TO			BIT(12)
 251# define DSI1_INT_LPRX_TO		BIT(11)
 252# define DSI1_INT_HSTX_TO		BIT(10)
 253
 254/* Contention on a line when trying to drive the line low */
 255# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 256# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 257
 258/* Control error: incorrect line state sequence on data lane 0. */
 259# define DSI1_INT_ERR_CONTROL		BIT(7)
 260/* LPDT synchronization error (bits received not a multiple of 8. */
 261
 262# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 263/* Signaled after receiving an error packet from the display in
 264 * response to a read.
 265 */
 266# define DSI1_INT_RXPKT2		BIT(5)
 267/* Signaled after receiving a packet.  The header and optional short
 268 * response will be in RXPKT1H, and a long response will be in the
 269 * RXPKT_FIFO.
 270 */
 271# define DSI1_INT_RXPKT1		BIT(4)
 272# define DSI1_INT_TXPKT2_DONE		BIT(3)
 273# define DSI1_INT_TXPKT2_END		BIT(2)
 274/* Signaled after all repeats of TXPKT1 are transferred. */
 275# define DSI1_INT_TXPKT1_DONE		BIT(1)
 276/* Signaled after each TXPKT1 repeat is scheduled. */
 277# define DSI1_INT_TXPKT1_END		BIT(0)
 278
 279#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 280					 DSI1_INT_ERR_CONTROL |	 \
 281					 DSI1_INT_ERR_CONT_LP0 | \
 282					 DSI1_INT_ERR_CONT_LP1 | \
 283					 DSI1_INT_HSTX_TO |	 \
 284					 DSI1_INT_LPRX_TO |	 \
 285					 DSI1_INT_TA_TO |	 \
 286					 DSI1_INT_PR_TO)
 287
 288#define DSI0_STAT		0x2c
 289#define DSI0_HSTX_TO_CNT	0x30
 290#define DSI0_LPRX_TO_CNT	0x34
 291#define DSI0_TA_TO_CNT		0x38
 292#define DSI0_PR_TO_CNT		0x3c
 293#define DSI0_PHYC		0x40
 294# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 295# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 296# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 297# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 298# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 299# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 300# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 301# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 302# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 303# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 304# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 305# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 306# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 307# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 308# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 309# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 310# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 311# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 312# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 313
 314#define DSI0_HS_CLT0		0x44
 315#define DSI0_HS_CLT1		0x48
 316#define DSI0_HS_CLT2		0x4c
 317#define DSI0_HS_DLT3		0x50
 318#define DSI0_HS_DLT4		0x54
 319#define DSI0_HS_DLT5		0x58
 320#define DSI0_HS_DLT6		0x5c
 321#define DSI0_HS_DLT7		0x60
 322
 323#define DSI0_PHY_AFEC0		0x64
 324# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 325# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 326# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 327# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 328# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 329# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 330# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 331# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 332# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 333# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 334# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 335# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 336# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 337# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 338# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 339# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 340# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 341# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 342# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 343# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 344# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 345# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 346# define DSI1_PHY_AFEC0_RESET			BIT(13)
 347# define DSI1_PHY_AFEC0_PD			BIT(12)
 348# define DSI0_PHY_AFEC0_RESET			BIT(11)
 349# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 350# define DSI0_PHY_AFEC0_PD			BIT(10)
 351# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
 352# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 353# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 354# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 355# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
 356# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 357# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 358# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 359# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 360
 361#define DSI0_PHY_AFEC1		0x68
 362# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 363# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 364# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 365# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 366# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 367# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 368
 369#define DSI0_TST_SEL		0x6c
 370#define DSI0_TST_MON		0x70
 371#define DSI0_ID			0x74
 372# define DSI_ID_VALUE		0x00647369
 373
 374#define DSI1_CTRL		0x00
 375# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 376# define DSI_CTRL_HS_CLKC_SHIFT		14
 377# define DSI_CTRL_HS_CLKC_BYTE		0
 378# define DSI_CTRL_HS_CLKC_DDR2		1
 379# define DSI_CTRL_HS_CLKC_DDR		2
 380
 381# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 382# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 383# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 384# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 385# define DSI_CTRL_CAL_BYTE		BIT(9)
 386# define DSI_CTRL_INV_BYTE		BIT(8)
 387# define DSI_CTRL_CLR_LDF		BIT(7)
 388# define DSI0_CTRL_CLR_PBCF		BIT(6)
 389# define DSI1_CTRL_CLR_RXF		BIT(6)
 390# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 391# define DSI1_CTRL_CLR_PDF		BIT(5)
 392# define DSI0_CTRL_CLR_PDF		BIT(4)
 393# define DSI1_CTRL_CLR_CDF		BIT(4)
 394# define DSI0_CTRL_CLR_CDF		BIT(3)
 395# define DSI0_CTRL_CTRL2		BIT(2)
 396# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 397# define DSI0_CTRL_CTRL1		BIT(1)
 398# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 399# define DSI0_CTRL_CTRL0		BIT(0)
 400# define DSI1_CTRL_EN			BIT(0)
 401# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 402					 DSI0_CTRL_CLR_PBCF | \
 403					 DSI0_CTRL_CLR_CPBCF |	\
 404					 DSI0_CTRL_CLR_PDF | \
 405					 DSI0_CTRL_CLR_CDF)
 406# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 407					 DSI1_CTRL_CLR_RXF | \
 408					 DSI1_CTRL_CLR_PDF | \
 409					 DSI1_CTRL_CLR_CDF)
 410
 411#define DSI1_TXPKT2C		0x0c
 412#define DSI1_TXPKT2H		0x10
 413#define DSI1_TXPKT_PIX_FIFO	0x20
 414#define DSI1_RXPKT_FIFO		0x24
 415#define DSI1_DISP0_CTRL		0x28
 416#define DSI1_INT_STAT		0x30
 417#define DSI1_INT_EN		0x34
 418/* State reporting bits.  These mostly behave like INT_STAT, where
 419 * writing a 1 clears the bit.
 420 */
 421#define DSI1_STAT		0x38
 422# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 423# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 424# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 425# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 426# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 427# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 428# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 429# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 430# define DSI1_STAT_FIFO_ERR		BIT(23)
 431# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 432# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 433# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 434/* Set when in forward direction */
 435# define DSI1_STAT_PHY_DIR		BIT(19)
 436# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 437# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 438# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 439# define DSI1_STAT_PR_TO		BIT(15)
 440# define DSI1_STAT_TA_TO		BIT(14)
 441# define DSI1_STAT_LPRX_TO		BIT(13)
 442# define DSI1_STAT_HSTX_TO		BIT(12)
 443# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 444# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 445# define DSI1_STAT_ERR_CONTROL		BIT(9)
 446# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 447# define DSI1_STAT_RXPKT2		BIT(7)
 448# define DSI1_STAT_RXPKT1		BIT(6)
 449# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 450# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 451# define DSI1_STAT_TXPKT2_END		BIT(3)
 452# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 453# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 454# define DSI1_STAT_TXPKT1_END		BIT(0)
 455
 456#define DSI1_HSTX_TO_CNT	0x3c
 457#define DSI1_LPRX_TO_CNT	0x40
 458#define DSI1_TA_TO_CNT		0x44
 459#define DSI1_PR_TO_CNT		0x48
 460#define DSI1_PHYC		0x4c
 461
 462#define DSI1_HS_CLT0		0x50
 463# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 464# define DSI_HS_CLT0_CZERO_SHIFT	18
 465# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 466# define DSI_HS_CLT0_CPRE_SHIFT		9
 467# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 468# define DSI_HS_CLT0_CPREP_SHIFT	0
 469
 470#define DSI1_HS_CLT1		0x54
 471# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 472# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 473# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 474# define DSI_HS_CLT1_CPOST_SHIFT	0
 475
 476#define DSI1_HS_CLT2		0x58
 477# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 478# define DSI_HS_CLT2_WUP_SHIFT		0
 479
 480#define DSI1_HS_DLT3		0x5c
 481# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 482# define DSI_HS_DLT3_EXIT_SHIFT		18
 483# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 484# define DSI_HS_DLT3_ZERO_SHIFT		9
 485# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 486# define DSI_HS_DLT3_PRE_SHIFT		0
 487
 488#define DSI1_HS_DLT4		0x60
 489# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 490# define DSI_HS_DLT4_ANLAT_SHIFT	18
 491# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 492# define DSI_HS_DLT4_TRAIL_SHIFT	9
 493# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 494# define DSI_HS_DLT4_LPX_SHIFT		0
 495
 496#define DSI1_HS_DLT5		0x64
 497# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 498# define DSI_HS_DLT5_INIT_SHIFT		0
 499
 500#define DSI1_HS_DLT6		0x68
 501# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 502# define DSI_HS_DLT6_TA_GET_SHIFT	24
 503# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 504# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 505# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 506# define DSI_HS_DLT6_TA_GO_SHIFT	8
 507# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 508# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 509
 510#define DSI1_HS_DLT7		0x6c
 511# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 512# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 513
 514#define DSI1_PHY_AFEC0		0x70
 515
 516#define DSI1_PHY_AFEC1		0x74
 517# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 518# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 519# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 520# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 521# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 522# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 523# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 524# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 525# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 526# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 527
 528#define DSI1_TST_SEL		0x78
 529#define DSI1_TST_MON		0x7c
 530#define DSI1_PHY_TST1		0x80
 531#define DSI1_PHY_TST2		0x84
 532#define DSI1_PHY_FIFO_STAT	0x88
 533/* Actually, all registers in the range that aren't otherwise claimed
 534 * will return the ID.
 535 */
 536#define DSI1_ID			0x8c
 537
 538struct vc4_dsi_variant {
 539	/* Whether we're on bcm2835's DSI0 or DSI1. */
 540	unsigned int port;
 541
 542	bool broken_axi_workaround;
 543
 544	const char *debugfs_name;
 545	const struct debugfs_reg32 *regs;
 546	size_t nregs;
 547
 548};
 549
 550/* General DSI hardware state. */
 551struct vc4_dsi {
 552	struct vc4_encoder encoder;
 553	struct mipi_dsi_host dsi_host;
 554
 555	struct kref kref;
 556
 557	struct platform_device *pdev;
 558
 
 
 559	struct drm_bridge *bridge;
 560	struct list_head bridge_chain;
 561
 562	void __iomem *regs;
 563
 564	struct dma_chan *reg_dma_chan;
 565	dma_addr_t reg_dma_paddr;
 566	u32 *reg_dma_mem;
 567	dma_addr_t reg_paddr;
 568
 569	const struct vc4_dsi_variant *variant;
 570
 571	/* DSI channel for the panel we're connected to. */
 572	u32 channel;
 573	u32 lanes;
 574	u32 format;
 575	u32 divider;
 576	u32 mode_flags;
 577
 578	/* Input clock from CPRMAN to the digital PHY, for the DSI
 579	 * escape clock.
 580	 */
 581	struct clk *escape_clock;
 582
 583	/* Input clock to the analog PHY, used to generate the DSI bit
 584	 * clock.
 585	 */
 586	struct clk *pll_phy_clock;
 587
 588	/* HS Clocks generated within the DSI analog PHY. */
 589	struct clk_fixed_factor phy_clocks[3];
 590
 591	struct clk_hw_onecell_data *clk_onecell;
 592
 593	/* Pixel clock output to the pixelvalve, generated from the HS
 594	 * clock.
 595	 */
 596	struct clk *pixel_clock;
 597
 598	struct completion xfer_completion;
 599	int xfer_result;
 600
 601	struct debugfs_regset32 regset;
 602};
 603
 604#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 605
 606static inline struct vc4_dsi *
 607to_vc4_dsi(struct drm_encoder *encoder)
 608{
 609	return container_of(encoder, struct vc4_dsi, encoder.base);
 610}
 611
 612static inline void
 613dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 614{
 615	struct dma_chan *chan = dsi->reg_dma_chan;
 616	struct dma_async_tx_descriptor *tx;
 617	dma_cookie_t cookie;
 618	int ret;
 619
 620	/* DSI0 should be able to write normally. */
 621	if (!chan) {
 622		writel(val, dsi->regs + offset);
 623		return;
 624	}
 625
 626	*dsi->reg_dma_mem = val;
 627
 628	tx = chan->device->device_prep_dma_memcpy(chan,
 629						  dsi->reg_paddr + offset,
 630						  dsi->reg_dma_paddr,
 631						  4, 0);
 632	if (!tx) {
 633		DRM_ERROR("Failed to set up DMA register write\n");
 634		return;
 635	}
 636
 637	cookie = tx->tx_submit(tx);
 638	ret = dma_submit_error(cookie);
 639	if (ret) {
 640		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 641		return;
 642	}
 643	ret = dma_sync_wait(chan, cookie);
 644	if (ret)
 645		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 646}
 647
 648#define DSI_READ(offset) readl(dsi->regs + (offset))
 649#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 650#define DSI_PORT_READ(offset) \
 651	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
 652#define DSI_PORT_WRITE(offset, val) \
 653	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
 654#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
 655
 
 
 
 
 
 
 
 
 
 
 
 
 656static const struct debugfs_reg32 dsi0_regs[] = {
 657	VC4_REG32(DSI0_CTRL),
 658	VC4_REG32(DSI0_STAT),
 659	VC4_REG32(DSI0_HSTX_TO_CNT),
 660	VC4_REG32(DSI0_LPRX_TO_CNT),
 661	VC4_REG32(DSI0_TA_TO_CNT),
 662	VC4_REG32(DSI0_PR_TO_CNT),
 663	VC4_REG32(DSI0_DISP0_CTRL),
 664	VC4_REG32(DSI0_DISP1_CTRL),
 665	VC4_REG32(DSI0_INT_STAT),
 666	VC4_REG32(DSI0_INT_EN),
 667	VC4_REG32(DSI0_PHYC),
 668	VC4_REG32(DSI0_HS_CLT0),
 669	VC4_REG32(DSI0_HS_CLT1),
 670	VC4_REG32(DSI0_HS_CLT2),
 671	VC4_REG32(DSI0_HS_DLT3),
 672	VC4_REG32(DSI0_HS_DLT4),
 673	VC4_REG32(DSI0_HS_DLT5),
 674	VC4_REG32(DSI0_HS_DLT6),
 675	VC4_REG32(DSI0_HS_DLT7),
 676	VC4_REG32(DSI0_PHY_AFEC0),
 677	VC4_REG32(DSI0_PHY_AFEC1),
 678	VC4_REG32(DSI0_ID),
 679};
 680
 681static const struct debugfs_reg32 dsi1_regs[] = {
 682	VC4_REG32(DSI1_CTRL),
 683	VC4_REG32(DSI1_STAT),
 684	VC4_REG32(DSI1_HSTX_TO_CNT),
 685	VC4_REG32(DSI1_LPRX_TO_CNT),
 686	VC4_REG32(DSI1_TA_TO_CNT),
 687	VC4_REG32(DSI1_PR_TO_CNT),
 688	VC4_REG32(DSI1_DISP0_CTRL),
 689	VC4_REG32(DSI1_DISP1_CTRL),
 690	VC4_REG32(DSI1_INT_STAT),
 691	VC4_REG32(DSI1_INT_EN),
 692	VC4_REG32(DSI1_PHYC),
 693	VC4_REG32(DSI1_HS_CLT0),
 694	VC4_REG32(DSI1_HS_CLT1),
 695	VC4_REG32(DSI1_HS_CLT2),
 696	VC4_REG32(DSI1_HS_DLT3),
 697	VC4_REG32(DSI1_HS_DLT4),
 698	VC4_REG32(DSI1_HS_DLT5),
 699	VC4_REG32(DSI1_HS_DLT6),
 700	VC4_REG32(DSI1_HS_DLT7),
 701	VC4_REG32(DSI1_PHY_AFEC0),
 702	VC4_REG32(DSI1_PHY_AFEC1),
 703	VC4_REG32(DSI1_ID),
 704};
 705
 706static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 707{
 708	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 709
 710	if (latch)
 711		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 712	else
 713		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 714
 715	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 716}
 717
 718/* Enters or exits Ultra Low Power State. */
 719static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 720{
 721	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 722	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 723			 DSI_PHYC_DLANE0_ULPS |
 724			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 725			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 726			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 727	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 728			 DSI1_STAT_PHY_D0_ULPS |
 729			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 730			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 731			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 732	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 733			 DSI1_STAT_PHY_D0_STOP |
 734			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 735			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 736			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 737	int ret;
 738	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 739				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 740
 741	if (ulps == ulps_currently_enabled)
 742		return;
 743
 744	DSI_PORT_WRITE(STAT, stat_ulps);
 745	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 746	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 747	if (ret) {
 748		dev_warn(&dsi->pdev->dev,
 749			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 750			 DSI_PORT_READ(STAT));
 751		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 752		vc4_dsi_latch_ulps(dsi, false);
 753		return;
 754	}
 755
 756	/* The DSI module can't be disabled while the module is
 757	 * generating ULPS state.  So, to be able to disable the
 758	 * module, we have the AFE latch the ULPS state and continue
 759	 * on to having the module enter STOP.
 760	 */
 761	vc4_dsi_latch_ulps(dsi, ulps);
 762
 763	DSI_PORT_WRITE(STAT, stat_stop);
 764	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 765	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 766	if (ret) {
 767		dev_warn(&dsi->pdev->dev,
 768			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 769			 DSI_PORT_READ(STAT));
 770		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 771		return;
 772	}
 773}
 774
 775static u32
 776dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 777{
 778	/* The HS timings have to be rounded up to a multiple of 8
 779	 * because we're using the byte clock.
 780	 */
 781	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 782}
 783
 784/* ESC always runs at 100Mhz. */
 785#define ESC_TIME_NS 10
 786
 787static u32
 788dsi_esc_timing(u32 ns)
 789{
 790	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 791}
 792
 793static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 794{
 795	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
 
 796	struct device *dev = &dsi->pdev->dev;
 797	struct drm_bridge *iter;
 798
 799	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
 800		if (iter->funcs->disable)
 801			iter->funcs->disable(iter);
 802
 803		if (iter == dsi->bridge)
 804			break;
 805	}
 806
 807	vc4_dsi_ulps(dsi, true);
 808
 809	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
 810		if (iter->funcs->post_disable)
 811			iter->funcs->post_disable(iter);
 812	}
 813
 814	clk_disable_unprepare(dsi->pll_phy_clock);
 815	clk_disable_unprepare(dsi->escape_clock);
 816	clk_disable_unprepare(dsi->pixel_clock);
 817
 818	pm_runtime_put(dev);
 819}
 820
 821/* Extends the mode's blank intervals to handle BCM2835's integer-only
 822 * DSI PLL divider.
 823 *
 824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 825 * driver since most peripherals are hanging off of the PLLD_PER
 826 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 827 * the pixel clock), only has an integer divider off of DSI.
 828 *
 829 * To get our panel mode to refresh at the expected 60Hz, we need to
 830 * extend the horizontal blank time.  This means we drive a
 831 * higher-than-expected clock rate to the panel, but that's what the
 832 * firmware does too.
 833 */
 834static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 835				       const struct drm_display_mode *mode,
 836				       struct drm_display_mode *adjusted_mode)
 837{
 838	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
 
 839	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 840	unsigned long parent_rate = clk_get_rate(phy_parent);
 841	unsigned long pixel_clock_hz = mode->clock * 1000;
 842	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 843	int divider;
 844
 845	/* Find what divider gets us a faster clock than the requested
 846	 * pixel clock.
 847	 */
 848	for (divider = 1; divider < 255; divider++) {
 849		if (parent_rate / (divider + 1) < pll_clock)
 
 850			break;
 
 851	}
 852
 853	/* Now that we've picked a PLL divider, calculate back to its
 854	 * pixel clock.
 855	 */
 856	pll_clock = parent_rate / divider;
 857	pixel_clock_hz = pll_clock / dsi->divider;
 858
 859	adjusted_mode->clock = pixel_clock_hz / 1000;
 860
 861	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 862	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 863				mode->clock;
 864	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 865	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 866
 867	return true;
 868}
 869
 870static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 871{
 872	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 873	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
 
 874	struct device *dev = &dsi->pdev->dev;
 875	bool debug_dump_regs = false;
 876	struct drm_bridge *iter;
 877	unsigned long hs_clock;
 878	u32 ui_ns;
 879	/* Minimum LP state duration in escape clock cycles. */
 880	u32 lpx = dsi_esc_timing(60);
 881	unsigned long pixel_clock_hz = mode->clock * 1000;
 882	unsigned long dsip_clock;
 883	unsigned long phy_clock;
 884	int ret;
 885
 886	ret = pm_runtime_resume_and_get(dev);
 887	if (ret) {
 888		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
 889		return;
 890	}
 891
 892	if (debug_dump_regs) {
 893		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 894		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 895		drm_print_regset32(&p, &dsi->regset);
 896	}
 897
 898	/* Round up the clk_set_rate() request slightly, since
 899	 * PLLD_DSI1 is an integer divider and its rate selection will
 900	 * never round up.
 901	 */
 902	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 903	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 904	if (ret) {
 905		dev_err(&dsi->pdev->dev,
 906			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 907	}
 908
 909	/* Reset the DSI and all its fifos. */
 910	DSI_PORT_WRITE(CTRL,
 911		       DSI_CTRL_SOFT_RESET_CFG |
 912		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 913
 914	DSI_PORT_WRITE(CTRL,
 915		       DSI_CTRL_HSDT_EOT_DISABLE |
 916		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 917
 918	/* Clear all stat bits so we see what has happened during enable. */
 919	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 920
 921	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 922	if (dsi->variant->port == 0) {
 923		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 924			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 925
 926		if (dsi->lanes < 2)
 927			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 928
 929		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 930			afec0 |= DSI0_PHY_AFEC0_RESET;
 931
 932		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 933
 934		/* AFEC reset hold time */
 935		mdelay(1);
 936
 937		DSI_PORT_WRITE(PHY_AFEC1,
 938			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 939			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 940			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 941	} else {
 942		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 943			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 944			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 945			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 946			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 947			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 948			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 949
 950		if (dsi->lanes < 4)
 951			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 952		if (dsi->lanes < 3)
 953			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 954		if (dsi->lanes < 2)
 955			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 956
 957		afec0 |= DSI1_PHY_AFEC0_RESET;
 958
 959		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 960
 961		DSI_PORT_WRITE(PHY_AFEC1, 0);
 962
 963		/* AFEC reset hold time */
 964		mdelay(1);
 965	}
 966
 967	ret = clk_prepare_enable(dsi->escape_clock);
 968	if (ret) {
 969		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 970		return;
 971	}
 972
 973	ret = clk_prepare_enable(dsi->pll_phy_clock);
 974	if (ret) {
 975		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 976		return;
 977	}
 978
 979	hs_clock = clk_get_rate(dsi->pll_phy_clock);
 980
 981	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 982	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
 983	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 984	 * that rate.  Separately, a value derived from PIX_CLK_DIV
 985	 * and HS_CLKC is fed into the PV to divide down to the actual
 986	 * pixel clock for pushing pixels into DSI.
 987	 */
 988	dsip_clock = phy_clock / 8;
 989	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 990	if (ret) {
 991		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 992			dsip_clock, ret);
 993	}
 994
 995	ret = clk_prepare_enable(dsi->pixel_clock);
 996	if (ret) {
 997		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 998		return;
 999	}
1000
1001	/* How many ns one DSI unit interval is.  Note that the clock
1002	 * is DDR, so there's an extra divide by 2.
1003	 */
1004	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1005
1006	DSI_PORT_WRITE(HS_CLT0,
1007		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1008				     DSI_HS_CLT0_CZERO) |
1009		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1010				     DSI_HS_CLT0_CPRE) |
1011		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1012				     DSI_HS_CLT0_CPREP));
1013
1014	DSI_PORT_WRITE(HS_CLT1,
1015		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1016				     DSI_HS_CLT1_CTRAIL) |
1017		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1018				     DSI_HS_CLT1_CPOST));
1019
1020	DSI_PORT_WRITE(HS_CLT2,
1021		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1022				     DSI_HS_CLT2_WUP));
1023
1024	DSI_PORT_WRITE(HS_DLT3,
1025		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1026				     DSI_HS_DLT3_EXIT) |
1027		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1028				     DSI_HS_DLT3_ZERO) |
1029		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1030				     DSI_HS_DLT3_PRE));
1031
1032	DSI_PORT_WRITE(HS_DLT4,
1033		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1034				     DSI_HS_DLT4_LPX) |
1035		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1036					 dsi_hs_timing(ui_ns, 60, 4)),
1037				     DSI_HS_DLT4_TRAIL) |
1038		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1039
1040	/* T_INIT is how long STOP is driven after power-up to
1041	 * indicate to the slave (also coming out of power-up) that
1042	 * master init is complete, and should be greater than the
1043	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1044	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1045	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1046	 * greater minimums.  The vc4 firmware uses an extremely
1047	 * conservative 5ms, and we maintain that here.
1048	 */
1049	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1050							    5 * 1000 * 1000, 0),
1051					      DSI_HS_DLT5_INIT));
1052
1053	DSI_PORT_WRITE(HS_DLT6,
1054		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1055		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1056		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1057		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1058
1059	DSI_PORT_WRITE(HS_DLT7,
1060		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1061				     DSI_HS_DLT7_LP_WUP));
1062
1063	DSI_PORT_WRITE(PHYC,
1064		       DSI_PHYC_DLANE0_ENABLE |
1065		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1066		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1067		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1068		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1069		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1070			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1071		       (dsi->variant->port == 0 ?
1072			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1073			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1074
1075	DSI_PORT_WRITE(CTRL,
1076		       DSI_PORT_READ(CTRL) |
1077		       DSI_CTRL_CAL_BYTE);
1078
1079	/* HS timeout in HS clock cycles: disabled. */
1080	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1081	/* LP receive timeout in HS clocks. */
1082	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1083	/* Bus turnaround timeout */
1084	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1085	/* Display reset sequence timeout */
1086	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1087
1088	/* Set up DISP1 for transferring long command payloads through
1089	 * the pixfifo.
1090	 */
1091	DSI_PORT_WRITE(DISP1_CTRL,
1092		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1093				     DSI_DISP1_PFORMAT) |
1094		       DSI_DISP1_ENABLE);
1095
1096	/* Ungate the block. */
1097	if (dsi->variant->port == 0)
1098		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1099	else
1100		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1101
1102	/* Bring AFE out of reset. */
1103	DSI_PORT_WRITE(PHY_AFEC0,
1104		       DSI_PORT_READ(PHY_AFEC0) &
1105		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
 
 
 
1106
1107	vc4_dsi_ulps(dsi, false);
1108
1109	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1110		if (iter->funcs->pre_enable)
1111			iter->funcs->pre_enable(iter);
1112	}
1113
1114	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1115		DSI_PORT_WRITE(DISP0_CTRL,
1116			       VC4_SET_FIELD(dsi->divider,
1117					     DSI_DISP0_PIX_CLK_DIV) |
1118			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1119			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1120					     DSI_DISP0_LP_STOP_CTRL) |
1121			       DSI_DISP0_ST_END |
1122			       DSI_DISP0_ENABLE);
1123	} else {
1124		DSI_PORT_WRITE(DISP0_CTRL,
1125			       DSI_DISP0_COMMAND_MODE |
1126			       DSI_DISP0_ENABLE);
1127	}
1128
1129	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1130		if (iter->funcs->enable)
1131			iter->funcs->enable(iter);
1132	}
1133
1134	if (debug_dump_regs) {
1135		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1136		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1137		drm_print_regset32(&p, &dsi->regset);
1138	}
1139}
1140
1141static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1142				     const struct mipi_dsi_msg *msg)
1143{
1144	struct vc4_dsi *dsi = host_to_dsi(host);
1145	struct mipi_dsi_packet packet;
1146	u32 pkth = 0, pktc = 0;
1147	int i, ret;
1148	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1149	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1150
1151	mipi_dsi_create_packet(&packet, msg);
1152
1153	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1154	pkth |= VC4_SET_FIELD(packet.header[1] |
1155			      (packet.header[2] << 8),
1156			      DSI_TXPKT1H_BC_PARAM);
1157	if (is_long) {
1158		/* Divide data across the various FIFOs we have available.
1159		 * The command FIFO takes byte-oriented data, but is of
1160		 * limited size. The pixel FIFO (never actually used for
1161		 * pixel data in reality) is word oriented, and substantially
1162		 * larger. So, we use the pixel FIFO for most of the data,
1163		 * sending the residual bytes in the command FIFO at the start.
1164		 *
1165		 * With this arrangement, the command FIFO will never get full.
1166		 */
1167		if (packet.payload_length <= 16) {
1168			cmd_fifo_len = packet.payload_length;
1169			pix_fifo_len = 0;
1170		} else {
1171			cmd_fifo_len = (packet.payload_length %
1172					DSI_PIX_FIFO_WIDTH);
1173			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1174					DSI_PIX_FIFO_WIDTH);
1175		}
1176
1177		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1178
1179		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1180	}
1181
1182	if (msg->rx_len) {
1183		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1184				      DSI_TXPKT1C_CMD_CTRL);
1185	} else {
1186		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1187				      DSI_TXPKT1C_CMD_CTRL);
1188	}
1189
1190	for (i = 0; i < cmd_fifo_len; i++)
1191		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1192	for (i = 0; i < pix_fifo_len; i++) {
1193		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1194
1195		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1196			       pix[0] |
1197			       pix[1] << 8 |
1198			       pix[2] << 16 |
1199			       pix[3] << 24);
1200	}
1201
1202	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1203		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1204	if (is_long)
1205		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1206
1207	/* Send one copy of the packet.  Larger repeats are used for pixel
1208	 * data in command mode.
1209	 */
1210	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1211
1212	pktc |= DSI_TXPKT1C_CMD_EN;
1213	if (pix_fifo_len) {
1214		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1215				      DSI_TXPKT1C_DISPLAY_NO);
1216	} else {
1217		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1218				      DSI_TXPKT1C_DISPLAY_NO);
1219	}
1220
1221	/* Enable the appropriate interrupt for the transfer completion. */
1222	dsi->xfer_result = 0;
1223	reinit_completion(&dsi->xfer_completion);
1224	if (dsi->variant->port == 0) {
1225		DSI_PORT_WRITE(INT_STAT,
1226			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1227		if (msg->rx_len) {
1228			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1229						DSI0_INT_PHY_DIR_RTF));
1230		} else {
1231			DSI_PORT_WRITE(INT_EN,
1232				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1233					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1234						      DSI0_INT_CMDC_DONE)));
1235		}
1236	} else {
1237		DSI_PORT_WRITE(INT_STAT,
1238			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1239		if (msg->rx_len) {
1240			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1241						DSI1_INT_PHY_DIR_RTF));
1242		} else {
1243			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1244						DSI1_INT_TXPKT1_DONE));
1245		}
1246	}
1247
1248	/* Send the packet. */
1249	DSI_PORT_WRITE(TXPKT1H, pkth);
1250	DSI_PORT_WRITE(TXPKT1C, pktc);
1251
1252	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1253					 msecs_to_jiffies(1000))) {
1254		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1255		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1256			DSI_PORT_READ(INT_STAT));
1257		ret = -ETIMEDOUT;
1258	} else {
1259		ret = dsi->xfer_result;
1260	}
1261
1262	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1263
1264	if (ret)
1265		goto reset_fifo_and_return;
1266
1267	if (ret == 0 && msg->rx_len) {
1268		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1269		u8 *msg_rx = msg->rx_buf;
1270
1271		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1272			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1273						  DSI_RXPKT1H_BC_PARAM);
1274
1275			if (rxlen != msg->rx_len) {
1276				DRM_ERROR("DSI returned %db, expecting %db\n",
1277					  rxlen, (int)msg->rx_len);
1278				ret = -ENXIO;
1279				goto reset_fifo_and_return;
1280			}
1281
1282			for (i = 0; i < msg->rx_len; i++)
1283				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1284		} else {
1285			/* FINISHME: Handle AWER */
1286
1287			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1288						  DSI_RXPKT1H_SHORT_0);
1289			if (msg->rx_len > 1) {
1290				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1291							  DSI_RXPKT1H_SHORT_1);
1292			}
1293		}
1294	}
1295
1296	return ret;
1297
1298reset_fifo_and_return:
1299	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1300
1301	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1302	udelay(1);
1303	DSI_PORT_WRITE(CTRL,
1304		       DSI_PORT_READ(CTRL) |
1305		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1306
1307	DSI_PORT_WRITE(TXPKT1C, 0);
1308	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1309	return ret;
1310}
1311
1312static const struct component_ops vc4_dsi_ops;
1313static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1314			       struct mipi_dsi_device *device)
1315{
1316	struct vc4_dsi *dsi = host_to_dsi(host);
 
1317
1318	dsi->lanes = device->lanes;
1319	dsi->channel = device->channel;
1320	dsi->mode_flags = device->mode_flags;
1321
1322	switch (device->format) {
1323	case MIPI_DSI_FMT_RGB888:
1324		dsi->format = DSI_PFORMAT_RGB888;
1325		dsi->divider = 24 / dsi->lanes;
1326		break;
1327	case MIPI_DSI_FMT_RGB666:
1328		dsi->format = DSI_PFORMAT_RGB666;
1329		dsi->divider = 24 / dsi->lanes;
1330		break;
1331	case MIPI_DSI_FMT_RGB666_PACKED:
1332		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1333		dsi->divider = 18 / dsi->lanes;
1334		break;
1335	case MIPI_DSI_FMT_RGB565:
1336		dsi->format = DSI_PFORMAT_RGB565;
1337		dsi->divider = 16 / dsi->lanes;
1338		break;
1339	default:
1340		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1341			dsi->format);
1342		return 0;
1343	}
1344
1345	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1346		dev_err(&dsi->pdev->dev,
1347			"Only VIDEO mode panels supported currently.\n");
1348		return 0;
1349	}
1350
1351	return component_add(&dsi->pdev->dev, &vc4_dsi_ops);
 
 
 
 
 
 
1352}
1353
1354static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1355			       struct mipi_dsi_device *device)
1356{
1357	struct vc4_dsi *dsi = host_to_dsi(host);
1358
1359	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1360	return 0;
1361}
1362
1363static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1364	.attach = vc4_dsi_host_attach,
1365	.detach = vc4_dsi_host_detach,
1366	.transfer = vc4_dsi_host_transfer,
1367};
1368
1369static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1370	.disable = vc4_dsi_encoder_disable,
1371	.enable = vc4_dsi_encoder_enable,
1372	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1373};
1374
1375static int vc4_dsi_late_register(struct drm_encoder *encoder)
1376{
1377	struct drm_device *drm = encoder->dev;
1378	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1379	int ret;
1380
1381	ret = vc4_debugfs_add_regset32(drm->primary, dsi->variant->debugfs_name,
1382				       &dsi->regset);
1383	if (ret)
1384		return ret;
1385
1386	return 0;
1387}
1388
1389static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1390	.late_register = vc4_dsi_late_register,
1391};
1392
1393static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1394	.port			= 1,
1395	.debugfs_name		= "dsi1_regs",
1396	.regs			= dsi1_regs,
1397	.nregs			= ARRAY_SIZE(dsi1_regs),
1398};
1399
1400static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1401	.port			= 0,
1402	.debugfs_name		= "dsi0_regs",
1403	.regs			= dsi0_regs,
1404	.nregs			= ARRAY_SIZE(dsi0_regs),
1405};
1406
1407static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1408	.port			= 1,
1409	.broken_axi_workaround	= true,
1410	.debugfs_name		= "dsi1_regs",
1411	.regs			= dsi1_regs,
1412	.nregs			= ARRAY_SIZE(dsi1_regs),
1413};
1414
1415static const struct of_device_id vc4_dsi_dt_match[] = {
1416	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1417	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1418	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1419	{}
1420};
1421
1422static void dsi_handle_error(struct vc4_dsi *dsi,
1423			     irqreturn_t *ret, u32 stat, u32 bit,
1424			     const char *type)
1425{
1426	if (!(stat & bit))
1427		return;
1428
1429	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1430	*ret = IRQ_HANDLED;
1431}
1432
1433/*
1434 * Initial handler for port 1 where we need the reg_dma workaround.
1435 * The register DMA writes sleep, so we can't do it in the top half.
1436 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1437 * parent interrupt contrller until our interrupt thread is done.
1438 */
1439static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1440{
1441	struct vc4_dsi *dsi = data;
1442	u32 stat = DSI_PORT_READ(INT_STAT);
1443
1444	if (!stat)
1445		return IRQ_NONE;
1446
1447	return IRQ_WAKE_THREAD;
1448}
1449
1450/*
1451 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1452 * 1 where we need the reg_dma workaround.
1453 */
1454static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1455{
1456	struct vc4_dsi *dsi = data;
1457	u32 stat = DSI_PORT_READ(INT_STAT);
1458	irqreturn_t ret = IRQ_NONE;
1459
1460	DSI_PORT_WRITE(INT_STAT, stat);
1461
1462	dsi_handle_error(dsi, &ret, stat,
1463			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1464	dsi_handle_error(dsi, &ret, stat,
1465			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1466	dsi_handle_error(dsi, &ret, stat,
1467			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1468	dsi_handle_error(dsi, &ret, stat,
1469			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1470	dsi_handle_error(dsi, &ret, stat,
1471			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1472	dsi_handle_error(dsi, &ret, stat,
1473			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1474	dsi_handle_error(dsi, &ret, stat,
1475			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1476	dsi_handle_error(dsi, &ret, stat,
1477			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1478
1479	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1480					  DSI0_INT_CMDC_DONE_MASK) |
1481		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1482		complete(&dsi->xfer_completion);
1483		ret = IRQ_HANDLED;
1484	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1485		complete(&dsi->xfer_completion);
1486		dsi->xfer_result = -ETIMEDOUT;
1487		ret = IRQ_HANDLED;
1488	}
1489
1490	return ret;
1491}
1492
1493/**
1494 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1495 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1496 * @dsi: DSI encoder
1497 */
1498static int
1499vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1500{
1501	struct device *dev = &dsi->pdev->dev;
1502	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1503	static const struct {
1504		const char *name;
1505		int div;
1506	} phy_clocks[] = {
1507		{ "byte", 8 },
1508		{ "ddr2", 4 },
1509		{ "ddr", 2 },
1510	};
1511	int i;
1512
1513	dsi->clk_onecell = devm_kzalloc(dev,
1514					sizeof(*dsi->clk_onecell) +
1515					ARRAY_SIZE(phy_clocks) *
1516					sizeof(struct clk_hw *),
1517					GFP_KERNEL);
1518	if (!dsi->clk_onecell)
1519		return -ENOMEM;
1520	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1521
1522	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1523		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1524		struct clk_init_data init;
1525		char clk_name[16];
1526		int ret;
1527
1528		snprintf(clk_name, sizeof(clk_name),
1529			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1530
1531		/* We just use core fixed factor clock ops for the PHY
1532		 * clocks.  The clocks are actually gated by the
1533		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1534		 * setting if we use the DDR/DDR2 clocks.  However,
1535		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1536		 * setting both our parent DSI PLL's rate and this
1537		 * clock's rate, so it knows if DDR/DDR2 are going to
1538		 * be used and could enable the gates itself.
1539		 */
1540		fix->mult = 1;
1541		fix->div = phy_clocks[i].div;
1542		fix->hw.init = &init;
1543
1544		memset(&init, 0, sizeof(init));
1545		init.parent_names = &parent_name;
1546		init.num_parents = 1;
1547		init.name = clk_name;
1548		init.ops = &clk_fixed_factor_ops;
1549
1550		ret = devm_clk_hw_register(dev, &fix->hw);
1551		if (ret)
1552			return ret;
1553
1554		dsi->clk_onecell->hws[i] = &fix->hw;
1555	}
1556
1557	return of_clk_add_hw_provider(dev->of_node,
1558				      of_clk_hw_onecell_get,
1559				      dsi->clk_onecell);
1560}
1561
1562static void vc4_dsi_dma_mem_release(void *ptr)
1563{
1564	struct vc4_dsi *dsi = ptr;
1565	struct device *dev = &dsi->pdev->dev;
1566
1567	dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1568	dsi->reg_dma_mem = NULL;
1569}
1570
1571static void vc4_dsi_dma_chan_release(void *ptr)
1572{
1573	struct vc4_dsi *dsi = ptr;
1574
1575	dma_release_channel(dsi->reg_dma_chan);
1576	dsi->reg_dma_chan = NULL;
1577}
1578
1579static void vc4_dsi_release(struct kref *kref)
1580{
1581	struct vc4_dsi *dsi =
1582		container_of(kref, struct vc4_dsi, kref);
1583
1584	kfree(dsi);
1585}
1586
1587static void vc4_dsi_get(struct vc4_dsi *dsi)
1588{
1589	kref_get(&dsi->kref);
1590}
1591
1592static void vc4_dsi_put(struct vc4_dsi *dsi)
1593{
1594	kref_put(&dsi->kref, &vc4_dsi_release);
1595}
1596
1597static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1598{
1599	struct vc4_dsi *dsi = ptr;
1600
1601	vc4_dsi_put(dsi);
1602}
1603
1604static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1605{
1606	struct platform_device *pdev = to_platform_device(dev);
1607	struct drm_device *drm = dev_get_drvdata(master);
1608	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1609	struct drm_encoder *encoder = &dsi->encoder.base;
 
 
 
1610	int ret;
1611
1612	vc4_dsi_get(dsi);
 
 
1613
1614	ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1615	if (ret)
1616		return ret;
1617
1618	dsi->variant = of_device_get_match_data(dev);
 
 
 
1619
1620	INIT_LIST_HEAD(&dsi->bridge_chain);
1621	dsi->encoder.type = dsi->variant->port ?
1622		VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
 
1623
1624	dsi->regs = vc4_ioremap_regs(pdev, 0);
1625	if (IS_ERR(dsi->regs))
1626		return PTR_ERR(dsi->regs);
1627
1628	dsi->regset.base = dsi->regs;
1629	dsi->regset.regs = dsi->variant->regs;
1630	dsi->regset.nregs = dsi->variant->nregs;
1631
1632	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1633		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1634			DSI_PORT_READ(ID), DSI_ID_VALUE);
1635		return -ENODEV;
1636	}
1637
1638	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1639	 * writes from the ARM.  It does handle writes from the DMA engine,
1640	 * so set up a channel for talking to it.
1641	 */
1642	if (dsi->variant->broken_axi_workaround) {
1643		dma_cap_mask_t dma_mask;
1644
1645		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1646						      &dsi->reg_dma_paddr,
1647						      GFP_KERNEL);
1648		if (!dsi->reg_dma_mem) {
1649			DRM_ERROR("Failed to get DMA memory\n");
1650			return -ENOMEM;
1651		}
1652
1653		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1654		if (ret)
1655			return ret;
1656
1657		dma_cap_zero(dma_mask);
1658		dma_cap_set(DMA_MEMCPY, dma_mask);
1659
1660		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1661		if (IS_ERR(dsi->reg_dma_chan)) {
1662			ret = PTR_ERR(dsi->reg_dma_chan);
1663			if (ret != -EPROBE_DEFER)
1664				DRM_ERROR("Failed to get DMA channel: %d\n",
1665					  ret);
1666			return ret;
1667		}
1668
1669		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1670		if (ret)
1671			return ret;
1672
1673		/* Get the physical address of the device's registers.  The
1674		 * struct resource for the regs gives us the bus address
1675		 * instead.
1676		 */
1677		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1678							     0, NULL, NULL));
1679	}
1680
1681	init_completion(&dsi->xfer_completion);
1682	/* At startup enable error-reporting interrupts and nothing else. */
1683	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1684	/* Clear any existing interrupt state. */
1685	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1686
1687	if (dsi->reg_dma_mem)
1688		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1689						vc4_dsi_irq_defer_to_thread_handler,
1690						vc4_dsi_irq_handler,
1691						IRQF_ONESHOT,
1692						"vc4 dsi", dsi);
1693	else
1694		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1695				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1696	if (ret) {
1697		if (ret != -EPROBE_DEFER)
1698			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1699		return ret;
1700	}
1701
1702	dsi->escape_clock = devm_clk_get(dev, "escape");
1703	if (IS_ERR(dsi->escape_clock)) {
1704		ret = PTR_ERR(dsi->escape_clock);
1705		if (ret != -EPROBE_DEFER)
1706			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1707		return ret;
1708	}
1709
1710	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1711	if (IS_ERR(dsi->pll_phy_clock)) {
1712		ret = PTR_ERR(dsi->pll_phy_clock);
1713		if (ret != -EPROBE_DEFER)
1714			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1715		return ret;
1716	}
1717
1718	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1719	if (IS_ERR(dsi->pixel_clock)) {
1720		ret = PTR_ERR(dsi->pixel_clock);
1721		if (ret != -EPROBE_DEFER)
1722			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1723		return ret;
1724	}
1725
1726	dsi->bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1727	if (IS_ERR(dsi->bridge))
1728		return PTR_ERR(dsi->bridge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729
1730	/* The esc clock rate is supposed to always be 100Mhz. */
1731	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1732	if (ret) {
1733		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1734		return ret;
1735	}
1736
1737	ret = vc4_dsi_init_phy_clocks(dsi);
1738	if (ret)
1739		return ret;
1740
1741	ret = drmm_encoder_init(drm, encoder,
1742				&vc4_dsi_encoder_funcs,
1743				DRM_MODE_ENCODER_DSI,
1744				NULL);
1745	if (ret)
1746		return ret;
1747
1748	drm_encoder_helper_add(encoder, &vc4_dsi_encoder_helper_funcs);
1749
1750	ret = devm_pm_runtime_enable(dev);
1751	if (ret)
1752		return ret;
1753
1754	ret = drm_bridge_attach(encoder, dsi->bridge, NULL, 0);
1755	if (ret)
 
1756		return ret;
 
1757	/* Disable the atomic helper calls into the bridge.  We
1758	 * manually call the bridge pre_enable / enable / etc. calls
1759	 * from our driver, since we need to sequence them within the
1760	 * encoder's enable/disable paths.
1761	 */
1762	list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain);
 
 
 
 
1763
1764	return 0;
1765}
1766
1767static void vc4_dsi_unbind(struct device *dev, struct device *master,
1768			   void *data)
1769{
1770	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1771	struct drm_encoder *encoder = &dsi->encoder.base;
 
 
1772
1773	/*
1774	 * Restore the bridge_chain so the bridge detach procedure can happen
1775	 * normally.
1776	 */
1777	list_splice_init(&dsi->bridge_chain, &encoder->bridge_chain);
 
1778}
1779
1780static const struct component_ops vc4_dsi_ops = {
1781	.bind   = vc4_dsi_bind,
1782	.unbind = vc4_dsi_unbind,
1783};
1784
1785static int vc4_dsi_dev_probe(struct platform_device *pdev)
1786{
1787	struct device *dev = &pdev->dev;
1788	struct vc4_dsi *dsi;
1789
1790	dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1791	if (!dsi)
1792		return -ENOMEM;
1793	dev_set_drvdata(dev, dsi);
1794
1795	kref_init(&dsi->kref);
1796	dsi->pdev = pdev;
1797	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1798	dsi->dsi_host.dev = dev;
1799	mipi_dsi_host_register(&dsi->dsi_host);
1800
1801	return 0;
1802}
1803
1804static int vc4_dsi_dev_remove(struct platform_device *pdev)
1805{
1806	struct device *dev = &pdev->dev;
1807	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1808
 
1809	mipi_dsi_host_unregister(&dsi->dsi_host);
1810	vc4_dsi_put(dsi);
1811
1812	return 0;
1813}
1814
1815struct platform_driver vc4_dsi_driver = {
1816	.probe = vc4_dsi_dev_probe,
1817	.remove = vc4_dsi_dev_remove,
1818	.driver = {
1819		.name = "vc4_dsi",
1820		.of_match_table = vc4_dsi_dt_match,
1821	},
1822};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL		0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C		0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX	0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX	1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  91# define DSI_TXPKT1C_CMD_EN		BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H		0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT	0
 102
 103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H		0x14
 105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 106# define DSI_RXPKT1H_DET_ERR		BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 108# define DSI_RXPKT1H_COR_ERR		BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 121
 122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H		0x18
 124# define DSI_RXPKT1H_DET_ERR		BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 126# define DSI_RXPKT1H_COR_ERR		BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT		0
 132
 133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO	0x1c
 135
 136#define DSI0_DISP0_CTRL		0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 141# define DSI_DISP0_LP_STOP_DISABLE	0
 142# define DSI_DISP0_LP_STOP_PERLINE	1
 143# define DSI_DISP0_LP_STOP_PERFRAME	2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL		BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL		BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL		BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL		BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT	5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END		BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT	2
 161# define DSI_PFORMAT_RGB565		0
 162# define DSI_PFORMAT_RGB666_PACKED	1
 163# define DSI_PFORMAT_RGB666		2
 164# define DSI_PFORMAT_RGB888		3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE		BIT(1)
 167# define DSI_DISP0_ENABLE		BIT(0)
 168
 169#define DSI0_DISP1_CTRL		0x1c
 170#define DSI1_DISP1_CTRL		0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT	1
 174# define DSI_DISP1_PFORMAT_16BIT	0
 175# define DSI_DISP1_PFORMAT_24BIT	1
 176# define DSI_DISP1_PFORMAT_32BIT_LE	2
 177# define DSI_DISP1_PFORMAT_32BIT_BE	3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE		BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT		0x24
 185#define DSI0_INT_EN		0x28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 187# define DSI1_INT_PHY_D3_STOP		BIT(29)
 188# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 189# define DSI1_INT_PHY_D2_STOP		BIT(27)
 190# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 191# define DSI1_INT_PHY_D1_STOP		BIT(25)
 192# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 193# define DSI1_INT_PHY_D0_STOP		BIT(23)
 194# define DSI1_INT_FIFO_ERR		BIT(22)
 195# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 196# define DSI1_INT_PHY_RXLPDT		BIT(20)
 197# define DSI1_INT_PHY_RXTRIG		BIT(19)
 198# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 199# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 200
 201/* Signaled when the clock lane enters the given state. */
 202# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 203# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 204# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 205
 206/* Signaled on timeouts */
 207# define DSI1_INT_PR_TO			BIT(13)
 208# define DSI1_INT_TA_TO			BIT(12)
 209# define DSI1_INT_LPRX_TO		BIT(11)
 210# define DSI1_INT_HSTX_TO		BIT(10)
 211
 212/* Contention on a line when trying to drive the line low */
 213# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 214# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 215
 216/* Control error: incorrect line state sequence on data lane 0. */
 217# define DSI1_INT_ERR_CONTROL		BIT(7)
 218/* LPDT synchronization error (bits received not a multiple of 8. */
 219
 220# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 221/* Signaled after receiving an error packet from the display in
 222 * response to a read.
 223 */
 224# define DSI1_INT_RXPKT2		BIT(5)
 225/* Signaled after receiving a packet.  The header and optional short
 226 * response will be in RXPKT1H, and a long response will be in the
 227 * RXPKT_FIFO.
 228 */
 229# define DSI1_INT_RXPKT1		BIT(4)
 230# define DSI1_INT_TXPKT2_DONE		BIT(3)
 231# define DSI1_INT_TXPKT2_END		BIT(2)
 232/* Signaled after all repeats of TXPKT1 are transferred. */
 233# define DSI1_INT_TXPKT1_DONE		BIT(1)
 234/* Signaled after each TXPKT1 repeat is scheduled. */
 235# define DSI1_INT_TXPKT1_END		BIT(0)
 236
 237#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 238					 DSI1_INT_ERR_CONTROL |	 \
 239					 DSI1_INT_ERR_CONT_LP0 | \
 240					 DSI1_INT_ERR_CONT_LP1 | \
 241					 DSI1_INT_HSTX_TO |	 \
 242					 DSI1_INT_LPRX_TO |	 \
 243					 DSI1_INT_TA_TO |	 \
 244					 DSI1_INT_PR_TO)
 245
 246#define DSI0_STAT		0x2c
 247#define DSI0_HSTX_TO_CNT	0x30
 248#define DSI0_LPRX_TO_CNT	0x34
 249#define DSI0_TA_TO_CNT		0x38
 250#define DSI0_PR_TO_CNT		0x3c
 251#define DSI0_PHYC		0x40
 252# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 254# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 255# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 257# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 258# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 259# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 260# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 261# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 262# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 263# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 264# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 265# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 266# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 267# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 268# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 269# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 270# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 271
 272#define DSI0_HS_CLT0		0x44
 273#define DSI0_HS_CLT1		0x48
 274#define DSI0_HS_CLT2		0x4c
 275#define DSI0_HS_DLT3		0x50
 276#define DSI0_HS_DLT4		0x54
 277#define DSI0_HS_DLT5		0x58
 278#define DSI0_HS_DLT6		0x5c
 279#define DSI0_HS_DLT7		0x60
 280
 281#define DSI0_PHY_AFEC0		0x64
 282# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 283# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 284# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 301# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 302# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 303# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 304# define DSI1_PHY_AFEC0_RESET			BIT(13)
 305# define DSI1_PHY_AFEC0_PD			BIT(12)
 306# define DSI0_PHY_AFEC0_RESET			BIT(11)
 307# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 308# define DSI0_PHY_AFEC0_PD			BIT(10)
 309# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
 310# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 311# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 312# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 313# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
 314# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 315# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 316# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 317# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 318
 319#define DSI0_PHY_AFEC1		0x68
 320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 326
 327#define DSI0_TST_SEL		0x6c
 328#define DSI0_TST_MON		0x70
 329#define DSI0_ID			0x74
 330# define DSI_ID_VALUE		0x00647369
 331
 332#define DSI1_CTRL		0x00
 333# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 334# define DSI_CTRL_HS_CLKC_SHIFT		14
 335# define DSI_CTRL_HS_CLKC_BYTE		0
 336# define DSI_CTRL_HS_CLKC_DDR2		1
 337# define DSI_CTRL_HS_CLKC_DDR		2
 338
 339# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 340# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 341# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 342# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 343# define DSI_CTRL_CAL_BYTE		BIT(9)
 344# define DSI_CTRL_INV_BYTE		BIT(8)
 345# define DSI_CTRL_CLR_LDF		BIT(7)
 346# define DSI0_CTRL_CLR_PBCF		BIT(6)
 347# define DSI1_CTRL_CLR_RXF		BIT(6)
 348# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 349# define DSI1_CTRL_CLR_PDF		BIT(5)
 350# define DSI0_CTRL_CLR_PDF		BIT(4)
 351# define DSI1_CTRL_CLR_CDF		BIT(4)
 352# define DSI0_CTRL_CLR_CDF		BIT(3)
 353# define DSI0_CTRL_CTRL2		BIT(2)
 354# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 355# define DSI0_CTRL_CTRL1		BIT(1)
 356# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 357# define DSI0_CTRL_CTRL0		BIT(0)
 358# define DSI1_CTRL_EN			BIT(0)
 359# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 360					 DSI0_CTRL_CLR_PBCF | \
 361					 DSI0_CTRL_CLR_CPBCF |	\
 362					 DSI0_CTRL_CLR_PDF | \
 363					 DSI0_CTRL_CLR_CDF)
 364# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 365					 DSI1_CTRL_CLR_RXF | \
 366					 DSI1_CTRL_CLR_PDF | \
 367					 DSI1_CTRL_CLR_CDF)
 368
 369#define DSI1_TXPKT2C		0x0c
 370#define DSI1_TXPKT2H		0x10
 371#define DSI1_TXPKT_PIX_FIFO	0x20
 372#define DSI1_RXPKT_FIFO		0x24
 373#define DSI1_DISP0_CTRL		0x28
 374#define DSI1_INT_STAT		0x30
 375#define DSI1_INT_EN		0x34
 376/* State reporting bits.  These mostly behave like INT_STAT, where
 377 * writing a 1 clears the bit.
 378 */
 379#define DSI1_STAT		0x38
 380# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 381# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 382# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 383# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 384# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 385# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 386# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 387# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 388# define DSI1_STAT_FIFO_ERR		BIT(23)
 389# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 390# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 391# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 392/* Set when in forward direction */
 393# define DSI1_STAT_PHY_DIR		BIT(19)
 394# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 395# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 396# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 397# define DSI1_STAT_PR_TO		BIT(15)
 398# define DSI1_STAT_TA_TO		BIT(14)
 399# define DSI1_STAT_LPRX_TO		BIT(13)
 400# define DSI1_STAT_HSTX_TO		BIT(12)
 401# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 402# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 403# define DSI1_STAT_ERR_CONTROL		BIT(9)
 404# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 405# define DSI1_STAT_RXPKT2		BIT(7)
 406# define DSI1_STAT_RXPKT1		BIT(6)
 407# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 408# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 409# define DSI1_STAT_TXPKT2_END		BIT(3)
 410# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 411# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 412# define DSI1_STAT_TXPKT1_END		BIT(0)
 413
 414#define DSI1_HSTX_TO_CNT	0x3c
 415#define DSI1_LPRX_TO_CNT	0x40
 416#define DSI1_TA_TO_CNT		0x44
 417#define DSI1_PR_TO_CNT		0x48
 418#define DSI1_PHYC		0x4c
 419
 420#define DSI1_HS_CLT0		0x50
 421# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 422# define DSI_HS_CLT0_CZERO_SHIFT	18
 423# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 424# define DSI_HS_CLT0_CPRE_SHIFT		9
 425# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 426# define DSI_HS_CLT0_CPREP_SHIFT	0
 427
 428#define DSI1_HS_CLT1		0x54
 429# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 430# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 431# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 432# define DSI_HS_CLT1_CPOST_SHIFT	0
 433
 434#define DSI1_HS_CLT2		0x58
 435# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 436# define DSI_HS_CLT2_WUP_SHIFT		0
 437
 438#define DSI1_HS_DLT3		0x5c
 439# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 440# define DSI_HS_DLT3_EXIT_SHIFT		18
 441# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 442# define DSI_HS_DLT3_ZERO_SHIFT		9
 443# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 444# define DSI_HS_DLT3_PRE_SHIFT		0
 445
 446#define DSI1_HS_DLT4		0x60
 447# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 448# define DSI_HS_DLT4_ANLAT_SHIFT	18
 449# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 450# define DSI_HS_DLT4_TRAIL_SHIFT	9
 451# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 452# define DSI_HS_DLT4_LPX_SHIFT		0
 453
 454#define DSI1_HS_DLT5		0x64
 455# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 456# define DSI_HS_DLT5_INIT_SHIFT		0
 457
 458#define DSI1_HS_DLT6		0x68
 459# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 460# define DSI_HS_DLT6_TA_GET_SHIFT	24
 461# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 462# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 463# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 464# define DSI_HS_DLT6_TA_GO_SHIFT	8
 465# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 466# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 467
 468#define DSI1_HS_DLT7		0x6c
 469# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 470# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 471
 472#define DSI1_PHY_AFEC0		0x70
 473
 474#define DSI1_PHY_AFEC1		0x74
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 485
 486#define DSI1_TST_SEL		0x78
 487#define DSI1_TST_MON		0x7c
 488#define DSI1_PHY_TST1		0x80
 489#define DSI1_PHY_TST2		0x84
 490#define DSI1_PHY_FIFO_STAT	0x88
 491/* Actually, all registers in the range that aren't otherwise claimed
 492 * will return the ID.
 493 */
 494#define DSI1_ID			0x8c
 495
 496struct vc4_dsi_variant {
 497	/* Whether we're on bcm2835's DSI0 or DSI1. */
 498	unsigned int port;
 499
 500	bool broken_axi_workaround;
 501
 502	const char *debugfs_name;
 503	const struct debugfs_reg32 *regs;
 504	size_t nregs;
 505
 506};
 507
 508/* General DSI hardware state. */
 509struct vc4_dsi {
 
 
 
 
 
 510	struct platform_device *pdev;
 511
 512	struct mipi_dsi_host dsi_host;
 513	struct drm_encoder *encoder;
 514	struct drm_bridge *bridge;
 515	struct list_head bridge_chain;
 516
 517	void __iomem *regs;
 518
 519	struct dma_chan *reg_dma_chan;
 520	dma_addr_t reg_dma_paddr;
 521	u32 *reg_dma_mem;
 522	dma_addr_t reg_paddr;
 523
 524	const struct vc4_dsi_variant *variant;
 525
 526	/* DSI channel for the panel we're connected to. */
 527	u32 channel;
 528	u32 lanes;
 529	u32 format;
 530	u32 divider;
 531	u32 mode_flags;
 532
 533	/* Input clock from CPRMAN to the digital PHY, for the DSI
 534	 * escape clock.
 535	 */
 536	struct clk *escape_clock;
 537
 538	/* Input clock to the analog PHY, used to generate the DSI bit
 539	 * clock.
 540	 */
 541	struct clk *pll_phy_clock;
 542
 543	/* HS Clocks generated within the DSI analog PHY. */
 544	struct clk_fixed_factor phy_clocks[3];
 545
 546	struct clk_hw_onecell_data *clk_onecell;
 547
 548	/* Pixel clock output to the pixelvalve, generated from the HS
 549	 * clock.
 550	 */
 551	struct clk *pixel_clock;
 552
 553	struct completion xfer_completion;
 554	int xfer_result;
 555
 556	struct debugfs_regset32 regset;
 557};
 558
 559#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 560
 
 
 
 
 
 
 561static inline void
 562dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 563{
 564	struct dma_chan *chan = dsi->reg_dma_chan;
 565	struct dma_async_tx_descriptor *tx;
 566	dma_cookie_t cookie;
 567	int ret;
 568
 569	/* DSI0 should be able to write normally. */
 570	if (!chan) {
 571		writel(val, dsi->regs + offset);
 572		return;
 573	}
 574
 575	*dsi->reg_dma_mem = val;
 576
 577	tx = chan->device->device_prep_dma_memcpy(chan,
 578						  dsi->reg_paddr + offset,
 579						  dsi->reg_dma_paddr,
 580						  4, 0);
 581	if (!tx) {
 582		DRM_ERROR("Failed to set up DMA register write\n");
 583		return;
 584	}
 585
 586	cookie = tx->tx_submit(tx);
 587	ret = dma_submit_error(cookie);
 588	if (ret) {
 589		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 590		return;
 591	}
 592	ret = dma_sync_wait(chan, cookie);
 593	if (ret)
 594		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 595}
 596
 597#define DSI_READ(offset) readl(dsi->regs + (offset))
 598#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 599#define DSI_PORT_READ(offset) \
 600	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
 601#define DSI_PORT_WRITE(offset, val) \
 602	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
 603#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
 604
 605/* VC4 DSI encoder KMS struct */
 606struct vc4_dsi_encoder {
 607	struct vc4_encoder base;
 608	struct vc4_dsi *dsi;
 609};
 610
 611static inline struct vc4_dsi_encoder *
 612to_vc4_dsi_encoder(struct drm_encoder *encoder)
 613{
 614	return container_of(encoder, struct vc4_dsi_encoder, base.base);
 615}
 616
 617static const struct debugfs_reg32 dsi0_regs[] = {
 618	VC4_REG32(DSI0_CTRL),
 619	VC4_REG32(DSI0_STAT),
 620	VC4_REG32(DSI0_HSTX_TO_CNT),
 621	VC4_REG32(DSI0_LPRX_TO_CNT),
 622	VC4_REG32(DSI0_TA_TO_CNT),
 623	VC4_REG32(DSI0_PR_TO_CNT),
 624	VC4_REG32(DSI0_DISP0_CTRL),
 625	VC4_REG32(DSI0_DISP1_CTRL),
 626	VC4_REG32(DSI0_INT_STAT),
 627	VC4_REG32(DSI0_INT_EN),
 628	VC4_REG32(DSI0_PHYC),
 629	VC4_REG32(DSI0_HS_CLT0),
 630	VC4_REG32(DSI0_HS_CLT1),
 631	VC4_REG32(DSI0_HS_CLT2),
 632	VC4_REG32(DSI0_HS_DLT3),
 633	VC4_REG32(DSI0_HS_DLT4),
 634	VC4_REG32(DSI0_HS_DLT5),
 635	VC4_REG32(DSI0_HS_DLT6),
 636	VC4_REG32(DSI0_HS_DLT7),
 637	VC4_REG32(DSI0_PHY_AFEC0),
 638	VC4_REG32(DSI0_PHY_AFEC1),
 639	VC4_REG32(DSI0_ID),
 640};
 641
 642static const struct debugfs_reg32 dsi1_regs[] = {
 643	VC4_REG32(DSI1_CTRL),
 644	VC4_REG32(DSI1_STAT),
 645	VC4_REG32(DSI1_HSTX_TO_CNT),
 646	VC4_REG32(DSI1_LPRX_TO_CNT),
 647	VC4_REG32(DSI1_TA_TO_CNT),
 648	VC4_REG32(DSI1_PR_TO_CNT),
 649	VC4_REG32(DSI1_DISP0_CTRL),
 650	VC4_REG32(DSI1_DISP1_CTRL),
 651	VC4_REG32(DSI1_INT_STAT),
 652	VC4_REG32(DSI1_INT_EN),
 653	VC4_REG32(DSI1_PHYC),
 654	VC4_REG32(DSI1_HS_CLT0),
 655	VC4_REG32(DSI1_HS_CLT1),
 656	VC4_REG32(DSI1_HS_CLT2),
 657	VC4_REG32(DSI1_HS_DLT3),
 658	VC4_REG32(DSI1_HS_DLT4),
 659	VC4_REG32(DSI1_HS_DLT5),
 660	VC4_REG32(DSI1_HS_DLT6),
 661	VC4_REG32(DSI1_HS_DLT7),
 662	VC4_REG32(DSI1_PHY_AFEC0),
 663	VC4_REG32(DSI1_PHY_AFEC1),
 664	VC4_REG32(DSI1_ID),
 665};
 666
 667static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 668{
 669	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 670
 671	if (latch)
 672		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 673	else
 674		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 675
 676	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 677}
 678
 679/* Enters or exits Ultra Low Power State. */
 680static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 681{
 682	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 683	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 684			 DSI_PHYC_DLANE0_ULPS |
 685			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 686			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 687			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 688	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 689			 DSI1_STAT_PHY_D0_ULPS |
 690			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 691			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 692			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 693	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 694			 DSI1_STAT_PHY_D0_STOP |
 695			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 696			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 697			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 698	int ret;
 699	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 700				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 701
 702	if (ulps == ulps_currently_enabled)
 703		return;
 704
 705	DSI_PORT_WRITE(STAT, stat_ulps);
 706	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 707	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 708	if (ret) {
 709		dev_warn(&dsi->pdev->dev,
 710			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 711			 DSI_PORT_READ(STAT));
 712		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 713		vc4_dsi_latch_ulps(dsi, false);
 714		return;
 715	}
 716
 717	/* The DSI module can't be disabled while the module is
 718	 * generating ULPS state.  So, to be able to disable the
 719	 * module, we have the AFE latch the ULPS state and continue
 720	 * on to having the module enter STOP.
 721	 */
 722	vc4_dsi_latch_ulps(dsi, ulps);
 723
 724	DSI_PORT_WRITE(STAT, stat_stop);
 725	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 726	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 727	if (ret) {
 728		dev_warn(&dsi->pdev->dev,
 729			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 730			 DSI_PORT_READ(STAT));
 731		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 732		return;
 733	}
 734}
 735
 736static u32
 737dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 738{
 739	/* The HS timings have to be rounded up to a multiple of 8
 740	 * because we're using the byte clock.
 741	 */
 742	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 743}
 744
 745/* ESC always runs at 100Mhz. */
 746#define ESC_TIME_NS 10
 747
 748static u32
 749dsi_esc_timing(u32 ns)
 750{
 751	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 752}
 753
 754static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 755{
 756	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 757	struct vc4_dsi *dsi = vc4_encoder->dsi;
 758	struct device *dev = &dsi->pdev->dev;
 759	struct drm_bridge *iter;
 760
 761	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
 762		if (iter->funcs->disable)
 763			iter->funcs->disable(iter);
 
 
 
 764	}
 765
 766	vc4_dsi_ulps(dsi, true);
 767
 768	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
 769		if (iter->funcs->post_disable)
 770			iter->funcs->post_disable(iter);
 771	}
 772
 773	clk_disable_unprepare(dsi->pll_phy_clock);
 774	clk_disable_unprepare(dsi->escape_clock);
 775	clk_disable_unprepare(dsi->pixel_clock);
 776
 777	pm_runtime_put(dev);
 778}
 779
 780/* Extends the mode's blank intervals to handle BCM2835's integer-only
 781 * DSI PLL divider.
 782 *
 783 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 784 * driver since most peripherals are hanging off of the PLLD_PER
 785 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 786 * the pixel clock), only has an integer divider off of DSI.
 787 *
 788 * To get our panel mode to refresh at the expected 60Hz, we need to
 789 * extend the horizontal blank time.  This means we drive a
 790 * higher-than-expected clock rate to the panel, but that's what the
 791 * firmware does too.
 792 */
 793static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 794				       const struct drm_display_mode *mode,
 795				       struct drm_display_mode *adjusted_mode)
 796{
 797	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 798	struct vc4_dsi *dsi = vc4_encoder->dsi;
 799	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 800	unsigned long parent_rate = clk_get_rate(phy_parent);
 801	unsigned long pixel_clock_hz = mode->clock * 1000;
 802	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 803	int divider;
 804
 805	/* Find what divider gets us a faster clock than the requested
 806	 * pixel clock.
 807	 */
 808	for (divider = 1; divider < 8; divider++) {
 809		if (parent_rate / divider < pll_clock) {
 810			divider--;
 811			break;
 812		}
 813	}
 814
 815	/* Now that we've picked a PLL divider, calculate back to its
 816	 * pixel clock.
 817	 */
 818	pll_clock = parent_rate / divider;
 819	pixel_clock_hz = pll_clock / dsi->divider;
 820
 821	adjusted_mode->clock = pixel_clock_hz / 1000;
 822
 823	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 824	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 825				mode->clock;
 826	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 827	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 828
 829	return true;
 830}
 831
 832static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 833{
 834	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 835	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 836	struct vc4_dsi *dsi = vc4_encoder->dsi;
 837	struct device *dev = &dsi->pdev->dev;
 838	bool debug_dump_regs = false;
 839	struct drm_bridge *iter;
 840	unsigned long hs_clock;
 841	u32 ui_ns;
 842	/* Minimum LP state duration in escape clock cycles. */
 843	u32 lpx = dsi_esc_timing(60);
 844	unsigned long pixel_clock_hz = mode->clock * 1000;
 845	unsigned long dsip_clock;
 846	unsigned long phy_clock;
 847	int ret;
 848
 849	ret = pm_runtime_get_sync(dev);
 850	if (ret) {
 851		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
 852		return;
 853	}
 854
 855	if (debug_dump_regs) {
 856		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 857		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 858		drm_print_regset32(&p, &dsi->regset);
 859	}
 860
 861	/* Round up the clk_set_rate() request slightly, since
 862	 * PLLD_DSI1 is an integer divider and its rate selection will
 863	 * never round up.
 864	 */
 865	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 866	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 867	if (ret) {
 868		dev_err(&dsi->pdev->dev,
 869			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 870	}
 871
 872	/* Reset the DSI and all its fifos. */
 873	DSI_PORT_WRITE(CTRL,
 874		       DSI_CTRL_SOFT_RESET_CFG |
 875		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 876
 877	DSI_PORT_WRITE(CTRL,
 878		       DSI_CTRL_HSDT_EOT_DISABLE |
 879		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 880
 881	/* Clear all stat bits so we see what has happened during enable. */
 882	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 883
 884	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 885	if (dsi->variant->port == 0) {
 886		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 887			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 888
 889		if (dsi->lanes < 2)
 890			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 891
 892		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 893			afec0 |= DSI0_PHY_AFEC0_RESET;
 894
 895		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 896
 
 
 
 897		DSI_PORT_WRITE(PHY_AFEC1,
 898			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 899			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 900			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 901	} else {
 902		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 903			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 904			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 905			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 906			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 907			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 908			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 909
 910		if (dsi->lanes < 4)
 911			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 912		if (dsi->lanes < 3)
 913			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 914		if (dsi->lanes < 2)
 915			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 916
 917		afec0 |= DSI1_PHY_AFEC0_RESET;
 918
 919		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 920
 921		DSI_PORT_WRITE(PHY_AFEC1, 0);
 922
 923		/* AFEC reset hold time */
 924		mdelay(1);
 925	}
 926
 927	ret = clk_prepare_enable(dsi->escape_clock);
 928	if (ret) {
 929		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 930		return;
 931	}
 932
 933	ret = clk_prepare_enable(dsi->pll_phy_clock);
 934	if (ret) {
 935		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 936		return;
 937	}
 938
 939	hs_clock = clk_get_rate(dsi->pll_phy_clock);
 940
 941	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 942	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
 943	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 944	 * that rate.  Separately, a value derived from PIX_CLK_DIV
 945	 * and HS_CLKC is fed into the PV to divide down to the actual
 946	 * pixel clock for pushing pixels into DSI.
 947	 */
 948	dsip_clock = phy_clock / 8;
 949	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 950	if (ret) {
 951		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 952			dsip_clock, ret);
 953	}
 954
 955	ret = clk_prepare_enable(dsi->pixel_clock);
 956	if (ret) {
 957		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 958		return;
 959	}
 960
 961	/* How many ns one DSI unit interval is.  Note that the clock
 962	 * is DDR, so there's an extra divide by 2.
 963	 */
 964	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 965
 966	DSI_PORT_WRITE(HS_CLT0,
 967		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 968				     DSI_HS_CLT0_CZERO) |
 969		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 970				     DSI_HS_CLT0_CPRE) |
 971		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 972				     DSI_HS_CLT0_CPREP));
 973
 974	DSI_PORT_WRITE(HS_CLT1,
 975		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 976				     DSI_HS_CLT1_CTRAIL) |
 977		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 978				     DSI_HS_CLT1_CPOST));
 979
 980	DSI_PORT_WRITE(HS_CLT2,
 981		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 982				     DSI_HS_CLT2_WUP));
 983
 984	DSI_PORT_WRITE(HS_DLT3,
 985		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 986				     DSI_HS_DLT3_EXIT) |
 987		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 988				     DSI_HS_DLT3_ZERO) |
 989		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 990				     DSI_HS_DLT3_PRE));
 991
 992	DSI_PORT_WRITE(HS_DLT4,
 993		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 994				     DSI_HS_DLT4_LPX) |
 995		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 996					 dsi_hs_timing(ui_ns, 60, 4)),
 997				     DSI_HS_DLT4_TRAIL) |
 998		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 999
1000	/* T_INIT is how long STOP is driven after power-up to
1001	 * indicate to the slave (also coming out of power-up) that
1002	 * master init is complete, and should be greater than the
1003	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1004	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1005	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1006	 * greater minimums.  The vc4 firmware uses an extremely
1007	 * conservative 5ms, and we maintain that here.
1008	 */
1009	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1010							    5 * 1000 * 1000, 0),
1011					      DSI_HS_DLT5_INIT));
1012
1013	DSI_PORT_WRITE(HS_DLT6,
1014		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1015		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1016		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1017		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1018
1019	DSI_PORT_WRITE(HS_DLT7,
1020		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1021				     DSI_HS_DLT7_LP_WUP));
1022
1023	DSI_PORT_WRITE(PHYC,
1024		       DSI_PHYC_DLANE0_ENABLE |
1025		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1026		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1027		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1028		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1029		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1030			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1031		       (dsi->variant->port == 0 ?
1032			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1033			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1034
1035	DSI_PORT_WRITE(CTRL,
1036		       DSI_PORT_READ(CTRL) |
1037		       DSI_CTRL_CAL_BYTE);
1038
1039	/* HS timeout in HS clock cycles: disabled. */
1040	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1041	/* LP receive timeout in HS clocks. */
1042	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1043	/* Bus turnaround timeout */
1044	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1045	/* Display reset sequence timeout */
1046	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1047
1048	/* Set up DISP1 for transferring long command payloads through
1049	 * the pixfifo.
1050	 */
1051	DSI_PORT_WRITE(DISP1_CTRL,
1052		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1053				     DSI_DISP1_PFORMAT) |
1054		       DSI_DISP1_ENABLE);
1055
1056	/* Ungate the block. */
1057	if (dsi->variant->port == 0)
1058		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1059	else
1060		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1061
1062	/* Bring AFE out of reset. */
1063	if (dsi->variant->port == 0) {
1064	} else {
1065		DSI_PORT_WRITE(PHY_AFEC0,
1066			       DSI_PORT_READ(PHY_AFEC0) &
1067			       ~DSI1_PHY_AFEC0_RESET);
1068	}
1069
1070	vc4_dsi_ulps(dsi, false);
1071
1072	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1073		if (iter->funcs->pre_enable)
1074			iter->funcs->pre_enable(iter);
1075	}
1076
1077	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1078		DSI_PORT_WRITE(DISP0_CTRL,
1079			       VC4_SET_FIELD(dsi->divider,
1080					     DSI_DISP0_PIX_CLK_DIV) |
1081			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1082			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1083					     DSI_DISP0_LP_STOP_CTRL) |
1084			       DSI_DISP0_ST_END |
1085			       DSI_DISP0_ENABLE);
1086	} else {
1087		DSI_PORT_WRITE(DISP0_CTRL,
1088			       DSI_DISP0_COMMAND_MODE |
1089			       DSI_DISP0_ENABLE);
1090	}
1091
1092	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1093		if (iter->funcs->enable)
1094			iter->funcs->enable(iter);
1095	}
1096
1097	if (debug_dump_regs) {
1098		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1099		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1100		drm_print_regset32(&p, &dsi->regset);
1101	}
1102}
1103
1104static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1105				     const struct mipi_dsi_msg *msg)
1106{
1107	struct vc4_dsi *dsi = host_to_dsi(host);
1108	struct mipi_dsi_packet packet;
1109	u32 pkth = 0, pktc = 0;
1110	int i, ret;
1111	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1112	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1113
1114	mipi_dsi_create_packet(&packet, msg);
1115
1116	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1117	pkth |= VC4_SET_FIELD(packet.header[1] |
1118			      (packet.header[2] << 8),
1119			      DSI_TXPKT1H_BC_PARAM);
1120	if (is_long) {
1121		/* Divide data across the various FIFOs we have available.
1122		 * The command FIFO takes byte-oriented data, but is of
1123		 * limited size. The pixel FIFO (never actually used for
1124		 * pixel data in reality) is word oriented, and substantially
1125		 * larger. So, we use the pixel FIFO for most of the data,
1126		 * sending the residual bytes in the command FIFO at the start.
1127		 *
1128		 * With this arrangement, the command FIFO will never get full.
1129		 */
1130		if (packet.payload_length <= 16) {
1131			cmd_fifo_len = packet.payload_length;
1132			pix_fifo_len = 0;
1133		} else {
1134			cmd_fifo_len = (packet.payload_length %
1135					DSI_PIX_FIFO_WIDTH);
1136			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1137					DSI_PIX_FIFO_WIDTH);
1138		}
1139
1140		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1141
1142		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1143	}
1144
1145	if (msg->rx_len) {
1146		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1147				      DSI_TXPKT1C_CMD_CTRL);
1148	} else {
1149		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1150				      DSI_TXPKT1C_CMD_CTRL);
1151	}
1152
1153	for (i = 0; i < cmd_fifo_len; i++)
1154		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1155	for (i = 0; i < pix_fifo_len; i++) {
1156		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1157
1158		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1159			       pix[0] |
1160			       pix[1] << 8 |
1161			       pix[2] << 16 |
1162			       pix[3] << 24);
1163	}
1164
1165	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1166		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1167	if (is_long)
1168		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1169
1170	/* Send one copy of the packet.  Larger repeats are used for pixel
1171	 * data in command mode.
1172	 */
1173	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1174
1175	pktc |= DSI_TXPKT1C_CMD_EN;
1176	if (pix_fifo_len) {
1177		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1178				      DSI_TXPKT1C_DISPLAY_NO);
1179	} else {
1180		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1181				      DSI_TXPKT1C_DISPLAY_NO);
1182	}
1183
1184	/* Enable the appropriate interrupt for the transfer completion. */
1185	dsi->xfer_result = 0;
1186	reinit_completion(&dsi->xfer_completion);
1187	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1188	if (msg->rx_len) {
1189		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1190					DSI1_INT_PHY_DIR_RTF));
 
 
 
 
 
 
 
 
1191	} else {
1192		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1193					DSI1_INT_TXPKT1_DONE));
 
 
 
 
 
 
 
1194	}
1195
1196	/* Send the packet. */
1197	DSI_PORT_WRITE(TXPKT1H, pkth);
1198	DSI_PORT_WRITE(TXPKT1C, pktc);
1199
1200	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1201					 msecs_to_jiffies(1000))) {
1202		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1203		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1204			DSI_PORT_READ(INT_STAT));
1205		ret = -ETIMEDOUT;
1206	} else {
1207		ret = dsi->xfer_result;
1208	}
1209
1210	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1211
1212	if (ret)
1213		goto reset_fifo_and_return;
1214
1215	if (ret == 0 && msg->rx_len) {
1216		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1217		u8 *msg_rx = msg->rx_buf;
1218
1219		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1220			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1221						  DSI_RXPKT1H_BC_PARAM);
1222
1223			if (rxlen != msg->rx_len) {
1224				DRM_ERROR("DSI returned %db, expecting %db\n",
1225					  rxlen, (int)msg->rx_len);
1226				ret = -ENXIO;
1227				goto reset_fifo_and_return;
1228			}
1229
1230			for (i = 0; i < msg->rx_len; i++)
1231				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1232		} else {
1233			/* FINISHME: Handle AWER */
1234
1235			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1236						  DSI_RXPKT1H_SHORT_0);
1237			if (msg->rx_len > 1) {
1238				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1239							  DSI_RXPKT1H_SHORT_1);
1240			}
1241		}
1242	}
1243
1244	return ret;
1245
1246reset_fifo_and_return:
1247	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1248
1249	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1250	udelay(1);
1251	DSI_PORT_WRITE(CTRL,
1252		       DSI_PORT_READ(CTRL) |
1253		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1254
1255	DSI_PORT_WRITE(TXPKT1C, 0);
1256	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1257	return ret;
1258}
1259
1260static const struct component_ops vc4_dsi_ops;
1261static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1262			       struct mipi_dsi_device *device)
1263{
1264	struct vc4_dsi *dsi = host_to_dsi(host);
1265	int ret;
1266
1267	dsi->lanes = device->lanes;
1268	dsi->channel = device->channel;
1269	dsi->mode_flags = device->mode_flags;
1270
1271	switch (device->format) {
1272	case MIPI_DSI_FMT_RGB888:
1273		dsi->format = DSI_PFORMAT_RGB888;
1274		dsi->divider = 24 / dsi->lanes;
1275		break;
1276	case MIPI_DSI_FMT_RGB666:
1277		dsi->format = DSI_PFORMAT_RGB666;
1278		dsi->divider = 24 / dsi->lanes;
1279		break;
1280	case MIPI_DSI_FMT_RGB666_PACKED:
1281		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1282		dsi->divider = 18 / dsi->lanes;
1283		break;
1284	case MIPI_DSI_FMT_RGB565:
1285		dsi->format = DSI_PFORMAT_RGB565;
1286		dsi->divider = 16 / dsi->lanes;
1287		break;
1288	default:
1289		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1290			dsi->format);
1291		return 0;
1292	}
1293
1294	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1295		dev_err(&dsi->pdev->dev,
1296			"Only VIDEO mode panels supported currently.\n");
1297		return 0;
1298	}
1299
1300	ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1301	if (ret) {
1302		mipi_dsi_host_unregister(&dsi->dsi_host);
1303		return ret;
1304	}
1305
1306	return 0;
1307}
1308
1309static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1310			       struct mipi_dsi_device *device)
1311{
 
 
 
1312	return 0;
1313}
1314
1315static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1316	.attach = vc4_dsi_host_attach,
1317	.detach = vc4_dsi_host_detach,
1318	.transfer = vc4_dsi_host_transfer,
1319};
1320
1321static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1322	.disable = vc4_dsi_encoder_disable,
1323	.enable = vc4_dsi_encoder_enable,
1324	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1325};
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1328	.port			= 1,
1329	.debugfs_name		= "dsi1_regs",
1330	.regs			= dsi1_regs,
1331	.nregs			= ARRAY_SIZE(dsi1_regs),
1332};
1333
1334static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1335	.port			= 0,
1336	.debugfs_name		= "dsi0_regs",
1337	.regs			= dsi0_regs,
1338	.nregs			= ARRAY_SIZE(dsi0_regs),
1339};
1340
1341static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1342	.port			= 1,
1343	.broken_axi_workaround	= true,
1344	.debugfs_name		= "dsi1_regs",
1345	.regs			= dsi1_regs,
1346	.nregs			= ARRAY_SIZE(dsi1_regs),
1347};
1348
1349static const struct of_device_id vc4_dsi_dt_match[] = {
1350	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1351	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1352	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1353	{}
1354};
1355
1356static void dsi_handle_error(struct vc4_dsi *dsi,
1357			     irqreturn_t *ret, u32 stat, u32 bit,
1358			     const char *type)
1359{
1360	if (!(stat & bit))
1361		return;
1362
1363	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1364	*ret = IRQ_HANDLED;
1365}
1366
1367/*
1368 * Initial handler for port 1 where we need the reg_dma workaround.
1369 * The register DMA writes sleep, so we can't do it in the top half.
1370 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1371 * parent interrupt contrller until our interrupt thread is done.
1372 */
1373static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1374{
1375	struct vc4_dsi *dsi = data;
1376	u32 stat = DSI_PORT_READ(INT_STAT);
1377
1378	if (!stat)
1379		return IRQ_NONE;
1380
1381	return IRQ_WAKE_THREAD;
1382}
1383
1384/*
1385 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1386 * 1 where we need the reg_dma workaround.
1387 */
1388static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1389{
1390	struct vc4_dsi *dsi = data;
1391	u32 stat = DSI_PORT_READ(INT_STAT);
1392	irqreturn_t ret = IRQ_NONE;
1393
1394	DSI_PORT_WRITE(INT_STAT, stat);
1395
1396	dsi_handle_error(dsi, &ret, stat,
1397			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1398	dsi_handle_error(dsi, &ret, stat,
1399			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1400	dsi_handle_error(dsi, &ret, stat,
1401			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1402	dsi_handle_error(dsi, &ret, stat,
1403			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1404	dsi_handle_error(dsi, &ret, stat,
1405			 DSI1_INT_HSTX_TO, "HSTX timeout");
1406	dsi_handle_error(dsi, &ret, stat,
1407			 DSI1_INT_LPRX_TO, "LPRX timeout");
1408	dsi_handle_error(dsi, &ret, stat,
1409			 DSI1_INT_TA_TO, "turnaround timeout");
1410	dsi_handle_error(dsi, &ret, stat,
1411			 DSI1_INT_PR_TO, "peripheral reset timeout");
1412
1413	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
 
 
1414		complete(&dsi->xfer_completion);
1415		ret = IRQ_HANDLED;
1416	} else if (stat & DSI1_INT_HSTX_TO) {
1417		complete(&dsi->xfer_completion);
1418		dsi->xfer_result = -ETIMEDOUT;
1419		ret = IRQ_HANDLED;
1420	}
1421
1422	return ret;
1423}
1424
1425/**
1426 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1427 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1428 * @dsi: DSI encoder
1429 */
1430static int
1431vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1432{
1433	struct device *dev = &dsi->pdev->dev;
1434	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1435	static const struct {
1436		const char *name;
1437		int div;
1438	} phy_clocks[] = {
1439		{ "byte", 8 },
1440		{ "ddr2", 4 },
1441		{ "ddr", 2 },
1442	};
1443	int i;
1444
1445	dsi->clk_onecell = devm_kzalloc(dev,
1446					sizeof(*dsi->clk_onecell) +
1447					ARRAY_SIZE(phy_clocks) *
1448					sizeof(struct clk_hw *),
1449					GFP_KERNEL);
1450	if (!dsi->clk_onecell)
1451		return -ENOMEM;
1452	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1453
1454	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1455		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1456		struct clk_init_data init;
1457		char clk_name[16];
1458		int ret;
1459
1460		snprintf(clk_name, sizeof(clk_name),
1461			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1462
1463		/* We just use core fixed factor clock ops for the PHY
1464		 * clocks.  The clocks are actually gated by the
1465		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1466		 * setting if we use the DDR/DDR2 clocks.  However,
1467		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1468		 * setting both our parent DSI PLL's rate and this
1469		 * clock's rate, so it knows if DDR/DDR2 are going to
1470		 * be used and could enable the gates itself.
1471		 */
1472		fix->mult = 1;
1473		fix->div = phy_clocks[i].div;
1474		fix->hw.init = &init;
1475
1476		memset(&init, 0, sizeof(init));
1477		init.parent_names = &parent_name;
1478		init.num_parents = 1;
1479		init.name = clk_name;
1480		init.ops = &clk_fixed_factor_ops;
1481
1482		ret = devm_clk_hw_register(dev, &fix->hw);
1483		if (ret)
1484			return ret;
1485
1486		dsi->clk_onecell->hws[i] = &fix->hw;
1487	}
1488
1489	return of_clk_add_hw_provider(dev->of_node,
1490				      of_clk_hw_onecell_get,
1491				      dsi->clk_onecell);
1492}
1493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1495{
1496	struct platform_device *pdev = to_platform_device(dev);
1497	struct drm_device *drm = dev_get_drvdata(master);
1498	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1499	struct vc4_dsi_encoder *vc4_dsi_encoder;
1500	struct drm_panel *panel;
1501	const struct of_device_id *match;
1502	dma_cap_mask_t dma_mask;
1503	int ret;
1504
1505	match = of_match_device(vc4_dsi_dt_match, dev);
1506	if (!match)
1507		return -ENODEV;
1508
1509	dsi->variant = match->data;
 
 
1510
1511	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1512				       GFP_KERNEL);
1513	if (!vc4_dsi_encoder)
1514		return -ENOMEM;
1515
1516	INIT_LIST_HEAD(&dsi->bridge_chain);
1517	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1518	vc4_dsi_encoder->dsi = dsi;
1519	dsi->encoder = &vc4_dsi_encoder->base.base;
1520
1521	dsi->regs = vc4_ioremap_regs(pdev, 0);
1522	if (IS_ERR(dsi->regs))
1523		return PTR_ERR(dsi->regs);
1524
1525	dsi->regset.base = dsi->regs;
1526	dsi->regset.regs = dsi->variant->regs;
1527	dsi->regset.nregs = dsi->variant->nregs;
1528
1529	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1530		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1531			DSI_PORT_READ(ID), DSI_ID_VALUE);
1532		return -ENODEV;
1533	}
1534
1535	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1536	 * writes from the ARM.  It does handle writes from the DMA engine,
1537	 * so set up a channel for talking to it.
1538	 */
1539	if (dsi->variant->broken_axi_workaround) {
 
 
1540		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1541						      &dsi->reg_dma_paddr,
1542						      GFP_KERNEL);
1543		if (!dsi->reg_dma_mem) {
1544			DRM_ERROR("Failed to get DMA memory\n");
1545			return -ENOMEM;
1546		}
1547
 
 
 
 
1548		dma_cap_zero(dma_mask);
1549		dma_cap_set(DMA_MEMCPY, dma_mask);
 
1550		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1551		if (IS_ERR(dsi->reg_dma_chan)) {
1552			ret = PTR_ERR(dsi->reg_dma_chan);
1553			if (ret != -EPROBE_DEFER)
1554				DRM_ERROR("Failed to get DMA channel: %d\n",
1555					  ret);
1556			return ret;
1557		}
1558
 
 
 
 
1559		/* Get the physical address of the device's registers.  The
1560		 * struct resource for the regs gives us the bus address
1561		 * instead.
1562		 */
1563		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1564							     0, NULL, NULL));
1565	}
1566
1567	init_completion(&dsi->xfer_completion);
1568	/* At startup enable error-reporting interrupts and nothing else. */
1569	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1570	/* Clear any existing interrupt state. */
1571	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1572
1573	if (dsi->reg_dma_mem)
1574		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1575						vc4_dsi_irq_defer_to_thread_handler,
1576						vc4_dsi_irq_handler,
1577						IRQF_ONESHOT,
1578						"vc4 dsi", dsi);
1579	else
1580		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1581				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1582	if (ret) {
1583		if (ret != -EPROBE_DEFER)
1584			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1585		return ret;
1586	}
1587
1588	dsi->escape_clock = devm_clk_get(dev, "escape");
1589	if (IS_ERR(dsi->escape_clock)) {
1590		ret = PTR_ERR(dsi->escape_clock);
1591		if (ret != -EPROBE_DEFER)
1592			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1593		return ret;
1594	}
1595
1596	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1597	if (IS_ERR(dsi->pll_phy_clock)) {
1598		ret = PTR_ERR(dsi->pll_phy_clock);
1599		if (ret != -EPROBE_DEFER)
1600			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1601		return ret;
1602	}
1603
1604	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1605	if (IS_ERR(dsi->pixel_clock)) {
1606		ret = PTR_ERR(dsi->pixel_clock);
1607		if (ret != -EPROBE_DEFER)
1608			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1609		return ret;
1610	}
1611
1612	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1613					  &panel, &dsi->bridge);
1614	if (ret) {
1615		/* If the bridge or panel pointed by dev->of_node is not
1616		 * enabled, just return 0 here so that we don't prevent the DRM
1617		 * dev from being registered. Of course that means the DSI
1618		 * encoder won't be exposed, but that's not a problem since
1619		 * nothing is connected to it.
1620		 */
1621		if (ret == -ENODEV)
1622			return 0;
1623
1624		return ret;
1625	}
1626
1627	if (panel) {
1628		dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1629							      DRM_MODE_CONNECTOR_DSI);
1630		if (IS_ERR(dsi->bridge))
1631			return PTR_ERR(dsi->bridge);
1632	}
1633
1634	/* The esc clock rate is supposed to always be 100Mhz. */
1635	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1636	if (ret) {
1637		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1638		return ret;
1639	}
1640
1641	ret = vc4_dsi_init_phy_clocks(dsi);
1642	if (ret)
1643		return ret;
1644
1645	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1646	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
 
 
 
 
 
 
 
 
 
 
1647
1648	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1649	if (ret) {
1650		dev_err(dev, "bridge attach failed: %d\n", ret);
1651		return ret;
1652	}
1653	/* Disable the atomic helper calls into the bridge.  We
1654	 * manually call the bridge pre_enable / enable / etc. calls
1655	 * from our driver, since we need to sequence them within the
1656	 * encoder's enable/disable paths.
1657	 */
1658	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1659
1660	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1661
1662	pm_runtime_enable(dev);
1663
1664	return 0;
1665}
1666
1667static void vc4_dsi_unbind(struct device *dev, struct device *master,
1668			   void *data)
1669{
1670	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1671
1672	if (dsi->bridge)
1673		pm_runtime_disable(dev);
1674
1675	/*
1676	 * Restore the bridge_chain so the bridge detach procedure can happen
1677	 * normally.
1678	 */
1679	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1680	drm_encoder_cleanup(dsi->encoder);
1681}
1682
1683static const struct component_ops vc4_dsi_ops = {
1684	.bind   = vc4_dsi_bind,
1685	.unbind = vc4_dsi_unbind,
1686};
1687
1688static int vc4_dsi_dev_probe(struct platform_device *pdev)
1689{
1690	struct device *dev = &pdev->dev;
1691	struct vc4_dsi *dsi;
1692
1693	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1694	if (!dsi)
1695		return -ENOMEM;
1696	dev_set_drvdata(dev, dsi);
1697
 
1698	dsi->pdev = pdev;
1699	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1700	dsi->dsi_host.dev = dev;
1701	mipi_dsi_host_register(&dsi->dsi_host);
1702
1703	return 0;
1704}
1705
1706static int vc4_dsi_dev_remove(struct platform_device *pdev)
1707{
1708	struct device *dev = &pdev->dev;
1709	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1710
1711	component_del(&pdev->dev, &vc4_dsi_ops);
1712	mipi_dsi_host_unregister(&dsi->dsi_host);
 
1713
1714	return 0;
1715}
1716
1717struct platform_driver vc4_dsi_driver = {
1718	.probe = vc4_dsi_dev_probe,
1719	.remove = vc4_dsi_dev_remove,
1720	.driver = {
1721		.name = "vc4_dsi",
1722		.of_match_table = vc4_dsi_dt_match,
1723	},
1724};